WO2012043261A1 - 検体検査自動化システムおよびその制御方法 - Google Patents

検体検査自動化システムおよびその制御方法 Download PDF

Info

Publication number
WO2012043261A1
WO2012043261A1 PCT/JP2011/071129 JP2011071129W WO2012043261A1 WO 2012043261 A1 WO2012043261 A1 WO 2012043261A1 JP 2011071129 W JP2011071129 W JP 2011071129W WO 2012043261 A1 WO2012043261 A1 WO 2012043261A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
empty
rack
sample rack
unit
Prior art date
Application number
PCT/JP2011/071129
Other languages
English (en)
French (fr)
Inventor
篤史 鈴木
幸司 鴨志田
正志 圷
高橋 賢一
博 大賀
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to EP11828821.6A priority Critical patent/EP2623990B1/en
Priority to US13/816,897 priority patent/US8972044B2/en
Priority to JP2012536344A priority patent/JP5520385B2/ja
Priority to CN201180040353.9A priority patent/CN103052885B/zh
Publication of WO2012043261A1 publication Critical patent/WO2012043261A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/026Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having blocks or racks of reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • G01N2035/0094Scheduling optimisation; experiment design
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/113332Automated chemical analysis with conveyance of sample along a test line in a container or rack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation

Definitions

  • the present invention relates to a sample test automation system, and more particularly to a sample test automation system for processing clinical tests of a large number of patient samples.
  • test tube containing body fluid such as blood collected from a patient on a sample rack and load it into the system.
  • the input sample reads bar code information in the system to recognize the type of the sample.
  • the pretreatment of the examination processing includes centrifugal treatment, opening treatment, dispensing treatment and the like, but the contents of the pretreatment differ depending on the target examination type, for example, the centrifugal treatment is unnecessary in the urine examination.
  • the sample of the test object type that requires centrifugation is subjected to an opening process and a dispensing process.
  • the dispensing process is a process for creating a child sample from a parent sample, and for example, the divided child samples can be simultaneously transported to a plurality of analyzers connected online to the system.
  • the dispensing process also includes a function of carrying out to the sorting tray a child sample to which the same barcode as that of the parent sample is attached in order to conduct an inspection with an off-line analyzer not connected to the system. Samples for which all processing steps have been completed are stored in the storage unit.
  • sample test automation systems are often introduced into relatively large-scale facilities, and it is a fact that hundreds to thousands of patient samples are processed in one day.
  • multiple specimens are collected from one patient in order to carry out various tests such as biochemical tests, immunological tests, coagulation tests, and hematology tests. Therefore, the number of sample racks to be input to the sample test automation system needs to be prepared in a number corresponding to the above, and a space for installing and storing them is also required.
  • sample rack loading unit of a conventional sample test automation system for example, as described in Patent Document 1, a method is known in which a large number of sample racks are set in advance in the apparatus in order to perform processing according to the sample type. It is done.
  • Patent Document 2 in order to reduce the installation area of a large amount of sample racks, a certain number of sample racks are collected and installed in a tray, and the trays are arranged in multiple stages in both the sample rack supply unit and recovery unit. It is described that the sample rack is supplied and collected by an elevator mechanism which is vertically driven.
  • Patent Document 3 discloses a method in which an apparatus is connected to an endless transfer line and a sample rack to be used is used.
  • Patent Document 4 describes a method in which a plurality of transport lines are arranged in the vicinity of the feeding unit, the sample rack is stocked in the transport line, and the sample rack is used.
  • Patent Document 3 a large number of sample racks are not required because the sample racks are reused while looping the transport line of the sample racks in the system.
  • an empty sample rack and a sample rack on which the sample is mounted pass through the same transfer line, congestion occurs in the transfer line, making it difficult to construct a system with high processing speed.
  • the present invention has been made in view of the above-described conventional problems, and its object is to provide a high extensibility suitable for high-speed processing without increasing the size of the system and avoiding the reduction in processing speed and complication of transport control
  • An object of the present invention is to provide a sample test automation system capable of easily constructing a system.
  • a sample examination automation system in the present invention is provided with the following features.
  • a control method of a sample inspection automation system including a sample transport line for transporting a sample rack holding a sample to a plurality of processing units, and an empty sample rack stocking unit for stocking a sample rack not holding a sample, Information is collected on whether or not a plurality of processing units require the supply of empty sample racks, and the empty sample racks are supplied from the empty rack stock unit to the processing units based on the information. It is a control method of a sample test automation system.
  • empty racks can be continuously supplied and collected without decreasing the processing capacity without increasing the size and complexity of the apparatus, and the extensibility according to the scale of the facility is high. It becomes possible to provide a sample test automation system.
  • FIG. 1 is a schematic view of the overall configuration of a system including a transport line portion of a sample rack according to the present invention. It is information exchanged between the processing unit according to the present invention and the controller. It is a processing flow in which a controller according to the present invention determines an instruction to a processing unit. It is a processing flow which a processing unit concerning the present invention decides acquisition of an empty sample rack. It is an example of transition of the information exchanged between the processing unit according to the present invention and the controller. It is an example of a screen which notifies an operator of passage of the sample rack in which the sample concerning the present invention was installed. It is an example of a processing unit composition concerning the present invention.
  • FIG. 1 A schematic view of the entire system configuration including the transport line portion of the sample rack according to the present invention is shown in FIG.
  • the automated sample test system includes an automatic analyzer that performs analysis by measuring the physical properties of the sample to be measured (for example, a biological sample such as serum or urine, or a mixture of these and a reagent), or It is a system that automatically performs predetermined processing required before analysis in the device, and has a processing unit that executes various processes such as a container opening process, a dispensing process, a container closing process, a stirring process, and an analysis process.
  • there are five processing units A111 to E115 there are five processing units A111 to E115, and three processing units A111, C113, and E115 require empty sample racks to process the loaded samples.
  • the processing unit has a connection transport line 107 for loading an empty sample rack from the empty rack transport line 103. Although only five processing units A 111 to E 115 are shown in FIG. 1, more than ten units may be connected in a large scale facility.
  • the empty rack transfer line 103 is disposed at the lower position with respect to the main transfer line 106, and the main transfer line 106 and the empty rack transfer line 103 are connected using the connection transfer line 107.
  • the connection conveyance line 107 may be inclined, or an elevator mechanism driven vertically may be used.
  • the processing unit When the processing unit needs an empty sample rack 104, it acquires an empty sample rack 104 from the empty rack conveyance line 103, and conveys the empty sample rack 104 to the main conveyance line 106 via the connection conveyance line 107. .
