WO2012043418A1 - 表面処理組成物及びそれを用いた表面処理方法 - Google Patents

表面処理組成物及びそれを用いた表面処理方法 Download PDF

Info

Publication number
WO2012043418A1
WO2012043418A1 PCT/JP2011/071741 JP2011071741W WO2012043418A1 WO 2012043418 A1 WO2012043418 A1 WO 2012043418A1 JP 2011071741 W JP2011071741 W JP 2011071741W WO 2012043418 A1 WO2012043418 A1 WO 2012043418A1
Authority
WO
WIPO (PCT)
Prior art keywords
surfactant
surface treatment
treatment composition
substrate
polishing
Prior art date
Application number
PCT/JP2011/071741
Other languages
English (en)
French (fr)
Inventor
公亮 土屋
均 森永
昇 安福
修平 高橋
智宏 今尾
Original Assignee
株式会社 フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 フジミインコーポレーテッド filed Critical 株式会社 フジミインコーポレーテッド
Priority to DE112011103232T priority Critical patent/DE112011103232T5/de
Priority to KR1020137010314A priority patent/KR101728200B1/ko
Priority to SG2013020854A priority patent/SG188620A1/en
Priority to JP2012536416A priority patent/JP5891174B2/ja
Priority to US13/824,778 priority patent/US9028709B2/en
Publication of WO2012043418A1 publication Critical patent/WO2012043418A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/825Mixtures of compounds all of which are non-ionic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups
    • C11D2111/22

