WO2012042755A1 - 帯電部材、プロセスカートリッジおよび電子写真装置 - Google Patents

帯電部材、プロセスカートリッジおよび電子写真装置 Download PDF

Info

Publication number
WO2012042755A1
WO2012042755A1 PCT/JP2011/004993 JP2011004993W WO2012042755A1 WO 2012042755 A1 WO2012042755 A1 WO 2012042755A1 JP 2011004993 W JP2011004993 W JP 2011004993W WO 2012042755 A1 WO2012042755 A1 WO 2012042755A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural formula
independently
charging member
carbon atoms
group
Prior art date
Application number
PCT/JP2011/004993
Other languages
English (en)
French (fr)
Inventor
雄也 友水
黒田 紀明
典子 長嶺
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to EP11828322.5A priority Critical patent/EP2624062A4/en
Priority to CN201180046556.9A priority patent/CN103124932B/zh
Priority to KR1020137009951A priority patent/KR101454137B1/ko
Priority to US13/371,200 priority patent/US8501325B2/en
Publication of WO2012042755A1 publication Critical patent/WO2012042755A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/337Polymers modified by chemical after-treatment with organic compounds containing other elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0208Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
    • G03G15/0216Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus by bringing a charging member into contact with the member to be charged, e.g. roller, brush chargers
    • G03G15/0233Structure, details of the charging member, e.g. chemical composition, surface properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31667Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product

