WO2012036277A1 - 光学素子の製造方法及び光学素子 - Google Patents

光学素子の製造方法及び光学素子 Download PDF

Info

Publication number
WO2012036277A1
WO2012036277A1 PCT/JP2011/071239 JP2011071239W WO2012036277A1 WO 2012036277 A1 WO2012036277 A1 WO 2012036277A1 JP 2011071239 W JP2011071239 W JP 2011071239W WO 2012036277 A1 WO2012036277 A1 WO 2012036277A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
optical
optical element
mold
convex portion
Prior art date
Application number
PCT/JP2011/071239
Other languages
English (en)
French (fr)
Inventor
芦田修平
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to CN201180043893.2A priority Critical patent/CN103097312B/zh
Priority to JP2012534067A priority patent/JP5796580B2/ja
Priority to US13/824,962 priority patent/US9309141B2/en
Publication of WO2012036277A1 publication Critical patent/WO2012036277A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/082Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/414Arrays of products, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/61Positioning the glass to be pressed with respect to the press dies or press axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Definitions

  • the present invention relates to a method for manufacturing an optical element made of glass and an optical element, and more particularly to a method for manufacturing an optical element of a type in which glass in a molten state is directly press-molded and an optical element molded using the manufacturing method.
  • a molten glass droplet is dropped near the center of the optical surface transfer surface, and a mold having a plurality of optical surface transfer surfaces is used to mold a plurality of optical elements.
  • an optical element with good shape accuracy cannot be obtained. That is, in the case of a mold having a plurality of optical surface transfer surfaces, for example, molten glass is not dropped on a specific optical surface transfer surface, but is dropped at an appropriate place other than the optical surface transfer surface.
  • a region where the glass that has flowed in does not come into contact with the optical surface transfer surface may be formed due to the relationship between viscosity and viscosity. Therefore, the transfer of the optical surface transfer surface is incomplete, and it is difficult to accurately manufacture a glass molded body including a plurality of optical elements.
  • the present invention has been made in view of the above-described background art, and an object of the present invention is to provide a method of manufacturing an optical element that can improve the shape accuracy even when a plurality of optical elements are molded.
  • an object of the present invention is to provide an optical element molded using the manufacturing method.
  • the optical element manufacturing method according to the present invention is melted with respect to one mold having a plurality of optical surface transfer surfaces corresponding to a plurality of optical elements in a pair of molds.
  • the portion corresponding to the mold surface other than the optical surface transfer surface on which the convex portion is provided is, for example, a portion that is traditionally made flat by being surrounded by a plurality of optical surface transfer surfaces.
  • the glass droplets on the optical surface transfer surface on the edge side closer to the dropping point of the glass droplets are optical surfaces. It can be made to flow along the transfer surface.
  • the flow is adjusted by the convex portion, and the inclination angle close to the edge side of the optical surface transfer surface near the convex portion is large.
  • the tendency to flow along the optical surface transfer surface is increased.
  • a flat mold surface is formed between the plurality of optical surface transfer surfaces and the convex portions.
  • the glass droplet whose flow is adjusted by the convex portion flows into the optical surface transfer surface through a flat mold surface.
  • the flat mold surface is a connection surface transfer surface that connects the plurality of optical surface transfer surfaces.
  • This connecting surface transfer surface forms a portion connecting a plurality of optical elements in the molded product.
  • the convex portion is provided at the dropping position of the glass droplet in the dropping step.
  • the dropped glass droplets can be flowed relatively uniformly and efficiently from the convex portion at the dropping point to the plurality of surrounding optical surface transfer surfaces.
  • a plurality of convex portions are provided.
  • the flow of glass can be controlled more complicatedly by providing a plurality of convex portions.
  • the shape of the convex portion is any one of a dome shape, a spherical shape, a conical shape, and a truncated cone shape.
  • the formation of the convex portion can be made relatively simple.
  • the dome shape, spherical shape, conical shape, and truncated cone shape are point-symmetric shapes when projected onto a plane, and when a glass drop falls on a convex portion, the dropped glass droplet is removed from the convex portion at the dropping point. It can be made to flow substantially uniformly toward a plurality of optical surface transfer surfaces existing around.
  • the convex portion is formed by pre-dropping by dropping a molten glass droplet (glass droplet for convex portion) before the dropping step.
  • a molten glass droplet glass droplet for convex portion
  • the glass convex portions are melted by the heat from the surroundings during the molding process, or the entire surface is crushed, and a plurality of optical elements. Is absorbed by the aggregate of the glass, that is, the glass molded body. Thereby, the restriction
  • the convex portion is placed on a flat coupling surface transfer surface connecting a plurality of optical surface transfer surfaces.
  • the weight of the glass droplets forming the convex portions is 1/10 or less of the weight of the glass droplets forming the plurality of optical elements.
  • the weight of the glass droplets forming the convex portions is at least about one digit or less compared to the weight of the glass droplets forming the plurality of optical elements, and the convex portions made of glass form the optical elements. Can be surely prevented.
  • the glass droplets forming the convex portions and the glass droplets forming the plurality of optical elements are glass having the same composition.
  • the glass droplets forming the convex portions are uniformly integrated with the glass droplets forming the plurality of optical elements to form an aggregate of a plurality of optical elements, that is, a glass molded body, thereby reducing distortion of the optical elements. can do.
  • the glass droplet forming the convex portion is a glass having a softening point lower than that of the glass droplet forming the plurality of optical elements.
  • the convex portion can be softened relatively quickly during the molding step, and the glass convex portion can be prevented from interfering with the molding of the optical element particularly in the initial stage of pressing. Thereby, the surface accuracy of the optical surface of the optical element can be improved.
  • Still another aspect of the present invention is characterized in that the glass droplets forming the convex portions are formed via a dropping plate having an opening having a smaller diameter than the glass droplets forming the plurality of optical elements.
  • the same nozzle as the nozzle for forming the optical element glass drop can be used for forming the convex portion.
  • the glass droplet dripped from one nozzle can be separately made for optical elements and convex portions, and the cost can be suppressed.
  • the glass element according to the present invention is molded using the above-described optical element manufacturing method. Thereby, even when a plurality of optical elements are molded, an optical element having good transfer accuracy can be obtained.
  • (A) is a top view about the principal part of a shaping die
  • (B) is FF arrow sectional drawing of (A).
  • (A) is a top view of the glass molded object shape
  • (B) is GG arrow sectional drawing of (A),
  • (C) is a glass molded object of (A). It is sectional drawing of the glass lens cut out from.
  • (B) is another figure explaining the shaping
  • (A), (B) is sectional drawing explaining the manufacturing process of the glass lens which used the shaping
  • (A) is a conceptual diagram explaining the flow of the glass droplet after a dripping process
  • (B) is a figure explaining the comparative example of (A).
  • (A) to (C) are perspective views of a molding die in the second embodiment.
  • (A) is a top view of the molding die in 3rd Embodiment
  • (B) is a top view of the molding die in 4th Embodiment.
  • a molding apparatus 200 incorporating a molding die 10 as shown in FIG. 1 is an apparatus for pressure molding in which glass as a raw material is melted and pressed directly, and an optical element as shown in FIG.
  • a glass molded body MP as shown in FIGS. 3 (A) and 3 (B) can be manufactured.
  • the molding device 200 includes a control drive device 4 for causing the molding die 10 to move, open and close when the glass lens 100 is manufactured, and a glass droplet forming device. 5 (see FIG. 4A) and the like.
  • the molding die 10 includes a movable-side upper die 1 and a fixed-side lower die 2.
  • the lower mold 2 is maintained in a fixed state, and the upper mold 1 is moved so as to face the lower mold 2, and the mold closing is performed such that both molds 1 and 2 are brought into contact with each other.
  • the glass molded body MP molded by the molding apparatus 200 includes a plurality of glass lenses 100. Each glass lens 100 cut out so as to divide the glass molded body MP, which is an integrated semi-finished product, becomes a part of an imaging lens used in an imaging device or the like, for example.
  • the glass lens 100 includes a central portion 100a having an optical function, and a flange portion 100b extending from the central portion 100a in the outer diameter direction.
  • the optical functional surfaces 101a and 102a functioning as the optical surfaces of the glass lens 100 have different curvatures, and the optical functional surface 102a side having a large curvature is provided to prevent the formation of defective molding due to air accumulation during pressure molding.
  • the lens is to be manufactured in the downward direction. That is, in this molding die 10, the curvature of the optical surface transfer surface 12a of the lower die 2 is large. On the other hand, the optical surface transfer surface 11a of the upper mold 1 has almost no curvature.
  • the plurality of glass lenses 100 are integrally formed through the connecting portion 100c, but the connecting portion 100c uses a dicing or the like to form the glass lens 100 and its periphery into a square having a predetermined size. By cutting out, it is divided into individual independent glass lenses 100.
  • the connecting portion 100c remaining after the division corresponds to a flat flange portion 100b that supports the glass lens 100 from the periphery, and is used for assembly to the imaging lens.
  • the lower mold 2 includes a mold body 2a, a support part 2b, and a heater part 2c.
  • the mold body 2a of the lower mold 2 is cylindrical, and a plurality of optical surface transfer surfaces are used as transfer surfaces for molding on the mold surface 12. 12a and a connecting surface transfer surface 12b.
  • the former optical surface transfer surface 12a is for forming an optical functional surface 102a having a relatively large curvature in the central portion 100a of the glass lens 100, and has a circumference based on the central portion CO of the mold surface 12.
  • Four are provided at regular intervals on the CS.
  • the optical surface transfer surface 12a is arranged at the four corners of a virtual square, which is intended to facilitate division by later dicing.
  • the latter connecting surface transfer surface 12b is for forming a connecting surface 102c of the connecting portion 100c (a flange surface 102b of the flange portion 100b to be completed later), and a plurality of two-dimensionally arranged on the mold surface 12.
  • the mold surface excluding the optical surface transfer surface 12a, the surface extends from the outer edge of each optical surface transfer surface 12a toward the other optical surface transfer surface 12a or the periphery of the mold surface 12.
  • the glass drop GD for an optical element forming the glass lens 100 is located at the center CO of the mold surface 12 and at an equal distance from each optical surface transfer surface 12a.
  • One convex portion 12d is provided for changing the flow (see FIG. 4A).
  • the mold surface in the vicinity of the center portion CO of the mold surface 12 is a flat surface surrounded by the four optical surface transfer surfaces 12a. That is, the convex portion 12d is arranged at the center of a flat surface (flat mold surface) surrounded by the four optical surface transfer surfaces 12a.
  • the glass drop GD for an optical element for forming the glass lens 100 falls to the position of the convex portion 12d (see FIG. 4B).
  • the convex portion 12d has a dome shape, and is formed by convex portion glass droplets K (see FIG. 4A). Specifically, the convex portion 12d is formed by pre-dropping in which the convex portion glass droplet K melted in the same manner is dropped before the optical element glass droplet GD dropping step described later.
  • the ratio of the height of the convex portion 12d and the distance from the outer edge of the convex portion 12d to the outer edge of each optical surface transfer surface 12a is appropriately set depending on the size of the glass droplet GD for optical elements. For example, 2: 5.
  • the heater 2c provided at the base of the support 2b of the lower mold 2 incorporates an electric heater 40b for appropriately heating the mold body 2a.
  • the upper mold 1 includes a mold body 1a, a support part 1b, and a heater part 1c.
  • the mold body 1 a has a cylindrical shape, and has a plurality of optical surface transfer surfaces 11 a and connection surface transfer surfaces 11 b as transfer surfaces upon molding on the mold surface 11.
  • the former optical surface transfer surface 11a is for forming an optical functional surface 101a having a relatively small curvature in the glass lens 100, and faces the optical surface transfer surface 12a of the lower mold 2 so as to face the mold surface 11.
  • Four are formed at equal intervals on the circumference starting from the center of each.
  • the latter connecting surface transfer surface 11b is for forming a connecting surface 101c of the connecting portion 100c (a flange surface 101b of the flange portion 100b to be completed later), and a plurality of two-dimensionally arranged on the mold surface 11.
  • the mold surface extends flatly from the outer edge of each optical surface transfer surface 11 a toward the other optical surface transfer surface 11 a or the periphery of the mold surface 11.
  • the heater part 1c provided at the base of the support part 1b of the upper mold 1 incorporates an electric heater 40a for appropriately heating the mold body 1a.
  • the upper mold 1 and the lower mold 2 are arranged such that the respective transfer surfaces 11a and 11b of the upper mold 1 and the corresponding transfer surfaces 12a and 12b of the lower mold 2 are arranged coaxially during press molding, respectively. In addition, an appropriate positional relationship is maintained, such as being separated from each other by a predetermined interval during cooling.
  • the control drive unit 4 incorporates a molding die 10 for controlling the power supply to the electric heaters 40a and 40b and for opening and closing the upper die 1 and the lower die 2 for molding the glass lens 100 by the molding die 10.
  • the entire molding apparatus 200 is controlled.
  • the upper mold 1 driven by the control drive device 4 is movable in the horizontal AB direction and movable in the vertical CD direction as shown in FIG.
  • the upper mold 1 is first moved to the upper position of the lower mold 2 so that the axes CX1 and CX2 of the both molds 1 and 2 are aligned,
  • the optical surface transfer surface 11a and the lower optical surface transfer surface 12a are made to coincide with each other, and the upper die 1 is lowered and pressed against the lower die 2 side with a predetermined force.
  • the glass droplet forming device 5 includes a raw material supply unit 51 and a dropping plate 52.
  • the raw material supply unit 51 and the dropping plate 52 are heated by a heater (not shown), the glass in the raw material supply unit 51 is in a molten state, and the molten state of the glass passing through the dropping plate 52 is maintained.
  • the raw material supply unit 51 stores molten glass G melted in a crucible (not shown) or the like, and drops glass droplets GD for optical elements obtained from the molten glass G at a predetermined timing from the nozzle 51a, so that the lower mold This is a portion to be supplied to the mold surface 12 or the dropping plate 52.
  • This raw material supply unit 51 is not only used for optical element glass droplets GD that are directly used for molding the glass molded body MP, but also for the glass droplets K for convex portions in the pre-dropping step performed before the molding of the glass molded body MP. It is also used when forming.
  • the dropping plate 52 is for forming smaller convex glass drops K from the optical element glass drops GD supplied from the raw material supply section 51.
  • the dropping plate 52 is disposed immediately below the nozzle 51 a provided at the lower portion of the raw material supply unit 51, and has an opening 52 a having a smaller diameter than the opening of the nozzle 51 a of the raw material supply unit 51.
  • the optical element glass droplet GD dropped on the dropping plate 52 becomes a convex glass droplet K having a smaller diameter than the optical element glass droplet GD through the opening 52a.
  • the size of the diameter of the opening 52a is such that the weight of the convex portion glass droplet K is 1/10 or less of the weight of the optical element glass droplet GD dropped from the nozzle 51a. Yes.
  • the formation of the convex portion 12d of the lower mold 2 in the molding die 10 will be specifically described with reference to FIG.
  • the convex portion glass droplets K for forming the convex portion 12d are formed using the glass droplet forming device 5 (pre-dropping step).
  • the portion CO is disposed above the coupling surface transfer surface 12b at an equal distance from the optical surface transfer surface 12a, and the molten glass G is naturally dropped onto the dropping plate 52 from the nozzle 51a.
  • the optical element glass droplet GD dropped on the dropping plate 52 passes through the opening 52a and has a smaller convex glass drop K (1/10 or less than the optical element glass droplet GD). ) And is naturally dropped on the mold surface 12.
  • the size of the convex portion glass droplets K can be adjusted by using the dropping plate 52.
  • the dropped glass drop K for the convex portion is cooled and cured on the mold surface 12 while maintaining its shape by the surface tension, and becomes a convex portion 12d having a dome-like outer shape.
  • the glass of the raw material used for the molten glass G uses the glass of the same composition as the glass molded object MP (glass lens 100), For example, phosphate glass etc. correspond.
  • the nozzle 51a formed in the lower part of the raw material supply part 51 is arrange
  • the nozzle 51a is retracted to a position where it does not interfere with the raising and lowering of the upper mold 1.
  • variation in the weight of the optical element glass droplet GD dropped to obtain the glass lens 100 can be suppressed.
  • the same phosphate glass as the glass droplets K for convex portions can be used as the glass of the raw material used for the molten glass G.
  • the dropping step may be continued by retracting the dropping plate 52 after the preliminary dropping step.
  • the optical element glass droplet GD dropped on the mold surface 12 is dropped from the connecting surface transfer surface 12b around the protruding portion 12d at the protruding portion 12d. It spreads radially to each optical surface transfer surface 12a.
  • the dropped glass droplet GD for optical elements hits the convex portion 12d, so that the flow speed and direction are adjusted.
  • the optical element glass droplet GD is controlled to flow downward and inclined, and is closer to the edge of the optical surface transfer surface 12a closer to the dropping point of the optical element glass droplet GD (on the edge side of FIG. 2A). Near the area AR), the optical element glass droplet GD flows along the optical surface transfer surface 12a.
  • the convex part 12d is not provided, as shown in FIG. 6B as a comparative example, on the edge side of the optical surface transfer surface 12a, the portion where the optical element glass droplet GD does not follow the optical surface transfer surface 12a.
  • the gap S is formed at that portion, and the optical surface transfer surface 12a is not transferred well.
  • the optical element glass droplet GD is still under pressure-deformable temperature.
  • the upper mold 1 that has been heated to the same temperature as the lower mold 2 is lowered, the upper mold 1 is brought close to the lower mold 2 with the mold surface 11 and the mold surface 12 facing each other, and the lower mold 2
  • the optical element glass droplet GD on the mold 2 is pressure-formed between the upper and lower molds 1 and 2 (molding process).
  • the convex portion 12d provided on the mold surface 12 of the lower mold 2 is crushed by pressing and heating so as to be fused with the optical element glass droplet GD.
  • the optical functional surface 101a and the flange surface 101b on one side of the glass lens 100, and the optical functional surface 102a and the flange on the other side are formed.
  • a glass molded body MP including a glass lens 100 having a surface 102b is molded.
  • the fused convex portion 12d cannot be distinguished from the optical element glass droplet GD, or the optical element glass droplet GD and the convex glass droplet.
  • the boundary 80 with K is only slightly distinguishable.
  • the glass molded body MP After the extraction step, the glass molded body MP obtains a glass lens 100 as shown in FIG. 3C by dividing the connecting portion 100c into four squares using a dicer or the like (cutting step).
  • the glass drop GD for the optical element on the optical surface transfer surface 12a.
  • the glass drop GD for optical elements can flow along the optical surface transfer surface 12a on the edge side closer to the dropping point.
  • the optical element glass droplet GD dropped on the lower mold 2 has its flow adjusted by the convex portion 12d when flowing into the optical surface transfer surface 12a, and an inclination angle close to the edge side of the optical surface transfer surface 12a. The tendency to flow along the large optical surface transfer surface 12a increases.
  • the optical functional surface 101a of the glass lens 100 can be transferred with high accuracy on each optical surface transfer surface 12a, and good shape accuracy can be achieved.
  • the glass lens 100 can be manufactured collectively.
  • optical element manufacturing method according to the second embodiment is a modification of the optical element manufacturing method according to the first embodiment, and parts not specifically described are the same as those in the first embodiment.
  • a convex portion 12d for changing the flow of glass droplets forming the glass lens 100 is located at the center CO of the mold surface 12 and at an equal distance from each optical surface transfer surface 12a.
  • the convex portion 12 d has a conical shape and is formed in advance on the mold surface 12 as a part of the molding die 10. That is, the convex part 12d is not formed by the preliminary dropping of the convex part glass droplets K as in the first embodiment, but is formed at the stage of mold processing.
  • the mold processing of the convex portion 12d is performed by cutting, for example.
  • the convex portion 12d may be formed in advance as a separate part and attached to the mold surface 12.
  • the convex portion 12d may have a spherical shape, a truncated cone shape as shown in FIG. 7B, or a trapezoid shape as shown in FIG.
  • the method for manufacturing the optical element according to the third embodiment of the present invention will be described below.
  • the optical element manufacturing method according to the third embodiment is a modification of the optical element manufacturing method according to the first embodiment, and parts not specifically described are the same as those in the first embodiment.
  • a rectangular mold surface 12 is formed at the upper end of the mold body 2a of the lower mold 2 constituting the molding die 10.
  • eight optical surface transfer surfaces 12a are formed at equal intervals on a square circumference GS with the center portion CO of the mold surface 12 as a base point. That is, the optical surface transfer surface 12a is disposed on the lattice points except for the center.
  • the upper mold (not shown) is formed with eight optical surface transfer surfaces facing the optical surface transfer surface 12a of the lower mold 2 on the rectangular mold surface.
  • one convex portion 12d is provided at a position equidistant from each optical surface transfer surface 12a, which is the center portion CO of the mold surface 12.
  • An optical element glass droplet GD (see FIG. 4B) for forming the glass lens 100 falls at a drop point 90 corresponding to the center of the convex portion 12d.
  • the convex portion 12d is a collection of a plurality of dome-shaped projections, and is composed of one vertex at the center portion CO and four vertices arranged at equal intervals around the vertex. A part of the outer edge of the convex portion 12d extends toward the optical surface transfer surfaces 12a at the four corners farthest from the center portion CO.
  • the convex portion 12d is formed by dropping the convex portion glass droplets K five times, or by simultaneously dropping the five convex portion glass droplets K using a dropping plate having five openings. To do.
  • the glass drop GD for optical elements dropped on the mold surface 12 spreads radially from the drop point 90 toward each optical surface transfer surface 12a. At this time, since the variation in the distance between the outer edge of the convex portion 12d and each optical surface transfer surface 12a is small, the speed and direction of the flow of the optical element glass droplet GD are adjusted, and the optical element glass droplet GD becomes an optical surface. It flows in along the transfer surface 12a.
  • the method for manufacturing the optical element according to the fourth embodiment of the present invention will be described below.
  • the manufacturing method of the optical element of the fourth embodiment is a modification of the manufacturing method of the optical element of the third embodiment, and parts not specifically described are the same as those of the third embodiment.
  • one convex portion 12d is located at the center CO of the mold surface 12 and is equidistant from each optical surface transfer surface 12a, and on the circumference RS surrounding the convex portion 12d, 8 Two convex portions 12e are provided.
  • the eight convex portions 12e are arranged one by one between the optical surface transfer surfaces 12a.
  • the convex portions 12d and 12e have a dome shape and are formed by the glass droplets K for convex portions (see FIG. 4A).
  • the convex portion 12d of the central portion CO has a diameter larger than that of the convex portion 12e on the circumference RS, and is formed using openings of the dropping plates having different sizes.
  • the convex portions 12d and 12e may be sequentially formed individually or at the same time as in the third embodiment. Moreover, you may make the same convex shape with a metal mold
  • the glass drop GD for optical elements dropped on the mold surface 12 spreads radially from the drop point 90 toward each optical surface transfer surface 12a.
  • the convex portion 12e provided on the circumference RS temporarily becomes a wall, the speed and direction of the flow of the optical element glass droplet GD are adjusted, and the optical element glass droplet GD is converted into the optical surface transfer surface 12a. It flows in along.
  • the optical element manufacturing method and the like according to the present embodiment have been described above, the optical element manufacturing method and the like according to the present invention are not limited to those described above.
  • size of convex part 12d, 12e are an illustration, What is necessary is just a shape and magnitude
  • the convex glass droplets K forming the convex portions 12d and 12e may be glass having a softening point lower than that of the optical element glass droplets GD.
  • the number of optical surface transfer surfaces 12a and the like is not limited to four or eight, but may be two or more.
  • a concave portion for providing the convex portion glass droplets K may be formed on the mold surface 12. Thereby, the position of the glass droplet K for convex parts can be stabilized.
  • the glass lens 100 is cut out in a square shape, but the cut out shape is an example, and may be cut out in a circular shape, for example. Further, the arrangement of the optical surface transfer surfaces 11a and 12a can be freely set depending on how the glass lens 100 is cut out.
  • the drop glass plate K is formed using the dropping plate 52, but a nozzle that drops glass droplets having a desired size is separately formed. May be.
  • the protrusions 12d and 12e having a desired shape and size may be formed in advance on the mold surface 12 without being dripped in advance. Good.

Abstract

光学素子を複数個成形する場合であっても、形状精度を良好にできる光学素子の製造方法である。成形金型10に溶融した光学素子用ガラス滴GDの流れを変えるための凸部12dを設けることにより、光学面転写面12aのうち光学素子用ガラス滴GDの滴下点により近い縁側において光学素子用ガラス滴GDが光学面転写面12aに沿って流れるようにすることができる。これにより、複数のガラスレンズ100を一括して成形する場合であっても、各光学面転写面12aにおいてガラスレンズ100の光学機能面101aを高精度に転写することができ、良好な形状精度のガラスレンズ100を一括して製造することができる。

Description

光学素子の製造方法及び光学素子
 本発明は、ガラス製の光学素子の製造方法及び光学素子に関し、特に溶融状態のガラスを直接プレス成形するタイプの光学素子の製造方法及び当該製造方法を用いて成形される光学素子に関する。
 ガラス製の光学素子を成形する方法として、例えば所定重量の溶融ガラスを落下させ、落下した溶融ガラス滴を下型で保持し、この溶融ガラス滴を再加熱せずに金型間でプレスすることによって光学素子を得る方法がある(特許文献1参照)。
 しかしながら、特許文献1のような方法では、溶融ガラス滴を光学面転写面の中心付近に滴下しており、光学素子を複数個成形するために複数の光学面転写面を有する金型を用いる場合、良好な形状精度の光学素子が得られない可能性がある。すなわち、複数の光学面転写面を有する金型の場合、例えば溶融ガラスを特定の光学面転写面上に滴下せず光学面転写面以外の適所に滴下することとなるが、この場合ガラスの流速と粘性との関係により、流入したガラスが光学面転写面に接触しない領域ができてしまう可能性がある。よって、光学面転写面の転写が不完全となって、複数の光学素子を含むガラス成形体を精度よく製造することが難しい。
特開平1-308840号公報
 本発明は、上記背景技術に鑑みてなされたものであり、光学素子を複数個成形する場合であっても、形状精度を良好にできる光学素子の製造方法を提供することを目的とする。
 また、本発明は、当該製造方法を用いて成形される光学素子を提供することを目的とする。
 上記目的を達成するため、本発明に係る光学素子の製造方法は、一対の金型のうち複数の光学素子に対応して複数の光学面転写面を有する一方の金型に対して、溶融したガラス滴(光学素子用ガラス滴)を滴下する滴下工程と、一方の金型と他方の金型とを合わせてプレス成形する成形工程と、を備え、一方の金型は、上記複数の光学面転写面以外の型面に対応する部分にガラス滴の流れを変える凸部を有することを特徴とする。ここで、凸部が設けられる光学面転写面以外の型面に対応する部分は、例えば複数の光学面転写面に囲まれ旧来で平坦面とされた部分である。
 上記光学素子の製造方法によれば、金型に溶融したガラス滴の流れを変えるための凸部を設けることにより、光学面転写面のうちガラス滴の滴下点により近い縁側においてガラス滴が光学面転写面に沿って流れるようにすることができる。言い換えれば、一方の金型に滴下されたガラス滴は、光学面転写面に流入する際に、凸部によって流れが調整され、光学面転写面のうち凸部寄りの縁側に近い傾斜角度の大きい光学面転写面に沿って流れる傾向が高まる。これにより、複数の光学素子を一括して成形する場合であっても、各光学面転写面において光学素子の光学面を高精度に転写することができ、良好な形状精度の複数の光学素子を一括して製造することができる。
 本発明の具体的な態様又は観点では、上記複数の光学面転写面と凸部との間には、平坦な型面が形成されている。この場合、凸部で流れが調整されたガラス滴は、平坦な型面を経て光学面転写面に流入することになる。
 本発明の別の観点では、平坦な型面は、上記複数の光学面転写面をつなぐ連結面転写面である。この連結面転写面は、成形品において複数の光学素子をつなぐ部分を成形することになる。
 本発明のさらに別の観点では、凸部は、滴下工程におけるガラス滴の落下位置に設けられていることを特徴とする。この場合、落下したガラス滴を落下地点の凸部から周囲の複数の光学面転写面へ比較的均等に効率よく流入させることができる。
 本発明のさらに別の態様では、凸部は、複数個設けられることを特徴とする。この場合、凸部を複数個設けることにより、ガラスの流れをより複雑に制御することができる。
 本発明のさらに別の態様では、凸部の形状は、ドーム状、球状、円錐状、及び円錐台状のいずれかであることを特徴とする。この場合、凸部の形成を比較的簡単なものとすることができる。また、ドーム状、球状、円錐状、及び円錐台状は、平面に投影すると点対称な形状であり、ガラス滴が凸部上に落下した場合、落下したガラス滴を落下地点の凸部からその周囲に存在する複数の光学面転写面に向けて略均一に流入させることができる。
 本発明のさらに別の態様では、凸部は、滴下工程前に溶融したガラス滴(凸部用ガラス滴)を滴下する事前滴下により形成されることを特徴とする。この場合、凸部を光学素子と同様にガラス滴で形成することにより、ガラス製の凸部は、成形工程の際に周囲からの熱で表面が溶融し又は全体が潰れて、複数の光学素子の集合体、すなわちガラス成形体に吸収される。これにより、金型形状の制約を低減することができる。
 本発明のさらに別の態様では、凸部は、複数の光学面転写面をつなぐ平坦な連結面転写面上に載置される。
 本発明のさらに別の態様では、凸部を形成するガラス滴の重量は、複数の光学素子を形成するガラス滴の重量の1/10以下であることを特徴とする。この場合、凸部を形成するガラス滴の重量は、複数の光学素子を形成するガラス滴の重量に比較して少なくとも1ケタ程度又はそれ以上に小さくなり、ガラス製の凸部が光学素子の成形の妨げとなることを確実に防ぐことができる。
 本発明のさらに別の態様では、凸部を形成するガラス滴と、複数の光学素子を形成するガラス滴とは、同じ組成のガラスであることを特徴とする。この場合、凸部を形成するガラス滴が、複数の光学素子を形成するガラス滴と一様に一体化して複数の光学素子の集合体、すなわちガラス成形体となるので、光学素子の歪みを低減することができる。
 本発明のさらに別の態様では、凸部を形成するガラス滴は、複数の光学素子を形成するガラス滴よりも軟化点の低いガラスであることを特徴とする。この場合、成形工程の際に、凸部を比較的迅速に軟化させることができ、ガラス製の凸部が特にプレスの初期段階で光学素子の成形の妨げとなることを防ぐことができる。これにより、光学素子の光学面の面精度を向上させることができる。
 本発明のさらに別の態様では、凸部を形成するガラス滴は、複数の光学素子を形成するガラス滴よりも小さい径の開口部を有する滴下プレートを介して形成することを特徴とする。この場合、上記滴下プレートを介してガラス滴を形成するために、光学素子用ガラス滴を形成するノズルと同一のノズルとを凸部の成形に用いることができる。これにより、1本のノズルから滴下されるガラス滴を光学素子用と凸部用とに作り分けることができ、コストを抑えることができる。
 本発明に係るガラス素子は、上述の光学素子の製造方法を用いて成形される。これにより、複数の光学素子を成形した場合でも転写精度が良好な光学素子を得ることができる。
第1実施形態に係るガラスレンズの製造方法に用いる成形装置を説明する図である。 (A)は、成形金型の主要な部分についての平面図であり、(B)は、(A)のFF矢視断面図である。 (A)は、成形金型から成形されるガラス成形体の平面図であり、(B)は、(A)のGG矢視断面図であり、(C)は、(A)のガラス成形体から切り出したガラスレンズの断面図である。 (A)、(B)は、第1実施形態に係るガラスレンズの製造方法に用いる成形装置を説明する別の図である。 (A)、(B)は、成形装置を用いたガラスレンズの製造工程について説明する断面図である。 (A)は、滴下工程後のガラス滴の流れを説明する概念図であり、(B)は、(A)の比較例を説明する図である。 (A)~(C)は、第2実施形態における成形金型の斜視図である。 (A)は、第3実施形態における成形金型の平面図であり、(B)は、第4実施形態における成形金型の平面図である。
〔第1実施形態〕
 図1等を参照して、本発明の第1実施形態に係る光学素子の製造方法等について説明する。
 図1に示すような成形金型10を組み込んだ成形装置200は、原材料であるガラスを溶融して直接プレスする加圧成形のための装置であり、図3(C)に示すような光学素子であるガラスレンズ100を得るための集合体又は前加工品として、図3(A)及び3(B)に示すようなガラス成形体MPを製造することができる。なお、成形装置200は、主要な部材である成形金型10の他に、ガラスレンズ100の製造にあたって成形金型10に移動、開閉動作等を行わせるための制御駆動装置4、ガラス滴形成装置5(図4(A)参照)等をさらに備える。
 図1に示すように、成形金型10は、可動側の上型1と、固定側の下型2とを備える。成形の際、例えば下型2は固定状態に維持され、上型1は下型2に対向するように移動して、両型1,2を互いに突き合わせるような型閉じが行われる。ここで、図3(A)~3(C)に示すように、成形装置200によって成形されるガラス成形体MPは、複数のガラスレンズ100を含む。集積型の半製品であるガラス成形体MPを分割するように切り出した個々のガラスレンズ100は、例えば撮像装置等に用いられる撮像レンズの一部となる。ガラスレンズ100は、光学的機能を有する中心部100aと、中心部100aから外径方向に延在するフランジ部100bとを備える。ガラスレンズ100の光学面として機能する光学機能面101a,102aは互いに曲率が異なっており、加圧成形時に空気が溜まって成形不良が発生するのを防ぐため、曲率の大きい光学機能面102a側を下方にしてレンズ作製を行うこととしている。つまり、この成形金型10では、下型2の光学面転写面12aの曲率が大きなものとなっている。一方、上型1の光学面転写面11aは、ほとんど曲率のないものとなっている。ガラス成形体MPにおいて、複数のガラスレンズ100は連結部100cを介して一体に成形されているが、連結部100cにおいてダイシング等を利用してガラスレンズ100及びその周辺を所定の大きさの方形に切り出すことにより、個々の独立したガラスレンズ100に分割される。各ガラスレンズ100において、分割後に残る連結部100cは、ガラスレンズ100を周囲から支持する平板状のフランジ部100bに相当し、撮像レンズへの組み付けに利用される。
 まず、図1、2(A)、及び2(B)を参照しつつ下型2について説明する。下型2は、型本体2aと、支持部2bと、ヒータ部2cとを備える。
 図1、2(A)、及び2(B)に示すように、下型2のうち型本体2aは円筒状であり、型面12上に成形に際しての転写面として、複数の光学面転写面12aと、連結面転写面12bとを有する。前者の光学面転写面12aは、ガラスレンズ100のうち中心部100aにおける相対的に曲率の大きな光学機能面102aを形成するためのものであり、型面12の中心部COを基点とする円周CS上に等間隔で4つ設けられている。結果的に、光学面転写面12aは仮想的な正方形の四隅に配置されることになるが、これは後のダイシングによる分割の便宜を図ったものである。後者の連結面転写面12bは、連結部100cの連結面102c(後に完成するフランジ部100bのフランジ面102b)を形成するためのものであり、型面12上に2次元的に配列された複数の光学面転写面12aを除いた型面として、各光学面転写面12aの外縁から他の光学面転写面12a又は型面12の周辺に向けて延びている。
 図2(A)及び2(B)に示すように、型面12の中心部COであり各光学面転写面12aから等距離の位置には、ガラスレンズ100を形成する光学素子用ガラス滴GD(図4(A)参照)の流れを変えるための凸部12dが1つ設けられている。ここで、型面12のうち中心部CO付近の型面は、4つの光学面転写面12aに囲まれた平坦面となっている。つまり、凸部12dは、4つの光学面転写面12aに囲まれた平坦面(平坦な型面)の中央に配置されている。詳細は後述するが、ガラスレンズ100を形成するための光学素子用ガラス滴GDは、凸部12dの位置に落下するようになっている(図4(B)参照)。凸部12dは、ドーム状であり、凸部用ガラス滴Kによって形成されている(図4(A)参照)。具体的には、凸部12dは、後述する光学素子用ガラス滴GDの滴下工程前に同様に溶融した凸部用ガラス滴Kを滴下する事前滴下により形成される。具体的な実施例において、凸部12dの高さと、凸部12dの外縁から各光学面転写面12aの外縁までの距離の比は、光学素子用ガラス滴GDのサイズ等によって適宜設定されるが、例えば2:5となっている。
 図1に戻って、下型2の支持部2bの根元に設けたヒータ部2cには、型本体2aを適度に加熱するための電気ヒータ40bが内蔵されている。
 次に、上型1について説明する。図1に示すように、上型1は、型本体1aと、支持部1bと、ヒータ部1cとを備える。
 上型1のうち型本体1aは円筒状であり、型面11上に成形に際しての転写面として、複数の光学面転写面11aと、連結面転写面11bとを有する。前者の光学面転写面11aは、ガラスレンズ100のうち相対的に曲率の小さな光学機能面101aを形成するためのものであり、下型2の光学面転写面12aに対向して、型面11の中心部を基点とする円周上に等間隔で4つ形成されている。後者の連結面転写面11bは、連結部100cの連結面101c(後に完成するフランジ部100bのフランジ面101b)を形成するためのものであり、型面11上に2次元的に配列された複数の光学面転写面11aを除いた型面として、各光学面転写面11aの外縁から他の光学面転写面11a又は型面11の周辺に向けて平坦に延びている。
 上型1の支持部1bの根元に設けたヒータ部1cには、型本体1aを適度に加熱するための電気ヒータ40aが内蔵されている。
 上型1と下型2とは、加圧成形時において、上型1の各転写面11a,11bと、下型2の対応する各転写面12a,12bとがそれぞれ同軸に配置され、プレス時及び冷却時に互いに所定間隔だけ離間する等、適切な位置関係を保つものとなっている。
 制御駆動装置4は、成形金型10によるガラスレンズ100の成形のために、電気ヒータ40a,40bへの給電の制御や、上型1及び下型2の開閉動作等の成形金型10を組み込んだ成形装置200全体の制御を行う。なお、制御駆動装置4に駆動された上型1は、図1に示すように、水平なAB方向に移動可能であるとともに、鉛直のCD方向に移動可能になっている。例えば両型1,2を合わせて型閉じを行う際には、まず下型2の上方位置に上型1を移動させて両型1,2の軸CX1,CX2を一致させ、延いては上側の光学面転写面11aと下側の光学面転写面12aとをそれぞれ一致させ、上型1を降下させて下型2側に所定の力で押し付ける。
 図4(A)に示すように、ガラス滴形成装置5は、原材料供給部51と、滴下プレート52とを有する。原材料供給部51及び滴下プレート52は不図示のヒータにより加熱され、原材料供給部51内のガラスを溶融状態にしており、滴下プレート52を通過するガラスの溶融状態を維持している。
 原材料供給部51は、不図示の坩堝等で溶融させた溶融ガラスGを溜めており、所定のタイミングで溶融ガラスGから得た光学素子用ガラス滴GDをノズル51aから滴下させて、下型の型面12又は滴下プレート52に供給する部分である。この原材料供給部51は、ガラス成形体MPの成形に直接利用される光学素子用ガラス滴GDだけでなく、ガラス成形体MPの成形の前に行われる事前滴下の工程で凸部用ガラス滴Kを形成する際にも用いられる。
 滴下プレート52は、原材料供給部51から供給された光学素子用ガラス滴GDからより小さい凸部用ガラス滴Kを形成するためのものである。この滴下プレート52は、原材料供給部51の下部に設けられたノズル51aの直下に配置されており原材料供給部51のノズル51aの開口よりも径の小さい開口部52aを有している。これにより、滴下プレート52に落下した光学素子用ガラス滴GDは、開口部52aを介して、光学素子用ガラス滴GDよりも小さい径の凸部用ガラス滴Kとなる。具体的には、開口部52aの径の大きさは、凸部用ガラス滴Kの重量がノズル51aから落下した光学素子用ガラス滴GDの重量の1/10以下となるような大きさとなっている。
 以下、図4(A)を参照しつつ、成形金型10のうち下型2の凸部12dの形成について具体的に説明する。図4(A)に示すように、凸部12dを形成するための凸部用ガラス滴Kは、ガラス滴形成装置5を用いて形成する(事前滴下工程)。
 まず、不図示の坩堝等で溶融させた溶融ガラスGを溜めている原材料供給部51の下部に形成されているノズル51aと滴下プレート52の開口部52aとを下型2の型面12の中心部COであり光学面転写面12aから等距離の連結面転写面12bの上方に配置し、溶融ガラスGをノズル51aから滴下プレート52上に自然滴下する。滴下プレート52に落下した光学素子用ガラス滴GDは、開口部52aを通過して光学素子用ガラス滴GDよりも小さい径の凸部用ガラス滴K(光学素子用ガラス滴GDの1/10以下の重量)に変化し、型面12上に自然滴下される。つまり、滴下プレート52を用いることで凸部用ガラス滴Kのサイズを調整することができる。滴下された凸部用ガラス滴Kは、表面張力によってその形状を維持しつつ型面12上で冷却されて硬化しドーム状の外形を有する凸部12dになる。なお、溶融ガラスGに用いる原材料のガラスは、ガラス成形体MP(ガラスレンズ100)と同じ組成のガラスが用いられており、例えば、リン酸塩系ガラス等が該当する。
 以下、図4(B)5(A)、及び5(B)を参照して、図2(A)等に示す成形金型10を用いた複数のガラスレンズ100を含むガラス成形体MPの製造方法について説明する。
 まず、原材料供給部51の下部に形成されているノズル51aを下型2の型面12の中心部COであり事前滴下によって形成した凸部12dの上方に配置し、溶融ガラスGをノズル51aから型面12上に自然滴下する(滴下工程)。この際、溶融ガラスGの滴下に先立って、型面12を電気ヒータ40bにて、ガラスレンズ100の原材料である光学素子用ガラス滴GDのガラス転移点温度程度の温度に加熱しておく。なお、光学素子用ガラス滴GDの滴下後はノズル51aを上型1の昇降の邪魔にならない位置へ退避させておく。かかるノズル51aからの自然落下によるガラス供給方法により、ガラスレンズ100を得るために滴下させる光学素子用ガラス滴GDの重量のバラツキを抑えることができる。なお、溶融ガラスGに用いる原材料のガラスとしては、既に説明したように、凸部用ガラス滴Kと同様の例えば、リン酸塩系ガラス等を用いることができる。なお、滴下工程は、事前滴下工程後に滴下プレート52を退避させて、続けて行ってもよい。
 滴下工程において、図6(A)に示すように、型面12に滴下された光学素子用ガラス滴GDは、落下地点である凸部12dにおいて、凸部12dの周囲の連結面転写面12bから放射状に各光学面転写面12aへ広がる。この際、落下した光学素子用ガラス滴GDは、凸部12dに当たることにより、流れの速さや向きが調整される。具体的には、光学素子用ガラス滴GDは、傾斜して下方へ向かう流れに制御され、光学面転写面12aのうち光学素子用ガラス滴GDの滴下点により近い縁側(図2(A)の領域AR)付近において光学素子用ガラス滴GDが光学面転写面12aに沿うように流入する。なお、凸部12dが設けられていない場合、比較例として図6(B)に示すように、光学面転写面12aの縁側において、光学素子用ガラス滴GDが光学面転写面12aに沿わない部分が生じやすく、その部分で隙間Sが形成されて光学面転写面12aが良好に転写されない状態となる。
 所定量の光学素子用ガラス滴GDをノズル51aから型面12上に滴下した後、光学素子用ガラス滴GDが未だ加圧変形可能な温度の間に、図5(A)に示すように、予め下型2と同程度の温度に加熱しておいた上型1を下降させ、型面11と型面12とを互いに対向させた状態で上型1を下型2に近接させて、下型2上の光学素子用ガラス滴GDを上下型1,2間で加圧成形する(成形工程)。成形工程の際、下型2の型面12に設けられていた凸部12dは、プレス及び加熱により潰れて、光学素子用ガラス滴GDと融合するように成形される。
 上記滴下工程から成形工程にかけて光学素子用ガラス滴GDの温度が漸次低下していくことにより、ガラスレンズ100の一方側の光学機能面101a及びフランジ面101bと、他方側の光学機能面102a及びフランジ面102bとを有するガラスレンズ100を含むガラス成形体MPが成形される。図3(A)に示すように、成形後のガラス成形体MPにおいて、融合した凸部12dは、光学素子用ガラス滴GDと区別できなくなるか、光学素子用ガラス滴GDと凸部用ガラス滴Kとの境80がわずかに区別できる程度となる。ガラス成形体MPを十分に冷却した後、下型2及び上型1の加圧を解除して、図5(B)に示すように、上型1を上昇させることにより、ガラス成形体MPを型外へ取り出す(取出工程)。
 取出工程後、ガラス成形体MPは、連結部100cをダイサー等を利用して方形に4分割して図3(C)に示すようなガラスレンズ100を得る(切出工程)。
 上記光学素子の製造方法によれば、成形金型10に溶融した光学素子用ガラス滴GDの流れを変えるための凸部12dを設けることにより、光学面転写面12aのうち光学素子用ガラス滴GDの滴下点により近い縁側において光学素子用ガラス滴GDが光学面転写面12aに沿って流れるようにすることができる。言い換えれば、下型2に滴下された光学素子用ガラス滴GDは、光学面転写面12aに流入する際に、凸部12dによって流れが調整され、光学面転写面12aのうち縁側に近い傾斜角度の大きい光学面転写面12aに沿って流れる傾向が高まる。これにより、複数のガラスレンズ100を一括して成形する場合であっても、各光学面転写面12aにおいてガラスレンズ100の光学機能面101aを高精度に転写することができ、良好な形状精度のガラスレンズ100を一括して製造することができる。
〔第2実施形態〕
 以下、本発明に係る第2実施形態の光学素子の製造方法等について説明する。第2実施形態の光学素子の製造方法は、第1実施形態の光学素子の製造方法を変形したものであり、特に説明しない部分は、第1実施形態と同様である。
 図7(A)に示すように、型面12の中心部COであり各光学面転写面12aから等距離の位置には、ガラスレンズ100を形成するガラス滴の流れを変えるための凸部12dが1つ設けられている。本実施形態において、凸部12dは、円錐状であり、成形金型10の一部として型面12上に予め形成されている。つまり、凸部12dは、第1実施形態のように凸部用ガラス滴Kの事前滴下によってではなく、金型加工の段階で形成されている。凸部12dの金型加工は、例えば切削加工によって行われる。なお、凸部12dを別部品として予め形成し、型面12に取り付けてもよい。
 なお、本実施形態において、凸部12dを球状や、図7(B)に示すような円錐台状や、図7(C)に示すような台形状としてもよい。
〔第3実施形態〕
 以下、本発明に係る第3実施形態の光学素子の製造方法等について説明する。第3実施形態の光学素子の製造方法は、第1実施形態の光学素子の製造方法を変形したものであり、特に説明しない部分は、第1実施形態と同様である。
 図8(A)に示すように、成形金型10を構成する下型2の型本体2aの上端部には、矩形形状の型面12が形成されている。本実施形態において、光学面転写面12aは、型面12の中心部COを基点とする四角周GS上に等間隔で8つ形成されている。つまり、光学面転写面12aは、中央を除く格子点上に配置されている。不図示の上型についても同様に、矩形形状の型面において下型2の光学面転写面12aに対向する8つの光学面転写面が形成されている。
 図8(A)に示すように、型面12の中心部COであり各光学面転写面12aから等距離の位置には、凸部12dが1つ設けられている。ガラスレンズ100を形成するための光学素子用ガラス滴GD(図4(B)参照)は、凸部12dの中心に相当する落下地点90に落下するようになっている。凸部12dは、ドーム状の突起を複数集めたものであり、中心部COに1つの頂点とその周りに等間隔に配置された4つの頂点とで構成されている。凸部12dの外縁の一部は中心部COから最も遠い4隅の光学面転写面12aに向けて延びており、各光学面転写面12aにおいて、凸部12dの外縁と光学面転写面12aとの距離の差が小さくなっている。凸部12dは、凸部用ガラス滴Kを5回滴下することにより形成したり、5つの開口部を有する滴下プレートを用いて5つの凸部用ガラス滴Kを同時に滴下することにより形成したりする。
 型面12に滴下された光学素子用ガラス滴GDは、落下地点90から各光学面転写面12aに向けて放射状に広がる。この際、凸部12dの外縁と各光学面転写面12aとの距離のばらつきが小さいため、光学素子用ガラス滴GDの流れの速さや向きが調整されて、光学素子用ガラス滴GDが光学面転写面12aに沿うように流入する。
〔第4実施形態〕
 以下、本発明に係る第4実施形態の光学素子の製造方法等について説明する。第4実施形態の光学素子の製造方法は、第3実施形態の光学素子の製造方法を変形したものであり、特に説明しない部分は、第3実施形態と同様である。
 図8(B)に示すように、型面12の中心部COであり各光学面転写面12aから等距離の位置に1つの凸部12dと、凸部12dを囲む円周RS上に、8つの凸部12eが設けられている。8つの凸部12eは、各光学面転写面12aの間にそれぞれ1つずつ配置されている。凸部12d,12eは、ドーム状であり、凸部用ガラス滴Kによって形成されている(図4(A)参照)。中心部COの凸部12dは、円周RS上の凸部12eよりも径が大きくなっており、異なる大きさの滴下プレートの開口部を用いて形成される。凸部12d,12eは、第3実施形態と同様に、順次個別に形成してもよいし、同時に形成してもよい。また、同様の凸形状を金型で作ってもよい。
 型面12に滴下された光学素子用ガラス滴GDは、落下地点90から各光学面転写面12aに向けて放射状に広がる。この際、円周RS上に設けられた凸部12eが一時的に壁となり、光学素子用ガラス滴GDの流れの速さや向きが調整されて、光学素子用ガラス滴GDが光学面転写面12aに沿うように流入する。
 以上、本実施形態に係る光学素子の製造方法等について説明したが、本発明に係る光学素子の製造方法等は上記のものには限られない。例えば、上記実施形態において、凸部12d,12eの形状、大きさは例示であり、光学素子用ガラス滴GDの流れを変えることができる形状、大きさであればよい。
 また、上記実施形態において、凸部12d,12eを形成する凸部用ガラス滴Kは、光学素子用ガラス滴GDよりも軟化点の低いガラスとしてもよい。
 また、上記実施形態において、光学面転写面12a等の数は4つ又は8つに限らず、2つ以上であればよい。
 また、上記実施形態において、型面12上に凸部用ガラス滴Kを設けるための凹部を形成してもよい。これにより、凸部用ガラス滴Kの位置を安定させることができる。
 また、上記実施形態において、ガラスレンズ100を方形に切り出すとしたが、切り出す形状は例示であり、例えば円形に切り出してもよい。また、ガラスレンズ100の切り出し方によって光学面転写面11a,12aの配置は自由に設定することができる。
 また、第1、第3、及び第4実施形態において、滴下プレート52を用いて凸部用ガラス滴Kを形成したが、所望の大きさの径のガラス滴を滴下するノズルを別途用いて形成してもよい。
 また、第1、第3、及び第4実施形態において、事前滴下をせずに、所望の形状、大きさを有する凸部12d,12eを予めガラスで形成して型面12上に取り付けてもよい。

Claims (13)

  1.  一対の金型のうち複数の光学素子に対応して複数の光学面転写面を有する一方の金型に対して、溶融したガラス滴を滴下する滴下工程と、
     前記一方の金型と他方の金型とを合わせてプレス成形する成形工程と、
    を備え、
     前記一方の金型は、前記複数の光学面転写面以外の型面に対応する部分に前記ガラス滴の流れを変える凸部を有する、光学素子の製造方法。
  2.  前記複数の光学面転写面と前記凸部との間には、平坦な型面が形成されている、請求項1に記載の光学素子の製造方法。
  3.  前記平坦な型面は、前記複数の光学面転写面をつなぐ連結面転写面である、請求項2に記載の光学素子の製造方法。
  4.  前記凸部は、前記滴下工程における前記ガラス滴の落下位置に設けられている、請求項1に記載の光学素子の製造方法。
  5.  前記凸部は、複数個設けられる、請求項1に記載の光学素子の製造方法。
  6.  前記凸部の形状は、ドーム状、球状、円錐状、及び円錐台状のいずれかである、請求項1に記載の光学素子の製造方法。
  7.  前記凸部は、前記滴下工程前に溶融したガラス滴を滴下する事前滴下により形成される、請求項1に記載の光学素子の製造方法。
  8.  前記凸部は、前記複数の光学面転写面をつなぐ平坦な連結面転写面上に載置される、請求項7に記載の光学素子の製造方法。
  9.  前記凸部を形成するガラス滴の重量は、前記複数の光学素子を形成するガラス滴の重量の1/10以下である、請求項7に記載の光学素子の製造方法。
  10.  前記凸部を形成するガラス滴と、前記複数の光学素子を形成するガラス滴とは、同じ組成のガラスである、請求項7に記載の光学素子の製造方法。
  11.  前記凸部を形成するガラス滴は、前記複数の光学素子を形成するガラス滴よりも軟化点の低いガラスである、請求項7に記載の光学素子の製造方法。
  12.  前記凸部を形成するガラス滴は、前記複数の光学素子を形成するガラス滴よりも小さい径の開口部を有する滴下プレートを介して形成する、請求項7に記載の光学素子の製造方法。
  13.  請求項1から請求項12までのいずれか一項に記載の光学素子の製造方法を用いて成形された光学素子。
PCT/JP2011/071239 2010-09-16 2011-09-16 光学素子の製造方法及び光学素子 WO2012036277A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180043893.2A CN103097312B (zh) 2010-09-16 2011-09-16 光学元件的制造方法以及光学元件
JP2012534067A JP5796580B2 (ja) 2010-09-16 2011-09-16 光学素子の製造方法
US13/824,962 US9309141B2 (en) 2010-09-16 2011-09-16 Method of manufacturing optical element and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-208320 2010-09-16
JP2010208320 2010-09-16

Publications (1)

Publication Number Publication Date
WO2012036277A1 true WO2012036277A1 (ja) 2012-03-22

Family

ID=45831730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071239 WO2012036277A1 (ja) 2010-09-16 2011-09-16 光学素子の製造方法及び光学素子

Country Status (4)

Country Link
US (1) US9309141B2 (ja)
JP (1) JP5796580B2 (ja)
CN (1) CN103097312B (ja)
WO (1) WO2012036277A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10662104B2 (en) 2014-01-24 2020-05-26 Konica Minolta, Inc. Method for manufacturing lens array optical system and lens array optical system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014042060A1 (ja) * 2012-09-15 2016-08-18 コニカミノルタ株式会社 レンズアレイ、レンズアレイ積層体、レンズアレイの製造方法、レンズアレイ積層体の製造方法及びレンズユニットの製造方法
JP6506338B2 (ja) * 2017-03-30 2019-04-24 ファナック株式会社 シリンドリカルレンズの製造方法
US11469496B2 (en) * 2018-11-20 2022-10-11 Luminit Llc Reducing the optical effects of domes
CN111138074B (zh) * 2020-01-09 2021-07-30 诚瑞光学(常州)股份有限公司 玻璃产品成型模具、成型设备及加工方法
CN218620605U (zh) * 2022-06-01 2023-03-14 常州市瑞泰光电有限公司 玻璃产品的成型模具

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308840A (ja) * 1989-04-10 1989-12-13 Minolta Camera Co Ltd ガラスレンズの製造方法およびガラスレンズの製造装置
JP2006256906A (ja) * 2005-03-17 2006-09-28 Seiko Epson Corp 成形金型及び光学ガラスレンズの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281360A (ja) * 1999-03-29 2000-10-10 Fuji Photo Optical Co Ltd 成形用光学素材、成形用光学素材製造方法、及び光学部品成形方法
JPWO2009091027A1 (ja) * 2008-01-19 2011-05-26 コニカミノルタオプト株式会社 ガラスゴブの製造方法、ガラス成形体の製造方法、ガラスゴブの製造装置、及び、ガラス成形体の製造装置
JP5333437B2 (ja) * 2008-03-21 2013-11-06 コニカミノルタ株式会社 ガラスゴブの製造装置及び方法、並びにガラス成形装置及び方法
CN101980978A (zh) * 2008-04-02 2011-02-23 柯尼卡美能达精密光学株式会社 光学元件的制造方法及光学元件的制造装置
JP2010083724A (ja) * 2008-09-30 2010-04-15 Konica Minolta Opto Inc レンズの製造方法及びレンズ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308840A (ja) * 1989-04-10 1989-12-13 Minolta Camera Co Ltd ガラスレンズの製造方法およびガラスレンズの製造装置
JP2006256906A (ja) * 2005-03-17 2006-09-28 Seiko Epson Corp 成形金型及び光学ガラスレンズの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10662104B2 (en) 2014-01-24 2020-05-26 Konica Minolta, Inc. Method for manufacturing lens array optical system and lens array optical system

Also Published As

Publication number Publication date
US20140147633A1 (en) 2014-05-29
CN103097312B (zh) 2016-01-20
JP5796580B2 (ja) 2015-10-21
CN103097312A (zh) 2013-05-08
JPWO2012036277A1 (ja) 2014-02-03
US9309141B2 (en) 2016-04-12

Similar Documents

Publication Publication Date Title
JP5796580B2 (ja) 光学素子の製造方法
CN102414135B (zh) 用于制造光学玻璃元件、尤其集中器光学器具的方法和设备
WO2014042060A1 (ja) レンズアレイ、レンズアレイ積層体、レンズアレイの製造方法、レンズアレイ積層体の製造方法及びレンズユニットの製造方法
JP4045833B2 (ja) 光学素子の製造方法
KR101529947B1 (ko) 사각렌즈 금형장치
JP2010083724A (ja) レンズの製造方法及びレンズ
CN1939850A (zh) 玻璃块的制造方法、其制造装置以及光学元件的制造方法
JP5828915B2 (ja) モールドプレス成形用ガラスプリフォームの製造方法、及び、光学素子の製造方法
CN1939851B (zh) 精密冲压成型用预制坯、其制造方法及光学元件制造方法
JP5565265B2 (ja) ガラス成形体の製造方法
CN102757168B (zh) 精密冲压成型用玻璃预型件制造方法及光学元件制造方法
JP4460339B2 (ja) モールドプレス成形装置及び光学素子の製造方法
WO2009122949A1 (ja) 光学素子の製造方法及び光学素子の製造装置
CN109291353A (zh) 树脂光学镜片的热压成型模具
JP3986064B2 (ja) ガラス塊の製造方法、及び光学素子の製造方法
JP4167610B2 (ja) ガラス物品の製造方法、及び光学素子の製造方法
JP2011006312A (ja) 光学素子の製造方法、光学素子製造用の金型装置及び光学素子
JP2011057515A (ja) ガラスゴブ及びガラス成形体の製造方法
JP5200809B2 (ja) 溶融ガラス滴の製造方法、ガラスゴブの製造方法及びガラス成形体の製造方法
JP2000281360A (ja) 成形用光学素材、成形用光学素材製造方法、及び光学部品成形方法
JP4949324B2 (ja) ガラス成形体製造方法及びガラス成形体製造装置
WO2010150571A1 (ja) 光学素子の製造方法及び装置
JP2002220241A (ja) 光学素子の成形方法
JP2012086996A (ja) 成形用型およびガラス成形体の製造方法
JP2011126758A (ja) 光学素子用成形型及びそれを用いた光学素子の成形方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043893.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012534067

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13824962

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11825275

Country of ref document: EP

Kind code of ref document: A1