Definitions

  • the present invention relates to a surface treatment composition mainly used in applications for performing surface treatment such as polishing, etching, rinsing and cleaning of a substrate.
  • the present invention also relates to a kit for preparing the surface treatment composition, and a method for surface treating a substrate using the surface treatment composition.
  • a surface defect inspection device is used for managing defects on the surface of a semiconductor substrate. Defects detected by the surface defect inspection apparatus include foreign matters and residues on the semiconductor substrate that could not be removed by the polishing process, the rinsing process, and the cleaning process.
  • a general surface defect inspection apparatus irradiates the surface of a semiconductor substrate with light such as laser light, receives the reflected light as a signal, and analyzes it to detect the presence and size of a defect.
  • haze When the surface of the polished semiconductor substrate having a mirror finish is irradiated with strong light, clouding may be observed due to irregular reflection caused by roughness on the surface of the semiconductor substrate.
  • This haze is called haze, and haze can be used as a measure of the roughness of the semiconductor substrate surface. If there is haze on the surface of the semiconductor substrate, irregularly reflected light generated by the haze may become noise and hinder the detection of defects by the surface defect inspection apparatus. Therefore, as the size of the defect to be detected, that is, the size of the defect to be managed becomes smaller, the necessity for improving the haze level increases. It is also known that the haze level on the surface of the semiconductor substrate is strongly influenced by etching.
  • the surface treatment composition used for polishing or etching the substrate generally contains a basic compound for etching the substrate surface.
  • the surface treatment composition used for rinsing or cleaning the substrate may also contain a basic compound in order to enhance the rinsing or cleaning effect.
  • the pH of the surface treatment composition becomes 8 or more by blending the basic compound, there is a problem that the substrate surface is easily roughened by the etching action of the basic compound. Therefore, when the surface treatment of the substrate is performed using a composition containing a basic compound and having a pH of 8 or more, the haze of the substrate surface after the surface treatment is reduced by controlling the etching action of the basic compound. Is required.
  • Patent Document 1 discloses a polishing composition containing a surfactant composed of a copolymer of polyoxyethylene and polyoxypropylene, mainly for the purpose of reducing haze on the surface of a semiconductor substrate after polishing. is there.
  • the haze reduction effect of the polishing composition described in Patent Document 1 is not sufficient for managing nano-order defects.
  • the present invention can suppress the roughness of the substrate surface caused by non-uniform or excessive etching that can occur due to the action of the basic compound contained in the surface treatment composition, that is, can further reduce the haze of the substrate surface. It is a main subject to provide a surface treatment composition that can be used.
  • the inventor of the present invention blends at least two surfactants having different molecular weights into a surface treatment composition containing a basic compound and having a pH of 8 or more, more specifically, 1 surfactant and a second surfactant having a weight average molecular weight of 1 ⁇ 2 times or less of the weight average molecular weight of the first surfactant are combined and blended, whereby the surface of the substrate by the basic compound is mixed. It was found that the etching action can be controlled. The present invention has been made based on this finding.
  • the surface treatment includes a first surfactant, a second surfactant, a basic compound, and water, and has a pH of 8 or more. It is a composition, The weight average molecular weight of the said 2nd surfactant is below 1/2 times the weight average molecular weight of the said 1st surfactant, And content of the said 1st surfactant And a surface treatment composition in which the total content of the second surfactant is 0.00001 to 0.1% by mass.
  • kits for preparing the surface treatment composition of the first aspect are provided.
  • the surface treatment composition and the surface treatment method capable of suitably controlling the etching action of the substrate surface by the basic compound and, as a result, suppressing the roughness of the substrate surface and reducing the haze.
  • the kit which can prepare such a surface treatment composition simply is also provided.
  • the surface treatment composition of the present invention contains a first surfactant, a second surfactant, a basic compound, and water, and has a pH of 8 or more.
  • the first surfactant and the second surfactant contained in the surface treatment composition of the present invention have different molecular weights.
  • the second surfactant has a weight average molecular weight that is not more than 1/2 times the weight average molecular weight of the first surfactant.
  • the weight average molecular weight of the second surfactant is more than 1 ⁇ 2 times the weight average molecular weight of the first surfactant, it is not possible to obtain a sufficient effect of suppressing the surface roughness of the substrate.
  • the total of the content of the first surfactant and the content of the second surfactant in the surface treatment composition needs to be 0.00001% by mass or more, preferably 0.0001% by mass or more. is there.
  • the total content of the first surfactant and the second surfactant is less than 0.00001% by mass, it is not possible to obtain a sufficient effect of suppressing the surface roughness of the substrate.
  • the total of the content of the first surfactant and the content of the second surfactant in the surface treatment composition needs to be 0.1% by mass or less, preferably 0.05% by mass. It is as follows. When the total content of the first surfactant and the second surfactant exceeds 0.1% by mass, not only a sufficient effect of suppressing the roughness of the substrate surface can be obtained, but also the surface There also arises a disadvantage that the treatment composition tends to foam.
  • the detailed mechanism by which the roughness of the substrate surface is suppressed by using a combination of the first surfactant and the second surfactant is not clear, but is presumed as follows. That is, the first surfactant and the second surfactant are both adsorbed on the substrate surface and serve to protect the substrate surface from non-uniform or excessive etching that may occur due to the action of the basic compound. Since the first surfactant has a relatively large molecular weight, it has a larger effect of protecting the substrate surface than the second surfactant, but cannot be adsorbed on the substrate surface without a gap.
  • the second surfactant having a relatively small molecular weight can be adsorbed on the substrate surface so as to fill a gap where the first surfactant cannot be adsorbed. Therefore, it is considered that the substrate surface can be closely protected by using a combination of the first surfactant and the second surfactant, and the roughness of the substrate surface is suppressed.
  • the ratio of the total number of carbon atoms of the second surfactant to the total number of carbon atoms of the first surfactant and the second surfactant is preferably 1% or more, more preferably 5% or more, more preferably 15% or more, and most preferably 30% or more.
  • this ratio is 1% or more, more specifically, when the ratio is 5% or more, 15% or more, or 30% or more, the surface roughness of the substrate can be further suppressed.
  • carbon atoms in the second surfactant act as adsorption points when the second surfactant is adsorbed on the substrate surface. By increasing the number of carbon atoms, it is presumed that the effect of the second surfactant that is adsorbed on the substrate surface so as to fill the gap where the first surfactant cannot be adsorbed is likely to be exerted.
  • the ratio of the total number of carbon atoms of the second surfactant to the total number of carbon atoms of the first surfactant and the second surfactant is preferably 90% or less, more Preferably it is 85% or less, More preferably, it is 75% or less, Most preferably, it is 65% or less.
  • this ratio is 90% or less, more specifically, when the ratio is 85% or less, 75% or less, or 65% or less, the surface roughness of the substrate can be further suppressed. The reason is not clear, but it is presumed that the contribution of the first surfactant having a large effect of protecting the substrate surface is increased.
  • the total carbon number of the first surfactant and the total carbon number of the second surfactant can be obtained as follows. Calculate the number of moles of surfactant from the content of each surfactant in the surface treatment composition and the weight average molecular weight of the surfactant, and multiply this by the Avogadro constant to calculate the number of molecular chains of the surfactant. To do. Subsequently, the average number of carbon atoms per molecular chain of the surfactant is calculated from the weight average molecular weight of the surfactant and the structural formula, and this is multiplied by the previously calculated number of molecular chains of the surfactant. That is, the total carbon number of each surfactant can be calculated by the following formula.
  • Total number of carbons of each surfactant (average number of carbons per molecular chain of surfactant) ⁇ (mass of surfactant / weight average molecular weight of surfactant) ⁇ (Avocado constant)
  • the weight average molecular weight of the first surfactant is not particularly limited, but is preferably 500 to 20,000, more preferably 1,000 to 20,000 in order to further improve the effect of suppressing surface roughness of the substrate. 10,000.
  • the weight average molecular weight of the second surfactant is not particularly limited as long as it is not more than 1/2 times the weight average molecular weight of the first surfactant, but in order to further improve the effect of suppressing the roughness of the substrate surface. Is preferably 200 to 10,000, more preferably 200 to 5,000, still more preferably 300 to 1,000.
  • the first surfactant and the second surfactant may be ionic surfactants or nonionic surfactants, respectively, but preferably both are nonionic surfactants. .
  • foaming of the surface treatment composition is suppressed as compared with the case of using a cationic surfactant or an anionic surfactant. Easy handling.
  • nonionic surfactant does not change the pH of the surface treatment composition, the pH of the surface treatment composition can be easily controlled during production and use.
  • nonionic surfactants are excellent in biodegradability and weak in toxicity to living organisms, so that they have little environmental impact and little handling concerns.
  • the types of the first surfactant and the second surfactant used in the surface treatment composition of the present invention are not particularly limited, but specific examples include polyoxyethylene alkyl ether, polyoxyethylene Polyoxyalkylene adducts such as ethylene alkyl phenyl ether, polyoxyethylene alkyl amine, polyoxyethylene fatty acid ester, polyoxyethylene glyceryl ether fatty acid ester, polyoxyethylene sorbitan fatty acid ester, and oxyalkylene polymers such as polyethylene glycol and polypropylene glycol Examples thereof include a single type, a polyoxyethylene polyoxypropylene diblock type, a triblock type, a random type, and an alternating type of oxyalkylene copolymer.
  • Polyoxyethylene polyoxyalkylene copolymer, polyoxyethylene alkyl ether, and polyoxyethylene sorbitan fatty acid ester can be suitably used as the first surfactant, and in particular, triblock polyoxyethylene polyoxyalkylene A copolymer is most preferred.
  • a 1st surfactant may be used individually by 1 type, or may be used in combination of 2 or more type.
  • Polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, and polyethylene glycol can be suitably used as the second surfactant.
  • a 2nd surfactant may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the HLB (Hydrophile-Lipophile Balance) value of the first surfactant and the HLB value of the second surfactant are not particularly limited, but are preferably 12 or more from the viewpoint of obtaining good water solubility.
  • the HLB value here is defined by the Griffin method. In the Griffin method, the HLB value is calculated by the sum of the molecular weight of 20 ⁇ the hydrophilic part / the sum of the molecular weights of the hydrophilic part and the hydrophobic part.
  • hydrophilic part examples include an oxyethylene group, a hydroxyl group, a carboxyl group, and an ester
  • hydrophobic part examples include an oxypropylene group, an oxybutylene group, and an alkyl group.
  • the surface treatment composition of the present invention contains a basic compound, and the pH of the surface treatment composition is adjusted to 8 or more by the addition of the basic compound. As described above, when the pH of the surface treatment composition is 8 or higher, more specifically 9 or higher, the etching action by the basic compound is strengthened, and the surface of the substrate is likely to be roughened. However, the roughening of the substrate surface is suppressed by the action of the first surfactant and the second surfactant described above.
  • the basic compound used in the surface treatment composition of the present invention is not particularly limited, and specific examples include ammonia, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, ammonium bicarbonate, Ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylene
  • Examples include diamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine, piperazine hexahydrate, 1- (2-aminoethyl) piperazine, and N-methylpiperazine.