Definitions

  • the present invention relates to a charging unit used in an electrophotographic apparatus, a process cartridge using the same, and an electrophotographic apparatus.
  • the charging member that contacts the electrophotographic photosensitive member and charges the photosensitive member has an elastic layer containing rubber in order to secure a nip width between the photosensitive member and the charging member. Since such an elastic layer usually contains a low molecular weight component, the low molecular weight component may bleed on the surface of the charging member and adhere to the surface of the photoreceptor when used for a long time. Then, streaky unevenness may appear in the electrophotographic image formed using the photoconductor to which the low molecular weight component is attached. Such a phenomenon is particularly prominent when an electrophotographic image is formed using an electrophotographic apparatus placed in a stopped state for a long time in a high temperature and high humidity environment.
  • Patent Document 1 discloses a charging in which the peripheral surface of the elastic layer is covered with an organic-inorganic hybrid coating to suppress bleeding of the low molecular weight component to the surface. A roll is disclosed.
  • the present inventors examined the charging roll provided with the organic-inorganic hybrid coating described in Patent Document 1, the organic-inorganic hybrid coating had a low crosslinking density. This seems to be because the organic-inorganic hybrid coating attaches importance to flexibility. Therefore, it has been recognized that the film thickness of the organic-inorganic hybrid coating needs to be submicron or more in order to reliably suppress bleeding of low molecular weight components.
  • the surface layer of the charging member is preferably thin. Also, in order to form a surface layer with a uniform thickness, it is preferable that the surface layer is thin.
  • an object of the present invention is to provide a charging member provided with a surface layer that can more surely suppress the seepage of a low molecular weight component from an elastic layer.
  • Another object of the present invention is to provide a process cartridge and an electrophotographic apparatus that can stably form a high-quality electrophotographic image.
  • the present invention has a substrate, an elastic layer, and a surface layer, the surface layer has a Si—O—Ta bond, and a structural unit represented by the following structural formula (1) and the following structure
  • a charging member containing a polymer compound having a structural unit represented by the formula (2) is provided:
  • R 1 and R 2 each independently represents any one of the structural formulas (3) to (6).
  • R 3 to R 7 , R 10 to R 14 , R 19 , R 20 , R 25 and R 26 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • R 8 , R 9 , R 15 to R 18 , R 23 , R 24 and R 29 to R 32 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • R 21 , R 22 , R 27 and R 28 each independently represent hydrogen, oxygen, an alkoxy group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms n, m, l, q , S and t are each independently an integer of 1 or more and 8 or less, p and r are each independently an integer of 4 or more and 12 or less, x and y are each independently 0 or 1
  • the symbol “*” represents the bonding site to the silicon atom in the structural formula (1), and the symbol “**” represents the bonding portion to the oxygen atom in the structural formula (1).
  • a process cartridge comprising the charging member and an electrophotographic photosensitive member disposed in contact with the charging member and configured to be detachable from the main body of the electrophotographic apparatus.
  • an electrophotographic apparatus comprising the charging member and an electrophotographic photosensitive member disposed in contact with the charging member.
  • the present invention it is possible to obtain a charging member having a surface layer that can more reliably suppress bleeding even with a thin film thickness.
  • FIG. 1 is a configuration diagram of an electrophotographic apparatus according to the present invention.
  • 2 is a 17 O-NMR spectrum of the condensate prepared in Example 1.
  • 2 is a 29 Si-NMR spectrum of a cured film formed from the coating material for forming a surface layer prepared in Example 1.
  • FIG. 3 is a 13 C-NMR spectrum of a cured film formed from the surface layer-forming paint prepared in Example 1.
  • FIG. It is explanatory drawing of the crosslinking reaction in the formation process of the surface layer which concerns on this invention. It is a figure which shows the chemical structure of the high molecular compound which concerns on this invention. It is a figure which shows the chemical structure of the high molecular compound which concerns on this invention.
  • FIG. 1 is a cross-sectional view in a direction perpendicular to the axis of a charging member (charging roller) having a roller shape according to the present invention.
  • This charging roller has a structure in which an elastic layer 102 and a surface layer 103 are sequentially laminated on a substrate 101. Other layers may exist between the base and the elastic layer. *
  • a substrate such as iron, copper, stainless steel, aluminum, nickel, or an alloy thereof can be used.
  • Rubbers and thermoplastic elastomers used for the elastic layer of conventional charging members can be used alone or in combination of two or more. Specific examples of rubber are given below. Urethane rubber, silicone rubber, butadiene rubber, isoprene rubber, chloroprene rubber, styrene-butadiene rubber, ethylene-propylene rubber, polynorbornene rubber. Styrene-butadiene-styrene rubber, acrylonitrile rubber, epichlorohydrin rubber, or alkyl ether rubber.
  • thermoplastic elastomers examples include styrene elastomers and olefin elastomers.
  • examples of commercially available styrene-based elastomers include “Lavalon” manufactured by Mitsubishi Chemical Corporation and “Septon Compound” manufactured by Kuraray Co., Ltd.
  • examples of commercially available olefin elastomers include the following. The product name “Thermo Run” manufactured by Mitsubishi Chemical Corporation, the product name “Milastomer” manufactured by Mitsui Petrochemical Industry Co., Ltd., the product name “Sumitomo TPE” manufactured by Sumitomo Chemical Co., Ltd., and the product manufactured by Advanced Elastomer Systems Co., Ltd. Name “Santplane”.
  • the elastic layer is configured to have a predetermined conductivity by appropriately using a conductive agent.
  • a conductive agent As a standard of the electric resistance value of the elastic layer, it is 10 2 ⁇ or more and 10 8 ⁇ or less, and particularly 10 3 ⁇ or more and 10 6 ⁇ or less.
  • the conductive agent used for the elastic layer include a cationic surfactant, an anionic surfactant, an amphoteric surfactant, an antistatic agent, and an electrolyte.
  • the elastic layer preferably has an Asker C of 70 degrees or more, more preferably 73 degrees or more, from the viewpoint of suppressing deformation of the charging member when the charging member and the photosensitive member are brought into contact with each other. It is 92 degrees or less.
  • the elastic layer that determines the shape of the charging member preferably has a so-called crown shape in which the thickness of the central portion is larger than the thickness of the end portion.
  • the surface layer includes a high molecular compound having a Si—O—Ta bond and having a structural unit represented by the following structural formula (1) and a structural unit represented by the following structural formula (2).
  • R 1 and R 2 each independently represents any one of structural formulas (3) to (6).
  • R 3 to R 7 , R 10 to R 14 , R 19 , R 20 , R 25 and R 26 are each independently hydrogen, a straight chain having 1 to 4 carbon atoms or A branched alkyl group, carbonyl group, hydroxyl group, carboxyl group or amino group is shown.
  • R 8 , R 9 , R 15 to R 18 , R 23 , R 24 and R 29 to R 32 each independently represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • R 21 , R 22 , R 27 and R 28 each independently represent hydrogen, oxygen, an alkoxy group having 1 to 4 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • n, m, l, q, s, and t each independently represent an integer of 1 or more and 8 or less.
  • p and r each independently represents an integer of 4 or more and 12 or less.
  • x and y each independently represents 0 or 1.
  • the symbol “*” represents the bonding site to the silicon atom in the structural formula (1), and the symbol “**” represents the bonding site to the oxygen atom in the structural formula (1).
  • FIG. 7A shows a part of the structure when R 1 in Structural Formula (1) is represented by Structural Formula (3) and R 2 is represented by Structural Formula (4).
  • FIG. 7B shows part of the structure when R 1 in Structural Formula (1) is represented by Structural Formula (3) and R 2 is represented by Structural Formula (6). Show.
  • the above polymer compound has a very dense cross-linked structure due to the Si—O—Ta bond. ing. Therefore, the surface layer containing such a polymer compound can highly suppress bleeding even when the film thickness is thin.
  • R 1 and R 2 are preferably each independently selected from structures represented by the following structural formulas (7) to (10).
  • the surface layer can be made stronger and more durable.
  • the structure containing an ether group represented by the following structural formula (8) or (10) can further improve the adhesion of the surface layer to the elastic layer.
  • N, M, L, Q, S, and T are each independently an integer of 1 or more and 8 or less, and x ′ and y ′ each independently represent 0 or 1 .
  • the symbol “*” represents the bonding site to the silicon atom in the structural formula (1), and the symbol “**” represents the bonding site to the oxygen atom in the structural formula (1).
  • the atomic ratio of tantalum and silicon (Ta / Si) contained in the polymer compound is preferably 0.1 or more and 5.0 or less.
  • Ta / Si is within the above numerical range, weakening of the polymer compound can be suppressed.
  • the surface layer containing such a high molecular compound can more reliably suppress bleeding of low molecular weight components from the elastic layer, and has excellent durability.
  • the polymer compound according to the present invention is obtained by subjecting a hydrolyzable silane compound represented by the following structural formula (11) and a hydrolyzable tantalum compound represented by the following structural formula (12) to dehydration condensation to produce a hydrolysis condensate. Get. Thereafter, a radically polymerizable group possessed by the hydrolyzed condensate, for example, an epoxy group is reacted to form a crosslink to obtain a crosslink. Condensation can be performed by mixing these hydrolyzable compounds and heating appropriately.
  • R 33 represents any one selected from the structures represented by the following structural formulas (13) to (16).
  • R 34 to R 36 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • R 37 to R 41 each independently represents an alkyl group having 1 to 9 carbon atoms.
  • R 42 to R 44 , R 47 to R 49 , R 54 , R 55 , R 60 and R 61 are each independently hydrogen, a straight chain having 1 to 4 carbon atoms. Or a branched alkyl group, a hydroxyl group, a carbonyl group, a carboxyl group, a chlorocarbonyl group or an amino group.
  • R 45 , R 46 , R 50 to R 53 , R 58 , R 59 and R 64 to R 67 each independently represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • R 56 , R 57 , R 62 and R 63 each independently represent hydrogen, an alkoxy group having 1 to 4 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • CR 45 R 46 , CR 50 R 51 , CR 52 R 53 , CR 58 R 59 , CR 64 R 65 , CR 66 R 67 may be a carbonyl group.
  • in at least any two carbons in R 42 , R 43 , R 44 , or (CR 45 R 46 ) n ′ , in R 47 , R 48 , R 49 , or (CR 50 R 51 ) m ′ At least any two of the carbons may together form a cycloalkane.
  • R 54 and R 55 , or R 60 and R 61 may jointly form a cycloalkane.
  • n ′, m ′, l ′, q ′, s ′ and t ′ each independently represent an integer of 1 or more and 8 or less.
  • p ′ and r ′ each independently represent an integer of 4 or more and 12 or less.
  • the symbol “*” indicates the bonding position with the silicon atom in the structural formula (11).
  • the polymer compound is a crosslinked product of a hydrolysis condensate of a hydrolyzable compound represented by structural formulas (11) and (12) and a hydrolyzable silane compound represented by structural formula (17) below. Is preferred.
  • a cross-linked product can improve the electrical properties as the solubility and coating properties of the formulas (11) and (12) at the synthesis stage, and the film physical properties after curing.
  • R 68 is an alkyl group having 1 to 21 carbon atoms, it is preferable for improving solubility and coatability.
  • R 68 is a phenyl group, it contributes to improvement of electrical characteristics, particularly volume resistivity, which is preferable.
  • R 68 represents an alkyl group having 1 to 21 carbon atoms or a phenyl group
  • R 69 to R 71 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • R 68 represents an alkyl group having 1 to 21 carbon atoms or a phenyl group
  • R 69 to R 71 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • R 68 represents an alkyl group having 1 to 21 carbon atoms or a phenyl group
  • R 69 to R 71 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • R 68 represents an alkyl group having 1 to 21 carbon atoms or a phenyl group
  • R 69 to R 71 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • R 68 represents an alkyl group having 1 to 21 carbon
  • the above polymer compound may be prepared by preparing a coating for forming a surface layer containing such a hydrolyzable condensate, coating it to form a coating film, and then performing a crosslinking reaction to obtain a crosslinked product. it can.
  • the coating material for forming the surface layer can be prepared by the following steps.
  • a tantalum compound (C) is prepared.
  • Step Hydrolyzable silane compound (A) and hydrolyzable silane compound (B) are mixed, water (D) and alcohol (E) are added, and hydrolysis / condensation is performed by heating under reflux. A condensate of a decomposable silane compound is obtained.
  • the hydrolyzable silane compound (B) may be used as necessary, and the hydrolyzable tantalum compound (C) is added simultaneously with the hydrolyzable compound (A) and the like.
  • the step can be omitted.
  • hydrolyzable silane compound (B) examples are shown below. These can be used alone or in combination of two or more.
  • hydrolyzable tantalum compound (C) examples are shown below. These can be used alone or in combination of two or more.
  • hydrolyzable silane compound (A), hydrolyzable silane compound (B), and hydrolyzable tantalum compound (C) preferably satisfies the formula (20) in terms of molar ratio.
  • A represents the number of moles of the hydrolyzable silane compound (A) represented by the formula (11).
  • B represents the number of moles of the hydrolyzable silane compound (B) represented by the formula (17).
  • C represents the number of moles of the hydrolyzable tantalum compound (C) represented by the formula (17). If the value of C / (A + B) is 0.1 or more, a surface layer having a high crosslinking density and a high bleeding effect can be obtained, and if it is 5.0 or less, the surface layer forming paint is cloudy. And precipitation can be suppressed and storage stability can be improved. Furthermore, it is preferable to satisfy Formula (21).
  • the amount of water (D) added is the ratio of the number of moles of water D to the total number of moles (A + B) of the hydrolyzable silane compounds (A) and (B), Ror (D / ( A + B)) is preferably 0.3 or more and 6.0 or less. Ror is more preferably 1.2 or more and 3.0 or less. If Ror is 0.3 or more, the condensation reaction is sufficiently carried out to suppress the remaining unreacted monomer, and a film having a high crosslinking density can be obtained. If Ror is 6.0 or less, the condensation reaction rate is high, and it is possible to suppress the formation of white turbidity and precipitation in the surface layer-forming coating material. Can be suppressed.
  • Alcohol (E) is used to make the silane tantalum condensate compatible.
  • the alcohol (E) a primary alcohol, a secondary alcohol, a tertiary alcohol, a mixed system of a primary alcohol and a secondary alcohol, or a mixed system of a primary alcohol and a tertiary alcohol is used. Is preferred.
  • the alcohol ethanol, a mixed solution of methanol and 2-butanol, and a mixed solution of ethanol and 2-butanol are particularly preferable from the viewpoint of compatibility with the condensate and coating properties.
  • the process photopolymerization initiator (G) is used for crosslinking the silane tantalum condensate.
  • the photopolymerization initiator (G) Lewis acid or Bronsted acid onium salts and cationic polymerization catalysts may be used.
  • the cationic polymerization catalyst include borate salts, imide compounds, triazine compounds, azo compounds, and peroxides.
  • an aromatic sulfonium salt or an aromatic iodonium salt is preferable from the viewpoints of sensitivity, stability, and reactivity.
  • Particularly preferred cationic polymerization catalysts include bis (4-tert-butylphenyl) iodonium salt and a compound represented by formula (18) (trade name: Adekaoptomer-SP150, manufactured by Asahi Denka Kogyo Co., Ltd.).
  • a compound represented by the formula (19) (trade name: Irgacure 261, manufactured by Ciba Specialty Chemicals) can also be suitably used.
  • the photopolymerization initiator (G) is preferably used by previously dissolving it in a solvent such as alcohol or ketone, for example, methanol or methyl isobutyl ketone, in order to improve the compatibility with the coating material for forming the surface layer.
  • a solvent such as alcohol or ketone, for example, methanol or methyl isobutyl ketone
  • the surface layer-forming paint is adjusted to a concentration suitable for coating using a solvent in order to improve the coatability.
  • a solvent examples include alcohols such as ethanol, methanol and 2-butanol, and ketones such as ethyl acetate, methyl ethyl ketone and methyl isobutyl ketone, and these can also be used as a mixture.
  • a mixed solution of ethanol and 2-butanol is preferable.
  • methods such as coating using a roll coater, dip coating, and ring coating can be used.