  • the sample is placed on the empty sample rack 104 transported to the main transport line 106 by the sample chuck mechanism (not shown), and the processing unit processes the sample in the process of transporting the sample rack 104 on the main transport line 106 .
  • the empty sample rack 104 is transported to the empty rack transport line 103 at the lower position via the connection transport line 107. Be done.
  • the empty sample rack is held on the empty rack transport line 103 in this embodiment, any other structure may be used as long as the empty rack can be stocked.
  • the empty sample racks may be arranged in a grid and housed, and the structure may be such that the processing units that require the empty racks are sequentially transported, and a disc capable of rotating the empty sample racks may be used.
  • the structure may be arranged on the circumference of and the empty sample rack may be accommodated and transported while rotating.
  • the empty sample rack 104 transported to the empty rack transport line 103 is stocked at a predetermined position on the empty rack transport line 103 by the sample rack stopper 105.
  • the sample rack stopper 105 is a mechanism for clamping and holding an empty sample rack on the empty rack transport line, and can switch between the closed state and the open state according to a command from the controller 101.
  • FIG. 1 shows a configuration in which one sample rack stopper 105 is provided on the empty rack transport line 103, a configuration in which a plurality of sample rack stoppers 105 are provided or not may be considered.
  • sample rack stopper when the sample rack stopper is not provided, empty sample racks are scattered on the empty sample transport line, but if the empty sample rack is transported according to the rack distribution rule of the present invention as needed, it is uneven No empty sample rack supply is possible. In this case, since the sample rack stopper is not provided, the apparatus cost can be reduced and the transport process of the empty sample rack can be simplified.
  • the sample presence / absence detection sensor 108 that can be detected when the sample rack 104 with the sample mounted thereon is accidentally pulled into the empty rack transport line 103 due to a failure to remove the sample chuck mechanism or an artificial operation error. May be provided on the connection conveyance line 107.
  • the connection conveyance line 107 is stopped to prevent the sample from being accommodated in the empty rack conveyance line 103.
  • the operator may be notified to request removal of the sample. As a method of notifying the operator, it is conceivable to provide the controller 101 with a screen as shown in FIG.
  • FIG. 1 Information exchanged between the processing unit and the controller according to the present invention is shown in FIG.
  • the processing unit A 111 to the processing unit E 115 and the controller 101 are connected via the communication cable 102. It may be a communication means other than the communication cable and capable of wirelessly exchanging information, and the controller 101 always or periodically receives information as to whether or not each processing unit needs to supply an empty sample rack. As long as it is a means, it may be another means.
  • the controller 101 receives the above information, and instructs the sample rack stopper to open and close the sample rack stopper 105 installed in the empty rack conveyance line 103, and the empty rack conveyance line operation instruction indicating whether to drive the empty rack conveyance line 103.
  • the sample rack acquisition ratio representing the empty sample rack 104 for which each processing unit is permitted to acquire To direct.
  • FIG. 1 A process flow in which the controller 101 according to the present invention determines an instruction given to each processing unit is shown in FIG.
  • the controller 101 performs an empty rack supply determination process 301.
  • the empty rack supply determination process 301 it is determined whether any one of the processing units connected to the empty rack conveyance line via the connection conveyance line needs the empty sample rack 104 or not. If there is a processing unit requiring an empty sample rack 104, the controller instructs all the processing units to drive the empty rack transport line 103 (empty rack transport line drive instruction process 302).
  • sample rack acquisition ratio determination processing 303 For processing units requiring an empty sample rack 104, a ratio of empty racks that can be acquired by the processing unit among the arriving empty racks is instructed (sample rack acquisition ratio determination processing 303).
  • sample rack stopper opening instruction processing 305 when the empty rack transport line is provided with the sample rack stopper 105 and the sample rack is stocked by the sample rack stopper 105, the processing unit is instructed to open the sample rack stopper 105 (sample rack stopper opening instruction processing 305).
  • the empty rack transport line stop instruction processing 307 instructs each processing unit to stop driving the empty rack transport line 103.
  • the empty rack transport line stop instruction processing 307 it is possible to prevent the empty rack transport line from being continuously driven when the delivery of the empty sample rack is not performed.
  • the sample rack stopper closing instruction processing 309 instructs the processing unit to close the sample rack stopper 105. If the instruction to all the processing units has not been completed, the process returns to the empty rack transport line stop instruction process 307 from the instruction end determination process 310.
  • FIG. 1 A processing flow in which the processing unit according to the present invention determines acquisition of an empty sample rack is shown in FIG.
  • the sample rack stopper opening / closing process 401 opens or closes the sample rack stopper 105 corresponding to the sample rack stopper instruction from the controller 101.
  • the empty rack conveyance line 103 is driven or stopped corresponding to the empty rack conveyance line drive instruction by the empty rack conveyance line drive processing 402.
  • the processing unit requiring an empty sample rack waits for the empty sample rack 104 to arrive at the connection transport line for loading the empty sample rack 104 into the processing unit by the empty rack arrival waiting process 404, and the controller 101 Depending on the instructed sample rack acquisition rate, it is determined whether an empty sample rack 104 is to be acquired or to be passed through.
  • the empty sample rack 104 is supplied from the sample rack stopper 105, all the processing units have already acquired the required number of sample racks, and the empty sample rack 104 not acquired by any of the processing units is the sample rack stopper. At 105, the empty rack transport line 103 is stocked again.
  • FIG. 1 An example of transition of information exchanged between the processing unit according to the present invention and the controller using the system configuration of FIG. 1 is shown in FIG.
  • the processing unit A 111 needs one empty sample rack 104
  • the processing unit C 113 needs two empty sample racks 104
  • the processing unit E 115 needs one empty sample rack 104 as an example. explain.
  • the processing unit A 111, the processing unit C 113, and the processing unit E 115 each require supply of an empty sample rack. Since there are three processing units requiring supply of empty sample racks and the processing unit E 115 is installed at the position where the empty sample rack arrives earliest, the sample rack acquisition ratio of the processing unit E is 3: It is instructed as 1.
  • the controller 101 instructs the processing unit C 113 to set the specimen acquisition ratio to 2: 1.
  • the controller 101 instructs the processing unit A 111 to set the sample acquisition ratio to 1: 1.
  • processing unit A 111, processing unit C 113, and processing unit E 115 report to controller 101 that an empty sample rack 104 is required.
  • the controller 101 instructs the processing unit E 115 to open the sample rack stopper 105, instructs the processing unit A 111 to the processing unit E 115 to drive the empty rack transport line 103, and supplies the empty sample rack 104.
  • the processing unit A 111, the processing unit C 113, and the processing unit E 115 are instructed to obtain the sample rack acquisition ratio.
  • the processing unit E 115 acquires the empty sample rack 104 supplied from the sample rack stopper 105.