  • a basic compound may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the basic compound is ammonia, ammonium salt, alkali metal hydroxide, alkali metal for the purpose of suppressing metal contamination of the substrate after the surface treatment. It is preferably a salt or a quaternary ammonium hydroxide, more preferably ammonia, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, ammonium hydrogen carbonate, ammonium carbonate, potassium hydrogen carbonate, It is potassium carbonate, sodium hydrogen carbonate or sodium carbonate, more preferably ammonia, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide or tetraethylammonium hydroxide, most preferably ammonia.
  • the content of the basic compound in the surface treatment composition is not particularly limited as long as the pH of the surface treatment composition is 8 or more, but is generally 0.0001% by mass to 0.5% by mass. %.
  • the content of the basic compound in the surface treatment composition is 0.0001% by mass to 0.5% by mass. It is preferably 0.001% by mass to 0.25% by mass.
  • Water in the surface treatment composition serves to dissolve or disperse other components in the surface treatment composition. It is preferable that water does not contain impurities that inhibit the action of other components as much as possible. Specifically, ion-exchanged water obtained by removing foreign ions through a filter after removing impurity ions using an ion-exchange resin, or pure water, ultrapure water, or distilled water is preferable.
  • the surface treatment composition may contain a particle component.
  • the particle component serves to physically polish the surface of the substrate.
  • the particle component used include, but are not limited to, silicon carbide, silicon dioxide, alumina, ceria, zirconia, and diamond.
  • silicon dioxide such as colloidal silica, fumed silica, or sol-gel silica is used, it is preferable because the surface roughness of the substrate is further reduced.
  • the particle component contained in the surface treatment composition is preferably colloidal silica or fumed silica, more preferably colloidal silica.
  • colloidal silica or fumed silica particularly colloidal silica is used, scratches generated on the surface of the substrate due to polishing are reduced.
  • a particle component may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the particle component in the surface treatment composition is determined from the specific surface area measured by the specific surface area measurement method (BET method) of the powder by gas adsorption.
  • the required average primary particle diameter is preferably 5 to 100 nm, more preferably 10 to 40 nm.
  • the content of the particle component in the surface treatment composition is preferably 0.01% by mass or more, more preferably 0.05. It is at least mass%.
  • the polishing rate of the substrate is improved.
  • the content of the particle component in the surface treatment composition is preferably 5% by mass or less, more preferably 1% by mass or less.
  • the content of the particle component is 5% by mass or less, more specifically 1% by mass or less, the dispersion stability of the surface treatment composition is improved.
  • the surface treatment composition may further contain a wetting agent.
  • the wetting agent is effective for keeping the surface of the substrate hydrophilic. When the wettability of the substrate surface is reduced, the foreign matter attached on the substrate is likely to remain without being removed by cleaning. If foreign matter remains on the substrate, the surface accuracy of the substrate may decrease.
  • wetting agents used include cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose; vinyl polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, poly-N-vinylformamide; starch, cyclodextrin, trehalose, pullulan, etc. Polysaccharides; polyacrylamide; polymethyl methacrylate.
  • a cellulose derivative is preferable because it has a high ability to give wettability to the surface of the substrate, and it can be easily washed off and does not remain on the substrate. Of these, hydroxyethyl cellulose is particularly preferable.
  • the weight average molecular weight of the wetting agent used is generally 30,000 to 2,000,000. However, when the surface treatment composition is used for polishing a semiconductor substrate, particularly a silicon wafer, the weight average molecular weight of the wetting agent is preferably 50,000 to 1,000,000. When the weight average molecular weight of the wetting agent is 1,000,000 or less, the dispersion stability of the surface treatment composition is improved. When the weight average molecular weight of the wetting agent is 50,000 or more, the function of giving wettability to the substrate surface is sufficiently exhibited.
  • the content of the wetting agent in the surface treatment composition is generally 0.001 to 1% by mass.
  • the content of the wetting agent is preferably 0.001 to 0.5 mass%.
  • the content of the wetting agent is 0.5% by mass or less, the dispersion stability of the surface treatment composition is improved.
  • the content of the wetting agent is 0.001% by mass or more, the function of imparting wettability to the substrate surface is sufficiently exhibited.
  • the surface treatment composition of the present invention is used for performing surface treatment such as polishing, rinsing, cleaning, and etching on a substrate, and in particular, a final polishing step, a rinsing step, or a cleaning step in which roughness of the substrate surface is particularly problematic.
  • surface treatment such as polishing, rinsing, cleaning, and etching
  • a final polishing step such as polishing, rinsing, cleaning, and etching
  • a cleaning step such as cleaning, cleaning, and etching on a substrate.
  • the substrate to be surface-treated with the surface treatment composition of the present invention is not particularly limited, but a semiconductor substrate or a magnetic substrate that is prone to surface roughness caused by etching with a basic compound, more specifically, a silicon substrate, SiO 2 A substrate, an SOI (silicon on insulator) substrate, a plastic substrate, a glass substrate, or a quartz substrate is preferable.
  • the surface treatment composition of the present invention can be preferably used in the surface treatment of a silicon wafer that requires a smooth and highly accurate surface.
  • the surface treatment composition of the present invention can be produced by dissolving or dispersing each component other than the above-described water in water by a conventional method.
  • the surface treatment composition of the present invention has the following advantages.
  • the surface treatment composition of the present invention contains a first surfactant and a second surfactant, and the weight average molecular weight of the second surfactant is 1/2 of the weight average molecular weight of the first surfactant.
  • the total of the content of the first surfactant and the content of the second surfactant in the surface treatment composition is 0.00001 to 0.1% by mass. Therefore, according to the surface treatment composition of the present invention, the roughness of the substrate surface after the surface treatment can be suppressed. Therefore, the surface treatment composition of the present invention is used for polishing, rinsing, cleaning, or etching the surface of a substrate, especially for final polishing of a silicon wafer surface that requires particularly high surface accuracy, and rinsing the substrate surface after polishing. It can be used suitably for the purpose to do.
  • the surface treatment composition of the present invention may be embodied as the following embodiment.
  • the surface treatment composition of the present invention may further contain a chelating agent.
  • a chelating agent When the chelating agent is contained, metal contamination of the substrate by the surface treatment composition can be suppressed.
  • usable chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents.
  • Aminocarboxylic acid chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediaminetriacetic acid sodium salt, diethylenetriaminepentaacetic acid, diethylenetriamine Sodium pentaacetate, triethylenetetramine hexaacetic acid and sodium triethylenetetramine hexaacetate are included.
  • Organic phosphonic acid chelating agents include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) Ethane-1,1, -diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, Ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid and ⁇ -methylphosphono Contains succinic acid.
  • the surface treatment composition of the present invention may further contain a known additive such as a preservative, if necessary.
  • Kit of the present invention The kit of the present invention is for preparing the surface treatment composition of the present invention.
  • the kit of the present invention includes a first surfactant, a second surfactant having a weight average molecular weight of 1/2 or less of the weight average molecular weight of the first surfactant, and a basic compound. .
  • kit there is a form of a stock solution of a surface treatment composition that can be prepared by dilution with water. If it is the form of such a stock solution, it is excellent in the handleability at the time of distribution as a product. It is also advantageous that the surface treatment composition can be prepared by a simple method of dilution with water.
  • kits there is a multi-drug kit in which each component in the surface treatment composition is divided into several packages.
  • the multi-drug type kit may be one in which each component in the surface treatment composition is individually packaged, or some components may be packaged in a state of being mixed with another component.
  • the surface treatment method of the present invention is a method of surface treating a substrate using the surface treatment composition of the present invention, more specifically, a method of polishing, rinsing, cleaning or etching a substrate. It is.
  • the surface treatment composition of the present invention can be used in the same apparatus and conditions as those used in normal substrate surface treatment.
  • the surface treatment method of the present invention may be embodied as the following embodiment.
  • the surface treatment method of the present invention may be a method of polishing a substrate using a surface treatment composition containing a particle component.
  • a polishing pad may be used together.
  • the polishing pad used is not particularly limited, but may be a non-woven fabric type or a suede type, or may include a particle component or a particle component.
  • the temperature during use of the surface treatment composition is not particularly limited, but is preferably 5 to 60 ° C.
  • the polishing of the substrate by the surface treatment method of the present invention may be polishing for improving the damaged layer of the substrate or final polishing for finishing the surface layer of the substrate.
  • the polishing time for improving the damaged layer of the substrate is generally 0.1 to 10 hours, although it depends on the depth of the damaged layer.
  • the polishing time of the final polishing for finishing the surface layer of the substrate is usually 30 minutes or less.
  • a brush, a diamond dresser or ultrasonic waves may be used in combination.
  • the temperature when using the surface treatment composition is not particularly limited, but is preferably 10 to 90 ° C.
  • the washing time is usually 1 hour or less.
  • each of the surface treatment compositions of Examples 1 to 15 and Comparative Examples 1 to 10 0.18% by mass of colloidal silica having an average primary particle diameter of 25 nm as a particle component
  • the basic compound contained 0.005% by mass of ammonia, 0.01% by mass of hydroxyethyl cellulose having a weight average molecular weight of 250,000 as a wetting agent, and the pH was 10.2.
  • the value of the average primary particle diameter of colloidal silica is measured using a surface area measuring device Flowsorb II 2300 manufactured by Micromeritics.
  • the total content of the first surfactant and the second surfactant in each surface treatment composition, and the total number of carbon atoms of the first surfactant and the second surfactant Table 1 also shows the ratio of the total number of carbon atoms of the second surfactant to the total number of carbon atoms.
  • the surface of the silicon wafer was polished under the conditions described in Table 2.
  • the silicon wafer used has a disk shape with a diameter of 200 mm, the conductivity type is P-type, the crystal orientation is ⁇ 100>, the resistivity is 0.1 ⁇ ⁇ cm or more and less than 100 ⁇ ⁇ cm, and Fujimi Incorporated Co., Ltd. It was used after pre-polishing using a polishing slurry (trade name GLANZOX 1104).
  • the surface of the silicon wafer after polishing using each of the surface treatment compositions of Examples 1 to 15 and Comparative Examples 1 to 10 was measured in the DWO mode of the wafer inspection device “Surfscan SP2” manufactured by KLA-Tencor Corporation.
  • the results of evaluating the haze level on the surface of the silicon wafer after polishing are shown in the “Haze” column of Table 1.
  • “A” indicates that the haze level was reduced by 10% or more compared to Comparative Example 2
  • “B” indicates that it was 5% or more and less than 10%
  • “C” indicates 5 “D” indicates that a reduction in haze level was not confirmed as compared with Comparative Example 2.
  • the surface of a silicon wafer having a conductivity type of P-type, a crystal orientation of ⁇ 100>, a resistivity of 0.1 ⁇ ⁇ cm to less than 100 ⁇ ⁇ cm and a square of 60 mm is polished with a polishing slurry (trade name GLANZOX 1104, manufactured by Fujimi Incorporated). ) was then used for polishing under the conditions described in Table 3 using the surface treatment compositions of Examples 1 to 15 and Comparative Examples 1 to 10.
  • the surface of the polished silicon wafer was rinsed with flowing water at a flow rate of 7 L / min for 10 seconds, and then the silicon wafer was placed vertically and allowed to stand.

Abstract

 本発明の表面処理組成物は、第1の界面活性剤、第2の界面活性剤、塩基性化合物及び水を含む。表面処理組成物のpHは8以上である。第2の界面活性剤の重量平均分子量は、第1の界面活性剤の重量平均分子量の1/2倍以下である。第1の界面活性剤の含有量と第2の界面活性剤の含有量の合計は、0.00001~0.1質量%である。

Description

表面処理組成物及びそれを用いた表面処理方法
 本発明は、基板の研磨、エッチング、リンス、洗浄といった表面処理を行う用途で主に使用される表面処理組成物に関する。本発明はまた、その表面処理組成物を調製するためのキット、及びその表面処理組成物を用いて基板を表面処理する方法に関する。
 コンピュータに使用されるULSI等の集積回路の高度集積化及び高速化に伴い、半導体デバイスのデザインルールの微細化は年々進んでいる。このため、半導体基板上のより微小なサイズの欠陥が半導体デバイスの性能に悪影響を与えるとして、現在では、従来問題とされなかったナノオーダーの欠陥の管理が要求されている。
 半導体基板表面の欠陥の管理には表面欠陥検査装置が用いられる。表面欠陥検査装置によって検出される欠陥には、研磨工程、リンス工程及び洗浄工程で除去しきれなかった半導体基板上の異物及び残渣が含まれる。一般的な表面欠陥検査装置はレーザー光などの光を半導体基板表面に照射し、その反射光を信号として受信して解析することで欠陥の有無及びサイズを検出している。
 鏡面に仕上げられた研磨後の半導体基板表面に強い光を照射すると、半導体基板表面上の荒れに起因する乱反射により曇りが見られることがある。この曇りはヘイズと呼ばれ、ヘイズは半導体基板表面の粗さの尺度として用いることができる。半導体基板表面にヘイズがあると、ヘイズにより生じる乱反射光がノイズとなって表面欠陥検査装置による欠陥検出の妨げになることがある。そのため、検出しようとする欠陥のサイズ、つまり管理しようとする欠陥のサイズが小さくなるのに伴い、ヘイズレベルの改善の必要性は高まる。また、半導体基板表面のヘイズレベルは、エッチングによる影響も強く受けることが知られている。
 一方、基板を研磨又はエッチングするために使用される表面処理組成物には、基板表面をエッチングするための塩基性化合物が含まれることが一般的である。また、基板をリンス又は洗浄するために使用される表面処理組成物にも、リンス又は洗浄効果を高めるために塩基性化合物が含まれることがある。しかし、塩基性化合物を配合することによって表面処理組成物のpHが8以上となると、塩基性化合物によるエッチング作用によって基板表面に荒れが生じやすくなるという問題がある。そのため、塩基性化合物を含んだpHが8以上の組成物を用いて基板の表面処理を行う場合には、塩基性化合物によるエッチング作用をコントロールすることにより表面処理後の基板表面のヘイズを低減することが要求される。
 特許文献1には、研磨後の半導体基板表面のヘイズを低減することを主な目的として、ポリオキシエチレンとポリオキシプロピレンの共重合体からなる界面活性剤を配合した研磨用組成物の開示がある。しかしながら、特許文献1に記載の研磨用組成物によるヘイズ低減効果は、ナノオーダーの欠陥を管理するためには十分といえない。
特開2005-85858号公報
 そこで本発明は、表面処理組成物中に含まれる塩基性化合物の作用によって起こり得る不均一又は過度なエッチングが原因の基板表面の荒れを抑制すること、すなわち基板表面のヘイズをより低減することができる表面処理組成物を提供することを主な課題とする。
 本発明の発明者は、鋭意研究の結果、塩基性化合物を含んだpHが8以上の表面処理組成物中に分子量の異なる少なくとも2種の界面活性剤を配合すること、より具体的には第1の界面活性剤と第1の界面活性剤の重量平均分子量の1/2倍以下の重量平均分子量を有する第2の界面活性剤とを組み合わせて配合することで、塩基性化合物による基板表面のエッチング作用がコントロールできることを見出した。本発明はこの知見に基づいてなされたものである。
 すなわち、上記の課題を解決するために、本発明の第1の態様では、第1の界面活性剤、第2の界面活性剤、塩基性化合物及び水を含み、pHが8以上である表面処理組成物であって、前記第2の界面活性剤の重量平均分子量が前記第1の界面活性剤の重量平均分子量の1/2倍以下であり、かつ、前記第1の界面活性剤の含有量と前記第2の界面活性剤の含有量の合計が0.00001~0.1質量%である表面処理組成物を提供する。
 本発明の第2の態様では、前記第1の態様の表面処理組成物を調製するためのキットを提供する。
 本発明の第3の態様では、前記第1の態様の表面処理組成物を用いて基板を表面処理する方法を提供する。
 本発明によれば、塩基性化合物による基板表面のエッチング作用を好適にコントロールすることができ、その結果、基板表面の荒れを抑制してヘイズを低減することができる表面処理組成物及び表面処理方法が提供される。また、本発明によれば、そのような表面処理組成物を簡便に調製することができるキットも提供される。
 以下、本発明の実施形態を説明する。
 [1]本発明の表面処理組成物
 本発明の表面処理組成物は、第1の界面活性剤、第2の界面活性剤、塩基性化合物、及び水を含み、pHが8以上である。
 <界面活性剤>
 本発明の表面処理組成物中に含まれる第1の界面活性剤と第2の界面活性剤は分子量が相異なる。具体的には、第2の界面活性剤は、第1の界面活性剤の重量平均分子量の1/2倍以下の重量平均分子量を有する。第2の界面活性剤の重量平均分子量が第1の界面活性剤の重量平均分子量の1/2倍を上回る場合には、基板表面の荒れを抑制する十分な効果を得ることができない。
 表面処理組成物中の第1の界面活性剤の含有量と第2の界面活性剤の含有量の合計は、0.00001質量%以上である必要があり、好ましくは0.0001質量%以上である。第1の界面活性剤と第2の界面活性剤の含有量の合計が0.00001質量%未満の場合には、基板表面の荒れを抑制する十分な効果を得ることができない。
 また、表面処理組成物中の第1の界面活性剤の含有量と第2の界面活性剤の含有量の合計は、0.1質量%以下である必要があり、好ましくは0.05質量%以下である。第1の界面活性剤と第2の界面活性剤の含有量の合計が0.1質量%を超える場合には、基板表面の荒れを抑制する十分な効果を得ることができないだけでなく、表面処理組成物が泡立ちやすくなるという不都合も生じる。
 第1の界面活性剤と第2の界面活性剤を組み合わせて用いることにより基板表面の荒れが抑制される詳細なメカニズムは明らかではないが、以下のように推測される。すなわち、第1の界面活性剤と第2の界面活性剤はいずれも基板表面に吸着して、塩基性化合物の作用によって起こり得る不均一又は過度なエッチングから基板表面を保護する働きをするが、第1の界面活性剤は、分子量が比較的大きいために、第2の界面活性剤に比べて基板表面を保護する効果が大きい半面、隙間なく基板表面に吸着することはできない。一方、分子量の比較的小さい第2の界面活性剤は、第1の界面活性剤が吸着しきれない隙間を埋めるようにして基板表面に吸着することが可能である。そのため、第1の界面活性剤と第2の界面活性剤を組み合わせて用いることで基板表面を密に保護することができ、基板表面の荒れが抑制されると考えられる。
 第1の界面活性剤の総炭素数と第2の界面活性剤の総炭素数の合計に対する第2の界面活性剤の総炭素数の割合は、1%以上であることが好ましく、より好ましくは5%以上、さらに好ましくは15%以上、最も好ましくは30%以上である。この割合が1%以上の場合、さらに言えば5%以上、15%以上又は30%以上の場合には、基板表面の荒れをより一層抑制することができる。その理由は明らかではないが、第2の界面活性剤中の炭素原子は第2の界面活性剤が基板表面に吸着するときに吸着点として働くと考えられるため、第2の界面活性剤の総炭素数が増えることにより、第1の界面活性剤が吸着しきれない隙間を埋めるようにして基板表面に吸着する第2の界面活性剤の効果が発揮されやすくなると推測される。
 また、第1の界面活性剤の総炭素数と第2の界面活性剤の総炭素数の合計に対する第2の界面活性剤の総炭素数の割合は、90%以下であることが好ましく、より好ましくは85%以下、さらに好ましくは75%以下、最も好ましくは65%以下である。この割合が90%以下の場合、さらに言えば85%以下、75%以下又は65%以下の場合には、基板表面の荒れをより一層抑制することができる。その理由は明らかではないが、基板表面を保護する効果の大きい第1の界面活性剤の寄与が大きくなることが理由として推測される。
 なお、第1の界面活性剤の総炭素数及び第2の界面活性剤の総炭素数は、以下のようにして求めることができる。表面処理組成物中の各界面活性剤の含有量とその界面活性剤の重量平均分子量より界面活性剤のモル数を算出し、これにアボガドロ定数をかけ合わせて界面活性剤の分子鎖数を算出する。続いて、その界面活性剤の重量平均分子量と構造式から界面活性剤の一分子鎖あたりの平均炭素数を算出し、これに先に算出された界面活性剤の分子鎖数をかけ合わせる。すなわち、以下の式により各界面活性剤の総炭素数は算出することができる。
  各界面活性剤の総炭素数=(界面活性剤の一分子鎖あたりの平均炭素数)×(界面活性剤の質量/界面活性剤の重量平均分子量)×(アボガドロ定数)
 第1の界面活性剤の重量平均分子量は特に限定されないが、基板表面の荒れを抑制する効果をより向上させるためには、500~20,000であることが好ましく、より好ましくは1,000~10,000である。
 第2の界面活性剤の重量平均分子量は、第1の界面活性剤の重量平均分子量の1/2倍以下であれば特に限定されないが、基板表面の荒れを抑制する効果をより向上させるためには、200~10,000であることが好ましく、より好ましくは200~5,000、さらに好ましくは300~1,000である。
 第1の界面活性剤と第2の界面活性剤はそれぞれイオン性界面活性剤であってもよいしノニオン性界面活性剤であってもよいが、いずれもノニオン性界面活性剤であることが好ましい。ノニオン性界面活性剤を使用した場合には、カチオン性界面活性剤又はアニオン性界面活性剤を使用した場合と比べて表面処理組成物の泡立ちが抑えられるため、表面処理組成物の製造時及び使用時の取扱いが容易になる。また、ノニオン性界面活性剤は表面処理組成物のpHを変化させないため、製造時及び使用時に表面処理組成物のpHの制御が容易になる。さらに、ノニオン性界面活性剤は生分解性に優れ、また生体に対する毒性が弱いため、環境への影響が小さく取扱い上の懸念が少ない。
 本発明の表面処理組成物で使用される第1の界面活性剤及び第2の界面活性剤の種類は、特に限定されるものではないが、具体例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステルなどのポリオキシアルキレン付加物、ポリエチレングリコールやポリプロピレングリコールなどのオキシアルキレン重合体単体、ポリオキシエチレンポリオキシプロピレンのジブロック型やトリブロック型、ランダム型、交互型といった複数種のオキシアルキレンの共重合体が挙げられる。
 ポリオキシエチレンポリオキシアルキレン共重合体、ポリオキシエチレンアルキルエーテル、及びポリオキシエチレンソルビタン脂肪酸エステルは第1の界面活性剤として好適に使用することができ、中でもトリブロック型のポリオキシエチレンポリオキシアルキレン共重合体が最も好ましい。第1の界面活性剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、及びポリエチレングリコールは第2の界面活性剤として好適に使用することができ、中でもポリオキシエチレンアルキルエーテル、さらに言えば直鎖状ポリオキシエチレンアルキルエーテルが最も好ましい。第2の界面活性剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 第1の界面活性剤のHLB(Hydrophile-Lipophile Balance)値及び第2の界面活性剤のHLB値は特に限定されないが、良好な水溶解性が得られる点から、12以上であることが好ましい。第1の界面活性剤及び第2の界面活性剤のHLB値が12以上の場合には、第1の界面活性剤及び第2の界面活性剤が基板表面に残留しにくい。また、表面処理組成物の安定性が向上する。なお、ここでいうHLB値はグリフィン法で定義されるものである。グリフィン法では、20×親水部の分子量の総和/親水部と疎水部の分子量の総和でHLB値が計算される。親水部の例としてはオキシエチレン基、ヒドロキシル基、カルボキシル基、エステルなどがあり、疎水部の例としてはオキシプロピレン基、オキシブチレン基、アルキル基などがある。
 <塩基性化合物>
 本発明の表面処理組成物は塩基性化合物を含み、塩基性化合物の添加により表面処理組成物のpHは8以上に調整されている。先にも説明したとおり、表面処理組成物のpHが8以上の場合、さらに言えば9以上の場合には、塩基性化合物によるエッチング作用が強まる結果、基板表面に荒れが生じやすくなる。しかし、上述した第1の界面活性剤及び第2の界面活性剤の作用により基板表面の荒れは抑制される。
 本発明の表面処理組成物で使用される塩基性化合物は特に制限されず、具体例としては、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、およびN-メチルピペラジンが挙げられる。塩基性化合物は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 表面処理組成物を用いて表面処理される基板がシリコンウェーハである場合、表面処理後の基板の金属汚染を抑える目的では、塩基性化合物は、アンモニア、アンモニウム塩、アルカリ金属水酸化物、アルカリ金属塩又は第四級アンモニウム水酸化物であることが好ましく、より好ましくはアンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム又は炭酸ナトリウムであり、さらに好ましくはアンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム又は水酸化テトラエチルアンモニウム、最も好ましくはアンモニアである。
 表面処理組成物中の塩基性化合物の含有量は、表面処理組成物のpHが8以上となるような範囲であれば特に限定されないが、一般的には0.0001質量%~0.5質量%である。ただし、表面処理組成物を用いて表面処理される基板がシリコンウェーハである場合には、表面処理組成物中の塩基性化合物の含有量は、0.0001質量%~0.5質量%であることが好ましく、より好ましくは0.001質量%~0.25質量%である。塩基性化合物の含有量が上記範囲内の場合には、塩基性化合物によるエッチング作用が第1の界面活性剤及び第2の界面活性剤の働きにより適度に緩和される点で実用上の利点がある。
 <水>
 表面処理組成物中の水は、表面処理組成物中の他の成分を溶解又は分散させる働きをする。水は、他の成分の作用を阻害する不純物をできるだけ含有しないことが好ましい。具体的には、イオン交換樹脂を使って不純物イオンを除去した後にフィルタを通して異物を除去したイオン交換水、あるいは純水、超純水又は蒸留水が好ましい。
 <粒子成分>
 表面処理組成物は粒子成分を含んでも良い。粒子成分は基板の表面を物理的に研磨する働きをする。
 使用される粒子成分の具体例としては、炭化ケイ素、二酸化ケイ素、アルミナ、セリア、ジルコニア及びダイヤモンドが挙げられるが、これらに限定されるものではない。中でもコロイダルシリカ、フュームドシリカ、ゾルゲル法シリカ等の二酸化ケイ素を用いた場合には、基板の表面粗さがより低減されるため好ましい。
 表面処理組成物を半導体基板の研磨、特にシリコンウェーハの研磨に用いる場合、表面処理組成物中に含まれる粒子成分はコロイダルシリカ又はフュームドシリカであることが好ましく、より好ましくはコロイダルシリカである。コロイダルシリカ又はフュームドシリカ、特にコロイダルシリカを使用した場合には、研磨により基板の表面に発生するスクラッチが減少する。粒子成分は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 表面処理組成物を半導体基板の研磨、特にシリコンウェーハの研磨に用いる場合、表面処理組成物中の粒子成分は、気体吸着による粉体の比表面積測定法(BET法)により測定される比表面積から求められる平均一次粒子径が5~100nmであることが好ましく、より好ましくは10~40nmである。
 表面処理組成物を半導体基板の研磨、特にシリコンウェーハの研磨に用いる場合、表面処理組成物中の粒子成分の含有量は、0.01質量%以上であることが好ましく、より好ましくは0.05質量%以上である。粒子成分の含有量が0.01質量%以上、さらに言えば0.05質量%以上の場合には、基板の研磨速度が向上する。
 また、表面処理組成物中の粒子成分の含有量は、5質量%以下であることが好ましく、より好ましくは1質量%以下である。粒子成分の含有量が5質量%以下、さらに言えば1質量%以下の場合には、表面処理組成物の分散安定性が向上する。
 <濡れ剤>
 表面処理組成物は濡れ剤をさらに含んでも良い。濡れ剤は、基板の表面を親水性に保つのに効果的である。基板表面の濡れ性が低下すると、基板上に付着した異物が洗浄によって除去されずに残留をしやすい。基板上に異物が残留すると、基板の表面精度が低下する場合がある。
 使用される濡れ剤の例としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロースなどのセルロース誘導体;ポリビニルアルコール、ポリビニルピロリドン、ポリ-N-ビニルホルムアミドなどのビニルポリマー;デンプン、シクロデキストリン、トレハロース、プルランなどの多糖類;ポリアクリルアミド;ポリメタクリル酸メチルが挙げられる。基板の表面に濡れ性を与える能力が高く、また容易に洗い落とすことができて基板上に残留しないことから、セルロース誘導体が好ましく、中でもヒドロキシエチルセルロースが特に好ましい。
 使用される濡れ剤の重量平均分子量は、一般的には30,000~2,000,000である。ただし、表面処理組成物を半導体基板の研磨、特にシリコンウェーハの研磨に用いる場合、濡れ剤の重量平均分子量は、50,000~1,000,000であることが好ましい。濡れ剤の重量平均分子量が1,000,000以下の場合には、表面処理組成物の分散安定性が向上する。濡れ剤の重量平均分子量が50,000以上の場合には、基板表面に濡れ性を与える働きが十分に発揮される。
 表面処理組成物中の濡れ剤の含有量は、一般的には0.001~1質量%である。ただし、表面処理組成物を半導体基板の研磨、特にシリコンウェーハの研磨に用いる場合、濡れ剤の含有量は0.001~0.5質量%であることが好ましい。濡れ剤の含有量が0.5質量%以下の場合、表面処理組成物の分散安定性が向上する。濡れ剤の含有量が0.001質量%以上の場合、基板表面に濡れ性を与える働きが十分に発揮される。
 本発明の表面処理組成物は、研磨、リンス、洗浄、エッチングといった表面処理を基板に行うのに用いられるものであり、中でも基板表面の荒れが特に問題となる最終研磨工程、リンス工程又は洗浄工程で好ましく用いられる。
 本発明の表面処理組成物を用いて表面処理される基板は特に限定されないが、塩基性化合物によるエッチングにより生じる表面の荒れが問題となりやすい半導体基板や磁性体基板、さらに言えばシリコン基板、SiO基板、SOI(silicon on insulator)基板、プラスチック基板、ガラス基板、石英基板が好適である。その中でも特に、平滑で精度の高い表面が必要とされるシリコンウェーハの表面処理において本発明の表面処理組成物は好ましく用いることができる。
 本発明の表面処理組成物は、上述した水以外の各成分を常法により水に溶解又は分散させることにより製造することができる。
 本発明の表面処理組成物は、以下の利点を有する。
 本発明の表面処理組成物は第1の界面活性剤と第2の界面活性剤を含有し、第2の界面活性剤の重量平均分子量が第1の界面活性剤の重量平均分子量の1/2倍以下であり、かつ、表面処理組成物中の第1の界面活性剤の含有量と第2の界面活性剤の含有量の合計が0.00001~0.1質量%である。そのため、本発明の表面処理組成物によれば、表面処理後の基板表面の荒れを抑制することができる。従って、本発明の表面処理組成物は、基板の表面を研磨、リンス、洗浄又はエッチングする用途、中でも特に高い表面精度が求められるシリコンウェーハの表面を最終研磨する用途及び研磨後の基板表面をリンスする用途で好適に使用することができる。
 本発明の表面処理組成物は、以下のような実施形態として具体化されてもよい。
 ・ 本発明の表面処理組成物は、キレート剤をさらに含有してもよい。キレート剤を含有する場合、表面処理組成物による基板の金属汚染を抑えることができる。使用可能なキレート剤の例としては、例えば、アミノカルボン酸系キレート剤及び有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸及びトリエチレンテトラミン六酢酸ナトリウムが含まれる。有機ホスホン酸系キレート剤には、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1,-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸及びα-メチルホスホノコハク酸が含まれる。
 ・ 本発明の表面処理組成物は、防腐剤のような公知の添加剤を必要に応じてさらに含有してもよい。
 [2]本発明のキット
 本発明のキットは、本発明の表面処理組成物を調製するためのものである。本発明のキットは、第1の界面活性剤と、第1の界面活性剤の重量平均分子量の1/2倍以下の重量平均分子量を有する第2の界面活性剤と、塩基性化合物とを含む。
 キットの一形態としては、水希釈により表面処理組成物を調製することができる表面処理組成物の原液の形態がある。このような原液の形態であれば、製品として流通時の取扱い性に優れる。また、水希釈という簡便な方法で表面処理組成物を調製することができることも利点である。
 キットの他の形態としては、表面処理組成物中の各成分をいくつかに分けて包装した多剤型キットがある。多剤型キットは、表面処理組成物中の各成分をそれぞれ別々に包装したものでもよいし、一部の成分については別の成分と混合した状態で包装したものでもよい。
 [3]本発明の表面処理方法
 本発明の表面処理方法は、本発明の表面処理組成物を用いて基板を表面処理する方法、より具体的には基板を研磨、リンス、洗浄又はエッチングする方法である。本発明の表面処理組成物は、通常の基板の表面処理で用いられるのと同じ装置及び条件で使用することができる。
 本発明の表面処理方法は、以下のような実施形態として具体化されてもよい。
 ・ 本発明の表面処理方法は、粒子成分を含有する表面処理組成物を用いて基板を研磨する方法であってもよい。この場合、研磨パッドを併せて使用してもよい。使用される研磨パッドは特に限定されないが、不織布タイプでもスウェードタイプでもよいし、あるいは粒子成分を含むものであっても粒子成分を含まないものであってもよい。
 ・ 本発明の表面処理方法により基板を研磨又はリンスする場合、表面処理組成物の使用時の温度は特に限定されないが、5~60℃であることが好ましい。
 ・ 本発明の表面処理方法による基板の研磨は、基板のダメージ層を改善するための研磨であってもよいし、あるいは基板の表層を仕上げる最終研磨であってもよい。基板のダメージ層を改善するための研磨の研磨時間は、ダメージ層の深さにもよるが、一般的には0.1~10時間である。基板の表層を仕上げる最終研磨の研磨時間は、通常で30分以下である。
 ・ 本発明の表面処理方法により基板を洗浄する場合、ブラシ、ダイヤモンドドレッサー又は超音波を併せて使用してもよい。
 ・ 本発明の表面処理方法により基板を洗浄する場合、表面処理組成物の使用時の温度は特に限定されないが、10~90℃であることが好ましい。洗浄時間は通常で1時間以下である。
 次に、本発明の実施例及び比較例を説明する。
 第1の界面活性剤、第2の界面活性剤、塩基性化合物、粒子成分及び濡れ剤の全部又は一部をイオン交換水に混合して実施例1~15及び比較例1~10の表面処理組成物を調製した。実施例1~15及び比較例1~10の各表面処理組成物中の第1の界面活性剤及び第2の界面活性剤の詳細を表1に示す。なお、表1には示していないが、実施例1~15及び比較例1~10の表面処理組成物はいずれも、粒子成分として平均一次粒子径が25nmのコロイダルシリカを0.18質量%、塩基性化合物としてアンモニアを0.005質量%、濡れ剤として重量平均分子量が250,000のヒドロキシエチルセルロースを0.01質量%含有し、pHは10.2とした。コロイダルシリカの平均一次粒子径の値は、Micromeritics社製の表面積測定装置FlowSorb II 2300を使って測定したものである。また、各表面処理組成物中の第1の界面活性剤の含有量と第2の界面活性剤の含有量の合計、並びに第1の界面活性剤の総炭素数と第2の界面活性剤の総炭素数の合計に対する第2の界面活性剤の総炭素数の割合についても表1に示す。
 実施例1~15及び比較例1~10の各表面処理組成物を用いて、シリコンウェーハの表面を表2に記載の条件で研磨した。使用したシリコンウェーハは、直径が200mmの円盤状であって、伝導型がP型、結晶方位が<100>、抵抗率が0.1Ω・cm以上100Ω・cm未満であり、株式会社フジミインコーポレーテッド製の研磨スラリー(商品名GLANZOX 1104)を使って予備研磨してから用いた。
 実施例1~15及び比較例1~10の各表面処理組成物を用いて研磨後のシリコンウェーハの表面を、ケーエルエー・テンコール社製のウェーハ検査装置“Surfscan SP2”のDWOモードで計測し、それに基づいて研磨後のシリコンウェーハ表面のヘイズレベルを評価した結果を表1の“ヘイズ”欄に示す。同欄中、“A”は比較例2と比較してヘイズレベルが10%以上低減されたことを示し、“B”はそれが5%以上10%未満であったこと、“C”は5%未満であったこと、“D”は比較例2と比較してヘイズレベルの低減が確認されなかったことを示す。
 伝導型がP型、結晶方位が<100>、抵抗率が0.1Ω・cm以上100Ω・cm未満で60mm角のシリコンウェーハの表面を、株式会社フジミインコーポレーテッド製の研磨スラリー(商品名GLANZOX 1104)を用いて予備研磨の後、実施例1~15及び比較例1~10の各表面処理組成物を用いて表3に記載の条件で研磨した。研磨後のシリコンウェーハの表面を7L/分の流量の流水で10秒間リンスし、その後、シリコンウェーハを垂直に立てて静置した。そして、30秒経過後に各シリコンウェーハの周縁からシリコンウェーハの表面のうち濡れている部分までの距離のうち最大のものを測定し、それに基づいて研磨後のシリコンウェーハ表面の濡れ性を評価した結果を表1の“濡れ性”欄に示す。同欄中、“A”は、シリコンウェーハの周縁から濡れている部分までの最大の距離が5mm以下であったことを示し、“B”はそれが5mm超40mm以下であったこと、“C”は40mm超であったことを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、実施例1~15においては比較例1~10に比べて、ヘイズレベルが低いことがわかった。

Claims (13)

  1.  第1の界面活性剤、第2の界面活性剤、塩基性化合物及び水を含み、pHが8以上である表面処理組成物であって、
     前記第2の界面活性剤の重量平均分子量が前記第1の界面活性剤の重量平均分子量の1/2倍以下であり、かつ、前記第1の界面活性剤の含有量と前記第2の界面活性剤の含有量の合計が0.00001~0.1質量%であることを特徴とする表面処理組成物。
  2.  前記第1の界面活性剤の総炭素数と前記第2の界面活性剤の総炭素数の合計に対する前記第2の界面活性剤の総炭素数の割合が1~90%であることを特徴とする請求項1に記載の表面処理組成物。
  3.  前記第1の界面活性剤の重量平均分子量が500~20,000であることを特徴とする請求項1又は2に記載の表面処理組成物。
  4.  前記第1の界面活性剤及び前記第2の界面活性剤がいずれもノニオン性界面活性剤であることを特徴とする請求項1~3のいずれか一項に記載の表面処理組成物。
  5.  さらに、粒子成分を含むことを特徴とする請求項1~4のいずれか一項に記載の表面処理組成物。
  6.  前記粒子成分が二酸化ケイ素であることを特徴とする請求項5に記載の表面処理組成物。
  7.  さらに、濡れ剤を含むことを特徴とする請求項1~6のいずれか一項に記載の表面処理組成物。
  8.  シリコンウェーハを表面処理する用途で用いられることを特徴とする請求項1~7のいずれか一項に記載の表面処理組成物。
  9.  基板の表面を研磨又はリンスする用途で用いられることを特徴とする請求項1~7のいずれか一項に記載の表面処理組成物。
  10.  請求項1~9のいずれか一項に記載の表面処理組成物を調製するためのキットであって、
     第1の界面活性剤と、前記第1の界面活性剤の重量平均分子量の1/2倍以下の重量平均分子量を有する第2の界面活性剤と、塩基性化合物とを含むことを特徴とするキット。
  11.  請求項1~7のいずれか一項に記載の表面処理組成物を用いて基板の表面を研磨、洗浄、リンス又はエッチングすることを特徴とする表面処理方法。
  12.  請求項1~7のいずれか一項に記載の表面処理組成物を用いて基板の表面を研磨又はリンスすることを特徴とする表面処理方法。
  13.  前記基板がシリコンウェーハであることを特徴とする請求項11又は12に記載の表面処理方法。
PCT/JP2011/071741 2010-09-27 2011-09-23 表面処理組成物及びそれを用いた表面処理方法 WO2012043418A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112011103232T DE112011103232T5 (de) 2010-09-27 2011-09-23 Oberflächenbehandlungszusammensetzung und Oberflächenbehandlungsverfahren unter Verwendung derselben
KR1020137010314A KR101728200B1 (ko) 2010-09-27 2011-09-23 표면 처리 조성물 및 그것을 사용한 표면 처리 방법
SG2013020854A SG188620A1 (en) 2010-09-27 2011-09-23 Surface treatment composition and surface treatment method using same
JP2012536416A JP5891174B2 (ja) 2010-09-27 2011-09-23 シリコンウェーハ研磨用組成物及びそれを用いた研磨方法
US13/824,778 US9028709B2 (en) 2010-09-27 2011-09-23 Surface treatment composition and surface treatment method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-214812 2010-09-27
JP2010214812 2010-09-27

Publications (1)

Publication Number Publication Date
WO2012043418A1 true WO2012043418A1 (ja) 2012-04-05

Family

ID=45892868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071741 WO2012043418A1 (ja) 2010-09-27 2011-09-23 表面処理組成物及びそれを用いた表面処理方法

Country Status (7)