  • the silane tantalum condensate is cross-linked in the coating film formed by applying the surface layer-forming paint on the elastic layer by the above method.
  • Crosslinking can be formed by irradiating an active energy ray and cleaving and polymerizing an epoxy group in the silane tantalum condensate with a photopolymerization initiator (G).
  • the active energy ray to be used ultraviolet rays are preferable because radicals of the photopolymerization initiator (G) can be generated at low temperatures and the crosslinking reaction can proceed.
  • the crosslinking reaction By allowing the crosslinking reaction to proceed at a low temperature, it is possible to suppress the rapid volatilization of the solvent from the coating film, to prevent phase separation and wrinkle generation in the coating film, and to provide a surface layer with high adhesion strength to the elastic layer. Can be formed.
  • the surface layer with high adhesion strength to the elastic layer is used when the charging member is used in an environment where changes in temperature and humidity are abrupt, and even if the volume of the elastic layer fluctuates due to changes in temperature and humidity, it suppresses the occurrence of wrinkles and cracks can do.
  • the thermal deterioration of the elastic layer can be suppressed during the progress of the crosslinking reaction, it is also possible to suppress a decrease in the electrical characteristics of the elastic layer in the manufacturing process.
  • a supply source of ultraviolet rays a high pressure mercury lamp, a metal halide lamp, a low pressure mercury lamp, an excimer UV lamp, or the like can be used, and among these, those that supply ultraviolet rays having a wavelength of 150 nm or more and 480 nm or less are preferable.
  • the ultraviolet rays can be irradiated by adjusting the supply amount according to the irradiation time, lamp output, and the distance between the lamp and the surface layer, and the irradiation amount of the ultraviolet rays can be graded within the irradiation time.
  • the integrated light quantity of ultraviolet rays can be selected as appropriate.
  • the cumulative amount of ultraviolet light can be obtained from the following equation.
  • UV integrated light quantity [mJ / cm 2 ] UV intensity [mW / cm 2 ] ⁇ irradiation time [s]
  • the integrated light amount of ultraviolet rays can be measured using an ultraviolet integrated light amount meter UIT-150-A or UVD-S254 (both trade names) manufactured by USHIO INC.
  • the integrated light amount of ultraviolet rays can be measured using an ultraviolet integrated light amount meter UIT-150-A or VUV-S172 (both trade names) manufactured by Ushio Electric Co., Ltd.
  • the thickness of the surface layer thus formed is preferably 10 nm or more and 100 nm or less. By controlling the thickness within the above range, the effect of suppressing bleeding of low molecular weight components from the elastic layer can be more reliably obtained. In addition, it is possible to suppress uneven application of the coating material for forming the surface layer when forming the surface layer, and to form a uniform coating film. Moreover, it is preferable also in terms of appearance and cost.
  • the molar ratio of the hydrolyzable silane compound (A), hydrolyzable silane compound (B), and hydrolyzable tantalum compound (C) satisfies the formula (20). In this case, it is preferably more than 50% and 75% or less.
  • DC is an index representing the degree of condensation with respect to all groups bonded to the silicon atom, and is calculated using the formula (22).
  • n is the number of hydrolyzable functional groups of the hydrolyzable silane compound, for example, alkoxy groups, and is 3 in the case of the hydrolyzable silane compounds (A) and (B), If ⁇ is represented by T, it can be obtained from equation (23).
  • T 0 to T 3 represent component amounts in which the number of hydrolyzed portions condensed with the hydrolyzable silane compound is 0 to 3, respectively. If DC exceeds 50%, a dense film having a high bleeding suppression effect can be obtained. When all the functional groups of the silane compound having the hydrolyzable functional group 3 are condensed, the condensation rate is 75%. When the condensation rate exceeds 75%, the paint has a high viscosity, resulting in poor coating properties, white turbidity, or separation.
  • a silane tantalum condensate obtained by hydrolyzing 3-glycidoxypropyltrimethoxysilane and a hydrolyzable tantalum compound (C) as the component (A) is used as a group capable of cationic polymerization.
  • the epoxy group of such a silane tantalum condensate undergoes chain polymerization in the presence of a cationic polymerization catalyst (described as R + X ⁇ in FIG. 6), and the polymerization proceeds in a chain manner.
  • n represents an integer of 1 or more.
  • FIG. 1 An example of an electrophotographic apparatus provided with a process cartridge having a charging member according to the present invention is shown in FIG.
  • the cylindrical electrophotographic photosensitive member 1 is disposed in contact with the charging member 3 (roller-shaped charging member in FIG. 2) of the present invention, and is driven to rotate at a predetermined peripheral speed around the shaft 2 in the arrow direction. Is done.
  • the surface of the electrophotographic photosensitive member 1 that is driven to rotate is uniformly charged to a predetermined positive or negative potential by the charging member 3.
  • exposure light (image exposure light) 4 output from exposure means (not shown) such as slit exposure or laser beam scanning exposure
  • the surface of the electrophotographic photoreceptor 1 is subjected to static corresponding to the target image.
  • An electrostatic latent image is formed.
  • a voltage of only a DC voltage or a voltage obtained by superimposing an AC voltage on the DC voltage is applied to the charging member 3 from a voltage applying means (not shown).
  • a voltage ( ⁇ 1000 V) of only DC voltage was applied to the charging member.
  • the dark portion potential was ⁇ 500 V and the light portion potential was ⁇ 150 V.
  • the electrostatic latent image formed on the surface of the photoreceptor 1 is developed (reversal development or normal development) with toner contained in the developer of the developing unit 5 to become a toner image.
  • the developing means include jumping developing means, contact developing means or magnetic brush means, but from the viewpoint of improving toner scattering, contact developing means are preferred.
  • contact developing means is used. Adopted.
  • the toner image formed on the surface of the electrophotographic photosensitive member 1 is sequentially transferred onto a transfer material (such as paper) P by a transfer bias from a transfer unit (such as a transfer roller) 6.
  • the transfer material P is taken out and supplied from a transfer material supply means (not shown) to a contact portion between the electrophotographic photoreceptor 1 and the transfer means 6 in synchronization with the rotation of the electrophotographic photoreceptor 1.
  • the transfer material P onto which the toner image has been transferred is separated from the surface of the photoreceptor 1, introduced into the fixing unit 8, and subjected to image fixing, thereby being printed out as an image formed product (print, copy).
  • the surface of the photosensitive member 1 is cleaned by a cleaning means (cleaning blade or the like) 7 to remove the transfer residual developer (toner). Further, after being subjected to charge removal processing by pre-exposure light (not shown) from a pre-exposure means (not shown), it is repeatedly used for image formation.
  • pre-exposure is not always necessary.
  • the process cartridge of the present invention includes the above-described photoreceptor 1 and the charging member 3, and is configured by integrally connecting other means selected from the developing means 5, the transfer means 6, the cleaning means 7, and the like. can do.
  • the process cartridge is configured to be detachable from an electrophotographic apparatus main body such as a copying machine or a laser beam printer.
  • the electrophotographic photosensitive member 1, the charging member 3, the developing unit 5, and the cleaning unit 7 are integrally supported to form a process cartridge 9. This is detachably attached to the main body of the electrophotographic apparatus using guide means 10 such as a rail of the main body of the electrophotographic apparatus.
  • the mixture was heated to reflux at 120 ° C. for 20 hours to obtain a condensate intermediate 1.
  • the concentration of the condensate intermediate 1 was 28.0% by mass as a solid content (mass ratio based on the total weight of the solution assuming that all hydrolyzable silane compounds were dehydrated and condensed).
  • the cured film of the coating liquid 1 was formed by the following procedures, the chemical structure was analyzed, and the degree of condensation (DC%) was calculated. That is, the coating liquid 1 was applied on a degreased aluminum sheet having a thickness of 100 ⁇ m. After drying, UV light with a wavelength of 254 nm was irradiated using a low-pressure mercury lamp (Harrison Toshiba Lighting Co., Ltd.) so that the integrated light amount was 9000 mJ / cm 2 , and the coating solution 1 was crosslinked and cured to obtain a cured film. . The obtained cured film was scraped off with a glass plate and pulverized using an agate mortar to prepare a sample powder for measurement.
  • DC% degree of condensation
  • This sample was measured for 29 Si-NMR spectrum using a nuclear magnetic resonance apparatus (JMN-EX400 JEOL).
  • the obtained spectrum data is shown in FIG.
  • the peak at ⁇ 46 to ⁇ 40 ppm is the T 0 component
  • the peak at ⁇ 55 to ⁇ 47 ppm is the T 1 component
  • the peak at ⁇ 61 to ⁇ 54 ppm is the T 2 component
  • the peak at ⁇ 71 to ⁇ 61 ppm is T 3 component.
  • the T 3 component indicates a state in which a silicon atom having one bond with an organic group has three bonds with another silicon atom or a tantalum atom via an oxygen atom.
  • the degree of condensation of the hydrolyzable functional group bonded to Si was measured from the formula (23).
  • the 13 C-NMR spectrum of the sample was measured. The obtained spectrum is shown in FIG. From this spectrum, it was confirmed that no epoxy group was present in the cured film and all the epoxy groups were ring-opened. From the above, in the cured film formed from the coating liquid 1, all the epoxy groups in the raw material glycidoxypropylethoxysilane compound are ring-opened and crosslinked, and —SiO 3 / It was confirmed that it had two structural units. This evaluation 3 was confirmed in the same manner in the examples described later.
  • the left and right turn-over was performed 20 times in total with a front roll rotation speed of 8 rpm, a rear roll rotation speed of 10 rpm, and a roll gap of 2 mm. Thereafter, the roll gap was set to 0.5 mm and thinning was performed 10 times to obtain a kneaded product I for an elastic layer.
  • thermosetting adhesive (trade name: METALOC U) containing metal and rubber in a region up to 115.5 mm on both sides across the center of the cylindrical surface in the axial direction of the support (a region having an axial width of 231 mm).
  • METALOC U thermosetting adhesive
  • -20 manufactured by Toyo Chemical Laboratory Co., Ltd. This was dried at a temperature of 80 ° C. for 30 minutes, and further dried at a temperature of 120 ° C. for 1 hour.
  • the kneaded product I was extruded into a cylindrical shape having an outer diameter of 8.75 to 8.90 mm coaxially around the core metal with an adhesive layer by extrusion molding using a cross head, and the end portion was cut.
  • An elastic roller 1 in which an unvulcanized elastic layer was laminated on the outer periphery of the core metal was produced.
  • the roller 1 was vulcanized using a continuous heating furnace having two zones with different temperature settings.
  • the first zone was set at a temperature of 80 ° C. and allowed to pass in 30 minutes
  • the second zone was set at a temperature of 160 ° C. and this was also allowed to pass for 30 minutes to obtain a vulcanized elastic roller 2.
  • both ends of the elastic layer portion (rubber portion) of the elastic roller 2 before surface polishing were cut so that the axial width of the elastic layer portion was 232 mm.
  • the surface of the elastic layer portion was polished with a rotating grindstone (work rotation speed 333 rpm, grindstone rotation speed 2080 rpm, polishing time 12 sec).
  • the crown shape has an end diameter of 8.26 mm and a center diameter of 8.50 mm, the surface 10-point average roughness (Rz) is 5.5 ⁇ m, the deflection is 18 ⁇ m, and the hardness is 73 degrees (Asker C )
  • Elastic roller 3 (elastic roller after surface polishing).
  • the ten-point average roughness (Rz) was measured according to JISB0601 (1994).
  • the shake was measured using a high-precision laser measuring machine LSM-430v manufactured by Mitutoyo Corporation.
  • the outer diameter is measured using the measuring device, and the difference between the maximum outer diameter value and the minimum outer diameter value is defined as the outer diameter difference run. This measurement is performed at five points, and the average of the five outer diameter difference runs is measured. The value was the runout of the object to be measured.
  • the Asker C hardness is measured in a temperature of 25 ° C. and a relative humidity of 55% RH by bringing a pusher of an Asker C-type hardness meter (manufactured by Kobunshi Keiki Co., Ltd.) into contact with the surface of the object to be measured. Performed under conditions.
  • Each of the surface layer-forming paints 1-1 to 1-7 is applied to the peripheral surface of the elastic layer of the seven elastic rollers 3 by ring application (discharge amount: 0.120 ml / s, moving speed of the ring portion relative to the elastic roller: 85 mm / s, total discharge amount: 0.130 ml).
  • the surface layer is formed by irradiating the coating film of each surface layer coating material with ultraviolet light having a wavelength of 254 nm so that the integrated light quantity becomes 9000 mJ / cm 2 and curing the coating film.
  • a low-pressure mercury lamp manufactured by Harrison Toshiba Lighting Co., Ltd.
  • the following evaluations were performed on the obtained charging rollers 1-1 to 1-7.
  • the charging rollers 1-1 to 1-7 were incorporated in a process cartridge that is integrally supported together with the photosensitive member. At this time, a total load of 1 kg was applied to the charging roller. Then, it was left for 30 days under high temperature and high humidity (temperature 40 ° C., humidity 95% RH). Next, the process cartridge was left for 72 hours at room temperature and normal humidity (temperature 25 ° C., humidity 50% RH). This process cartridge was loaded into a laser beam printer (trade name: Color LaserJet 4700 Printer, manufactured by HP) capable of outputting A4 size paper in the vertical direction, and a black solid image was output as an electrophotographic image.
  • a laser beam printer trade name: Color LaserJet 4700 Printer, manufactured by HP
  • the developing method of this laser beam printer is a reversal developing method, the output speed of the transfer material is 164 mm / s, and the image resolution is 600 dpi.
  • the photoreceptor is an organic electrophotographic photoreceptor having an organic photosensitive layer having a layer thickness of 19.0 ⁇ m on a support.
  • the organic photosensitive layer is a laminated photosensitive layer in which a charge generation layer and a charge transport layer containing a modified polycarbonate (binder resin) are laminated from the support side, and this charge transport layer is the surface of the electrophotographic photoreceptor. It is a layer.
  • the toner used in the laser beam printer is a so-called polymerized toner, and has a glass transition temperature of 63 ° C.
  • This polymerized toner is obtained by adding silica fine particles and titanium oxide fine particles to particles obtained by suspension polymerization of a polymerizable monomer system containing a wax, a charge control agent, a dye, styrene, butyl acrylate and an ester monomer in an aqueous medium. Contains externally added toner particles.
  • a polymerizable monomer system containing a wax, a charge control agent, a dye, styrene, butyl acrylate and an ester monomer in an aqueous medium.
  • Table 4 the presence or absence of horizontal streaks due to the contact trace of the charging roller with the photosensitive member, and the density and length of the streaks, if any, are shown in Table 4 below. Evaluation was made according to the criteria. The criteria shown in Table 4 are based on the length of the horizontal stripe when a stripe having a width of about 1 mm on A4 vertical paper is targeted.
  • the condensates 2 to 19 were changed in the same manner as the condensate 1 except that the types and amounts of the condensate intermediates 2 to 11 and the types and amounts of the hydrolyzable tantalum compounds were changed as shown in Table 7 below.
  • Table 7 the compound types indicated by the abbreviations of the hydrolyzable tantalum compounds (Ta-1 to Ta-3) are also shown in Table 6 above.
  • the condensates 2 to 19 obtained were evaluated [1] in the same manner as the condensate 1.
  • Coating solutions 2 to 19 were prepared in the same manner as the coating solution 1 except that the condensates 2 to 19 were used. The above evaluations [2] to [3] were performed for each coating solution.
  • a comparative coating liquid 20 was prepared in the same manner as the coating liquid 1 except that the comparative condensate 20 was used. About this, said evaluation [2] and [3] were performed.
  • a comparative coating liquid 21 was prepared in the same manner as the coating liquid 1 except that the above-mentioned comparative condensate 21 was used and no photocationic polymerization initiator was added. About this, said evaluation [2] and [3] were performed. In the evaluation [2] and [3] for the comparative coating liquid 21, the coating film of the comparative coating liquid 21 was cured by heating at a temperature of 250 ° C. for 1 hour without using UV.
  • the charging rollers 20 and 21 were produced in the same manner as in Example 1 except that the surface layer forming paint 1 of Example 1 was changed to the comparative coating liquids 20 and 21, and were used for evaluation [4] to [6]. did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Silicon Polymers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

 弾性層からの低分子量成分の染み出しをより確実に抑制することができる表面層を備えた帯電部材の提供。 該帯電部材は、基体、弾性層及び表面層を有し、該表面層は、Si-O-Ta結合を有し、かつ、下記構造式(1)で示される構成単位および下記構造式(2)で示される構成単位を有している高分子化合物を含有している。

Description

帯電部材、プロセスカートリッジおよび電子写真装置
 本発明は、電子写真装置に用いられる帯電部体、それを用いたプロセスカートリッジおよび電子写真装置に関する。
 電子写真感光体と当接して該感光体を帯電させる帯電部材は、感光体と帯電部材とのニップ幅を確保するためにゴムを含む弾性層を有する構成が一般的である。かかる弾性層中には通常低分子量成分が含まれているため、長期の使用によって、当該低分子量成分が帯電部材の表面にブリーディングし、感光体の表面に付着することがある。そして、当該低分子量成分が付着した感光体を用いて形成された電子写真画像には、スジ状のムラが現れることがある。
また、かかる現象は、高温高湿環境下で、長時間に亘って停止した状態に置かれた電子写真装置を用いて電子写真画像を形成した場合に特に顕著に生じる。
 このような、弾性層中の低分子量成分のブリーディングに対して、特許文献1には、弾性層の周面を有機-無機ハイブリッド被膜で被覆し、低分子量成分の表面へのブリーディングを抑制した帯電ロールが開示されている。
特開2001-173641号公報
 本発明者らが特許文献1に記載される有機-無機ハイブリッド被膜を備えた帯電ロールについて検討したところ、当該有機-無機ハイブリッド被膜は架橋密度が小さかった。これは、当該有機-無機ハイブリッド被膜が可撓性を重視しているためであると思われる。そのため、低分子量成分のブリーディングを確実に抑制するためには、当該有機-無機ハイブリッド被膜の膜厚をサブミクロン以上とする必要があることを認識した。
ここで、帯電効率の観点からは、帯電部材の表面層の膜厚は薄い方が好ましい。また、均一な厚さの表面層を形成するうえでも、表面層の膜厚は薄い方が好ましい。
そこで、本発明の目的は、弾性層からの低分子量成分の染み出しをより確実に抑制することができる表面層を備えた帯電部材を提供することにある。また、本発明の他の目的は、高品位な電子写真画像を安定して形成することのできるプロセスカートリッジ、および、電子写真装置を提供することにある。
 本発明によれば、基体、弾性層及び表面層を有しており、該表面層が、Si-O-Ta結合を有し、かつ、下記構造式(1)で示される構成単位および下記構造式(2)で示される構成単位を有している高分子化合物を含有している帯電部材が提供される:
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 (構造式(1)中、R1、R2は各々独立して構造式(3)~(6)のいずれかを示す。 
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 (構造式(3)~(6)中、R3~R7、R10~R14、R19、R20、R25およびR26は各々独立して水素、炭素数1~4のアルキル基、水酸基、カルボキシル基またはアミノ基を示す。R8、R9、R15~R18、R23、R24およびR29~R32は各々独立して水素または炭素数1~4のアルキル基を示す。R21、R22、R27およびR28は各々独立して水素、酸素、炭素数1~4のアルコキシ基、または炭素数1~4のアルキル基を示す。n、m、l、q、sおよびtは各々独立して1以上、8以下の整数を示す。pおよびrは各々独立して4以上、12以下の整数を示す。xおよびyは各々独立して0又は1を示す。記号「*」は構造式(1)中のケイ素原子への結合部位を示し、記号「**」は、構造式(1)中の酸素原子への結合部位を示す。))
 また、本発明によれば、上記帯電部材と、該帯電部材に当接して配置されている電子写真感光体とを備え、電子写真装置の本体に着脱可能に構成されているプロセスカートリッジが提供される。
更に、本発明によれば、上記帯電部材と、該帯電部材に当接して配置されている電子写真感光体とを備える電子写真装置が提供される。
 本発明によれば、薄い膜厚であっても、ブリーディングをより確実に抑制することができる表面層を備えた帯電部材を得ることができる。また、本発明によれば、高品位は電子写真画像を安定して提供可能な電子写真装置およびプロセスカートリッジを得ることができる。
本発明に係る帯電部材の構成図である。 本発明に係る電子写真装置の構成図である。 実施例1で調製した縮合物の17O-NMRスペクトルである。 実施例1で調製した表面層形成用塗料から形成される硬化膜の29Si-NMRスペクトルである。 実施例1で調製した表面層形成用塗料から形成される硬化膜の13C-NMRスペクトルである。 本発明に係る表面層の形成工程における架橋反応の説明図である。 本発明に係る高分子化合物の化学構造を示す図である。 本発明に係る高分子化合物の化学構造を示す図である。
図1は、本発明に係るローラ形状を有する帯電部材(帯電ローラ)の軸に直交する方向の断面図である。この帯電ローラは、基体101上に、弾性層102、および表面層103を順次積層した構造を有する。なお、基体と弾性層との間に他の層が存在していてもよい。 
[基体]
 基体としては、鉄、銅、ステンレス、アルミニウム、又はニッケルの金属や、これらの合金等の基体を用いることができる。
[弾性層]
 弾性層を形成する材料としては、従来の帯電部材の弾性層に用いられているゴムや熱可塑性エラストマーを1種または2種以上を組み合わせて用いることができる。ゴムの具体例を以下に挙げる。ウレタンゴム、シリコーンゴム、ブタジエンゴム、イソプレンゴム、クロロプレンゴム、スチレン-ブタジエンゴム、エチレン-プロピレンゴム、ポリノルボルネンゴム。スチレン-ブタジエン-スチレンゴム、アクリロニトリルゴム、エピクロルヒドリンゴム、またはアルキルエーテルゴム等。
 熱可塑性エラストマーとしては、スチレン系エラストマー、オレフィン系エラストマー等が挙げられる。具体的には、スチレン系エラストマーの市販品としては、三菱化学(株)製の商品名「ラバロン」、クラレ(株)製の商品名「セプトンコンパウンド」等が挙げられる。オレフィン系エラストマーの市販品としては、例えば、以下のものが挙げられる。三菱化学(株)製の商品名「サーモラン」、三井石油化学工業(株)製の商品名「ミラストマー」、住友化学工業(株)製の商品名「住友TPE」、アドバンストエラストマーシステムズ社製の商品名「サントプレーン」等。
 弾性層は、導電剤を適宜使用することによって所定の導電性を有するように構成されている。弾性層の電気抵抗値の目安としては、102Ω以上、108Ω以下であり、特には103Ω以上、106Ω以下である。弾性層に用いる導電剤の例としては、陽イオン性界面活性剤、陰イオン性界面活性剤、両性イオン界面活性剤、帯電防止剤、電解質等が挙げられる。また、弾性層の硬度は、帯電部材と感光体とを当接させた際の帯電部材の変形を抑制する観点から、アスカーCが70度以上であることが好ましく、より好ましくは73度以上、92度以下である。帯電部材の形状を決定する弾性層は、中央部の層厚が端部の層厚よりも厚い、いわゆるクラウン形状にすることが好ましい。
[表面層]
 表面層は、Si-O-Ta結合を有し、かつ、下記構造式(1)で示される構成単位と、下記構造式(2)で示される構成単位とを有する高分子化合物を含む。
Figure JPOXMLDOC01-appb-C000007
  TaO5/2    (2)
式(1)中、R1、R2は各々独立して、構造式(3)~(6)のいずれかを示す。 
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 構造式(3)~(6)中、R3~R7、R10~R14、R19、R20、R25およびR26は各々独立して水素、炭素数1~4の直鎖若しくは分岐のアルキル基、カルボニル基、水酸基、カルボキシル基またはアミノ基を示す。R8、R9、R15~R18、R23、R24およびR29~R32は各々独立して水素または炭素数1~4の直鎖若しくは分岐のアルキル基を示す。R21、R22、R27およびR28は各々独立して水素、酸素、炭素数1~4のアルコキシ基、または炭素数1~4の直鎖若しくは分岐のアルキル基を示す。n、m、l、q、s、およびtは各々独立して1以上、8以下の整数を示す。pおよびrは各々独立して4以上、12以下の整数を示す。xおよびyは各々独立して0又は1を示す。記号「*」は構造式(1)中のケイ素原子への結合部位を示し、記号「**」は、構造式(1)中の酸素原子への結合部位を示す。
 上記の高分子化合物の一例として、構造式(1)中のR1が構造式(3)で示され、R2が構造式(4)で示されるときの構造の一部を図7Aに示す。また、上記高分子化合物の一例として、構造式(1)中のR1が構造式(3)で示され、R2が構造式(6)で示されるときの構造の一部を図7Bに示す。
上記の高分子化合物は、シロキサン結合およびケイ素原子に結合した有機鎖部分が互いに重合している構造を有することに加え、Si-O-Ta結合を有することによって非常に緻密な架橋構造を有している。そのため、このような高分子化合物を含む表面層は、膜厚が薄くてもブリーディングを高度に抑制し得るものとなる。
 上記の高分子化合物における構造式(1)中、R1およびR2としては、各々独立して下記構造式(7)~(10)で示される構造から選ばれる何れかであることが好ましい。このような構造とすることで、表面層をより強靭で耐久性に優れたものとすることができる。特に下記構造式(8)または(10)に示されるエーテル基を含む構造は、表面層の弾性層への密着性をより一層向上させることができる。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 構造式(7)~(10)中、N、M、L、Q、SおよびTは各々独立して1以上、8以下の整数、x’およびy’は各々独立して0又は1を示す。記号「*」は構造式(1)中のケイ素原子への結合部位を示し、記号「**」は、構造式(1)中の酸素原子への結合部位を示す。
 上記高分子化合物に含有される、タンタルとケイ素の原子数比(Ta/Si)が0.1以上、5.0以下であることが好ましい。Ta/Siが上記数値範囲内にある場合、高分子化合物の脆弱化を抑制することができる。その結果、かかる高分子化合物を含む表面層は、弾性層からの低分子量成分のブリーディングをより一層確実に抑制できると共に、耐久性にも優れたものとなる。
 本発明に係る高分子化合物は、下記構造式(11)で示される加水分解性シラン化合物と、下記構造式(12)で示される加水分解性タンタル化合物とを脱水縮合させて、加水分解縮合物を得る。その後、加水分解縮合物が有するラジカル重合可能な基、例えば、エポキシ基を反応させて架橋を形成して架橋物を得ることができる。縮合は、これらの加水分解性化合物を混合し、適宜加熱して行うことができる。
    R33-Si(OR34)(OR35)(OR36)  ・・・(11)
Ta(OR37)(OR38)(OR39)(OR40)(OR41)  ・・・(12)
上記構造式(11)中、R33は下記構造式(13)~(16)で示される構造から選ばれる何れかを示す。R34~R36は各々独立して炭素数1~4のアルキル基を示す。構造式(12)中、R37~R41は各々独立して炭素数1~9のアルキル基を示す。 
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 上記構造式(13)~(16)中、R42~R44、R47~R49、R54、R55、R60およびR61は各々独立して水素、炭素数1~4の直鎖状若しくは分岐状のアルキル基、水酸基、カルボニル基、カルボキシル基、クロロカルボニル基またはアミノ基を示す。R45、R46、R50~R53、R58、R59およびR64~R67は各々独立して水素、炭素数1~4の直鎖状若しくは分岐状のアルキル基を示す。R56、R57、R62およびR63は各々独立して水素、炭素数1~4のアルコキシ基または炭素数1~4の直鎖状若しくは分岐状のアルキル基を示す。また、CR4546、CR5051、CR5253、CR5859、CR6465、CR6667がカルボニル基でもよい。更に、R42、R43、R44、若しくは(CR4546n'中の炭素の少なくともいずれか2つ、R47、R48、R49、若しくは(CR5051m'中の炭素の少なくともいずれか2つは共同してシクロアルカンを形成してもよい。また、R54とR55、または、R60とR61は共同してシクロアルカンを形成してもよい。n’、m’、l’、q’、s’およびt’は各々独立して1以上、8以下の整数を示す。p’およびr’は各々独立して4以上、12以下の整数を示す。また、記号「*」は構造式(11)のケイ素原子との結合位置を示す。
 上記高分子化合物は、構造式(11)および(12)で示される加水分解性化合物と、下記構造式(17)で示される加水分解性シラン化合物との加水分解縮合物の架橋物であることが好ましい。このような架橋物は、合成段階での式(11)、(12)の溶解性、塗工性、更に硬化後の膜物性として、電気特性を向上させることが可能となる。特にR68が炭素数1~21のアルキル基の場合、溶解性、塗工性の改善として好ましい。また、R68がフェニル基の場合は、電気特性、特に体積抵抗率向上に寄与するので好ましい。
      R68-Si(OR69)(OR70)(OR71) ・・・(17)
上記式(17)中、R68は炭素数1~21のアルキル基、またはフェニル基を示し、R69~R71は各々独立して炭素数1~6のアルキル基を示す。また、R68がフェニル基である加水分解性シラン化合物を含む場合、R68が炭素数1~21のアルキル基である加水分解性シラン化合物と併用することが、加水分解縮合反応を通して構造が変化しても溶媒との相溶性が良好であることから、好ましい。
 上記高分子化合物は、このような加水分解性縮合物を含有する表面層形成用塗料を調製し、これを塗工して塗膜を形成した後、架橋反応を行い、架橋物を得ることができる。
 表面層形成用塗料は、以下の工程によって調製することができる。
(1)工程
 モノマーとしての式(11)で示される加水分解性シラン化合物(A)と、式(17)で示される加水分解性シラン化合物(B)と、式(12)で示される加水分解性タンタル化合物(C)とを準備する。
(2)工程
 加水分解性シラン化合物(A)と加水分解性シラン化合物(B)を混合し、水(D)、アルコール(E)を添加して、加熱還流により加水分解・縮合を行い、加水分解性シラン化合物の縮合物を得る。
(3)工程
 得られた液に、加水分解性タンタル化合物(C)を添加し、混合し、適宜加熱して、加水分解・縮合を行い、加水分解性シラン化合物と加水分解性タンタル化合物の縮合物(シランタンタル縮合物ともいう。)を生成させ、縮合物含有液を得る。
(4)工程
 縮合物含有液に光重合開始剤(G)を添加、混合する。
 上記(2)工程において、加水分解性シラン化合物(B)は必要に応じて用いればよく、また、加水分解性タンタル化合物(C)を、加水分解性化合物(A)等と同時に添加することにより、(3)工程を省略することもできる。
 以下、(1)工程、(2)工程、および(4)工程の各々について詳述する。
(1)工程
 加水分解性シラン化合物(A)の具体例を以下に示す。これらは1種又は2種以上を組み合わせて用いることができる。
 4-(1,2-エポキシブチル)トリメトキシシラン、5,6-エポキシヘキシルトリエトキシシラン、8-オキシラン-2-イルオクチルトリメトキシシラン、8-オキシラン-2-イルオクチルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン。3-グリシドキシプロピルトリエトキシシラン、1-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、1-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン。3-(3,4-エポキシシクロヘキシル)メチルオキシプロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)メチルオキシプロピルトリエトキシシラン。
 加水分解性シラン化合物(B)の具体例を以下に示す。これらは1種又は2種以上を組み合わせて用いることができる。
 メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン。プロピルトリプロポキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘキシルトリプロポキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、デシルトリプロポキシシラン。フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン。
 加水分解性タンタル化合物(C)の具体例を以下に示す。これらは1種又は2種以上を組み合わせて用いることができる。
 タンタルペンタメトキシド、タンタルペンタエトキシド、タンタルペンタn-プロポキシド、タンタルペンタi-プロポキシド、タンタルn-ブトキシド、タンタルt-ブトキシド、タンタルフェノキシド。
 これらの加水分解性シラン化合物(A)、加水分解性シラン化合物(B)、加水分解性タンタル化合物(C)の使用割合は、モル比において、式(20)を満たすことが好ましい。
       0.1≦C/(A+B)≦5.0   (20)
 式(20)中、Aは、式(11)で示される加水分解性シラン化合物(A)のモル数を示す。
Bは、式(17)で示される加水分解性シラン化合物(B)のモル数を示す。
Cは、式(17)で示される加水分解性タンタル化合物(C)のモル数を示す。
そして、C/(A+B)の値が0.1以上であれば、架橋密度が高く、ブリーディング効果の高い表面層を得ることができ、5.0以下であれば、表面層形成用塗料に白濁や沈殿が生じるのを抑制し、保存性を向上させることができる。更に、式(21)を満たすことが好ましい。
       0.5≦C/(A+B)≦3.0  (21)
(2)工程
 添加する水(D)の添加量は、加水分解性シラン化合物(A)及び(B)の合計のモル数(A+B)に対する水のモル数Dとの比、Ror(D/(A+B))が、0.3以上、6.0以下であることが好ましい。Rorは1.2以上3.0以下であることがより好ましい。
Rorが0.3以上であれば、縮合反応が充分に行われ、未反応のモノマーが残存するのを抑制し、架橋密度の高い膜が得られる。Rorが6.0以下であれば、縮合反応の速度が速く、表面層形成用塗料に白濁や沈殿が生成するのを抑制することができ、また、極性が高くなって縮合物との相溶性が低下するのを抑制することができる。アルコール(E)は、シランタンタル縮合物を相溶させるために用いられる。
アルコール(E)としては、第1級アルコール、第2級アルコール、第3級アルコール、第1級アルコールと第2級アルコールの混合系、第1級アルコールと第3級アルコールの混合系を用いることが好ましい。アルコールとして、特に、エタノール、メタノールと2-ブタノールの混合溶液、エタノールと2-ブタノールの混合溶液が縮合物との相溶性や塗工性の観点から好ましい。
(4)工程
光重合開始剤(G)は、シランタンタル縮合物を架橋させるために用いる。光重合開始剤(G)としては、ルイス酸あるいはブレンステッド酸のオニウム塩、カチオン重合触媒を用いることもできる。カチオン重合触媒としては、例えば、ボレート塩、イミド化合物、トリアジン化合物、アゾ化合物、過酸化物等が挙げられる。
カチオン重合触媒としては、感度、安定性及び反応性の観点から、芳香族スルホニウム塩や芳香族ヨードニウム塩が好ましい。特に好ましいカチオン重合触媒として、ビス(4-tert-ブチルフェニル)ヨードニウム塩や、式(18)で示される化合物(商品名:アデカオプトマ-SP150、旭電化工業(株)製)を挙げることができる。
Figure JPOXMLDOC01-appb-C000020
 また、式(19)で示される化合物(商品名:イルガキュア261、チバスペシャルティーケミカルズ社製)も好適に用いることができる。
Figure JPOXMLDOC01-appb-C000021
 光重合開始剤(G)は、表面層形成用塗料への相溶性を向上させるため、予めアルコールやケトン等の溶媒、例えば、メタノールやメチルイソブチルケトンに溶解して用いることが好ましい。
 更に、表面層形成用塗料は塗布性を向上させるため、溶剤を用いて塗工に適した濃度に調整する。用いる溶剤としては、例えば、エタノール、メタノール、2-ブタノール等のアルコールや、酢酸エチルや、メチルエチルケトン、メチルイソブチルケトン等のケトンを挙げることができ、これらは混合して用いることもできる。特に、エタノールと2-ブタノールの混合液が好ましい。
 表面層形成用塗料の塗布方法としては、ロールコーターを用いた塗布、浸漬塗布、リング塗布等の方法を使用することができる。
 上記方法により弾性層上に表面層形成用塗料を塗布して形成した塗膜中で、シランタンタル縮合物を架橋させる。架橋は、活性エネルギー線を照射し、光重合開始剤(G)によってシランタンタル縮合物中のエポキシ基を開裂、重合させて形成することができる。使用する活性エネルギー線としては、紫外線が、低温で光重合開始剤(G)のラジカルを発生させ、架橋反応を進行させることができることから、好ましい。
低温で架橋反応を進行させることにより、塗膜から溶剤が急速に揮発するのを抑制し、塗膜に相分離、シワが発生するのを抑制し、弾性層との密着強度が高い表面層を形成することができる。弾性層との密着強力が高い表面層は、帯電部材が温湿度の変化が急激な環境下で使用され、温湿度の変化による弾性層の体積が変動しても、シワやクラックの発生を抑制することができる。その上、架橋反応の進行時に弾性層の熱劣化を抑制することができるため、製造工程における弾性層の電気的特性の低下を抑制することもできる。
 紫外線の供給源としては、高圧水銀ランプ、メタルハライドランプ、低圧水銀ランプ、エキシマUVランプ等を用いることができ、これらのうち、150nm以上480nm以下の波長の紫外線を供給するものが好ましい。紫外線は、照射時間、ランプ出力、ランプと表面層間の距離によって、供給量を調整して照射することができ、また、照射時間内で紫外線の照射量に勾配をつけることもできる。紫外線の積算光量は、適宜選択することができる。紫外線の積算光量は以下の式から求めることができる。
 紫外線積算光量[mJ/cm2]=紫外線強度[mW/cm2]×照射時間[s]
低圧水銀ランプを用いる場合、紫外線の積算光量は、ウシオ電機(株)製の紫外線積算光量計UIT-150-AやUVD-S254(いずれも商品名)を用いて測定することができる。また、エキシマUVランプを用いる場合、紫外線の積算光量は、ウシオ電機(株)製の紫外線積算光量計UIT-150-AやVUV-S172(いずれも商品名)を用いて測定することができる。
 このように形成される表面層の厚さは、10nm以上100nm以下であることが好ましい。厚さを上記範囲内とすることで、弾性層からの低分子量成分のブリーディングの抑制効果をより確実に得ることができる。また、表面層の形成時の表面層形成用塗料の塗布むらを抑制し、均一な塗膜を形成することができる。また、外観、コスト面からも好ましい。
 上記表面層中のシラン化合物の縮合率DCは、加水分解性シラン化合物(A)、加水分解性シラン化合物(B)、加水分解性タンタル化合物(C)の使用モル比が式(20)を満たす場合、50%を超え、75%以下であることが好ましい。
ここでDCはケイ素原子に結合する総ての基に対する縮合度合いを表す指標であり、式(22)を用いて算出する。
Figure JPOXMLDOC01-appb-M000001
 式(22)中、nは加水分解性シラン化合物が有する加水分解可能な官能基、例えばアルコキシ基の数であり、上記加水分解性シラン化合物(A)、(B)の場合、3であり、αをTで示すと、式(23)から求めることができる。
Figure JPOXMLDOC01-appb-M000002
 ここでT0~T3は、それぞれ加水分解性シラン化合物の縮合した加水分解部の数が0~3である成分量を示す。DCが50%を超えれば、ブリーディング抑制効果の高い緻密な膜が得られる。上記加水分解性官能基が3のシラン化合物の総ての官能基が縮合した場合、縮合率は75%となる。縮合率が75%を超える場合、塗料は、高粘度になり塗工性が低下したり、白濁、又は分離が生じてしまう。
本発明に係る高分子化合物の形成過程において生じる架橋および硬化反応について図6を用いて説明する。
例えば、前記した成分(A)としての、3-グリシドキシプロピルトリメトキシシランと、加水分解性タンタル化合物(C)とを加水分解させて得られるシランタンタル縮合物は、カチオン重合可能な基としてエポキシ基を有する。このようなシランタンタル縮合物のエポキシ基は、カチオン重合触媒(図6中、R+と記載)の存在下で、エポキシ環が開環し、連鎖的に重合が進む。その結果、TaO5/2を含むポリシロキサン同士が架橋し、硬化して本発明に係る高分子化合物が形成される。なお、図6中、nは1以上の整数を表す。
<電子写真装置およびプロセスカートリッジ>
本発明に係る帯電部材を有するプロセスカートリッジを備えた電子写真装置の一例を図2に示す。円筒状の電子写真感光体1は、本発明の帯電部材3(図2においてはローラ形状の帯電部材)に当接して配置されて、軸2を中心に矢印方向に所定の周速度で回転駆動される。回転駆動される電子写真感光体1の表面は帯電部材3により、正または負の所定電位に均一に帯電される。次いで、スリット露光やレーザービーム走査露光等の露光手段(不図示)から出力される露光光(画像露光光)4を受けることで、電子写真感光体1の表面に、目的の画像に対応した静電潜像が形成される。
 帯電部材による感光体表面の帯電の際、帯電部材3には電圧印加手段(不図示)から直流電圧のみの電圧あるいは直流電圧に交流電圧を重畳した電圧が印加される。後述の実施例においては、帯電部材には直流電圧のみの電圧(-1000V)を印加した。また、後述の実施例において、暗部電位は-500V、明部電位は-150Vとした。感光体1の表面に形成された静電潜像は、現像手段5の現像剤に含まれるトナーにより現像(反転現像もしくは正規現像)されてトナー像となる。現像手段としては、例えば、ジャンピング現像手段、接触現像手段または磁気ブラシ手段などが挙げられるが、トナーの飛散性改善の観点から、接触現像手段が好ましく、後述の実施例においては、接触現像手段を採用した。電子写真感光体1の表面に形成されたトナー像は、転写手段(転写ローラなど)6からの転写バイアスによって、転写材(紙など)Pに順次転写されていく。転写材Pは、転写材供給手段(不図示)から電子写真感光体1と転写手段6との間の当接部に電子写真感光体1の回転と同期して取り出されて供給される。トナー像が転写された転写材Pは、感光体1の表面から分離されて定着手段8へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。トナー像転写後の感光体1の表面は、クリーニング手段(クリーニングブレードなど)7によって転写残りの現像剤(トナー)の除去を受けて清浄面化される。さらに、前露光手段(不図示)からの前露光光(不図示)により除電処理された後、繰り返し画像形成に使用される。なお、帯電手段が接触帯電手段である場合は、前露光は必ずしも必要ではない。
 本発明のプロセスカートリッジは、上述の感光体1と、帯電部材3とを備えたものであり、その他、現像手段5、転写手段6およびクリーニング手段7などから選択した手段を一体に結合して構成することができる。そして、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱可能に構成する。図2に示す電子写真装置においては、電子写真感光体1、帯電部材3、現像手段5およびクリーニング手段7を一体に支持してカートリッジ化してプロセスカートリッジ9としている。これを電子写真装置本体のレール等の案内手段10を用いて電子写真装置本体に着脱自在としている。
 以下に、具体的な実施例を挙げて本発明を更に詳細に説明する。以下に記載する「部」は「質量部」を意味する。
[実施例1]
[1]縮合物の調製および評価、並びに、コーティング液の調製および評価。
<縮合物1の調製>
  下記表1に示す成分を混合した後、室温で30分攪拌した。
Figure JPOXMLDOC01-appb-T000001
 次にオイルバスを用いて、温度120℃で20時間加熱還流を行って、縮合物中間体1を得た。縮合物中間体1の濃度は固形分(加水分解性シラン化合物が全て脱水縮合したと仮定したときの溶液全重量に対する質量比率)として28.0質量%であった。
 次に、縮合物中間体1と、下記表2に示す材料とを混合し、室温で3時間攪拌して、液状の縮合物1(シランタンタル縮合物)を得た。一連の攪拌は750rpmで行った。Ta/Si=1.00である。
Figure JPOXMLDOC01-appb-T000002
[評価1]
(1)Si-O-Ta結合の有無
 縮合物1について、Taの縮合状態を以下のように測定した。測定用試料として、縮合物中間体1の合成の際に用いたイオン交換水を、17O-H2O(7~9.9atm%、CIL社製)に代えた他は、縮合物1と同様にして本評価に供する縮合物1(以降、「評価用縮合物1」とする)を合成した。
得られた液状の評価用縮合物1について、核磁気共鳴装置(Avance500 BRUKER社製)を用いて17O-NMR測定を行った。その結果、図3に示すように、170~200ppmにSi-17O-Taのピークと、410~460ppmにTa-17O-Taのピークを有する基準スペクトルを得た。次いで、評価用縮合物1について17O-NMR測定を行い、得られたスペクトルから、Si-O-Ta結合の存在の有無を検出した。
(2)Si-O-Ta結合およびTa-O-Ta結合の数に対するTa-O-Ta結合の数の比の算出
上記評価[1](1)にて得た、評価用縮合物1の17O-NMRのスペクトルにおける、各ピークの積分値より、Si-O-Ta結合およびTa-O-Ta結合の数に対するTa-O-Ta結合の数の比、すなわち、(Ta-O-Ta)/{(Si-O-Ta)+(Ta-O-Ta)}を算出した。
<コーティング液1の調製>
 縮合物1の25gに、光カチオン重合開始剤としての芳香族スルホニウム塩(商品名:アデカオプトマー SP-150、旭電化工業(株)製)のメチルイソブチルケトン10質量%液の2.00gを添加して、コーティング液1を調製した。
[評価2]
コーティング液1の安定性を、以下の基準により評価した。結果を表9に示す。
A:1ヶ月放置しても白濁・沈殿が無い状態。
B:2週間程度から白濁気味になる状態。
C:1週間程度から白濁気味になる状態。
D:合成時に白濁・沈殿を生じる状態。
[評価3]
 以下の手順によりコーティング液1の硬化膜を形成し、その化学構造を分析し、また、縮合度(DC%)を算出した。
すなわち、脱脂した厚さ100μmのアルミニウム製シートの上にコーティング液1を塗布した。乾燥後、低圧水銀ランプ(ハリソン東芝ライティング(株)製)を用い254nmの波長の紫外線を積算光量が9000mJ/cm2になるように照射し、コーティング液1を架橋、硬化し硬化膜を得た。得られた硬化膜をガラス板で削り取り、メノウ乳鉢を用いて粉砕し、測定用試料粉末を作製した。この試料を、核磁気共鳴装置(JMN-EX400 JEOL社)を用いて、29Si-NMRスペクトルを測定した。得られたスペクトルデータを図4に示す。検出されたスペクトルにおいて、-46~-40ppmのピークをT0成分、-55~-47ppmのピークをT1成分、-61~-54ppmのピークをT2成分、-71~-61ppmのピークをT3成分とする。ここで、T成分とは、有機基との結合を1つ有するケイ素原子が、酸素原子を介して他のケイ素原子、または、タンタル原子との結合を3つ有する状態を示す。これらの検出値に基づき式(23)からSiに結合する加水分解官能基の縮合度を測定した。
また、試料の13C-NMRスペクトルを測定した。得られたスペクトルを図5に示す。このスペクトルから硬化膜中にエポキシ基が存在せず、総てのエポキシ基が開環したことを確認した。以上のことより、コーティング液1から形成される硬化膜において、原料のグリシドキシプロピルエトキシシラン化合物中のエポキシ基は総て開環、架橋し、且つ、式(1)中の-SiO3/2の構成単位を有していることを確認した。この評価3は、後述する実施例において、同様に確認できた。
[2]帯電ローラの作製
<表面層形成用塗料1-1~1-7の調製>
 上記コーティング液1を、エタノールと2-ブタノールとの混合液(エタノール:2-ブタノール=1:1(質量比))で希釈し、固形分濃度が、1.0質量%、0.1質量%、0.2質量%、0.5質量%、3.5質量%、4.0質量%、および5.0質量%の表面層形成用塗料1-1~1-7を調製した。
<弾性ローラの作製>
Figure JPOXMLDOC01-appb-T000003
 上記表3に示す成分を、6L加圧ニーダー(TD6-15MDX:トーシン社製)にて、充填率70vol%、ブレード回転数30rpmで24分混合して、未加硫ゴム組成物を得た。この未加硫ゴム組成物174質量部に対して、加硫促進剤としてのテトラベンジルチウラムジスルフィド(商品名:サンセラーTBzTD、三新化学工業(株)製)4.5部、加硫剤としての硫黄1.2部を加えた。そして、ロール径12インチのオープンロールで、前ロール回転数8rpm、後ロール回転数10rpm、ロール間隙2mmで、左右の切り返しを合計20回実施した。その後、ロール間隙を0.5mmとして薄通しを10回行って、弾性層用の混練物Iを得た。
 次に、直径6mm、長さ252mmの円柱形の鋼製の支持体(表面をニッケルメッキ加工したもの)を準備した。そして、この支持体の、円柱面軸方向中央を挟んで両側115.5mmまでの領域(あわせて軸方向幅231mmの領域)に、金属及びゴムを含む熱硬化性接着剤(商品名:メタロックU-20、(株)東洋化学研究所製)を塗布した。これを30分間温度80℃で乾燥させた後、さらに1時間温度120℃で乾燥させた。混練物Iを、クロスヘッドを用いた押出成形によって、上記接着層付き芯金を中心として、同軸状に外径8.75~8.90mmの円筒形に同時に押出し、端部を切断して、芯金の外周に未加硫の弾性層を積層した弾性ローラ1を作製した。押出機はシリンダー径70mm(Φ70)、L/D=20の押出機を使用し、押出時の温調はヘッドの温度を90℃とし、シリンダーの温度を90℃とし、スクリューの温度を90℃とした。
 次に上記ローラ1を異なる温度設定にした2つのゾーンをもつ連続加熱炉を用いて加硫した。第1ゾーンを温度80℃に設定し、30分で通過させ、第2ゾーンを温度160℃に設定し、こちらも30分通過させ、加硫された弾性ローラ2を得た。
 次に、表面研磨前の弾性ローラ2の弾性層部分(ゴム部分)の両端を切断し、弾性層部分の軸方向の幅を232mmとした。その後、弾性層部分の表面を回転砥石で研磨(ワーク回転数333rpm、砥石回転数2080rpm、研磨時間12sec)した。こうすることで、端部直径8.26mm、中央部直径8.50mmのクラウン形状で、表面の十点平均粗さ(Rz)が5.5μmで、振れが18μm、硬度が73度(アスカーC)の弾性ローラ3(表面研磨後の弾性ローラ)を得た。
 十点平均粗さ(Rz)はJISB0601(1994)に準拠して測定した。振れの測定は、ミツトヨ(株)製高精度レーザー測定機LSM-430vを用いて行った。詳しくは、該測定機を用いて外径を測定し、最大外径値と最小外径値の差を外径差振れとし、この測定を5点で行い、5点の外径差振れの平均値を被測定物の振れとした。 アスカーC硬度の測定は、温度25℃、相対湿度55%RHの環境下で、測定対象の表面にアスカーC型硬度計(高分子計器(株)製)の押針を当接し、1000g加重の条件で行った。
<表面層の形成>
7本の弾性ローラ3の弾性層の周面に表面層形成用塗料1-1~1-7の各々を、リング塗布(吐出量:0.120ml/s、リング部の弾性ローラに対する移動速度:85mm/s、総吐出量:0.130ml)した。次いで、各表面層塗料の塗膜に対して、254nmの波長の紫外線を積算光量が9000mJ/cm2になるように照射し、該塗膜を硬化させることによって表面層を形成し、帯電ローラ1-1~1-7を得た。
なお、紫外線の照射には低圧水銀ランプ(ハリソン東芝ライティング(株)製)を用いた。得られた帯電ローラ1-1~1-7について以下の評価を行った。
[評価4]
帯電ローラ1-1~1-7について、表面の外観を目視にて観察し、以下の基準により、その塗工性を評価した。結果を表10に示す。
A:帯電ローラの表面に全く塗工不良がない。
B:帯電ローラの表面の一部に塗工不良が生じた。
C:帯電ローラの表面の全領域に塗工不良が生じた。
[評価5]
帯電ローラ1-1~1-7の表面層の層厚を測定した。得られた帯電ローラの断面を、走査型透過電子顕微鏡(STEM 製品名:HD-2000、(株)日立ハイテクノロジーズ製)を用いて測定した。結果を、表10に示す。
[評価6]
帯電ローラ1-1~1-7を、感光体と共に一体に支持するプロセスカートリッジに組み込んだ。このとき帯電ローラには合計1kgの加重がかかるようにした。その後高温高湿下(温度40℃、湿度95%RH)に30日間放置した。次いで、当該プロセスカートリッジを、常温常湿下(温度25℃、湿度50%RH)に72時間放置した。このプロセスカートリッジを、A4サイズの紙を縦方向に出力可能なレーザービームプリンター(商品名:Color LaserJet 4700 Printer、HP社製)に装填し、電子写真画像として、黒のソリッド画像を出力した。
なお、このレーザービームプリンターの現像方式は反転現像方式であり、転写材の出力スピードは164mm/sであり、画像解像度は600dpiである。また、感光体は、支持体上に層厚19.0μmの有機感光層を有する有機電子写真感光体である。ここで、有機感光層は、支持体側から電荷発生層と変性ポリカーボネート(結着樹脂)を含有する電荷輸送層とを積層した積層型感光層であり、この電荷輸送層は電子写真感光体の表面層となっている。
また、上記レーザービームプリンターに使用したトナーは、いわゆる重合トナーであり、そのガラス転移温度は63℃、体積平均粒子径は6μmである。この重合トナーは、ワックス、荷電制御剤、色素、スチレン、ブチルアクリレートおよびエステルモノマーを含む重合性単量体系を水系媒体中で懸濁重合して得られた粒子に、シリカ微粒子および酸化チタン微粒子を外添してあるトナー粒子を含んでいる。
得られた電子写真画像における、帯電ローラの感光体との当接痕に起因する横スジの発生の有無、発生している場合にはそのスジの濃さ、および長さを下記表4に示す基準により評価した。表4に示す基準はA4縦用紙上で幅が1mm程度のスジを対象にしたときの横方向のスジの長さに基く。
Figure JPOXMLDOC01-appb-T000004
[実施例2~19]
<縮合物2~19の調製>
用いる原料および量を表5に記載したように変更した以外は縮合物中間体1と同様にして縮合物中間体2~11を調製した。なお、表5中の原料の略号が示す化合物種を表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 次いで、縮合物中間体2~11の種類および量、ならびに、加水分解性タンタル化合物の種類および量を下記表7に示したように変更した以外は縮合物1と同様にして縮合物2~19を調製した。なお、表7中、加水分解性タンタル化合物の略号(Ta-1~Ta-3)が示す化合物種も上記表6に示した。
Figure JPOXMLDOC01-appb-T000007
 得られた縮合物2~19について、縮合物1と同様にして評価[1]を行った。
<コーティング液2~19の調製>
縮合物2~19を用いた以外は、上記のコーティング液1と同様にしてコーティング液2~19を調製した。そして、各コーティング液について、上記の評価[2]~[3]を行った。
<帯電ローラ2~3の作製>
 コーティング液2および3を用いて、実施例1と同様にして表面層形成用塗料2-1~2-5および3-1~3-5を調製した。なお、固形分濃度は、0.1質量%、0.2質量%、1.0質量%、4.0質量%および5.0質量%の5種類とした。これらの塗料を用いて実施例1と同様にして帯電ローラ2-1~2-5及び3-1~3-5を作製し、評価[4]~[6]に供した。
<帯電ローラ4~7の作製>
 コーティング液4~7を用いて、実施例1と同様にして表面層形成用塗料4-1~4-3~7-1~7-3を調製した。なお、固形分濃度は、0.5質量%、1.0質量%、および3.5質量%の3種類とした。これらの塗料を用いて実施例1と同様にして帯電ローラ4-1~4-3、5-1~5-3、6-1~6-3、および、7-1~7-3を作製し、評価[4]~[6]に供した。
<帯電ローラ8~19の作製>
 コーティング液8~19を用いて、実施例1と同様にして表面層形成用塗料8~19を調製した。なお、固形分濃度は、1.0質量%とした。これらの塗料を用いて実施例1と同様にして帯電ローラ8~19を作製し、評価[4]~[6]に供した。
[比較例1~2]
<比較用縮合物20の調製>
 下記表8に示す組成とした以外は縮合物1と同様にして比較用縮合物20を調製した。これについて、上記評価[1]を行った。
<比較用コーティング液20の調製>
 上記比較用縮合物20を用いた以外は、コーティング液1と同様にして比較用コーティング液20を調製した。これについて、上記評価[2]及び[3]を行った。
<比較用縮合物21の調製>
 下記表8に示すように、加水分解性シラン化合物を用いず、加水分解性タンタル化合物、水、エタノールを混合し、室温で3時間攪拌して比較用縮合物21を得た。これについて、上記評価[1]を行った。
<比較用コーティング液21の調製>
上記の比較用縮合物21を用い、かつ、光カチオン重合開始剤を添加しない以外は、コーティング液1と同様にして比較用コーティング液21を調製した。これについて、上記評価[2]及び[3]を行った。なお、比較用コーティング液21についての評価[2]および[3]に際して、比較用コーティング液21の塗膜の硬化には、UVを用いず、温度250℃で1時間加熱することにより行った。
Figure JPOXMLDOC01-appb-T000008
<帯電ローラ20~21の作製>
 実施例1の表面層形成用塗料1を比較用コーティング液20および21に変えた以外は、実施例1と同様にして帯電ローラ20及び21を作製し、評価[4]~[6]に供した。
 上記縮合物1~19および比較用縮合物20~21、コーティング液1~19および比較用コーティング液20~21、ならびに、帯電ローラ1~21についての評価[1]~[6]の結果を下記表9~11に示す。
Figure JPOXMLDOC01-appb-T000009

 
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 
 
1 電子写真感光体
2 軸
3 帯電部材
4 露光光
5 現像手段
6 転写手段
7 クリーニング手段
8 定着手段
9 プロセスカートリッジ
10 案内手段
P 転写材
101 軸芯体(基体)
102 弾性層
103 表面層
この出願は2010年9月27日に出願された日本国特許出願第2010-215809号からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。

 

Claims (7)

  1.   基体、弾性層及び表面層を有している帯電部材であって、
    該表面層は、
    Si-O-Ta結合を有し、かつ、
       下記構造式(1)で示される構成単位および下記構造式(2)で示される構成単位を有している、高分子化合物を含有していることを特徴とする帯電部材:

    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    [構造式(1)中、R1、R2は各々独立して構造式(3)~(6)のいずれかを示す。 
    Figure JPOXMLDOC01-appb-C000024
    Figure JPOXMLDOC01-appb-C000025
    Figure JPOXMLDOC01-appb-C000026
    Figure JPOXMLDOC01-appb-C000027
    (構造式(3)~(6)中、R3~R7、R10~R14、R19、R20、R25およびR26は各々独立して水素、炭素数1~4のアルキル基、水酸基、カルボキシル基またはアミノ基を示す。R8、R9、R15~R18、R23、R24およびR29~R32は各々独立して水素または炭素数1~4のアルキル基を示す。R21、R22、R27およびR28は各々独立して水素、酸素、炭素数1~4のアルコキシ基、または炭素数1~4のアルキル基を示す。n、m、l、q、sおよびtは各々独立して1以上、8以下の整数を示す。pおよびrは各々独立して4以上、12以下の整数を示す。xおよびyは各々独立して0又は1を示す。記号「*」は構造式(1)中のケイ素原子への結合部位を示し、記号「**」は、構造式(1)中の酸素原子への結合部位を示す。)]
  2.  前記構造式(1)のR1、R2が各々独立して下記構造式(7)~(10)からなる群れから選ばれるいずれかで示されるものである請求項1に記載の帯電部材:
    Figure JPOXMLDOC01-appb-C000028
    Figure JPOXMLDOC01-appb-C000029
    Figure JPOXMLDOC01-appb-C000030
    Figure JPOXMLDOC01-appb-C000031
    (構造式(7)~(10)において、N、M、L、Q、SおよびTは各々独立して1以上、8以下の整数を示す。x’およびy’は各々独立して0又は1を示す。記号「*」は構造式(1)中のケイ素原子への結合部位を示し、記号「**」は、構造式(1)中の酸素原子への結合部位を示す。)
  3.  前記高分子化合物における、タンタルとケイ素との原子数比(Ta/Si)が0.1以上、5.0以下である請求項1又は2に記載の帯電部材。
  4.  前記高分子化合物が、下記構造式(11)で示される加水分解性シラン化合物と、下記構造式(12)で示される加水分解性タンタル化合物との加水分解縮合物の架橋物である請求項1から3のいずれか一項に記載の帯電部材:
    Figure JPOXMLDOC01-appb-C000032
    Figure JPOXMLDOC01-appb-C000033
    [構造式(11)中、R33は下記構造式(13)~(16)のいずれかを示し、R34~R36は各々独立して炭素数1~4のアルキル基を示す。構造式(12)中、R37~R41は各々独立して炭素数1~9のアルキル基を示す。
    Figure JPOXMLDOC01-appb-C000034
    Figure JPOXMLDOC01-appb-C000035
    Figure JPOXMLDOC01-appb-C000036
    Figure JPOXMLDOC01-appb-C000037
    (構造式(13)~(16)中、R42~R44、R47~R49、R54、R55、R60およびR61は各々独立して水素、炭素数1~4のアルキル基、水酸基、カルボニル基、カルボキシル基、クロロカルボニル基またはアミノ基を示す。R45、R46、R50~R53、R58、R59およびR64~R67は各々独立して水素、炭素数1~4のアルキル基を示す。R56、R57、R62およびR63は各々独立して水素、炭素数1~4のアルコキシ基または炭素数1~4のアルキル基を示す。n’、m’、l’、q’、s’およびt’は各々独立して1以上、8以下の整数を示す。p’およびr’は各々独立して4以上、12以下の整数を示す。また、記号「*」は構造式(11)のケイ素原子との結合位置を示す。)]。
  5.  前記高分子化合物が、前記構造式(11)で示される加水分解性シラン化合物と、前記構造式(12)で示される加水分解性タンタル化合物と、構造式(17)で示される加水分解性シラン化合物との加水分解縮合物の架橋物である請求項1から4のいずれか一項に記載の帯電部材:
    Figure JPOXMLDOC01-appb-C000038
    (構造式(17)中、R68は炭素数1~21のアルキル基、またはフェニル基を示し、R69~R71は各々独立して炭素数1~6のアルキル基を示す。)。
  6.  請求項1から5のいずれか一項に記載の帯電部材と、該帯電部材に当接して配置されている電子写真感光体とを備え、電子写真装置の本体に着脱可能に構成されていることを特徴とするプロセスカートリッジ。
  7.  請求項1から5のいずれか一項に記載の帯電部材と、該帯電部材に当接して配置されている電子写真感光体とを備えていることを特徴とする電子写真装置。


     
PCT/JP2011/004993 2010-09-27 2011-09-06 帯電部材、プロセスカートリッジおよび電子写真装置 WO2012042755A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11828322.5A EP2624062A4 (en) 2010-09-27 2011-09-06 LOADING ELEMENT, PROCESS CARTRIDGE AND ELECTRO-PHOTOGRAPHIC DEVICE
CN201180046556.9A CN103124932B (zh) 2010-09-27 2011-09-06 充电构件、处理盒和电子照相设备
KR1020137009951A KR101454137B1 (ko) 2010-09-27 2011-09-06 대전 부재, 프로세스 카트리지 및 전자 사진 장치
US13/371,200 US8501325B2 (en) 2010-09-27 2012-02-10 Charging member, process cartridge, and electrophotographic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-215809 2010-09-27
JP2010215809 2010-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/371,200 Continuation US8501325B2 (en) 2010-09-27 2012-02-10 Charging member, process cartridge, and electrophotographic apparatus

Publications (1)

Publication Number Publication Date
WO2012042755A1 true WO2012042755A1 (ja) 2012-04-05

Family

ID=45892250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004993 WO2012042755A1 (ja) 2010-09-27 2011-09-06 帯電部材、プロセスカートリッジおよび電子写真装置

Country Status (6)

Country Link
US (1) US8501325B2 (ja)
EP (1) EP2624062A4 (ja)
JP (1) JP5038524B2 (ja)
KR (1) KR101454137B1 (ja)
CN (1) CN103124932B (ja)
WO (1) WO2012042755A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8447214B2 (en) 2010-09-30 2013-05-21 Canon Kabushiki Kaisha Charging member and process for its production

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264873B2 (ja) * 2009-12-28 2013-08-14 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置
JP4948666B2 (ja) * 2010-08-17 2012-06-06 キヤノン株式会社 帯電部材及びその製造方法
JP4942233B2 (ja) 2010-09-27 2012-05-30 キヤノン株式会社 帯電部材、プロセスカートリッジおよび電子写真装置
KR101543139B1 (ko) 2011-02-15 2015-08-07 캐논 가부시끼가이샤 대전 부재, 그 제조 방법, 프로세스 카트리지 및 전자 사진 장치
KR101515745B1 (ko) 2011-04-27 2015-04-28 캐논 가부시끼가이샤 대전 부재, 프로세스 카트리지, 전자 사진 장치 및 대전 부재의 제조 방법
WO2013118576A1 (ja) * 2012-02-06 2013-08-15 キヤノン株式会社 帯電部材および電子写真装置
WO2013145616A1 (ja) 2012-03-29 2013-10-03 キヤノン株式会社 電子写真用部材の製造方法及びコーティング液
CN103869654B (zh) * 2014-03-11 2017-06-13 北京绿色快车国际橡塑制品有限公司 充电辊及其制备方法
US9921513B2 (en) 2014-12-09 2018-03-20 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic apparatus
US9989879B2 (en) * 2015-06-26 2018-06-05 Canon Kabushiki Kaisha Charging member, process cartridge and electrophotographic image forming apparatus
JP6512971B2 (ja) 2015-07-09 2019-05-15 キヤノン株式会社 電子写真用部材、現像装置及び画像形成装置
US9904199B2 (en) 2015-10-26 2018-02-27 Canon Kabushiki Kaisha Charging member having outer surface with concave portions bearing exposed elastic particles, and electrophotographic apparatus
US9910379B2 (en) 2015-10-26 2018-03-06 Canon Kabushiki Kaisha Charging member with concave portions containing insulating particles and electrophotographic apparatus
US10317811B2 (en) 2016-10-07 2019-06-11 Canon Kabushiki Kaisha Charging member, method for producing same, process cartridge and electrophotographic image forming apparatus
JP7034815B2 (ja) 2017-04-27 2022-03-14 キヤノン株式会社 帯電部材、電子写真プロセスカートリッジ及び電子写真画像形成装置
JP7046571B2 (ja) 2017-11-24 2022-04-04 キヤノン株式会社 プロセスカートリッジ及び電子写真装置
JP7187270B2 (ja) 2017-11-24 2022-12-12 キヤノン株式会社 プロセスカートリッジ及び電子写真装置
CN112005173B (zh) 2018-04-18 2023-03-24 佳能株式会社 导电性构件、处理盒和图像形成设备
CN112020678B (zh) 2018-04-18 2022-11-01 佳能株式会社 导电性构件、处理盒和电子照相图像形成设备
EP3783440A4 (en) 2018-04-18 2022-01-19 Canon Kabushiki Kaisha CONDUCTIVE ELEMENT, PROCESS CARTRIDGE AND IMAGING DEVICE
WO2019203238A1 (ja) 2018-04-18 2019-10-24 キヤノン株式会社 導電性部材及びその製造方法、プロセスカートリッジ並びに電子写真画像形成装置
CN111989622B (zh) 2018-04-18 2022-11-11 佳能株式会社 显影构件、处理盒和电子照相设备
WO2019203225A1 (ja) 2018-04-18 2019-10-24 キヤノン株式会社 導電性部材、プロセスカートリッジ及び電子写真画像形成装置
US10558136B2 (en) 2018-04-18 2020-02-11 Canon Kabushiki Kaisha Charging member, manufacturing method of charging member, electrophotographic apparatus, and process cartridge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173641A (ja) 1999-12-15 2001-06-26 Suzuka Fuji Xerox Co Ltd 導電性ロール
JP2006039286A (ja) * 2004-07-28 2006-02-09 Canon Inc 帯電部材、電子写真装置及びプロセスカートリッジ
JP2007004102A (ja) * 2004-09-02 2007-01-11 Canon Inc 帯電部材、プロセスカートリッジおよび電子写真装置
JP2007225998A (ja) * 2006-02-24 2007-09-06 Canon Inc 帯電部材
JP2007264611A (ja) * 2006-02-28 2007-10-11 Canon Inc 帯電部材、プロセスカートリッジおよび電子写真装置
JP2010215809A (ja) 2009-03-17 2010-09-30 Yanmar Co Ltd ガス化装置の制御装置
WO2011080906A1 (ja) * 2009-12-28 2011-07-07 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138530A (ja) * 1993-11-12 1995-05-30 Hoya Corp ハードコートの製造方法
CN100492191C (zh) * 2004-09-02 2009-05-27 佳能株式会社 充电构件、处理盒和电子照相设备
EP1834217B1 (en) 2004-12-28 2011-08-17 Canon Kabushiki Kaisha Charging member, process cartridge and electrophotographic apparatus
WO2006070847A1 (en) * 2004-12-28 2006-07-06 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic apparatus
CN101395540B (zh) * 2006-02-28 2010-10-27 佳能株式会社 充电构件、处理盒和电子照相设备
KR101108370B1 (ko) 2006-02-28 2012-01-30 캐논 가부시끼가이샤 대전 부재, 공정 카트리지 및 전자 사진 장치
JP4717959B1 (ja) 2009-12-14 2011-07-06 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置
JP5729988B2 (ja) 2009-12-15 2015-06-03 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置
WO2012011245A1 (ja) 2010-07-20 2012-01-26 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置
KR101454131B1 (ko) 2010-08-09 2014-10-22 캐논 가부시끼가이샤 대전 부재, 그 제조 방법, 프로세스 카트리지 및 전자 사진 장치
JP4948666B2 (ja) 2010-08-17 2012-06-06 キヤノン株式会社 帯電部材及びその製造方法
WO2012023241A1 (ja) * 2010-08-19 2012-02-23 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置
WO2012023237A1 (ja) * 2010-08-20 2012-02-23 キヤノン株式会社 帯電部材
JP4954344B2 (ja) 2010-09-27 2012-06-13 キヤノン株式会社 帯電部材及びその製造方法
JP4942233B2 (ja) 2010-09-27 2012-05-30 キヤノン株式会社 帯電部材、プロセスカートリッジおよび電子写真装置
CN103154827B (zh) 2010-09-27 2015-07-01 佳能株式会社 充电构件、处理盒和电子照相设备
EP2703902B1 (en) * 2011-04-28 2016-03-23 Canon Kabushiki Kaisha Charging member, method for producing charging member, electrophotographic device, and processor cartridge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173641A (ja) 1999-12-15 2001-06-26 Suzuka Fuji Xerox Co Ltd 導電性ロール
JP2006039286A (ja) * 2004-07-28 2006-02-09 Canon Inc 帯電部材、電子写真装置及びプロセスカートリッジ
JP2007004102A (ja) * 2004-09-02 2007-01-11 Canon Inc 帯電部材、プロセスカートリッジおよび電子写真装置
JP2007225998A (ja) * 2006-02-24 2007-09-06 Canon Inc 帯電部材
JP2007264611A (ja) * 2006-02-28 2007-10-11 Canon Inc 帯電部材、プロセスカートリッジおよび電子写真装置
JP2010215809A (ja) 2009-03-17 2010-09-30 Yanmar Co Ltd ガス化装置の制御装置
WO2011080906A1 (ja) * 2009-12-28 2011-07-07 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2624062A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8447214B2 (en) 2010-09-30 2013-05-21 Canon Kabushiki Kaisha Charging member and process for its production

Also Published As

Publication number Publication date
KR101454137B1 (ko) 2014-10-22
CN103124932A (zh) 2013-05-29
KR20130079548A (ko) 2013-07-10
EP2624062A1 (en) 2013-08-07
JP2012093727A (ja) 2012-05-17
CN103124932B (zh) 2015-03-25
US8501325B2 (en) 2013-08-06
JP5038524B2 (ja) 2012-10-03
US20120141160A1 (en) 2012-06-07
EP2624062A4 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
JP5038524B2 (ja) 帯電部材、プロセスカートリッジおよび電子写真装置
JP4948668B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP4991961B2 (ja) 帯電部材、プロセスカートリッジおよび電子写真装置
JP5943696B2 (ja) 帯電部材、帯電部材の製造方法、電子写真装置およびプロセスカートリッジ
KR101360617B1 (ko) 대전 부재, 프로세스 카트리지 및 전자 사진 장치
KR101561758B1 (ko) 대전 부재, 프로세스 카트리지 및 전자 사진 장치
JP4878659B1 (ja) 帯電部材及び電子写真装置
WO2012147301A1 (ja) 帯電部材、プロセスカートリッジ、電子写真装置、及び帯電部材の製造方法
JP4948666B2 (ja) 帯電部材及びその製造方法
JP4841016B1 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP6000989B2 (ja) 帯電部材および電子写真装置
WO2013175734A1 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP4942233B2 (ja) 帯電部材、プロセスカートリッジおよび電子写真装置
JP4942234B2 (ja) 帯電部材、その製造方法及び電子写真装置
JP2011138052A (ja) ポリシロキサン含有膜形成用の組成物及び帯電部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046556.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011828322

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137009951

Country of ref document: KR

Kind code of ref document: A