  • processing unit E 115 does not require an empty sample rack 104, since one empty sample rack 104 has been transported to processing unit E 115 according to situation I 501. Therefore, the processing unit A 111 and the processing unit C 113 report to the controller 101 that an empty sample rack 104 is required. Therefore, the controller 101 instructs the processing unit A 111 and the processing unit C 113 to obtain a sample rack acquisition ratio of 1: 1 and 2: 1, respectively.
  • the controller 101 instructs the processing unit E 115 to open the sample rack stopper 105, and instructs the processing unit A 111 to the processing unit E 115 to drive the empty rack transport line 103. As a result, the processing unit C 113 acquires one empty sample rack 104 supplied from the sample rack stopper 105.
  • the processing unit C 113 is still empty in the situation III 503 because the processing unit C 113 requires two empty sample racks. is necessary. Further, the processing unit A 111 reports to the controller 101 that an empty sample rack 104 is required because an empty sample rack is not supplied yet. Therefore, the controller 101 instructs the processing unit A 111 and the processing unit C 113 to set the sample rack acquisition ratio to 1: 1 and 2: 1, respectively.
  • the controller 101 instructs the processing unit E 115 to open the sample rack stopper 105, and instructs the processing unit A 111 to the processing unit E 115 to drive the empty rack transport line 103.
  • the processing unit C 113 is instructed to be 2: 1, since one sample rack transported earlier is acquired, the sample supplied in the situation III You can not get a rack. Therefore, the processing unit A 111 acquires this sample rack.
  • the sample rack 104 is transported to the processing unit A 111 in the situation III, and the processing unit A 111 does not require the empty sample rack 104. Reported to Therefore, the processing unit C 113 is instructed that the sample acquisition ratio is 1: 1.
  • the controller 101 instructs the processing unit E 115 to open the sample rack stopper 105 and instructs the processing unit A 111 to the processing unit E 115 to drive the empty rack transport line 103. Thereby, the processing unit C 113 acquires the empty sample rack 104 supplied from the sample rack stopper 105.
  • the processing unit A111 to the processing unit E115 report to the controller 101 that the empty sample rack 104 is unnecessary.
  • the controller 101 instructs the processing unit E 115 to close the sample rack stopper 105, and instructs the processing unit A 111 to the processing unit E 115 to stop the empty rack transport line 103.
  • the processing unit E 115 becomes the sample rack stopper 105. Is closed, and the empty rack transfer line 103 of the processing units A 111 to E 115 is stopped.
  • the information supplied from each processing unit to the controller 101 is only "whether or not an empty sample rack is required", and the leveling of empty sample rack supply may be performed without complex information exchange. it can. By not exchanging complicated information, it is possible to flexibly cope with a change in a situation that occurs while the empty sample rack 104 supplied from the sample rack stopper 105 arrives at the processing unit.
  • the processing unit C 113 removes a sample from the sample rack 104
  • the empty sample rack 104 from which the sample is removed is transported from the main transport line 106 to the empty rack transport line 103 via the connection transport line 107.
  • the processing unit A 111 can obtain an empty sample rack 104 from which the sample has been removed, and in this case, the sample rack stock due to the time difference.
  • the empty sample rack 104 which has been supplied from the storage unit and becomes surplus is again stocked on the empty rack transport line 103 by the sample rack stopper 105 without being acquired by any processing unit.
  • FIG. 1 An example of the structure which specified the function of the processing unit of this sample test automation system is shown in FIG.
  • a plugging unit 701, a storage unit 702, a feeding unit 703, a centrifugal unit 704, an opening unit 705, a barcode sticking unit 706, a dispensing unit 707, and a transfer unit 708 are connected in series from the left. ing.
  • the sample test automation system according to the present invention is not limited to the configuration shown in FIG. It may be composed of units smaller than the configuration shown in FIG. 7, or may be connected to have branched branches. The functions of each processing unit are described below.
  • the loading unit 703 installs the plurality of samples loaded in the loading tray by the operator from the loading tray to the sample rack by the sample chuck mechanism. In addition, the information of the sample is read, and linking is performed such as to which sample rack the sample is mounted.
  • the centrifuge unit 704 centrifuges the sample.
  • the opening unit 705 opens the stopper of a test tube which is a sample container.
  • the barcode attaching unit 706 prepares a test tube for dispensing the sample, and applies a barcode label to the test tube.
  • the dispensing unit 707 prepares a sample cup for dispensing the sample, and dispenses the sample into the sample cup. Alternatively, the sample is aliquoted into test tubes prepared by the barcode sticking unit 706.
  • the transfer unit 708 classifies a child sample or parent sample that has been processed by the sample test automation system, and resets the sample to a sample rack suitable for an analyzer that analyzes the sample processed by the sample test automation system. .
  • the samples are re-installed from the sample rack for 1 sample installation to the sample rack for 5 sample installation.
  • the closing unit 701 closes the stopper of the test tube which is a sample container.
  • the storage unit 702 installs the sample from the sample rack to the storage tray by the sample chuck mechanism.
  • a main transport line 106 for transporting the sample loaded in the sample rack to each processing unit is disposed across the processing units. Further, an empty rack transport line 103 for transporting an empty sample rack is disposed below the processing unit.
  • An empty rack transport line and a main transport line, or a connection transport line 710 for exchanging an empty sample rack between the empty rack transport line and the processing unit are provided.
  • a sample rack stopper 105 is disposed on the empty rack transport line to hold an empty sample rack, and a plurality of sample racks blocked by the sample rack stand by.
  • the operations of the processing units, the empty rack transfer line, the main transfer line, and the connection transfer line are controlled by a controller (not shown).
  • a controller not shown.
  • it is the feeding unit 703, the centrifugal unit 704, the barcode pasting unit 706, and the dispensing unit 707 that requires the supply of empty racks in the processing unit. While the loading unit 703 and the centrifugal unit 704 consume empty racks according to the number of parent samples loaded from the outside, the bar code pasting unit 706 and the dispensing unit 707 are the number of inspection items requested.
  • Each processing unit consumes empty racks differently depending on its characteristics, such as consuming empty racks according to the number of small samples.
  • multiple analysis items are requested for one parent sample, so the number of empty sample racks required by the barcode pasting unit and dispensing unit rather than the loading unit and centrifugal unit There are many. Therefore, in order to supply empty racks to such processing units efficiently, the connection conveyance line 710 for supplying empty racks from the empty rack conveyance line 103 to the main conveyance line 106 may be provided only in these units.
  • units for removing the sample from the sample rack and generating an empty rack are a storage unit 702, a centrifugal unit 704, and a transfer unit 708.
  • the connection conveyance line 709 for collecting empty racks from the main conveyance line 106 to the empty rack conveyance line 103 is a loading unit 703 and a centrifugal unit 704.
  • Transfer unit 708 may be provided. This is a device that makes it unnecessary to provide a connection conveyance line (for empty rack recovery) 709 in each storage unit 702 when connecting a plurality of storage units 702, and it is possible to connect the adjacent feeding unit 703 instead of the storage unit 702.
  • a connection transfer line (for empty rack recovery) may be provided.
  • each processing unit consumes the empty sample rack 104
  • Y in the sample rack acquisition ratio X: Y is fixed to 1, but each processing unit is fixed. It is possible to cause the processing unit with a large consumption amount to preferentially acquire the empty sample rack 104 by changing Y if the consumption amount in the case of is different.

Abstract

 装置の大型化・複雑化を避けるために、システム内で検体ラックをループさせて再利用する場合に検体ラックを必要とする複数の処理ユニット間で空の検体ラックのストック数にばらつきが生じ、処理速度の高いシステムを構築することが困難であった。検体を保持する検体ラックを複数の処理ユニットへ搬送する検体搬送ラインと、検体を保持しない検体ラックをストックする空検体ラックストック部とを有する検体検査自動化システムの制御方法であって、複数の処理ユニットが空の検体ラックの供給を必要としているか否かに関する情報を収集し、前記情報に基づいて空ラックストック部から処理ユニットへ空の検体ラックを供給する検体検査自動化システムの制御方法である。空の検体ラックの供給を必要とする処理ユニットに対して供給する空の検体ラック数を平準化し処理速度低下を防止することができる。

Description

検体検査自動化システムおよびその制御方法
 本発明は検体検査自動化システム、特に多数の患者検体の臨床検査を処理する検体検査自動化システムに関する。
 近年、医療分野では多様な自動化機器の導入により、検査業務の省力化が進められている。病院の検査では、入院患者や外来患者の検査検体は病院内の各課で集められ、検査室で一括して処理される。検体ごとの検査項目はオンラインの情報処理システムを利用して医師より検査室に伝えられ、検査結果はオンラインで逆に検査室より医師に報告される。
血液、尿の検査項目の多くは、検査処理の前処理として遠心処理,開栓処理,分注処理等の前処理を必要とし、その作業が検査作業時間全体に占める割合は大きい。
 次に一般的な検体検査自動化システムのフローについて記載する。患者から採取した血液などの体液が入った試験管を検体ラックに載せてシステムに投入する。投入された検体は、システム内においてバーコード情報を読取り、その検体の種別を認識する。
 前述の通り、検査処理の前処理には遠心処理,開栓処理,分注処理などがあるが、例えば尿検査では遠心処理が不要など、対象検査種別によって前処理の内容は異なる。遠心分離が必要な検査対象種別の検体は、遠心分離作業後、開栓処理,分注処理を行う。分注処理は親検体から子検体を作成するための処理で、例えばシステムにオンラインで接続された複数の分析装置に小分けされた子検体を同時に搬送することができる。また、分注処理はシステムに接続されていないオフラインの分析装置で検査を行うために親検体と同じバーコードが貼り付けた子検体を仕分けトレイに搬出する役目も含んでいる。全ての処理工程が完了した検体は収納ユニットに収納される。
 これらの検体検査自動化システムは比較的規模の大きな施設に導入されることが多く、数百から数千の患者検体を1日で処理しているのが実状である。また、これら規模の大きな施設においては、生化学検査・免疫検査・凝固検査・血液学検査など様々な検査を行うために1人の患者から複数本の検体を採取している。それ故、検体検査自動化システムに投入するための検体ラックの数は前記に相応した数を準備する必要があり、またこれらを設置・保管するスペースも必要であった。
 従来の検体検査自動化システムの検体ラックの投入ユニットとしては、例えば特許文献1に記載されているように、検体種別に応じた処理を行うために大量の検体ラックをあらかじめ装置にセットする方式が知られている。
 また、特許文献2では、大量の検体ラックの設置面積を低減するため、検体ラックをある一定の数をまとめてトレイに設置し、このトレイを検体ラック供給部・回収部共に多段に配置し、上下駆動のエレベータ機構により検体ラックの供給・回収をすることが述べられている。
 特許文献3ではエンドレス化した搬送ラインに装置を連結し、使用する検体ラックを使い回す方式が挙げられている。
 特許文献4では投入ユニットの近傍に複数の搬送ラインを配置し、搬送ラインに検体ラックをストックし、検体ラックを使い回す方式が挙げられている。
特許3618067号公報 特開2007-309675号公報 特開平8-122337号公報 特許4336360号公報
 上記特許文献1および特許文献2に記載された方法は、大量の検体を処理するために検査を行う検体分だけ検体ラックを準備する必要があり、これに伴い、システムの大型化・複雑化は避けられない。また、オペレータはシステムの使用前に大量の検体ラックを補充しなければならない手間を伴っていた。
 一方、特許文献3はシステム内で検体ラックの搬送ラインをループしながら、検体ラック再利用を行うので大量の検体ラックは必要としない。ただし、空の検体ラックと検体が載った検体ラックが同じ搬送ラインを通ることになるので搬送ラインに渋滞が発生し、処理速度の高いシステムを構築することが困難である。また、空の検体ラックと、検体が載った検体ラックの識別が必要であるなど、搬送制御についても複雑化が避けられない。
 搬送制御の複雑化を回避するために、検体が載った検体ラック搬送ラインとは別に空の検体ラック専用ラインを設ける方法が考えられるが、搬送ライン同士が交差することにより、やはり処理速度の低下を招くことになる。
 また、特許文献4は複数の搬送ラインを配置して空の検体ラックを戻すので大量の検体ラックは必要としない。ただし、検体ラックを必要とする処理ユニットが複数存在する場合、処理ユニット間で空の検体ラックのストック数にばらつきが生じ、処理速度の高いシステムを構築することが困難である。
 本発明は、上記従来の課題に鑑みなされたものであり、その目的は、システムを大型化することなく、かつ処理速度低下と搬送制御の複雑化を避け、高速処理に適した拡張性の高いシステムを容易に構築できる検体検査自動化システムを提供することにある。
 上記課題を解決するため、本発明における検体検査自動化システムは以下の特徴を備える。
 すなわち、検体を保持する検体ラックを複数の処理ユニットへ搬送する検体搬送ラインと、検体を保持しない検体ラックをストックする空検体ラックストック部と、を有する検体検査自動化システムの制御方法であって、複数の処理ユニットが空の検体ラックの供給を必要としているか否かに関する情報を収集し、前記情報に基づいて前記空ラックストック部から前記処理ユニットへ空の検体ラックを供給することを特徴とした検体検査自動化システムの制御方法である。
 本発明によれば、装置を大型化・複雑化させることなく、処理能力を低下させないように連続して空のラックの供給・回収を行うことができ、また施設規模に応じた拡張性の高い検体検査自動化システムを提供することが可能となる。
本発明に係る検体ラックの搬送ライン部を含むシステム全体構成の概略図である。 本発明に係る処理ユニットとコントローラ間で授受する情報である。 本発明に係るコントローラが処理ユニットに対する指示を決定する処理フローである。 本発明に係る処理ユニットが空の検体ラックの取得を決定する処理フローである。 本発明に係る処理ユニットとコントローラ間で授受する情報の変遷例である。 本発明に係る検体が設置された検体ラックの通過をオペレータに通知する画面例である。 本発明に係る処理ユニット構成の一例である。
 本発明に係る検体ラックの搬送ライン部を含むシステム全体構成の概略図を図1に示す。
 検体検査自動化システムは、測定対象の試料(例えば、血清や尿などの生体試料、或いは、それらと試薬との混合液)の物性を測定することにより分析を行う自動分析装置を含む、あるいは自動分析装置での分析前に必要な所定の処理を自動で実行するシステムであり、容器開栓行程、分注工程、容器閉栓工程、攪拌工程、分析工程など種々の工程を実行する処理ユニットを備えている。
本実施例では、5つの処理ユニットA111~処理ユニットE115があり、その内の3つの処理ユニットA111と、処理ユニットC113と、処理ユニットE115は搬入された検体を処理するにあたり空の検体ラックが必要となる処理ユニットであり、空ラック用搬送ライン103から空の検体ラックを搬入する接続搬送ライン107を備えている。なお、図1では5つの処理ユニットA111~処理ユニットE115のみを記載しているが、規模の大きな施設においては10ユニット以上接続することもある。
 主搬送ライン106に対して空ラック用搬送ライン103は下段位置に配置してあり、主搬送ライン106と空ラック用搬送ライン103は接続搬送ライン107を用いて接続している。なお、高低差がある主搬送ライン106と空ラック用搬送ライン103を接続する手段としては、接続搬送ライン107を傾斜させて配置しても、上下駆動のエレベータ機構を用いても良い。
 処理ユニットは空の検体ラック104が必要になると、空ラック用搬送ライン103から空の検体ラック104を取得し、接続搬送ライン107を介して、主搬送ライン106に空の検体ラック104を搬送する。
 主搬送ライン106に搬送した空の検体ラック104には、図示しない検体チャック機構により検体の設置を行い、主搬送ライン106で検体ラック104を搬送して行く過程において処理ユニットが検体の処理を行う。
 また、検体が載った検体ラック104から、図示しない検体チャック機構により検体を抜き取ると、空になった検体ラック104は接続搬送ライン107を介して、下段位置にある空ラック用搬送ライン103に搬送される。なお、本実施例では空の検体ラックは空ラック用搬送ライン103上に保持されているが、空ラックをストックできる構造であれば他の構造であっても良い。例えば、空の検体ラックを格子状に配列して収容し、空ラックを必要とする処理ユニットがある場合に対して順次搬送する構造であっても良いし、空の検体ラックを回転可能なディスクの円周上に配置し、回転しながら空の検体ラックを収容・搬送する構造であっても良い。
 空ラック用搬送ライン103に搬送された空の検体ラック104は、検体ラックストッパ105によって空ラック用搬送ライン103上の決まった位置にストックされる。検体ラックストッパ105は空ラック用搬送ライン上にある空の検体ラックをせき止めて保持するための機構であり、コントローラ101からの指令によって閉鎖状態と開放状態とを切替えることができるものである。
 図1では検体ラックストッパ105を一つ、空ラック用搬送ライン103上に備えた構成を示しているが、検体ラックストッパ105を複数設ける場合や、設けない構成も考えられる。
 複数の検体ラックストッパ105を設ければ、処理ユニットが多数接続され、長い空ラック用搬送ラインを有している場合であっても、空ラック用搬送ライン上に空の検体ラックを偏りなく保持することができる。これにより、空の検体ラックを必要とする処理ユニットまで空の検体ラックを搬送する搬送経路が長い場合にも、比較的時間をかけずに各処理ユニットに空の検体ラックを供給することができる。
 また、検体ラックストッパを設けない場合には、空検体用搬送ライン上には空の検体ラックが散在するが、必要に応じて本発明のラック分配ルールに従って空の検体ラックを搬送すれば偏りのない空の検体ラック供給が可能となる。この場合、検体ラックストッパを設けないため、装置コストを安くし、空の検体ラックの搬送処理を簡略にすることができる。
 また、検体チャック機構の抜き取り失敗や人為的な操作ミスなどにより、検体が載ったままの検体ラック104を誤って空ラック用搬送ライン103に引き入れようとした場合に検知可能な検体有無検知センサ108を、接続搬送ライン107に設けるようにしても良い。検体有無検知センサ108が、検体が設置された検体ラックの通過を検知した場合、接続搬送ライン107を停止させて、検体が空ラック用搬送ライン103に収容されることを防ぐ。また、オペレータに通知して検体の除去を要求しても良い。オペレータに通知する方法としては、コントローラ101に図6のような画面を備えることが考えられる。
 本発明に係る処理ユニットとコントローラ間で授受する情報を図2に示す。
 処理ユニットA111~処理ユニットE115とコントローラ101は通信ケーブル102を介して接続されている。通信ケーブル以外であって、無線で情報をやり取り可能な通信手段であっても良く、コントローラ101が常時または定期的に、各処理ユニットが空の検体ラックの供給が必要か否かの情報を受け取る手段であれば、その他の手段であっても良い。
 コントローラ101は上記情報を受け取り、空ラック用搬送ライン103に設置された検体ラックストッパ105の開閉に関する検体ラックストッパ指示、空ラック用搬送ライン103を駆動するかどうかを表す空ラック用搬送ライン動作指示を出し、各処理ユニットに対しては、空ラック用搬送ライン103が搬送する空の検体ラック104の内、夫々の処理ユニットが取得を許可された空の検体ラック104を表す検体ラック取得割合を指示する。
 本発明に係るコントローラ101が各処理ユニットに与える指示を決定する処理フローを図3に示す。まず、コントローラ101は空ラック供給判定処理301を行う。空ラック供給判定処理301では、空ラック搬送ラインに接続搬送ラインを介して接続された処理ユニットのうち、いずれかの処理ユニットで空の検体ラック104を必要としているか否かを判定する。空の検体ラック104を必要としている処理ユニットが存在するのであれば、空ラック用搬送ライン103の駆動を全ての処理ユニットに指示する(空ラック用搬送ライン駆動指示処理302)。
 また、空の検体ラック104を必要としている処理ユニットに対しては、到着する空ラックの内、当該処理ユニットが取得して良い空ラックの割合を指示する(検体ラック取得割合決定処理303)。
 また、空ラック搬送ラインが検体ラックストッパ105を備えており、それによって検体ラックがストックされている場合には、検体ラックストッパ105の開放を処理ユニットに指示する(検体ラックストッパ開放指示処理305)。
 空の検体ラックの供給が必要である、とコントローラ101に報告した全ての処理ユニットへの上記空ラック用搬送ライン駆動指示処理302~検体ラックストッパ開放指示処理305までの処理が終了していなければ、指示終了判定処理306より空ラック用搬送ライン駆動指示処理302に戻る。
 一方、空の検体ラック104を必要としている処理ユニットが存在しない場合には、空ラック用搬送ライン停止指示処理307により空ラック用搬送ライン103の駆動停止を各処理ユニットに指示する。空ラック用搬送ライン停止指示処理307を行うことによって、空の検体ラックの授受が行われていない場合に空ラック用搬送ラインが駆動し続けることを防ぐことができる。
 また、処理ユニットが検体ラックストッパ105を備えているのであれば、検体ラックストッパ閉鎖指示処理309により検体ラックストッパ105の閉鎖を処理ユニットに指示する。全処理ユニットへの指示が終了していなければ、指示終了判定処理310より空ラック用搬送ライン停止指示処理307に戻る。
 本発明に係る処理ユニットが空の検体ラックの取得を決定する処理フローを図4に示す。
 処理ユニットが検体ラックストッパを備えている場合は、検体ラックストッパ開閉処理401によりコントローラ101からの検体ラックストッパ指示に対応した検体ラックストッパ105の開放または閉鎖を行う。
 空ラック用搬送ライン駆動処理402により空ラック用搬送ライン駆動指示に対応した空ラック用搬送ライン103の駆動または停止を行う。
 空の検体ラックを必要としている処理ユニットは、空ラック到着待ち処理404により空の検体ラック104が当該処理ユニットへ空の検体ラック104を搬入する接続搬送ラインに到着するのを待ち、コントローラ101から指示された検体ラック取得割合に応じて、空の検体ラック104を取得するか、または空の検体ラック104を通過させるかを決定する。
 検体ラックストッパ105から空の検体ラック104を供給したものの、すでに全処理ユニットが必要数の検体ラックを取得しており、いずれの処理ユニットでも取得しなかった空の検体ラック104は、検体ラックストッパ105により空ラック用搬送ライン103に再びストックされる。
 図1のシステム構成を用いて、本発明に係る処理ユニットとコントローラ間で授受する情報の変遷例を図5に示す。
 処理ユニットA111が1個の空の検体ラック104を、処理ユニットC113が2個の空の検体ラック104を、処理ユニットE115が1個の空の検体ラック104を必要としている場合を例として以下に説明する。
 なお、本発明では検体ラック取得割合をX:Yと表現しており、到着したX個の検体ラック104の内、Y個の検体ラック104の取得が処理ユニットに対して許可されていることを意味している。また、Xの値はコントローラ101に対して空の検体ラック104の供給を要求した処理ユニットの個数とする。例えば、N個の処理ユニットが空の検体ラック104の供給を要求した場合、検体ラックストッパ105から最も早く空の検体ラックが搬送される処理ユニットはX=Nとして検体ラック取得割合はN:1とする。この処理ユニットに対して一つ下流に位置する処理ユニットであって、空の検体ラックを必要とするものについての検体ラック取得割合は、搬送された空の検体ラックが到着する順に、N-1:1、N-2:1、・・・、1:1として指示される。
 例えば、上記の例においては、処理ユニットA111、処理ユニットC113、処理ユニットE115がそれぞれ、空の検体ラックの供給を求めている。空の検体ラックの供給を求めている処理ユニットは3つであり、処理ユニットE115が最も早く空の検体ラックが到着する位置に設置されているため、処理ユニットEの検体ラック取得割合は3:1と指示される。
 次に空の検体ラックが到着するのは処理ユニットD114であるが、処理ユニットD114は検体ラックの供給は必要としていないため、検体ラック取得割合は指示されない。
 次に空の検体ラックが到着するのは処理ユニットC113である。よって、コントローラ101は処理ユニットC113に対して検体取得割合を2:1として指示する。
 次に空の検体ラックが到着するのは処理ユニットB112であるが、処理ユニットD114と同様に検体取得割合は指示されない。
 次に空の検体ラックが到着するのは処理ユニットA111である。コントローラ101は処理ユニットA111に対して検体取得割合を1:1として指示する。
 状況Iにおいて、処理ユニットA111、処理ユニットC113、処理ユニットE115が、空の検体ラック104が必要であるとコントローラ101に報告している。これに対してコントローラ101は処理ユニットE115に検体ラックストッパ105の開放を指示し、処理ユニットA111~処理ユニットE115に空ラック用搬送ライン103の駆動を指示して、空の検体ラック104の供給を開始する。また、処理ユニットA111と、処理ユニットC113と、処理ユニットE115に検体ラック取得割合を指示する。
その結果、検体ラックストッパ105から供給された空の検体ラック104を処理ユニットE115が取得することとなる。
 状況I501によって一個の空の検体ラック104が処理ユニットE115へと搬送されたため、状況II502では、処理ユニットE115は空の検体ラック104を必要としていない。よって、処理ユニットA111と、処理ユニットC113が空の検体ラック104が必要であるとコントローラ101に報告している。そのためコントローラ101は処理ユニットA111と処理ユニットC113に対して、検体ラック取得割合をそれぞれ1:1、2:1と指示する。
 コントローラ101は処理ユニットE115に検体ラックストッパ105の開放を指示し、処理ユニットA111~処理ユニットE115に空ラック用搬送ライン103の駆動を指示する。その結果、検体ラックストッパ105から供給された一個の空の検体ラック104を処理ユニットC113が取得する。