Country Link
US (1) US9028709B2 (ja)
JP (1) JP5891174B2 (ja)
KR (1) KR101728200B1 (ja)
DE (1) DE112011103232T5 (ja)
SG (1) SG188620A1 (ja)
TW (1) TWI541342B (ja)
WO (1) WO2012043418A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041991A1 (ja) * 2012-09-14 2014-03-20 株式会社フジミインコーポレーテッド 研磨用組成物
WO2014129408A1 (ja) 2013-02-21 2014-08-28 株式会社フジミインコーポレーテッド 研磨用組成物および研磨物製造方法
JP2014199688A (ja) * 2013-03-29 2014-10-23 東邦化学工業株式会社 磁気ディスク基板用洗浄剤
JP2015155139A (ja) * 2014-01-20 2015-08-27 信越化学工業株式会社 合成石英ガラス基板の製造方法
JP2015534725A (ja) * 2012-09-07 2015-12-03 キャボット マイクロエレクトロニクス コーポレイション ポリピロリドン研磨組成物および研磨方法
JPWO2013176122A1 (ja) * 2012-05-25 2016-01-14 日産化学工業株式会社 ウェーハ用研磨液組成物
US9510592B2 (en) 2012-12-19 2016-12-06 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9538756B2 (en) 2012-12-19 2017-01-10 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9615576B2 (en) 2011-06-24 2017-04-11 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9629369B2 (en) 2012-12-19 2017-04-25 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9630910B2 (en) 2012-12-19 2017-04-25 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9676704B2 (en) 2014-06-09 2017-06-13 Dow Agrosciences Llc Pesticidal compositions and processes related thereto

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673357B (zh) 2016-12-14 2019-10-01 美商卡博特微電子公司 自化學機械平坦化基板移除殘留物之組合物及方法
KR102358817B1 (ko) * 2017-07-04 2022-02-09 한국전자통신연구원 광소자의 제조 방법
KR102588218B1 (ko) * 2017-09-22 2023-10-13 가부시키가이샤 후지미인코퍼레이티드 표면 처리 조성물, 표면 처리 조성물의 제조 방법, 표면 처리 방법 및 반도체 기판의 제조 방법
KR20210144815A (ko) 2019-03-28 2021-11-30 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물
JP7340969B2 (ja) * 2019-06-28 2023-09-08 東京応化工業株式会社 シリコンエッチング液、シリコンエッチング方法、及びシリコンフィン構造体の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240850A (ja) * 2000-02-29 2001-09-04 Sanyo Chem Ind Ltd 研磨用砥粒分散剤および研磨用スラリー
JP2005085858A (ja) * 2003-09-05 2005-03-31 Fujimi Inc 研磨用組成物
JP2005175498A (ja) * 2003-12-12 2005-06-30 Samsung Electronics Co Ltd スラリー組成物及びそれを用いる化学機械的研磨工程を含む半導体素子の製造方法
JP2006049709A (ja) * 2004-08-06 2006-02-16 Toshiba Corp Cmp用スラリー、研磨方法、および半導体装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4212861B2 (ja) * 2002-09-30 2009-01-21 株式会社フジミインコーポレーテッド 研磨用組成物及びそれを用いたシリコンウエハの研磨方法、並びにリンス用組成物及びそれを用いたシリコンウエハのリンス方法
DE602004007718T2 (de) * 2003-05-12 2008-04-30 Jsr Corp. Chemisch-mechanisches Poliermittel-Kit und chemisch-mechanisches Polierverfahren unter Verwendung desselben
US7314578B2 (en) 2003-12-12 2008-01-01 Samsung Electronics Co., Ltd. Slurry compositions and CMP methods using the same
CN100536081C (zh) * 2005-09-02 2009-09-02 福吉米株式会社 抛光组合物
US7198680B1 (en) * 2006-07-26 2007-04-03 Innovation Services, Inc. Process for cleaning surfaces of medical equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240850A (ja) * 2000-02-29 2001-09-04 Sanyo Chem Ind Ltd 研磨用砥粒分散剤および研磨用スラリー
JP2005085858A (ja) * 2003-09-05 2005-03-31 Fujimi Inc 研磨用組成物
JP2005175498A (ja) * 2003-12-12 2005-06-30 Samsung Electronics Co Ltd スラリー組成物及びそれを用いる化学機械的研磨工程を含む半導体素子の製造方法
JP2006049709A (ja) * 2004-08-06 2006-02-16 Toshiba Corp Cmp用スラリー、研磨方法、および半導体装置の製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9615576B2 (en) 2011-06-24 2017-04-11 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
JPWO2013176122A1 (ja) * 2012-05-25 2016-01-14 日産化学工業株式会社 ウェーハ用研磨液組成物
JP2015534725A (ja) * 2012-09-07 2015-12-03 キャボット マイクロエレクトロニクス コーポレイション ポリピロリドン研磨組成物および研磨方法
JP2014060205A (ja) * 2012-09-14 2014-04-03 Fujimi Inc 研磨用組成物
WO2014041991A1 (ja) * 2012-09-14 2014-03-20 株式会社フジミインコーポレーテッド 研磨用組成物
US9622477B2 (en) 2012-12-19 2017-04-18 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9629363B2 (en) 2012-12-19 2017-04-25 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9701620B2 (en) 2012-12-19 2017-07-11 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9510592B2 (en) 2012-12-19 2016-12-06 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9538756B2 (en) 2012-12-19 2017-01-10 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9635859B2 (en) 2012-12-19 2017-05-02 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9630910B2 (en) 2012-12-19 2017-04-25 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9629369B2 (en) 2012-12-19 2017-04-25 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
WO2014129408A1 (ja) 2013-02-21 2014-08-28 株式会社フジミインコーポレーテッド 研磨用組成物および研磨物製造方法
KR20150123265A (ko) 2013-02-21 2015-11-03 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물 및 연마물 제조 방법
US9566685B2 (en) 2013-02-21 2017-02-14 Fujimi Incorporated Polishing composition and method for producing polished article
JP2014199688A (ja) * 2013-03-29 2014-10-23 東邦化学工業株式会社 磁気ディスク基板用洗浄剤
JP2015155139A (ja) * 2014-01-20 2015-08-27 信越化学工業株式会社 合成石英ガラス基板の製造方法
US9676704B2 (en) 2014-06-09 2017-06-13 Dow Agrosciences Llc Pesticidal compositions and processes related thereto

Also Published As

Publication number Publication date
JPWO2012043418A1 (ja) 2014-02-06
US20130181159A1 (en) 2013-07-18
KR101728200B1 (ko) 2017-04-18
TW201217516A (en) 2012-05-01
DE112011103232T5 (de) 2013-06-27
SG188620A1 (en) 2013-04-30
KR20130140686A (ko) 2013-12-24
JP5891174B2 (ja) 2016-03-22
US9028709B2 (en) 2015-05-12
TWI541342B (zh) 2016-07-11

Similar Documents

Publication Publication Date Title
JP5891174B2 (ja) シリコンウェーハ研磨用組成物及びそれを用いた研磨方法
JP6193959B2 (ja) リンス用組成物及びリンス方法
JP5492603B2 (ja) 研磨用組成物及びそれを用いた研磨方法
JP6185432B2 (ja) シリコンウェーハ研磨用組成物
JP2017183359A (ja) シリコン基板の研磨方法および研磨用組成物セット
JPWO2019017407A1 (ja) 基板の研磨方法および研磨用組成物セット
JP6377656B2 (ja) シリコン基板の研磨方法および研磨用組成物セット
JP6348927B2 (ja) シリコンウェーハ研磨用組成物
JP6562605B2 (ja) 研磨用組成物の製造方法
JP6305674B2 (ja) 研磨用組成物及び半導体基板の製造方法
JP5859054B2 (ja) シリコンウェーハ研磨用組成物
JP6122783B2 (ja) 研磨用組成物及び半導体基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828974

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824778

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012536416

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120111032323

Country of ref document: DE

Ref document number: 112011103232

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20137010314

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11828974

Country of ref document: EP

Kind code of ref document: A1