WO2012042918A1 - 着色樹脂粒子、その製造方法及びその用途 - Google Patents

着色樹脂粒子、その製造方法及びその用途 Download PDF

Info

Publication number
WO2012042918A1
WO2012042918A1 PCT/JP2011/050736 JP2011050736W WO2012042918A1 WO 2012042918 A1 WO2012042918 A1 WO 2012042918A1 JP 2011050736 W JP2011050736 W JP 2011050736W WO 2012042918 A1 WO2012042918 A1 WO 2012042918A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
colored resin
nitrogen
particles
polymer
Prior art date
Application number
PCT/JP2011/050736
Other languages
English (en)
French (fr)
Inventor
原田 良祐
真章 中村
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010217725A external-priority patent/JP2012072261A/ja
Priority claimed from JP2010217732A external-priority patent/JP5603726B2/ja
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to KR1020137006811A priority Critical patent/KR101751720B1/ko
Priority to CN201180046033.4A priority patent/CN103119088B/zh
Priority to KR1020177017157A priority patent/KR101959749B1/ko
Publication of WO2012042918A1 publication Critical patent/WO2012042918A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/96Applications coating of particles
    • C08G2261/962Applications coating of particles coating of organic particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Definitions

  • the present invention relates to colored resin particles, a production method thereof and use thereof. More specifically, the present invention is arranged on the surface portions of various display devices such as a liquid crystal display (LCD) and a plasma display (PDP), and various screens such as a transmission screen and a reflection screen.
  • various display devices such as a liquid crystal display (LCD) and a plasma display (PDP)
  • various screens such as a transmission screen and a reflection screen.
  • a colored resin particle for an antiglare member for preventing external light from being reflected on the surface of the screen, a production method thereof, and a coating film of a mixture containing the colored resin particle and a binder resin are provided on a transparent base resin.
  • the present invention relates to an antiglare member.
  • a display device such as a liquid crystal display
  • an anti-glare film is provided on the display surface side, and the light entering the display surface is diffused to give the surface an anti-glare property, thereby reflecting external light due to surface reflection.
  • Technology that reduces the amount of noise is used.
  • the conventional anti-glare film has a configuration in which an anti-glare property is imparted to the display surface of the display device due to the fine uneven shape provided on the surface thereof.
  • a method for forming a fine concavo-convex shape from the viewpoint of easy adjustment of the concavo-convex shape and production efficiency, a method of forming a coating film by applying resin particles and a binder resin to a film and drying is mainly used.
  • the antiglare layer looks whitish due to light disturbance due to the unevenness of the surface, and the display contrast of the display device is reduced.
  • the display looks glaring due to the irregularities on the surface acting like a lens.
  • the contrast of the display is lowered due to the back-scattered light (light generated by the light emitted from the display device being confused by the resin particles).
  • an antiglare member using black particles has been proposed (see Patent Document 1).
  • Patent Document 1 the use of black particles in place of conventional resin particles can suppress an increase in backward confused light, a decrease in display contrast, and glare. Furthermore, it is said that the contrast can be improved by making the dark display portion appear darker due to the black particles.
  • the present invention is for an anti-glare member capable of suppressing a decrease in display contrast and glare and preventing reflection of external light on a display surface without greatly reducing the display brightness of the display device. It is an object to provide colored resin particles.
  • resin particles derived from a single or plural kinds of polymerizable vinyl monomers and a polymer as a colorant derived from a nitrogen-containing aromatic compound covering the surface of the resin particles are included.
  • a colored resin particle having a coating layer, wherein the coating layer has a thickness of 30 to 300 nm is provided.
  • an antiglare member comprising a transparent base resin, a coating film of the colored resin particles and a binder resin, and having a total light transmittance of 75% or more.
  • the nitrogen-containing aromatic compound as an emulsion and a monomer in which resin particles derived from single or plural kinds of polymerizable vinyl monomers are dispersed and the monomer are used as the nitrogen-containing aromatic compound.
  • a method for producing colored resin particles which comprises obtaining colored resin particles having a deflection of 50% or less.
  • the colored resin particles according to the present invention are uniformly coated with a polymer as a colorant derived from a nitrogen-containing aromatic compound evenly on the entire surface, while ensuring a certain degree of light transmittance, It has a function that can prevent the light confusion similar to known particles that are all colored.
  • the antiglare member obtained using the colored resin particles of the present invention can be applied to the display surface while suppressing a decrease in display contrast and glare without greatly reducing the brightness of display by the display device. The reflection of outside light can be prevented.
  • the coating layer has a thickness that is suppressed to a fluctuation of 50% or less, it is possible to provide colored resin particles in which the entire surface is more uniformly and uniformly coated with the polymer of the nitrogen-containing aromatic compound.
  • the polymer of a nitrogen-containing aromatic compound is a polymer of a pyrrole or its derivative (s)
  • the colored resin particle for anti-glare members according to the present invention can further highlight the above effect.
  • the colored resin particles for an antiglare member have an average particle diameter of 1 to 10 ⁇ m, it can be more suitably used as an antiglare member.
  • FIG. 2 is a transmission electron micrograph of colored resin particles obtained in Example 1.
  • FIG. 2 is a transmission electron micrograph of colored resin particles obtained in Example 2.
  • FIG. 4 is a transmission electron micrograph of colored resin particles obtained in Example 3.
  • FIG. 4 is a transmission electron micrograph of colored resin particles obtained in Example 4.
  • FIG. 6 is a transmission electron micrograph of colored resin particles obtained in Example 5.
  • FIG. 4 is a transmission electron micrograph of colored resin particles obtained in Comparative Example 3.
  • the colored resin particles according to the present invention have resin particles derived from a polymerizable vinyl monomer, and a coating layer made of a polymer as a colorant derived from a nitrogen-containing aromatic compound that covers the surface of the resin particles. ing.
  • the covering layer has a thickness of 30 to 300 nm.
  • Polymerizable vinyl monomer examples include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, and n-acrylate.
  • Acrylic acid alkyl ester monomers such as octyl, isononyl acrylate, lauryl acrylate, stearyl acrylate, etc., methacrylic acid such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate Acid alkyl ester monomers, aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, vinyl toluene, ethyl vinyl benzene, saturated fatty acid vinyl monomers such as vinyl acetate, vinyl propionate, vinyl versatic acid, Acrylonitrile, methacrylonitrile Vinyl cyanide monomers such as acrylic acid, methacrylic acid, crotonic acid, citraconic acid, itaconic acid, maleic acid, fumaric acid and other ethylene carboxylic acids, maleic anhydride and other ethylene carboxylic acid anhydr
  • a hydrophobic monomer having a solubility in 1.5% by weight or less of water (20 ° C.) is preferable because a more uniform coating layer can be obtained.
  • styrene, butyl acrylate, and butyl methacrylate are more preferable, and butyl acrylate and butyl methacrylate are particularly preferable.
  • the polymerization method is not particularly limited as long as it is a known polymerization method.
  • known polymerization methods include bulk polymerization, emulsion polymerization, soap-free emulsion polymerization, seed polymerization, suspension polymerization and the like.
  • resin particles having a desired particle diameter can be obtained by classification after pulverization.
  • Emulsion polymerization is a polymerization method in which a medium such as water, a monomer that is difficult to dissolve in the medium, and an emulsifier (surfactant) are mixed and a polymerization initiator that is soluble in the medium is added thereto. There is a feature that there is little variation in the particle diameter obtained.
  • Soap-free emulsion polymerization is emulsion polymerization without using an emulsifier. There is a feature that particles of uniform diameter can be obtained.
  • the seed polymerization is polymerization performed by adding seed particles separately produced at the start of polymerization. Polymerization is performed by arbitrarily determining the particle size, particle size distribution, and amount (number) as seed particles, and there is a feature that the desired particle size and particle size distribution can be targeted for polymerization.
  • Suspension polymerization is a polymerization method in which a monomer and water as a solvent are mechanically stirred and suspended. It is characterized in that particles having a small particle size and order can be obtained.
  • seed particles are added to an emulsion (suspension) composed of a monomer and an aqueous medium.
  • the emulsion can be prepared by a known method.
  • an emulsion can be obtained by adding a monomer to an aqueous medium and dispersing the monomer with a fine emulsifier such as a homogenizer, an ultrasonic processor, or a nanomizer.
  • the aqueous medium include water or a mixture of water and an organic solvent (for example, a lower alcohol).
  • the method for producing seed particles separately produced is not particularly limited, and methods such as emulsion polymerization, soap-free emulsion polymerization or suspension polymerization can be used.
  • the weight average molecular weight of the seed particles may be adjusted by adjusting the amount of the polymerization initiator used or adjusting the amount of the molecular weight modifier added.
  • the monomer may contain a polymerization initiator as necessary.
  • the polymerization initiator may be preliminarily mixed with the monomer and then dispersed in an aqueous medium, or those obtained by separately dispersing both in an aqueous medium may be mixed.
  • the particle diameter of the monomer droplets present in the obtained emulsion is preferably smaller than the seed particles because the monomers are efficiently absorbed by the seed particles.
  • the seed particles may be added directly to the emulsion, or may be added in a form in which the seed particles are dispersed in an aqueous medium (hereinafter referred to as seed particle dispersion).
  • seed particle dispersion After the seed particles are added to the emulsion, the monomer is absorbed by the seed particles. This absorption can usually be performed by stirring the emulsion after addition of seed particles at room temperature (about 20 ° C.) for 1 to 12 hours. Further, in order to promote the absorption of the monomer, the emulsion may be heated to about 30 to 50 ° C.
  • the seed particles swell by absorbing the monomer.
  • the mixing ratio of the monomer to the seed particles is preferably in the range of 5 to 300 parts by weight, more preferably 100 to 250 parts by weight with respect to 1 part by weight of the seed particles.
  • the monomer mixing ratio decreases, the increase in particle diameter due to polymerization decreases, and when the monomer mixing ratio increases, the monomer is not completely absorbed by the seed particles, and is uniquely suspended in the aqueous medium.
  • Abnormal particles may be produced by cloud polymerization.
  • the end of monomer absorption by the seed particles can be determined by confirming the enlargement of the particle diameter by observation with an optical microscope.
  • the polymerization initiator added as necessary is not particularly limited, and examples thereof include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethyl.
  • Organic peroxides such as hexanoyl peroxide, t-butylperoxy-2-ethylhexanoate, di-t-butyl peroxide; 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2,3-dimethylbutyronitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2 , 3,3-trimethylbutyronitrile), 2,2′-azobis (2-isopropylbutyronitrile), 1,1′-azobis (cyclohexane) 1-carbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), (2-carbamoylazo) isobutyronitrile, 4,4′-azobis (4-cyanovaleric acid), dimethyl Azo compounds such as -2,2'-azobisisobutyrate, etc.
  • the polymerization temperature can be appropriately selected according to the type of monomer and polymerization initiator. Specifically, it is preferably 25 to 110 ° C, more preferably 50 to 100 ° C.
  • the polymerization time can be 1 to 12 hours.
  • the polymerization may be performed in an inert gas atmosphere inert to the polymerization, such as a nitrogen atmosphere.
  • the polymerization reaction is preferably carried out by raising the temperature after the monomer and the optional polymerization initiator are completely absorbed in the seed particles.
  • a polymer dispersion stabilizer may be added in order to improve the dispersion stability of the resin particles.
  • the polymer dispersion stabilizer include polyvinyl alcohol, polycarboxylic acid, celluloses (such as hydroxyethyl cellulose and carboxymethyl cellulose), and polyvinyl pyrrolidone.
  • An inorganic water-soluble polymer compound such as sodium tripolyphosphate may be used in combination.
  • polyvinyl alcohol and polyvinyl pyrrolidone are preferred.
  • the addition amount of the polymer dispersion stabilizer is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the monomer.
  • water-soluble polymerization inhibitors such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, polyphenols, etc. May be used.
  • the colored resin particles are not particularly limited.
  • the resin particles obtained by the seed polymerization method introduced above are used as monomers in an aqueous medium containing an alkali metal salt of an inorganic peracid.
  • An arbitrary amount of the nitrogen-containing aromatic compound is added and oxidative polymerization is performed.
  • the nitrogen-containing aromatic compound is a compound that becomes a polymer colored by oxidative polymerization.
  • the nitrogen-containing aromatic compound as a monomer includes nitrogen-containing heterocyclic aromatic compounds such as pyrrole, indole, imidazole, pyridine, pyrimidine, pyrazine, and primary amino such as aniline.
  • Group-substituted aromatic compounds, and alkyl substituents thereof for example, substituents with alkyl groups having 1 to 4 carbon atoms such as methyl, ethyl, propyl, butyl, etc.
  • halogen-substituted substances for example, fluoro, chloro, bromo, etc.
  • a derivative such as a nitrile substitute.
  • These monomers can be used alone to form a homopolymer, or two or more types can be used in combination to form a copolymer. Since a more uniform coating layer is easily formed, pyrrole and a pyrrole derivative polymer are preferred.
  • the amount of the nitrogen-containing aromatic compound can be set in the range of 1 to 30 parts by weight with respect to 100 parts by weight of the resin particles according to the desired degree of coloring.
  • the amount is preferably 3 to 20 parts by weight. If the amount is less than 1 part by weight, the entire surface of the resin particles may not be uniformly coated with the polymer of the nitrogen-containing aromatic compound, and a desired coloring degree may not be obtained. On the other hand, when the amount is more than 30 parts by weight, the added nitrogen-containing aromatic compound may be polymerized alone to produce other than the intended colored resin particles.
  • An alkali metal salt of an inorganic peracid is a compound that acts as an oxidizing agent for a nitrogen-containing aromatic compound. Specific examples include potassium persulfate and sodium persulfate.
  • the alkali metal salt of inorganic peracid is used in an amount of 0.2 to 1.9 molar equivalents based on the total amount of the nitrogen-containing aromatic compound. If it is less than 0.2 molar equivalent, the entire surface of the resin particles may not be uniformly coated with a coating layer containing a polymer of a nitrogen-containing aromatic compound, and a desired degree of coloring may not be obtained. On the other hand, when the amount exceeds 1.9 molar equivalents, the added nitrogen-containing aromatic compound may be polymerized alone to produce other than the intended colored resin particles. Preferably, it is 0.5 to 1.5 molar equivalent.
  • Aqueous medium The alkali metal salt of inorganic peracid is added to the aqueous medium and used as an aqueous medium having a predetermined pH.
  • the aqueous medium is not particularly limited as long as it dissolves the nitrogen-containing aromatic compound, but water or water and methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, etc.
  • examples thereof include mixed media with alcohols, ethers such as diethyl ether, isopropyl ether, butyl ether, methyl cellosolve, and tetrahydrofuran, and ketones such as acetone, methyl ethyl ketone, and diethyl ketone.
  • the aqueous medium to which the alkali metal salt of inorganic peracid is added preferably has a pH of 3 or more.
  • the pH is less than 3, the entire surface of the resin particles is not uniformly covered with the coating layer containing the polymer of the nitrogen-containing aromatic compound, and the desired blackness may not be obtained. It is more preferable to have a pH of 3 to 10 because it is stably coated.
  • Surfactant may be added to the aqueous medium.
  • the surfactant any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant can be used.
  • anionic surfactant examples include fatty acid oils such as sodium oleate and castor oil, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylsulfonic acid.
  • fatty acid oils such as sodium oleate and castor oil
  • alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate
  • alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate
  • alkylsulfonic acid examples include fatty acid oils such as sodium oleate and castor oil, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as
  • alkyl naphthalene sulfonate alkane sulfonate, succi sulfonate, dialkyl sulfo succinate, alkyl phosphate ester salt, naphthalene sulfonic acid formalin condensate, polyoxyethylene alkyl phenyl ether sulfate salt, polyoxyethylene alkyl Examples thereof include sulfate ester salts.
  • Nonionic surfactants include, for example, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, oxy And ethylene-oxypropylene block polymer.
  • Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
  • Examples of the zwitterionic surfactant include lauryl dimethylamine oxide and phosphate ester or phosphite ester surfactants. You may use the said surfactant individually or in combination of 2 or more types.
  • the addition amount of the surfactant can be 0.0001 to 1 part by weight with respect to 100 parts by weight of the aqueous medium.
  • a polymer dispersion stabilizer may be added to the aqueous medium in addition to the surfactant.
  • the polymer dispersion stabilizer include polyacrylic acid, copolymers thereof and neutralized products thereof, and polymethacrylic acid, copolymers thereof and neutralized products thereof, polyvinylpyrrolidone, hydroxypropylcellulose (HPC), and the like. Is mentioned.
  • the polymer dispersion stabilizer may be used in combination with the above-described surfactant.
  • Oxidative polymerization Colored resin particles whose resin particle surfaces are covered with a coating layer containing a polymer of a nitrogen-containing aromatic compound can be obtained, for example, by the following method. That is, an emulsion (suspension) in which resin particles obtained by the seed polymerization method introduced above and the like and a nitrogen-containing aromatic compound are added to an aqueous medium containing an alkali metal salt of an inorganic peracid. A mixture is obtained. Subsequently, the mixture is preferably stirred at a temperature of ⁇ 20 to 40 ° C. for 0.5 to 10 hours to obtain colored resin particles. The emulsion in which the colored resin particles are dispersed is centrifuged as necessary to remove the aqueous medium, washed with water and a solvent, and then dried and isolated.
  • an emulsion in which resin particles obtained by the seed polymerization method introduced above and the like and a nitrogen-containing aromatic compound are added to an aqueous medium containing an alkali metal
  • the colored resin particles obtained by the oxidative polymerization described above are uniformly covered with a coating layer containing a polymer of a nitrogen-containing aromatic compound.
  • “uniform” means that the thickness fluctuation of the coating layer containing the polymer of the nitrogen-containing aromatic compound covering the resin particles is small.
  • the runout is preferably 50% or less, and more preferably 40% or less.
  • the thickness of the coating layer is 30 to 300 nm. Preferably, it is 50 to 200 nm. If the thickness of the coating layer is less than 30 nm, the degree of coloring is low and the desired antiglare property may not be obtained. On the other hand, if it exceeds 300 nm, the light transmittance is lowered, and the display of the display device provided with the antiglare member using the same may become dark. A method for measuring the thickness of the coating layer and a method for calculating the thickness fluctuation will be described in the column of the examples.
  • the average particle diameter of the colored resin particles is not particularly limited, but is preferably 1 to 10 ⁇ m in consideration of the use as an antiglare member. More preferably, it is 3 to 7 ⁇ m.
  • the average particle diameter of the colored resin particles is less than 1 ⁇ m, fine irregularities are not formed on the antiglare member, and a desired antiglare property may not be obtained.
  • it exceeds 10 ⁇ m it may be difficult to adjust the fine unevenness and the desired antiglare property may not be obtained.
  • the colored resin particles of the present invention are uniformly coated on the entire surface with a coating layer containing a polymer of a nitrogen-containing aromatic compound, the colored resin particles have a desired coloring degree derived from this polymer. Further, since only the surface portion of the particle is colored, the amount of light transmitted through the particle is not greatly reduced as compared with known black particles that are black to the inside of the particle. Therefore, an anti-glare member having a desired total light transmittance can be stably produced by dispersing the colored resin particles in a film or sheet.
  • the antiglare member is obtained by applying a mixture containing colored resin particles and a binder resin to a transparent base resin.
  • Transparent base resin examples include polyester polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose (TAC), polycarbonate polymers, poly The film which consists of polymers, such as acrylic polymers, such as methyl methacrylate, is mentioned.
  • styrene polymers such as polystyrene and acrylonitrile / styrene copolymer, polyethylene, polypropylene, polyolefins having a cyclic or norbornene structure, olefin polymers such as ethylene / propylene copolymer, vinyl chloride polymers, nylon and aromatic polyamides.
  • films made of polymers such as amide polymers.
  • imide polymers sulfone polymers, polyether sulfone polymers, polyether ether ketone polymers, polyphenyl sulfide polymers, vinyl alcohol polymers, vinylidene chloride polymers, vinyl butyral polymers, arylate polymers, polyoxy
  • a film made of a polymer such as a methylene-based polymer, an epoxy-based polymer, or a blend of the above-mentioned polymers may also be used. In particular, those having a low birefringence are preferably used.
  • a film in which an easy adhesion layer such as an acrylic resin, a copolymerized polyester resin, a polyurethane resin, a styrene-maleic acid graft polyester resin, an acrylic graft polyester resin, or the like is further provided on these films can be used.
  • the thickness of the transparent base resin can be appropriately determined, but is generally about 10 to 500 ⁇ m from the viewpoints of strength, workability such as handling, and thin layer properties. 20 to 300 ⁇ m is preferable, and 30 to 200 ⁇ m is more preferable.
  • an additive may be added to the base material.
  • the additive include an ultraviolet absorber, an infrared absorber, an antistatic agent, a refractive index adjuster, and an enhancer.
  • Binder resin is used in this field according to required properties such as transparency, resin particle dispersibility, light resistance, moisture resistance and heat resistance. If it is, it will not specifically limit.
  • the binder resin include (meth) acrylic resin; (meth) acrylic urethane resin; urethane resin; polyvinyl chloride resin; polyvinylidene chloride resin; melamine resin; styrene resin; alkyd resin; Phenolic resins; epoxy resins; polyester resins; (meth) acrylic silicone resins, alkylpolysiloxane resins, silicone resins, silicone alkyd resins, silicone urethane resins, silicone polyester resins, silicone acrylic resins, etc.
  • Modified silicone resin Fluorine-based resins such as polyvinylidene fluoride and fluoroolefin vinyl ether polymer are listed. These binder resins may be thermoplastic, or curable resins such as thermosetting resins, hot-air curable resins, ultraviolet curable resins, and electron beam curable resins.
  • organic binder resins such as synthetic rubber and natural rubber, inorganic binders and the like can also be used.
  • the organic binder resin include ethylene-propylene copolymer rubber, polybutadiene rubber, styrene-butadiene rubber, and acrylonitrile-butadiene rubber.
  • the inorganic binder binder resin include silica sol, alkali silicate, silicon alkoxide, and their (hydrolyzed) condensates and phosphates. These may be used alone or in combination of two or more.
  • Such a binder resin is preferably a curable resin capable of forming a crosslinked structure by a crosslinking reaction from the viewpoint of improving the durability of the resin composition.
  • the binder resin can be cured under various curing conditions.
  • inorganic or organic-inorganic composites obtained by hydrolyzing, dehydrating and condensing ionizing radiation curable resins such as ultraviolet curable resins and electron beam curable resins, thermosetting resins, thermoplastic resins, and metal alkoxides A system matrix or the like can be used.
  • thermosetting resin examples include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, and silicone resin.
  • the ionizing radiation curable resin examples include polyfunctional acrylate resins such as polyhydric alcohol acrylic acid or methacrylic acid ester, diisocyanate, polyhydric alcohol, acrylic acid or methacrylic acid hydroxy ester, and the like.
  • polyfunctional acrylate resins such as polyhydric alcohol acrylic acid or methacrylic acid ester, diisocyanate, polyhydric alcohol, acrylic acid or methacrylic acid hydroxy ester, and the like.
  • Examples include functional urethane acrylate resins.
  • polyether resins having an acrylate functional group polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can also be used.
  • a photopolymerization initiator is added to the binder resin.
  • a photoinitiator it is preferable to use what was suitable for resin to be used.
  • photopolymerization initiator examples include benzoin such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzyl methyl ketal, and alkyl ethers thereof.
  • the amount of photopolymerization initiator used is 0.5 to 20% by weight based on the binder resin. It is preferably 1 to 5% by weight.
  • thermoplastic resin examples include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose, vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof, and the like.
  • Resin, acetal resin such as polyvinyl formal, polyvinyl butyral, acrylic resin and its copolymer, acrylic resin such as methacrylic resin and its copolymer, polystyrene resin, polyamide resin, linear polyester resin, polycarbonate resin, etc. It is done.
  • the inorganic or organic-inorganic composite matrix a material using a silicon oxide matrix made of a silicon alkoxide material can be used. Specific examples include tetraethoxysilane.
  • the resin mixture may contain an organic solvent.
  • the organic solvent is not particularly limited as long as it can be easily applied to the base resin.
  • aromatic solvents such as toluene and xylene
  • alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, propylene glycol monomethyl ether
  • ethyl acetate Ester solvents such as butyl acetate and cellosolve acetate
  • Ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • Glycol ethers such as diethylene glycol dimethyl ether and propylene glycol methyl ether
  • curable composition is bar coating, blade coating, spin coating, reverse coating, dyeing, spray coating, roll
  • a known coating method such as coating, gravure coating, micro gravure coating, lip coating, air knife coating, dipping method, etc., if necessary, dry the solvent and irradiate with active energy rays
  • a method of crosslinking and curing a curable composition there is a method of crosslinking and curing a curable composition.
  • Examples of the active energy ray include ultraviolet rays emitted from a light source such as a xenon lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, a carbon arc lamp, and a tungsten lamp, or a Cockrowalton type or a bandegraph type usually 20 to 2000 KeV.
  • Electron beams extracted from electron beam accelerators such as resonance transformer type, insulated core transformer type, linear type, dynamitron type, and high frequency type, ⁇ rays, ⁇ rays, ⁇ rays and the like can be used.
  • the film thickness of the layer in which the colored resin particles are dispersed (antiglare layer) thus formed is not particularly limited, and is appropriately determined depending on the particle diameter of the colored resin particles, but is preferably 1 to 10 ⁇ m. More preferably, it is 3 to 7 ⁇ m.
  • the antiglare member obtained by the above method suppresses an increase in the back-scattered light from the display device (which is a light source) without greatly reducing the amount of light transmitted through the antiglare member, and improves the display contrast. It is possible to prevent external light from being reflected on the display surface (with an antiglare member installed) while suppressing reduction and glare.
  • the antiglare member preferably has a total light transmittance of 75% or more. More preferably, it is 80% or more. If the total light transmission amount is less than 75%, the user of the display device may feel that the display surface of the display device or the like is considerably darker than the state where no antiglare member is installed.
  • the antiglare member is preferably 35 or less at a 45 ° reflected light intensity, which is an evaluation standard for preventing reflection of external light. More preferably, it is 30 or less. When the 45 ° reflected light intensity exceeds 35, the reflection of external light (on the display surface provided with the antiglare member) may be of concern.
  • the 45 ° reflected light intensity is the regular reflected light intensity at a reflection angle of 45 ° when the incident angle is ⁇ 45 ° measured with a three-dimensional photometer. The method for measuring the 45 ° reflected light intensity will be described in the column of the examples.
  • the entire surface is uniformly covered with a coating layer made of a polymer of a nitrogen-containing aromatic compound. Therefore, it has a desired coloring degree derived from the polymer. Therefore, a film or sheet having a desired total light transmittance can be stably produced by dispersing the colored resin particles in the film or sheet. Therefore, it can be suitably used for an antiglare member such as an antiglare film.
  • the average particle diameter of the seed particles is measured by LS230 type manufactured by Beckman Coulter. Specifically, 0.1 g of seed particles and 10 m of a 0.1% nonionic surfactant solution are added and mixed for 2 seconds with a touch mixer TOUCHMIXER MT-31 manufactured by Yamato Kagaku. Thereafter, the test tube is dispersed for 10 minutes using a commercially available ultrasonic cleaner, ULTRASONIC CLEARNER VS-150, manufactured by VervoCrea. The dispersed material is measured while irradiating ultrasonic waves with a model LS230 manufactured by Beckman Coulter. The optical model at that time is measured according to the refractive index of the produced particles.
  • the average particle diameter of the resin particles is measured by a method of performing calibration using a 280 ⁇ m aperture according to Reference MANUAL FOR THE COULTER MULTISIZER (1987) published by Coulter Electronics Limited.
  • a precision particle size distribution measuring device (Beckman Coulter, Inc .: Coulter Multisizer II) is used.
  • 0.1 g of resin particles are predispersed in 10 ml of a 0.1% nonionic surfactant solution using a touch mixer and ultrasonic waves, and this is provided with ISOTON II (manufactured by Beckman Coulter, Inc .: for measurement)
  • ISOTON II manufactured by Beckman Coulter, Inc .: for measurement
  • a beaker filled with (electrolyte) drop with a dropper while stirring gently, and adjust the reading of the densitometer on the main body screen to about 10%.
  • an aperture size of 280 ⁇ m, a current of 800, a gain of 4, and a polarity of + are input to the Multisizer II body, and measurement is performed manually.
  • the inside of the beaker is gently stirred to the extent that bubbles do not enter, and the measurement is terminated when 100,000 resin particles are measured.
  • volume-weighted average diameter (arithmetic average diameter in volume% mode: volume median diameter) is calculated as the average particle diameter (x) of the resin particles.
  • the coefficient of variation (CV value) is a value calculated from the standard deviation ( ⁇ ) and the average particle diameter (x) by the following equation.
  • CV value (%) ( ⁇ / x) ⁇ 100
  • the colored resin particles are clathrated with an epoxy resin, divided into two at the surface passing through the center of the particles, and the divided surface is stained with ruthenium tetroxide (RuO 4 ) and then observed with a transmission electron microscope (SEM). Since ruthenium tetroxide dyes a coating layer containing a polymer of a nitrogen-containing aromatic compound darker than resin particles derived from a polymerizable vinyl monomer, it is easy to grasp the coating state.
  • the obtained film is attached to a black ABS plate, and the reflected light intensity at a reflection angle of 45 ° at an incident angle of ⁇ 45 ° is measured with a three-dimensional photometer (Goniophotometer GP-200 manufactured by Murakami Color Research Laboratory). .
  • the reflected light intensity of the film made of only the binder resin containing no particles was set to 100, and the reflected light intensity of the film made of the particles and the binder resin was measured and evaluated. It means that light is diffused or absorbed as the reflected light intensity is low, dazzling is reduced, and antiglare property is excellent.
  • the reflected light intensity is preferably 35 or less, and more preferably 30 or less.
  • the total light transmittance of the antiglare member is measured with a haze meter (Nippon Denshoku Co., Ltd .: NDH-2000). The measurement conditions conform to JIS K 7105.
  • a separable flask equipped with a stirrer, a thermometer and a reflux condenser was charged with 1300 g of ion exchange water and 320 g of methyl methacrylate in which 3 g of 1-octanethiol as a molecular weight modifier was dissolved. Further, 160 g of the dispersion obtained above was added, and the mixture was heated to 70 ° C. in a nitrogen stream while stirring. A solution obtained by dissolving 1.6 g of ammonium persulfate as a polymerization initiator in 300 g of ion-exchanged water was continuously added and stirred at 70 ° C. for 12 hours to carry out a polymerization reaction. By this polymerization reaction, a dispersion containing polymethyl methacrylate particles (hereinafter referred to as seed particles 1) having an average particle diameter of 1.1 ⁇ m was obtained.
  • seed particles 1 polymethyl methacrylate particles having an average particle diameter of 1.1 ⁇ m was obtained.
  • resin particles 1 had a sphere-converted volume average particle size of 5.2 ⁇ m.
  • Resin particles were obtained in the same manner as in Resin Particle Production Example 1 except that 350 g of butyl acrylate, 350 g of butyl methacrylate, and 300 g of ethylene glycol dimethacrylate were used as the polymerizable vinyl monomer.
  • the obtained resin particles (hereinafter referred to as “resin particles 2”) had a sphere equivalent volume average particle size of 5.2 ⁇ m.
  • MMA methyl methacrylate
  • EGDMA ethylene glycol dimethacrylate
  • 2,2′-azobis (2 -Methylbutyronitrile) 6 g was added and mixed.
  • the obtained mixture was mixed with 1 L of ion-exchanged water containing 10 g of sodium succinate as a surfactant.
  • An aqueous emulsion was obtained by treatment at 8000 rpm for 10 minutes with a K homomixer (Primics).
  • resin particles 3 had a sphere-converted volume average particle diameter of 5.2 ⁇ m.
  • Resin particles were obtained in the same manner as in Resin Particle Production Example 1 except that 400 g of butyl methacrylate, 300 g of styrene, and 300 g of ethylene glycol dimethacrylate were used as the polymerizable vinyl monomer.
  • the obtained resin particles (hereinafter referred to as “resin particles 4”) had a sphere-converted volume average particle size of 5.1 ⁇ m.
  • Example 1 To a solution obtained by dissolving 20 g of potassium persulfate in 300 g of water, a suspension obtained by dispersing 50 g of resin particles 1 in 50 g of isopropanol was added and stirred. This suspension was cooled to 5 ° C., a solution consisting of 5 g of pyrrole and 50 g of isopropanol was further added, and the mixture was stirred for 3 hours for polymerization. Then, solid content was obtained by filtration. The solid content was taken out, washed with water and isopropanol, and dried at 60 ° C. for 12 hours with a vacuum dryer. As a result, black colored resin particles (hereinafter referred to as colored resin particles 1) were obtained.
  • colored resin particles 1 black colored resin particles
  • the thickness of the coating layer containing a polymer derived from pyrrole (nitrogen-containing aromatic compound) is 94 nm, and the entire surface of the particles is uniformly coated. I understood. The thickness fluctuation of the coating layer was 24.6%.
  • a photograph taken with a transmission electron microscope is shown in FIG.
  • Example 2 Black colored resin particles (hereinafter referred to as colored resin particles 2) were obtained in the same manner as in Example 1 except that 2.5 g of pyrrole was used. When the colored resin particles 2 were observed with a transmission electron microscope, it was found that the thickness of the coating layer was 37 nm, and the entire surface of the particles was uniformly coated. The thickness fluctuation of the coating layer was 22.9%. A photograph taken with a transmission electron microscope is shown in FIG.
  • Example 3 Colored resin particles (hereinafter referred to as colored resin particles 3) were obtained in the same manner as in Example 1 except that 50 g of the resin particles 2 were used in place of the resin particles 1.
  • the thickness of the coating layer was 120 nm, and the thickness fluctuation width was 11.9%. It was found that the entire surface of the particles was uniformly coated. A photograph taken with a transmission electron microscope is shown in FIG.
  • Example 4 To a solution obtained by dissolving 20 g of potassium persulfate in 300 g of water, a suspension obtained by dispersing 50 g of resin particles 3 in 50 g of isopropanol was added and stirred. The suspension was cooled to 5 ° C., a solution composed of 10 g of pyrrole and 50 g of isopropanol was further added, and the mixture was stirred for 3 hours for polymerization to obtain a black dispersion. Then, solid content was obtained by filtration. The solid content was taken out, washed with water and isopropanol, and dried at 60 ° C. for 12 hours with a vacuum dryer. As a result, black colored resin particles were obtained.
  • the addition amount of the alkali metal salt of the inorganic peracid to the heterocyclic aromatic amine monomer is 0.5 molar equivalent).
  • Example 5 Colored resin particles were obtained in the same manner as in Example 1 except that 50 g of the resin particles 2 were used instead of the resin particles 1.
  • the thickness of the coating layer was 120 nm and the fluctuation width of the thickness was 11.9%. It was found that the entire surface of the particles was uniformly coated. A photograph taken with a transmission electron microscope is shown in FIG.
  • Example 6 Colored resin particles were obtained in the same manner as in Example 1 except that 50 g of the resin particles 4 were used instead of the resin particles 1. When the obtained colored resin particles were observed with a transmission electron microscope, the thickness of the coating layer was 91 nm and the fluctuation width of the thickness was 14.7%. It was found that the entire surface of the particles was uniformly coated.
  • the mixed solution was cooled to room temperature, and the colored resin particles in the mixed solution were obtained through filtration, washing and drying steps.
  • the obtained colored resin particles (hereinafter referred to as colored resin particles 5) were black resin particles having an average particle diameter of 5.1 ⁇ m.
  • antiglare member 10 parts by weight of colored resin particles 1 are blended in a binder solution in which 100 parts by weight of an acrylic resin (Mitsubishi Rayon Co., Ltd .: BR106) as a binder resin is dissolved in 400 parts by weight of toluene as a solvent, and dispersed and coated. A composition was prepared. This coating composition was applied onto a PET film as a base resin having a thickness of 100 ⁇ m using a 50 ⁇ m applicator to form a coating film. An anti-glare member (hereinafter referred to as anti-glare member 1) was obtained by drying the coating film on the PET film by drying in a thermostat at 70 ° C. for 2 hours.
  • an acrylic resin Mitsubishi Rayon Co., Ltd .: BR106
  • the colored resin particles 1 are blended to mix the antiglare member 2
  • the colored resin particles 3 are blended
  • the antiglare member 3 is blended
  • the colored resin particles 4 are blended.
  • the antiglare member 4 was blended with the colored resin particles 5 to obtain the antiglare member 5.
  • Table 2 summarizes the total light transmittance and the surface state (45 ° reflected light intensity) of the antiglare members 1 to 5.
  • the antiglare member obtained by using the colored resin particles of the present invention according to Examples 1 to 3 reflects external light without greatly reducing transmitted light. It was found that there is an effect that can be prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

 単一又は複数種の重合性ビニル系単量体に由来する樹脂粒子と、前記樹脂粒子の表面を覆う含窒素芳香族化合物に由来する着色剤としての重合体を含む被覆層とを有し、前記被覆層が30~300nmの厚さを有する着色樹脂粒子。

Description

着色樹脂粒子、その製造方法及びその用途
 本発明は、着色樹脂粒子、その製造方法及びその用途に関する。更に詳しくは、本発明は、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)等の各種表示装置や、透過型スクリーン、反射型スクリーン等の各種スクリーンの表面部分に配置して、これらの表示装置やスクリーンの表面に外光が映りこむことを防止する防眩性部材用の着色樹脂粒子、その製造方法及びこの着色樹脂粒子とバインダー樹脂とを含む混合物の塗膜を透明基材樹脂上に備えた防眩性部材に関する。
 液晶ディスプレイのような表示装置において、その周囲が明るいと、鏡のようにその表示面に外光が映り込み、表示面に表示される画像や映像等の情報が見づらくなるという課題がある。
 そのような課題を解決するために、表示面側に防眩性フィルムを設けて、表示面に射し込む光を拡散することにより、表面に防眩性を付与して、表面反射による外光の映り込みを低減する技術が採用されている。
 従来の防眩性フィルムは、その表面に設けられた微細凹凸形状により、表示装置の表示面に防眩性を付与するという構成であった。
 微細凹凸形状の形成方法としては、凹凸形状の調整し易さ及び生産効率の観点から、樹脂粒子とバインダー樹脂をフィルムに塗布して乾燥することにより塗膜化する方法が主流となっている。
 しかし、上記の方法では、防眩層(樹脂粒子が分散された塗膜)が、その表面の凹凸による光錯乱により、白っぽく見えて表示装置による表示のコントラストが低下するという課題や、防眩層表面の凹凸がレンズのような働きをすることにより表示がぎらついて見えるという課題があった。また、後方錯乱光(表示装置から発せられる光が樹脂粒子により錯乱されることにより生じる光)により表示のコントラストが低下するという課題もあった。
 上記課題を解決するための技術として、黒色粒子を用いた防眩性部材が提案されている(特許文献1参照)。
 特許文献1によると、従来の樹脂粒子の替わりに黒色粒子を用いることにより、後方錯乱光の増加、表示のコントラストの低下及びぎらつきを抑制できるとされている。更に、粒子が黒色ということに起因して、暗表示部分がより暗く見えることによりコントラストを向上できるとされている。
国際公開番号WO2008/018339号公報
 しかし、特許文献1による技術には、黒色粒子が、粒子全体すなわち粒子の内部に至るまで全て黒色となっているため、光透過性が極めて低くなっている。そのため、これを用いた防眩部材は、表示装置の表示を暗くさせてしまうという課題がある。
 従って、本発明は、表示装置の表示の明るさを大きく低下させることなく、表示のコントラストの低下やぎらつきを抑え、かつ表示面への外光の映り込みを防止し得る防眩性部材用着色樹脂粒子を提供することを課題とする。
 かくして本発明によれば、単一又は複数種の重合性ビニル系単量体に由来する樹脂粒子と、前記樹脂粒子の表面を覆う含窒素芳香族化合物に由来する着色剤としての重合体を含む被覆層とを有し、前記被覆層が30~300nmの厚さを有する着色樹脂粒子が提供される。
 更に、本発明によれば、透明基材樹脂と、上記着色樹脂粒子とバインダー樹脂との塗膜とを備え、75%以上の全光線透過率を有する防眩性部材が提供される。
 また、本発明によれば、単一又は複数種の重合性ビニル系単量体に由来する樹脂粒子が分散された乳化液及び単量体としての含窒素芳香族化合物を、前記含窒素芳香族化合物に対して0.2~1.9モル当量の無機過酸のアルカリ金属塩を含む水性媒体に添加して得られた混合物を、-20~40℃の温度条件下で攪拌することにより、前記樹脂粒子の表面が前記含窒素芳香族化合物に由来する着色剤としての重合体を含む被覆層で覆われ、かつ前記樹脂粒子を覆う前記含窒素芳香族化合物の重合体からなる被覆層の厚さの振れが50%以下である着色樹脂粒子を得ることからなる着色樹脂粒子の製造方法が提供される。
 本発明による着色樹脂粒子は、その表面全体が含窒素芳香族化合物に由来する着色剤としての重合体によりムラなく均一に被覆されていることにより、ある程度の光透過性を確保しつつ、内部に至るまで全て着色された公知の粒子と同様の光錯乱を防止できる機能を有する。
 これにより、本発明の着色樹脂粒子を用いて得られる防眩性部材は、表示装置による表示の明るさを大きく低下させることなく、表示のコントラストの低下及びぎらつきを抑えつつ、かつ表示面への外光の映り込みを防止できる。
 更に、被覆層が、50%以下の振れに抑制された厚さを有する場合、より表面全体が含窒素芳香族化合物の重合体によりムラなく均一に被覆された着色樹脂粒子を提供できる。
 また、含窒素芳香族化合物の重合体が、ピロール又はその誘導体の重合体である場合、本発明による防眩性部材用着色樹脂粒子は、上記の効果を更に際立たせることができる。
 防眩性部材用着色樹脂粒子が、1~10μmの平均粒子径を有する場合、防眩性部材として更に好適に使用できる。
実施例1により得られた着色樹脂粒子の透過型電子顕微鏡写真である。 実施例2により得られた着色樹脂粒子の透過型電子顕微鏡写真である。 実施例3により得られた着色樹脂粒子の透過型電子顕微鏡写真である。 実施例4により得られた着色樹脂粒子の透過型電子顕微鏡写真である。 実施例5により得られた着色樹脂粒子の透過型電子顕微鏡写真である。 比較例3により得られた着色樹脂粒子の透過型電子顕微鏡写真である。
 本発明による着色樹脂粒子は、重合性ビニル系単量体に由来する樹脂粒子と、樹脂粒子の表面を覆う含窒素芳香族化合物に由来する着色剤としての重合体からなる被覆層とを有している。被覆層は、30~300nmの厚さを有している。
(樹脂粒子)
(1)重合性ビニル系単量体
 重合性ビニル系単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸イソノニル、アクリル酸ラウリル、アクリル酸ステアリル等のアクリル酸アルキルエステル系単量体、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ステアリル等のメタクリル酸アルキルエステル単量体、スチレン、α-メチルスチレン、ビニルトルエン、エチルビニルベンゼン等の芳香族ビニル系単量体、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニル等の飽和脂肪酸ビニル系単量体、アクリロニトリル、メタクリロニトリル等のシアン化ビニル系単量体、アクリル酸、メタクリル酸、クロトン酸、シトラコン酸、イタコン酸、マレイン酸、フマル酸等のエチレン系カルボン酸、無水マレイン酸等のエチレン系カルボン酸無水物、モノブチルマレイン酸などのエチレン系ジカルボン酸のモノアルキルエステル、及びこれらのアンモニウム塩もしくはアルカリ金属塩等のエチレン系カルボン酸塩類、アクリルアミド、メタクリルアミド、ジアセトンアクリルアミド等のエチレン系カルボン酸の酸アミド類、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、メチロール化ジアセトンアクリルアミド及び、これらの単量体と炭素数1~8個のアルコール類とのエーテル化物(例えば、N-イソブトキシメチルアクリルアミド)等のエチレン系カルボン酸アミド類のメチロール化物及びその誘導体、グリシジルアクリレート、グリシジルメタクリレート等のエチレン系カルボン酸とエポキシ基を有するアルコールとのエステル類、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシメタクリレート等のエチレン系カルボン酸のヒドロキシアルキルエステル類、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート等のエチレン系カルボン酸とアミノ基を有するアルコールとのエステル類など、エチレン性不飽和結合を1個有する単量体、ジビニルベンゼン、ジアリルフタレート、トリアリルシアヌレート、ジエチレングリコールジメタクリレート等の2個以上の非共役性不飽和結合を有する単量体が挙げられる。
 これらは単一又は複数種組み合わせて用いることができる。上記重合性ビニル系単量体のうち、1.5重量%以下の水(20℃)への溶解度を有する疎水性単量体がより均一な被覆層を得られることから好ましい。なかでも、スチレン、アクリル酸ブチル、メタクリル酸ブチルがより好ましく、アクリル酸ブチル、メタクリル酸ブチルが特に好ましい。
(2)重合法(樹脂粒子の製造方法)
 重合法としては、公知の重合方法であれば特に限定されるものではない。公知の重合法としては、例えば塊状重合、乳化重合、ソープフリー乳化重合、シード重合、懸濁重合等の方法が挙げられる。塊状重合の場合は、粉砕後、分級することで所望の粒径の樹脂粒子を得ることができる。乳化重合とは、水等の媒体と、媒体に溶解し難いモノマーと乳化剤(界面活性剤)を混合し、そこに媒体に溶解可能な重合開始剤を加えて行う重合法である。得られる粒子径のバラツキが少ないという特徴がある。ソープフリー乳化重合とは、乳化剤を用いない乳化重合である。均一径の粒子が得られるという特徴がある。シード重合とは、重合開始の際に別途で作られた種(シード)粒子を入れて行われる重合である。種粒子として粒子径と粒子径分布、量(個数)を任意に定めて重合することになり、所望の粒子径と粒子径分布を狙って重合できるという特徴がある。懸濁重合とは、モノマーと溶媒の水とを機械的に攪拌して、懸濁させて行う重合法である。粒子径が小さくかつ整った粒子を得られることが特徴である。
 以下にシード重合法の一般的な方法を述べるが、本発明による樹脂粒子の製造方法は、この方法に限定されるものではない。
 先ず、単量体と水性媒体とから構成される乳化液(懸濁液)に種粒子を添加する。乳化液は、公知の方法により作製できる。例えば、単量体を、水性媒体に添加し、ホモジナイザー、超音波処理機、ナノマイザー等の微細乳化機により分散させることで、乳化液を得ることができる。ここでいう水性媒体としては、水又は水と有機溶媒(例えば、低級アルコール)との混合物が挙げられる。また、別途作製される種粒子の製造方法については、特に限定されないが、乳化重合、ソープフリー乳化重合あるいは懸濁重合等の方法を用いることができる。種粒子の粒子径の均一性や製造方法の簡便さを考慮すると、乳化重合及びソープフリー乳化重合法が好ましい。種粒子の重量平均分子量を、重合開始剤の使用量の加減あるいは分子量調整剤の添加量の加減等により、調整してもよい。
 単量体には、必要に応じて重合開始剤が含まれていてもよい。重合開始剤は、単量体に予め混合された後、水性媒体中に分散されてもよいし、両者を別々に水性媒体に分散されたものが混合されてもよい。得られた乳化液中に存する単量体の液滴の粒子径は、種粒子よりも小さい方が、単量体が種粒子に効率よく吸収されるので好ましい。
 種粒子は、乳化液に直接添加されてもよく、種粒子が水性媒体に分散された形態(以下、種粒子分散液という)で添加されてもよい。種粒子が乳化液へ添加された後、単量体は種粒子に吸収される。この吸収は、通常、種粒子添加後の乳化液を、室温(約20℃)で1~12時間攪拌することにより行うことができる。また、単量体の吸収を促進するために、乳化液は30~50℃程度に加温されてもよい。
 種粒子は、単量体を吸収することにより膨潤する。単量体と種粒子との混合比率は、種粒子1重量部に対して単量体5~300重量部の範囲であることが好ましく、100~250重量部がより好ましい。単量体の混合比率が小さくなると、重合による粒子径の増加は小さくなり、単量体の混合比率が大きくなると、単量体が完全に種粒子に吸収されず、水性媒体中で独自に懸濁重合して、異常粒子が生成されることがある。なお、種粒子による単量体吸収の終了は、光学顕微鏡の観察で粒子径の拡大を確認することにより判定できる。
 必要に応じて添加される重合開始剤としては、特に限定されるものではないが、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,3-ジメチルブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,3,3-トリメチルブチロニトリル)、2,2’-アゾビス(2-イソプロピルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル、(2-カルバモイルアゾ)イソブチロニトリル、4,4’-アゾビス(4-シアノバレリン酸)、ジメチル-2,2’-アゾビスイソブチレート等のアゾ化合物等が挙げられる。重合開始剤は、重合性単量体100重量部に対して、0.1~1.0重量部の範囲で使用されることが好ましい。
 次に、種粒子に吸収された単量体を重合させることにより、樹脂粒子が得られる。重合温度は、単量体や重合開始剤の種類に応じて適宜選択できる。具体的には、25~110℃が好ましく、より好ましくは50~100℃である。また、重合時間は、1~12時間とすることができる。重合は、窒素雰囲気のような重合に対して不活性な不活性ガス雰囲気下で行ってもよい。なお、重合反応は、種粒子に単量体及び任意に用いられる重合開始剤が完全に吸収された後に、昇温して行われるのが好ましい。
 上記重合工程において、樹脂粒子の分散安定性を向上させるために、高分子分散安定剤が添加されてもよい。高分子分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース等)、ポリビニルピロリドン等が挙げられる。また、トリポリリン酸ナトリウム等の無機系水溶性高分子化合物が併用されてもよい。これらの高分子分散安定剤のうち、ポリビニルアルコール、ポリビニルピロリドンが好ましい。高分子分散安定剤の添加量は、単量体100重量部に対して1~10重量部が好ましい。
 また、上記重合工程において水系での乳化粒子の発生を抑えるために、亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤が用いられてもよい。
(着色樹脂粒子の製造方法)
 着色樹脂粒子は、特に限定されるものではないが、例えば、上記で紹介したシード重合法等により得られた樹脂粒子を、無機過酸のアルカリ金属塩を含む水性媒体中で、単量体としての含窒素芳香族化合物を任意の量添加して、酸化重合することにより得られる。含窒素芳香族化合物は、酸化重合により着色された重合体となる化合物である。
(1)含窒素芳香族化合物
 単量体としての含窒素芳香族化合物としては、ピロール、インドール、イミダゾール、ピリジン、ピリミジン、ピラジン等の含窒素複素環式芳香族化合物、アニリンのような1級アミノ基置換芳香族化合物、及びこれらのアルキル置換体(例えば、メチル、エチル、プロピル、ブチル等の炭素数1~4のアルキル基での置換体)、ハロゲン置換体(例えば、フロロ、クロロ、ブロム等のハロゲン基での置換体)、ニトリル置換体といった誘導体が挙げられる。これらの単量体は単独で使用して、単独重合体とすることができ、あるいは2種類以上を併用して、共重合体とすることもできる。より均一な被覆層が形成されやすいことから、ピロール及びピロールの誘導体の重合体が好ましい。
 含窒素芳香族化合物の量は、樹脂粒子100重量部に対し1~30重量部の範囲で所望の着色度に応じて設定できる。好ましくは、3~20重量部である。1重量部より少ないと、樹脂粒子の表面全体が均一に含窒素芳香族化合物の重合体で被覆されず、所望の着色度を得られない場合がある。一方、30重量部より多いと、添加した含窒素芳香族化合物が単独で重合し、目的とする着色樹脂粒子以外のものができてしまう場合がある。
(2)無機過酸のアルカリ金属塩(酸化剤)
 無機過酸のアルカリ金属塩は、含窒素芳香族化合物の酸化剤として作用する化合物である。具体的には過硫酸カリウム、過硫酸ナトリウム等が挙げられる。
 無機過酸のアルカリ金属塩は、含窒素芳香族化合物全量に対して0.2~1.9モル当量が用いられる。0.2モル当量未満であると、樹脂粒子の表面全体が均一に含窒素芳香族化合物の重合体を含む被覆層で被覆されず、所望の着色度を得られない場合がある。一方、1.9モル当量を超えると、添加した含窒素芳香族化合物が単独で重合し、目的とする着色樹脂粒子以外のものができてしまう場合がある。好ましくは、0.5~1.5モル当量である。
(3)水性媒体
 無機過酸のアルカリ金属塩は、水性媒体に添加され、所定のpHの水性媒体として用いられる。水性媒体は、含窒素芳香族化合物を溶解するものであれば特に限定されるものではないが、水又は、水と、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、t-ブタノール等のアルコール類、ジエチルエーテル、イソプロピルエーテル、ブチルエーテル、メチルセロソルブ、テトラヒドロフラン等のエーテル類、アセトン、メチルエチルケトン、ジエチルケトン等のケトン類との混合媒体が挙げられる。
 無機過酸のアルカリ金属塩が添加された水性媒体は、3以上のpHを有することが好ましい。pHが3未満だと、樹脂粒子の表面全体が均一に含窒素芳香族化合物の重合体を含む被覆層で覆われず、所望の黒色度を得られないことがある。安定して被覆されることから、3~10のpHを有することがより好ましい。
(4)界面活性剤
 また、水性媒体には界面活性剤を添加してもよい。界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、両性イオン性界面活性剤、ノニオン性界面活性剤をいずれも使用できる。
 アニオン性界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、コハクスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩等が挙げられる。
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン-オキシプロピレンブロックポリマー等が挙げられる。
 カチオン性界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩等が挙げられる。
 両性イオン界面活性剤としては、ラウリルジメチルアミンオキサイドや、リン酸エステル系又は亜リン酸エステル系界面活性剤が挙げられる。
 上記界面活性剤は、単独で又は2種以上を組み合わせて用いてもよい。界面活性剤の添加量は、水性媒体100重量部に対して0.0001~1重量部とできる。
 また、水性媒体には界面活性剤以外に高分子分散安定剤が添加されてもよい。高分子分散安定剤としては、例えば、ポリアクリル酸、その共重合体及びこれらの中和物ならびにポリメタクリル酸、その共重合体及びこれらの中和物、ポリビニルピロリドン、ヒドロキシプロピルセルロース(HPC)等が挙げられる。高分子分散安定剤は、上述の界面活性剤と併用してもよい。
(5)酸化重合
 樹脂粒子表面が含窒素芳香族化合物の重合体を含む被覆層で覆われた着色樹脂粒子は、例えば、次の方法で得ることができる。即ち、上記で紹介したシード重合法等により得られた樹脂粒子が分散された乳化液(懸濁液)及び含窒素芳香族化合物を、無機過酸のアルカリ金属塩を含む水性媒体に添加して混合物を得る。次いで、その混合物を好ましくは-20~40℃の温度において、0.5~10時間攪拌することにより、着色樹脂粒子を得ることができる。
 なお、着色樹脂粒子が分散された乳化液は、必要に応じて遠心分離されて水性媒体が除去され、水及び溶剤で洗浄された後、乾燥、単離される。
(着色樹脂粒子)
 上記の酸化重合により得られた着色樹脂粒子は、表面全体が均一に含窒素芳香族化合物の重合体を含む被覆層で覆われている。
 ここで「均一」とは、樹脂粒子を覆う含窒素芳香族化合物の重合体を含む被覆層の厚さの振れが少ないことを言う。振れは50%以下であることが好ましく、40%以下であることがより好ましい。
 被覆層の厚さは、30~300nmである。好ましくは、50~200nmである。被覆層の厚さが30nm未満であると、着色度が低く所望の防眩性が得られない場合がある。一方、300nmを超えると、光透過性が低くなってしまい、これを用いた防眩部材が設けられる表示装置の表示が暗くなってしまう場合がある。
 なお、被覆層の厚さを測定する方法及び厚さの振れの計算方法については、実施例の欄で説明する。
 着色樹脂粒子の平均粒子径は、特に限定されるものではないが、防眩性部材としての用途を考慮すると、1~10μmであることが好ましい。より好ましくは、3~7μmである。着色樹脂粒子の平均粒子径が1μm未満であると、防眩性部材に微細凹凸が形成されず所望の防眩性が得られない場合がある。一方、10μmを超えると、微細凹凸の調整が困難となり所望の防眩性が得られない場合がある。
 本発明の着色樹脂粒子は、表面全体が均一に含窒素芳香族化合物の重合体を含む被覆層で被覆されているので、この重合体に由来する所望の着色度を有する。また、粒子の表面部分のみが着色しているため、粒子の内部まで黒色である公知の黒色粒子に比べて、粒子を透過する光量が大きく低下することもない。そのため、フィルムやシートにこの着色樹脂粒子を分散することにより、安定して所望の全光線透過率を有する防眩性部材を製造できる。
(防眩性部材の製造方法の例示)
 以下に、本発明の着色樹脂粒子を用いた防眩性部材の製造方法の一例を示すが、本発明はこれに限定されるものではない。
 防眩性部材は、着色樹脂粒子とバインダー樹脂を含む混合物を透明基材樹脂に塗布することにより得られる。
(1)透明基材樹脂
 透明基材樹脂としては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロース、トリアセチルセルロース(TAC)等のセルロース系ポリマー、ポリカーボネート系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー等のポリマーからなるフィルムが挙げられる。また、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系ポリマー、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー等のポリマーからなるフィルムも挙げられる。更にイミド系ポリマー、サルホン系ポリマー、ポリエーテルサルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニルスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマーや前記ポリマーのブレンド物等のポリマーからなるフィルム等も挙げられる。特に複屈折率の少ないものが好適に用いられる。また、これらフィルムに更にアクリル系樹脂、共重合ポリエステル系樹脂、ポリウレタン系樹脂、スチレン-マレイン酸グラフトポリエステル樹脂、アクリルグラフトポリエステル樹脂等の易接着層を設けたフィルムも用いることができる。
 透明基材樹脂の厚さは、適宜に決定しうるが、一般には強度や取り扱い等の作業性、薄層性等の点より10~500μm程度である。20~300μmが好ましく、30~200μmがより好ましい。
 また、基材には添加剤を加えてもよい。添加剤としては、例えば紫外線吸収剤、赤外線吸収剤、帯電防止剤、屈折率調整剤、増強剤等が挙げられる。
(2)樹脂混合物
(2-1)バインダー樹脂
 バインダー樹脂としては、透明性、樹脂粒子分散性、耐光性、耐湿性及び耐熱性等の要求される特性に応じて、当該分野において使用されるものであれば特に限定されるものではない。バインダー樹脂としては、例えば、(メタ)アクリル系樹脂;(メタ)アクリルウレタン系樹脂;ウレタン系樹脂;ポリ塩化ビニル系樹脂;ポリ塩化ビニリデン系樹脂;メラミン系樹脂;スチレン系樹脂;アルキド系樹脂;フェノール系樹脂;エポキシ系樹脂;ポリエステル系樹脂;(メタ)アクリルシリコーン系樹脂、アルキルポリシロキサン系樹脂、シリコーン系樹脂、シリコーンアルキド系樹脂、シリコーンウレタン系樹脂、シリコーンポリエステル樹脂、シリコーンアクリル系樹脂等の変性シリコーン樹脂;ポリフッ化ビニリデン、フルオロオレフィンビニルエーテルポリマー等のフッ素系樹脂等が挙げられる。これらのバインダー樹脂は、熱可塑性でもよいし、熱硬化性樹脂、温気硬化性樹脂、紫外線硬化性樹脂、電子線硬化性樹脂等の硬化性樹脂でもよい。
 また、上記の他に合成ゴムや天然ゴム等の有機系バインダー樹脂や、無機系結着剤等を用いることもできる。有機系バインダー樹脂としては、エチレン-プロピレン共重合ゴム、ポリブタジエンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム等が挙げられる。無機系結着剤のバインダー樹脂としては、シリカゾル、アルカリ珪酸塩、シリコンアルコキシド及びそれらの(加水分解)縮合物ならびにリン酸塩等が挙げられる。これらは単独で用いられてもよいし、2種類以上が併用されてもよい。
 このようなバインダー樹脂は、樹脂組成物の耐久性を向上させる観点から、架橋反応により架橋構造を形成できる硬化性樹脂が好ましい。バインダー樹脂は、種々の硬化条件で硬化させることができる。硬化のタイプにより、紫外線硬化性樹脂、電子線硬化性樹脂等の電離放射線硬化性樹脂や熱硬化性樹脂、熱可塑性樹脂、金属アルコキシドを加水分解、脱水縮合して得られる無機系又は有機無機複合系マトリックス等を用いることができる。
 熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化型ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。
 電離放射線硬化性樹脂としては、多価アルコールのアクリル酸又はメタクリル酸エステルのような多官能性のアクリレート樹脂、ジイソシアネート、多価アルコール及びアクリル酸又はメタクリル酸のヒドロキシエステル等から合成されるような多官能のウレタンアクリレート樹脂等が挙げられる。またこれらの他にも、アクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も使用できる。
 電離放射線硬化性樹脂のうち、紫外線硬化性樹脂を用いる場合、バインダー樹脂に光重合開始剤を加える。光重合開始剤は、どのようなものを用いてもよいが、用いる樹脂にあったものを用いることが好ましい。
 光重合開始剤(ラジカル重合開始剤)としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルメチルケタールなどのベンゾインとそのアルキルエーテル類等が挙げられる。光重合開始剤の使用量は、バインダー樹脂に対して0.5~20重量%である。好ましくは1~5重量%である。
 熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニル及びその共重合体、塩化ビニル及びその共重合体、塩化ビニリデン及びその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール樹脂、アクリル樹脂及びその共重合体、メタクリル樹脂及びその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。
 無機系又は有機無機複合系マトリックスとしては、珪素アルコキシド系の材料を原料とする酸化珪素系マトリックスを用いる材料を使用できる。具体的には、テトラエトキシシラン等が挙げられる。
(2-2)有機溶剤
 樹脂混合物には、有機溶剤が含まれていてもよい。有機溶剤は、含有することによって、基材樹脂への塗工が容易になるものであれば特に限定されるものではない。例えばトルエン、キシレン等の芳香族系溶媒;メチルアルコール、エチルアルコール、n-プロピルアルコール、iso-プロピルアルコール、n-ブチルアルコール、iso-ブチルアルコール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;酢酸エチル、酢酸ブチル、セロソルブアセテート等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;2-メトキシエタノール、2-エトキシエタノール、2-ブトキエタノール、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールメチルエーテル等のグリコールエーテル類;2-メトキシエチルアセタート、2-エトキシエチルアセタート、2-ブトキシエチルアセタート、プロピレングリコールメチルエーテルアセテート等のグリコールエーテルエステル類;クロロホルム、ジクロロメタン、トリクロロメタン、塩化メチレン等の塩素系溶媒;テトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、1,3-ジオキソラン等のエーテル系溶媒;N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド等の1種又は2種以上を混合して用いることができる。
(3)樹脂混合物の基材樹脂上への形成
 樹脂混合物を基材樹脂に形成する方法としては、硬化型組成物をバーコーティング、ブレードコーティング、スピンコーティング、リバースコーティング、ダイティング、スプレーコーティング、ロールコーティング、グラビアコーティング、マイクログラビアコーティング、リップコーティング、エアーナイフコーティング、ディッピング法等の公知の塗工方法で基材樹脂に塗工した後に、必要に応じ溶剤を乾燥させ、更に活性エネルギー線を照射することにより、硬化型組成物を架橋硬化させる方法がある。前記活性エネルギー線としては、キセノンランプ、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク灯、タングステンランプ等の光源から発せられる紫外線あるいは、通常20~2000KeVのコックロフワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の電子線加速器から取り出される電子線、α線、β線、γ線等を用いることができる。このようにして形成される、着色樹脂粒子が分散された層(防眩層)の膜厚は特に限定されず、着色樹脂粒子の粒子径により適宜決定されるが、1~10μmが好ましい。より好ましくは、3~7μmである。
(防眩性部材)
 上記方法等により得られた防眩性部材は、防眩性部材を透過する光量を大きく低下させることなく、(光源である)表示装置からの後方錯乱光の増加を抑えて、表示のコントラストの低下及びぎらつきを抑えつつ、かつ(防眩性部材を設置した)表示面への外光の映り込みを防止できる。
 防眩性部材は、全光線透過量が75%以上であることが好ましい。より好ましくは、80%以上である。全光線透過量が75%未満であると、表示装置等の表示面が、防眩性部材を設置しない状態に比べて、かなり暗くなると表示装置の利用者が感じる場合がある。
 防眩性部材は、外光の映り込み防止の評価基準である45°反射光強度において、35以下であることが好ましい。より好ましくは30以下である。45°反射光強度が35を超えると、(防眩性部材を設置した表示面の)外光の映り込みが気になる程度になる場合がある。なお、45°反射光強度とは3次元光度計にて測定した入射角-45°の際の反射角45°における正反射光度である。45°反射光強度の測定方法については、実施例の欄で説明する。
 本発明の着色樹脂粒子は、表面全体が均一に含窒素芳香族化合物の重合体からなる被覆層で覆われている。そのため、重合体に由来する所望の着色度を有する。そのため、フィルムやシートにこの着色樹脂粒子を分散することにより、安定して所望の全光線透過率を有するフィルムやシートを製造できる。よって、防眩フィルム等のような防眩部材に好適に用いることができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
 先ず、実施例及び比較例中の測定方法及び計算方法について説明する。
(種粒子の平均粒子径)
 種粒子の平均粒子径は、ベックマンコールター社製のLS230型により測定される。具体的には種粒子0.1gと0.1%ノニオン性界面活性剤溶液10mを投入し、ヤマト科学社製タッチミキサーTOUCHMIXER MT-31で2秒間混合する。この後、試験管を市販の超音波洗浄器であるヴェルボクリーア社製ULTRASONIC CLEARNER VS-150を用いて10分間分散させる。分散させたものをベックマンコールター社製のLS230型にて超音波を照射しながら測定する。そのときの光学モデルは、作製した粒子の屈折率にあわせて測定される。
(樹脂粒子の平均粒子径及び変動係数)
 樹脂粒子の平均粒子径の測定は、Coulter Electronics Limited発行のReference MANUAL FOR THE COULTER MULTISIZER(1987)に従って、280μmアパチャーを用いてキャリブレーションを行う方法により行われる。測定には、精密粒度分布測定装置(ベックマンコールター社製:コールターマルチサイザーII)が用いられる。具体的には、樹脂粒子0.1gを0.1%ノニオン系界面活性剤溶液10ml中にタッチミキサー及び超音波を用いて予備分散させ、これを本体備え付けのISOTONII(ベックマンコールター社製:測定用電解液)を満たしたビーカー中に、緩く攪拌しながらスポイドで滴下して、本体画面の濃度計の示度を10%前後に合わせる。次にマルチサイザーII本体にアパチャーサイズ280μm、Currentを800、Gainを4、Polarityを+と入力してmanualで測定を行う。測定中は気泡が入らない程度にビーカー内を緩く攪拌しておき、樹脂粒子を10万個測定した点で測定を終了する。
 体積加重の平均径(体積%モードの算術平均径:体積メヂアン径)が樹脂粒子の平均粒子径(x)として算出される。
 変動係数(CV値)とは、標準偏差(σ)及び上記平均粒子径(x)から以下の式により算出された値である。
CV値(%)=(σ/x)×100
(含窒素芳香族化合物の重合体を含む被覆層の厚さ及び振れの測定方法)
 着色樹脂粒子をエポキシ樹脂で包接し、粒子の中心を通る面で2分割し、その分割面を四酸化ルテニウム(RuO4)で染色してから透過型電子顕微鏡(SEM)で観察する。四酸化ルテニウムは、含窒素芳香族化合物の重合体を含む被覆層を重合性ビニル系単量体由来の樹脂粒子よりも色濃く染色するため、被覆状態を把握し易い。分割面を面の中心を通る8本の線で分割し、均等な16個の弧に分割する。それぞれの弧において厚さの最大値と最小値を計測する。上記により計測した32点の数値から、平均厚み(x)、標準偏差(σ)を求め、以下の式により、厚さの振れ幅(%)を求める。
厚さの振れ幅(%)=(σ/x)×100
(防眩性部材の表面状態の評価)
 得られたフィルムを黒色ABS板に張り付け、三次元光度計(村上色彩研究所社製ゴニオフォトメーターGP-200)にて、入射角-45°の際の反射角45°における反射光度を測定する。
 粒子を含まないバインダー樹脂のみからなるフィルムの反射光度を100とし、粒子とバインダー樹脂からなるフィルムの反射光度を測定評価した。反射光度が低いほど光が拡散あるいは吸収し、眩しさが低減され、防眩性に優れることを意味する。具体的には、反射光度は35以下であることが好ましく、30以下がより好ましい。
(防眩性部材の全光線透過率の測定方法)
 防眩性部材の全光線透過率をヘイズメーター(日本電色社製:NDH-2000)によりにて測定する。測定条件は、JIS K 7105に準拠する。
(種粒子合成例1)
 攪拌機、温度計及び還流コンデンサーを備えたセパラブルフラスコに、イオン交換水1300g、メタクリル酸メチル(MMA)320gに分子量調整剤としての1-オクタンチオール3gを溶解させたものを投入して、攪拌しながら窒素雰囲気下で70℃に昇温した。重合開始剤としての過硫酸アンモニウム1.6gをイオン交換水300gに溶解させたものを続けて投入して、70℃で12時間攪拌し、重合反応を行った。この重合反応により、平均粒子径0.5μmのポリメチルメタクリレート粒子を含有する分散液が得られた。
 撹拌機、温度計及び還流コンデンサーを備えたセパラブルフラスコに、イオン交換水1300g、メタクリル酸メチル320gに分子量調整剤としての1-オクタンチオール3gを溶解させたものを投入した。更に、上記で得られた分散液160g加え、これを攪拌しながら窒素気流中で70℃に昇温した。重合開始剤としての過硫酸アンモニウム1.6gをイオン交換水300gに溶解させたものを続けて投入して、70℃で12時間攪拌し、重合反応を行った。この重合反応により、平均粒子径が1.1μmのポリメチルメタクリレート粒子(以下、種粒子1という)を含有する分散液が得られた。
(樹脂粒子製造例1)
 攪拌機、温度計を備えた5Lの反応器に、重合性ビニル系単量体としてメタクリル酸メチル(MMA)100g、スチレン600g、エチレングリコールジメタクリレート(EGDMA)300g、重合開始剤として2,2’-アゾビス(2-メチルブチロニトリル)6gを入れて混合した。得られた混合物と、界面活性剤としてのコハクスルホン酸ナトリウム10gを含むイオン交換水1000gとを混合し、T.Kホモミキサー(プライミクス社製)により8000rpmで10分間処理して水性乳化液を得た。この水性乳化液に種粒子1を含有する分散液360gを攪拌しながら加えた。
 3時間の攪拌後、分散液を光学顕微鏡で観察したところ、水性乳化液中の重合性ビニル系単量体が種粒子1に吸収されていることが確認できた(膨潤倍率約120倍)。その後、分散液安定剤として、ポリビニルアルコール(クラレ社製:PVA-224E)40gを溶解した水溶液2000gを反応器に更に加え、60℃で6時間攪拌しながら重合をさせた。得られた樹脂粒子(以下、樹脂粒子1という)の球換算体積平均粒子径は5.2μmであった。
(樹脂粒子製造例2)
 重合性ビニル系単量体としてアクリル酸ブチル350g、メタクリル酸ブチル350g、エチレングリコールジメタクリレート300gを用いたこと以外は樹脂粒子製造例1と同様にして樹脂粒子を得た。得られた樹脂粒子(以下、樹脂粒子2という)の球換算体積平均粒子径は5.2μmであった。
(樹脂粒子製造例3)
 攪拌機、温度計を備えた5Lの反応器に、重合性ビニル系単量体としてメタクリル酸メチル(MMA)700g、エチレングリコールジメタクリレート(EGDMA)300g、重合開始剤として2,2’-アゾビス(2-メチルブチロニトリル)6gを入れて混合した。得られた混合物と、界面活性剤としてのコハクスルホン酸ナトリウム10gを含むイオン交換水1Lとを混合し、T.Kホモミキサー(プライミクス社製)により8000rpmで10分間処理して水性乳化液を得た。この水性乳化液に種粒子1を含有する分散液360gを攪拌しながら加えた。
 3時間の攪拌後、分散液を光学顕微鏡で観察したところ、水性乳化液中の重合性ビニル系単量体が種粒子1に吸収されていることが確認できた(膨潤倍率約120倍)。その後、分散液安定剤として、ポリビニルアルコール(クラレ社製:PVA-224E)40gを溶解した水溶液2000gを反応器に更に加え、60℃で6時間攪拌しながら重合をさせた。得られた樹脂粒子(以下、樹脂粒子3という)の球換算体積平均粒子径は5.2μmであった。
(樹脂粒子製造例4)
 重合性ビニル系単量体としてメタクリル酸ブチル400g、スチレン300、エチレングリコールジメタクリレート300gを用いたこと以外は樹脂粒子製造例1と同様にして樹脂粒子を得た。得られた樹脂粒子(以下、樹脂粒子4という)の球換算体積平均粒子径は5.1μmであった。
(実施例1)
 水300gに過硫酸カリウム20gを溶解させた溶液に、50gの樹脂粒子1をイソプロパノール50gに分散させた懸濁液を添加して攪拌した。この懸濁液を5℃まで冷却し、ピロール5gとイソプロパノール50gとからなる溶液を更に加え、3時間攪拌して重合をさせた。その後、濾過により固形分を得た。固形分を取り出し、水、イソプロパノールで洗浄し、真空乾燥機により60℃で12時間乾燥を行った結果、黒色の着色樹脂粒子(以下、着色樹脂粒子1という)を得た。
 着色樹脂粒子1を透過型電子顕微鏡で観察したところ、ピロール(含窒素芳香族化合物)由来の重合体を含む被覆層の厚さは94nmであり、粒子の表面全体が均一に被覆されていることが分かった。被覆層の厚さの振れは24.6%であった。透過型電子顕微鏡による写真を図1に示す。
(実施例2)
 ピロールを2.5gとしたことを除き、実施例1と同様にして黒色の着色樹脂粒子(以下、着色樹脂粒子2という)を得た。
 着色樹脂粒子2を透過型電子顕微鏡で観察したところ、被覆層の厚さは37nmであり、粒子の表面全体が均一に被覆されていることが分かった。被覆層の厚さの振れは22.9%であった。透過型電子顕微鏡による写真を図2に示す。
(実施例3)
 樹脂粒子1に替えて、樹脂粒子2を50g用いたこと以外は実施例1と同様にして着色樹脂粒子(以下、着色樹脂粒子3という)を得た。
 着色樹脂粒子3を透過型電子顕微鏡で観察したところ、被覆層の厚さは120nmであり、厚さの振れ幅は11.9%であった。粒子の表面全体が均一に被覆されていることが分かった。透過型電子顕微鏡による写真を図3に示す。
(実施例4)
 水300gに過硫酸カリウム20gを溶解させた溶液に、50gの樹脂粒子3をイソプロパノール50gに分散させた懸濁液を添加して攪拌した。この懸濁液を5℃まで冷却し、ピロール10gとイソプロパノール50gとからなる溶液を更に加え、3時間攪拌して重合をさせ、黒色の分散液を得た。その後、濾過により固形分を得た。固形分を取り出し、水、イソプロパノールで洗浄し、真空乾燥機により60℃で12時間乾燥を行った結果、黒色の着色樹脂粒子を得た。無機過酸のアルカリ金属塩の複素環式芳香族アミン単量体に対する添加量0.5モル当量)。
 得られた着色樹脂粒子を透過型電子顕微鏡で観察したところ、被覆層の平均厚みは149nmであり、厚さの振れ幅は35.7%であって、粒子の表面全体が均一に被覆されていることが分かった。透過型電子顕微鏡による写真を図4に示す。
(実施例5)
 樹脂粒子1に替えて、樹脂粒子2を50g用いたこと以外は実施例1と同様にして着色樹脂粒子を得た。
 得られた着色樹脂粒子を透過型電子顕微鏡で観察したところ、被覆層の厚さは120nmであり、厚さの振れ幅は11.9%であった。粒子の表面全体が均一に被覆されていることが分かった。透過型電子顕微鏡による写真を図5に示す。
(実施例6)
 樹脂粒子1に替えて、樹脂粒子4を50g用いたこと以外は実施例1と同様にして着色樹脂粒子を得た。
 得られた着色樹脂粒子を透過型電子顕微鏡で観察したところ、被覆層の厚さは91nmであり、厚さの振れ幅は14.7%であった。粒子の表面全体が均一に被覆されていることが分かった。
(比較例1)
 ピロールを1.0gとしたことを除き、実施例1と同様にして薄茶色の着色樹脂粒子(以下、着色樹脂粒子4という)を得た。
 着色樹脂粒子4を透過型電子顕微鏡で観察したところ、透過型電子顕微鏡では被覆層は確認できなかった。
(比較例2)
 メタクリル酸メチル(MMA)900g、エチレングリコールジメタクリレート(EGDMA)100gにカーボンブラック100gを加えて、これをボールミルで均一に混合した混合物を得た。次いで、混合物に水3000g、分散安定剤としての第3リン酸カルシウム100gを加えて混合液を得た。この混合液をT.Kホモミキサー(プライミクス社製)にて7000rpmで10分間攪拌して、液滴径が5μmになるように調製した。次いで、混合液を65℃に加熱して攪拌しながら10時間懸濁重合を行った。重合終了後、混合液を常温まで冷却し、混合液中の着色樹脂粒子を濾過、洗浄及び乾燥の工程を経て得た。得られた着色樹脂粒子(以下、着色樹脂粒子5という)は、平均粒子径は5.1μmの黒色樹脂粒子であった。
(比較例3)
 水300gに過硫酸アンモニウム10gを溶解させた溶液に、50gの樹脂粒子2をイソプロパノール50gに分散させた懸濁液を添加して攪拌した。この懸濁液を5℃まで冷却し、ピロール5gとイソプロパノール50gとからなる溶液を更に加え、3時間攪拌して重合をさせ、黒色の分散液を得た。その後、濾過により固形分を得た。固形分を取り出し、水、イソプロパノールで洗浄し、真空乾燥機により60℃で12時間乾燥を行った結果、着色樹脂粒子を得た(無機過酸のアンモニウム塩の複素環式芳香族アミン単量体に対する添加量0.6モル当量)。
 得られた着色樹脂粒子を透過型電子顕微鏡で観察したところ、被覆層の平均厚みは178nmであり、厚さの振れ幅は54.6%であった。粒子表面に重合体で被覆されていない箇所が多数見られ、均一に被覆されているとは言えない状態であった。透過型電子顕微鏡による写真を図6に示す。
(比較例4)
 水300gに過硫酸カリウム5gを溶解させた溶液に、50gの樹脂粒子2をイソプロパノール50gに分散させた懸濁液を添加して攪拌した。この懸濁液を5℃まで冷却し、ピロール5gとイソプロパノール50gとからなる溶液を更に加え、3時間攪拌して重合をさせ、薄茶色の分散液を得た。その後、濾過により固形分を得た。固形分を取り出し、水、イソプロパノールで洗浄し、真空乾燥機により60℃で12時間乾燥を行った結果、樹脂粒子を得たが、粒子は薄茶色であり、透過型電子顕微鏡では被覆層は確認できなかった(無機過酸のアルカリ金属塩の複素環式芳香族アミン単量体に対する添加量0.25モル当量)。
 実施例1~6及び比較例1~4の結果について、表1にまとめて示す。
(防眩性部材の製造例)
 バインダー樹脂としてのアクリル樹脂(三菱レイヨン社製:BR106)100重量部を溶剤としてのトルエン400重量部に溶解したバインダー溶液に、着色樹脂粒子1を10重量部配合して、均一に分散させて塗布用組成物を調製した。この塗布用組成物を50μmのアプリケーターを用いて、厚さ100μmの基材樹脂としてのPETフィルム上に塗布して塗布膜を形成した。70℃の恒温槽で2時間乾燥によりPETフィルム上の塗布膜を乾燥させることにより防眩性部材(以下、防眩性部材1という)を得た。
 同様の製法により、着色樹脂粒子1の替わりに、着色樹脂粒子2を配合して防眩性部材2を、着色樹脂粒子3を配合して防眩性部材3を、着色樹脂粒子4を配合して防眩性部材4を、着色樹脂粒子5を配合して防眩性部材5を得た。
 防眩性部材1~5の全光線透過率及び表面状態(45°反射光強度)について、表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~6の着色樹脂粒子は、いずれも被覆層で樹脂粒子の表面全体が均一に被覆されていることが分かった。
 防眩性部材1~5の評価から、実施例1~3による本発明の着色樹脂粒子を用いて得られた防眩性部材は、透過光を大きく低減することなく、外光の映り込みを防止できる効果があることが分かった。

Claims (11)

  1.  単一又は複数種の重合性ビニル系単量体に由来する樹脂粒子と、前記樹脂粒子の表面を覆う含窒素芳香族化合物に由来する着色剤としての重合体を含む被覆層とを有し、前記被覆層が30~300nmの厚さを有する着色樹脂粒子。
  2.  前記着色樹脂粒子が、防眩性部材中の防眩層としての塗膜を構成する粒子として使用される請求項1に記載の着色樹脂粒子。
  3.  前記被覆層が、50%以下の振れに抑制された厚さを有する請求項1に記載の着色樹脂粒子。
  4.  前記含窒素芳香族化合物の重合体が、ピロール又はその誘導体の重合体である請求項1に記載の着色樹脂粒子。
  5.  前記着色樹脂粒子が、1~10μmの平均粒子径を有する請求項1に記載の着色樹脂粒子。
  6.  透明基材樹脂と、請求項1に記載の着色樹脂粒子とバインダー樹脂との塗膜とを備え、75%以上の全光線透過率を有する防眩性部材。
  7.  前記防眩性部材が、35以下の45°反射強度を有する請求項6に記載の防眩性部材。
  8.  前記塗膜が、1~10μmの膜厚を有する請求項6に記載の防眩性部材。
  9.  単一又は複数種の重合性ビニル系単量体に由来する樹脂粒子が分散された乳化液及び単量体としての含窒素芳香族化合物を、前記含窒素芳香族化合物に対して0.2~1.9モル当量の無機過酸のアルカリ金属塩を含む水性媒体に添加して得られた混合物を、-20~40℃の温度条件下で攪拌することにより、前記樹脂粒子の表面が前記含窒素芳香族化合物に由来する着色剤としての重合体を含む被覆層で覆われ、かつ前記樹脂粒子を覆う前記含窒素芳香族化合物の重合体からなる被覆層の厚さの振れが50%以下である着色樹脂粒子を得ることからなる着色樹脂粒子の製造方法。
  10.  前記含窒素芳香族化物が、前記樹脂粒子100重量部に対し1~30重量部の量で使用される請求項9に記載の着色樹脂粒子の製造方法。
  11.  前記無機過酸のアルカリ金属塩を含む水性媒体が、pH3以上である請求項9に記載の着色樹脂粒子の製造方法。
PCT/JP2011/050736 2010-09-28 2011-01-18 着色樹脂粒子、その製造方法及びその用途 WO2012042918A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137006811A KR101751720B1 (ko) 2010-09-28 2011-01-18 착색 수지 입자, 그 제조 방법 및 그 용도
CN201180046033.4A CN103119088B (zh) 2010-09-28 2011-01-18 着色树脂粒子、着色树脂粒子的制备方法及其用途
KR1020177017157A KR101959749B1 (ko) 2010-09-28 2011-01-18 착색 수지 입자, 그 제조 방법 및 그 용도

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010217725A JP2012072261A (ja) 2010-09-28 2010-09-28 着色樹脂粒子の製造方法及び該製造方法により得られた着色樹脂粒子
JP2010217732A JP5603726B2 (ja) 2010-09-28 2010-09-28 着色樹脂粒子及びその用途
JP2010-217732 2010-09-28
JP2010-217725 2010-09-28

Publications (1)

Publication Number Publication Date
WO2012042918A1 true WO2012042918A1 (ja) 2012-04-05

Family

ID=45892404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050736 WO2012042918A1 (ja) 2010-09-28 2011-01-18 着色樹脂粒子、その製造方法及びその用途

Country Status (3)

Country Link
KR (2) KR101751720B1 (ja)
CN (1) CN103119088B (ja)
WO (1) WO2012042918A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176521A1 (ja) * 2018-03-16 2019-09-19 積水化成品工業株式会社 着色有機樹脂粒子及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061374A1 (ja) * 2016-09-30 2018-04-05 積水化成品工業株式会社 導電性樹脂粒子及びその用途

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168010A (ja) * 1983-03-07 1984-09-21 バスフ アクチエンゲゼルシヤフト 導電性の粉末状ピロ−ル重合物の製法
JPS6310685A (ja) * 1986-03-27 1988-01-18 Achilles Corp 導電性複合粉粒体及びその製造方法
JPH02273407A (ja) * 1989-04-14 1990-11-07 Japan Carlit Co Ltd:The 導電性粒子およびその製造方法
JPH03234733A (ja) * 1990-02-08 1991-10-18 Lintec Corp マイクロカプセル型複合導電性材料、その製造方法及び該材料から成る導電性樹脂成形体
JPH05234417A (ja) * 1992-02-18 1993-09-10 Nippon Zeon Co Ltd 導電性成形物用プラスチゾル
JPH0652714A (ja) * 1992-07-31 1994-02-25 Japan Carlit Co Ltd:The 導電性ポリマー組成物
JPH11166049A (ja) * 1997-12-01 1999-06-22 Japan Carlit Co Ltd:The 導電性複合体の製造方法
JP2001031745A (ja) * 1999-06-04 2001-02-06 Rohm & Haas Co 電導性コポリマー組成物の調製方法
JP2003086020A (ja) * 2001-09-10 2003-03-20 Natoko Kk 導電性粒子、導電性材料、帯電防止膜、異方性導電膜、および導電性粒子の製造方法
JP2004189796A (ja) * 2002-12-09 2004-07-08 Toyo Ink Mfg Co Ltd 導電性粒子
JP2004241132A (ja) * 2003-02-03 2004-08-26 Aica Kogyo Co Ltd 導電性微粒子、導電性樹脂エマルジョンとその製造方法並びに導電性塗料組成物、導電性シート体。
JP2007254558A (ja) * 2006-03-22 2007-10-04 Toyo Ink Mfg Co Ltd 着色微粒子及びその製造方法
WO2008018339A1 (fr) * 2006-08-09 2008-02-14 Kimoto Co., Ltd. Élément anti-éblouissement, et dispositif d'affichage et écran l'incorporant
WO2010095650A1 (ja) * 2009-02-17 2010-08-26 綜研化学株式会社 複合導電性高分子組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168010A (ja) * 1983-03-07 1984-09-21 バスフ アクチエンゲゼルシヤフト 導電性の粉末状ピロ−ル重合物の製法
JPS6310685A (ja) * 1986-03-27 1988-01-18 Achilles Corp 導電性複合粉粒体及びその製造方法
JPH02273407A (ja) * 1989-04-14 1990-11-07 Japan Carlit Co Ltd:The 導電性粒子およびその製造方法
JPH03234733A (ja) * 1990-02-08 1991-10-18 Lintec Corp マイクロカプセル型複合導電性材料、その製造方法及び該材料から成る導電性樹脂成形体
JPH05234417A (ja) * 1992-02-18 1993-09-10 Nippon Zeon Co Ltd 導電性成形物用プラスチゾル
JPH0652714A (ja) * 1992-07-31 1994-02-25 Japan Carlit Co Ltd:The 導電性ポリマー組成物
JPH11166049A (ja) * 1997-12-01 1999-06-22 Japan Carlit Co Ltd:The 導電性複合体の製造方法
JP2001031745A (ja) * 1999-06-04 2001-02-06 Rohm & Haas Co 電導性コポリマー組成物の調製方法
JP2003086020A (ja) * 2001-09-10 2003-03-20 Natoko Kk 導電性粒子、導電性材料、帯電防止膜、異方性導電膜、および導電性粒子の製造方法
JP2004189796A (ja) * 2002-12-09 2004-07-08 Toyo Ink Mfg Co Ltd 導電性粒子
JP2004241132A (ja) * 2003-02-03 2004-08-26 Aica Kogyo Co Ltd 導電性微粒子、導電性樹脂エマルジョンとその製造方法並びに導電性塗料組成物、導電性シート体。
JP2007254558A (ja) * 2006-03-22 2007-10-04 Toyo Ink Mfg Co Ltd 着色微粒子及びその製造方法
WO2008018339A1 (fr) * 2006-08-09 2008-02-14 Kimoto Co., Ltd. Élément anti-éblouissement, et dispositif d'affichage et écran l'incorporant
WO2010095650A1 (ja) * 2009-02-17 2010-08-26 綜研化学株式会社 複合導電性高分子組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176521A1 (ja) * 2018-03-16 2019-09-19 積水化成品工業株式会社 着色有機樹脂粒子及びその製造方法
KR20200132863A (ko) 2018-03-16 2020-11-25 세키스이가세이힝코교가부시키가이샤 착색 유기 수지 입자 및 그 제조 방법
JPWO2019176521A1 (ja) * 2018-03-16 2021-03-11 積水化成品工業株式会社 着色有機樹脂粒子及びその製造方法
JP7254766B2 (ja) 2018-03-16 2023-04-10 積水化成品工業株式会社 着色有機樹脂粒子及びその製造方法
KR102522761B1 (ko) 2018-03-16 2023-04-17 세키스이가세이힝코교가부시키가이샤 착색 유기 수지 입자 및 그 제조 방법

Also Published As

Publication number Publication date
KR101959749B1 (ko) 2019-03-19
KR101751720B1 (ko) 2017-06-28
KR20170075813A (ko) 2017-07-03
CN103119088A (zh) 2013-05-22
KR20140009122A (ko) 2014-01-22
CN103119088B (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
JP6612417B2 (ja) 重合体粒子及びその用途
JP5603726B2 (ja) 着色樹脂粒子及びその用途
JP6668489B2 (ja) 重合体粒子分散液及びそれに用いる重合体粒子、分散剤及び分散媒体、並びにそれらの用途
WO2012042918A1 (ja) 着色樹脂粒子、その製造方法及びその用途
JP5492613B2 (ja) 光学シート
JP2021183692A (ja) 重合体粒子及びその用途
JP2013202836A (ja) 保護シート及び映像表示装置
JP5308779B2 (ja) 重合体粒子集合体、その製造方法、光拡散剤及び光拡散性樹脂組成物
JPWO2016159175A1 (ja) 重合体粒子、重合体粒子の製造方法、及びその用途
JP6231030B2 (ja) 重合体粒子、重合体粒子の製造方法、及びその用途
JP2009191236A (ja) 架橋樹脂粒子及びそれを用いた光学シート
JP2012072261A (ja) 着色樹脂粒子の製造方法及び該製造方法により得られた着色樹脂粒子
JP6650857B2 (ja) 重合体粒子並びにその製造方法及び用途
JP2007099837A (ja) 樹脂微粒子及び表示装置用アクリル樹脂フィルム
JP5509116B2 (ja) 複合粒子、光学シート、及び、複合粒子の製造方法
JP2011190325A (ja) 異形ウレタン系樹脂粒子、その製造方法及び光拡散フィルム
KR20160113564A (ko) 중합체 입자, 중합체 입자의 제조 방법 및 그 용도
KR20160079391A (ko) 중합체 입자, 중합체 입자의 제조 방법 및 그 용도
JP2008239791A (ja) 樹脂粒子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046033.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137006811

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828482

Country of ref document: EP

Kind code of ref document: A1