 状況II502で一個の空の検体ラック104が処理ユニットC113に供給されたが、処理ユニットC113は空の検体ラックを二個必要としているため、状況III503では、依然として処理ユニットC113は空の検体ラック104が必要である。また、処理ユニットA111は未だ空の検体ラックが供給されていないので、空の検体ラック104が必要であるとコントローラ101に報告している。そのため、コントローラ101は処理ユニットA111、処理ユニットC113に対して検体ラック取得割合をそれぞれ、1:1、2:1として指示する。
 コントローラ101は処理ユニットE115に検体ラックストッパ105の開放を指示し、処理ユニットA111~処理ユニットE115に空ラック用搬送ライン103の駆動を指示する。これによって一個の検体ラックが搬送されるが、処理ユニットC113は2:1と指示されているところ、先ほど搬送されてきた1個の検体ラックを取得してしまったため、状況IIIで供給された検体ラックを取得することはできない。よって、この検体ラックは処理ユニットA111が取得する。
 状況IV504では、状況IIIで処理ユニットA111に検体ラック104が搬送され、処理ユニットA111が空の検体ラック104を必要としなくなったため、処理ユニットC113のみが空の検体ラック104が必要であるとコントローラ101に報告している。そのため、処理ユニットC113に検体取得割合が1:1と指示されている。
 コントローラ101は処理ユニットE115に検体ラックストッパ105の開放を、処理ユニットA111~処理ユニットE115に空ラック用搬送ライン103の駆動を指示する。それにより、検体ラックストッパ105から供給された空の検体ラック104を処理ユニットC113が取得する。
 状況V505では、処理ユニットA111~処理ユニットE115が空の検体ラック104を必要としなくなったため、処理ユニットA111~処理ユニットE115が空の検体ラック104は不要であるとコントローラ101に報告している。これに対してコントローラ101は処理ユニットE115に検体ラックストッパ105の閉鎖を指示し、処理ユニットA111~処理ユニットE115に空ラック用搬送ライン103の停止を指示した結果、処理ユニットE115が検体ラックストッパ105を閉鎖し、処理ユニットA111~処理ユニットE115の空ラック用搬送ライン103が停止する。
 本発明の方式を採用することによって、複数の処理ユニットが接続されているシステムにおいても、検体ラックの供給に偏りが生じないため、検体ラック不足によって処理が滞ることがない。また、各処理ユニットからコントローラ101に供給される情報は「空の検体ラックの必要の有無」のみであり、複雑な情報のやり取りをすることなく、空の検体ラック供給の平準化をすることができる。
 複雑な情報のやり取りをしていないことにより、検体ラックストッパ105から供給された空の検体ラック104が処理ユニットに到着する間に生じた状況の変化にも柔軟に対応できる。例えば、処理ユニットC113が検体ラック104から検体を抜き取る場合、検体を抜き取られた空の検体ラック104は、接続搬送ライン107を介して、主搬送ライン106から空ラック用搬送ライン103に搬送されるが、検体ラックストッパ105までの検体ラックストック部にストックされる前に、検体を抜き取られた空の検体ラック104を処理ユニットA111が取得することが可能であり、この際、時間差により検体ラックストック部から供給されて、余剰となった空の検体ラック104は、いずれの処理ユニットでも取得されずに検体ラックストッパ105により空ラック用搬送ライン103に再びストックされることになる。
 図7には本検体検査自動化システムの処理ユニットの機能を特定した構成の一例を示す。本実施例では、左から閉栓ユニット701、収納ユニット702、投入ユニット703、遠心ユニット704、開栓ユニット705、バーコード貼り付けユニット706、分注ユニット707、移載ユニット708が直列的に接続されている。なお、本発明における検体検査自動化システムは図7の構成に限られない。図7にあげた構成よりも少ないユニットから構成されていてもよいし、枝分かれした分岐部を持つように接続されていても良い。
 各処理ユニットの機能を以下に説明する。
 投入ユニット703は、オペレータにより投入トレイに収納された状態で投入された複数の検体を、検体チャック機構により投入トレイから検体ラックへ検体の設置を行う。また、検体の情報を読み取り、当該検体をどの検体ラックに搭載したか、等の紐付けを行う。
 遠心ユニット704は検体の遠心分離を行う。
 開栓ユニット705は検体容器である試験管の栓を開ける。
 バーコード貼り付けユニット706は検体を小分けするための試験管を準備し、その試験管にバーコードラベルを貼り付ける。
 分注ユニット707は検体を小分けするためのサンプルカップを準備し、そのサンプルカップに検体を小分け分注する。または、バーコード貼り付けユニット706が準備した試験管に検体を小分け分注する。
 移載ユニット708は当該検体検査自動化システムでの処理が終了した子検体もしくは親検体を分類し、検体検査自動化システムで処理された検体を分析する分析装置に適した検体ラックへ検体を設置し直す。なお、本実施例では、1検体架設用の検体ラックから5検体架設用の検体ラックへ検体を設置し直している。
 閉栓ユニット701は検体容器である試験管の栓を閉める。
 収納ユニット702は検体チャック機構により検体ラックから収納トレイへ検体の設置を行う。
 各処理ユニットに検体ラックに搭載された検体を搬送する主搬送ライン106が、処理ユニット間にまたがって配置されている。また、処理ユニットの下部には空の検体ラックを搬送する空ラック用搬送ライン103が配置されている。空ラック用搬送ラインと主搬送ライン、または空ラック用搬送ラインと処理ユニット間で空の検体ラックをやり取りするための接続搬送ライン710が備わる。空ラック用搬送ラインには、空の検体ラックをせき止める検体ラックストッパ105が配置されており、これによってせき止められた複数の検体ラックが待機している。
 各処理ユニットや空ラック用搬送ライン、主搬送ライン、接続搬送ラインの動作は図示しないコントローラによって制御されている。
 図7に示した構成の一例において、処理ユニット内で空ラックの供給を必要とするのは、投入ユニット703、遠心ユニット704、バーコード貼り付けユニット706、および分注ユニット707である。
 投入ユニット703、遠心ユニット704は外部から投入された親検体の数に応じて空ラックを消費するのに対して、バーコード貼り付けユニット706、分注ユニット707は依頼された検査項目の数(子検体の数)に応じて空ラックを消費する、といったように各処理ユニットはその特性により空ラックの消費量が異なる。一般的に、一本の親検体に対して複数の分析項目が依頼されるため、投入ユニットや遠心ユニットよりも、バーコード貼り付けユニットや分注ユニットの方が必要とする空検体ラックの数は多い。従い、このような処理ユニットに効率的に空ラックを供給するため、空ラック用搬送ライン103から主搬送ライン106に空ラックを供給する接続搬送ライン710はこれらのユニットのみに備わっていても良い。
 一方、検体ラックから検体を抜き取り、空ラックを発生させるユニットは、収納ユニット702、遠心ユニット704、移載ユニット708である。従い、主搬送ライン上に空の検体ラックが多数渋滞する状態を回避するため、主搬送ライン106から空ラック用搬送ライン103に空ラックを回収する接続搬送ライン709は投入ユニット703、遠心ユニット704、移載ユニット708のみに備わっていても良い。これは収納ユニット702を複数台接続する場合、夫々の収納ユニット702に接続搬送ライン(空ラック回収用)709を備えることを不要にする工夫であり、収納ユニット702ではなく隣接の投入ユニット703に接続搬送ライン(空ラック回収用)を備えていても良い。
 なお、本実施例ではそれぞれの処理ユニットが空の検体ラック104を消費する時間の説明を省略しており、検体ラック取得割合のX:YにおけるYは1を固定としているが、それぞれの処理ユニットでの消費量が異なるのであれば、Yを変動させることにより消費量の多い処理ユニットに空の検体ラック104を優先的に取得させることが可能である。
101 コントローラ
102 通信ケーブル
103 空ラック用搬送ライン
104 検体ラック
105 検体ラックストッパ
106 主搬送ライン
107 接続搬送ライン
108 検体有無検知センサ
111 処理ユニットA
112 処理ユニットB
113 処理ユニットC
114 処理ユニットD
115 処理ユニットE
201 処理ユニットからコントローラへの報告
202 コントローラから処理ユニットへの指示
301 空ラック供給判定処理
302 空ラック用搬送ライン駆動指示処理
303 検体ラック取得割合決定処理
304 検体ラックストッパ有無判定処理
305 検体ラックストッパ開放指示処理
306、310 指示終了判定処理
307 空ラック用搬送ライン停止指示処理
308 検体ラックストッパ有無判定処理
309 検体ラックストッパ閉鎖指示処理
401 検体ラックストッパ開閉処理
402 空ラック用搬送ライン駆動処理
403 空ラック要否判定処理
404 空ラック到着待ち処理
405 検体ラック取得判定処理
406 空ラック取得処理
407 空ラック通過処理
501 状況I
502 状況II
503 状況III
504 状況IV
505 状況V
601 エラー発生場所マーカ
602 稼動状況表示エリア
603 エラーメッセージ表示エリア
701 閉栓ユニット
702 収納ユニット
703 投入ユニット
704 遠心ユニット
705 開栓ユニット
706 バーコード貼り付けユニット
707 分注ユニット
708 移載ユニット
709 接続搬送ライン(空ラック回収用)
710 接続搬送ライン(空ラック供給用)

Claims (17)

  1.  検体を保持する検体ラックを処理ユニットへ搬送する検体搬送ラインと、検体を保持しない検体ラックをストックする空検体ラックストック部と、を有する検体検査自動化システムの制御方法であって、
     空の検体ラックを前記空検体ラックストック部から前記検体搬送ラインまたは前記処理ユニットへ搬出するよう制御する検体検査自動化システムの制御方法。
  2.  請求項1記載の検体検査自動化システムの制御方法であって、
     前記処理ユニットが空の検体ラックの供給を必要としているか否かに関するに基づいて、前記空ラックストック部から前記処理ユニットへ空の検体ラックを搬出する検体検査自動化システムの制御方法。
  3.  請求項1または2記載の検体検査自動化システムの制御方法であって、
     いずれかの処理ユニットが空の検体ラックの供給を必要とする場合、
     前記空検体ラックストック部から空の検体ラックを搬出し、空の検体ラックの供給を必要とする処理ユニットに対して、搬送される空の検体ラックのうち取得して良い検体ラックの割合を検体ラック取得割合として指示する検体検査自動化システムの制御方法。
  4.  請求項3記載の検体検査自動化システムの制御方法であって、
     前記検体ラック取得割合は、空の検体ラックの供給を必要としている処理ユニットの個数、及び、前記検体ラックストック部から空の検体ラックが到着する順番に基づいて指示されることを特徴とする検体検査自動化システムの制御方法。
  5.  請求項4記載の検体検査自動化システムの制御方法であって、
     前記検体ラック取得割合は、空の検体ラックの供給を必要としているN個の処理ユニットがあり、前記空検体ラックストック部からn(≦N)番目に空の検体ラックが搬送される処理ユニットに対しては、
     空の検体ラックN-n+1個につき所定数の検体ラックを取得するよう指示することを特徴とする検体検査自動化システムの制御方法。
  6.  請求項3記載の検体検査自動化システムの制御方法であって、
     いずれかの処理ユニットに空の検体ラックが到着した際に、当該処理ユニットにこれまでに到着した空の検体ラック数及び取得した空の検体ラック数を、前記検体ラック取得割合と比較し、
     検体ラック取得割合に合致した場合には、到着した空の検体ラックを取得し、
     検体ラック取得割合に合致しない場合には、到着した空の検体ラックを当該処理ユニットよりも後に空の検体ラックが搬送される他の処理ユニットへ搬送することを特徴とする検体検査自動化システムの制御方法。
  7.  請求項6記載の検体検査自動化システムの制御方法であって、
     搬送された空の検体ラックをいずれの処理ユニットも取得しない場合、当該空の検体ラックは空検体ラックストック部に収納されることを特徴とする検体検査自動化システムの制御方法。
  8.  検体を保持する検体ラックを処理ユニットへ搬送する検体搬送ラインと、検体を保持しない検体ラックをストックする空検体ラックストック部と、を有する検体検査自動化システムであって、
     空の検体ラックを前記空検体ラックストック部から前記検体搬送ラインまたは前記処理ユニットへ搬出するよう制御する制御手段を備えた検体検査自動化システム。
  9.  検体ラックに設置されて搬送された検体を処理する処理ユニットと、
     検体を保持していない前記検体ラックをストックする空検体ラックストック部と、
     前記処理ユニットから空の検体ラックを必要とするか否かについての情報を収集する通信手段と、
     前記通信手段を介して得られた情報に基づいて、前記空検体ラックストック部から前記処理ユニットへ空の検体ラックを供給するよう制御する制御部と、を備えたことを特徴とする検体検査自動化システム。
  10.  請求項8または9記載の検体検査自動化システムにおいて、
     前記空検体ラックストック部と前記処理ユニットの間で空の検体ラックを搬送する接続搬送ラインと、を備えたことを特徴とする検体検査自動化システム。
  11.  請求項8~10のいずれか記載の検体検査自動化システムにおいて、
     前記空検体ラックストック部は、空検体ラックを搬送する空検体ラック搬送ライン、および当該空検体ラック搬送ライン上の所定の位置に空の検体ラックを保持する少なくとも一つのラックストッパを有し、
     前記制御部は前記情報に基づいて当該ラックストッパを開放または閉鎖するよう制御することを特徴とする検体検査自動化システム。
  12.  請求項8~11のいずれか記載の検体検査自動化システムにおいて、
     検体ラック上に検体が設置されているか否かを検出する検体有無センサと、
     前記検体有無センサが、前記空ラックストック部または前記空ラック搬送ライン上の検体ラックに検体を設置した検体ラックが搬送されることを検知した場合に、オペレータに通知する通知手段と、を備えたことを特徴とする検体検査自動化システム。
  13.  請求項3記載の検体検査自動化システムの制御方法であって、
     いずれの処理ユニットも空の検体ラックの供給を必要としない場合、
     前記空ラック用搬送ラインの駆動を停止させることを特徴とする検体検査自動化システムの制御方法。
  14.  請求項10記載の検体検査自動化システムであって、
     前記接続搬送ラインは、
     空検体ラック搬送ラインから検体搬送ラインまたは処理ユニットに空の検体ラックを供給する供給ラインと、検体搬送ラインまたは処理ユニットから前記空検体ラック搬送ラインに空の検体ラックを回収する回収ラインを備えた検体検査自動化システム
  15.  請求項14記載の検体検査自動化システムであって、
     前記処理ユニットとして、バーコード貼り付けユニット、分注ユニットの少なくともいずれかを含み、
     前記供給ラインは、バーコード貼り付けユニットまたは分注ユニットに空の検体ラックを供給する検体検査自動化システム。
  16.  請求項14記載の検体検査自動化システムであって、
     前記処理ユニットとして、収納ユニット、遠心ユニット、移載ユニットの少なくともいずれかを含み、
     前記回収ラインは、前記収納ユニット、前記遠心分離ユニット、または前記移載ユニットから空の検体ラックを回収する検体検査自動化システム。
  17.  請求項8~16のいずれかに記載の検体検査自動化システムであって、
     前記空検体ラックストック部を検体搬送ラインよりも下方位置に備えた検体検査自動化システム。
PCT/JP2011/071129 2010-09-28 2011-09-15 検体検査自動化システムおよびその制御方法 WO2012043261A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11828821.6A EP2623990B1 (en) 2010-09-28 2011-09-15 Automated sample inspection system and method for controlling same
US13/816,897 US8972044B2 (en) 2010-09-28 2011-09-15 Automated sample test system, and method for controlling same
JP2012536344A JP5520385B2 (ja) 2010-09-28 2011-09-15 検体検査自動化システムおよびその制御方法
CN201180040353.9A CN103052885B (zh) 2010-09-28 2011-09-15 检体检查自动化系统及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-216325 2010-09-28
JP2010216325 2010-09-28

Publications (1)

Publication Number Publication Date
WO2012043261A1 true WO2012043261A1 (ja) 2012-04-05

Family

ID=45892728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071129 WO2012043261A1 (ja) 2010-09-28 2011-09-15 検体検査自動化システムおよびその制御方法

Country Status (5)

Country Link
US (1) US8972044B2 (ja)
EP (1) EP2623990B1 (ja)
JP (1) JP5520385B2 (ja)
CN (1) CN103052885B (ja)
WO (1) WO2012043261A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184977A (ja) * 2011-03-04 2012-09-27 Hitachi High-Technologies Corp 検体ラック搬送制御方法
WO2013042549A1 (ja) * 2011-09-20 2013-03-28 株式会社日立ハイテクノロジーズ 検体検査自動化システム
US20140037517A1 (en) * 2012-07-31 2014-02-06 Sysmex Corporation Tube sorter, sample processing system, and sample transporting method
CN103777028A (zh) * 2012-10-22 2014-05-07 日本电子株式会社 自动分析装置
JP2015118091A (ja) * 2013-12-19 2015-06-25 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 容器ホルダの保管および供給
JP2015141024A (ja) * 2014-01-27 2015-08-03 株式会社日立ハイテクノロジーズ 自動分析装置
CN105637371A (zh) * 2013-12-19 2016-06-01 株式会社日立高新技术 检体前处理连接装置及具备该装置的系统
EP2872900B1 (en) * 2012-07-12 2016-09-14 Inpeco Holding Ltd Laboratory automation assembly comprising temporary parking station for conveying devices of biological product containers
JP2017129577A (ja) * 2016-01-22 2017-07-27 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ラボラトリオートメーションシステムと試料保管システムとの間で試料管を移送するための方法およびデバイス
CN108027381A (zh) * 2015-09-25 2018-05-11 株式会社日立高新技术 检体检查自动化系统
JPWO2018034095A1 (ja) * 2016-08-18 2019-06-13 株式会社日立ハイテクノロジーズ 検体検査自動化システムおよびその制御方法
WO2019151096A1 (ja) * 2018-02-02 2019-08-08 株式会社日立ハイテクノロジーズ 検体検査自動化システムおよび空検体キャリア管理方法
CN114694809A (zh) * 2020-12-31 2022-07-01 科美诊断技术股份有限公司 测试任务获取方法、装置、电子设备及存储介质
EP4212882A1 (en) * 2022-01-14 2023-07-19 Sysmex Corporation Specimen transfer device and specimen testing system
JP7407211B2 (ja) 2022-01-14 2023-12-28 シスメックス株式会社 検体検査システム、ラック搬送システム、ラック搬送制御装置およびラック搬送方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5774994B2 (ja) * 2009-09-30 2015-09-09 株式会社日立ハイテクノロジーズ 検体検査自動化システム
WO2015198764A1 (ja) * 2014-06-26 2015-12-30 株式会社日立ハイテクノロジーズ 自動分析装置
CN111108395A (zh) * 2018-01-10 2020-05-05 株式会社日立高新技术 检体处理系统
EP4137821A1 (en) 2021-08-19 2023-02-22 Roche Diagnostics GmbH Method for operating a laboratory automation system and laboratory automation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306165A (ja) * 1989-05-19 1990-12-19 Nittec Co Ltd 容器の移送システム
JPH08122337A (ja) 1994-10-24 1996-05-17 Toshiba Corp 自動分析装置
JP2002357612A (ja) * 2001-06-01 2002-12-13 Hitachi Ltd 検体処理システム
JP3618067B2 (ja) 1999-11-17 2005-02-09 株式会社日立製作所 検体振分け装置
JP2005156196A (ja) * 2003-11-21 2005-06-16 Hitachi Eng Co Ltd 検体搬送装置および検体搬送方法
JP2007309675A (ja) 2006-05-16 2007-11-29 Olympus Corp サンプルラック供給回収装置
JP4336360B2 (ja) 2006-09-20 2009-09-30 株式会社アイディエス 検体前処理搬送装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264558A (ja) * 1992-03-19 1993-10-12 Nittec Co Ltd 容器の移送装置
JP2988362B2 (ja) * 1996-03-11 1999-12-13 株式会社日立製作所 多検体分析システム
JP3031237B2 (ja) * 1996-04-10 2000-04-10 株式会社日立製作所 検体ラックの搬送方法及び検体ラックを搬送する自動分析装置
US7842237B1 (en) * 2000-01-12 2010-11-30 Hitachi, Ltd. Automatic analyzer and rack transfer device
US6442440B1 (en) * 2000-06-24 2002-08-27 Dade Behring Inc. Computer interface module having a flat menu
US6790413B2 (en) * 2001-05-03 2004-09-14 Beckman Coulter, Inc. Sample presentation unit
CN101500694B (zh) * 2006-05-09 2012-07-18 先进液体逻辑公司 液滴操纵系统
JP2009180607A (ja) * 2008-01-30 2009-08-13 Olympus Corp 自動分析装置
JP5280797B2 (ja) * 2008-10-27 2013-09-04 シスメックス株式会社 検体分析装置
JP5315044B2 (ja) * 2008-12-26 2013-10-16 シスメックス株式会社 検体検査装置
JP5244062B2 (ja) * 2009-09-29 2013-07-24 シスメックス株式会社 検体処理装置
JP5372732B2 (ja) * 2009-12-28 2013-12-18 シスメックス株式会社 検体分析装置および検体ラック搬送方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306165A (ja) * 1989-05-19 1990-12-19 Nittec Co Ltd 容器の移送システム
JPH08122337A (ja) 1994-10-24 1996-05-17 Toshiba Corp 自動分析装置
JP3618067B2 (ja) 1999-11-17 2005-02-09 株式会社日立製作所 検体振分け装置
JP2002357612A (ja) * 2001-06-01 2002-12-13 Hitachi Ltd 検体処理システム
JP2005156196A (ja) * 2003-11-21 2005-06-16 Hitachi Eng Co Ltd 検体搬送装置および検体搬送方法
JP2007309675A (ja) 2006-05-16 2007-11-29 Olympus Corp サンプルラック供給回収装置
JP4336360B2 (ja) 2006-09-20 2009-09-30 株式会社アイディエス 検体前処理搬送装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184977A (ja) * 2011-03-04 2012-09-27 Hitachi High-Technologies Corp 検体ラック搬送制御方法
WO2013042549A1 (ja) * 2011-09-20 2013-03-28 株式会社日立ハイテクノロジーズ 検体検査自動化システム
US9645161B2 (en) 2011-09-20 2017-05-09 Hitachi High-Technologies Corporation Sample inspection automation system
EP2872900B1 (en) * 2012-07-12 2016-09-14 Inpeco Holding Ltd Laboratory automation assembly comprising temporary parking station for conveying devices of biological product containers
US20140037517A1 (en) * 2012-07-31 2014-02-06 Sysmex Corporation Tube sorter, sample processing system, and sample transporting method
US9505005B2 (en) * 2012-07-31 2016-11-29 Sysmex Corporation Tube sorter, sample processing system, and sample transporting method
CN103777028A (zh) * 2012-10-22 2014-05-07 日本电子株式会社 自动分析装置
JP2015118091A (ja) * 2013-12-19 2015-06-25 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 容器ホルダの保管および供給
CN105637371A (zh) * 2013-12-19 2016-06-01 株式会社日立高新技术 检体前处理连接装置及具备该装置的系统
JP2019078769A (ja) * 2013-12-19 2019-05-23 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 容器ホルダの保管および供給
JP2015141024A (ja) * 2014-01-27 2015-08-03 株式会社日立ハイテクノロジーズ 自動分析装置
JPWO2017051642A1 (ja) * 2015-09-25 2018-07-05 株式会社日立ハイテクノロジーズ 検体検査自動化システム
CN108027381A (zh) * 2015-09-25 2018-05-11 株式会社日立高新技术 检体检查自动化系统
US10684302B2 (en) 2015-09-25 2020-06-16 Hitachi High-Tech Corporation Specimen inspection automation system
JP2017129577A (ja) * 2016-01-22 2017-07-27 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ラボラトリオートメーションシステムと試料保管システムとの間で試料管を移送するための方法およびデバイス
JPWO2018034095A1 (ja) * 2016-08-18 2019-06-13 株式会社日立ハイテクノロジーズ 検体検査自動化システムおよびその制御方法
US11073527B2 (en) 2016-08-18 2021-07-27 Hitachi High-Tech Corporation Automated sample inspection system and method for controlling same
CN112513645A (zh) * 2018-02-02 2021-03-16 株式会社日立高新技术 样品检测自动化系统及空样品载体管理方法
JPWO2019151096A1 (ja) * 2018-02-02 2021-03-04 株式会社日立ハイテク 検体検査自動化システムおよび空検体キャリア管理方法
WO2019151096A1 (ja) * 2018-02-02 2019-08-08 株式会社日立ハイテクノロジーズ 検体検査自動化システムおよび空検体キャリア管理方法
JP7069223B2 (ja) 2018-02-02 2022-05-17 株式会社日立ハイテク 検体検査自動化システムおよび空検体キャリア管理方法
US11567094B2 (en) 2018-02-02 2023-01-31 Hitachi High-Tech Corporation Specimen inspection automation system and method for managing empty specimen carrier
CN114694809A (zh) * 2020-12-31 2022-07-01 科美诊断技术股份有限公司 测试任务获取方法、装置、电子设备及存储介质
CN114694809B (zh) * 2020-12-31 2023-03-17 科美诊断技术股份有限公司 测试任务获取方法、装置、电子设备及存储介质
EP4212882A1 (en) * 2022-01-14 2023-07-19 Sysmex Corporation Specimen transfer device and specimen testing system
JP7407211B2 (ja) 2022-01-14 2023-12-28 シスメックス株式会社 検体検査システム、ラック搬送システム、ラック搬送制御装置およびラック搬送方法

Also Published As

Publication number Publication date
EP2623990A1 (en) 2013-08-07
EP2623990B1 (en) 2019-03-27
US20130197690A1 (en) 2013-08-01
CN103052885B (zh) 2015-07-08
JP5520385B2 (ja) 2014-06-11
JPWO2012043261A1 (ja) 2014-02-06
EP2623990A4 (en) 2017-10-18
US8972044B2 (en) 2015-03-03
CN103052885A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
WO2012043261A1 (ja) 検体検査自動化システムおよびその制御方法
JP5925931B2 (ja) 検体検査自動化システム
US7963900B2 (en) Centrifuge loading process within an automated laboratory system
WO2013035418A1 (ja) 自動分析装置
US10150620B2 (en) Sample transfer device and sample processing system
JP6220781B2 (ja) 遠心分離装置、遠心分離装置を備えた前処理システムおよび当該システムの制御方法
WO2014119378A1 (ja) 遠心分離システム、検体前処理システム、制御方法
WO2011148897A1 (ja) 検体検査自動化システム
WO2012090795A1 (ja) 遠心分離装置,遠心分離装置を備えた前処理システムおよび当該システムの制御方法
CN108027381B (zh) 检体检查自动化系统
EP2759838B1 (en) Sample inspection automation system
JP6426569B2 (ja) 検体検査システム
JP3760800B2 (ja) 検体処理システム
US11567094B2 (en) Specimen inspection automation system and method for managing empty specimen carrier
JP5638024B2 (ja) 検体搬送システム
JP2011027486A (ja) 検体処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040353.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012536344

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011828821

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13816897

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE