WO2012090795A1 - 遠心分離装置,遠心分離装置を備えた前処理システムおよび当該システムの制御方法 - Google Patents

遠心分離装置,遠心分離装置を備えた前処理システムおよび当該システムの制御方法 Download PDF

Info

Publication number
WO2012090795A1
WO2012090795A1 PCT/JP2011/079560 JP2011079560W WO2012090795A1 WO 2012090795 A1 WO2012090795 A1 WO 2012090795A1 JP 2011079560 W JP2011079560 W JP 2011079560W WO 2012090795 A1 WO2012090795 A1 WO 2012090795A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
bucket
adapter
sample container
weight
Prior art date
Application number
PCT/JP2011/079560
Other languages
English (en)
French (fr)
Inventor
八木 賢一
貴之 野田
正志 圷
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to EP11853226.6A priority Critical patent/EP2660608B1/en
Priority to CN201180063362.XA priority patent/CN103299196B/zh
Priority to US13/976,672 priority patent/US9651570B2/en
Priority to JP2012550868A priority patent/JP5654048B2/ja
Publication of WO2012090795A1 publication Critical patent/WO2012090795A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B13/00Control arrangements specially designed for centrifuges; Programme control of centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B9/00Drives specially designed for centrifuges; Arrangement or disposition of transmission gearing; Suspending or balancing rotary bowls
    • B04B9/14Balancing rotary bowls ; Schrappers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B9/00Drives specially designed for centrifuges; Arrangement or disposition of transmission gearing; Suspending or balancing rotary bowls
    • B04B9/14Balancing rotary bowls ; Schrappers
    • B04B9/146Unbalance detection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/04Periodical feeding or discharging; Control arrangements therefor
    • B04B2011/046Loading, unloading, manipulating sample containers

Definitions

  • the present invention relates to a centrifuge for centrifuging a sample in a sample pretreatment system, and in particular, a sample pretreatment system, a sample test automation system, and the like that can avoid an unbalanced operation due to a weight difference during the centrifuge processing, and It is related with those control methods.
  • the centrifugal treatment is a treatment for extracting blood serum collected from a patient by centrifugation to obtain a test sample.
  • a centrifuge used in a specimen test automation system has a plurality of bucket groups that are swingably held by a rotating rotor.
  • the bucket group is composed of a plurality of bucket pairs, and each bucket pair is composed of buckets provided at rotationally symmetric positions with respect to the rotation axis of the rotor.
  • a plurality (for example, about 5 to 10) of specimens are inserted while being held upright while being installed on the adapter.
  • specimens have been manually inserted into each bucket, but a specimen test automation system that automates pre-processing aims to automate these operations.
  • Centrifugation is performed by rotating the rotor at high speed. Accordingly, when the weights of the buckets arranged in the bucket pair are significantly different, a rotation abnormality of the rotor occurs, and the centrifugal separation operation cannot be performed correctly. Therefore, it is necessary to adjust the weight before installing the rotor.
  • Patent Document 1 a weight called a dummy rack is used to reduce the weight between buckets.
  • Patent Document 2 all racks are weighed in advance, stocked, and a rack pair having a weight difference within a predetermined amount is selected from the stocked rack group and inserted into a bucket pair. A method is disclosed.
  • adapters A and B are provided with respect to adapters (adapter A and B) that have a specimen container weight measuring mechanism in a centrifuge and are placed in a pair of buckets that are symmetrical with respect to the centrifugal rotation center of the rotor.
  • adapter A is heavier, the next sample container is placed on the adapter B.
  • the adapter B is heavier, the next sample container is placed on the adapter A.
  • a method is disclosed in which the difference between the adapter weights at symmetrical positions is minimized by repeating the comparison of the weights of the adapters A and B until there is no empty position in one adapter.
  • JP-A-4-145968 Japanese Patent Laid-Open No. 7-80355
  • Patent Document 1 does not measure the weight to be installed in the bucket, and uses a dummy rack only when the number of racks to be installed is different. When is large, it is difficult to accurately balance the weight. In addition, a space for arranging a member such as a dummy rack is also necessary, which may increase the size of the apparatus.
  • Another method is to measure the weight of the sample container containing the sample using the sample container weight measurement mechanism, compare the total weight of the adapters in the symmetrical position, place the sample container on the light adapter, There is also a method of repeating until one empty position of the adapter becomes empty.
  • one of the adapters is often provided with a sample container having a weight at a position distant from the rotation axis of the rotor, and the other adapter forming the bucket pair with the adapter is close to the rotation axis of the rotor. Assume that there are many specimens that are heavy in position.
  • Specimens put into the specimen pretreatment system require a certain amount of specimens in order to perform pretreatment such as centrifugation and dispensing. However, if a sample of a certain amount or less is accidentally put into the sample pretreatment system, the sample is dispensed from the sample container, and it is recognized for the first time by recognizing the sample shortage. Unloaded from the device as an anomaly. After that, the user takes measures such as adding a sample, and puts it in the apparatus again. However, in this workflow, the recognition of the specimen abnormality is slow, and the delay in reporting the measurement result will eventually increase.
  • the present invention has been made in view of the above-described conventional problems.
  • the purpose of the present invention is to accurately determine the weight of a sample put into a sample test automation system before transporting the sample to a sample processing unit.
  • An object of the present invention is to provide a sample test automation system that makes it possible to perform a normal centrifugation operation without reducing the processing capacity of a separation apparatus, and minimizes a result report delay of an abnormal sample.
  • a loading module for loading a sample into the system, a storage module for storing and storing the processed sample, a transport line for transporting a sample rack holding at least one sample container, and the transport line are arranged along the transport line
  • a specimen test automation system having a plurality of specimen processing units, wherein a specimen container weight measuring mechanism for measuring the weight of the specimen container is disposed on a transport line connecting the input module and the specimen processing unit.
  • the sample input from the input module measures the weight of the sample container by the sample container weight measurement mechanism on the transfer line, and is transferred to the centrifuge.
  • the sample container transported to the centrifuge device waits without being installed in the adapter until the number of samples that can be centrifuged at a time arrives.
  • the adapters A and B are placed on a pair of buckets that are symmetrically positioned at the center of rotation of the rotor.
  • the heaviest sample container among the uninstalled sample containers is installed in the adapter having a light total weight.
  • FIG. 1 shows an example of the order of sample container installation in the adapter.
  • the method for installing the sample container will be described with reference to this drawing.
  • an adapter capable of installing nine sample containers is taken as an example.
  • the center of the adapter means a position closest to the center of gravity of the adapter and a position where the sample container can be installed.
  • the second sample container is installed at a position close to the center of the adapter (see FIG. 1B).
  • the third sample container is installed at a position that is point-symmetric about the adapter center with respect to the second test tube (see FIG. 1C).
  • the second and third sample containers When installing the second and third sample containers, they are installed on the support shaft of the bucket in which the adapter is installed. This is repeated (FIG. 1D to FIG. 1H), and the sample containers are sequentially installed from the center of the adapter (see FIG. 1I). Also in this case, the adapters are sequentially installed at point-symmetrical positions in the center of the adapter.
  • the method is shown in which the maximum number of samples that can be centrifuged is installed in the adapter in descending order of weight after arrival at the centrifuge. However, if the number of samples that are put into the device is small, it is input in advance. Installation may be started on the adapter in descending order of weight when the time-out time has elapsed.
  • the specimen container weight measuring mechanism may be provided in the centrifuge device without being on the transport line, and the specimen weight may be measured after the specimen is transported to the centrifuge device.
  • the specimen loaded from the loading module measures the weight of the specimen container by the specimen container weight measuring mechanism on the transport line.
  • the adapters that are placed in a pair of buckets that are symmetrical with respect to the centrifugal rotation center of the rotor of the centrifuge are referred to as adapters A and B, and the weights of the adapters A and B are compared. Install it.
  • the sample container When all the sample containers are installed in either adapter A or adapter B and only the other adapter can be installed, if the next sample container is installed in an empty adapter, the sample will be unbalanced. Recognizing in advance by measuring the weight with the container weight measuring mechanism, the specimen container transports the specimen so that it is centrifuged by another centrifuge. If there is no unbalance in the weight of each adapter, the sample container is placed in the adapter with the empty space.
  • the storage method may be a method in which the holder has an RFID and the holder weight is stored in the holder itself.
  • a barcode is attached to the holder, and the barcode information and the holder weight are stored in the control computer of the sample test automation system. The method may be used.
  • the weight of the sample container is obtained by subtracting the holder weight measured in advance from the measured weight.
  • the weight of the sample container can be accurately measured, and by determining the installation destination of the sample container in the centrifuge based on the accurate weight, normal operation can be performed. Centrifugation is possible.
  • the sample container weight measuring mechanism When the holder with the sample container is measured by the sample container weight measuring mechanism, it is checked that the measured weight is within the preset normal sample weight range. If it is within the range, it is determined that there is a normal amount of sample in the sample container, and the subsequent pretreatment is performed. However, if it is outside the range of the normal specimen weight, it is regarded as an abnormal specimen and the specimen is collected in the storage module.
  • the sample container has a different container weight depending on the difference in the container diameter and the sample container length, the range of the normal sample weight also varies depending on the type of the sample container. Therefore, the specimen container shape is recognized, the normal specimen weight that matches the specimen container shape is selected, and the specimen use determination is performed.
  • a CCD camera may be used as means for recognizing the shape of the sample container.
  • specimen abnormalities such as a small amount of specimen can be detected before processing in the preprocessing module, and specimens can be collected early.
  • the user can treat the abnormal sample at an early stage and re-inject the sample into the sample test pretreatment system, thereby minimizing a result report delay.
  • FIG. 3 is an overall view related to a sample rack transport line section of a sample test pretreatment system.
  • FIG. 2 is an overall view related to the sample rack transport line section of the sample test pretreatment system according to the present invention.
  • the holder 31 has a structure capable of being conveyed on the line in a state where the sample container 32 into which body fluid such as blood collected from a patient is injected is held upright, and each holder 31 is given a unique ID number. Yes.
  • the holder 31 carries between the processing modules by a plurality of carrying lines responsible for each use. Next, the flow of the specimen in the system will be described.
  • a tray 33 on which 50 to 100 specimen containers 32 can be installed is installed on the input module 102.
  • the sample container 32 in the tray 33 is transferred to the holder 31 by a test tube chuck mechanism (not shown).
  • the holder 31 is stored in the vicinity of the exit of the rack stocker 101 in advance, and the holder 31 is sequentially transferred to the input module 102 in accordance with a transfer request from the input module 102 by communication.
  • the barcode information attached to the sample container 32 is read in the loading module 102.
  • the read barcode information is transferred to the host computer 51, and the type information of the corresponding sample registered in the host computer 51 is returned to the system.
  • the main transport line 11 After reading the barcode information, the main transport line 11 is provided with a sample container weight measuring mechanism 20 for measuring the weight, and the total weight of the sample container 32 and the holder 31 is measured at the position. The total weight measurement result is transmitted to the control computer 41 for each specimen together with the ID number of the holder 31. Based on the type information returned from the host computer 51 and the measured sample weight information, the control computer 41 determines which processing module to stop or which processing module to skip, and the sample container 32 placed on the holder 31. Are transferred to the processing modules 104 and 105. After completion of all the processing, the sample container 32 is finally transported to the storage module 103, and the sample container 32 is extracted from the holder 31 by a test tube chuck mechanism (not shown) and stored in the tray 33. The empty holder 31 from which the holder 31 has been extracted is transported to the rack stocker 101.
  • the main transport line 11 is a line for transporting the specimen container 32 put into the system to each processing module.
  • the emergency overtaking line 12 is a line for overtaking an emergency sample, and the emergency overtaking line 12 is a sample that does not need to stop at the processing module (for example, a sample that does not need to be centrifuged). It is also possible to bypass using the branch lines 16 and 17 arranged in each processing module.
  • the return line 13 is a transport line for looping the sample container 32 in the system. For example, in the case of re-dispensing for retesting, the return line 13 is used to loop the system. Yes.
  • the empty rack transport lines 14 a and 14 b are provided in parallel with the main transport line 11 and with the same line length, and are arranged between the return line 13 and the main transport line 11.
  • the purpose of the empty rack transfer lines 14a and 14b having the same line length as the main transfer line 11 and the return line 13 is to facilitate system expandability (addition or reduction of processing modules).
  • the optimum number of empty racks is provided according to the system scale. In the first place, the number of empty racks necessary for processing in the system is the number that is completely filled with holders 31 on the line.
  • the line length obtained by adding the main conveyance line 11 and the return line 13 is equal to that of the empty rack conveyance lines 14a and 14b. It is possible to store empty racks necessary for the system in the empty rack transport lines 14a and 14b. Thereby, it becomes possible to always provide the optimum number of empty holders according to the system scale.
  • the empty rack transport line 14a transports the empty holders continuously transported from the storage module 103 in the opposite direction to the main transport line in order to efficiently collect them without crossing the lines in the rack stocker 101. ing. Similarly, the empty rack transport line 14b transports in the opposite direction to the return line 13.
  • FIG. 3 is a perspective view of the entire configuration of the centrifugal separation processing unit according to the present invention
  • FIG. 4 is a perspective view with the upper part removed.
  • the main components of the centrifuge processing unit include a centrifuge buffer line 201 that temporarily holds a plurality of sample containers 32, a turntable 202 that holds an adapter 210, and a centrifuge 203 that centrifuges the sample.
  • the adapter 210 is centrifuged while being held in a bucket in the turntable.
  • the bucket is held laterally by a bucket support shaft 01. Accordingly, the adapter held in the bucket is such that the bottom of the sample container is directed to the outside of the turntable 202 and the opening of the sample container is inclined toward the rotation center axis of the turntable 202 when the turntable 202 is rotated. Supported by
  • the sample containers 32 are sequentially carried into the centrifuge buffer line 201 one by one while being supported on the holder 31 by the belt line from the previous process unit.
  • the holder 31 continues to be sequentially conveyed to the central portion of the centrifugal buffer line.
  • the sample container 32 is transferred to the adapter 210 on the turntable 202 by the sample chuck mechanism 204 at a position where the sample container 32 can be removed from the holder 31.
  • the sample container is transferred from the holder 31 to the adapter 210 by using a waiting time during the centrifugal separation operation in the centrifuge 203 (generally, the centrifugation time is 5 to 10 minutes).
  • the specimen returning operation from the adapter 210 to the holder 31 can be performed, and a reduction in throughput of the entire process can be prevented.
  • the turntable 202 has a rotation drive motor, and rotates with the adapter 210 mounted, and controls to stop at an arbitrary position.
  • the sample chuck mechanism 204 is fixed to an XYZ mechanism 206 that can move freely in the horizontal direction and the vertical direction, and performs sample transfer between the holder 31 and the adapter 210. Similar to the specimen chuck mechanism 204, the XYZ mechanism 206 has an adapter chuck mechanism 205 that transports the adapter 210 into the centrifuge bucket.
  • the centrifuge 203 includes a high-speed rotation drive motor for centrifugation (not shown), a rotor 208 attached to the motor, and a plurality of buckets 207 attached symmetrically with respect to the rotation center axis of the rotor 208. ing.
  • the adapter 210 After the transfer operation of the specimen container 32 to be centrifuged is completed on the adapter 210, the adapter 210 is inserted into the bucket 207 with the specimen container 32 still placed by the adapter chuck mechanism 205. After the adapter 210 is inserted into all the buckets 207, the safety shutter 209 is closed and the centrifugal separation operation is started. While performing the centrifugal separation operation, the operation of extracting the sample container 32 from the holder 31 and inserting it into the adapter 210 is continued as preparation for performing the centrifugation in the next cycle. After the centrifugation work is completed, the reverse process of the above work is performed. First, the safety shutter 209 is opened, and the adapter 210 is returned from the bucket 207 to the turntable 202 by the adapter chuck mechanism 205.
  • the turntable 202 In order to shorten the waiting time of the centrifuge 203, it is possible to return all the adapters 210 that have been centrifuged to the turntable 202 and continuously insert the adapters 210 for the next centrifugation operation into the bucket 207. desirable. Further, the turntable 202 is rotated in order to minimize the distance from the adapter 210 to the holder 31. After the turntable 202 is stopped, the sample chuck mechanism 204 returns the sample adapter 210 to the holder 31. The specimen container 32 returned to the holder 31 is transported to the next process by the belt line.
  • FIG. 5 shows a processing flow from when the sample is introduced to when the sample is set in the adapter 210 of the centrifuge.
  • the sample loaded from the loading module 102 is measured in a state where the weight of the sample container 32 is set in the holder 31 by the sample container weight measuring mechanism 20 on the main transport line 11 in Step 501, and centrifuged in Step 502. Transport to separation device.
  • the sample chuck mechanism 204 is not placed on the adapter 210 and waits until the sample container 32 conveyed to the centrifuge reaches the maximum number of samples that can be centrifuged at a time (step 503).
  • the centrifuge buffer line 201 is not reached at that time even if the maximum number of samples that can be centrifuged is not reached.
  • the transport from the heaviest sample to the adapter may be started.
  • the adapter 210 that is placed in a pair of buckets at the symmetric position of the centrifuge rotation center of the rotor is adapter A and B.
  • the first heaviest sample container among all the sample containers transferred to the adapter A is installed in the adapter A (step 504).
  • the total weight of adapter A and adapter B is compared. If adapter A is light, the heaviest sample container among the sample containers is installed in adapter A in step 506, and adapter B is light.
  • step 507 the heaviest sample container among the sample containers is installed in the adapter B. Steps 505 to 507 are repeated until the installation of all sample containers is completed in step 508.
  • FIG. 1 shows the order in which the sample containers are installed in the adapter, taking as an example the case where the number of installed samples is nine.
  • step 504 the heaviest specimen container on the centrifugal buffer line is selected and installed at the center position of the specimen installation position of adapter A (position 1 in FIG. 1-A).
  • step 505 the total weight of the adapter A and the adapter B is compared, and it is determined on which adapter the next heavy sample container is to be installed. In the present embodiment, for example, when the total weight of the adapter B is light, the next specimen is installed at position 1 of the adapter B in step 507.
  • the sample containers are constructed in the order of position 2, position 3, position 4, and position 5.
  • positions 4 and 5 either one of the sample containers may be installed first.
  • the third sample container is installed, the third sample container is installed at a point-symmetrical position with respect to the center (first sample container) with respect to the second sample container.
  • the fifth sample container is installed, it is installed at a point-symmetrical position with respect to the fourth sample container.
  • the sample container is installed at any of positions 6 to 9 as a position far from position 1.
  • the sample containers are constructed in the order of position 6, position 7, position 8, and position 9, but other orders may be used.
  • the seventh sample container is installed, the seventh sample container is installed at a point-symmetrical position with respect to the sixth sample container.
  • the ninth sample container is installed at a point-symmetrical position with respect to the eighth sample container.
  • the mounting position of the sample container when mounting the sample on the adapter B is symmetrical with respect to the rotation axis of the rotor.
  • the sample should be installed at the installation position in FIG.
  • the adapter A is in the state shown in FIG. 1D and the adapter B is in the state shown in FIG. 1C
  • the position 4 and the rotor are rotated. It is preferable to install the sample container at a position symmetrical with respect to the axis, that is, at position 5.
  • the present embodiment refers to the case of having two buckets of adapters A and B
  • the present invention can be applied to a centrifuge that can centrifuge two or more buckets. Since a stable centrifugal separation is possible unless the difference in weight between the buckets in the symmetric position with respect to the rotor rotation axis is large, the bucket pair of the bucket A and the bucket B in the symmetric position with respect to the rotor rotation axis is initially set.
  • the sample container is installed while balancing each other's weight, and then the sample container is mounted while balancing the weight with respect to another bucket pair (bucket C, bucket D) that is symmetrical with respect to the rotor rotation axis. Erection. In this way, by installing the sample containers in order with respect to the bucket pair, it is possible to cope with a case where there are a large number of buckets.
  • the adapter installation method described above compares the total weight of each adapter 210 to determine the installation location, and then installs from a heavy sample container. As a result, the weight added to the total weight of each adapter 210 gradually decreases, so that a heavy test tube is not allocated at the end, and a difference in weight between the adapters 210 hardly occurs. Also, by placing a heavy sample in the center of the adapter 210 and placing a light sample outside the adapter 210, the center of gravity of the adapter 210 itself can be prevented from shifting, and abnormal rotation of the rotor during centrifugation can be suppressed. , Stable centrifugation can be performed.
  • a method of directly measuring the weight by the weight measuring mechanism is adopted, but it is also conceivable to obtain the weight of the specimen to be accommodated by other methods.
  • a method may be used in which a CCD camera or the like is provided on the side of the transport line, the liquid level in a sample container installed on a passing sample holder is detected, and the weight is calculated therefrom.
  • a processing flow from when a specimen according to another embodiment is introduced to when the specimen is installed in the adapter 210 of the centrifuge will be described.
  • centrifuge 1 the centrifuge 1
  • centrifuge 2 the centrifuge 2.
  • the sample is measured in a state in which the weight of the sample container 32 is installed in the holder 31 by the sample container weight measuring mechanism 20 on the main transport line 11 after reading the barcode information in the input module 102.
  • This weight information is transmitted to the control computer 41 together with the holder ID where the sample is installed.
  • the control computer 41 determines which adapter 210 is to be installed among the adapters 210 that form a pair of centrifuges to be connected based on the specimen weight.
  • the sample container 32 is placed on the adapter 210 (referred to as adapter A here) of the centrifuge 1 and then centrifuged.
  • the sample container 32 is placed on an adapter 210 (referred to as an adapter B here) that is paired with the adapter A of the apparatus 1. Subsequently, the specimen container 32 is installed on the specimen where the total weight of the adapters A and B is lighter.
  • the sample container 32 is installed only in the adapter 210 of one of the centrifuge 1 and the centrifuge 2. This is because the TAT (Turn-Around-Time) of each sample is shortened when more sample containers 32 are installed on the adapter of one centrifuge as soon as possible and the centrifugation process is started.
  • FIG. 6 illustrates an example in which all the sample containers are installed in the adapter A, the adapter B is empty, and the sample containers can be installed.
  • step 601 the weight of the sample container 32 is measured in the state where it is installed in the holder 31 by the sample container weight measuring mechanism 20 on the main transport line 11.
  • step 602 for the sample container to be installed in the adapter this time, the value obtained by adding the sample weight measured by the sample container weight measuring mechanism 20 to the total weight of the empty adapter B is compared with the total weight of the adapter A. If the weight difference is such that centrifugation can be performed, the sample is transported to the centrifuge 1 in step 603, and the sample container 32 is installed in the adapter B in step 604.
  • step 605 the sample is transported to another centrifuge 2, and is installed in the adapter A ′ 210 of the centrifuge 2 in step 606.
  • the adapter B of the centrifuge 1 has a vacant position where the sample container can be installed. Therefore, the process returns to step 601 again in step 607, and then whether or not the weight-measured sample container 32 can be installed in the adapter B is determined. The determination is made in step 602, and the process is repeated until a sample that can be installed in the adapter B is found.
  • the TAT of each sample is prioritized, and the sample is installed in the adapter 210 of the centrifuge 1 May be started and the centrifugation process may be started.
  • the number of occurrences of the sample that cannot be installed in the adapter B is counted, and when the specified number of times is exceeded, the centrifugation process of the centrifuge 1 is started. May be.
  • FIG. 7 shows an example of a normal sample weight range value setting screen for each sample container.
  • a minimum weight and a maximum weight are set for each test tube container.
  • “Others” in FIG. 7 sets a value to be used when a sample container having a shape that cannot be determined by the shape recognition mechanism of the sample container 32 is inserted into the system.
  • the sample container 32 When the sample container 32 is loaded from the loading module 102, the sample container 32 is moved to the holder 31 and starts to be transported.
  • the sample container 32 is identified by means for recognizing the sample container shape (here, it is assumed that the sample container 32 is recognized as a 16 mm 100 mm test tube).
  • the weight of the sample container 32 is measured by the sample container weight measuring mechanism 20 (assuming that the measured weight of the sample container is 7 g). Therefore, the normal specimen weight range value is determined from the recognized test tube shape (the normal specimen weight is 10 g to 30 g from FIG. 7). The normal sample weight range value is determined by, for example, splattering when the sample is processed and transported by the test tube from the minimum amount of liquid required for dispensing the sample necessary for analysis from the test tube with the dispensing nozzle. It is conceivable to set a range of the liquid amount that does not cause liquid spillage. The measured weight of the sample container is compared with the normal sample weight range value set for the test tube.
  • a notification means for notifying the operator when a sample determined to be abnormal is generated.
  • a notification method a dedicated screen display may be provided on the operation screen. Through the screen display, it is possible to prompt the operator to add insufficient samples or to re-install appropriate sample amounts.
  • a notification method a method of notifying that a sample abnormality has occurred by light or sound is conceivable. In this case, it is possible to notify the operator who is far away of the occurrence of the specimen abnormality.
  • This means makes it possible to recognize an abnormal sample at an early stage of sample input and to discharge the sample outside the apparatus. As a result, the user confirms the status of the sample recognized as an abnormal sample, performs a process such as adding a sample, and re-inputs, thereby minimizing a result report delay.
  • holder weight measurement maintenance is executed, the system transports the holder 31 waiting in the rack stocker 101 to the sample container weight measurement mechanism 20 through the empty rack transport lines 14a and 14b.
  • the holder 31 conveyed to the sample container weight measuring mechanism 20 measures the weight of the holder alone.
  • the holder weight measured at that time is stored.
  • a storage medium such as RFID may be attached to the holder 31 and stored in the holder 31 itself, or a barcode is pasted on the holder 31 and transmitted to the control computer 41 together with the barcode information at the time of weight measurement. You may do it.
  • the holder 31 is stored in the rack stocker 101 through the empty rack transport lines 14a and 14b.
  • the sample container 32 is loaded into the loading module 102, the sample container 32 is moved to the holder 31, and the conveyance into the pretreatment system is started.
  • the transported specimen container 32 measures the total weight of the specimen container 32 and the holder 31 in a state where the specimen container 32 is installed in the holder 31 by the specimen container weight measuring mechanism 20. Also, by reading the RFID or barcode attached to the holder 31, calling the weight of the holder 31 measured in advance in the holder weight measurement maintenance, and subtracting the holder weight measured in advance from the measured weight, Calculate the weight of the specimen.
  • ⁇ Holder weight varies depending on processing accuracy. Further, there is a possibility that a change in the weight of the holder itself occurs when it is used for a long time. Therefore, it is possible to always measure the correct specimen weight when using a new holder or by periodically measuring the holder weight with this method, that is, using that weight to determine the installation adapter of the centrifuge This leads to stable operation of the centrifugation process.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Centrifugal Separators (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 遠心分離器の回転中心軸に対して対称位置に架設するホルダに重量差がある場合や、ホルダに設置した検体容器重量の偏りによりホルダの総重量の重心がずれていると、正常な遠心処理が行えない場合がある。検体容器に収容された検体の重量に関する情報を得る判別機構を、投入モジュールと遠心分離ユニットを接続する搬送ライン上に配置し、遠心分離ユニットにて一度に遠心処理可能な検体数が到着するまでアダプタへ設置しないで保持し、到着後に回転中心軸に対称位置に架設する対となるアダプタに対して、重い検体から設置する。また、最初にアダプタの重心位置に検体を設置し、それ以降の検体は重心位置に対して内側から点対称になる位置に対して設置する。

Description

遠心分離装置,遠心分離装置を備えた前処理システムおよび当該システムの制御方法
 本発明は、検体前処理システム内の検体を遠心分離処理するための遠心分離装置に関し、特に遠心分離処理の際に重量差によるアンバランス運転が回避できる検体前処理システム、検体検査自動化システム、およびそれらの制御方法に関する。
 近年、医療分野では多様な自動化機器の導入により、検査業務の省力化が進められている。病院の検査では、入院患者や外来患者の検査検体は病院内の各課で集められ、検査室で一括して処理される。検体ごとの検査項目はオンラインの情報処理システムを利用して医師より検査室に伝えられ、検査結果はオンラインで逆に検査室より医師に報告される。血液,尿の検査項目の多くは、検査処理の前処理として遠心処理,開栓処理,分注処理等の前処理を必要とし、その作業が検査作業時間全体に占める割合は大きい。
 前記前処理のうち遠心処理は、患者から採取した血液を遠心分離により血清成分を抽出して検査試料とするための処理である。一般的に検体検査自動化システムで使用する遠心分離装置は回転するロータに揺動自在に保持された複数のバケット群を有している。バケット群は複数のバケットペアで構成され、各バケットペアはロータの回転軸に対して互いに回転対称位置に設けられたバケットで構成される。各バケットには、複数(例えば5~10本程度)の検体が、アダプタに設置された状態で起立保持されて挿入される。従来、各バケットには人手により検体を挿入していたが、前処理を自動化した検体検査自動化システムでは、これらの作業を自動化することを目的としている。
 遠心分離作業はロータを高速回転することにより行われる。従って、バケットペアに配置したバケット重量が大幅に異なる場合はロータの回転異常が発生し、正しく遠心分離作業を行うことができないため、ロータに架設する前段階で重量調整を実施する必要がある。
 この重量調節手段に関して、特許文献1では、ダミーラックと呼んでいるおもりを使用しバケット間の重量さを軽減している。一方、特許文献2では、すべてのラックについて事前に重量測定を行って、それらを一旦ストックしておき、ストックされたラック群の中から重量差が所定量以内のラックペアを選び出し、バケットペアに挿入する方法が開示されている。
 特許文献2では、遠心分離装置内に検体容器重量測定機構を持ち、ロータの遠心分離回転中心対称位置の1対のバケットに載置するアダプタ(アダプタAとB)に対して、アダプタAとBの総重量を比較し、アダプタAの方が重い場合は次の検体容器をアダプタBに載置し、逆にアダプタBの方が重い場合は、次の検体容器をアダプタAに載置し、再度アダプタAとBの重量を比較することを一方のアダプタに空きポジションがなくなるまで繰り返すことで対称位置のアダプタ重量の差を最小限にする方法が開示されている。
特開平4-145968号公報 特開平7-80355号公報
 特許文献1に記載された方法では、バケットに架設する重量を測定しておらず、架設するラックの数が違う場合にのみダミーラックを使用しているため、試験管サイズが異なりこれらの重量差が大きい場合には、正確に重量バランスを取ることが困難であった。また、ダミーラックなどの部材を配置するスペースも必要であり、これらにより装置が大型化してしまう可能性があった。
 一方、特許文献2に記載の技術では、装置に投入された全ラックを一旦ストックしておいてから、重量差が少ないラックペアを決定しているため、組合せによっては投入順序でバケットに移載できない場合があり、また最終的に重量バランスが取れない場合には、ダミーラックを使用する必要があった。
 他の方法としては、検体容器重量測定機構にて検体が入った検体容器の重量を測定し、対称位置にあるアダプタの総重量を比較し、軽いアダプタの方に検体容器を設置し、対となるアダプタの一方の空きポジションがなくなるまで繰り返す方法もある。
 しかし、上記方法では対となるアダプタの総重量差によっては、一方のアダプタに新たな検体容器を架設可能な空きポジションがなくなると、他方のアダプタに空きポジションがある状況でも遠心分離処理を実施することになる。その場合、一度に遠心処理を行える検体数が減少し、処理能力が低下することになる。
 また、対となるアダプタの総重量の差を最小としても、検体容器の重量にバラつきがある場合、アダプタ内での重心位置がずれることにより回転異常が生じて遠心処理が正常に行えない可能性がある。例えば、一方のアダプタは、ロータの回転軸に対して離れた位置に重量がある検体容器が多く設置され、そのアダプタとバケットペアを形成する他方のアダプタには、ロータの回転軸に対して近い位置に重量がある検体が多く設置されていることを想定する。仮にこの対となるアダプタの総重量の差はないとしても、遠心処理を実施時には、対となるアダプタの重心位置のずれにより遠心分離装置のローダの回転異常が発生し、正しく遠心処理が実施されない可能性がある。
 合わせて、遠心分離装置に搬送される検体が少ない場合には、一定時間経過後にはアダプタに空きがあっても遠心処理を実行するよう制御される場合が多い。その時、各アダプタ上の検体容器の設置状態が偏っていると、同様にアダプタの重心にずれが発生し、同様にロータの回転異常を引き起こす原因となり得る。
 また、特許文献1に記載された方法では、検体容器重量測定機構にて検体が入った検体容器の重量を測定する時、その際検体容器が設置されたホルダごと重量を測定する。そして、測定した重量からホルダ重量を差し引くことで検体容器の重量を測定する。
 しかし、加工精度のばらつきや長期間ホルダを使用していたことによる経年変化等により、ホルダ重量にばらつきが生じる可能性があり、検体容器の重量が正しく測定できないケースが生じる。上記により、検体容器の重量を測定し、その重量に基づいて遠心分離装置に検体容器の設置先を決定しても、ホルダ重量のばらつきの影響を受け、遠心動作に影響を与える可能性がある。
 検体前処理システムに投入される検体は、遠心処理,分注処理等の前処理を行うために一定量以上の検体が必要である。しかし、一定量以下の検体を誤って検体前処理システムに投入した場合、上記検体容器から検体分注を行い、検体不足を認識することで初めて検体量が不足していることを認識し、検体異常として装置から搬出される。その後、ユーザーは検体を追加するなどの対処を行い、再度装置に投入することになる。しかし、本ワークフローでは、検体異常の認識が遅く、最終的に測定結果の報告遅延が拡大することになる。
 本発明は、上記従来の課題に鑑みなされたものであり、その目的は、検体検査自動化システムに投入された検体の重量を検体処理ユニットに搬送される前段階で正確に把握することで、遠心分離装置の処理能力を低下させずに、正常な遠心分離作業を行うことを可能にすると共に、異常検体の結果報告遅延を最小限にする検体検査自動化システムを提供することにある。
 処理能力を低下させず、安定した遠心分離処理を実現するための手段を以下に示す。
 検体をシステムに投入するための投入モジュールと処理が完了した検体を収容保存する収納モジュールと少なくとも1本の検体容器を保持する検体ラックを搬送する搬送ラインと、該搬送ラインに沿って配置される複数の検体処理ユニットを有する検体検査自動化システムにおいて、該検体容器の重量を測定する検知容器重量測定機構を該投入モジュールと該検体処理ユニットを接続する搬送ライン上に配置することを特徴とする検体検査自動化システムにおいて、投入モジュールから投入された検体は搬送ライン上にある検体容器重量測定機構にて検体容器の重量を測定し、遠心分離装置に搬送される。遠心分離装置に搬送された検体容器は一度に遠心処理可能な検体数が到着するまでアダプタへ設置せず待機する。遠心処理可能な最大検体数が遠心分離装置に到着後、ロータの遠心分離回転中心対称位置の1対のバケットに載置する前記アダプタをアダプタAとBとした時、アダプタAとBの重量を比較し、総重量が軽いアダプタに未設置の検体容器のうち最も重い検体容器を設置する。
 図1にアダプタへの検体容器の設置順序の例を示す。本図を用いて検体容器の設置方法を説明する。図1では、検体容器が9本設置可能なアダプタを例とする。設置アダプタに設置する時には、最初にはアダプタの中心に設置する(図1(A)参照)。ここでアダプタの中心とは、アダプタの重心位置に最も近い位置であって、検体容器を架設できる位置のことを言う。2本目の検体容器は、アダプタの中心に近い位置に設置する(図1(B)参照)。3本目の検体容器は、2本目の試験管に対してアダプタ中心の点対称となる位置に設置する(図1(C)参照)。2本目及び3本目の検体容器を設置する時は、アダプタを設置するバケットの支持軸上に設置する。これを繰り返し(図1(D)から図1(H))、検体容器はアダプタの中心部から順に設置する(図1(I)参照)。この場合も、アダプタ中心の点対称の位置に順次設置する。
 上記方法では、遠心処理可能な最大検体数が遠心分離装置に到着後に重量が重い順にアダプタへの設置を行う方法を示したが、装置に投入される検体の数が少ない場合は、予め入力しておいたタイムアウト時間を経過した時点で重量が重い順にアダプタへの設置を開始してもよい。
 また、検体容器重量測定機構は搬送ライン上になくても、遠心分離装置内に有し、検体が遠心分離装置に搬送後に検体重量を測定しても良い。
 本手段により、重い検体容器から順に各アダプタに振り分けていくことから1対となる各バケットに載置するアダプタの重量の差を最小限にすると共に重い検体容器がアダプタの内側に設置されるため、アダプタの重心のずれも最小になり、安定した遠心処理を行うことが可能となる。
 検体の処理能力を低下させず、安定した遠心分離処理を実施するための別解決方法を以下に示す。
 投入モジュールから投入された検体は搬送ライン上にある検体容器重量測定機構にて検体容器の重量を測定する。遠心分離装置のロータの遠心分離回転中心対称位置の1対のバケットに載置する前記アダプタをアダプタAとBと称し、アダプタAとBの重量を比較し、総重量が軽いアダプタに検体容器を設置していく。
 アダプタAもしくはアダプタBの一方に全て検体容器が設置され、他方のアダプタのみ検体容器が設置可能な状況において、次の検体容器を空があるアダプタに設置すると、重量がアンバランスになることを検体容器重量測定機構にて重量を測定することで予め認識し、上記検体容器は別の遠心分離装置にて遠心処理を行うように検体を搬送する。各アダプタの重量にアンバランスが発生しない場合には、上記空があるアダプタに検体容器を設置する。
 本手法により、遠心分離装置の対となるアダプタの重量バランスが不均一になることを未然に防ぎ、遠心処理を正常に実施するが可能であると共に、アンバランスが生じない検体は継続して空きがあるアダプタに設置することで、一度に遠心処理できる検体数が増加し、処理能力の低下を防ぐことが可能になる。
 正確な検体重量を測定するための方法を以下に示す。
 検体を設置していないホルダを検体容器重量測定機構に搬送し、ホルダのみの重量を測定する。その測定結果は、ホルダが有する記憶媒体に記憶させる。記憶方法は、ホルダにRFIDを持ち、ホルダ自身にホルダ重量を記憶させる方法でもよいし、ホルダにバーコードを貼り、上記バーコード情報とホルダ重量を、検体検査自動化システムの制御コンピュータにて記憶する方法でもよい。
 実際に検体容器を設置したホルダの重量を測定し、検体容器の重量を算出する時には、測定重量から、予め測定したホルダ重量を減算することで検体容器重量を求める。
 本手法により、各ホルダの重量を正確に把握することで、検体容器の重量を正確に測定でき、その正確な重量に基づいて遠心分離装置に検体容器の設置先を決定することで、正常な遠心処理が可能になる。
 異常検体を早期に認識しシステム外に搬出する方法を以下に示す。
 検体容器が設置されたホルダを検体容器重量測定機構にて測定時に、測定重量が予め設定された正常検体重量の範囲内であることをチェックする。範囲内であれば、上記検体容器には正常量の検体があると判断し、その後の前処理を実施する。しかし、正常検体重量の範囲外の場合には異常検体とみなし、その検体を収納モジュールに回収する。
 なお、検体容器は容器直径や検体容器長さの違いにより容器重量が異なるため、正常検体重量の範囲も検体容器の種類により異なる。そこで、検体容器形状を認識し、その検体容器形状に合致する正常検体重量を選択し、検体の使用可否判定を行う。検体容器形状を認識する手段は、例えばCCDカメラを用いても良い。
 本手段により、検体量が少ないなどの検体異常を前処理モジュールでの処理前に検出して検体の早期回収が可能になる。ユーザーは早い段階に異常検体に対して処置を行い、検体検査前処理システムに再度検体を投入することにより、結果報告遅延を最小限に抑えることが可能となる。
 検体検査自動化システムに投入された検体の重量を検体処理ユニットに搬送される前段階で正確に把握することで、正常な遠心分離作業を行うことを可能にすると共に、異常検体の結果報告遅延を最小限にすることが可能になる。
アダプタへの検体容器の設置順序を示す図。 検体検査前処理システムの検体ラック搬送ライン部に係る全体図。 遠心分離処理部の全体構成の斜視図。 遠心分離処理部の上部を取り除いた斜視図。 遠心分離装置のアダプタに検体を設置する処理フロー図。 遠心分離装置のアダプタに検体を設置する処理フロー図。 検体容器の正常検体重量範囲値の設定画面を示す図。
 本発明に係る検体検査前処理システムの検体ラック搬送ライン部に関わる全体図を図2に示す。
 ホルダ31は患者から採取した血液などの体液が注入された検体容器32を起立保持した状態でライン上を搬送可能な構造となっており、またこのホルダ31はそれぞれ固有のID番号を付与されている。ホルダ31はそれぞれの用途を受け持つ複数の搬送ラインにより各処理モジュール間の搬送を行う。次にシステム内での検体のフローについて記載する。
 検体容器32を50~100本架設可能なトレイ33を、投入モジュール102に架設する。投入モジュール102では、トレイ33内の検体容器32を図示しない試験管チャック機構によりホルダ31に移載する。ホルダ31は予め、ラックストッカ101の出口近傍に蓄えられており、投入モジュール102からの通信による搬送要求に従い、順次ホルダ31を投入モジュール102に搬送する。検体容器32がホルダ31に移載された後、投入モジュール102内で検体容器32に貼り付けられたバーコード情報を読み取る。読み取られたバーコード情報はホストコンピュータ51に転送され、ホストコンピュータ51に登録されている該当検体の種別情報がシステムに返信される。
 バーコード情報を読み取り後、主搬送ライン11には、重量測定のための検体容器重量測定機構20が配されており、当該位置において検体容器32とホルダ31の総重量測定を行う。総重量測定結果は、ホルダ31のID番号と共に1検体ごとに制御コンピュータ41に送信される。制御コンピュータ41ではホストコンピュータ51から返信された種別情報及び上記測定した検体重量情報に基づき、どの処理モジュールに立ち寄るかあるいはどの処理モジュールをスキップするかを決定し、ホルダ31に載せられた検体容器32を各処理モジュール104及び105へと搬送する。全ての処理が終わった検体容器32は最終的に収納モジュール103へと搬送され、図示しない試験管チャック機構により、ホルダ31から検体容器32を抜き取り、トレイ33に収納される。ホルダ31が抜き取られた空のホルダ31はラックストッカ101へと搬送される。
 主搬送ライン11はシステムに投入された検体容器32を各処理モジュールに搬送するためのラインである。
 緊急追越ライン12は、緊急検体の追越しをするためのラインであり、また、この緊急追越ライン12は、処理モジュールに立ち寄る必要の無い検体(例えば遠心処理を行う必要の無い検体など)を各処理モジュールに配置されている分岐ライン16,17を使用してバイパスすることも可能である。
 戻りライン13は検体容器32をシステム内でループさせるための搬送ラインであり、例えば、再検査のための再分注などの場合には、この戻りライン13を使用してシステム内をループさせている。
 空ラック搬送ライン14a,14bは主搬送ライン11と平行にかつ同じライン長さで併設しており、戻りライン13と主搬送ライン11の間に配置する構造としている。空ラック搬送ライン14a,14bを主搬送ライン11,戻りライン13と同じライン長さとしている目的はシステムの拡張性(処理モジュールの追加あるいは削減)を容易に行うことにある。具体的には、空ラックの数をシステム規模に応じて最適数を提供することにある。そもそもシステムで処理に必要な空ラックの数は、ライン上を全てホルダ31により埋め尽くされた数である。
 言い換えればライン上を全て埋め尽くす以上のホルダは不要のものとなる。緊急追越ライン12はその特性上、基本的にホルダ31を停滞させずに通過のみと定義した場合、主搬送ライン11と戻りライン13を足したライン長が、空ラック搬送ライン14a,14bの和と同じ長さであり、システムに必要な空ラックを空ラック搬送ライン14a,14b内に蓄えることが可能である。これにより、システム規模に応じて常に最適な空ホルダの数を提供することが可能となる。
 また、この空ラック搬送ライン14aは収納モジュール103から連続して搬送されてくる空ホルダをラックストッカ101内でライン交差させずに、効率良く回収するために主搬送ラインとは逆方向に搬送している。同様に空ラック搬送ライン14bも戻りライン13とは逆の方向に搬送を行っている。
 前記処理モジュールのうち本発明に係る遠心分離処理部の全体構成斜視図を図3に、上部を取り除いた斜視図を図4に示す。
 遠心分離処理部主構成要素として、複数の検体容器32を一時待機させる遠心バッファライン201と、アダプタ210を保持するターンテーブル202と、検体の遠心分離を行う遠心機203からなる。アダプタ210はターンテーブル内のバケットに保持された状態で遠心分離処理される。バケットはバケット支持軸01により側方を保持されている。従い、バケットに保持されたアダプタは、ターンテーブル202が回転することにより、検体容器の底部がターンテーブル202の外側に向かい、検体容器の開口部がターンテーブル202の回転中心軸に向かって傾くように支持される。
 前工程ユニットからベルトラインによってホルダ31に支持された状態で遠心バッファライン201に順次、検体容器32が1本ずつ搬入される。ホルダ31は遠心バッファライン中央部へと順次搬送を継続する。前記ホルダ31から検体容器32を抜き取り可能なポジションにおいて検体チャック機構204により、ターンテーブル202上のアダプタ210に検体容器32を移載する。
 ターンテーブル202には、遠心機203で一度に遠心処理可能なバケット数の2倍以上の数のアダプタが架設可能であることが望ましい。本実施例では遠心機203で一度に遠心処理するバケット数が4個であるため、アダプタ数は2倍の8個を記載している。これにより、遠心機203内で遠心分離作業を行っている間の待ち時間(一般的に遠心時間は5~10分である)を利用して、ホルダ31からアダプタ210への検体容器の移載、あるいはアダプタ210からホルダ31への検体戻し作業を行うことが可能となり、処理全体のスループット低下を防止することができる。
 ターンテーブル202は回転駆動モータを有しており、アダプタ210を搭載した状態で回転し、任意位置で停止するように制御を行っている。
 検体チャック機構204は水平方向および垂直方向に自在に移動可能なXYZ機構206に固定しており、ホルダ31とアダプタ210間の検体移載を行う。このXYZ機構206には検体チャック機構204と同じく、アダプタ210を遠心機バケット内に搬送するアダプタチャック機構205を有する。
 遠心機203は図示しない遠心分離のための高速回転用駆動モータと、このモータに取り付けられたロータ208と、ロータ208の回転中心軸に対して対称に取り付けられた複数のバケット207とを有している。
 アダプタ210に遠心処理すべき検体容器32の移載作業が完了した後、アダプタチャック機構205により検体容器32が載ったままの状態でアダプタ210をバケット207に挿入する。全てのバケット207にアダプタ210の挿入作業が完了した後、安全シャッタ209を閉じ、遠心分離作業を開始する。遠心分離作業を行っている間は、次のサイクルで遠心を行うための準備として、ホルダ31から検体容器32を抜き取りアダプタ210に挿入する作業を継続する。遠心分離作業が完了した後は、前述の作業と逆の工程を進める。まず、安全シャッタ209を開き、アダプタチャック機構205によりバケット207からアダプタ210をターンテーブル202まで戻す。
 遠心機203の待ち時間短縮のためには、遠心作業が完了した全てのアダプタ210をターンテーブル202に戻し、かつ連続して次の遠心分離作業のためのアダプタ210をバケット207に挿入することが望ましい。また、アダプタ210からホルダ31に戻すまでの距離を最短にするため、ターンテーブル202を回転させる。ターンテーブル202の停止後、検体チャック機構204により検体アダプタ210からホルダ31に戻される。ホルダ31に戻された検体容器32はベルトラインにより次の工程に搬送される。
 図5に検体が投入されてから遠心分離装置のアダプタ210に検体を設置するまでの処理フローを示す。
 投入モジュール102から投入された検体は、ステップ501にて主搬送ライン11上にある検体容器重量測定機構20にて検体容器32の重量をホルダ31に設置した状態で測定し、ステップ502にて遠心分離装置に搬送する。検体チャック機構204は、遠心分離装置に搬送された検体容器32が一度に遠心処理可能な最大検体数に達するまでアダプタ210へは設置せず、待機する(ステップ503)。
 なお、効率的な処理を実現するため、ある程度の待ち時間を経ても次の検体容器が搬送されない場合には、一度に遠心可能な最大検体数に達していなくとも、その時点で遠心バッファライン201に待機している検体のうち、最も重量の重いものからアダプタへの搬送を開始するようにしても良い。
 遠心処理可能な最大検体数が遠心分離装置に搬送された後、ロータの遠心分離回転中心対称位置の1対のバケットに載置する前記アダプタ210をアダプタAとBとした時、遠心分離装置内に搬送された全検体容器のうち1番重い検体容器をアダプタAに設置する(ステップ504)。それ以降は、ステップ505にてアダプタAとアダプタBの総重量を比較し、アダプアAが軽い場合にはステップ506にて検体容器のうち最も重い検体容器をアダプタAに設置し、アダプタBが軽い場合にはステップ507にて検体容器のうち最も重い検体容器をアダプタBに設置する。ステップ508にて全検体容器の設置が完了するまでステップ505からステップ507を繰り返す。
 また、最初の検体容器をアダプタAに設置する時、まずアダプタAの重心に近い架設ポジションに検体を設置する。それ以降の検体はアダプタの中心に対して内側から点対称になる位置に対して交互に設置するようにする。図1にアダプタの設置検体数が9本の場合を例にアダプタへの検体容器の設置順序を示す。
 まず、ステップ504において遠心バッファライン上で最も重い検体容器を選定し、アダプタAの検体架設ポジションの中心位置に架設する(図1-Aのポジション1)。
 ステップ505にてアダプタAとアダプタBの総重量を比較し、次に重い検体容器をどちらのアダプタに架設するかを判断する。本実施例で例えばアダプタBの総重量が軽い場合には、ステップ507によりアダプタBのポジション1に次の検体を架設する。
 このように、アダプタAとアダプタBの総重量を比較して重い検体容器から順次アダプタに架設していく。以降はアダプタAに設置される検体容器のみに着目して、その検体容器架設位置を説明する。
 ポジション1の後は、アダプタの中心位置であるポジション1からの距離が近いポジションとして、ポジション2または3のいずれかに次の検体容器を架設する。本実施例では、ポジション2,ポジション3,ポジション4,ポジション5の順で検体容器を架設することとしている。なお、ポジション4と5に対しては、どちらに先に検体容器を設置しても構わない。また、3本目の検体容器を架設する際には、中心(1本目の検体容器)に対して、2本目の検体容器と点対称位置に設置するようにする。5本目の検体容器を架設する場合も同様に、中心に対して、4本目の検体容器と点対称位置に設置するようにする。
 その後、ポジション1からの距離が遠いポジションとして、ポジション6~9のいずれかに検体容器を架設する。本実施例では、ポジション6,ポジション7,ポジション8,ポジション9の順で検体容器を架設することとしているが、他の順序であっても構わない。また、7本目の検体容器を架設する際には、中心に対して6本目の検体容器と点対称位置に設置するようにする。9本目の検体容器を架設する際も同様に、中心に対して8本目の検体容器と点対称位置に設置するようにする。
 なお、アダプタBに検体を架設する場合の検体容器の架設ポジションは、ロータの回転軸に対して対称となるようにすることが望ましい。例えば、アダプタAが図1(B)の状態であり、アダプタBが図1(A)の状態にあるとき、次のターンでアダプタBに検体容器を架設する場合には、ポジション2と対称位置にある架設位置、つまりポジション3の位置に検体を架設するのが良い。また、アダプタAが図1(D)の状態であり、アダプタBが図1(C)の状態にあるとき、次のターンでアダプタBに検体容器を架設する場合には、ポジション4とロータ回転軸に対して対称位置、つまりポジション5に検体容器を架設するのが良い。このように検体容器を架設することによって、バケットペアに架設可能な最大数の検体容器が遠心バッファライン201に搬入されないうちに、検体容器のアダプタへの搬送を開始した場合であっても、バケットペア同士の重心位置がロータ回転軸に対して対称位置にあるため、安定した回転が可能となる。
 本実施例ではアダプタAとBの二つのバケットを有する場合について言及しているが、2個以上のバケットを遠心処理可能な遠心機にあっても本発明は適用可能である。ロータ回転軸に対して対称位置にあるバケット同士の重量の差が大きくなければ安定した遠心分離が可能であるため、最初はロータ回転軸に対して対称位置にあるバケットAとバケットBのバケットペアに対して、互いの重量バランスを取りながら検体容器を架設し、その後ロータ回転軸に対して対称位置にある他のバケットペア(バケットC,バケットD)に対して重量バランスを取りながら検体容器を架設する。このように、バケットペアに対して順に検体容器を架設していくことで、バケットが多数ある場合にも対応可能である。
 上記記載のアダプタ設置方法により、各アダプタ210の総重量を比較して設置場所を決定後、重い検体容器から設置していく。これにより各アダプタ210の総重量に加算されている重量は徐々に小さくなるため、最後に重い試験管を割り付けることはなく、アダプタ210間の重量差が発生しにくい。また、重い検体をアダプタ210の中心部に設置し、軽い検体をアダプタ210の外側に設置することでアダプタ210自身の重心のずれを防止することができ、遠心処理中のロータの回転異常を抑え、安定した遠心処理が行える。
 本発明では、重量測定機構で直接重量を測定する方式を採用しているが、これ以外の方法によって収容する検体の重量を得ることも考えられる。例えば、搬送ラインの側方にCCDカメラ等を備え、通過する検体ホルダに架設された検体容器中の液面高さを検出して、そこから重量を算出する方法であっても良い。
 別実施形態による検体が投入されてから遠心分離装置のアダプタ210に検体を設置するまでの処理フローを説明する。
 ここで前処理ユニットの一つである遠心分離装置が検体検査前処理システムに2台接続されていることを例として説明する。以下では、それぞれの遠心分離装置を遠心分離装置1及び遠心分離装置2と呼ぶ。
 検体は投入モジュール102内にてバーコード情報を読み取った後、主搬送ライン11上の検体容器重量測定機構20にて検体容器32の重量をホルダ31に設置した状態で測定する。本重量情報は、検体が設置されているホルダIDと共に制御コンピュータ41に送信する。
 制御コンピュータ41では、検体重量から複数接続される遠心分離装置の各対となるアダプタ210のうちどのアダプタ210に検体を設置するか決定する。最初の検体認識時は、いずれの遠心分離装置のアダプタ210には検体は載っていないため、遠心分離装置1のアダプタ210(ここでアダプタAと呼ぶ)に検体容器32を載せ、次に遠心分離装置1のアダプタAと対になるアダプタ210(ここでアダプタBと呼ぶ)に検体容器32を載せる。続いて各検体をアダプタAとアダプタBの総重量が軽いほうに検体容器32を設置していく。最初は遠心分離装置1と遠心分離装置2のうち、一方の遠心分離装置のアダプタ210にのみ検体容器32を設置してゆく。できるだけ早く一方の遠心分離装置のアダプタに検体容器32を多く架設して、遠心分離処理を開始したほうが、各検体のTAT(Turn-Around-Time)が短くなるためである。
 ここで、遠心分離装置1のアダプタAもしくはアダプタBのいずれか一方の検体架設ポジションに全て検体容器が設置され、他方のアダプタが設置可能な場合の検体設置アダプタの決定方法を以下説明する。図6ではアダプタAに全ての検体容器が設置され、アダプタBに空きがあり、検体容器が設置可能である場合を例として説明する。
 ステップ601にて主搬送ライン11上にある検体容器重量測定機構20にて検体容器32の重量をホルダ31に設置した状態で測定する。ステップ602にて、今回アダプタに設置しようとしている検体容器について、検体容器重量測定機構20にて測定した検体重量を空があるアダプタBの総重量に加算した値とアダプタAの総重量とを比較し、遠心処理を実施可能である重量差であれば、ステップ603にて遠心分離装置1への検体搬送を実施し、ステップ604にてアダプタBに検体容器32を設置する。
 しかし、重量差が遠心処理を実施するのに許容できない場合、その検体をアダプタBに設置すると、遠心処理に異常をきたす可能性がある。そこで、ステップ605にて他の遠心分離装置2へ該当検体の搬送を実施し、ステップ606にて遠心分離装置2のアダプタA′210に設置する。この場合では遠心分離装置1のアダプタBに、検体容器を架設可能な空きポジションがあるため、ステップ607にて再度ステップ601に戻り、次に重量測定した検体容器32がアダプタBに設置可能かをステップ602で判定し、アダプタBに設置可能な検体を見つけるまで繰り返す。
 上記記載の方法により、遠心分離装置の対となるアダプタの重量差を最小にすることにより、遠心処理を正常に実施することが可能になると共に、遠心処理を実施可能である重量差であれば検体は継続して空きがあるアダプタに設置可能なため、処理能力の低下を防ぐことが可能になる。
 なお、処理フローには記載していないが、ステップ605にて遠心分離装置2に検体容器を搬送決定した時点で、各検体のTATを優先し、遠心分離装置1のアダプタ210への検体の設置を終了し、遠心処理を開始しても良いし、ステップ602にてアダプタBへ設置ができない検体が発生した回数をカウントし、規定回数を越えた時点で遠心分離装置1の遠心処理を開始しても良い。
 次に別の実施形態による、検体が投入されてから異常検体を認識し、検体を回収するまでの手順を説明する。
 検体前処理開始前に、正常検体重量範囲値を設定する。図7は各検体容器の正常検体重量範囲値設定画面の例を示す。図7では各試験管容器に対して最小重量と最大重量を設定する。また、図7中の“その他”は、検体容器32の形状認識機構にて判定できない形状の検体容器がシステムに投入された場合に使用する値を設定する。
 投入モジュール102より検体容器32を投入されると、ホルダ31に検体容器32が移設され、搬送を開始する。検体容器32は、検体容器形状を認識する手段にて容器形状を識別される(ここで、16φの100mm試験管と認識したとする)。
 次に検体容器重量測定機構20にて検体容器32の重量を測定する(測定された検体容器の重量は7gであると仮定する)。そこで、認識した試験管形状から、正常検体重量範囲値を決定(図7より正常検体重量は10g~30gとなる)する。正常検体重量範囲値は、例えば当該試験管から分注ノズルで分析に必要な検体を分注するのに最低限必要となる液量から、当該試験管によって検体を処理・搬送する際に飛び散りや液体こぼれが生じない程度の液量の範囲を設定することが考えられる。測定された検体容器の重量と、当該試験管に設定されている正常検体重量範囲値との比較を行い、設定した正常検体重量範囲値の範囲外(本例)の場合には、検体異常と判断し、直接収納モジュール103へ回収する。正常検体重量範囲値内であれば、正常な検体量が入っていると判断し、検体の種別情報に基づいて前処理モジュールへ搬送する。
 また、検体異常と判断された検体が発生した場合には、オペレータに通知する通知手段を備えていることが望ましい。通知方法としては、操作画面上に専用の画面表示を備えることが考えられる。画面表示を通じて、オペレータに不足検体の追加や、適正な検体量を設置しなおすことを促すことができる。また、他の通知方法として検体異常が生じたことを光や音で通知する方法が考えられる。この場合には、遠くにいるオペレータに対しても検体異常の発生を通知することが可能となる。
 本手段により、検体投入の早い段階で異常検体を認識し、装置外に検体を排出することが可能となる。これにより、ユーザーは異常検体と認識された検体の状況を確認し、検体を追加するなどの処置を行い再投入することで、結果報告遅延を最小限にすることが可能になる。
 次に別実施形態による正確な検体重量を測定するための手順を説明する。
 まず、ホルダ重量測定を行うためのメンテナンスを実行する。ホルダ重量測定メンテナンスを実行すると、システムはラックストッカ101内で待機しているホルダ31を空ラック搬送ライン14a,14bにて検体容器重量測定機構20に搬送する。検体容器重量測定機構20に搬送されたホルダ31は、ホルダ単体の重量を測定する。その時測定したホルダ重量を記憶する。記憶方法は、ホルダ31にRFIDのような記憶媒体を付け、ホルダ31自身で記憶しても良いし、ホルダ31にバーコードを貼り、重量測定時にバーコード情報と共に制御コンピュータ41に送信し、記憶しても良い。重量測定後、ホルダ31を空ラック搬送ライン14a,14bを通りラックストッカ101に格納する。
 次に検体をシステムに投入してから検体容器重量が算出されるまでの手順を説明する。
 投入モジュール102に検体容器32が投入され、ホルダ31に検体容器32が移設され、前処理システム内への搬送が開始される。搬送された検体容器32は、検体容器重量測定機構20でホルダ31に設置された状態で検体容器32とホルダ31の総重量を測定する。また、ホルダ31に付けられたRFIDやバーコードを読み取って、ホルダ重量測定メンテナンスで予め測定したホルダ31自身の重量を呼び出して、測定した重量からあらかじめ測定してあるホルダ重量を減算することで、検体の重量を算出する。
 ホルダ重量は加工精度により、重量にばらつきがある。また、長期間使用することにより、ホルダ自身の重量に変化が生じる可能性がある。そのため、新しいホルダを使用する場合や定期的に本手法にてホルダ重量を測定することで常に正しい検体重量を測定することが可能となり、つまりはその重量を用いて遠心分離装置の設置アダプタを決定していることから遠心分離処理の安定稼働に繋がる。
01 バケット支持軸
11 主搬送ライン
12 緊急追越ライン
13 戻りライン
14a,14b 空ラック搬送ライン
16,17 分岐ライン
20 検体容器重量測定機構
21,22 搬送ライン
31 ホルダ
32 検体容器
33 トレイ
41 制御コンピュータ
51 ホストコンピュータ
101 ラックストッカ
102 投入モジュール
103 収納モジュール
104,105 処理モジュール
201 遠心バッファライン
202 ターンテーブル
203 遠心機
204 検体チャック機構
205 アダプタチャック機構
206 XYZ機構
207 バケット
208 ロータ
209 安全シャッタ
210 アダプタ

Claims (20)

  1.  少なくとも1本の検体を収容した検体容器を保持するホルダを搬送する搬送ラインと、
     該搬送ラインに沿って配置される少なくとも一つ以上の遠心分離部と、
     前記遠心分離部の回転中心軸に対称に位置し、複数の検体容器を設置可能な検体保持部を有する、少なくとも二つのバケットと、を有する検体前処理システムにおいて、
     前記検体ホルダ中の検体容器を、前記バケットへ搬送する搬送手段と、を備え、
     前記搬送手段は、前記バケットの検体保持部のうち、重心に近い位置から順に前記検体容器を設置することを特徴とする検体前処理システム。
  2.  請求項1記載の検体前処理システムにおいて、
     所定数の検体容器を保持する保持領域と、
     前記検体容器が前記遠心分離部上の保持領域に搬入されるまでに、当該検体容器に収容される検体の重量を直接あるいは間接的に得る判別機構と、
     前記判別機構で得られた情報に基づき、最も重い検体容器から順に前記遠心分離部に設置するよう制御する制御機構を備えたことを特徴とする検体前処理システム。
  3.  請求項2記載の検体前処理システムにおいて、
     前記回転中心軸を中心として対称となる位置に二つのバケットをバケットペアとして有し、
     前記制御機構は、前記バケットペアに設置された検体の重量に基づいて、前記バケットペアを形成するバケットのいずれに検体容器を設置するかを決定することを特徴とする検体前処理システム。
  4.  請求項3記載の検体前処理システムにおいて、
     前記バケットペアに検体容器を移載するにあたり、
     前記制御機構は、前記バケットに設置された検体容器の
    設置ポジションが前記重心位置に対して点対称となる位置に順に検体容器を移載することを特徴とする検体前処理システム。
  5.  請求項1~4のいずれか記載の検体前処理システムにおいて、
     前記保持領域は、前記バケットペアが一度に設置可能な検体容器の数と同数以上の検体容器を保持可能なことを特徴とする検体前処理システム。
  6.  請求項1~4のいずれか記載の検体前処理システムにおいて、
     前記バケットに対して着脱可能で、複数の検体を保持可能なアダプタと、
     前記アダプタを複数保持するアダプタ保持部と、
     前記検体容器保持部上の検体容器を前記アダプタ保持部上のアダプタに設置する/取り外す検体移載機構と、
     前記アダプタ保持部上のアダプタを前記遠心分離部のバケット位置に設置する/取り外すアダプタ移載機構と、を備え、
     前記アダプタ保持部は、前記遠心分離部が一度に処理可能なアダプタの数と同数以上のアダプタを保持することを特徴とする検体前処理システム。
  7.  検体前処理システムの制御方法において、
     遠心分離部は回転中心軸を中心として対称に位置する二つのバケットからなるバケットペアを複数有し、
     前記複数のバケットペアのうち、一つのバケットペアを形成する複数のバケットに設置されている検体の重量を比較するステップと、
     前記ステップで軽いと判断されたバケットに、次に移載される予定の検体容器を移載した場合の当該バケットと、当該バケットとバケットペアを形成する他のバケットに設置された検体の重量を比較するステップと、
     前記ステップで前記バケットペアを形成する複数のバケットの重量の違いが予め定めた閾値以上である場合、次に移載される予定の検体容器を他のバケットペアを構成するバケットに設置するステップと、
    を有することを特徴とする検体前処理システムの制御方法。
  8.  検体前処理システムにおいて、
     前記搬送ラインに沿って二つ以上の遠心分離ユニットを備え、
     一つの遠心分離ユニット上のバケットペアを形成する複数のバケットに設置されている検体の重量を比較するステップと、
     前記ステップで軽いと判断されたバケットに、次に移載される予定の検体容器を移載した場合の当該バケットと、当該バケットとバケットペアを形成する他のバケットに設置された検体の重量を比較するステップと、
     前記ステップで前記バケットペアを形成する複数のバケットの重量の違いが予め定めた閾値以上である場合、次に移載される予定の検体容器を他の前記遠心分離ユニットに搬送するステップと、
    を有することを特徴とする検体前処理システムの制御方法。
  9.  請求項8記載の検体前処理システムの制御方法であって、
     検体容器を他の遠心分離ユニットに搬送した場合には、
     当該検体容器が設置されなかった遠心分離ユニットに架設された検体容器について遠心分離処理を実行することを特徴とする検体前処理システムの制御方法。
  10.  請求項1記載の検体前処理システムにおいて、
     前記検体容器重量測定機構にて測定した検体容器重量が、予め定められた閾値範囲外の検体容器を回収する検体回収ユニットを備えることを特徴とする検体前処理システム。
  11.  請求項10記載の検体前処理システムにおいて、
     検体容器の形状を関連付けて、検体容器の重量の閾値を設定する設定画面を表示する表示装置を備えることを特徴とする検体前処理システム。
  12.  請求項10または11記載の検体前処理システムにおいて、
     ホルダ上の検体容器形状を認識する認識手段を有し、
     前記検体回収ユニットは、前記重量判定機構にて重量が得られた検体容器について、前記認識手段にて認識された検体容器形状に基づいて設定した検体容器の重量の閾値範囲外となる検体容器を回収することを特徴とした検体前処理システム。
  13.  請求項1記載の検体前処理システムにおいて、
     前記検体容器重量測定機構で、検体容器を保持していない前記ホルダの重量を測定し、
     得られたホルダの重量を記憶する記憶部を有することを特徴とする検体前処理システム。
  14.  回転中心軸に対称に位置し、複数の検体容器を設置可能な検体保持部を有する、少なくとも二つのバケットを有する遠心分離装置において、
     所定数の検体容器を保持する保持領域と、
     前記保持領域に収容された検体容器を、前記バケットへ搬送する搬送手段と、を備え、
     前記搬送手段は、前記バケットの検体保持部のうち、重心に近い位置から順に前記検体容器を設置することを特徴とする遠心分離装置。
  15.  請求項14記載の遠心分離装置において、
     検体容器が前記保持領域に搬入されるまでに、当該検体容器に収容される検体の重量を直接あるいは間接的に得る判別機構と、
     前記判別機構で得られた情報に基づき、前記保持領域内にある検体容器のうち、最も重い検体容器から順に前記バケットに設置するよう制御する制御機構を備えたことを特徴とする遠心分離装置。
  16.  請求項15記載の遠心分離装置において、
     前記回転中心軸を中心として対称となる位置に二つのバケットをバケットペアとして有し、
     前記制御機構は、前記バケットペアに設置された検体の重量に基づいて、前記バケットペアを形成するバケットのいずれに検体容器を設置するかを決定することを特徴とする遠心分離装置。
  17.  請求項16記載の遠心分離装置において、
     前記バケットペアに検体容器を移載するにあたり、
     前記制御機構は、前記バケットに設置された検体容器の
    設置ポジションが前記重心位置に対して点対称となる位置に順に検体容器を移載することを特徴とする遠心分離装置。
  18.  請求項14~16のいずれか記載の遠心分離装置において、
     前記保持領域は、前記バケットペアが一度に設置可能な検体容器の数と同数以上の検体容器を保持可能なことを特徴とする遠心分離装置。
  19.  請求項14~16のいずれか記載の遠心分離装置において、
     前記バケットに対して着脱可能で、複数の検体を保持可能なアダプタと、
     前記アダプタを複数保持するアダプタ保持部と、
     前記検体容器保持部上の検体容器を前記アダプタ保持部上のアダプタに着脱する検体移載機構と、
     前記アダプタ保持部上のアダプタを前記遠心分離部のバケット位置に着脱するアダプタ移載機構と、を備え、
     前記アダプタ保持部は、前記遠心分離部が一度に処理可能なアダプタの数と同数以上のアダプタを保持することを特徴とする遠心分離装置。
  20.  請求項17記載の遠心分離装置において、
    前記アダプタを設置するバケット支持軸若しくはバケット支持軸の延長上にある検体保持位置にまず検体容器を設置する事を特徴とする遠心分離装置。
PCT/JP2011/079560 2010-12-28 2011-12-20 遠心分離装置,遠心分離装置を備えた前処理システムおよび当該システムの制御方法 WO2012090795A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11853226.6A EP2660608B1 (en) 2010-12-28 2011-12-20 Pretreatment system provided with centrifugal separation device
CN201180063362.XA CN103299196B (zh) 2010-12-28 2011-12-20 离心分离装置、具备离心分离装置的前处理系统以及该系统的控制方法
US13/976,672 US9651570B2 (en) 2010-12-28 2011-12-20 Automatic centrifuge, pre-analysis system with automatic centrifuge and the control techniques of that system
JP2012550868A JP5654048B2 (ja) 2010-12-28 2011-12-20 検体前処理システムおよび遠心分離装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-291532 2010-12-28
JP2010291532 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090795A1 true WO2012090795A1 (ja) 2012-07-05

Family

ID=46382906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079560 WO2012090795A1 (ja) 2010-12-28 2011-12-20 遠心分離装置,遠心分離装置を備えた前処理システムおよび当該システムの制御方法

Country Status (5)

Country Link
US (1) US9651570B2 (ja)
EP (1) EP2660608B1 (ja)
JP (1) JP5654048B2 (ja)
CN (1) CN103299196B (ja)
WO (1) WO2012090795A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840848B2 (en) 2010-07-23 2014-09-23 Beckman Coulter, Inc. System and method including analytical units
US20140315707A1 (en) * 2011-10-24 2014-10-23 Andreas Hettich Gmbh & Co. Kg Method for automatically loading a centrifuge with sample containers
US8973736B2 (en) 2011-11-07 2015-03-10 Beckman Coulter, Inc. Magnetic damping for specimen transport system
US9046506B2 (en) 2011-11-07 2015-06-02 Beckman Coulter, Inc. Specimen container detection
WO2014164459A3 (en) * 2013-03-11 2015-11-12 Siemens Healthcare Diagnostics, Inc. Centrifuge loading apparatus, systems, and methods
JP2015223548A (ja) * 2014-05-27 2015-12-14 日立アロカメディカル株式会社 遠心分離装置
JP2016509677A (ja) * 2013-02-06 2016-03-31 ユン 謝 全自動尿検査装置
US9446418B2 (en) 2011-11-07 2016-09-20 Beckman Coulter, Inc. Robotic arm
US9482684B2 (en) 2011-11-07 2016-11-01 Beckman Coulter, Inc. Centrifuge system and workflow
US9506943B2 (en) 2011-11-07 2016-11-29 Beckman Coulter, Inc. Aliquotter system and workflow
US9910054B2 (en) 2011-11-07 2018-03-06 Beckman Coulter, Inc. System and method for processing samples
US10089434B2 (en) 2014-05-06 2018-10-02 Beckman Coulter, Inc. Method and system for forming site network
US11454574B2 (en) 2012-11-07 2022-09-27 Beckman Coulter, Inc. Automated sample processing system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180017A1 (ja) * 2012-05-28 2013-12-05 株式会社 日立ハイテクノロジーズ 遠心分離装置、遠心分離装置を備えた前処理システムおよび当該システムの制御方法
CN105637371B (zh) * 2013-12-19 2018-01-16 株式会社日立高新技术 检体前处理连接装置及具备该装置的系统
EP3279670B1 (en) * 2015-03-30 2023-04-05 Hitachi High-Tech Corporation Specimen transporting device and specimen transporting method
JP6629299B2 (ja) * 2015-04-07 2020-01-15 株式会社日立ハイテクノロジーズ 検体搬送装置および検体処理システム
KR101929540B1 (ko) * 2016-12-26 2018-12-14 (주)로봇앤드디자인 로봇과 로봇 기술을 활용한 지능형 원심 분리 시스템
CN106733231B (zh) * 2017-03-14 2023-04-28 骏实生物科技(上海)有限公司 一种数字化离心机
LU100524B1 (en) * 2017-11-29 2019-06-12 Stratec Biomedical Ag Sample and supplies track
DE202018101760U1 (de) 2018-03-28 2019-07-01 Sigma Laborzentrifugen Gmbh Laborzentrifuge und Zentrifugenbehälter für eine Laborzentrifuge
CN109499785A (zh) * 2019-01-07 2019-03-22 四川沃文特生物技术有限公司 一种自动定位机构及全自动智能离心机
CN112577792B (zh) * 2019-09-27 2024-02-02 深圳迈瑞生物医疗电子股份有限公司 样本分析系统及用于启动离心模块的离心操作的方法
CN112122014B (zh) * 2020-09-11 2022-06-28 迪瑞医疗科技股份有限公司 一种适用于全自动试样离心的进样装置
CN113600350A (zh) * 2021-07-30 2021-11-05 安图实验仪器(郑州)有限公司 一种样本放置方法、系统及装置
CN116705277A (zh) * 2022-02-25 2023-09-05 深圳市理邦精密仪器股份有限公司 控制方法、多通量离心平台及计算机可读存储介质
CN115382670A (zh) * 2022-08-23 2022-11-25 河南省斯高电生理研究院有限公司 一种生物试剂样本自动化处理设备
US11861444B1 (en) * 2023-07-12 2024-01-02 Scaled Solutions Technologies LLC Automated inventory tracking system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292968A (en) * 1976-01-30 1977-08-04 Hitachi Koki Co Ltd Centrifugal separator
JPH03127647A (ja) * 1989-10-14 1991-05-30 Hitachi Koki Co Ltd 自動遠心分離装置
JPH04145968A (ja) 1990-10-05 1992-05-19 Hitachi Koki Co Ltd 自動遠心分離機用ダミーラック
JPH0780355A (ja) 1993-09-14 1995-03-28 Kubota Seisakusho:Kk 自動遠心分離方法及びその装置
JP2000180454A (ja) * 1998-11-17 2000-06-30 Tecan Ag グリッパを用いて物体を持ち上げ移動させかつ置くための受け装置、受け手段、搬送装置およびワ―クステ―ションならびにそれらの操作方法
JP2001505648A (ja) * 1996-07-05 2001-04-24 ベックマン コールター インコーポレイテッド 自動試料処理システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515954Y2 (ja) * 1987-03-27 1993-04-27
JP3035926B2 (ja) * 1989-10-14 2000-04-24 日立工機株式会社 自動遠心分離装置
EP0629858A1 (en) * 1993-06-16 1994-12-21 Kabushiki Kaisha Nittec Sample preparation apparatus
GB2288016B (en) * 1994-03-31 1998-05-13 Tomra Systems As Device for generating,detecting and recognizing a contour image of a liquid container
EP0865606B1 (en) * 1995-12-05 2005-03-16 Gamera Bioscience Corporation Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system with on-board informatics
US5769775A (en) * 1996-07-26 1998-06-23 Labotix Automation Inc. Automated centrifuge for automatically receiving and balancing samples
US6589789B1 (en) * 1997-07-21 2003-07-08 Quest Diagnostics Incorporated Automated centrifuge loading device
JP2003146445A (ja) * 2001-11-05 2003-05-21 Honda Motor Co Ltd 車両荷台へのコンテナ最適積載方法
US7867444B2 (en) * 2002-05-30 2011-01-11 Siemens Healthcare Diagnostics, Inc. Lab cell centrifuging module
JP2004174350A (ja) * 2002-11-26 2004-06-24 Teruaki Ito 遠心分離機装填補助装置
US20050158212A1 (en) * 2004-01-15 2005-07-21 Michael Yavilevich Automated laboratory system and analytical module
US7924421B2 (en) * 2006-09-01 2011-04-12 Agr International, Inc. In-line inspection system for vertically profiling plastic containers using multiple wavelength discrete spectral light sources
KR101343034B1 (ko) * 2006-09-05 2013-12-18 삼성전자 주식회사 원심력 기반의 단백질 검출용 미세유동 장치 및 이를포함하는 미세유동 시스템
US7694589B2 (en) * 2007-12-12 2010-04-13 Ecolab Inc. Low and empty product detection using load cell and load cell bracket
US7963900B2 (en) * 2008-06-19 2011-06-21 Siemens Healthcare Diagnostics Inc. Centrifuge loading process within an automated laboratory system
EP2776843B1 (en) * 2011-11-07 2019-03-27 Beckman Coulter, Inc. Centrifuge system and workflow

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292968A (en) * 1976-01-30 1977-08-04 Hitachi Koki Co Ltd Centrifugal separator
JPH03127647A (ja) * 1989-10-14 1991-05-30 Hitachi Koki Co Ltd 自動遠心分離装置
JPH04145968A (ja) 1990-10-05 1992-05-19 Hitachi Koki Co Ltd 自動遠心分離機用ダミーラック
JPH0780355A (ja) 1993-09-14 1995-03-28 Kubota Seisakusho:Kk 自動遠心分離方法及びその装置
JP2001505648A (ja) * 1996-07-05 2001-04-24 ベックマン コールター インコーポレイテッド 自動試料処理システム
JP2000180454A (ja) * 1998-11-17 2000-06-30 Tecan Ag グリッパを用いて物体を持ち上げ移動させかつ置くための受け装置、受け手段、搬送装置およびワ―クステ―ションならびにそれらの操作方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9285382B2 (en) 2010-07-23 2016-03-15 Beckman Coulter, Inc. Reaction vessel
US8840848B2 (en) 2010-07-23 2014-09-23 Beckman Coulter, Inc. System and method including analytical units
US8932541B2 (en) 2010-07-23 2015-01-13 Beckman Coulter, Inc. Pipettor including compliant coupling
US8956570B2 (en) 2010-07-23 2015-02-17 Beckman Coulter, Inc. System and method including analytical units
US8962308B2 (en) 2010-07-23 2015-02-24 Beckman Coulter, Inc. System and method including thermal cycler modules
US9519000B2 (en) 2010-07-23 2016-12-13 Beckman Coulter, Inc. Reagent cartridge
US8996320B2 (en) 2010-07-23 2015-03-31 Beckman Coulter, Inc. System and method including analytical units
US9046455B2 (en) 2010-07-23 2015-06-02 Beckman Coulter, Inc. System and method including multiple processing lanes executing processing protocols
US9140715B2 (en) 2010-07-23 2015-09-22 Beckman Coulter, Inc. System and method for controlling thermal cycler modules
US20140315707A1 (en) * 2011-10-24 2014-10-23 Andreas Hettich Gmbh & Co. Kg Method for automatically loading a centrifuge with sample containers
US9506943B2 (en) 2011-11-07 2016-11-29 Beckman Coulter, Inc. Aliquotter system and workflow
US9910054B2 (en) 2011-11-07 2018-03-06 Beckman Coulter, Inc. System and method for processing samples
US9446418B2 (en) 2011-11-07 2016-09-20 Beckman Coulter, Inc. Robotic arm
US10274505B2 (en) 2011-11-07 2019-04-30 Beckman Coulter, Inc. Robotic arm
US10048284B2 (en) 2011-11-07 2018-08-14 Beckman Coulter, Inc. Sample container cap with centrifugation status indicator device
US9482684B2 (en) 2011-11-07 2016-11-01 Beckman Coulter, Inc. Centrifuge system and workflow
US9046506B2 (en) 2011-11-07 2015-06-02 Beckman Coulter, Inc. Specimen container detection
US8973736B2 (en) 2011-11-07 2015-03-10 Beckman Coulter, Inc. Magnetic damping for specimen transport system
US11454574B2 (en) 2012-11-07 2022-09-27 Beckman Coulter, Inc. Automated sample processing system
JP2016509677A (ja) * 2013-02-06 2016-03-31 ユン 謝 全自動尿検査装置
US10065198B2 (en) 2013-03-11 2018-09-04 Siemens Healthcare Diagnostics Inc. Centrifuge loading apparatus, systems, and methods
WO2014164459A3 (en) * 2013-03-11 2015-11-12 Siemens Healthcare Diagnostics, Inc. Centrifuge loading apparatus, systems, and methods
US10089434B2 (en) 2014-05-06 2018-10-02 Beckman Coulter, Inc. Method and system for forming site network
JP2015223548A (ja) * 2014-05-27 2015-12-14 日立アロカメディカル株式会社 遠心分離装置

Also Published As

Publication number Publication date
US9651570B2 (en) 2017-05-16
JP5654048B2 (ja) 2015-01-14
JPWO2012090795A1 (ja) 2014-06-05
US20130281279A1 (en) 2013-10-24
EP2660608A1 (en) 2013-11-06
CN103299196A (zh) 2013-09-11
EP2660608B1 (en) 2019-04-17
CN103299196B (zh) 2015-06-24
EP2660608A4 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP5654048B2 (ja) 検体前処理システムおよび遠心分離装置
JP5481122B2 (ja) 遠心分離装置
EP2776843B1 (en) Centrifuge system and workflow
EP2296819B1 (en) Centrifuge loading process within an automated laboratory system
EP2776846B1 (en) Aliquotter system and workflow
WO2012043261A1 (ja) 検体検査自動化システムおよびその制御方法
EP2776845B1 (en) Robotic arm
WO2013180017A1 (ja) 遠心分離装置、遠心分離装置を備えた前処理システムおよび当該システムの制御方法
JPWO2014119378A1 (ja) 遠心分離システム、検体前処理システム、制御方法
JP2014128799A (ja) 遠心分離装置
JP6426569B2 (ja) 検体検査システム
JP6210891B2 (ja) 自動分析装置
WO2019151096A1 (ja) 検体検査自動化システムおよび空検体キャリア管理方法
JP5638024B2 (ja) 検体搬送システム
JP2011027486A (ja) 検体処理装置
JPH0264462A (ja) 自動分析システム
JPH07234177A (ja) 検体搬送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853226

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012550868

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13976672

Country of ref document: US

Ref document number: 2011853226

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE