WO2012036059A1 - 遠心式ポンプ装置 - Google Patents

遠心式ポンプ装置 Download PDF

Info

Publication number
WO2012036059A1
WO2012036059A1 PCT/JP2011/070450 JP2011070450W WO2012036059A1 WO 2012036059 A1 WO2012036059 A1 WO 2012036059A1 JP 2011070450 W JP2011070450 W JP 2011070450W WO 2012036059 A1 WO2012036059 A1 WO 2012036059A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
dynamic pressure
magnetic body
magnetic
pump device
Prior art date
Application number
PCT/JP2011/070450
Other languages
English (en)
French (fr)
Inventor
尾崎 孝美
山田 裕之
顕 杉浦
Original Assignee
Ntn株式会社
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, テルモ株式会社 filed Critical Ntn株式会社
Priority to EP11825062.0A priority Critical patent/EP2618001B1/en
Priority to US13/822,220 priority patent/US9382908B2/en
Publication of WO2012036059A1 publication Critical patent/WO2012036059A1/ja
Priority to US15/174,639 priority patent/US9638202B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • F04D29/0473Bearings hydrostatic; hydrodynamic for radial pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/117Extracorporeal pumps, i.e. the blood being pumped outside the patient's body for assisting the heart, e.g. transcutaneous or external ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/419Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/804Impellers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings
    • A61M60/822Magnetic bearings specially adapted for being actively controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/04Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0666Units comprising pumps and their driving means the pump being electrically driven the motor being of the plane gap type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/03Machines characterised by thrust bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas

Definitions

  • the present invention relates to a centrifugal pump device, and more particularly to a centrifugal pump device provided with an impeller that sends a liquid by a centrifugal force during rotation.
  • a canned motor having a structure in which a motor drive chamber and a rotor chamber are separated by a partition wall is often used.
  • Such a motor is used, for example, in a pump for transporting pure water in a semiconductor production line used in an environment where dust is not desired or a pump for transporting biological fluid.
  • a centrifugal blood pump device using a direct drive motor that directly transmits torque to an impeller in a blood chamber.
  • This centrifugal blood pump device can be used as an artificial heart because it can eliminate physical communication between the outside and the blood chamber and can prevent bacteria and other blood from entering the blood. Since the artificial heart is driven by power from the battery, it is very important to improve the efficiency of the motor.
  • a centrifugal blood pump disclosed in Japanese Patent Application Laid-Open No. 2004-209240 includes a housing including first to third chambers partitioned by first and second partition walls, and a second chamber (blood chamber).
  • An impeller provided rotatably inside, a magnetic body provided on one side of the impeller, an electromagnet provided in the first chamber facing the one side of the impeller, and provided on the other side of the impeller
  • a permanent magnet, a rotor and a motor provided in the third chamber, and a permanent magnet provided on the rotor facing the other surface of the impeller.
  • a dynamic pressure groove is formed on the surface of the second partition wall facing the other surface of the impeller.
  • the impeller Due to the attractive force acting on one side of the impeller from the electromagnet, the attractive force acting on the other surface of the impeller from the permanent magnet of the rotor, and the hydrodynamic bearing effect of the dynamic pressure groove, the impeller is separated from the inner wall of the second chamber, Rotates without contact.
  • a centrifugal blood pump disclosed in Japanese Patent Laid-Open No. 2006-167173 includes a housing including first to third chambers partitioned by first and second partition walls, and a second chamber (blood An impeller rotatably provided in the chamber), a magnetic body provided on one surface of the impeller, a first permanent magnet provided in the first chamber facing the one surface of the impeller, and an impeller A second permanent magnet provided on the other surface; a rotor and a motor provided in the third chamber; and a third permanent magnet provided on the rotor facing the other surface of the impeller.
  • a first dynamic pressure groove is formed on the surface of the first partition wall facing the one surface of the impeller, and a second dynamic pressure groove is formed on the surface of the second partition wall facing the other surface of the impeller.
  • Patent Document 3 includes a housing, an impeller rotatably provided in the housing, and a first pump provided on one surface of the impeller.
  • 1 permanent magnet a rotor provided outside the housing, a second permanent magnet provided on the rotor facing one surface of the impeller, and a third permanent magnet provided on the other surface of the impeller
  • a magnetic body provided on the housing so as to face the other surface of the impeller.
  • a first dynamic pressure groove is formed on one surface of the impeller, and a second dynamic pressure groove is formed on the other surface of the impeller.
  • the impeller Due to the attractive force acting on one side of the impeller from the second permanent magnet of the rotor, the attractive force acting on the other surface of the impeller from the magnetic body of the housing, and the hydrodynamic bearing effect of the first and second dynamic pressure grooves
  • the impeller is separated from the inner wall of the housing and rotates in a non-contact state.
  • a clean pump disclosed in Japanese Utility Model Publication No. 6-53790 includes a casing, an impeller provided rotatably in the casing, a first permanent magnet provided on one surface of the impeller, and a casing.
  • a dynamic pressure groove is formed on one surface of the impeller.
  • the electromagnet When the rotational speed of the impeller is lower than the predetermined rotational speed, the electromagnet is operated, and when the rotational speed of the impeller exceeds the predetermined rotational speed, energization to the electromagnet is stopped. Due to the attractive force acting on one surface of the impeller from the second permanent magnet of the rotor and the hydrodynamic bearing effect of the hydrodynamic groove, the impeller is separated from the inner wall of the housing and rotates in a non-contact state.
  • JP 2004-209240 A JP 2006-167173 A Japanese Patent Laid-Open No. 4-91396 Japanese Utility Model Publication No. 6-53790
  • the pumps of Patent Documents 1 to 4 support the impeller in the axial direction by a dynamic pressure groove formed in the opposed portion of the impeller and the housing, and a permanent magnet provided on the impeller and a permanent magnet provided outside the housing. This is common in that the radial direction of the impeller is supported by the attractive force with the magnet.
  • the support rigidity of the dynamic pressure groove is proportional to the rotation speed of the impeller. Therefore, in order for the impeller to rotate stably without contacting the housing even when a disturbance is applied to the pump, it is necessary to increase the normal rotation speed range of the pump and increase the rigidity of the impeller in the axial direction.
  • the support rigidity is low, and there is a problem that the impeller cannot be rotated at high speed.
  • a main object of the present invention is to provide a small centrifugal pump capable of securing a necessary motor torque and reducing an axial suction force.
  • the centrifugal pump according to the present invention is provided with a housing including first and second chambers partitioned by a partition wall, and is rotatably provided along the partition wall in the first chamber, and sends liquid by centrifugal force during rotation.
  • a centrifugal pump device provided with an impeller and a drive unit that is provided in a second chamber and rotationally drives the impeller via a partition wall, the first magnetic body provided on one surface of the impeller, and the impeller Provided on the inner wall of the first chamber facing the one surface of the first and second magnetic bodies for attracting the first magnetic body, and provided on the other surface of the impeller and arranged in the rotation direction of the impeller, And a plurality of third magnetic bodies to be attracted.
  • the driving unit is provided to face the plurality of third magnetic bodies, and is provided to correspond to the plurality of coils for generating the rotating magnetic field, respectively, and each is inserted into the corresponding coil.
  • Each of the fourth magnetic bodies is shorter than the corresponding coil in the central axis direction of the impeller.
  • the first attraction force between the first and second magnetic bodies and the second attraction force between the plurality of third magnetic bodies and the plurality of fourth magnetic bodies are: It balances in the middle of the movable range of the impeller in the room.
  • a first dynamic pressure groove is formed on one surface of the impeller or the inner wall of the first chamber facing it, and a second dynamic pressure groove is formed on the other surface of the impeller or a partition wall facing it.
  • the rotational torque obtained by the magnetic coupling between the fourth magnetic body of the drive unit and the third magnetic body of the impeller, and the magnetic force between the coil protruding from the fourth magnetic body and the third magnetic body are obtained.
  • the impeller can be rotated at a high speed by the rotational torque obtained by the coupling, and the necessary rotational torque can be generated while reducing the pump size.
  • the fourth magnetic body is shorter than the coil, the gap between the third and fourth magnetic bodies can be set large, and the attractive force between the third and fourth magnetic bodies can be lowered. Therefore, the suction force and the negative rigidity in the axial direction can be reduced while satisfying the required torque.
  • the drive unit further includes a disk-shaped fifth magnetic body.
  • the plurality of coils are provided between the partition wall and the fifth magnetic body, and the plurality of fourth magnetic bodies are joined to the fifth magnetic body.
  • the surfaces of the two adjacent fourth magnetic bodies facing each other are provided substantially in parallel.
  • a large space for the coil can be secured and the number of turns of the coil can be increased.
  • the length of the coil in the radial direction can be increased, the Lorentz force can be increased.
  • each fourth magnetic body is formed in a cylindrical shape.
  • a large space for the coil can be secured and the number of turns of the coil can be increased. Therefore, the copper loss generated in the motor coil can be reduced, and the energy efficiency in the rotational driving of the impeller can be increased.
  • each fourth magnetic body includes a plurality of steel plates stacked in the direction of rotation of the impeller.
  • the eddy current loss generated in the fourth magnetic body can be reduced, and the energy efficiency in the rotational driving of the impeller can be increased.
  • each fourth magnetic body includes a plurality of steel plates stacked in the radial direction of the impeller.
  • the eddy current loss generated in the fourth magnetic body can be reduced, and the energy efficiency in the rotational driving of the impeller can be increased.
  • each fourth magnetic body is made of pure iron, soft iron or silicon iron.
  • the iron loss in the fourth magnetic body can be reduced, and the energy efficiency in the rotational driving of the impeller can be increased.
  • each fourth magnetic body is formed of pure iron, soft iron or silicon iron powder.
  • the iron loss in the fourth magnetic body can be further reduced, and the energy efficiency in the rotational driving of the impeller can be increased.
  • each fourth magnetic body includes a strip-shaped magnetic steel sheet wound a plurality of times around the center line.
  • the iron loss in the fourth magnetic body can be reduced, and the energy efficiency in the rotational driving of the impeller can be increased.
  • another centrifugal pump includes a housing including first and second chambers partitioned by a partition, and is provided to be rotatable along the partition in the first chamber.
  • a centrifugal pump device provided with an impeller for feeding liquid and a drive unit that is provided in the second chamber and rotationally drives the impeller via a partition wall, and is provided in the impeller and arranged in the rotation direction of the impeller.
  • a plurality of first magnetic bodies attracted by the drive unit are provided.
  • the drive unit is provided to face the plurality of first magnetic bodies, is provided corresponding to the plurality of coils for generating the rotating magnetic field, and each of the plurality of coils, and each is inserted into the corresponding coil.
  • a plurality of second magnetic bodies and each second magnetic body is shorter than the corresponding coil in the central axis direction of the impeller.
  • a first dynamic pressure groove is formed on one surface of the impeller or the inner wall of the first chamber facing it, and a second dynamic pressure groove is formed on the other surface of the impeller or a partition wall facing it.
  • the sum of the dynamic pressure at the rated rotation generated by the first dynamic pressure groove and the attractive forces between the plurality of first magnetic bodies and the plurality of second magnetic bodies, and the second The dynamic pressure at the rated rotation generated by the dynamic pressure groove is balanced at substantially the center of the movable range of the impeller in the first chamber.
  • the drive unit further includes a disk-shaped third magnetic body.
  • the plurality of coils are provided between the partition wall and the third magnetic body, and the plurality of second magnetic bodies are joined to the third magnetic body.
  • a third dynamic pressure groove is formed on the outer peripheral surface of the impeller or the inner peripheral surface of the first chamber facing the impeller.
  • Still another centrifugal pump device is capable of rotating along the first and second partition walls in the liquid chamber, the housing including the first and second partition walls and the liquid chamber therebetween.
  • a centrifuge provided with an impeller that is provided and sends a liquid by centrifugal force during rotation, and a first and a second drive part that are provided outside the liquid chamber and rotate the impeller through first and second partition walls, respectively.
  • the pump device includes a plurality of first magnetic bodies provided on the impeller and arranged in the rotation direction of the impeller and attracted by the first and second driving units.
  • Each of the first and second drive units is provided to face the plurality of first magnetic bodies, and is provided corresponding to the plurality of coils for generating the rotating magnetic field, respectively, And a plurality of second magnetic bodies inserted in the corresponding coils, and each second magnetic body is shorter than the corresponding coil in the central axis direction of the impeller.
  • the first attractive force between the plurality of first magnetic bodies and the plurality of second magnetic bodies of the first driving unit, and the plurality of first magnetic bodies and the second driving unit The second attractive force between the plurality of second magnetic bodies is balanced at approximately the center of the movable range of the impeller in the liquid chamber.
  • a first dynamic pressure groove is formed on one surface of the impeller or a first partition opposite to the first surface, and a second dynamic pressure groove is formed on the other surface of the impeller or a second partition opposite to the first partition.
  • each of the first and second driving units further includes a disk-shaped third magnetic body.
  • the plurality of coils of the first drive unit are provided between the first partition and the third magnetic body of the first drive unit.
  • the plurality of coils of the second drive unit are provided between the second partition and the third magnetic body of the second drive unit.
  • the plurality of second magnetic bodies are joined to the third magnetic body.
  • a third dynamic pressure groove is formed on the outer peripheral surface of the impeller or the inner peripheral surface of the liquid chamber facing the impeller.
  • the liquid is blood and the centrifugal pump device is used to circulate blood.
  • the centrifugal pump device is used to circulate blood.
  • the impeller can be rotated at high speed, and the rotation starting force of the impeller can be increased. Further, the axial suction force acting on the impeller can be suppressed while maintaining the torque for rotationally driving the impeller. Moreover, the energy efficiency in the rotational drive of an impeller can be improved.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 4 is a cross-sectional view showing a state where an impeller is removed from the cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 4 is a cross-sectional view showing a state where an impeller is removed from the cross-sectional view taken along the line VI-VI in FIG. 3.
  • FIG. 4 is a sectional view taken along line VII-VII in FIG. 3.
  • FIG. 8 is a block diagram illustrating a configuration of a controller that controls the pump unit illustrated in FIGS. 1 to 7; It is a time chart which shows operation
  • FIG. 10 is a time chart showing another modification of the first embodiment.
  • FIG. 10 is a diagram showing still another modification example of the first embodiment.
  • FIG. 10 is a diagram showing still another modification example of the first embodiment.
  • FIG. 10 is a diagram showing still another modification example of the first embodiment.
  • FIG. 10 is a diagram showing still another modification example of the first embodiment.
  • FIG. 10 is a diagram showing still another modification example of the first embodiment.
  • FIG. 10 is a diagram showing still another modification example of the first embodiment.
  • FIG. 10 is a diagram showing still another modification example of the first embodiment.
  • FIG. 10 is a diagram showing still another modification example of the first embodiment.
  • FIG. 10 is a diagram showing still another modification example of the first embodiment.
  • FIG. 10 is a diagram showing still another modification example of the first embodiment.
  • FIG. 10 is a diagram showing still another modification example of the first embodiment.
  • FIG. 10 is a diagram showing still another modification example of the first embodiment.
  • FIG. 10 is a diagram illustrating a modification example of the fourth embodiment.
  • FIG. 20 is a diagram showing another modification example of the fourth embodiment.
  • FIG. 20 is a diagram showing still another modification example of the fourth embodiment.
  • FIG. 20 is a diagram showing still another modification example of the fourth embodiment.
  • FIG. 20 is a diagram showing still another modification example of the fourth embodiment.
  • a pump unit 1 of the centrifugal blood pump apparatus includes a housing 2 formed of a nonmagnetic material.
  • the housing 2 includes a columnar main body 3, a cylindrical blood inflow port 4 erected at the center of one end surface of the main body 3, and a cylindrical blood outflow provided on the outer peripheral surface of the main body 3.
  • Port 5 is included.
  • the blood outflow port 5 extends in the tangential direction of the outer peripheral surface of the main body 3.
  • a blood chamber 7 and a motor chamber 8 partitioned by a partition wall 6 are provided in the housing 2.
  • a disc-like impeller 10 having a through hole 10a in the center is rotatably provided.
  • the impeller 10 includes two shrouds 11 and 12 each having a donut plate shape and a plurality of (for example, six) vanes 13 formed between the two shrouds 11 and 12.
  • the shroud 11 is disposed on the blood inlet port 4 side, and the shroud 12 is disposed on the partition wall 6 side.
  • the shrouds 11 and 12 and the vane 13 are made of a nonmagnetic material.
  • a plurality (six in this case) of blood passages 14 partitioned by a plurality of vanes 13 are formed between the two shrouds 11 and 12.
  • the blood passage 14 communicates with the central through hole 10 a of the impeller 10, and starts from the through hole 10 a of the impeller 10 and extends so that the width gradually increases to the outer peripheral edge.
  • the vane 13 is formed between two adjacent blood passages 14.
  • the plurality of vanes 13 are provided at equiangular intervals and formed in the same shape. Therefore, the plurality of blood passages 14 are provided at equiangular intervals and are formed in the same shape.
  • the blood flowing in from the blood inflow port 4 is sent from the through hole 10a to the outer periphery of the impeller 10 through the blood passage 14 by the centrifugal force and flows out from the blood outflow port 5.
  • a permanent magnet 15 is embedded in the shroud 11
  • a permanent magnet 16 that attracts the permanent magnet 15 is embedded in the inner wall of the blood chamber 7 facing the shroud 11.
  • the permanent magnets 15 and 16 are provided for attracting (in other words, energizing) the impeller 10 on the side opposite to the motor chamber 8, in other words, on the blood inflow port 4 side.
  • a permanent magnet may be provided on one of the inner walls of the shroud 11 and the blood chamber 7, and a magnetic material may be provided on the other.
  • a magnetic material may be provided on the other.
  • the magnetic material either a soft magnetic material or a hard magnetic material may be used.
  • the permanent magnet 16 may be one or plural.
  • the permanent magnet 16 is formed in a ring shape.
  • the plurality of permanent magnets 16 are arranged along the same circle at equal angular intervals.
  • the permanent magnet 15 is the same as the permanent magnet 16, and may be one or plural.
  • a plurality of (for example, nine) permanent magnets 17 are embedded in the shroud 12.
  • the plurality of permanent magnets 17 are arranged with gaps along the same circle at equal angular intervals so that adjacent magnetic poles are different from each other.
  • the permanent magnet 17 with the N pole facing the motor chamber 8 side and the permanent magnet 17 with the S pole facing the motor chamber 8 side are alternately provided along the same circle with gaps provided at equal angular intervals. Has been placed.
  • a plurality of (for example, nine) magnetic bodies 18 are provided in the motor chamber 8.
  • the plurality of magnetic bodies 18 are arranged along the same circle at equal angular intervals so as to face the plurality of permanent magnets 17 of the impeller 10.
  • the base ends of the plurality of magnetic bodies 18 are joined to one disk-shaped magnetic body 19.
  • a coil 20 is wound around each magnetic body 18.
  • the length of the magnetic body 18 is shorter than that of the coil 20 in the central axis direction of the impeller 10. That is, as shown in FIG. 8, assuming that the axial length of the magnetic body 18 is x and the axial length of the coil 20 is L with respect to the surface of the disk-shaped magnetic body 19, 0 ⁇ x ⁇ L. Satisfies the relationship.
  • FIG. 9 represents the ratio x / L of the height x of the magnetic body 18 to the height L of the coil 20, the left vertical axis represents the generated torque (Nm), and the right vertical axis represents the axial attractive force. (N) is shown.
  • N the generated torque
  • FIG. 9 shows that when the value of x / L is within a certain range, the amount of change in the axial suction force is larger than the amount of change in the generated torque.
  • the space for winding the coil 20 is evenly secured around the plurality of magnetic bodies 18, and the mutually opposing surfaces of the two adjacent magnetic bodies 18 are provided substantially in parallel. Yes. For this reason, a large space for the coil 20 can be secured, and the number of turns of the coil 20 can be increased. Accordingly, a large torque for rotating the impeller 10 can be generated. Moreover, the copper loss which generate
  • the plurality of magnetic bodies 18 may be cylindrical. In this case, the circumferential length of the coil 20 can be minimized, the copper loss generated in the coil 20 can be reduced, and the energy efficiency in the rotational drive of the impeller 10 can be increased.
  • the voltage is applied to the nine coils 20 by, for example, a 120-degree energization method. That is, nine coils 20 are grouped by three. Voltages VU, VV, VW as shown in FIG. 10 are applied to the first to third coils 20 of each group. A positive voltage is applied to the first coil 20 during a period of 0 to 120 degrees, 0 V is applied during a period of 120 to 180 degrees, a negative voltage is applied during a period of 180 to 300 degrees, and 300 to 360 degrees. 0V is applied during this period.
  • the front end surface (end surface on the impeller 10 side) of the magnetic body 18 around which the first coil 20 is wound becomes the N pole in the period of 0 to 120 degrees and becomes the S pole in the period of 180 to 300 degrees.
  • the phase of the voltage VV is 120 degrees behind the voltage VU
  • the phase of the voltage VW is 120 degrees behind the voltage VV. Therefore, by applying the voltages VU, VV, and VW to the first to third coils 20, respectively, a rotating magnetic field can be formed, and the magnetic elements 18 and the permanent magnets 17 of the impeller 10 are attracted to each other.
  • the impeller 10 can be rotated by the force and the repulsive force.
  • the impeller 10 rotates at the rated rotational speed, the attractive force between the permanent magnets 15 and 16 and the attractive force between the plurality of permanent magnets 17 and the plurality of magnetic bodies 18 are within the blood chamber 7.
  • the impeller 10 is balanced near the approximate center of the movable range. For this reason, in any movable range of the impeller 10, the acting force due to the suction force to the impeller 10 is very small. As a result, the frictional resistance at the time of relative sliding between the impeller 10 and the housing 2 generated when the impeller 10 starts rotating can be reduced.
  • a plurality of dynamic pressure grooves 21 are formed on the surface of the partition wall 6 facing the shroud 12 of the impeller 10, and a plurality of dynamic pressure grooves 22 are formed on the inner wall of the blood chamber 7 facing the shroud 11.
  • the plurality of dynamic pressure grooves 21 are formed in a size corresponding to the shroud 12 of the impeller 10, as shown in FIG.
  • Each dynamic pressure groove 21 has one end on the periphery (circumference) of a circular portion slightly spaced from the center of the partition wall 6 and has a width up to the vicinity of the outer edge of the partition wall 6 in a spiral shape (in other words, curved). It extends to gradually spread.
  • the plurality of dynamic pressure grooves 21 have substantially the same shape and are arranged at substantially the same interval.
  • the dynamic pressure groove 21 is a recess, and the depth of the dynamic pressure groove 21 is preferably about 0.005 to 0.4 mm.
  • the number of the dynamic pressure grooves 21 is preferably about 6 to 36.
  • ten dynamic pressure grooves 21 are arranged at an equal angle with respect to the central axis of the impeller 10. Since the dynamic pressure groove 21 has a so-called inward spiral groove shape, when the impeller 10 rotates in the clockwise direction, the liquid pressure increases from the outer diameter portion to the inner diameter portion of the dynamic pressure groove 21. For this reason, a repulsive force is generated between the impeller 10 and the partition wall 6, and this becomes a dynamic pressure.
  • the dynamic pressure groove 21 may be provided on the surface of the shroud 12 of the impeller 10 instead of providing the dynamic pressure groove 21 in the partition wall 6.
  • the impeller 10 is separated from the partition wall 6 and rotates in a non-contact state. For this reason, a blood flow path is ensured between the impeller 10 and the partition 6, and the blood retention between both and the generation
  • the corner portion of the dynamic pressure groove 21 is preferably rounded so as to have an R of at least 0.05 mm. Thereby, generation
  • the plurality of dynamic pressure grooves 22 are formed in a size corresponding to the shroud 11 of the impeller 10 as with the plurality of dynamic pressure grooves 21.
  • Each dynamic pressure groove 22 has one end on the periphery (circumference) of a circular portion slightly spaced from the center of the inner wall of the blood chamber 7 and spirally (in other words, curved) on the inner wall of the blood chamber 7. It extends so that the width gradually increases to the vicinity of the outer edge.
  • the plurality of dynamic pressure grooves 22 have substantially the same shape and are arranged at substantially the same interval.
  • the dynamic pressure groove 22 is a recess, and the depth of the dynamic pressure groove 22 is preferably about 0.005 to 0.4 mm.
  • the number of the dynamic pressure grooves 22 is preferably about 6 to 36. In FIG. 6, ten dynamic pressure grooves 22 are arranged at an equal angle with respect to the central axis of the impeller 10.
  • the dynamic pressure groove 22 may be provided not on the inner wall side of the blood chamber 7 but on the surface of the shroud 11 of the impeller 10. Further, the corners of the dynamic pressure grooves 22 are preferably rounded so as to have an R of at least 0.05 mm. Thereby, generation
  • the impeller 10 is separated from the inner wall of the blood chamber 7 and rotates in a non-contact state. Moreover, when the pump part 1 receives an external impact or when the dynamic pressure by the dynamic pressure groove 21 becomes excessive, it is possible to prevent the impeller 10 from sticking to the inner wall of the blood chamber 7.
  • the dynamic pressure generated by the dynamic pressure groove 21 and the dynamic pressure generated by the dynamic pressure groove 22 may be different.
  • the impeller 10 rotates in a state in which the gap between the shroud 12 of the impeller 10 and the partition wall 6 and the gap between the shroud 11 of the impeller 10 and the inner wall of the blood chamber 7 are substantially the same.
  • the dynamic pressure by the dynamic pressure groove on the narrowing side is made larger than the dynamic pressure by the other dynamic pressure groove, To make the dynamic pressure grooves 21 and 22 different in shape.
  • each of the dynamic pressure grooves 21 and 22 has an inward spiral groove shape, but other shapes of the dynamic pressure grooves 21 and 22 can also be used. However, when blood is circulated, it is preferable to employ the inward spiral groove-shaped dynamic pressure grooves 21 and 22 that allow blood to flow smoothly.
  • FIG. 11 shows that the magnitude of the resultant force between the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is other than the central position of the movable range in the blood chamber 7 of the impeller 10. It is a figure which shows the force which acts on the impeller 10 when it adjusts so that it may become zero in the position P1. However, the rotation speed of the impeller 10 is kept at the rated value.
  • the attraction force F1 between the permanent magnets 15 and 16 is set smaller than the attraction force F2 between the permanent magnet 17 and the magnetic body 18, and the floating position of the impeller 10 at which the resultant force becomes zero is from the middle of the impeller movable range. Is also on the partition wall 6 side.
  • the shapes of the dynamic pressure grooves 21 and 22 are the same.
  • the acting force on the impeller 10 includes an attractive force F1 between the permanent magnets 15 and 16, an attractive force F2 between the permanent magnet 17 and the magnetic body 18, a dynamic pressure F3 in the dynamic pressure groove 21, and a dynamic force in the dynamic pressure groove 22.
  • the pressure F4 and the resultant force “net force F5 acting on the impeller” are shown.
  • FIG. 12 shows that the magnitude of the resultant force between the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is the movable range in the blood chamber 7 of the impeller 10. It is a figure which shows the force which acts on the impeller 10 when it adjusts so that it may become zero in the center position P0. Also in this case, the rotational speed of the impeller 10 is kept at the rated value.
  • the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 are set to be substantially the same. Further, the shapes of the dynamic pressure grooves 21 and 22 are the same. In this case, the support rigidity with respect to the floating position of the impeller 10 is higher than in the case of FIG. Since the net force F5 acting on the impeller 10 is zero at the center of the movable range, the impeller 10 floats at the center position when no disturbance force acts on the impeller 10.
  • the floating position of the impeller 10 is generated in the dynamic pressure grooves 21 and 22 when the impeller 10 rotates, and the attractive force F1 between the permanent magnets 15 and 16, the attractive force F2 between the permanent magnet 17 and the magnetic body 18, and the impeller 10. It is determined by the balance with dynamic pressures F3 and F4.
  • F1 and F2 substantially the same and making the shape of the dynamic pressure grooves 21 and 22 the same
  • the impeller 10 can be floated at the substantially central portion of the blood chamber 7 when the impeller 10 rotates.
  • the impeller 10 has a shape in which blades are formed between two disks. Therefore, two surfaces facing the inner wall of the housing 2 can have the same shape and the same size. Therefore, it is possible to provide the dynamic pressure grooves 21 and 22 having substantially the same dynamic pressure performance on both sides of the impeller 10.
  • the two dynamic pressure grooves 21 and 22 have the same shape.
  • the dynamic pressure grooves 21 and 22 have different shapes, and the dynamic pressure grooves 21 and 22
  • the pressure performance may be different. For example, when a disturbance in one direction always acts on the impeller 10 due to fluid force or the like during pumping, the performance of the dynamic pressure groove in the direction of the disturbance is made higher than the performance of the other dynamic pressure groove.
  • the impeller 10 can be floated and rotated at the center position of the housing 2. As a result, the contact probability between the impeller 10 and the housing 2 can be kept low, and the stable flying performance of the impeller 10 can be obtained.
  • the absolute value of the negative support rigidity value in the axial direction of the impeller 10 constituted by the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is defined as Ka. If the absolute value of the radial positive stiffness value is Kr and the absolute value of the positive stiffness value obtained by the two dynamic pressure grooves 21 and 22 is Kg in the normal rotational speed region where the impeller 10 rotates, Kg> Ka + Kr It is preferable to satisfy the relationship.
  • the absolute value Kg of the positive stiffness value obtained by the two dynamic pressure grooves 21 and 22 is set to a value exceeding 30000 N / m.
  • the axial support rigidity of the impeller 10 is a value obtained by subtracting the negative rigidity due to the attractive force between the magnetic bodies from the rigidity caused by the dynamic pressure generated in the dynamic pressure grooves 21 and 22, it has a relationship of Kg> Ka + Kr.
  • the support rigidity in the axial direction can be higher than the support rigidity in the radial direction of the impeller 10.
  • the impeller 10 swings during rotation. This swing is determined by the natural frequency determined by the mass of the impeller 10 and the support rigidity value of the impeller 10 and the rotational speed of the impeller 10. Maximum if matched.
  • the support rigidity in the radial direction is smaller than the support rigidity in the axial direction of the impeller 10. Therefore, it is preferable to set the maximum rotational speed of the impeller 10 to be equal to or less than the natural frequency in the radial direction. Therefore, in order to prevent mechanical contact between the impeller 10 and the housing 2, the radial stiffness value of the impeller 10 constituted by the attractive force F ⁇ b> 1 between the permanent magnets 15, 16 and the attractive force F ⁇ b> 2 between the permanent magnet 17 and the magnetic body 18 is set.
  • the maximum rotation speed of the impeller 10 is set to 258 rad / s (2465 rpm) or less.
  • the maximum rotation speed of the impeller 10 is set to 366 rad / s (3500 rpm)
  • the radial rigidity is set to 4018 N / m or more.
  • the maximum rotation speed of the impeller 10 it is preferable to set the maximum rotation speed of the impeller 10 to 80% or less of this ⁇ . Specifically, when the mass of the impeller 10 is 0.03 kg and the radial rigidity value is 2000 N / m, the maximum rotational speed is set to 206.4 rad / s (1971 rpm) or less. Conversely, when the maximum rotational speed of the impeller 10 is desired to be 366 rad / s (3500 rpm), the radial rigidity value is set to 6279 N / m or more. By setting the maximum rotation speed of the impeller 10 in this way, contact between the impeller 10 and the housing 2 during rotation of the impeller 10 can be suppressed.
  • the dynamic pressure grooves 21 and 22 have a negative rigidity value in the axial direction of the impeller 10 constituted by the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18.
  • the impeller 10 and the housing 2 are not in contact with each other. Therefore, it is preferable to make this negative rigidity value as small as possible. Therefore, in order to keep the negative rigidity value small, it is preferable to make the sizes of the opposed surfaces of the permanent magnets 15 and 16 different.
  • the rate of change of the attractive force that changes depending on the distance between them, that is, the negative stiffness can be kept small, and the impeller support stiffness is prevented from being lowered. Can do.
  • impeller 10 it is preferable to rotate the impeller 10 after confirming that the impeller 10 is in contact with the partition wall 6 before the impeller 10 starts rotating.
  • the shroud 12 of the impeller 10 when the shroud 12 of the impeller 10 is in contact with the partition wall 6, compared with the case where the shroud 11 of the impeller 10 is in contact with the inner wall of the blood chamber 7, the permanent magnet 17 of the impeller 10 and the motor chamber 8 Since the magnetic body 18 is close, the rotational torque at the time of starting the impeller 10 can be increased, and the impeller 10 can be rotated and started smoothly.
  • the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 are such that the position of the impeller 10 is within the movable range of the impeller 10. Since it is set so as to be balanced in the vicinity of the center, the impeller 10 is not necessarily in contact with the partition wall 6 when the impeller 10 is stopped.
  • this centrifugal blood pump device is provided with means for moving the impeller 10 toward the partition wall 6 before the impeller 10 is rotationally activated. Specifically, current is passed through the plurality of coils 20 so that the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is increased, and the impeller 10 is moved to the partition wall 6 side.
  • FIG. 13 is a block diagram showing the configuration of the controller 25 that controls the pump unit 1.
  • the controller 25 includes a motor control circuit 26 and a power amplifier 27.
  • the motor control circuit 26 outputs a three-phase control signal of, for example, a 120-degree energization method.
  • the power amplifier 27 amplifies the three-phase control signal from the motor control circuit 26 and generates the three-phase voltages VU, VV, and VW shown in FIG.
  • the three-phase voltages VU, VV, VW are applied to the first to third coils 20 described with reference to FIGS. Accordingly, during normal operation, the impeller 10 rotates at a predetermined rotational speed at the center position of the movable range.
  • 14 (a) to 14 (c) are time charts showing changes over time in the coil current I, the position of the impeller 10 and the rotational speed of the impeller 10 when the impeller 10 starts rotating.
  • 14A to 14C it is assumed that the shroud 11 of the impeller 10 is in contact with the inner wall of the blood chamber 7 in the initial state, and the impeller 10 is at the position PA.
  • a predetermined current I0 is passed through the coil 20 at time t0.
  • the attractive force F2 between the permanent magnet 17 and the magnetic body 18 becomes larger than the attractive force F1 between the permanent magnets 15 and 16, the impeller 10 moves to the position PB on the partition wall 6 side, and the shroud 12 of the impeller 10 is Contact the partition wall 6.
  • the current I0 is cut off (time t1). It is preferable to provide a sensor for detecting the position of the impeller 10 in the blood chamber 7 and cut off the current I 0 after confirming that the impeller 10 has contacted the partition wall 6.
  • the coil current I is gradually increased to a predetermined rated value. At this time, since the impeller 10 is in contact with the partition wall 6, the impeller 10 rotates smoothly. As the coil current I increases, the impeller 10 moves from the position PB on the partition wall 6 side to the center position of the movable range.
  • the magnetic body 18 is shorter than the coil 20, the axial attractive force can be lowered while satisfying the required torque. Therefore, both improvement in efficiency and stable rotation of the impeller can be achieved.
  • FIG. 15 is a block diagram showing a modification of the first embodiment.
  • An example of a configuration for switching power supply at the time of impeller rotation activation and other cases is shown.
  • the power amplifier 27 of FIG. 13 is replaced with power amplifiers 30 and 31 and a changeover switch 32.
  • the output signal of the motor control circuit 26 is given to the power amplifier 30, the output voltage of the power amplifier 30 is applied to the coil 20 via the changeover switch 32, and the current I0 flows through the coil 20. It is.
  • the output signal of the motor control circuit 26 is given to the power amplifier 31, the output voltage of the power amplifier 31 is applied to the coil 20 via the changeover switch 32, and a current flows through the coil 20.
  • FIGS. 16A to 16C are time charts showing another modification of the first embodiment. 16A to 16C, in the initial state, the shroud 11 of the impeller 10 is in contact with the inner wall of the blood chamber 7, and the impeller 10 is at the position PA.
  • a predetermined current I1 is passed through the coil 20 at time t0.
  • the motor control circuit 26 outputs a three-phase control signal of a 120-degree energization method.
  • the power amplifier 27 amplifies the three-phase control signal from the motor control circuit 26 and generates the three-phase voltages VU, VV, and VW shown in FIG.
  • the three-phase voltages VU, VV, and VW are applied to the first to third coils 20 described with reference to FIG.
  • This current I1 is larger than the current I0 in FIG. 14, and is a current that can rotate the impeller 10 even when the shroud 11 of the impeller 10 is in contact with the inner wall of the blood chamber 7.
  • the coil current I is decreased and gradually increased to a predetermined rated value. In this way, even when the impeller 10 is on the position PA side, an excessive current may be supplied to the coil 20 only when the impeller 10 starts to rotate.
  • a diamond-like carbon (DLC) film may be formed on at least one of the inner wall surface of the blood chamber 7 and the surface of the partition wall 6 and the surface of the impeller 10. Thereby, the frictional force between the impeller 10 and the inner wall of the blood chamber 7 and the partition wall 6 can be reduced, and the impeller can be rotated and started smoothly.
  • a fluorine resin film, a paraxylylene resin film, or the like may be formed.
  • FIG. 17 is a cross-sectional view showing still another modified example of the first embodiment, and is a view compared with FIG. In FIG. 17, in this modified example, the sizes of the facing surfaces of the facing permanent magnets 15 and 16 are different.
  • FIG. 3 shows a case where the sizes of the opposing surfaces of the permanent magnets 15 and 16 are the same.
  • the amount of change in force that is, negative rigidity can be suppressed to a small value, and a decrease in the support rigidity of the impeller 10 can be prevented.
  • FIG. 18 is a cross-sectional view showing still another modification of the first embodiment, and is a view contrasted with FIG.
  • the yoke 19 is replaced with the yoke 36
  • the magnetic body 18 is replaced with the magnetic body 37.
  • Each of the yoke 36 and the magnetic body 37 includes a plurality of steel plates stacked in the length direction of the rotation shaft of the impeller 10.
  • the eddy current loss generated in the yoke 36 and the magnetic body 37 can be reduced, and the energy efficiency in the rotational drive of the impeller 10 can be increased.
  • the magnetic body 37 may be replaced with a magnetic body 38 including a plurality of steel plates stacked in the rotation direction of the impeller 10.
  • the magnetic body 37 may be replaced with a magnetic body 39 including a plurality of steel plates stacked in the radial direction of the impeller 10. Even in these cases, the same effect as the modified example of FIG. 18 is obtained.
  • each of the yoke 19 and the magnetic body 18 in FIG. 3 may be formed of pure iron, soft iron, or silicon iron powder. In this case, the iron loss of the yoke 19 and the magnetic body 18 can be reduced, and the energy efficiency in the rotational drive of the impeller 10 can be improved.
  • each magnetic body 18 includes a strip-shaped thin magnetic steel plate 18a wound around the center line L1 perpendicular to the partition wall 6 a plurality of times.
  • the strip-shaped magnetic steel plate 18 a is wound in the length direction, and the width direction thereof is directed to a direction perpendicular to the partition wall 6.
  • the magnetic steel plate 18a may be an electromagnetic steel plate having non-directional or directional magnetic characteristics, or may be formed of an amorphous metal or an amorphous alloy.
  • the end of the winding end of the magnetic steel plate 18a may be welded to the magnetic steel plate 18a itself to fix the wound magnetic steel plate 18a in a predetermined shape, or the entire magnetic steel plate 18a is impregnated with resin, The magnetic steel plate 18a wound by curing the resin may be fixed in a predetermined shape.
  • the magnetic body 18 by forming the magnetic body 18 with the thin belt-shaped magnetic steel sheet 18a wound, the iron loss in the magnetic body 18 can be reduced and the magnetic permeability of the magnetic flux in the magnetic body 18 can be increased.
  • the energy efficiency in the rotational drive of the impeller 10 can be increased.
  • the apparatus since the magnetic body 18 can be easily formed, the apparatus can be reduced in size, cost, and productivity can be improved.
  • the magnetic steel plate 18a may be wound in a cylindrical shape, or may be wound in a prismatic shape such as a triangular prism.
  • FIG. 21 shows a state in which the magnetic steel plate 18a is wound in a columnar shape around the center line L1.
  • the circular end surface of the magnetic body 18 formed in a columnar shape (that is, the magnetic steel plate 18 a wound in a columnar shape) is disposed to face the impeller 10 through the partition wall 6.
  • the coil 20 is wound so as to cover the entire outer peripheral surface (side surface) of the columnar magnetic body 18.
  • the magnetic steel plate 18a it is also possible to wind the magnetic steel plate 18a around the center line L1 in a prismatic shape such as a triangular prism.
  • Triangular end faces of the magnetic body 18 formed in a triangular column shape that is, the magnetic steel plate 18 a wound in a triangular column shape
  • the coil 20 is wound so as to cover the entire side surface of the triangular prism-shaped magnetic body 18.
  • a space for winding the coil 20 is evenly secured around the plurality of magnetic bodies 18, and the surfaces of the two adjacent magnetic bodies 18 facing each other are provided substantially in parallel. For this reason, a large space for the coil 20 can be secured, and the number of turns of the coil 20 can be increased.
  • the magnetic body 18 is preferably designed so that there is no magnetic saturation at the maximum rating of the pump 1 (conditions where the rotational driving torque of the impeller 10 is maximum).
  • FIG. 22 is a cross-sectional view showing still another modified example of the first embodiment, and is a view compared with FIG.
  • a notch 40 is formed from the inner peripheral surface to the outer peripheral surface of the magnetic body 18. That is, the magnetic steel plate 18a constitutes a plurality of cylindrical members that are wound around the center line L1 a plurality of times and arranged concentrically. The notch 40 cuts each of the plurality of cylindrical members in a direction parallel to the center line L1 on one side (right side in FIG. 22) of the center line L1. In this modified example, since the notch 40 is provided, the iron loss of the magnetic body 18 can be reduced.
  • FIG. 23 is a cross-sectional view showing still another modified example of the first embodiment, and is a view compared with FIG.
  • a rod-shaped magnetic body 41 that is a soft magnetic body is used as a core material.
  • the magnetic steel plate 18 a is wound around the magnetic body 41 a plurality of times.
  • the magnetic steel plate 18a can be fixed in a predetermined shape.
  • the entire magnetic body 41 and the magnetic steel plate 18a may be impregnated with resin, and the resin may be cured and fixed in a predetermined shape.
  • FIG. 24 is a diagram showing still another modification of the first embodiment.
  • each magnetic body 18 includes a magnetic body 41 and a magnetic steel plate 18a.
  • the length of the rod-shaped magnetic body 41 is longer than the width of the magnetic steel plate 18a.
  • the magnetic steel plate 18a is wound around the upper end portion of the magnetic body 41, and the lower end portion of the magnetic body 41 protrudes from the magnetic steel plate 18a wound in a columnar shape.
  • the disk-shaped magnetic body 19 is formed with holes 19a provided corresponding to the respective magnetic bodies 18.
  • the lower end of the magnetic body 41 is inserted into the hole 19 a of the magnetic body 19.
  • the magnetic body 41 is fixed to the hole 19a by adhesion, press fitting, or shrink fitting.
  • the inner peripheral portion of the cylindrical coil 20 is fitted into the outer peripheral portion of the magnetic body 18.
  • the magnetic body 18 can be easily assembled and fixed to the magnetic body 19 without using a positioning jig or the like, and workability is improved.
  • the magnetic body 19 may be formed by winding a strip-shaped magnetic steel sheet 19a around the center line L2 a plurality of times. In this case, the iron loss in the magnetic body of the magnetic body 19 can be reduced, and the energy efficiency in the rotational drive of the impeller 10 can be increased. If the magnetic steel plate 19a having non-directional or directional magnetic characteristics is used, the magnetic permeability of the magnetic flux in the magnetic body 19 can be increased, and the energy efficiency in the rotational drive of the impeller 10 can be increased.
  • a plurality of permanent magnets 17 and a plurality of permanent magnets 42 are embedded in the shroud 12.
  • the number of permanent magnets 42 is the same as the number of permanent magnets 17.
  • the permanent magnet 42 is magnetized in the circumferential direction (the rotation direction of the impeller 10).
  • the plurality of permanent magnets 17 and the plurality of permanent magnets 42 are alternately arranged one by one at equal angular intervals along the same circle in a Halbach array structure.
  • the permanent magnet 17 with the N pole facing the partition wall 6 and the permanent magnet 17 with the S pole facing the partition wall 6 are arranged in the same circle with gaps at equal angular intervals. Alternatingly arranged along.
  • the N pole of each permanent magnet 42 is disposed toward the permanent magnet 17 with the N pole facing the partition 6 side, and the S pole of each permanent magnet 42 is disposed toward the permanent magnet 17 with the S pole facing the partition 6 side. Is done.
  • the shapes of the plurality of permanent magnets 17 are the same, and the shapes of the plurality of permanent magnets 42 are the same.
  • the shape of the permanent magnet 17 and the shape of the permanent magnet 42 may be the same or different.
  • the attractive force between the permanent magnet 17 and the magnetic body 18 can be suppressed, and the magnetic flux causing torque can be increased, so that the permanent magnet can be most miniaturized. That is, the impeller 10 can be most lightweight and energy efficiency can be increased even when the motor gap is wide.
  • FIGS. 5 and 6 are diagrams showing a main part of a centrifugal blood pump device according to Embodiment 2 of the present invention, and are compared with FIGS. 5 and 6, respectively.
  • a plurality of dynamic pressure grooves 51 and a plurality of dynamic pressure grooves 52 are formed on the surface of the partition wall 6 facing the shroud 12 of the impeller 10, and on the inner wall of the blood chamber 7 facing the shroud 11.
  • a plurality of dynamic pressure grooves 53 and a plurality of dynamic pressure grooves 54 are formed.
  • the plurality of dynamic pressure grooves 51 and the plurality of dynamic pressure grooves 52 are formed in a size corresponding to the shroud 12 of the impeller 10 as shown in FIG.
  • the plurality of dynamic pressure grooves 51 and the plurality of dynamic pressure grooves 52 are alternately arranged one by one in the rotation direction of the impeller 10.
  • Each of the dynamic pressure grooves 51 and 52 has one end on the periphery (circumference) of a circular portion slightly spaced from the center of the partition wall 6 and spirally (in other words, curved) to the vicinity of the outer edge of the partition wall 6. , Extending so that the width gradually widens.
  • the plurality of dynamic pressure grooves 51 have substantially the same shape and are arranged at equiangular intervals in the rotation direction of the impeller 10.
  • the dynamic pressure groove 51 is a recess, and the depth of the dynamic pressure groove 51 is preferably about 0.005 to 0.4 mm.
  • the number of the dynamic pressure grooves 51 is preferably about 6 to 36.
  • the plurality of dynamic pressure grooves 52 have substantially the same shape and are arranged at equiangular intervals in the rotation direction of the impeller 10.
  • the dynamic pressure groove 52 is a recess, and the depth of the dynamic pressure groove 52 is preferably about 0.005 to 0.3 mm.
  • the dynamic pressure groove 52 is shallower than the dynamic pressure groove 51 as shown in FIG.
  • the depth of the dynamic pressure groove 52 is preferably less than or equal to one fifth of the depth of the dynamic pressure groove 52.
  • the width of the dynamic pressure groove 52 is preferably equal to or less than two-thirds of the interval between the two dynamic pressure grooves 51.
  • the number of the dynamic pressure grooves 52 is preferably equal to or less than the number of the dynamic pressure grooves 51.
  • ten dynamic pressure grooves 51 and ten dynamic pressure grooves 52 are arranged at equiangular intervals with respect to the central axis of the impeller 10. Since each of the dynamic pressure grooves 51 and 52 has a so-called inward spiral groove shape, when the impeller 10 rotates in the clockwise direction, the pressure of the liquid is increased from the outer diameter portion to the inner diameter portion of the dynamic pressure grooves 51 and 52. Get higher. For this reason, a repulsive force is generated between the impeller 10 and the partition wall 6, and this becomes a dynamic pressure.
  • FIG. 31 is a diagram showing the relationship between the floating position of the impeller 10 viewed from the surface of the partition wall 6 and the dynamic pressure that the impeller 10 receives from the dynamic pressure groove 51 when the impeller 10 is rotated at a predetermined number of revolutions. is there.
  • FIG. 32 is a diagram illustrating the relationship between the distance between the impeller 10 and the partition wall 6 and the dynamic pressure received by the impeller 10 from the dynamic pressure groove 52 when the impeller 10 is rotated at a predetermined rotational speed.
  • FIG. 33 is a diagram in which FIG. 31 and FIG. 32 are combined.
  • the dynamic pressure groove 51 generates a larger dynamic pressure than the dynamic pressure groove 52 when the distance between the impeller 10 and the partition wall 6 is long. Further, the dynamic pressure groove 52 generates a larger dynamic pressure than the dynamic pressure groove 51 when the distance between the impeller 10 and the partition wall 6 is short. Therefore, in the second embodiment, since both the dynamic pressure grooves 51 and 52 are provided, a large dynamic pressure can be obtained both at the time of starting rotation and at the time of steady rotation.
  • the impeller 10 is separated from the partition wall 6 and rotates in a non-contact state. For this reason, the impeller 10 starts to rotate smoothly, a blood flow path is ensured between the impeller 10 and the partition wall 6, and blood retention between them and the generation of thrombus caused thereby are prevented. Furthermore, in the normal state, the dynamic pressure grooves 51 and 52 exert a stirring action between the impeller 10 and the partition wall 6, so that partial blood retention between the two can be prevented.
  • dynamic pressure grooves 51 and 52 may be provided on the surface of the shroud 12 of the impeller 10 instead of providing the dynamic pressure grooves 51 and 52 in the partition wall 6.
  • each corner portion of the dynamic pressure grooves 51 and 52 is rounded so as to have an R of at least 0.05 mm or more. Thereby, generation
  • FIG. 34 shows the ratio D52 / D51 between the depth D52 of the dynamic pressure groove 52 and the depth D51 of the dynamic pressure groove 51 and the dynamic pressure acting on the impeller 10 when the impeller 10 is in the steady rotational levitation position. It is a figure which shows the relationship. As shown in FIG. 33, when the impeller 10 is in a position close to the partition wall 6, a large dynamic pressure is generated due to the addition of the dynamic pressure groove 52. However, as shown in FIG. When in the position, the dynamic pressure is reduced by the addition of the dynamic pressure groove 52. Therefore, it is necessary to determine the depth and width of the dynamic pressure groove 52 so that a decrease in dynamic pressure and rigidity due to the addition of the dynamic pressure groove 52 does not adversely affect the pump performance. As shown in FIG. 34, the smaller the ratio D52 / D51, the lower the dynamic pressure at the steady rotational levitation position. Therefore, preferably, the ratio D52 / D51 is set to 1/5 or less.
  • FIG. 35 shows the ratio W52 / WL51 between the width W52 of the dynamic pressure groove 52 and the distance between the dynamic pressure grooves 51 (the width of the land portion between the dynamic pressure grooves 51) WL51 when the impeller 10 is in the steady floating position. It is a figure which shows the relationship between and the dynamic pressure which acts on the impeller 10.
  • FIG. 35 the smaller the ratio W52 / WL51, the lower the dynamic pressure drop at the steady rotational levitation position. Therefore, preferably, the ratio W52 / WL51 is set to 2/3 or less.
  • the plurality of dynamic pressure grooves 53 and the plurality of dynamic pressure grooves 54 have a size corresponding to the shroud 11 of the impeller 10, as with the plurality of dynamic pressure grooves 51 and the plurality of dynamic pressure grooves 52. Is formed.
  • Each of the dynamic pressure grooves 53 and 54 has one end on the periphery (circumference) of a circular portion slightly spaced from the center of the inner wall of the blood chamber 7 and is spirally (in other words, curved). It extends so that the width gradually increases to the vicinity of the outer edge of the inner wall.
  • the plurality of dynamic pressure grooves 53 have substantially the same shape and are arranged at substantially the same interval.
  • the dynamic pressure groove 53 is a recess, and the depth of the dynamic pressure groove 53 is preferably about 0.005 to 0.4 mm.
  • the number of the dynamic pressure grooves 53 is preferably about 6 to 36. In FIG. 29, ten dynamic pressure grooves 53 are arranged at an equal angle with respect to the central axis of the impeller 10.
  • the plurality of dynamic pressure grooves 54 have substantially the same shape and are arranged at equiangular intervals in the rotation direction of the impeller 10.
  • the dynamic pressure groove 54 is a recess, and the depth of the dynamic pressure groove 54 is preferably about 0.005 to 0.3 mm.
  • the number of the dynamic pressure grooves 54 is preferably about 6 to 36.
  • the dynamic pressure groove 54 is shallower than the dynamic pressure groove 53 as described with reference to FIG. 30 for the dynamic pressure grooves 51 and 52.
  • the depth of the dynamic pressure groove 54 is preferably not more than one fifth of the depth of the dynamic pressure groove 53.
  • the width of the dynamic pressure groove 54 is preferably equal to or less than two thirds of the interval between the two dynamic pressure grooves 53.
  • the number of dynamic pressure grooves 54 is preferably equal to or less than the number of dynamic pressure grooves 53.
  • ten dynamic pressure grooves 53 and ten dynamic pressure grooves 54 are arranged at equiangular intervals with respect to the central axis of the impeller 10. Since each of the dynamic pressure grooves 53 and 54 has a so-called inward spiral groove shape, when the impeller 10 rotates in the clockwise direction, the pressure of the liquid is increased from the outer diameter portion to the inner diameter portion of the dynamic pressure grooves 53 and 54. Get higher. For this reason, a repulsive force is generated between the impeller 10 and the inner wall of the blood chamber 7, which becomes a dynamic pressure.
  • the dynamic pressure groove 53 has a larger dynamic pressure than the dynamic pressure groove 54 when the distance between the impeller 10 and the inner wall of the blood chamber 7 is long. appear. Further, the dynamic pressure groove 54 generates a larger dynamic pressure than the dynamic pressure groove 53 when the distance between the impeller 10 and the inner wall of the blood chamber 7 is short. Therefore, in the second embodiment, since both the dynamic pressure grooves 53 and 54 are provided, a large dynamic pressure can be obtained both at the time of starting rotation and at the time of steady rotation.
  • the impeller 10 is separated from the inner wall of the blood chamber 7 and rotates in a non-contact state. For this reason, the impeller 10 starts to rotate smoothly, a blood flow path is secured between the impeller 10 and the inner wall of the blood chamber 7, and blood retention between them and the generation of thrombus caused thereby are prevented. Furthermore, in the normal state, the dynamic pressure grooves 53 and 54 exert a stirring action between the impeller 10 and the inner wall of the blood chamber 7, so that partial blood stagnation between the two can be prevented.
  • the pump part 1 when the pump part 1 receives an external impact or when the dynamic pressure by the dynamic pressure grooves 51 and 52 becomes excessive, it is possible to prevent the impeller 10 from sticking to the inner wall of the blood chamber 7.
  • the dynamic pressure generated by the dynamic pressure grooves 51 and 52 and the dynamic pressure generated by the dynamic pressure grooves 53 and 54 may be different.
  • the dynamic pressure grooves 53 and 54 may be provided on the surface of the shroud 11 of the impeller 10.
  • each corner portion of the dynamic pressure grooves 53 and 54 is rounded so as to have an R of at least 0.05 mm. Thereby, generation
  • the ratio D54 / D53 between the depth D54 of the dynamic pressure groove 54 and the depth D53 of the dynamic pressure groove 53 is set to 1/5 or less. Is done.
  • the ratio W54 / WL53 between the width W54 of the dynamic pressure groove 54 and the interval between the dynamic pressure grooves 53 (the width of the land portion between the dynamic pressure grooves 53) WL53 is set to 2/3 or less.
  • the impeller 10 rotates in a state where the gap between the shroud 12 of the impeller 10 and the partition wall 6 and the gap between the shroud 11 of the impeller 10 and the inner wall of the blood chamber 7 are substantially the same.
  • the dynamic pressure by the dynamic pressure groove on the narrowing side is made larger than the dynamic pressure by the other dynamic pressure groove, In order to make the dynamic pressure grooves 51, 52 and 53, 54 different in shape.
  • each of the dynamic pressure grooves 51 to 54 has an inward spiral groove shape, but other shapes of the dynamic pressure grooves 51 to 54 can also be used. However, when blood is circulated, it is preferable to employ inward spiral groove-shaped dynamic pressure grooves 51 to 54 that allow blood to flow smoothly.
  • FIG. 36 is a view showing a main part of a centrifugal blood pump apparatus according to Embodiment 3 of the present invention, and is a view compared with FIG. 36, in the third embodiment, the permanent magnet 15 is divided into two permanent magnets 15a and 15b in the radial direction, and the permanent magnet 16 is divided into two permanent magnets 16a and 16b in the radial direction. That is, permanent magnets 15 a and 15 b are embedded in the shroud 11, and permanent magnets 16 a and 16 b that attract the permanent magnets 15 a and 15 b are respectively embedded in the inner wall of the blood chamber 7 facing the shroud 11.
  • the permanent magnets 15a, 15b, 16a, 16b are provided for attracting (in other words, energizing) the impeller 10 to the side opposite to the motor chamber 8, in other words, to the blood inflow port 4 side.
  • FIGS. 37A and 37B are diagrams showing the configuration of the permanent magnets 15a, 15b, 16a and 16b
  • FIG. 37 (a) is a sectional view taken along the line XXXVIIA-XXXVIIA in FIG. 37 (b).
  • each of the permanent magnets 15a and 15b is formed in an annular shape, and the outer diameter of the permanent magnet 15a is smaller than the inner diameter of the permanent magnet 15b.
  • the permanent magnets 15 a and 15 b are provided coaxially, and the center points of the permanent magnets 15 a and 15 b are both arranged on the rotation center line of the impeller 10.
  • the N poles of the permanent magnets 15a and 15b are oriented in the same direction.
  • each of the permanent magnets 16 a and 16 b is formed in an arc shape, and two are arranged in the rotation direction of the impeller 10.
  • the outer diameter and inner diameter of the two permanent magnets 16a arranged in an annular shape are the same as the outer diameter and inner diameter of the permanent magnet 15a.
  • the outer diameter and inner diameter of the two permanent magnets 16b arranged in an annular shape are the same as the outer diameter and inner diameter of the permanent magnet 15b.
  • the N poles of the permanent magnets 16a and 16b are oriented in the same direction.
  • the S poles of the permanent magnets 15a and 15b and the N poles of the permanent magnets 16a and 16b are opposed to each other.
  • the distance between the permanent magnets 15a and 15b (that is, the distance between the permanent magnets 16a and 16b) D1 is the radial movable distance of the impeller 10 (that is, the inner diameter of the blood chamber 7 and the outer diameter of the impeller 10).
  • the distance D2 is set to be a half of the distance (D1> D2). This is because when D1 ⁇ D2, when the impeller 10 moves to the maximum in the radial direction, the permanent magnets 15a and 16b and the permanent magnets 15b and 16a interfere with each other to restore the impeller 10 to the pump center position. Because it becomes unstable.
  • the impeller 10 is compared with the case where only one pair of permanent magnets is provided in the radial direction of the impeller 10.
  • the support rigidity in the radial direction can be increased.
  • a permanent magnet is provided on one of the inner walls of the shroud 11 and blood chamber 7, and a magnetic material is provided on the other. May be. Further, as the magnetic material, either a soft magnetic material or a hard magnetic material may be used.
  • FIG. 36 shows the case where the opposing surfaces of the permanent magnets 15a and 16a have the same size and the opposing surfaces of the permanent magnets 15b and 16b have the same size.
  • the size of the opposed surfaces of the permanent magnets 15a and 16a is made different, and the size of the opposed surfaces of the permanent magnets 15b and 16b is made different. Is preferred.
  • each of the permanent magnets 15a and 15b is formed in an annular shape, and each of the permanent magnets 16a and 16b is formed in an arcuate shape at equal angular intervals in the rotation direction of the impeller 10.
  • each of the permanent magnets 16a and 16b is formed in an annular shape, and each of the permanent magnets 15a and 15b is formed in an arc shape, and two are arranged at equal angular intervals in the rotation direction of the impeller 10. May be.
  • each of the permanent magnets 15a and 15b or each of the permanent magnets 16a and 16b may be formed in a shorter arc shape and arranged in plural in the rotation direction of the impeller 10 at equal angular intervals.
  • FIG. 38 is a cross-sectional view showing a main part of a centrifugal blood pump apparatus according to Embodiment 4 of the present invention, and is a view compared with FIG. 38, this centrifugal blood pump device is different from the centrifugal blood pump device of FIG. 36 in that a dynamic pressure groove 60 is formed on the inner peripheral surface of the blood chamber 7 facing the outer peripheral surface of the impeller 10. It is.
  • the dynamic pressure groove 60 generates dynamic pressure on the outer peripheral surface of the impeller 10 and prevents the outer peripheral surface of the impeller 10 from contacting the inner peripheral surface of the blood chamber 7.
  • FIG. 39 is a diagram illustrating a specific configuration of the dynamic pressure groove 60.
  • V-shaped dynamic pressure grooves 61 are formed at a predetermined pitch in the rotation direction of the impeller 10 in a region facing the outer peripheral surface of the shroud 11 in the inner peripheral surface of the blood chamber 7.
  • the tip (acute angle portion) of the V-shaped dynamic pressure groove 61 is directed in the rotational direction of the impeller 10.
  • V-shaped dynamic pressure grooves 62 are formed at a predetermined pitch in the rotation direction of the impeller 10 in a region of the inner peripheral surface of the blood chamber 7 facing the outer peripheral surface of the shroud 12.
  • the tip (acute angle portion) of the V-shaped dynamic pressure groove 62 is directed in the rotational direction of the impeller 10.
  • a groove 63 having a predetermined depth is formed in a ring shape in a region facing the gap between the shrouds 11 and 12 on the inner peripheral surface of the blood chamber 7.
  • FIG. 40 is a diagram showing a modification of the fourth embodiment and is a diagram contrasted with FIG.
  • the dynamic pressure grooves 61 and 62 are formed not on the inner peripheral surface side of the blood chamber 7 but on the outer peripheral surfaces of the shrouds 11 and 12, respectively.
  • the tips of the dynamic pressure grooves 61 and 62 are directed in the direction opposite to the rotation direction of the impeller 10.
  • the impeller 10 rotates in the direction of the arrow, the liquid pressure increases toward the tip portions of the dynamic pressure grooves 61 and 62. For this reason, a repulsive force is generated between the impeller 10 and the inner peripheral surface of the blood chamber 7, and this becomes a dynamic pressure.
  • FIG. 41 is a diagram showing another modification of the fourth embodiment, and is a diagram contrasted with FIG.
  • the dynamic pressure grooves 61 and 62 are replaced with dynamic pressure grooves 64 and 65, respectively.
  • Each of the dynamic pressure grooves 64 and 65 is formed in a belt shape and extends in the rotation direction of the impeller 10. The depth of each of the dynamic pressure grooves 64 and 65 is gradually shallower in the rotation direction of the impeller 10.
  • the pressure of the liquid increases toward the tip portions of the dynamic pressure grooves 64 and 65. For this reason, a repulsive force is generated between the impeller 10 and the inner peripheral surface of the blood chamber 7, and this becomes a dynamic pressure.
  • FIG. 42 is a diagram showing still another modification of the fourth embodiment, and is a diagram contrasted with FIG. 41, in this modified example, the dynamic pressure grooves 64 and 65 are formed not on the inner peripheral surface side of the blood chamber 7 but on the outer peripheral surfaces of the shrouds 11 and 12, respectively.
  • the depth of each of the dynamic pressure grooves 64 and 65 is gradually shallower in the direction opposite to the rotation direction of the impeller 10.
  • the pressure of the liquid increases toward the tip portions of the dynamic pressure grooves 64 and 65. For this reason, a repulsive force is generated between the impeller 10 and the inner peripheral surface of the blood chamber 7, and this becomes a dynamic pressure.
  • FIG. 43 is a diagram showing still another modification of the fourth embodiment, and is a diagram contrasted with FIG.
  • the permanent magnets 15a, 15b, 16a, 16b are removed.
  • the magnetic body 18 is made shorter than the coil 20 and the attractive force of the permanent magnet 17 and the magnetic body 18 is made smaller than the dynamic pressure F3 at the rated rotation at the approximate center of the movable range of the impeller 10 in the blood chamber 7.
  • Such a configuration is possible.
  • the dynamic pressure F3 at the rated rotation is set so as to be balanced at substantially the center of the movable range of the impeller 10 in the blood chamber 7.
  • FIG. 44 is a diagram showing still another modification of the fourth embodiment, and is a diagram contrasted with FIG. 43, in this modified example, a plurality of permanent magnets 17A are also provided on the shroud 11, and a motor chamber 8A is also provided on the shroud 11 side.
  • the motor chamber 8A and the blood chamber 7 are separated by a partition wall 6A.
  • a plurality of magnetic bodies 18A are provided in the motor chamber 8A so as to face the plurality of permanent magnets 17A.
  • a coil 20A is wound around each magnetic body 18A, and the magnetic body 18A is formed on a disk-shaped magnetic body 19A. It is joined. In the central axis direction of the impeller 10, the magnetic body 18A is shorter than the coil 20A.
  • the first attraction force between the plurality of permanent magnets 17 and the plurality of magnetic bodies 18 and the second attraction force between the plurality of permanent magnets 17 ⁇ / b> A and the plurality of magnetic bodies 18 ⁇ / b> A are the blood chamber 7. It is set so as to be balanced at the approximate center of the movable range of the impeller 10 inside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • External Artificial Organs (AREA)

Abstract

 この遠心式血液ポンプ装置では、血液室(7)内のインペラ(10)に複数の永久磁石(17)を設け、モータ室(8)内に複数のコイル(20)を設け、各コイル(20)内に磁性体(18)を設ける。磁性体(18)をコイル(20)よりも短くして、磁性体(18)とインペラ(10)の永久磁石(17)との吸引力を下げ、磁性体(18)および永久磁石(17)間のギャップを大きく設定する。これにより、必要トルクを満足しつつ、アキシアル方向の吸引力および負の剛性を低減できる。

Description

遠心式ポンプ装置
 この発明は遠心式ポンプ装置に関し、特に、回転時の遠心力によって液体を送るインペラを備えた遠心式ポンプ装置に関する。
 近年、隔壁によってモータ駆動室とロータ室とに分離した構造のキャンドモータが多く用いられている。このようなモータは、たとえば、粉塵をきらう環境下で使用される半導体製造ラインの純水輸送用ポンプや、生体液を輸送するポンプに使用されている。生体液を輸送するポンプとしては、血液室内のインペラに直接トルクを伝達するダイレクト駆動モータを用いた遠心式血液ポンプ装置がある。この遠心式血液ポンプ装置は、外部と血液室との物理的な連通を排除することができ、細菌などの血液への侵入を防止することができるので、人工心臓として用いられる。人工心臓はバッテリからの電力によって駆動されるので、モータの効率向上は大変重要である。
 特開2004-209240号公報(特許文献1)の遠心式血液ポンプは、第1および第2の隔壁によって仕切られた第1~第3の室を含むハウジングと、第2の室(血液室)内に回転可能に設けられたインペラと、インペラの一方面に設けられた磁性体と、インペラの一方面に対向して第1の室内に設けられた電磁石と、インペラの他方面に設けられた永久磁石と、第3の室内に設けられたロータおよびモータと、インペラの他方面に対向してロータに設けられた永久磁石とを備える。インペラの他方面に対向する第2の隔壁の表面には、動圧溝が形成されている。電磁石からインペラの一方面に作用する吸引力と、ロータの永久磁石からインペラの他方面に作用する吸引力と、動圧溝の動圧軸受効果により、インペラは第2の室の内壁から離れ、非接触状態で回転する。
 また、特開2006-167173号公報(特許文献2)の遠心式血液ポンプは、第1および第2の隔壁によって仕切られた第1~第3の室を含むハウジングと、第2の室(血液室)内に回転可能に設けられたインペラと、インペラの一方面に設けられた磁性体と、インペラの一方面に対向して第1の室内に設けられた第1の永久磁石と、インペラの他方面に設けられた第2の永久磁石と、第3の室内に設けられたロータおよびモータと、インペラの他方面に対向してロータに設けられた第3の永久磁石とを備える。インペラの一方面に対向する第1の隔壁の表面には第1の動圧溝が形成され、インペラの他方面に対向する第2の隔壁の表面には第2の動圧溝が形成されている。第1の永久磁石からインペラの一方面に作用する吸引力と、ロータの第3の永久磁石からインペラの他方面に作用する吸引力と、第1および第2の動圧溝の動圧軸受効果により、インペラは第2の室の内壁から離れ、非接触状態で回転する。
 また、特開平4-91396号公報(特許文献3)の図8および図9のターボ形ポンプは、ハウジングと、ハウジング内に回転可能に設けられたインペラと、インペラの一方面に設けられた第1の永久磁石と、ハウジングの外部に設けられたロータと、インペラの一方面に対向してロータに設けられた第2の永久磁石と、インペラの他方面に設けられた第3の永久磁石と、インペラの他方面に対向してハウジングに設けられた磁性体とを備えている。また、インペラの一方面には第1の動圧溝が形成され、インペラの他方面には第2の動圧溝が形成されている。ロータの第2の永久磁石からインペラの一方面に作用する吸引力と、ハウジングの磁性体からインペラの他方面に作用する吸引力と、第1および第2の動圧溝の動圧軸受効果により、インペラはハウジングの内壁から離れ、非接触状態で回転する。
 さらに、実開平6-53790号公報(特許文献4)のクリーンポンプは、ケーシングと、ケーシング内に回転可能に設けられたインペラと、インペラの一方面に設けられた第1の永久磁石と、ケーシングの外部に設けられたロータと、インペラの一方面に対向してロータに設けられた第2の永久磁石と、インペラの他方面に設けられた磁性体と、インペラの他方面に対向してハウジング外に設けられた電磁石とを備えている。また、インペラの一方面には動圧溝が形成されている。インペラの回転数が所定の回転数よりも低い場合は電磁石を作動させ、インペラの回転数が所定の回転数を超えた場合は電磁石への通電を停止する。ロータの第2の永久磁石からインペラの一方面に作用する吸引力と、動圧溝の動圧軸受効果により、インペラはハウジングの内壁から離れ、非接触状態で回転する。
特開2004-209240号公報 特開2006-167173号公報 特開平4-91396号公報 実開平6-53790号公報
 しかし、ステータとロータ間に隔壁を設けたキャンドモータでは、ステータとロータ間の隙間が大きくなるため、高トルク化や高効率化が難しいという課題がある。特に、小型モータの場合、寸法の制約などにより設計自由度が低く、局所的な磁気飽和の影響を受け易いため高効率化が難しい。そのため高効率化のために磁路には珪素鋼板の積層構造を用いて鉄損の低減を図っている。さらにコアの形状の工夫によってコイルの占積率を向上させることで効率向上を図ることができる。
 また、上記特許文献1~4のポンプは、インペラとハウジングの対向部に形成された動圧溝によってインペラのアキシアル方向の支持を行ない、インペラに設けられた永久磁石とハウジング外に設けられた永久磁石との吸引力によってインペラのラジアル方向の支持を行なっている点で共通する。
 動圧溝の支持剛性は、インペラの回転数に比例する。したがって、ポンプに外乱が印加された状態でも、インペラがハウジングに接触することなく安定して回転するためには、ポンプの常用回転数域を上げてインペラのアキシアル方向の剛性を高める必要がある。しかし、上記特許文献1~4のポンプでは、ラジアル方向を永久磁石の吸引力を利用して支持しているので、その支持剛性は低く、インペラを高速に回転させることができないという問題がある。
 このラジアル方向の剛性を高める方法としては、インペラ内の永久磁石とハウジングの外部に配した永久磁石もしくは固定子との吸引力を強める方法がある。しかし、その吸引力を強めると、インペラのアキシアル方向への負の剛性値が大きくなり(すなわち、インペラがアキシアル方向に動けば、動いただけその吸引力が大きくなり)、動圧によるインペラの支持性能およびインペラ-ハウジング間に作用する吸引力が大きくなり、インペラのスムーズな回転駆動が難しくなるという問題がある。
 また、インペラのアキシアル方向への負の剛性値が動圧による正の剛性より大きい場合は安定回転ができないという問題も生じる。ラジアル方向を永久磁石による受動型磁気軸受で支持する場合は、ラジアル方向の剛性はアキシアル方向の負の剛性値によって決定される。よって、安定回転を実現するための条件ではラジアル方向の剛性を向上させることが難しく、インペラをハウジングに接触することなく回転させるためにはインペラ質量を増加させてはならない。
 特に、特許文献2の図39で示されるように、インペラを外部のモータコイルとインペラに配した永久磁石の磁気的相互作用で回転させる場合は、特許文献2の図3に示されるようなインペラを永久磁石間の磁気カップリングで回転駆動させる場合に比べて起動トルクが小さいので、インペラのスムーズな回転駆動が難しい。これは、本遠心式血液ポンプが、第1および第2の隔壁によって仕切られた第1~第3の室を含むハウジングに対し、第2の室(血液室)内に回転可能に設けられたインペラを、モータによって回転させるキャンドモータ構造となり、モータギャップが広いためである。よって起動トルクを発生させるために大きな電流を必要とする。モータ効率を改善することは起動時の電流低減や定格回転時の消費電力低減に必要であり、特にバッテリ駆動の場合には大変重要である。
 ここで、更なるモータの小型化を図る場合、可能な限りモータギャップを縮めトルク定数を上げる方法もある。しかし、本ポンプの構造で小型化を図る場合、モータギャップを縮めることによるアキシアル吸引力の増加と負の剛性値の増加は、インペラの安定回転を困難にする。さらにポンプの小型化によって動圧軸受面積が小さくなり、発生動圧力(正の剛性)は極めて小さくなるため、本ポンプ構造は小型化するほど、アキシアル方向の吸引力と負の剛性値とを下げなければならない。
 つまり、本ポンプを小型化する場合、必要なモータトルクを確保しつつ、かつアキシアル方向の吸引力と負の剛性値を下げることの両立が困難であった。
 それゆえに、この発明の主たる目的は、必要なモータトルクを確保し、アキシアル吸引力を下げることが可能な小型の遠心式ポンプを提供することである。
 この発明に係る遠心式ポンプは、隔壁で仕切られた第1および第2の室を含むハウジングと、第1の室内において隔壁に沿って回転可能に設けられ、回転時の遠心力によって液体を送るインペラと、第2の室内に設けられ、隔壁を介してインペラを回転駆動させる駆動部とを備えた遠心式ポンプ装置であって、インペラの一方面に設けられた第1の磁性体と、インペラの一方面に対向する第1の室の内壁に設けられ、第1の磁性体を吸引する第2の磁性体と、インペラの他方面に設けられてインペラの回転方向に配列され、駆動部によって吸引される複数の第3の磁性体とを備えたものである。駆動部は、複数の第3の磁性体に対向して設けられ、回転磁界を生成するための複数のコイルと、それぞれ複数のコイルに対応して設けられ、各々が対応のコイルに挿入された複数の第4の磁性体とを含み、インペラの中心軸方向において各第4の磁性体は対応のコイルよりも短い。インペラの回転中において、第1および第2の磁性体間の第1の吸引力と複数の第3の磁性体および複数の第4の磁性体間の第2の吸引力とは、第1の室内におけるインペラの可動範囲の略中央で釣り合う。インペラの一方面またはそれに対向する第1の室の内壁に第1の動圧溝が形成され、インペラの他方面またはそれに対向する隔壁に第2の動圧溝が形成されている。
 したがって、駆動部の第4の磁性体とインペラの第3の磁性体との磁気的結合によって得られる回転トルクと、第4の磁性体よりも突出したコイルと第3の磁性体との磁気的結合によって得られる回転トルクとにより、インペラを高速で回転させることができ、また、ポンプサイズを小型化しながら、必要な回転トルクを発生することができる。
 また、第4の磁性体をコイルよりも短くしたので、第3および第4の磁性体間のギャップを大きく設定し、第3および第4の磁性体間の吸引力を下げることができる。したがって、必要トルクを満足しつつ、アキシアル方向の吸引力および負の剛性を下げることができる。
 好ましくは、駆動部は、さらに、円板状の第5の磁性体を含む。複数のコイルは隔壁と第5の磁性体との間に設けられ、複数の第4の磁性体は第5の磁性体に接合されている。
 また好ましくは、各隣接する2つの第4の磁性体の互いに対向する面は略平行に設けられている。この場合は、コイル用の大きなスペースを確保することができ、コイルの巻数を大きくすることができる。また、コイルの径方向長さを大きくすることができるため、ローレンツ力を大きくすることができる。
 また好ましくは、各第4の磁性体は円柱状に形成されている。この場合は、コイル用の大きなスペースを確保することができ、コイルの巻数を大きくすることができる。したがって、モータコイルで発生する銅損を軽減することができ、インペラの回転駆動におけるエネルギ効率を高めることができる。
 また好ましくは、各第4の磁性体は、インペラの回転方向に積層された複数の鋼板を含む。この場合は、第4の磁性体内で発生する渦電流損失を軽減することができ、インペラの回転駆動におけるエネルギ効率を高めることができる。
 また好ましくは、各第4の磁性体は、インペラの径方向に積層された複数の鋼板を含む。この場合は、第4の磁性体内で発生する渦電流損失を軽減することができ、インペラの回転駆動におけるエネルギ効率を高めることができる。
 また好ましくは、各第4の磁性体は、純鉄、軟鉄または珪素鉄で形成されている。この場合は、第4の磁性体内の鉄損を軽減することができ、インペラの回転駆動におけるエネルギ効率を高めることができる。
 また好ましくは、各第4の磁性体は、純鉄、軟鉄または珪素鉄の粉末で形成されている。この場合は、第4の磁性体内の鉄損をさらに軽減することができ、インペラの回転駆動におけるエネルギ効率を高めることができる。
 また好ましくは、各第4の磁性体は、中心線の周りに複数回巻回された帯状の磁性鋼板を含む。この場合は、第4の磁性体内の鉄損を軽減することができ、インペラの回転駆動におけるエネルギ効率を高めることができる。
 また、この発明に係る他の遠心式ポンプは、隔壁で仕切られた第1および第2の室を含むハウジングと、第1の室内において隔壁に沿って回転可能に設けられ、回転時の遠心力によって液体を送るインペラと、第2の室内に設けられ、隔壁を介してインペラを回転駆動させる駆動部とを備えた遠心式ポンプ装置であって、インペラに設けられてインペラの回転方向に配列され、駆動部によって吸引される複数の第1の磁性体を備えたものである。駆動部は、複数の第1の磁性体に対向して設けられ、回転磁界を生成するための複数のコイルと、それぞれ複数のコイルに対応して設けられ、各々が対応のコイルに挿入された複数の第2の磁性体とを含み、インペラの中心軸方向において各第2の磁性体は対応のコイルよりも短い。インペラの一方面またはそれに対向する第1の室の内壁に第1の動圧溝が形成され、インペラの他方面またはそれに対向する隔壁に第2の動圧溝が形成されている。インペラの回転中において、第1の動圧溝によって発生する定格回転時の動圧力と複数の第1の磁性体および複数の第2の磁性体間の吸引力との和の力と、第2の動圧溝によって発生する定格回転時の動圧力とは、第1の室内におけるインペラの可動範囲の略中央で釣り合う。
 好ましくは、駆動部は、さらに、円板状の第3の磁性体を含む。複数のコイルは隔壁と第3の磁性体との間に設けられ、複数の第2の磁性体は第3の磁性体に接合されている。
 また好ましくは、インペラの外周面またはそれに対向する第1の室の内周面に第3の動圧溝が形成されている。
 また、この発明に係るさらに他の遠心式ポンプ装置は、第1および第2の隔壁とそれらの間の液体室を含むハウジングと、液体室内において第1および第2の隔壁に沿って回転可能に設けられ、回転時の遠心力によって液体を送るインペラと、液体室外に設けられ、それぞれ第1および第2の隔壁を介してインペラを回転駆動させる第1および第2の駆動部とを備えた遠心式ポンプ装置であって、インペラに設けられてインペラの回転方向に配列され、第1および第2の駆動部によって吸引される複数の第1の磁性体を備えたものである。第1および第2の駆動部の各々は、複数の第1の磁性体に対向して設けられ、回転磁界を生成するための複数のコイルと、それぞれ複数のコイルに対応して設けられ、各々が対応のコイルに挿入された複数の第2の磁性体とを含み、インペラの中心軸方向において各第2の磁性体は対応のコイルよりも短い。インペラの回転中において、複数の第1の磁性体および第1の駆動部の複数の第2の磁性体間の第1の吸引力と、複数の第1の磁性体および第2の駆動部の複数の第2の磁性体間の第2の吸引力とは、液体室内におけるインペラの可動範囲の略中央で釣り合う。インペラの一方面またはそれに対向する第1の隔壁に第1の動圧溝が形成され、インペラの他方面またはそれに対向する第2の隔壁に第2の動圧溝が形成されている。
 好ましくは、第1および第2の駆動部の各々は、さらに、円板状の第3の磁性体を含む。第1の駆動部の複数のコイルは、第1の隔壁と第1の駆動部の第3の磁性体との間に設けられる。第2の駆動部の複数のコイルは、第2の隔壁と第2の駆動部の第3の磁性体との間に設けられる。第1および第2の駆動部の各々において複数の第2の磁性体は第3の磁性体に接合されている。
 また好ましくは、インペラの外周面またはそれに対向する液体室の内周面に第3の動圧溝が形成されている。
 また好ましくは、液体は血液であり、遠心式ポンプ装置は血液を循環させるために使用される。この場合は、インペラがスムーズに回転起動し、インペラとハウジング間の距離が確保されるので、溶血の発生を防止することができる。
 以上のように、この発明によれば、ポンプサイズを小型にしても、インペラを高速で回転させることができ、インペラの回転起動力を大きくすることができる。また、インペラを回転駆動させるためのトルクを維持しながら、インペラに働くアキシアル方向の吸引力を抑えることができる。また、インペラの回転駆動におけるエネルギ効率を高めることができる。
この発明の実施の形態1による遠心式血液ポンプ装置のポンプ部の外観を示す正面図である。 図1に示したポンプ部の側面図である。 図2のIII-III線断面図である。 図3のIV-IV線断面図である。 図3のIV-IV線断面図からインペラを取り外した状態を示す断面図である。 図3のVI-VI線断面図からインペラを取り外した状態を示す断面図である。 図3のVII-VII線断面図である。 図7に示した磁性体およびコイルの構成を示す図である。 図8に示したx/Lと発生トルクおよびアキシアル吸引力との関係を示す図である。 図7に示した複数のコイルに印加する電圧を例示するタイムチャートである。 図3に示したインペラの浮上位置を説明するための図である。 図3に示したインペラの浮上位置を説明するための他の図である。 図1~図7に示したポンプ部を制御するコントローラの構成を示すブロック図である。 図13に示したコントローラの動作を示すタイムチャートである。 実施の形態1の変更例を示す図である。 実施の形態1の他の変更例を示すタイムチャートである。 実施の形態1のさらに他の変更例を示す図である。 実施の形態1のさらに他の変更例を示す図である。 実施の形態1のさらに他の変更例を示す図である。 実施の形態1のさらに他の変更例を示す図である。 実施の形態1のさらに他の変更例を示す図である。 実施の形態1のさらに他の変更例を示す図である。 実施の形態1のさらに他の変更例を示す図である。 実施の形態1のさらに他の変更例を示す図である。 実施の形態1のさらに他の変更例を示す図である。 実施の形態1のさらに他の変更例を示す図である。 図26に示した永久磁石17,42の極性を示す図である。 この発明の実施の形態2による遠心式血液ポンプ装置の動圧溝を示す図である。 図28に示した遠心式血液ポンプ装置の他の動圧溝を示す図である。 図28に示した動圧溝51,52の深さを示す断面図である。 インペラの浮上位置と図30に示した動圧溝51によって発生する動圧力との関係を示す図である。 インペラの浮上位置と図30に示した動圧溝52によって発生する動圧力との関係を示す図である。 図31と図32を合成した図である。 動圧溝52,51(または動圧溝54,53)の深さの比と動圧力との関係を示す図である。 動圧溝52の幅と動圧溝51の間隔(または動圧溝54の幅と動圧溝53の間隔)との比と動圧力との関係を示す図である。 この発明の実施の形態3による遠心式血液ポンプ装置の動圧溝を示す図である。 図36に示した永久磁石の構成を示す図である。 この発明の実施の形態4による遠心式血液ポンプ装置の構成を示す断面図である。 図36に示した動圧溝の構成を例示する図である。 実施の形態4の変更例を示す図である。 実施の形態4の他の変更例を示す図である。 実施の形態4のさらに他の変更例を示す図である。 実施の形態4のさらに他の変更例を示す図である。 実施の形態4のさらに他の変更例を示す図である。
 [実施の形態1]
 図1~図7において、この遠心式血液ポンプ装置のポンプ部1は、非磁性材料で形成されたハウジング2を備える。ハウジング2は、円柱状の本体部3と、本体部3の一方の端面の中央に立設された円筒状の血液流入ポート4と、本体部3の外周面に設けられた円筒状の血液流出ポート5とを含む。血液流出ポート5は、本体部3の外周面の接線方向に延在している。
 ハウジング2内には、図3に示すように、隔壁6によって仕切られた血液室7およびモータ室8が設けられている。血液室7内には、図3および図4に示すように、中央に貫通孔10aを有する円板状のインペラ10が回転可能に設けられている。インペラ10は、ドーナツ板状の2枚のシュラウド11,12と、2枚のシュラウド11,12間に形成された複数(たとえば6つ)のベーン13とを含む。シュラウド11は血液流入ポート4側に配置され、シュラウド12は隔壁6側に配置される。シュラウド11,12およびベーン13は、非磁性材料で形成されている。
 2枚のシュラウド11,12の間には、複数のベーン13で仕切られた複数(この場合は6つ)の血液通路14が形成されている。血液通路14は、図4に示すように、インペラ10の中央の貫通孔10aと連通しており、インペラ10の貫通孔10aを始端とし、外周縁まで徐々に幅が広がるように延びている。換言すれば、隣接する2つの血液通路14間にベーン13が形成されている。なお、この実施の形態1では、複数のベーン13は等角度間隔で設けられ、かつ同じ形状に形成されている。したがって、複数の血液通路14は等角度間隔で設けられ、かつ同じ形状に形成されている。
 インペラ10が回転駆動されると、血液流入ポート4から流入した血液は、遠心力によって貫通孔10aから血液通路14を介してインペラ10の外周部に送られ、血液流出ポート5から流出する。
 また、シュラウド11には永久磁石15が埋設されており、シュラウド11に対向する血液室7の内壁には、永久磁石15を吸引する永久磁石16が埋設されている。永久磁石15,16は、インペラ10をモータ室8と反対側、換言すれば血液流入ポート4側に吸引(換言すれば、付勢)するために設けられている。
 なお、シュラウド11および血液室7の内壁にそれぞれ永久磁石15,16を設ける代わりに、シュラウド11および血液室7の内壁の一方に永久磁石を設け、他方に磁性体を設けてもよい。また、シュラウド11自体を永久磁石15または磁性体で形成してもよい。また、磁性体としては軟質磁性体と硬質磁性体のいずれを使用してもよい。
 また、永久磁石16は、1つでもよいし、複数でもよい。永久磁石16が1つの場合は、永久磁石16はリング状に形成される。また、永久磁石16が複数の場合は、複数の永久磁石16は等角度間隔で同一の円に沿って配置される。永久磁石15も、永久磁石16と同様であり、1つでもよいし、複数でもよい。
 また、図4に示すように、シュラウド12には複数(たとえば9個)の永久磁石17が埋設されている。複数の永久磁石17は、隣接する磁極が互いに異なるようにして、等角度間隔で同一の円に沿って隙間を設けて配置される。換言すれば、モータ室8側にN極を向けた永久磁石17と、モータ室8側にS極を向けた永久磁石17とが等角度間隔で隙間を設けて同一の円に沿って交互に配置されている。
 また、図3および図7に示すように、モータ室8内には、複数(たとえば9個)の磁性体18が設けられている。複数の磁性体18は、インペラ10の複数の永久磁石17に対向して、等角度間隔で同一の円に沿って配置される。複数の磁性体18の基端は、円板状の1つの磁性体19に接合されている。各磁性体18には、コイル20が巻回されている。インペラ10の中心軸方向において、磁性体18の長さはコイル20よりも短い。すなわち図8に示すように、円板状の磁性体19の表面を基準として磁性体18の軸方向長さをxとし、コイル20の軸方向長さをLとすると、0<x<Lの関係を満たしている。
 また図9の横軸はコイル20の高さLに対する磁性体18の高さxの比率x/Lを示し、左側の縦軸は発生トルク(Nm)を示し、右側の縦軸はアキシアル吸引力(N)を示している。図9から分かるように、x/Lを0から1まで増加させると、発生トルクとアキシアル吸引力は両方とも指数関数的に増加する。発生トルクの増加率はアキシアル吸引力の増加率よりも小さい。図9では、x/Lの値がある範囲内にある場合は、発生トルクの変化量に比べて、アキシアル吸引力の変化量の方が大きいことが示されている。つまり、遠心式血液ポンプ装置では、必要となるトルクを満足しつつ、アキシアル吸引力を低くすることが重要であるが、x/LおよびLを最適値に設定することにより、その条件を満たすことができる。これにより、遠心式血液ポンプ装置において高効率とインペラの安定回転との両立が可能となる。
 図7に戻って、複数の磁性体18の周囲にはコイル20を巻回するためのスペースが均等に確保され、各隣接する2つの磁性体18の互いに対向する面は略平行に設けられている。このため、コイル20用の大きなスペースを確保することができ、コイル20の巻数を大きくすることができる。したがって、インペラ10を回転駆動させるための大きなトルクを発生することができる。また、コイル20で発生する銅損を軽減することができ、インペラ10の回転駆動におけるエネルギ効率を高めることができる。また、複数の磁性体18は円柱形状でもよい。この場合、コイル20の周方向長さを最小にすることができ、コイル20で発生する銅損を軽減することができ、インペラ10の回転駆動におけるエネルギ効率を高めることができる。
 なお、複数の磁性体18を囲む外形面(図7では、複数の磁性体18の外周を囲む円)は、複数の永久磁石17を囲む外形面(図4では、複数の磁性体18の外周を囲む円)に一致していてもよいし、複数の磁性体18を囲む外形面が複数の永久磁石17を囲む外形面よりも大きくてもよい。また、磁性体18は、ポンプ1の最大定格(インペラ10の回転駆動トルクが最大の条件)において、磁気的な飽和がないように設計することが好ましい。
 9個のコイル20には、たとえば120度通電方式で電圧が印加される。すなわち、9個のコイル20は、3個ずつグループ化される。各グループの第1~第3のコイル20には、図10に示すような電圧VU,VV,VWが印加される。第1のコイル20には、0~120度の期間に正電圧が印加され、120~180度の期間に0Vが印加され、180~300度の期間に負電圧が印加され、300~360度の期間に0Vが印加される。したがって、第1のコイル20が巻回された磁性体18の先端面(インペラ10側の端面)は、0~120度の期間にN極になり、180~300度の期間にS極になる。電圧VVの位相は電圧VUよりも120度遅れており、電圧VWの位相は電圧VVよりも120度遅れている。したがって、第1~第3のコイル20にそれぞれ電圧VU,VV,VWを印加することにより、回転磁界を形成することができ、複数の磁性体18とインペラ10の複数の永久磁石17との吸引力および反発力により、インペラ10を回転させることができる。
 ここで、インペラ10が定格回転数で回転している場合は、永久磁石15,16間の吸引力と複数の永久磁石17および複数の磁性体18間の吸引力とは、血液室7内におけるインペラ10の可動範囲の略中央付近で釣り合うようにされている。このため、インペラ10のいかなる可動範囲においてもインペラ10への吸引力による作用力は非常に小さい。その結果、インペラ10の回転起動時に発生するインペラ10とハウジング2との相対すべり時の摩擦抵抗を小さくすることができる。また、相対すべり時におけるインペラ10とハウジング2の内壁の表面の損傷(表面の凹凸)はなく、さらに低速回転時の動圧力が小さい場合にもインペラ10はハウジング2から浮上し易くなり、非接触の状態となる。したがって、インペラ10とハウジング2との相対すべりによって溶血・血栓が発生したり、相対すべり時に発生したわずかな表面損傷(凹凸)によって血栓が発生することもない。
 また、インペラ10のシュラウド12に対向する隔壁6の表面には複数の動圧溝21が形成され、シュラウド11に対向する血液室7の内壁には複数の動圧溝22が形成されている。インペラ10の回転数が所定の回転数を超えると、動圧溝21,22の各々とインペラ10との間に動圧軸受効果が発生する。これにより、動圧溝21,22の各々からインペラ10に対して抗力が発生し、インペラ10は血液室7内で非接触状態で回転する。
 詳しく説明すると、複数の動圧溝21は、図5に示すように、インペラ10のシュラウド12に対応する大きさに形成されている。各動圧溝21は、隔壁6の中心から若干離間した円形部分の周縁(円周)上に一端を有し、渦状に(換言すれば、湾曲して)隔壁6の外縁付近まで、幅が徐々に広がるように延びている。また、複数の動圧溝21は略同じ形状であり、かつ略同じ間隔に配置されている。動圧溝21は凹部であり、動圧溝21の深さは0.005~0.4mm程度であることが好ましい。動圧溝21の数は、6~36個程度であることが好ましい。
 図5では、10個の動圧溝21がインペラ10の中心軸に対して等角度で配置されている。動圧溝21は、いわゆる内向スパイラル溝形状となっているので、インペラ10が時計方向に回転すると、動圧溝21の外径部から内径部に向けて液体の圧力が高くなる。このため、インペラ10と隔壁6の間に反発力が発生し、これが動圧力となる。
 なお、動圧溝21を隔壁6に設ける代わりに、動圧溝21をインペラ10のシュラウド12の表面に設けてもよい。
 このように、インペラ10と複数の動圧溝21の間に形成される動圧軸受効果により、インペラ10は隔壁6から離れ、非接触状態で回転する。このため、インペラ10と隔壁6の間に血液流路が確保され、両者間での血液滞留およびそれに起因する血栓の発生が防止される。さらに、通常状態において、動圧溝21が、インペラ10と隔壁6の間において撹拌作用を発揮するので、両者間における部分的な血液滞留の発生を防止することができる。
 また、動圧溝21の角の部分は、少なくとも0.05mm以上のRを持つように丸められていることが好ましい。これにより、溶血の発生をより少なくすることができる。
 また、複数の動圧溝22は、図6に示すように、複数の動圧溝21と同様、インペラ10のシュラウド11に対応する大きさに形成されている。各動圧溝22は、血液室7の内壁の中心から若干離間した円形部分の周縁(円周)上に一端を有し、渦状に(換言すれば、湾曲して)血液室7の内壁の外縁付近まで、幅が徐々に広がるように延びている。また、複数の動圧溝22は、略同じ形状であり、かつ略同じ間隔で配置されている。動圧溝22は凹部であり、動圧溝22の深さは0.005~0.4mm程度があることが好ましい。動圧溝22の数は、6~36個程度であることが好ましい。図6では、10個の動圧溝22がインペラ10の中心軸に対して等角度に配置されている。
 なお、動圧溝22は、血液室7の内壁側ではなく、インペラ10のシュラウド11の表面に設けてもよい。また、動圧溝22の角となる部分は、少なくとも0.05mm以上のRを持つように丸められていることが好ましい。これにより、溶血の発生をより少なくすることができる。
 このように、インペラ10と複数の動圧溝22の間に形成される動圧軸受効果により、インペラ10は血液室7の内壁から離れ、非接触状態で回転する。また、ポンプ部1が外的衝撃を受けたときや、動圧溝21による動圧力が過剰となったときに、インペラ10の血液室7の内壁への密着を防止することができる。動圧溝21によって発生する動圧力と動圧溝22によって発生する動圧力は異なるものとなっていてもよい。
 インペラ10のシュラウド12と隔壁6との隙間と、インペラ10のシュラウド11と血液室7の内壁との隙間とが略同じ状態でインペラ10が回転することが好ましい。インペラ10に作用する流体力などの外乱が大きく、一方の隙間が狭くなる場合には、その狭くなる側の動圧溝による動圧力を他方の動圧溝による動圧力よりも大きくし、両隙間を略同じにするため、動圧溝21と22の形状を異ならせることが好ましい。
 なお、図5および図6では、動圧溝21,22の各々を内向スパイラル溝形状としたが、他の形状の動圧溝21,22を使用することも可能である。ただし、血液を循環させる場合は、血液をスムーズに流すことが可能な内向スパイラル溝形状の動圧溝21,22を採用することが好ましい。
 図11は、永久磁石15,16間の吸引力F1と永久磁石17および磁性体18間の吸引力F2との合力の大きさが、インペラ10の血液室7内の可動範囲の中央位置以外の位置P1でゼロとなるように調整した場合にインペラ10に作用する力を示す図である。ただし、インペラ10の回転数は定格値に保たれている。
 すなわち、永久磁石15,16間の吸引力F1が永久磁石17および磁性体18間の吸引力F2よりも小さく設定され、それらの合力がゼロとなるインペラ10の浮上位置はインペラ可動範囲の中間よりも隔壁6側にあるものとする。動圧溝21,22の形状は同じである。
 図11の横軸はインペラ10の位置(図中の左側が隔壁6側)を示し、縦軸はインペラ10に対する作用力を示している。インペラ10への作用力が隔壁6側に働くとき、その作用力をマイナスとしている。インペラ10に対する作用力としては、永久磁石15,16間の吸引力F1と、永久磁石17および磁性体18間の吸引力F2と、動圧溝21の動圧力F3と、動圧溝22の動圧力F4と、それらの合力である「インペラに作用する正味の力F5」を示した。
 図11から分かるように、インペラ10に作用する正味の力F5がゼロとなる位置で、インペラ10の浮上位置はインペラ10の可動範囲の中央位置から大きくずれている。その結果、回転中のインペラ10と隔壁6の間の距離は狭まり、インペラ10に対して小さな外乱力が作用してもインペラ10は隔壁6に接触してしまう。
 これに対して図12は、永久磁石15,16間の吸引力F1と永久磁石17および磁性体18間の吸引力F2との合力の大きさが、インペラ10の血液室7内の可動範囲の中央位置P0でゼロとなるように調整した場合にインペラ10に作用する力を示す図である。この場合も、インペラ10の回転数は定格値に保たれている。
 すなわち、永久磁石15,16間の吸引力F1と永久磁石17および磁性体18間の吸引力F2とは略同じに設定されている。また、動圧溝21,22の形状は同じにされている。この場合は、図11の場合と比較して、インペラ10の浮上位置に対する支持剛性が高くなる。また、インペラ10に作用する正味の力F5は可動範囲の中央でゼロとなっているので、インペラ10に対し外乱力が作用しない場合にはインペラ10は中央位置で浮上する。
 このように、インペラ10の浮上位置は、永久磁石15,16間の吸引力F1と、永久磁石17および磁性体18間の吸引力F2と、インペラ10の回転時に動圧溝21,22で発生する動圧力F3,F4との釣り合いで決まる。F1とF2を略同じにし、動圧溝21,22の形状を同じにすることにより、インペラ10の回転時にインペラ10を血液室7の略中央部で浮上させることが可能となる。図3および図4に示すように、インペラ10は2つのディスク間に羽根を形成した形状を有するので、ハウジング2の内壁に対向する2つの面を同一形状および同一寸法にすることができる。したがって、略同一の動圧性能を有する動圧溝21,22をインペラ10の両側に設けることは可能である。
 この場合、インペラ10は血液室7の中央位置で浮上するので、インペラ10はハウジング2の内壁から最も離れた位置に保持される。その結果、インペラ10の浮上時にインペラ10に外乱力が印加されて、インペラ10の浮上位置が変化しても、インペラ10とハウジング2の内壁とが接触する可能性が小さくなり、それらの接触によって血栓や溶血が発生する可能性も低くなる。
 なお、図11および図12の例では、2つの動圧溝21,22の形状は同じであるとしたが、動圧溝21,22の形状を異なるものとし、動圧溝21,22の動圧性能を異なるものとしてもよい。たとえば、ポンピングの際に流体力などによってインペラ10に対して常に一方方向の外乱が作用する場合には、その外乱の方向にある動圧溝の性能を他方の動圧溝の性能より高めておくことにより、インペラ10をハウジング2の中央位置で浮上回転させることが可能となる。この結果、インペラ10とハウジング2との接触確率を低く抑えることができ、インペラ10の安定した浮上性能を得ることができる。
 また、永久磁石15,16間の吸引力F1と、永久磁石17および磁性体18間の吸引力F2とによって構成されるインペラ10のアキシアル方向への負の支持剛性値の絶対値をKaとし、ラジアル方向の正の剛性値の絶対値をKrとし、インペラ10が回転する常用回転数領域において2つの動圧溝21,22で得られる正の剛性値の絶対値をKgとすると、Kg>Ka+Krの関係を満たすことが好ましい。
 具体的には、アキシアル方向の負の剛性値の絶対値Kaを20000N/mとし、ラジアル方向の正の剛性値の絶対値Krを10000N/mとした場合、インペラ10が通常回転する回転数領域で2つの動圧溝21,22によって得られる正の剛性値の絶対値Kgは30000N/mを超える値に設定される。
 インペラ10のアキシアル支持剛性は動圧溝21,22で発生する動圧力に起因する剛性から磁性体間の吸引力などによる負の剛性を引いた値であるから、Kg>Ka+Krの関係を持つことで、インペラ10のラジアル方向の支持剛性よりもアキシアル方向の支持剛性を高めることができる。このように設定することにより、インペラ10に対して外乱力が作用した場合に、インペラ10のラジアル方向への動きよりもアキシアル方向への動きを抑制することができ、動圧溝21の形成部でのインペラ10とハウジング2との機械的な接触を避けることができる。
 特に、動圧溝21,22は、図5および図6で示したように平面に凹設されているので、インペラ10の回転中にこの部分でハウジング2とインペラ10との機械的接触があると、インペラ10およびハウジング2の内壁のいずれか一方または両方の表面に傷(表面の凹凸)が生じてしまい、この部位を血液が通過すると、血栓及び溶血の原因となる可能性もあった。この動圧溝21,22での機械的接触を防ぎ、血栓及び溶血を抑制するために、ラジアル方向の剛性よりもアキシアル方向の剛性を高める効果は高い。
 また、インペラ10にアンバランスがあると回転時にインペラ10に振れ回りが生ずるが、この振れ回りはインペラ10の質量とインペラ10の支持剛性値で決定される固有振動数とインペラ10の回転数が一致した場合に最大となる。
 このポンプ部1では、インペラ10のアキシアル方向の支持剛性よりもラジアル方向の支持剛性を小さくしているので、インペラ10の最高回転数をラジアル方向の固有振動数以下に設定することが好ましい。そこで、インペラ10とハウジング2との機械的接触を防ぐため、永久磁石15,16間の吸引力F1と永久磁石17および磁性体18間の吸引力F2によって構成されるインペラ10のラジアル剛性値をKr(N/m)とし、インペラ10の質量をm(kg)とし、インペラの回転数をω(rad/s)とした場合、ω<(Kr/m)0.5の関係を満たすことが好ましい。
 具体的には、インペラ10の質量が0.03kgであり、ラジアル剛性値が2000N/mである場合、インペラ10の最高回転数は258rad/s(2465rpm)以下に設定される。逆に、インペラ10の最高回転数を366rad/s(3500rpm)と設定した場合には、ラジアル剛性は4018N/m以上に設定される。
 さらに、このωの80%以下にインペラ10の最高回転数を設定することが好ましい。具体的には、インペラ10の質量が0.03kgであり、ラジアル剛性値が2000N/mである場合には、その最高回転数は206.4rad/s(1971rpm)以下に設定される。逆に、インペラ10の最高回転数を366rad/s(3500rpm)としたい場合には、ラジアル剛性値が6279N/m以上に設定される。このようにインペラ10の最高回転数を設定することで、インペラ10の回転中におけるインペラ10とハウジング2の接触を抑えることができる。
 また、永久磁石15,16間の吸引力F1と、永久磁石17および磁性体18間の吸引力F2とによって構成されるインペラ10のアキシアル方向の負の剛性値よりも動圧溝21,22の動圧力による剛性が大きくなった場合にインペラ10とハウジング2は非接触の状態となる。したがって、この負の剛性値を極力小さくすることが好ましい。そこで、この負の剛性値を小さく抑えるため、永久磁石15,16の対向面のサイズを異ならせることが好ましい。たとえば、永久磁石16のサイズを永久磁石15よりも小さくすることにより、両者間の距離によって変化する吸引力の変化割合、すなわち負の剛性を小さく抑えることができ、インペラ支持剛性の低下を防ぐことができる。
 また、インペラ10の回転起動前に、インペラ10が隔壁6に接触していることを確認してから、インペラ10を回転起動させることが好ましい。
 すなわち、インペラ10の非回転時では、動圧溝21,22による非接触支持はされず、さらに、永久磁石15,16間の吸引力F1と、永久磁石17および磁性体18間の吸引力F2によってインペラ10とハウジング2とは高い面圧で接触している。また、このポンプ部1のように、インペラ10をモータ室8内のコイル20および磁性体18とインペラ10の永久磁石17との磁気的相互作用で回転させる場合は、特許文献2の図3に示すようなインペラを永久磁石間の磁気カップリングで回転駆動させる場合に比べて、起動トルクが小さい。したがって、インペラ10をスムーズに回転起動させることは難しい。
 しかし、インペラ10のシュラウド12が隔壁6と接触している場合は、インペラ10のシュラウド11が血液室7の内壁に接触している場合に比べ、インペラ10の永久磁石17とモータ室8内の磁性体18とが近接しているので、インペラ10の起動時の回転トルクを高めることができ、インペラ10をスムーズに回転起動させることができる。
 ところが、上述の通り、インペラ10の回転時には、永久磁石15,16間の吸引力F1と、永久磁石17および磁性体18間の吸引力F2とは、インペラ10の位置がインペラ10の可動範囲の中央付近にて釣り合うように設定されているので、インペラ10の停止時にインペラ10が必ずしも隔壁6に接触しているとは限らない。
 そこで、この遠心式血液ポンプ装置では、インペラ10を回転起動させる前にインペラ10を隔壁6側に移動させる手段が設けられる。具体的には、永久磁石17および磁性体18間の吸引力F2が大きくなるように複数のコイル20に電流を流し、インペラ10を隔壁6側に移動させる。
 図13は、ポンプ部1を制御するコントローラ25の構成を示すブロック図である。図13において、コントローラ25は、モータ制御回路26およびパワーアンプ27を含む。モータ制御回路26は、たとえば120度通電方式の3相の制御信号を出力する。パワーアンプ27は、モータ制御回路26からの3相の制御信号を増幅して、図10で示した3相電圧VU,VV,VWを生成する。3相電圧VU,VV,VWは、図7および図10で説明した第1~第3のコイル20にそれぞれ印加される。通常の運転時は、これにより、インペラ10が可動範囲の中央位置で所定の回転数で回転する。
 図14(a)~(c)は、インペラ10の回転起動時におけるコイル電流I、インペラ10の位置、およびインペラ10の回転数の時間変化を示すタイムチャートである。図14(a)~(c)において、初期状態では、インペラ10のシュラウド11が血液室7の内壁に接触しており、インペラ10は位置PAにあるものとする。時刻t0において、予め定められた電流I0がコイル20に流される。これにより、永久磁石17および磁性体18間の吸引力F2が永久磁石15,16間の吸引力F1よりも大きくなり、インペラ10は隔壁6側の位置PBに移動し、インペラ10のシュラウド12は隔壁6に接触する。インペラ10が位置PBに移動したら、電流I0を遮断する(時刻t1)。インペラ10の血液室7内の位置を検出するセンサを設け、インペラ10が隔壁6に接触したことを確認した後に、電流I0を遮断することが好ましい。
 次に、コイル電流Iを予め定められた定格値まで徐々に上昇させる。このとき、インペラ10は隔壁6に接触しているので、インペラ10はスムーズに回転する。コイル電流Iの上昇に伴って、インペラ10は隔壁6側の位置PBから可動範囲の中央位置に移動する。
 以上のように、この実施の形態1では、磁性体18をコイル20よりも短くしたので、必要となるトルクを満足しつつ、アキシアル吸引力を低くすることができる。したがって、効率の向上とインペラの安定回転との両立が可能となる。
 以下、この実施の形態1の種々の変更例について説明する。図15は、この実施の形態1の変更例を示すブロック図である。インペラ回転起動時とそれ以外の場合の電源供給を切り替える構成の一例を示している。図15において、この変更例では、図13のパワーアンプ27がパワーアンプ30,31および切換スイッチ32で置換される。図14の時刻t0~t1では、モータ制御回路26の出力信号がパワーアンプ30に与えられ、パワーアンプ30の出力電圧が切換スイッチ32を介してコイル20に印加され、コイル20に電流I0が流される。時刻t2以降は、モータ制御回路26の出力信号がパワーアンプ31に与えられ、パワーアンプ31の出力電圧が切換スイッチ32を介してコイル20に印加され、コイル20に電流が流される。
 また、図16(a)~(c)は、この実施の形態1の他の変更例を示すタイムチャートである。図16(a)~(c)において、初期状態では、インペラ10のシュラウド11が血液室7の内壁に接触しており、インペラ10は位置PAにあるものとする。時刻t0において、予め定められた電流I1がコイル20に流される。モータ制御回路26により、たとえば120度通電方式の3相の制御信号を出力する。パワーアンプ27は、モータ制御回路26からの3相の制御信号を増幅して、図10で示した3相電圧VU,VV,VWを生成する。3相電圧VU,VV,VWは、図7で説明した第1~第3のコイル20にそれぞれ印加される。よって、この電流I1によってインペラ10に回転磁界が印加される。この電流I1は、図14の電流I0よりも大きい電流であり、インペラ10のシュラウド11が血液室7の内壁に接触している場合でもインペラ10を回転起動させることが可能な電流である。回転起動が確認された後、コイル電流Iを低下させ、予め定められた定格値まで徐々に上昇させる。このようにインペラ10が位置PA側にあった場合でも、インペラ10の回転起動時のみにコイル20に過大電流を流すように構成してもよい。
 また、血液室7の内壁の表面および隔壁6の表面と、インペラ10の表面との少なくとも一方にダイヤモンドライクカーボン(DLC)膜を形成してもよい。これにより、インペラ10と血液室7の内壁および隔壁6との摩擦力を軽減し、インペラをスムーズに回転起動することが可能になる。また、ダイヤモンドライクカーボン膜以外に、フッ素系樹脂膜、パラキシリレン系樹脂膜などを形成してもよい。
 また、図17は、この実施の形態1のさらに他の変更例を示す断面図であって、図3と対比される図である。図17において、この変更例では、対向する永久磁石15,16の対向面のサイズが異なる。図3では、永久磁石15,16の対向面のサイズが同じである場合が示されているが、永久磁石15,16の対向面のサイズを異ならせることにより、両者間の距離によって変化する吸引力の変化量、すなわち負の剛性を小さく抑えることができ、インペラ10の支持剛性の低下を防ぐことができる。
 また、図18は、この実施の形態1のさらに他の変更例を示す断面図であって、図17と対比される図である。図18において、この変更例では、継鉄19が継鉄36で置換され、磁性体18が磁性体37で置換される。継鉄36および磁性体37の各々は、インペラ10の回転軸の長さ方向に積層された複数の鋼板を含む。この変更例では、継鉄36および磁性体37で発生する渦電流損失を軽減することができ、インペラ10の回転駆動におけるエネルギ効率を高めることができる。
 また、図19に示すように、インペラ10の回転方向に積層された複数の鋼板を含む磁性体38で磁性体37を置換してもよい。また、図20に示すように、インペラ10の径方向に積層された複数の鋼板を含む磁性体39で磁性体37を置換してもよい。これらの場合でも、図18の変更例と同じ効果が得られる。
 また、図3の継鉄19および磁性体18の各々を、純鉄、軟鉄、または珪素鉄の粉末によって形成してもよい。この場合は、継鉄19および磁性体18の鉄損を軽減することができ、インペラ10の回転駆動におけるエネルギ効率を高めることができる。
 また、図21の変更例では、各磁性体18は、隔壁6に垂直な中心線L1の周りに複数回巻回された帯状の薄い磁性鋼板18aを含む。帯状の磁性鋼板18aは長さ方向に巻回されており、その幅方向は隔壁6に垂直な方向に向けられている。磁性鋼板18aは、無方向性または方向性の磁気特性を持つ電磁鋼板であってもよいし、アモルファス金属あるいはアモルファス合金で形成されていてもよい。また、磁性鋼板18aの巻き終わりの端部を磁性鋼板18a自体に溶接することによって巻回された磁性鋼板18aを所定の形状に固定してもよいし、磁性鋼板18a全体を樹脂に含浸させ、樹脂を硬化させることによって巻回された磁性鋼板18aを所定の形状に固定してもよい。
 このように、巻回された帯状の薄い磁性鋼板18aによって磁性体18を形成することにより、磁性体18内の鉄損を低減するとともに、磁性体18内の磁束の透磁率を高めることができ、インペラ10の回転駆動におけるエネルギ効率を高めることができる。また、磁性体18を簡単に形成できるので、装置の小型化、低コスト化、生産性の向上を図ることができる。
 磁性鋼板18aは、円柱状に巻回してもよいし、三角柱のような角柱状に巻回してもよい。図21では、磁性鋼板18aを中心線L1の周りに円柱状に巻回した状態が示されている。円柱状に形成された磁性体18(すなわち円柱状に巻回された磁性鋼板18a)の円形の端面は、隔壁6を介してインペラ10に対向して配置される。コイル20は、円柱状の磁性体18の外周面(側面)全体を覆うように巻回される。磁性鋼板18aを円柱状に巻回した場合、コイル20の周方向長さを最小にすることができ、コイル20で発生する銅損を軽減することができ、インペラ10の回転駆動におけるエネルギ効率を高めることができる。
 また、磁性鋼板18aを中心線L1の周りに三角柱のような角柱状に巻回することも可能である。三角柱状に形成された磁性体18(すなわち三角柱状に巻回された磁性鋼板18a)の三角形の端面は、隔壁6を介してインペラ10に対向して配置される。コイル20は、三角柱状の磁性体18の側面全体を覆うように巻回される。また、複数の磁性体18の周囲にはコイル20を巻回するためのスペースが均等に確保され、各隣接する2つの磁性体18の互いに対向する面は略平行に設けられている。このため、コイル20用の大きなスペースを確保することができ、コイル20の巻数を大きくすることができる。したがって、インペラ10を回転駆動させるための大きなトルクを発生することができる。また、コイル20で発生する銅損を軽減することができ、インペラ10の回転駆動におけるエネルギ効率を高めることができる。なお、磁性体18は、ポンプ1の最大定格(インペラ10の回転駆動トルクが最大の条件)において、磁気的な飽和がないように設計することが好ましい。
 また、図22は、この実施の形態1のさらに他の変更例を示す断面図であって、図21と対比される図である。図22において、この変更例では、磁性体18の内周面から外周面にかけて切り欠き部40が形成されている。すなわち、磁性鋼板18aは、中心線L1の周りに複数回巻回されて同心状に配置された複数の筒部材を構成している。切り欠き部40は、中心線L1の一方側(図22では右側)において複数の筒部材の各々を中心線L1と平行な方向に切断している。この変更例では、切り欠き部40を設けたので、磁性体18の鉄損を軽減することができる。
 また、図23は、この実施の形態1のさらに他の変更例を示す断面図であって、図21と対比される図である。図23において、この変更例では、磁性体18では、軟磁性体である棒状の磁性体41が芯材として使用される。磁性鋼板18aは、磁性体41の周りに複数回巻回されている。磁性鋼板18aの一方端を磁性体41に溶接し、磁性鋼板18aの他方端を磁性鋼板18a自体に溶接することにより、磁性鋼板18aを所定形状に固定することができる。また、磁性体41および磁性鋼板18a全体を樹脂に含浸させ、樹脂を硬化させて所定の形状に固定してもよい。
 また、図24は、この実施の形態1のさらに他の変更例を示す図である。図24において、この変更例では、各磁性体18は磁性体41および磁性鋼板18aを含む。棒状の磁性体41の長さは、磁性鋼板18aの幅よりも長い。磁性鋼板18aは磁性体41の上端部に巻回されており、磁性体41の下端部は、円柱状に巻回された磁性鋼板18aから突出している。
 円板状の磁性体19には、各磁性体18に対応して設けられた孔19aが形成されている。磁性体41の下端部は、磁性体19の孔19aに挿嵌される。磁性体41は、孔19aに接着、圧入、あるいは焼きばめによって固定される。円筒状のコイル20の内周部は、磁性体18の外周部に嵌め込まれる。この変更例では、位置決め治具等を用いることなく、磁性体18の組立、磁性体19への固定を容易に行なうことができ、作業性が良好となる。
 また、図25に示すように、磁性体18と同様に、帯状の磁性鋼板19aを中心線L2の周りに複数回巻回して磁性体19を形成してもよい。この場合は、磁性体19の磁性体内の鉄損を軽減することができ、インペラ10の回転駆動におけるエネルギ効率を高めることができる。無方向性または方向性の磁気特性を持つ磁性鋼板19aを用いれば、磁性体19内の磁束の透磁率を高めることができ、インペラ10の回転駆動におけるエネルギ効率を高めることができる。
 また、図26の変更例では、シュラウド12に複数の永久磁石17と複数の永久磁石42とが埋設されている。永久磁石42の数は、永久磁石17の数と同じである。永久磁石42は、円周方向(インペラ10の回転方向)に着磁されている。複数の永久磁石17と複数の永久磁石42とは、1つずつ交互に等角度間隔で同一の円に沿ってハルバッハ配列構造で配置されている。
 換言すると、図27に示すように、隔壁6側にN極を向けた永久磁石17と、隔壁6側にS極を向けた永久磁石17とが等角度間隔で隙間を設けて同一の円に沿って交互に配置されている。各永久磁石42のN極は隔壁6側にN極を向けた永久磁石17に向けて配置され、各永久磁石42のS極は隔壁6側にS極を向けた永久磁石17に向けて配置される。複数の永久磁石17同士の形状は同じであり、複数の永久磁石42同士の形状は同じである。永久磁石17の形状と永久磁石42の形状は、同じでもよいし、異なっていてもよい。
 この変更例では、永久磁石17と磁性体18との吸引力を抑制するとともに、トルクの起因となる磁束を強めることができるので、最も永久磁石を小型化することができる。つまり、インペラ10を最も軽量化することができ、かつモータギャップが広い場合でもエネルギ効率を高めることができる。
 [実施の形態2]
 図28および図29は、この発明の実施の形態2による遠心式血液ポンプ装置の要部を示す図であって、それぞれ図5および図6と対比される図である。図28および図29において、インペラ10のシュラウド12に対向する隔壁6の表面には複数の動圧溝51および複数の動圧溝52が形成され、シュラウド11に対向する血液室7の内壁には複数の動圧溝53および複数の動圧溝54が形成されている。インペラ10の回転数が所定の回転数を超えると、動圧溝51~54の各々とインペラ10との間に動圧軸受効果が発生する。これにより、動圧溝51~54の各々からインペラ10に対して抗力が発生し、インペラ10は血液室7内で非接触状態で回転する。
 詳しく説明すると、複数の動圧溝51および複数の動圧溝52は、図28に示すように、インペラ10のシュラウド12に対応する大きさに形成されている。複数の動圧溝51および複数の動圧溝52は、インペラ10の回転方向に1つずつ交互に配置されている。動圧溝51,52の各々は、隔壁6の中心から若干離間した円形部分の周縁(円周)上に一端を有し、渦状に(換言すれば、湾曲して)隔壁6の外縁付近まで、幅が徐々に広がるように延びている。複数の動圧溝51は略同じ形状であり、かつインペラ10の回転方向に等角度間隔に配置されている。動圧溝51は凹部であり、動圧溝51の深さは0.005~0.4mm程度であることが好ましい。動圧溝51の数は、6~36個程度であることが好ましい。複数の動圧溝52は略同じ形状であり、かつインペラ10の回転方向に等角度間隔に配置されている。動圧溝52は凹部であり、動圧溝52の深さは0.005~0.3mm程度であることが好ましい。
 動圧溝52は、図30に示すように、動圧溝51よりも浅い。動圧溝52の深さは動圧溝52の深さの5分の1以下であることが好ましい。また、動圧溝52の幅は2つの動圧溝51の間隔の3分の2以下であることが好ましい。また、動圧溝52の数は動圧溝51の数以下であることが好ましい。
 図5では、10個の動圧溝51と10個の動圧溝52がインペラ10の中心軸に対して等角度間隔で配置されている。動圧溝51,52の各々は、いわゆる内向スパイラル溝形状となっているので、インペラ10が時計方向に回転すると、動圧溝51,52の外径部から内径部に向けて液体の圧力が高くなる。このため、インペラ10と隔壁6の間に反発力が発生し、これが動圧力となる。
 図31は、インペラ10を所定の回転数で回転させた場合において、隔壁6の表面から見たインペラ10の浮上位置と、インペラ10が動圧溝51から受ける動圧力との関係を示す図である。図32は、インペラ10を所定の回転数で回転させた場合において、インペラ10および隔壁6間の距離と、動圧溝52からインペラ10が受ける動圧力との関係を示す図である。図33は、図31と図32を合成した図である。
 図31~図33から分かるように、動圧溝51は、インペラ10と隔壁6との間の距離が長い場合に動圧溝52よりも大きな動圧力を発生する。また、動圧溝52は、インペラ10と隔壁6との間の距離が短い場合に動圧溝51よりも大きな動圧力を発生する。したがって、本実施の形態2では、動圧溝51,52の両方を設けたので、回転起動時と定常回転時の両方で大きな動圧力を得ることができる。
 このように、インペラ10と動圧溝51,52の間に形成される動圧軸受効果により、インペラ10は隔壁6から離れ、非接触状態で回転する。このため、インペラ10はスムーズに回転起動し、インペラ10と隔壁6の間に血液流路が確保され、両者間での血液滞留およびそれに起因する血栓の発生が防止される。さらに、通常状態において、動圧溝51,52が、インペラ10と隔壁6の間において撹拌作用を発揮するので、両者間における部分的な血液滞留の発生を防止することができる。
 なお、動圧溝51,52を隔壁6に設ける代わりに、動圧溝51,52をインペラ10のシュラウド12の表面に設けてもよい。
 また、動圧溝51,52の各々の角の部分は、少なくとも0.05mm以上のRを持つように丸められていることが好ましい。これにより、溶血の発生をより少なくすることができる。
 また、図34は、インペラ10が定常回転浮上位置にある場合において、動圧溝52の深さD52と動圧溝51の深さD51との比D52/D51と、インペラ10に作用する動圧力との関係を示す図である。図33で示したように、インペラ10が隔壁6に近接した位置にある場合は、動圧溝52の追加によって大きな動圧力が発生するが、図34に示すように、インペラ10が定常回転浮上位置にある場合は、動圧溝52の追加によって動圧力が低下する。したがって、動圧溝52の追加による動圧力や剛性の低下がポンプ性能に悪影響を与えないように、動圧溝52の深さおよび幅を決定する必要がある。図34に示すように、比D52/D51が小さいほど定常回転浮上位置における動圧力の低下を抑制できる。よって好ましくは、比D52/D51は1/5以下に設定される。
 また、図35は、インペラ10が定常浮上位置にある場合において、動圧溝52の幅W52と動圧溝51の間隔(動圧溝51間のランド部の幅)WL51との比W52/WL51と、インペラ10に作用する動圧力との関係を示す図である。図35に示すように、比W52/WL51が小さいほど定常回転浮上位置における動圧力の低下を抑制できる。よって好ましくは、比W52/WL51は2/3以下に設定される。
 また、複数の動圧溝53および複数の動圧溝54は、図29に示すように、複数の動圧溝51および複数の動圧溝52と同様、インペラ10のシュラウド11に対応する大きさに形成されている。動圧溝53,54の各々は、血液室7の内壁の中心から若干離間した円形部分の周縁(円周)上に一端を有し、渦状に(換言すれば、湾曲して)血液室7の内壁の外縁付近まで、幅が徐々に広がるように延びている。また、複数の動圧溝53は、略同じ形状であり、かつ略同じ間隔で配置されている。動圧溝53は凹部であり、動圧溝53の深さは0.005~0.4mm程度があることが好ましい。動圧溝53の数は、6~36個程度であることが好ましい。図29では、10個の動圧溝53がインペラ10の中心軸に対して等角度に配置されている。
 また、複数の動圧溝54は略同じ形状であり、かつインペラ10の回転方向に等角度間隔に配置されている。動圧溝54は凹部であり、動圧溝54の深さは0.005~0.3mm程度であることが好ましい。動圧溝54の数は、6~36個程度であることが好ましい。
 動圧溝54は、動圧溝51,52について図30で説明したように、動圧溝53よりも浅い。動圧溝54の深さは動圧溝53の深さの5分の1以下であることが好ましい。また、動圧溝54の幅は2つの動圧溝53の間隔の3分の2以下であることが好ましい。また、動圧溝54の数は動圧溝53の数以下であることが好ましい。
 図29では、10個の動圧溝53と10個の動圧溝54がインペラ10の中心軸に対して等角度間隔で配置されている。動圧溝53,54の各々は、いわゆる内向スパイラル溝形状となっているので、インペラ10が時計方向に回転すると、動圧溝53,54の外径部から内径部に向けて液体の圧力が高くなる。このため、インペラ10と血液室7の内壁との間に反発力が発生し、これが動圧力となる。
 図31~図33において動圧溝51,52について説明したように、動圧溝53は、インペラ10と血液室7の内壁の間の距離が長い場合に動圧溝54よりも大きな動圧力を発生する。また、動圧溝54は、インペラ10と血液室7の内壁との間の距離が短い場合に動圧溝53よりも大きな動圧力を発生する。したがって、本実施の形態2では、動圧溝53,54の両方を設けたので、回転起動時と定常回転時の両方で大きな動圧力を得ることができる。
 このように、インペラ10と動圧溝53,54の間に形成される動圧軸受効果により、インペラ10は血液室7の内壁から離れ、非接触状態で回転する。このため、インペラ10はスムーズに回転起動し、インペラ10と血液室7の内壁の間に血液流路が確保され、両者間での血液滞留およびそれに起因する血栓の発生が防止される。さらに、通常状態において、動圧溝53,54が、インペラ10と血液室7の内壁の間において撹拌作用を発揮するので、両者間における部分的な血液滞留の発生を防止することができる。また、ポンプ部1が外的衝撃を受けたときや、動圧溝51,52による動圧力が過剰となったときに、インペラ10の血液室7の内壁への密着を防止することができる。動圧溝51,52によって発生する動圧力と動圧溝53,54によって発生する動圧力は異なるものとなっていてもよい。
 なお、動圧溝53,54を血液室7の内壁に設ける代わりに、動圧溝53,54をインペラ10のシュラウド11の表面に設けてもよい。
 また、動圧溝53,54の各々の角の部分は、少なくとも0.05mm以上のRを持つように丸められていることが好ましい。これにより、溶血の発生をより少なくすることができる。
 また、動圧溝51,52について図34および図35で説明したように、動圧溝54の深さD54と動圧溝53の深さD53との比D54/D53は1/5以下に設定される。また、動圧溝54の幅W54と動圧溝53の間隔(動圧溝53間のランド部の幅)WL53との比W54/WL53は2/3以下に設定される。
 また、インペラ10のシュラウド12と隔壁6との隙間と、インペラ10のシュラウド11と血液室7の内壁との隙間とが略同じ状態でインペラ10が回転することが好ましい。インペラ10に作用する流体力などの外乱が大きく、一方の隙間が狭くなる場合には、その狭くなる側の動圧溝による動圧力を他方の動圧溝による動圧力よりも大きくし、両隙間を略同じにするため、動圧溝51,52と53,54の形状を異ならせることが好ましい。
 また、図28および図29では、動圧溝51~54の各々を内向スパイラル溝形状としたが、他の形状の動圧溝51~54を使用することも可能である。ただし、血液を循環させる場合は、血液をスムーズに流すことが可能な内向スパイラル溝形状の動圧溝51~54を採用することが好ましい。
 [実施の形態3]
 図36は、この発明の実施の形態3による遠心式血液ポンプ装置の要部を示す図であって、図3と対比される図である。図36において、この実施の形態3では、永久磁石15が径方向に2つの永久磁石15a,15bに分割され、永久磁石16が径方向に2つの永久磁石16a,16bに分割されている。すなわち、シュラウド11には永久磁石15a,15bが埋設され、シュラウド11に対向する血液室7の内壁には、それぞれ永久磁石15a,15bを吸引する永久磁石16a,16bが埋設されている。永久磁石15a,15b,16a,16bは、インペラ10をモータ室8と反対側、換言すれば血液流入ポート4側に吸引(換言すれば、付勢)するために設けられている。
 図37(a)(b)は永久磁石15a,15b,16a,16bの構成を示す図であり、図37(a)は図37(b)のXXXVIIA-XXXVIIA線断面図である。図37(a)(b)に示すように、永久磁石15a,15bの各々は円環状に形成されており、永久磁石15aの外径は永久磁石15bの内径よりも小さい。永久磁石15a,15bは同軸状に設けられており、永久磁石15a,15bの中心点は、ともにインペラ10の回転中心線に配置されている。永久磁石15a,15bのN極は同じ方向に向けられている。
 一方、永久磁石16a,16bの各々は円弧状に形成されており、インペラ10の回転方向に2つ配列されている。円環状に配置された2つの永久磁石16aの外径および内径は、永久磁石15aの外径および内径と同じである。円環状に配置された2つの永久磁石16bの外径および内径は、永久磁石15bの外径および内径と同じである。永久磁石16a,16bのN極は同じ方向に向けられている。永久磁石15a,15bのS極と永久磁石16a,16bのN極とは、互いに対向している。
 また、図36に示すように、永久磁石15a,15bの間隔(すなわち永久磁石16a,16bの間隔)D1は、インペラ10のラジアル方向の可動距離(すなわち血液室7の内径とインペラ10の外径との差の距離)の2分の1の距離D2よりも大きく設定されている(D1>D2)。これは、D1<D2とした場合、インペラ10がラジアル方向に最大限まで移動したとき、永久磁石15aと16b、永久磁石15bと16aがそれぞれ干渉し、インペラ10をポンプ中心位置に復元させる復元力が不安定になるからである。
 このように、インペラ10の径方向に2対の永久磁石15a,16aおよび永久磁石15b,16bを設けたので、インペラ10の径方向に1対の永久磁石のみを設けた場合に比べ、インペラ10のラジアル方向の支持剛性を大きくすることができる。
 なお、シュラウド11および血液室7の内壁にそれぞれ永久磁石15a,15bおよび永久磁石16a,16bを設ける代わりに、シュラウド11および血液室7の内壁の一方に永久磁石を設け、他方に磁性体を設けてもよい。また、磁性体としては軟質磁性体と硬質磁性体のいずれを使用してもよい。
 また、図36では、永久磁石15aと16aの対向面のサイズが同じであり、かつ永久磁石15bと16bの対向面のサイズが同じである場合が示されているが、永久磁石15a,15bと永久磁石16a,16bの吸引力に起因するインペラ10の剛性の低下を防ぐため、永久磁石15aと16aの対向面のサイズを異ならせ、かつ永久磁石15bと16bの対向面のサイズを異ならせることが好ましい。永久磁石15a,15bと永久磁石16a,16bの対向面のサイズを異ならせることにより、両者間の距離によって変化する吸引力の変化量、すなわち負の剛性を小さく抑えることができ、インペラ10の支持剛性の低下を防ぐことができる。
 また、図37(a)(b)では、永久磁石15a,15bの各々を円環状に形成し、永久磁石16a,16bの各々を円弧状に形成してインペラ10の回転方向に等角度間隔で2つ配列したが、逆に、永久磁石16a,16bの各々を円環状に形成し、永久磁石15a,15bの各々を円弧状に形成してインペラ10の回転方向に等角度間隔で2つ配列してもよい。また、永久磁石15a,15bの各々、あるいは永久磁石16a,16bの各々をさらに短い円弧状に形成してインペラ10の回転方向に等角度間隔で複数配列してもよい。
 [実施の形態4]
 図38は、この発明の実施の形態4による遠心式血液ポンプ装置の要部を示す断面図であって、図36と対比される図である。図38において、この遠心式血液ポンプ装置が図36の遠心式血液ポンプ装置と異なる点は、インペラ10の外周面に対向する血液室7の内周面に動圧溝60が形成されている点である。動圧溝60は、インペラ10の外周面に対する動圧力を発生し、インペラ10の外周面が血液室7の内周面に接触することを防止する。
 図39は、動圧溝60の具体的構成を例示する図である。図39において、血液室7の内周面のうちのシュラウド11の外周面に対向する領域には、V字型の動圧溝61がインペラ10の回転方向に所定のピッチで形成されている。V字型の動圧溝61の先端(鋭角部)はインペラ10の回転方向に向けられている。同様に、血液室7の内周面のうちのシュラウド12の外周面に対向する領域には、V字型の動圧溝62がインペラ10の回転方向に所定のピッチで形成されている。V字型の動圧溝62の先端(鋭角部)はインペラ10の回転方向に向けられている。血液室7の内周面のうちのシュラウド11,12の隙間に対向する領域には、所定深さの溝63がリング状に形成されている。インペラ10が矢印の方向に回転すると、動圧溝61,62の先端部に向けて液体の圧力が高くなる。このため、インペラ10と血液室7の内周面との間に反発力が発生し、これが動圧力となる。
 図40は、実施の形態4の変更例を示す図であって、図39と対比される図である。図40において、この変更例では、動圧溝61,62が血液室7の内周面側ではなく、それぞれシュラウド11,12の外周面に形成される。動圧溝61,62の先端は、インペラ10の回転方向と逆の方向に向けられている。インペラ10が矢印の方向に回転すると、動圧溝61,62の先端部に向けて液体の圧力が高くなる。このため、インペラ10と血液室7の内周面との間に反発力が発生し、これが動圧力となる。
 図41は、実施の形態4の他の変更例を示す図であって、図39と対比される図である。図41において、この変更例では、動圧溝61,62がそれぞれ動圧溝64,65で置換されている。動圧溝64,65の各々は、帯状に形成され、インペラ10の回転方向に延在している。動圧溝64,65の各々の深さは、インペラ10の回転方向に向かって徐々に浅くなっている。この変更例でも、インペラ10が矢印の方向に回転すると、動圧溝64,65の先端部に向けて液体の圧力が高くなる。このため、インペラ10と血液室7の内周面との間に反発力が発生し、これが動圧力となる。
 図42は、実施の形態4のさらに他の変更例を示す図であって、図41と対比される図である。図41において、この変更例では、動圧溝64,65が血液室7の内周面側ではなく、それぞれシュラウド11,12の外周面に形成される。動圧溝64,65の各々の深さは、インペラ10の回転方向と逆の方向に向かって徐々に浅くなっている。この変更例でも、インペラ10が矢印の方向に回転すると、動圧溝64,65の先端部に向けて液体の圧力が高くなる。このため、インペラ10と血液室7の内周面との間に反発力が発生し、これが動圧力となる。
 図43は、実施の形態4のさらに他の変更例を示す図であって、図38と対比される図である。図43において、この変更例では、永久磁石15a,15b,16a,16bが除去されている。磁性体18をコイル20よりも短くして永久磁石17と磁性体18の吸引力を、血液室7内におけるインペラ10の可動範囲の略中央での定格回転時の動圧力F3よりも小さくしたために、このような構成が可能となっている。インペラ10の回転中において、動圧溝22によって発生する定格回転時の動圧力F4と磁性体18および永久磁石17間の吸引力F2との和の力(F2+F4)と、動圧溝21によって発生する定格回転時の動圧力F3とは、血液室7におけるインペラ10の可動範囲の略中央で釣り合うように設定されている。
 図44は、実施の形態4のさらに他の変更例を示す図であって、図43と対比される図である。図43において、この変更例では、シュラウド11にも複数の永久磁石17Aが設けられ、シュラウド11側にもモータ室8Aが設けられる。モータ室8Aと血液室7は、隔壁6Aで仕切られている。モータ室8A内には、複数の永久磁石17Aに対向して複数の磁性体18Aが設けられ、各磁性体18Aにはコイル20Aが巻回され、磁性体18Aは円板状の磁性体19Aに接合されている。インペラ10の中心軸方向において、磁性体18Aはコイル20Aよりも短い。インペラ10の回転中において、複数の永久磁石17および複数の磁性体18間の第1の吸引力と複数の永久磁石17Aおよび複数の磁性体18A間の第2の吸引力とは、血液室7内におけるインペラ10の可動範囲の略中央で釣り合うように設定されている。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 ポンプ部、2 ハウジング、3 本体部、4 血液流入ポート、5 血液流出ポート、6,6A 隔壁、7 血液室、8,8A モータ室、10 インペラ、10a 貫通孔、11,12 シュラウド、13 ベーン、14 血液通路、15~17,15a,15b,16a,16b,42 永久磁石、18,18A,19,19A,36~39,41 磁性体、18a,19a 磁性鋼板、20,20A コイル、21,22,51,52,60~62,64,65 動圧溝、25 コントローラ、26 モータ制御回路、27,30,31 パワーアンプ、32 切換スイッチ、40 切り欠き部、63 溝。

Claims (19)

  1.  隔壁(6)で仕切られた第1および第2の室(7,8)を含むハウジング(2)と、前記第1の室(7)内において前記隔壁(6)に沿って回転可能に設けられ、回転時の遠心力によって液体を送るインペラ(10)と、前記第2の室(8)内に設けられ、前記隔壁(6)を介して前記インペラ(10)を回転駆動させる駆動部(18~20)とを備えた遠心式ポンプ装置であって、
     前記インペラ(10)の一方面に設けられた第1の磁性体(15)と、
     前記インペラ(10)の一方面に対向する前記第1の室(7)の内壁に設けられ、前記第1の磁性体(15)を吸引する第2の磁性体(16)と、
     前記インペラ(10)の他方面に設けられて前記インペラ(10)の回転方向に配列され、前記駆動部(18~20)によって吸引される複数の第3の磁性体(17)とを備え、
     前記駆動部(18~20)は、
     前記複数の第3の磁性体(17)に対向して設けられ、回転磁界を生成するための複数のコイル(20)と、
     それぞれ前記複数のコイル(20)に対応して設けられ、各々が対応のコイル(20)に挿入された複数の第4の磁性体(18)とを含み、
     前記インペラ(10)の中心軸方向において各第4の磁性体(18)は対応のコイル(20)よりも短く、
     前記インペラ(10)の回転中において、前記第1および第2の磁性体(15,16)間の第1の吸引力と前記複数の第3の磁性体(17)および前記複数の第4の磁性体(18)間の第2の吸引力とは、前記第1の室(7)内における前記インペラ(10)の可動範囲の略中央で釣り合い、
     前記インペラ(10)の一方面またはそれに対向する前記第1の室(7)の内壁に第1の動圧溝(22)が形成され、前記インペラ(10)の他方面またはそれに対向する前記隔壁(6)に第2の動圧溝(21)が形成されている、遠心式ポンプ装置。
  2.  前記駆動部(18~20)は、さらに、円板状の第5の磁性体(19)を含み、
     前記複数のコイル(20)は前記隔壁(6)と前記第5の磁性体(19)との間に設けられ、
     前記複数の第4の磁性体(18)は前記第5の磁性体(19)に接合されている、請求項1に記載の遠心式ポンプ装置。
  3.  各隣接する2つの第4の磁性体(18)の互いに対向する面は略平行に設けられている、請求項1に記載の遠心式ポンプ装置。
  4.  各第4の磁性体(18)は円柱状に形成されている、請求項1に記載の遠心式ポンプ装置。
  5.  各第4の磁性体(38)は、前記インペラ(10)の回転方向に積層された複数の鋼板を含む、請求項1に記載の遠心式ポンプ装置。
  6.  各第4の磁性体(39)は、前記インペラ(10)の径方向に積層された複数の鋼板を含む、請求項1に記載の遠心式ポンプ装置。
  7.  各第4の磁性体(18)は、純鉄、軟鉄または珪素鉄で形成されている、請求項1に記載の遠心式ポンプ装置。
  8.  各第4の磁性体(18)は、純鉄、軟鉄または珪素鉄の粉末で形成されている、請求項1に記載の遠心式ポンプ装置。
  9.  各第4の磁性体(18)は、中心線の周りに複数回巻回された帯状の磁性鋼板(18a)を含む、請求項1に記載の遠心式ポンプ装置。
  10.  前記インペラ(10)の外周面またはそれに対向する前記第1の室(7)の内周面に第3の動圧溝(60)が形成されている、請求項1に記載の遠心式ポンプ装置。
  11.  前記液体は血液であり、
     前記遠心式ポンプ装置は前記血液を循環させるために使用される、請求項1に記載の遠心式ポンプ装置。
  12.  隔壁(6)で仕切られた第1および第2の室(7,8)を含むハウジング(2)と、前記第1の室(7)内において前記隔壁(6)に沿って回転可能に設けられ、回転時の遠心力によって液体を送るインペラ(10)と、前記第2の室(8)内に設けられ、前記隔壁(6)を介して前記インペラ(10)を回転駆動させる駆動部(18~20)とを備えた遠心式ポンプ装置であって、
     前記インペラ(10)に設けられて前記インペラ(10)の回転方向に配列され、前記駆動部(18~20)によって吸引される複数の第1の磁性体(17)を備え、
     前記駆動部(18~20)は、
     前記複数の第1の磁性体(17)に対向して設けられ、回転磁界を生成するための複数のコイル(20)と、
     それぞれ前記複数のコイル(20)に対応して設けられ、各々が対応のコイル(20)に挿入された複数の第2の磁性体(18)とを含み、
     前記インペラ(10)の中心軸方向において各第2の磁性体(18)は対応のコイル(20)よりも短く、
     前記インペラ(10)の一方面またはそれに対向する前記第1の室(7)の内壁に第1の動圧溝(22)が形成され、前記インペラ(10)の他方面またはそれに対向する前記隔壁(6)に第2の動圧溝(21)が形成され、
     前記インペラ(10)の回転中において、前記第1の動圧溝(22)によって発生する定格回転時の動圧力と前記複数の第1の磁性体(17)および前記複数の第2の磁性体(18)間の吸引力との和の力と、前記第2の動圧溝(21)によって発生する定格回転時の動圧力とは、前記第1の室(7)内における前記インペラ(10)の可動範囲の略中央で釣り合う、遠心式ポンプ装置。
  13.  前記駆動部(18~20)は、さらに、円板状の第3の磁性体(19)を含み、
     前記複数のコイル(20)は前記隔壁(6)と前記第3の磁性体(19)との間に設けられ、
     前記複数の第2の磁性体(18)は前記第3の磁性体(19)に接合されている、請求項12に記載の遠心式ポンプ装置。
  14.  前記インペラ(10)の外周面またはそれに対向する前記第1の室(7)の内周面に第3の動圧溝(60)が形成されている、請求項12に記載の遠心式ポンプ装置。
  15.  前記液体は血液であり、
     前記遠心式ポンプ装置は前記血液を循環させるために使用される、請求項12に記載の遠心式ポンプ装置。
  16.  第1および第2の隔壁(6,6A)とそれらの間の液体室(7)を含むハウジング(2)と、前記液体室(7)内において前記第1および第2の隔壁(6,6A)に沿って回転可能に設けられ、回転時の遠心力によって液体を送るインペラ(10)と、前記液体室(7)外に設けられ、それぞれ前記第1および第2の隔壁(6,6A)を介して前記インペラ(10)を回転駆動させる第1および第2の駆動部(18~20,18A~20A)とを備えた遠心式ポンプ装置であって、
     前記インペラ(10)に設けられて前記インペラ(10)の回転方向に配列され、前記第1および第2の駆動部(18~20,18A~20A)によって吸引される複数の第1の磁性体(17,17A)を備え、
     前記第1および第2の駆動部(18~20,18A~20A)の各々は、
     前記複数の第1の磁性体(17,17A)に対向して設けられ、回転磁界を生成するための複数のコイル(20,20A)と、
     それぞれ前記複数のコイル(20,20A)に対応して設けられ、各々が対応のコイル(20,20A)に挿入された複数の第2の磁性体(18,18A)とを含み、
     前記インペラ(10)の中心軸方向において各第2の磁性体(18,18A)は対応のコイル(20,20A)よりも短く、
     前記インペラ(10)の回転中において、前記複数の第1の磁性体(17)および前記第1の駆動部(18~20)の前記複数の第2の磁性体(18)間の第1の吸引力と前記複数の第1の磁性体(17A)および前記第2の駆動部(18A~20A)の前記複数の第2の磁性体(18A)間の第2の吸引力とは、前記液体室(7)内における前記インペラ(10)の可動範囲の略中央で釣り合い、
     前記インペラ(10)の一方面またはそれに対向する前記第1の隔壁(6)に第1の動圧溝(21)が形成され、前記インペラ(10)の他方面またはそれに対向する前記第2の隔壁(6A)に第2の動圧溝(22)が形成されている、遠心式ポンプ装置。
  17.  前記第1および第2の駆動部(18~20,18A~20A)の各々は、さらに、円板状の第3の磁性体(19,19A)を含み、
     前記第1の駆動部(18~20)の前記複数のコイル(20)は、前記第1の隔壁(6)と前記第1の駆動部(18~20)の前記第3の磁性体(19)との間に設けられ、
     前記第2の駆動部(18A~20A)の前記複数のコイル(20A)は、前記第2の隔壁(6A)と前記第2の駆動部(18A~20A)の前記第3の磁性体(19A)との間に設けられ、
     前記第1および第2の駆動部(18~20,18A~20A)の各々において前記複数の第2の磁性体(18,18A)は前記第3の磁性体(19,19A)に接合されている、請求項16に記載の遠心式ポンプ装置。
  18.  前記インペラ(10)の外周面またはそれに対向する前記液体室(7)の内周面に第3の動圧溝(60)が形成されている、請求項16に記載の遠心式ポンプ装置。
  19.  前記液体は血液であり、
     前記遠心式ポンプ装置は前記血液を循環させるために使用される、請求項16に記載の遠心式ポンプ装置。
PCT/JP2011/070450 2010-09-14 2011-09-08 遠心式ポンプ装置 WO2012036059A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11825062.0A EP2618001B1 (en) 2010-09-14 2011-09-08 Centrifugal pump device
US13/822,220 US9382908B2 (en) 2010-09-14 2011-09-08 Centrifugal pump apparatus
US15/174,639 US9638202B2 (en) 2010-09-14 2016-06-06 Centrifugal pump apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010205787A JP5577506B2 (ja) 2010-09-14 2010-09-14 遠心式ポンプ装置
JP2010-205787 2010-09-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/822,220 A-371-Of-International US9382908B2 (en) 2010-09-14 2011-09-08 Centrifugal pump apparatus
US15/174,639 Division US9638202B2 (en) 2010-09-14 2016-06-06 Centrifugal pump apparatus

Publications (1)

Publication Number Publication Date
WO2012036059A1 true WO2012036059A1 (ja) 2012-03-22

Family

ID=45831522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070450 WO2012036059A1 (ja) 2010-09-14 2011-09-08 遠心式ポンプ装置

Country Status (4)

Country Link
US (2) US9382908B2 (ja)
EP (1) EP2618001B1 (ja)
JP (1) JP5577506B2 (ja)
WO (1) WO2012036059A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638202B2 (en) 2010-09-14 2017-05-02 Tc1 Llc Centrifugal pump apparatus
US9709061B2 (en) 2013-01-24 2017-07-18 Tc1 Llc Impeller position compensation using field oriented control
US9850906B2 (en) 2011-03-28 2017-12-26 Tc1 Llc Rotation drive device and centrifugal pump apparatus employing same
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10506935B2 (en) 2015-02-11 2019-12-17 Tc1 Llc Heart beat identification and pump speed synchronization

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2292282B1 (en) 2008-06-23 2017-11-15 Thoratec Corporation Blood pump apparatus
EP2372160B1 (en) 2008-12-08 2014-07-30 Thoratec Corporation Centrifugal pump device
JP5378010B2 (ja) 2009-03-05 2013-12-25 ソラテック コーポレーション 遠心式ポンプ装置
CN102341600B (zh) 2009-03-06 2014-12-10 胸腔科技有限公司 离心式泵装置
JP5443197B2 (ja) 2010-02-16 2014-03-19 ソラテック コーポレーション 遠心式ポンプ装置
WO2011118325A1 (ja) 2010-03-26 2011-09-29 テルモ株式会社 遠心式血液ポンプ装置
JP5681403B2 (ja) 2010-07-12 2015-03-11 ソーラテック コーポレイション 遠心式ポンプ装置
JP6083929B2 (ja) 2012-01-18 2017-02-22 ソーラテック コーポレイション 遠心式ポンプ装置
US10857274B2 (en) 2012-11-06 2020-12-08 Queen Mary University Of London Mechanical circulatory support device with centrifugal impeller designed for implantation in the descending aorta
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
CA2911361C (en) * 2013-05-23 2020-05-05 Reinheart Gmbh Impeller of a centrifugal pump apparatus
CN106794292B (zh) 2014-04-15 2018-09-04 Tc1有限责任公司 用于升级心室辅助装置的方法和系统
WO2015160995A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Ventricular assist devices
WO2015160993A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Methods and systems for providing battery feedback to patient
EP3131596B1 (en) 2014-04-15 2020-07-22 Tc1 Llc Methods and systems for controlling a blood pump
US9526818B2 (en) 2014-04-15 2016-12-27 Thoratec Corporation Protective cap for driveline cable connector
WO2015160992A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Methods and systems for lvad operation during communication losses
JP2016044673A (ja) * 2014-08-22 2016-04-04 日本電産株式会社 動圧軸受ポンプ
JP2016044674A (ja) * 2014-08-22 2016-04-04 日本電産株式会社 動圧軸受ポンプ
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US9603984B2 (en) 2014-09-03 2017-03-28 Tci Llc Triple helix driveline cable and methods of assembly and use
WO2016158172A1 (ja) * 2015-03-30 2016-10-06 Ntn株式会社 遠心式ポンプ装置
JP2016188593A (ja) * 2015-03-30 2016-11-04 Ntn株式会社 遠心式ポンプ装置
JP2016188591A (ja) * 2015-03-30 2016-11-04 Ntn株式会社 遠心式ポンプ装置
JP2016188617A (ja) * 2015-03-30 2016-11-04 Ntn株式会社 遠心式ポンプ装置
JP6698278B2 (ja) * 2015-03-30 2020-05-27 Ntn株式会社 遠心式ポンプ装置
JP2016188590A (ja) * 2015-03-30 2016-11-04 Ntn株式会社 遠心式ポンプ装置
WO2016187057A1 (en) 2015-05-15 2016-11-24 Thoratec Corporation Improved axial flow blood pump
US20170016449A1 (en) * 2015-07-14 2017-01-19 Hamilton Sundstrand Corporation Axial-flux induction motor pump
WO2017015268A1 (en) 2015-07-20 2017-01-26 Thoratec Corporation Flow estimation using hall-effect sensors
EP3324840A4 (en) 2015-07-20 2019-03-20 Tc1 Llc MEASURING TEST STRIPS FOR FLOW ESTIMATION
US10029038B2 (en) 2015-07-21 2018-07-24 Tc1 Llc Cantilevered rotor pump and methods for axial flow blood pumping
EP3135933B1 (en) * 2015-08-25 2019-05-01 ReinHeart GmbH Active magnetic bearing
EP3340925B1 (en) 2015-08-28 2020-09-23 Tc1 Llc Blood pump controllers and methods of use for improved energy efficiency
CN105263301B (zh) * 2015-11-12 2017-12-19 深圳市研派科技有限公司 一种液冷散热系统及其液体散热排
WO2017087728A1 (en) 2015-11-20 2017-05-26 Tc1 Llc Improved connectors and cables for use with ventricle assist systems
EP3377135B1 (en) 2015-11-20 2020-05-06 Tc1 Llc Blood pump controllers having daisy-chained batteries
WO2017087785A1 (en) 2015-11-20 2017-05-26 Tc1 Llc Energy management of blood pump controllers
EP3377133B1 (en) 2015-11-20 2021-07-14 Tc1 Llc System architecture that allows patient replacement of vad controller/interface module without disconnection of old module
US9985374B2 (en) 2016-05-06 2018-05-29 Tc1 Llc Compliant implantable connector and methods of use and manufacture
WO2018017716A1 (en) 2016-07-21 2018-01-25 Tc1 Llc Rotary seal for cantilevered rotor pump and methods for axial flow blood pumping
US10660998B2 (en) 2016-08-12 2020-05-26 Tci Llc Devices and methods for monitoring bearing and seal performance
US10589013B2 (en) 2016-08-26 2020-03-17 Tci Llc Prosthetic rib with integrated percutaneous connector for ventricular assist devices
WO2018057795A1 (en) 2016-09-26 2018-03-29 Tc1 Llc Heart pump driveline power modulation
US11524153B2 (en) 2016-10-03 2022-12-13 Queen Mary University Of London Mechanical circulatory support device with axial flow turbomachine optimized for heart failure and cardio-renal syndrome by implantation in the descending aorta
WO2018075780A1 (en) 2016-10-20 2018-04-26 Tc1 Llc Methods and systems for bone conduction audible alarms for mechanical circulatory support systems
WO2018132713A1 (en) 2017-01-12 2018-07-19 Tc1 Llc Driveline bone anchors and methods of use
US10792407B2 (en) 2017-01-12 2020-10-06 Tc1 Llc Percutaneous driveline anchor devices and methods of use
US11197990B2 (en) 2017-01-18 2021-12-14 Tc1 Llc Systems and methods for transcutaneous power transfer using microneedles
WO2018195301A1 (en) 2017-04-21 2018-10-25 Tc1 Llc Aortic connectors and methods of use
EP3615104A1 (en) 2017-04-28 2020-03-04 Tc1 Llc Patient adapter for driveline cable and methods
EP3630218A4 (en) * 2017-06-01 2021-05-12 Queen Mary University of London MECHANICAL CIRCULATORY SUPPORT DEVICE WITH CENTRIFUGAL WHEEL FOR IMPLANTATION IN THE DESCENDING AORTA
JP7414529B2 (ja) 2017-06-07 2024-01-16 シファメド・ホールディングス・エルエルシー 血管内流体移動デバイス、システム、および使用方法
JP7319266B2 (ja) 2017-11-13 2023-08-01 シファメド・ホールディングス・エルエルシー 血管内流体移動デバイス、システム、および使用方法
WO2019112825A1 (en) 2017-12-05 2019-06-13 Heartware, Inc. Blood pump with impeller rinse operation
US11191947B2 (en) 2018-01-02 2021-12-07 Tc1 Llc Fluid treatment system for a driveline cable and methods of assembly and use
EP4275737A3 (en) 2018-01-10 2023-12-20 Tc1 Llc Bearingless implantable blood pump
CN108175884A (zh) * 2018-01-11 2018-06-19 深圳核心医疗器械有限公司 心室辅助泵
US10701043B2 (en) 2018-01-17 2020-06-30 Tc1 Llc Methods for physical authentication of medical devices during wireless pairing
CN117959583A (zh) 2018-02-01 2024-05-03 施菲姆德控股有限责任公司 血管内血泵以及使用和制造方法
US11529508B2 (en) 2018-03-02 2022-12-20 Tc1 Llc Wearable accessory for ventricular assist system
EP3768347B1 (en) 2018-03-20 2024-02-21 Tc1 Llc Ventricular assist systems
US11389641B2 (en) 2018-03-21 2022-07-19 Tc1 Llc Modular flying lead cable and methods for use with heart pump controllers
WO2019182691A1 (en) 2018-03-21 2019-09-26 Tc1 Llc Improved driveline connectors and methods for use with heart pump controllers
WO2019190998A1 (en) 2018-03-26 2019-10-03 Tc1 Llc Methods and systems for irrigating and capturing particulates during heart pump implantation
WO2019195480A1 (en) 2018-04-04 2019-10-10 Theodosios Korakianitis Removable mechanical circulatory support for short term use
US11031729B2 (en) 2018-04-30 2021-06-08 Tc1 Llc Blood pump connectors
US10722627B1 (en) * 2018-05-24 2020-07-28 RBTS Inc. Blood pump bearing with integrated fluid diffuser/inducer system
EP4299105A3 (en) 2018-05-31 2024-02-21 Tc1 Llc Improved blood pump controllers
US10947986B2 (en) * 2018-07-11 2021-03-16 Ch Biomedical (Usa) Inc. Compact centrifugal pump with magnetically suspended impeller
US11241570B2 (en) 2018-07-17 2022-02-08 Tc1 Llc Systems and methods for inertial sensing for VAD diagnostics and closed loop control
CN113038985B (zh) 2018-09-25 2024-05-28 Tc1有限责任公司 用于优化心室辅助设备中的流量的自适应速度控制算法和控制器
US11679250B2 (en) 2019-06-28 2023-06-20 Theodosios Alexander Removable mechanical circulatory support for short term use
EP3996797A4 (en) 2019-07-12 2023-08-02 Shifamed Holdings, LLC INTRAVASCULAR BLOOD PUMPS AND METHOD OF USE AND METHOD OF MAKING
WO2021016372A1 (en) 2019-07-22 2021-01-28 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
EP4058093A1 (en) 2019-11-12 2022-09-21 Fresenius Medical Care Deutschland GmbH Blood treatment systems
CA3160952A1 (en) 2019-11-12 2021-05-20 Fresenius Medical Care Deutschland Gmbh Blood treatment systems
WO2021094140A1 (en) 2019-11-12 2021-05-20 Fresenius Medical Care Deutschland Gmbh Blood treatment systems
CN114728116A (zh) 2019-11-12 2022-07-08 费森尤斯医疗护理德国有限责任公司 血液治疗系统
EP3827852A1 (en) 2019-11-27 2021-06-02 Berlin Heart GmbH Blood pump with magnetically levitated rotor
US20220331580A1 (en) 2021-04-15 2022-10-20 Tc1 Llc Systems and methods for medical device connectors
WO2023158493A1 (en) 2022-02-16 2023-08-24 Tc1 Llc Real time heart rate monitoring for close loop control and/or artificial pulse synchronization of implantable ventricular assist devices
CN116173395A (zh) * 2022-05-23 2023-05-30 航天泰心科技有限公司 一种磁悬浮型离心泵
WO2023229899A1 (en) 2022-05-26 2023-11-30 Tc1 Llc Tri-axis accelerometers for patient physiologic monitoring and closed loop control of implantable ventricular assist devices
WO2023235230A1 (en) 2022-06-02 2023-12-07 Tc1 Llc Implanted connector booster sealing for implantable medical devices
WO2024050319A1 (en) 2022-08-29 2024-03-07 Tc1 Llc Implantable electrical connector assembly
WO2024097236A1 (en) 2022-11-01 2024-05-10 Tc1 Llc Assessment and management of adverse event risks in mechanical circulatory support patients

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932069A (en) * 1974-12-19 1976-01-13 Ford Motor Company Variable reluctance motor pump
WO2010067682A1 (ja) * 2008-12-08 2010-06-17 Ntn株式会社 遠心式ポンプ装置
WO2010101082A1 (ja) * 2009-03-05 2010-09-10 Ntn株式会社 遠心式ポンプ装置

Family Cites Families (402)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1093868A (en) 1912-03-11 1914-04-21 Henry W Jacobs Means for forming couplings or joints.
US3960468A (en) 1946-07-16 1976-06-01 The United States Of America As Represented By The United States Energy Research And Development Administration Fluid lubricated bearing assembly
US2684035A (en) 1947-10-02 1954-07-20 Philip G Kemp Fluid pump
US3023334A (en) 1959-05-25 1962-02-27 Printed Motors Inc Printed circuit armature
US3510229A (en) 1968-07-23 1970-05-05 Maytag Co One-way pump
US3620638A (en) 1970-08-24 1971-11-16 J Arthur Kaye Liquid propulsion device
NL7213192A (ja) 1972-09-29 1974-04-02
LU77252A1 (ja) 1976-05-06 1977-08-22
FR2451480A1 (fr) 1979-03-16 1980-10-10 Belenger Jacques Pompe centrifuge medicale
JPS589535Y2 (ja) 1979-11-06 1983-02-21 ビツグウエイ株式会社 カ−トリツジ式化粧品
JPH0247496Y2 (ja) 1980-05-21 1990-12-13
US4434389A (en) 1980-10-28 1984-02-28 Kollmorgen Technologies Corporation Motor with redundant windings
US4382199A (en) 1980-11-06 1983-05-03 Nu-Tech Industries, Inc. Hydrodynamic bearing system for a brushless DC motor
US4688998A (en) 1981-03-18 1987-08-25 Olsen Don B Magnetically suspended and rotated impellor pump apparatus and method
JPS589535A (ja) 1981-07-06 1983-01-19 Matsushita Electric Ind Co Ltd 軸方向空隙形回転電機の巻鉄心
US5078741A (en) 1986-10-12 1992-01-07 Life Extenders Corporation Magnetically suspended and rotated rotor
US4528485A (en) 1982-04-13 1985-07-09 General Electric Company Electronically commutated motor, method of operating such, control circuit, laundry machine and drive therefor
DE3214397C2 (de) 1982-04-20 1984-07-26 Karl Dr. 6301 Pohlheim Aigner Perfusions-Doppellumenkatheter
US4549860A (en) 1983-04-04 1985-10-29 Yakich Sam S Blood pump improvements
US4645961A (en) 1983-04-05 1987-02-24 The Charles Stark Draper Laboratory, Inc. Dynamoelectric machine having a large magnetic gap and flexible printed circuit phase winding
US4806080A (en) 1983-07-06 1989-02-21 Ebara Corporation Pump with shaftless impeller
JPS61293146A (ja) 1984-11-02 1986-12-23 Hitachi Ltd アキシヤルギヤツプ形電動機
US4686982A (en) 1985-06-19 1987-08-18 John Nash Spiral wire bearing for rotating wire drive catheter
US4769006A (en) 1985-05-13 1988-09-06 Kos Medical Technologies, Ltd. Hydrodynamically propelled pacing catheter
US4790843A (en) 1986-06-16 1988-12-13 Baxter Travenol Laboratories, Inc. Prosthetic heart valve assembly
US4753221A (en) 1986-10-22 1988-06-28 Intravascular Surgical Instruments, Inc. Blood pumping catheter and method of use
US4779614A (en) 1987-04-09 1988-10-25 Nimbus Medical, Inc. Magnetically suspended rotor axial flow blood pump
US4902272A (en) 1987-06-17 1990-02-20 Abiomed Cardiovascular, Inc. Intra-arterial cardiac support system
US4930997A (en) 1987-08-19 1990-06-05 Bennett Alan N Portable medical suction device
US4846152A (en) 1987-11-24 1989-07-11 Nimbus Medical, Inc. Single-stage axial flow blood pump
US4817586A (en) 1987-11-24 1989-04-04 Nimbus Medical, Inc. Percutaneous bloom pump with mixed-flow output
US4895557A (en) 1987-12-07 1990-01-23 Nimbus Medical, Inc. Drive mechanism for powering intravascular blood pumps
US5092879A (en) 1988-02-17 1992-03-03 Jarvik Robert K Intraventricular artificial hearts and methods of their surgical implantation and use
US4906229A (en) 1988-05-03 1990-03-06 Nimbus Medical, Inc. High-frequency transvalvular axisymmetric blood pump
FR2632686B1 (ja) 1988-06-14 1993-07-16 Thomson Brandt Armements
JP2533475Y2 (ja) 1988-06-27 1997-04-23 松下電工株式会社 ステッピングモータ
US4888011A (en) 1988-07-07 1989-12-19 Abiomed, Inc. Artificial heart
US4857781A (en) 1988-07-13 1989-08-15 Eastman Kodak Company High-speed non-contact linear motor with magnetic levitation
US4908012A (en) 1988-08-08 1990-03-13 Nimbus Medical, Inc. Chronic ventricular assist system
JPH0233590U (ja) 1988-08-26 1990-03-02
US4964864A (en) 1988-09-27 1990-10-23 American Biomed, Inc. Heart assist pump
US4919647A (en) 1988-10-13 1990-04-24 Kensey Nash Corporation Aortically located blood pumping catheter and method of use
US4957504A (en) 1988-12-02 1990-09-18 Chardack William M Implantable blood pump
US4969865A (en) 1989-01-09 1990-11-13 American Biomed, Inc. Helifoil pump
JPH0321257A (ja) 1989-01-31 1991-01-30 Aisin Seiki Co Ltd 血液ポンプの駆動装置
US4944722A (en) 1989-02-23 1990-07-31 Nimbus Medical, Inc. Percutaneous axial flow blood pump
US4995857A (en) 1989-04-07 1991-02-26 Arnold John R Left ventricular assist device and method for temporary and permanent procedures
US5324177A (en) 1989-05-08 1994-06-28 The Cleveland Clinic Foundation Sealless rotodynamic pump with radially offset rotor
US4985014A (en) 1989-07-11 1991-01-15 Orejola Wilmo C Ventricular venting loop
US5021048A (en) 1989-08-04 1991-06-04 Medtronic, Inc. Blood pump drive system
US5147186A (en) 1989-08-04 1992-09-15 Bio Medicus, Inc. Blood pump drive system
JPH03111697A (ja) 1989-09-22 1991-05-13 Jidosha Denki Kogyo Co Ltd 小型遠心ポンプ
JP3025295B2 (ja) 1990-10-11 2000-03-27 エヌティエヌ株式会社 ターボ形ポンプ
US5112202A (en) 1990-01-31 1992-05-12 Ntn Corporation Turbo pump with magnetically supported impeller
US5145333A (en) 1990-03-01 1992-09-08 The Cleveland Clinic Foundation Fluid motor driven blood pump
FR2659396B1 (fr) 1990-03-07 1992-05-15 Cit Alcatel Pompe a vide pour vide moleculaire propre.
JPH0636821B2 (ja) 1990-03-08 1994-05-18 健二 山崎 体内埋設形の補助人工心臓
US5092844A (en) 1990-04-10 1992-03-03 Mayo Foundation For Medical Education And Research Intracatheter perfusion pump apparatus and method
US5211546A (en) 1990-05-29 1993-05-18 Nu-Tech Industries, Inc. Axial flow blood pump with hydrodynamically suspended rotor
DE4020120A1 (de) 1990-06-25 1991-01-31 Klaus Prof Dr Ing Affeld Medizinische vorrichtung zur erzeugung eines alternierenden volumenstroms fuer den antrieb von implantierbaren blutpumpen
CA2022019C (en) 1990-07-26 1992-12-29 Michael Black Catheter
JP2989233B2 (ja) 1990-07-31 1999-12-13 エヌティエヌ株式会社 ターボ形ポンプ
US5195877A (en) 1990-10-05 1993-03-23 Kletschka Harold D Fluid pump with magnetically levitated impeller
US5190528A (en) 1990-10-19 1993-03-02 Boston University Percutaneous transseptal left atrial cannulation system
JPH04275091A (ja) 1991-02-28 1992-09-30 Toshiba Corp 無整流子電動機の駆動制御装置
DE4111713A1 (de) 1991-04-10 1993-01-14 Magnet Motor Gmbh Fluidpumpe
US5106372A (en) 1991-05-03 1992-04-21 Sherwood Medical Company Single use syringe
JPH0521197U (ja) 1991-05-17 1993-03-19 株式会社荏原製作所 キヤンドモータポンプ
US5584803A (en) 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5290236A (en) 1991-09-25 1994-03-01 Baxter International Inc. Low priming volume centrifugal blood pump
US5449342A (en) 1991-09-30 1995-09-12 Nippon Zeon Co., Ltd. Apparatus for assisting blood circulation
US5360445A (en) 1991-11-06 1994-11-01 International Business Machines Corporation Blood pump actuator
US5350283A (en) 1991-12-04 1994-09-27 Ntn Corporation Clean pump
US5201679A (en) 1991-12-13 1993-04-13 Attwood Corporation Marine propeller with breakaway hub
US5306295A (en) 1992-04-30 1994-04-26 University Of Utah Research Foundation Electrohydraulic heart with septum mounted pump
US5300112A (en) 1992-07-14 1994-04-05 Aai Corporation Articulated heart pump
US5354331A (en) 1992-07-15 1994-10-11 Schachar Ronald A Treatment of presbyopia and other eye disorders
JP2564843Y2 (ja) 1992-07-29 1998-03-11 日本ビクター株式会社 すべりスラスト軸受け構造
US5290227A (en) 1992-08-06 1994-03-01 Pasque Michael K Method of implanting blood pump in ascending aorta or main pulmonary artery
US5676651A (en) 1992-08-06 1997-10-14 Electric Boat Corporation Surgically implantable pump arrangement and method for pumping body fluids
US5312341A (en) 1992-08-14 1994-05-17 Wayne State University Retaining apparatus and procedure for transseptal catheterization
US5519270A (en) 1992-08-19 1996-05-21 Fujitsu Limited Spindle motor and disk drive having the same
SE501215C2 (sv) 1992-09-02 1994-12-12 Oeyvind Reitan Kateterpump
US5376114A (en) 1992-10-30 1994-12-27 Jarvik; Robert Cannula pumps for temporary cardiac support and methods of their application and use
FR2698560B1 (fr) 1992-11-30 1995-02-03 Virbac Laboratoires Principes actifs pulvérulents stabilisés, compositions les contenant, leur procédé d'obtention et leurs applications.
EP0673559A1 (en) 1992-12-14 1995-09-27 Honeywell Inc. Motor system with individually controlled redundant windings
JP2583924Y2 (ja) 1992-12-25 1998-10-27 エヌティエヌ株式会社 クリーンポンプ
US5332374A (en) 1992-12-30 1994-07-26 Ralph Kricker Axially coupled flat magnetic pump
US5313128A (en) 1993-02-03 1994-05-17 Seagate Technology, Inc. Lead wire elimination for enclosed spindle motor
US5643226A (en) 1993-02-24 1997-07-01 Minnesota Mining And Manufacturing Low velocity aortic cannula
DE4321260C1 (de) 1993-06-25 1995-03-09 Westphal Dieter Dipl Ing Dipl Blutpumpe als Zentrifugalpumpe
EP0706345B1 (en) 1993-07-01 2003-02-19 Boston Scientific Limited Imaging, electrical potential sensing, and ablation catheters
JPH0714220U (ja) 1993-08-18 1995-03-10 アスモ株式会社 液中軸受
US5527159A (en) 1993-11-10 1996-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rotary blood pump
JPH0742869U (ja) 1993-12-28 1995-08-11 象印マホービン株式会社 遠心ポンプ
US5708346A (en) 1994-01-10 1998-01-13 Sulzer Electronics Ag Method and control apparatus for controlling an AC-machine
WO1995020982A1 (en) 1994-02-01 1995-08-10 Howmedica Inc. Coated femoral stem prosthesis
US5597377A (en) 1994-05-06 1997-01-28 Trustees Of Boston University Coronary sinus reperfusion catheter
US5607407A (en) 1994-05-09 1997-03-04 Tolkoff; Marc J. Catheter assembly
US5507629A (en) 1994-06-17 1996-04-16 Jarvik; Robert Artificial hearts with permanent magnet bearings
US5504978A (en) 1994-07-15 1996-04-09 Meyer, Iii; Harold A. Locking clamp assembly
US5569111A (en) 1994-10-11 1996-10-29 The United States Of America As Represented By The Secretary Of The Navy Permanent magnet torque/force transfer apparatus
US5613935A (en) 1994-12-16 1997-03-25 Jarvik; Robert High reliability cardiac assist system
US5630836A (en) 1995-01-19 1997-05-20 Vascor, Inc. Transcutaneous energy and information transmission apparatus
CA2210762C (en) 1995-04-03 2008-06-17 Sulzer Electronics Ag Rotary machine with an electromagnetic rotary drive
US5725357A (en) 1995-04-03 1998-03-10 Ntn Corporation Magnetically suspended type pump
US5707218A (en) 1995-04-19 1998-01-13 Nimbus, Inc. Implantable electric axial-flow blood pump with blood cooled bearing
US5588812A (en) 1995-04-19 1996-12-31 Nimbus, Inc. Implantable electric axial-flow blood pump
US5924848A (en) 1995-06-01 1999-07-20 Advanced Bionics, Inc. Blood pump having radial vanes with enclosed magnetic drive components
US5938412A (en) 1995-06-01 1999-08-17 Advanced Bionics, Inc. Blood pump having rotor with internal bore for fluid flow
US6206659B1 (en) 1995-06-01 2001-03-27 Advanced Bionics, Inc. Magnetically driven rotor for blood pump
US5793974A (en) 1995-06-30 1998-08-11 Sun Microsystems, Inc. Network navigation and viewing system for network management system
US6007479A (en) 1996-07-08 1999-12-28 H.D.S. Systems Ltd. Heart assist system and method
US5575630A (en) 1995-08-08 1996-11-19 Kyocera Corporation Blood pump having magnetic attraction
US6365996B2 (en) 1995-08-18 2002-04-02 Lust Antriebstechnik Gmbh Radial active magnetic bearing apparatus and a method for operating the same
US5924975A (en) 1995-08-30 1999-07-20 International Business Machines Corporation Linear pump
DE19535781C2 (de) 1995-09-26 1999-11-11 Fraunhofer Ges Forschung Vorrichtung zur aktiven Strömungsunterstützung von Körperflüssigkeiten
JPH09122228A (ja) 1995-10-27 1997-05-13 Terumo Corp 遠心ポンプ駆動制御装置および体外循環血液回路用送血装置
US5917295A (en) 1996-01-31 1999-06-29 Kaman Electromagnetics Corporation Motor drive system having a plurality of series connected H-bridges
US5947703A (en) 1996-01-31 1999-09-07 Ntn Corporation Centrifugal blood pump assembly
US5695471A (en) 1996-02-20 1997-12-09 Kriton Medical, Inc. Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
US5840070A (en) 1996-02-20 1998-11-24 Kriton Medical, Inc. Sealless rotary blood pump
DE19613564C1 (de) 1996-04-04 1998-01-08 Guenter Prof Dr Rau Intravasale Blutpumpe
US5911685A (en) 1996-04-03 1999-06-15 Guidant Corporation Method and apparatus for cardiac blood flow assistance
US5868703A (en) 1996-04-10 1999-02-09 Endoscopic Technologies, Inc. Multichannel catheter
US5738649A (en) 1996-04-16 1998-04-14 Cardeon Corporation Peripheral entry biventricular catheter system for providing access to the heart for cardiopulmonary surgery or for prolonged circulatory support of the heart
US5611679A (en) 1996-04-22 1997-03-18 Eastman Kodak Company Corrosion-resistant pump
US5814011A (en) 1996-04-25 1998-09-29 Medtronic, Inc. Active intravascular lung
US5746709A (en) 1996-04-25 1998-05-05 Medtronic, Inc. Intravascular pump and bypass assembly and method for using the same
US6394769B1 (en) 1996-05-03 2002-05-28 Medquest Products, Inc. Pump having a magnetically suspended rotor with one active control axis
US6074180A (en) 1996-05-03 2000-06-13 Medquest Products, Inc. Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
US6254359B1 (en) 1996-05-10 2001-07-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for providing a jewel bearing for supporting a pump rotor shaft
JPH09313600A (ja) 1996-05-28 1997-12-09 Terumo Corp 遠心式液体ポンプ装置
US6244835B1 (en) 1996-06-26 2001-06-12 James F. Antaki Blood pump having a magnetically suspended rotor
DE19629614A1 (de) 1996-07-23 1998-01-29 Cardiotools Herzchirurgietechn Linksherzassistpumpe
DE59706479D1 (de) 1996-07-25 2002-04-04 Lust Antriebstechnik Gmbh Anordnung und Verfahren zum Betreiben einer magnetgelagerten, elektromotorischen Antriebsvorrichtung bei einer Netzstörung
US5755783A (en) 1996-07-29 1998-05-26 Stobie; Robert Suture rings for rotatable artificial heart valves
JP4390856B2 (ja) 1996-09-10 2009-12-24 レビトロニクス エルエルシー ロータリー・ポンプ及びその駆動方法
EP0930857B1 (en) 1996-09-13 2003-05-02 Medtronic, Inc. Prosthetic heart valve with suturing member having non-uniform radial width
US5984892A (en) 1996-09-16 1999-11-16 Minnesota Mining And Manufacturing Company Blood aspirator
US5851174A (en) 1996-09-17 1998-12-22 Robert Jarvik Cardiac support device
EP0951302B8 (en) 1996-10-04 2006-04-19 United States Surgical Corporation Circulatory support system
US5795074A (en) 1996-10-08 1998-08-18 Seagate Technology, Inc. Grooved hydrodynamic thrust bearing
US6071093A (en) 1996-10-18 2000-06-06 Abiomed, Inc. Bearingless blood pump and electronic drive system
US5888242A (en) 1996-11-01 1999-03-30 Nimbus, Inc. Speed control system for implanted blood pumps
US5776111A (en) 1996-11-07 1998-07-07 Medical Components, Inc. Multiple catheter assembly
US5807311A (en) 1996-11-29 1998-09-15 Palestrant; Aubrey M. Dialysis catheter having rigid and collapsible lumens and related method
US6285910B1 (en) 1997-04-21 2001-09-04 Medtronic, Inc. Medical electrical lead
US5945753A (en) 1997-02-21 1999-08-31 Canon Kabushiki Kaisha Motor
JP4258026B2 (ja) 1997-02-28 2009-04-30 住友電気工業株式会社 動圧気体軸受構造およびその製造方法
US5890883A (en) 1997-03-19 1999-04-06 The Cleveland Clinic Foundation Rotodynamic pump with non-circular hydrodynamic bearing journal
US5964694A (en) 1997-04-02 1999-10-12 Guidant Corporation Method and apparatus for cardiac blood flow assistance
AUPO902797A0 (en) 1997-09-05 1997-10-02 Cortronix Pty Ltd A rotary blood pump with hydrodynamically suspended impeller
JPH10331841A (ja) 1997-05-27 1998-12-15 Sony Corp 動圧流体軸受装置及び動圧流体軸受装置の製造方法
DE19726351A1 (de) 1997-06-21 1999-01-14 Wolfgang Dr Amrhein Magnetgelagerter elektrischer Antrieb mit integriertem Wicklungssystem
US6532964B2 (en) 1997-07-11 2003-03-18 A-Med Systems, Inc. Pulmonary and circulatory blood flow support devices and methods for heart surgery procedures
US6709418B1 (en) 1997-07-11 2004-03-23 A-Med Systems, Inc. Apparatus and methods for entering cavities of the body
US6123725A (en) 1997-07-11 2000-09-26 A-Med Systems, Inc. Single port cardiac support apparatus
EP0928613A4 (en) 1997-07-25 2001-01-17 Sun Medical Technology Res Cor PORTABLE CONTROL SYSTEM FOR ARTIFICIAL HEART
DE59712591D1 (de) 1997-08-25 2006-05-04 Levitronix Llc Magnetgelagerte Rotationsanordnung
EP0900572B1 (de) 1997-09-04 2005-01-12 Levitronix LLC Zentrifugalpumpe
JP3919896B2 (ja) 1997-09-05 2007-05-30 テルモ株式会社 遠心式液体ポンプ装置
US6250880B1 (en) 1997-09-05 2001-06-26 Ventrassist Pty. Ltd Rotary pump with exclusively hydrodynamically suspended impeller
US6183412B1 (en) 1997-10-02 2001-02-06 Micromed Technology, Inc. Implantable pump system
US6610004B2 (en) 1997-10-09 2003-08-26 Orqis Medical Corporation Implantable heart assist system and method of applying same
UA56262C2 (uk) 1997-10-09 2003-05-15 Орквіс Медікел Корпорейшн Імплантовувана система підтримки серця
US6387037B1 (en) 1997-10-09 2002-05-14 Orqis Medical Corporation Implantable heart assist system and method of applying same
US6422990B1 (en) 1997-11-26 2002-07-23 Vascor, Inc. Blood pump flow rate control method and apparatus utilizing multiple sensors
US5928131A (en) 1997-11-26 1999-07-27 Vascor, Inc. Magnetically suspended fluid pump and control system
US6293901B1 (en) 1997-11-26 2001-09-25 Vascor, Inc. Magnetically suspended fluid pump and control system
JPH11244377A (ja) 1998-03-03 1999-09-14 Terumo Corp 遠心式血液ポンプ装置
DE29804046U1 (de) 1998-03-07 1998-04-30 Schmitz Rode Thomas Dipl Ing D Perkutan implantierbare selbstentfaltbare Axialpumpe zur temporären Herzunterstützung
US6176822B1 (en) 1998-03-31 2001-01-23 Impella Cardiotechnik Gmbh Intracardiac blood pump
US6086527A (en) 1998-04-02 2000-07-11 Scimed Life Systems, Inc. System for treating congestive heart failure
CA2330048C (en) 1998-04-22 2004-04-20 University Of Utah Implantable centrifugal blood pump with hybrid magnetic bearings
US6508777B1 (en) 1998-05-08 2003-01-21 Cardeon Corporation Circulatory support system and method of use for isolated segmental perfusion
DE19821307C1 (de) 1998-05-13 1999-10-21 Impella Cardiotech Gmbh Intrakardiale Blutpumpe
EP0971212B1 (de) 1998-07-10 2011-04-20 Levitronix LLC Verfahren zur Bestimmung des Druckverlustes und des Durchflusses durch eine Pumpe
US6042347A (en) 1998-07-27 2000-03-28 Scholl; Frank G. Pedia-cadio pump
US6135943A (en) 1998-08-07 2000-10-24 Cardiac Assist Technologies, Inc. Non-invasive flow indicator for a rotary blood pump
DE59915016D1 (de) 1998-08-24 2009-06-18 Levitronix Llc Verfahren zum Bestimmen der radialen Position eines permanentmagnetischen Rotors und elektromagnetischer Drehantrieb
DE59914570D1 (de) 1998-08-24 2008-01-17 Levitronix Llc Sensoranordnung in einem elektromagnetischen Drehantrieb
WO2000018448A2 (en) 1998-09-30 2000-04-06 A-Med Systems, Inc. Method and apparatus for preventing air embolisms
US6149683A (en) 1998-10-05 2000-11-21 Kriton Medical, Inc. Power system for an implantable heart pump
US6264635B1 (en) 1998-12-03 2001-07-24 Kriton Medical, Inc. Active magnetic bearing system for blood pump
US6926662B1 (en) 1998-12-23 2005-08-09 A-Med Systems, Inc. Left and right side heart support
US6158984A (en) 1998-12-28 2000-12-12 Kriton Medical, Inc. Rotary blood pump with ceramic members
JP2000199520A (ja) 1999-01-06 2000-07-18 Konica Corp 回転装置
US7329236B2 (en) 1999-01-11 2008-02-12 Flowmedica, Inc. Intra-aortic renal drug delivery catheter
US6749598B1 (en) 1999-01-11 2004-06-15 Flowmedica, Inc. Apparatus and methods for treating congestive heart disease
US7122019B1 (en) 2000-11-28 2006-10-17 Flowmedica Inc. Intra-aortic renal drug delivery catheter
US6123659A (en) 1999-01-26 2000-09-26 Nimbus Inc. Blood pump with profiled outflow region
US6245007B1 (en) 1999-01-28 2001-06-12 Terumo Cardiovascular Systems Corporation Blood pump
US6319231B1 (en) 1999-02-12 2001-11-20 Abiomed, Inc. Medical connector
EP1034808A1 (en) 1999-03-09 2000-09-13 Paul Frederik Gründeman A device for transventricular mechanical circulatory support
US6295877B1 (en) 1999-03-30 2001-10-02 A-Med Systems, Inc. Pressure sensing cannula
AU4297800A (en) 1999-04-20 2000-11-02 Forschungszentrum Julich Gmbh Rotor device
WO2000064509A1 (en) 1999-04-23 2000-11-02 Ventrassist Pty Ltd A rotary blood pump and control system therefor
AUPP995999A0 (en) 1999-04-23 1999-05-20 University Of Technology, Sydney Non-contact estimation and control system
US6234772B1 (en) 1999-04-28 2001-05-22 Kriton Medical, Inc. Rotary blood pump
JP4043644B2 (ja) 1999-05-06 2008-02-06 日本電産株式会社 動圧軸受装置の製造方法
US6146325A (en) 1999-06-03 2000-11-14 Arrow International, Inc. Ventricular assist device
EP1063753B1 (de) 1999-06-22 2009-07-22 Levitronix LLC Elektrischer Drehantrieb mit einem magnetisch gelagerten Rotor
US6190304B1 (en) 1999-07-13 2001-02-20 University Of North Texas Health Science Center At Fort Worth Enhanced intra-aortic balloon assist device
US6247892B1 (en) 1999-07-26 2001-06-19 Impsa International Inc. Continuous flow rotary pump
US7022100B1 (en) 1999-09-03 2006-04-04 A-Med Systems, Inc. Guidable intravascular blood pump and related methods
US6227820B1 (en) 1999-10-05 2001-05-08 Robert Jarvik Axial force null position magnetic bearing and rotary blood pumps which use them
DE29921352U1 (de) 1999-12-04 2001-04-12 Impella Cardiotech Ag Intravasale Blutpumpe
US20010039369A1 (en) 1999-12-14 2001-11-08 Terentiev Alexandre N. Blood pump system
EP1113177B1 (en) 1999-12-27 2003-12-03 Ntn Corporation Magnetically levitated pump
DE19963662C2 (de) 1999-12-29 2003-10-16 Guido Brohlburg Direkt beschiefertes Aufsparren Dämmsystem für Hausdächer
US6439845B1 (en) 2000-03-23 2002-08-27 Kidney Replacement Services, P.C. Blood pump
DE60107401T2 (de) 2000-03-27 2005-11-24 The Cleveland Clinic Foundation, Cleveland Chronisches leistungssteuerungssystem für rotodynamische blutpumpe
JP2001309628A (ja) 2000-04-19 2001-11-02 Unisia Jecs Corp モータポンプ
US6547530B2 (en) 2000-05-19 2003-04-15 Ntn Corporation Fluid pump apparatus
US6320731B1 (en) 2000-05-24 2001-11-20 Electric Boat Corporation Fault tolerant motor drive arrangement with independent phase connections and monitoring system
US6589030B2 (en) 2000-06-20 2003-07-08 Ntn Corporation Magnetically levitated pump apparatus
US6458163B1 (en) 2000-07-11 2002-10-01 Prosthetic Design, Inc. Coupling-socket adapter assembly for a prosthetic limb
US6626644B2 (en) 2000-10-30 2003-09-30 Ntn Corporation Magnetically levitated pump and controlling circuit
ATE547986T1 (de) 2000-11-16 2012-03-15 Donald J Hill Automatische nahtfadenhaltevorrichtung und betriebsverfahren
DE10058669B4 (de) 2000-11-25 2004-05-06 Impella Cardiotechnik Ag Mikromotor
DE10059714C1 (de) 2000-12-01 2002-05-08 Impella Cardiotech Ag Intravasale Pumpe
DE10060275A1 (de) 2000-12-05 2002-06-13 Impella Cardiotech Ag Verfahren zum Kalibrieren eines Drucksensors oder eines Flussensors an einer Rotationspumpe
US20020095210A1 (en) 2001-01-16 2002-07-18 Finnegan Michael T. Heart pump graft connector and system
DE10108810A1 (de) 2001-02-16 2002-08-29 Berlin Heart Ag Vorrichtung zur axialen Förderung von Flüssigkeiten
US6547519B2 (en) 2001-04-13 2003-04-15 Hewlett Packard Development Company, L.P. Blower impeller apparatus with pivotable blades
DE10123138B4 (de) 2001-04-30 2007-09-27 Berlin Heart Ag Verfahren zur Lageregelung eines permanentmagnetisch gelagerten rotierenden Bauteils
US6517315B2 (en) 2001-05-29 2003-02-11 Hewlett-Packard Company Enhanced performance fan with the use of winglets
US20020188167A1 (en) 2001-06-06 2002-12-12 Anthony Viole Multilumen catheter for minimizing limb ischemia
US20030023302A1 (en) 2001-07-26 2003-01-30 Riyad Moe Sewing cuff assembly for heart valves
WO2003015609A2 (en) 2001-08-16 2003-02-27 Apex Medical, Inc. Physiological heart pump control
US6522093B1 (en) 2001-08-16 2003-02-18 Prolific Technology, Inc. Method for driving a brushless DC motor
TW561226B (en) 2001-09-25 2003-11-11 Matsushita Electric Ind Co Ltd Ultra-thin pump and cooling system including the pump
US6942672B2 (en) 2001-10-23 2005-09-13 Vascor, Inc. Method and apparatus for attaching a conduit to the heart or a blood vessel
US6692318B2 (en) 2001-10-26 2004-02-17 The Penn State Research Foundation Mixed flow pump
JP4060570B2 (ja) 2001-11-02 2008-03-12 テルモ株式会社 遠心式血液ポンプ
US6641378B2 (en) 2001-11-13 2003-11-04 William D. Davis Pump with electrodynamically supported impeller
US20030144574A1 (en) 2001-12-19 2003-07-31 Heilman Marlin S. Method and apparatus for providing limited back-flow in a blood pump during a non-pumping state
ITTO20011222A1 (it) 2001-12-27 2003-06-27 Gambro Lundia Ab Apparecchiatura per il controllo di flusso sanguigno in un circuito-extracorporeo di sangue.
US7396327B2 (en) 2002-01-07 2008-07-08 Micromed Technology, Inc. Blood pump system and method of operation
JP4288174B2 (ja) 2002-01-07 2009-07-01 マイクロメッド・テクノロジー・インコーポレイテッド ポンプシステム
JP2005514094A (ja) 2002-01-08 2005-05-19 マイクロメッド・テクノロジー・インコーポレイテッド 心室破壊を検知するための方法およびシステム
JP3996775B2 (ja) 2002-01-09 2007-10-24 テルモ株式会社 遠心式液体ポンプ装置
US6716157B2 (en) 2002-02-28 2004-04-06 Michael P. Goldowsky Magnetic suspension blood pump
US6991595B2 (en) 2002-04-19 2006-01-31 Thoratec Corporation Adaptive speed control for blood pump
US6884210B2 (en) 2002-06-12 2005-04-26 Miwatec Incorporated Blood pump
US20040024285A1 (en) 2002-06-21 2004-02-05 Helmut Muckter Blood pump with impeller
DE50206570D1 (de) 2002-06-24 2006-06-01 Storz Endoskop Prod Gmbh Vorrichtung zum Spülen eines Körperhohlraumes mit einer Flüssigkeit
US6997896B2 (en) 2002-06-24 2006-02-14 Karl Storz Gmbh & Co. Kg Apparatus for irrigating a body cavity with a liquid
US6732501B2 (en) 2002-06-26 2004-05-11 Heartware, Inc. Ventricular connector
US7241257B1 (en) 2002-06-28 2007-07-10 Abbott Cardiovascular Systems, Inc. Devices and methods to perform minimally invasive surgeries
US6949188B2 (en) 2002-07-15 2005-09-27 Geyer's Manufacturing & Design, Inc. Filter assembly having improved sealing features
US7172625B2 (en) 2002-07-16 2007-02-06 Medtronic, Inc. Suturing rings for implantable heart valve prostheses
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US7578843B2 (en) 2002-07-16 2009-08-25 Medtronic, Inc. Heart valve prosthesis
US6949066B2 (en) 2002-08-21 2005-09-27 World Heart Corporation Rotary blood pump diagnostics and cardiac output controller
US7284956B2 (en) 2002-09-10 2007-10-23 Miwatec Co., Ltd. Methods and apparatus for controlling a continuous flow rotary blood pump
US6817836B2 (en) 2002-09-10 2004-11-16 Miwatec Incorporated Methods and apparatus for controlling a continuous flow rotary blood pump
AU2002951685A0 (en) 2002-09-30 2002-10-17 Ventrassist Pty Ltd Physiological demand responsive control system
JP4186593B2 (ja) 2002-11-13 2008-11-26 松下電工株式会社 Dcブラシレスモータ及びそれを備えたdcポンプ
US6860713B2 (en) 2002-11-27 2005-03-01 Nidec Corporation Fan with collapsible blades, redundant fan system, and related method
EP1430919A1 (en) * 2002-12-17 2004-06-23 Terumo Kabushiki Kaisha Centrifugal blood pump apparatus
JP4456857B2 (ja) 2002-12-17 2010-04-28 テルモ株式会社 遠心式血液ポンプ装置
US7090401B2 (en) 2003-01-21 2006-08-15 Seagate Technology Llc Grooving pattern for grooved fluid bearing
US7088073B2 (en) 2003-01-24 2006-08-08 Toshiba Internationl Corporation Inverter drive system
US7048681B2 (en) 2003-03-28 2006-05-23 Terumo Corporation Method and apparatus for adjusting a length of the inflow conduit on a ventricular assist device
JP2004332566A (ja) 2003-04-30 2004-11-25 Yamada Seisakusho Co Ltd マグネットポンプ
JP2004346925A (ja) 2003-05-20 2004-12-09 Yoshio Yano 非接触ポンプの回転部分の非接触を確実にする装置
US6950029B2 (en) 2003-06-24 2005-09-27 Delphi Technologies, Inc. Airflow blockage detection apparatus for a permanent split-capacitor single-phase fan motor
US7128538B2 (en) 2003-07-07 2006-10-31 Terumo Corporation Centrifugal fluid pump apparatus
WO2005011087A1 (en) 2003-07-24 2005-02-03 Tesma International Inc. Electric fluid pump
US7682301B2 (en) 2003-09-18 2010-03-23 Thoratec Corporation Rotary blood pump
JP2005094955A (ja) 2003-09-18 2005-04-07 Toyota Central Res & Dev Lab Inc アキシャル型永久磁石モータ
ATE406685T1 (de) 2003-10-03 2008-09-15 Foster Miller Inc Drehpumpe mit elektromagnetischem lcr-lager
US6949908B2 (en) 2003-10-06 2005-09-27 Wavecrest Laboratories, Llc Fault-tolerant electric motor control system
JP4767488B2 (ja) 2003-10-23 2011-09-07 Ntn株式会社 磁気浮上型ポンプ
US7521885B2 (en) 2003-11-12 2009-04-21 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Wuerzburg Activation of an electric motor with continuous adjustment of the commutation angle
DE10355651B4 (de) 2003-11-28 2011-06-01 Minebea Co., Ltd. Verfahren zur Optimierung des Wirkungsgrades eines unter Last betriebenen Motors
JP2005245138A (ja) 2004-02-27 2005-09-08 Japan Servo Co Ltd モータ
EP1578003A1 (de) 2004-03-08 2005-09-21 Siemens Aktiengesellschaft Elektrische Maschine mit einer Vorrichtung zur Verschaltung von Leitungen des Wicklungssystems
DE102004019721A1 (de) 2004-03-18 2005-10-06 Medos Medizintechnik Ag Pumpe
JP4340178B2 (ja) 2004-03-24 2009-10-07 テルモ株式会社 遠心式血液ポンプ装置
DE602005019219D1 (de) 2004-03-24 2010-03-25 Terumo Corp Zentrifugalblutpumpe mit hydrodynamischer Lagerung
JP4233475B2 (ja) 2004-03-25 2009-03-04 テルモ株式会社 遠心式血液ポンプ装置
US7160243B2 (en) 2004-03-25 2007-01-09 Terumo Corporation Method and system for controlling blood pump flow
JP4340183B2 (ja) 2004-03-31 2009-10-07 テルモ株式会社 遠心式血液ポンプ装置
US8133034B2 (en) 2004-04-09 2012-03-13 Regal Beloit Epc Inc. Controller for a motor and a method of controlling the motor
US7172551B2 (en) 2004-04-12 2007-02-06 Scimed Life Systems, Inc. Cyclical pressure coronary assist pump
US20050261543A1 (en) 2004-05-18 2005-11-24 Yusuke Abe Implantable artificial ventricular assist device
JP2006002937A (ja) 2004-05-20 2006-01-05 Minebea Co Ltd 流体動圧軸受装置およびその製造方法、スピンドルモータ、および記録ディスク駆動装置
JP2006070476A (ja) 2004-08-31 2006-03-16 Asahi Glass Matex Co Ltd 駅舎屋根用部材
KR100600758B1 (ko) 2004-09-15 2006-07-19 엘지전자 주식회사 모터의 스테이터 및 그 제조방법
US7393181B2 (en) 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
CN1914429A (zh) 2004-11-02 2007-02-14 松下电器产业株式会社 推力动压轴承和使用其的主轴电机与使用该主轴电机的信息记录再现装置
US7699586B2 (en) 2004-12-03 2010-04-20 Heartware, Inc. Wide blade, axial flow pump
US7972122B2 (en) 2005-04-29 2011-07-05 Heartware, Inc. Multiple rotor, wide blade, axial flow pump
US8419609B2 (en) 2005-10-05 2013-04-16 Heartware Inc. Impeller for a rotary ventricular assist device
JP4759261B2 (ja) 2004-12-16 2011-08-31 テルモ株式会社 遠心式血液ポンプ装置
JP2006245455A (ja) 2005-03-07 2006-09-14 Ricoh Co Ltd 可変インダクタ
JP2006254619A (ja) 2005-03-11 2006-09-21 Daikin Ind Ltd コアと、電機子、モータ及び圧縮機並びにそれらの製造方法
DE102005017546A1 (de) 2005-04-16 2006-10-19 Impella Cardiosystems Gmbh Verfahren zur Steuerung einer Blutpumpe
EP2438937B1 (en) 2005-06-06 2015-10-28 The Cleveland Clinic Foundation Blood pump
JP2007002885A (ja) 2005-06-22 2007-01-11 Aisin Takaoka Ltd 差動装置
JP4758166B2 (ja) 2005-08-03 2011-08-24 アスモ株式会社 モータ及びウォータポンプ
US8657875B2 (en) 2005-09-26 2014-02-25 Abiomed, Inc. Method and apparatus for pumping blood
JP4472610B2 (ja) 2005-09-30 2010-06-02 テルモ株式会社 遠心式血液ポンプ装置
JP4472612B2 (ja) 2005-09-30 2010-06-02 テルモ株式会社 遠心式血液ポンプ装置
US20070142923A1 (en) 2005-11-04 2007-06-21 Ayre Peter J Control systems for rotary blood pumps
US9744279B2 (en) 2005-12-08 2017-08-29 Heartware, Inc. Implant connector
CA2636418A1 (en) 2006-01-13 2007-07-26 Heartware, Inc. Rotary blood pump
US8672611B2 (en) 2006-01-13 2014-03-18 Heartware, Inc. Stabilizing drive for contactless rotary blood pump impeller
JP5068951B2 (ja) 2006-02-08 2012-11-07 本田技研工業株式会社 モータ用ロータの製造方法および製造装置
US20070213690A1 (en) 2006-03-08 2007-09-13 Nickolas Phillips Blood conduit connector
JP2007247489A (ja) 2006-03-15 2007-09-27 Asmo Co Ltd 電動ポンプ
CN101404935B (zh) 2006-03-22 2012-11-07 松下电器产业株式会社 血液检查装置
EP1997434B1 (en) 2006-03-22 2013-05-15 Panasonic Corporation Blood inspection device
WO2007108518A1 (ja) 2006-03-22 2007-09-27 Matsushita Electric Industrial Co., Ltd. 血液検査装置およびその制御方法
EP1997433B1 (en) 2006-03-22 2013-05-15 Panasonic Corporation Laser perforation device and laser perforation method
JP2009530041A (ja) 2006-03-23 2009-08-27 ザ・ペン・ステート・リサーチ・ファンデーション 拡張可能なインペラポンプを有する心臓補助装置
AU2007233078B2 (en) 2006-03-31 2011-11-24 Thoratec Corporation Rotary blood pump
EP1847281A1 (en) 2006-04-20 2007-10-24 Ventrassist Pty Ltd System and method of controlling a rotary blood pump
US7850594B2 (en) 2006-05-09 2010-12-14 Thoratec Corporation Pulsatile control system for a rotary blood pump
JP4264906B2 (ja) 2006-06-22 2009-05-20 株式会社日立製作所 誘導電動機駆動装置
JP4898319B2 (ja) * 2006-06-23 2012-03-14 テルモ株式会社 血液ポンプ装置
JP2008011611A (ja) 2006-06-28 2008-01-17 Victor Co Of Japan Ltd モータ
US7963905B2 (en) 2006-10-11 2011-06-21 Thoratec Corporation Control system for a blood pump
JP5217145B2 (ja) 2006-10-12 2013-06-19 ダイキン工業株式会社 界磁子及び電機子用磁心並びに電機子及びモータ
JP2008104278A (ja) 2006-10-18 2008-05-01 Honda Motor Co Ltd モータ
JP4787726B2 (ja) 2006-11-28 2011-10-05 テルモ株式会社 センサレス磁気軸受型血液ポンプ装置
JP4962033B2 (ja) 2007-02-06 2012-06-27 ダイキン工業株式会社 アキシャルギャップ型モータ
JP4333751B2 (ja) 2007-02-15 2009-09-16 株式会社デンソー ブラシレスモータの駆動装置
DE102007008860B4 (de) 2007-02-23 2013-10-31 Minebea Co., Ltd. Fluiddynamisches Lager mit Druck erzeugenden Oberflächenstrukturen
JP5442598B2 (ja) 2007-04-30 2014-03-12 ハートウェア、インコーポレイテッド 遠心回転血液ポンプ
JP2008301634A (ja) 2007-05-31 2008-12-11 Nidec Sankyo Corp モータ
JP4959424B2 (ja) 2007-05-31 2012-06-20 勇 青谷 ポンプ装置
WO2008154393A1 (en) 2007-06-06 2008-12-18 Worldheart Corporation Implantable vad with replaceable percutaneous cable
JP4707696B2 (ja) 2007-06-26 2011-06-22 本田技研工業株式会社 アキシャルギャップ型モータ
EP2020246A1 (en) 2007-08-03 2009-02-04 Berlin Heart GmbH Control of rotary blood pump with selectable therapeutic options
US9044535B2 (en) 2007-08-07 2015-06-02 Terumo Cardiovascular Systems Corp. Extracorporeal blood pump with disposable pump head portion having magnetically levitated impeller
DE102007043575A1 (de) 2007-09-13 2009-03-26 Minebea Co., Ltd. Fluiddynamische Lagerstruktur und fluiddynamisches Lager
SG170089A1 (en) 2007-10-29 2011-04-29 Semiconductor Energy Lab Formation method of single crystal semiconductor layer, formation method of crystalline semiconductor layer, formation method of polycrystalline layer, and method for manufacturing semiconductor device
EP2231223B1 (en) 2007-12-27 2018-10-03 Heartware, Inc. Vad connector plug
JP5250755B2 (ja) 2008-03-25 2013-07-31 株式会社サンメディカル技術研究所 補助人工心臓ポンプ駆動装置及び補助人工心臓システム
US8157447B2 (en) 2008-04-13 2012-04-17 Seagate Technology Llc Groove configuration for a fluid dynamic bearing
JP5250866B2 (ja) 2008-06-11 2013-07-31 株式会社サンメディカル技術研究所 人工心臓制御装置及び人工心臓システム
EP2292282B1 (en) 2008-06-23 2017-11-15 Thoratec Corporation Blood pump apparatus
JP5347171B2 (ja) 2008-12-11 2013-11-20 ソラテック コーポレーション 遠心式ポンプ装置
JP5577503B2 (ja) * 2008-12-08 2014-08-27 ソーラテック コーポレイション 遠心式ポンプ装置
US8449444B2 (en) 2009-02-27 2013-05-28 Thoratec Corporation Blood flow meter
CN102341600B (zh) 2009-03-06 2014-12-10 胸腔科技有限公司 离心式泵装置
CN101841291B (zh) 2009-03-20 2012-08-22 中山大洋电机股份有限公司 一种直流无刷电机控制方法
US8167593B2 (en) 2009-04-16 2012-05-01 The Board Of Regents Of The University Of Texas System System and method for pump with deformable bearing surface
US9782527B2 (en) 2009-05-27 2017-10-10 Tc1 Llc Monitoring of redundant conductors
CA2769631A1 (en) 2009-07-01 2011-01-06 The Penn State Research Foundation Blood pump with expandable cannula
EP3490122B1 (en) 2009-07-29 2021-01-27 Thoratec Corporation Rotation drive device and centrifugal pump device
US20110118829A1 (en) 2009-11-15 2011-05-19 Thoratec Corporation Attachment device and method
US9682180B2 (en) 2009-11-15 2017-06-20 Thoratec Corporation Attachment system, device and method
US20110118833A1 (en) 2009-11-15 2011-05-19 Thoratec Corporation Attachment device and method
US8864644B2 (en) 2010-01-19 2014-10-21 Heartware, Inc. Physiologically responsive VAD
JP5443197B2 (ja) 2010-02-16 2014-03-19 ソラテック コーポレーション 遠心式ポンプ装置
JP5811469B2 (ja) 2010-03-05 2015-11-11 ミネトロニクス インコーポレイティド 機械的循環補助システムのための一体型電源を持つ携帯用コントローラ
WO2011118325A1 (ja) 2010-03-26 2011-09-29 テルモ株式会社 遠心式血液ポンプ装置
JP5681403B2 (ja) 2010-07-12 2015-03-11 ソーラテック コーポレイション 遠心式ポンプ装置
WO2012012552A1 (en) 2010-07-22 2012-01-26 Thoratec Corporation Controlling implanted blood pumps
JP5577506B2 (ja) 2010-09-14 2014-08-27 ソーラテック コーポレイション 遠心式ポンプ装置
JP5852122B2 (ja) 2010-09-24 2016-02-03 ソーラテック コーポレイション 循環補助装置の制御
TW201219072A (en) 2010-09-24 2012-05-16 Thoratec Corp Generating artificial pulse
AU2011312606A1 (en) 2010-10-07 2013-05-30 Everheart Systems, Inc. Cardiac support systems and methods for chronic use
EP2627366B1 (en) 2010-10-13 2016-08-31 Thoratec Corporation Blood pump
KR20140015291A (ko) 2010-12-09 2014-02-06 하트웨어, 인코포레이티드 이식가능 혈액 펌프용 컨트롤러 및 전원
US9492601B2 (en) 2011-01-21 2016-11-15 Heartware, Inc. Suction detection on an axial blood pump using BEMF data
CA2825354A1 (en) 2011-01-21 2012-07-26 Heartware, Inc. Flow estimation in a blood pump
JP2012200285A (ja) 2011-03-23 2012-10-22 Toshiba Corp 画像処理装置、x線ct装置、及び画像処理方法
EP2693609B1 (en) 2011-03-28 2017-05-03 Thoratec Corporation Rotation and drive device and centrifugal pump device using same
US8535212B2 (en) 2011-03-30 2013-09-17 Jarvik Robert Centrifugal blood pumps with reverse flow washout
WO2013003370A2 (en) 2011-06-27 2013-01-03 Heartware, Inc. Flow estimation in a blood pump
DE112012002922T5 (de) 2011-07-11 2014-03-27 Vascor, Inc. Transkutane Leistungsübertragung und Kommunikation für implantierte Herzunterstützungs- und andere Vorrichtungen
US10426878B2 (en) 2011-08-17 2019-10-01 Flow Forward Medical, Inc. Centrifugal blood pump systems
US8613739B2 (en) 2011-12-16 2013-12-24 Baxter International Inc. Medical tubing connection assembly
US8579790B2 (en) 2012-01-05 2013-11-12 Thoratec Corporation Apical ring for ventricular assist device
US8882744B2 (en) 2012-02-27 2014-11-11 Thoratec Corporation Quick-connect outflow tube for ventricular assist device
US9427510B2 (en) 2012-08-31 2016-08-30 Thoratec Corporation Start-up algorithm for an implantable blood pump
WO2014036416A1 (en) 2012-08-31 2014-03-06 Thoratec Corporation Instability detection algorithm for an implantable blood pump
US9585991B2 (en) 2012-10-16 2017-03-07 Heartware, Inc. Devices, systems, and methods for facilitating flow from the heart to a blood pump
US9713662B2 (en) 2012-11-30 2017-07-25 The Penn State Research Foundation Smart tip LVAD inlet cannula
US8968174B2 (en) 2013-01-16 2015-03-03 Thoratec Corporation Motor fault monitor for implantable blood pump
US8652024B1 (en) 2013-01-23 2014-02-18 Thoratec Corporation Sterilizable cable system for implantable blood pump
US20150374892A1 (en) 2013-01-23 2015-12-31 Thoratec Corporation Cable system for implantable blood pump with accidental disconnection prevention
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US20140275721A1 (en) 2013-03-14 2014-09-18 Thoratec Corporation Centrifugal Blood Pump With Partitioned Implantable Device
US9919088B2 (en) 2013-03-14 2018-03-20 Yale University Implantable heart pump controller
US8882477B2 (en) 2013-03-14 2014-11-11 Circulite, Inc. Magnetically levitated and driven blood pump and method for using the same
US20140309481A1 (en) 2013-04-11 2014-10-16 Thoratec Corporation Rotary pump with levitated impeller having thrust bearing for improved startup
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US9795726B2 (en) 2014-06-18 2017-10-24 Heartware, Inc. Methods and devices for identifying suction events
US20160058930A1 (en) 2014-08-26 2016-03-03 Thoratec Corporation Blood pump and method of suction detection
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
WO2016130944A1 (en) 2015-02-12 2016-08-18 Thoratec Corporation System and method for controlling the position of a levitated rotor
WO2016130989A1 (en) 2015-02-13 2016-08-18 Thoratec Corporation Impeller suspension mechanism for heart pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932069A (en) * 1974-12-19 1976-01-13 Ford Motor Company Variable reluctance motor pump
WO2010067682A1 (ja) * 2008-12-08 2010-06-17 Ntn株式会社 遠心式ポンプ装置
WO2010101082A1 (ja) * 2009-03-05 2010-09-10 Ntn株式会社 遠心式ポンプ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2618001A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638202B2 (en) 2010-09-14 2017-05-02 Tc1 Llc Centrifugal pump apparatus
US9850906B2 (en) 2011-03-28 2017-12-26 Tc1 Llc Rotation drive device and centrifugal pump apparatus employing same
US9709061B2 (en) 2013-01-24 2017-07-18 Tc1 Llc Impeller position compensation using field oriented control
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US10506935B2 (en) 2015-02-11 2019-12-17 Tc1 Llc Heart beat identification and pump speed synchronization
US11712167B2 (en) 2015-02-11 2023-08-01 Tc1 Llc Heart beat identification and pump speed synchronization
US10856748B2 (en) 2015-02-11 2020-12-08 Tc1 Llc Heart beat identification and pump speed synchronization
US11015605B2 (en) 2015-02-12 2021-05-25 Tc1 Llc Alternating pump gaps
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10874782B2 (en) 2015-02-12 2020-12-29 Tc1 Llc System and method for controlling the position of a levitated rotor
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US11724097B2 (en) 2015-02-12 2023-08-15 Tc1 Llc System and method for controlling the position of a levitated rotor
US11781551B2 (en) 2015-02-12 2023-10-10 Tc1 Llc Alternating pump gaps
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
US10888645B2 (en) 2015-11-16 2021-01-12 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US11639722B2 (en) 2015-11-16 2023-05-02 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device

Also Published As

Publication number Publication date
JP2012062790A (ja) 2012-03-29
EP2618001A1 (en) 2013-07-24
US20160281728A1 (en) 2016-09-29
US9382908B2 (en) 2016-07-05
US9638202B2 (en) 2017-05-02
US20130170970A1 (en) 2013-07-04
JP5577506B2 (ja) 2014-08-27
EP2618001A4 (en) 2015-07-22
EP2618001B1 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP5577506B2 (ja) 遠心式ポンプ装置
JP5656835B2 (ja) 回転駆動装置およびそれを用いた遠心式ポンプ装置
JP5378010B2 (ja) 遠心式ポンプ装置
JP5443197B2 (ja) 遠心式ポンプ装置
JP6083929B2 (ja) 遠心式ポンプ装置
JP5681403B2 (ja) 遠心式ポンプ装置
JP5969979B2 (ja) 回転駆動装置およびそれを用いた遠心式ポンプ装置
WO2010067682A1 (ja) 遠心式ポンプ装置
JP5577503B2 (ja) 遠心式ポンプ装置
JP5378012B2 (ja) 遠心式ポンプ装置
JP2010136863A (ja) 遠心式ポンプ装置
WO2016158173A1 (ja) 遠心式ポンプ装置
JP5693812B2 (ja) 遠心式ポンプ装置
JP2012013043A (ja) 回転駆動装置およびそれを用いた遠心式ポンプ装置
JP2016188591A (ja) 遠心式ポンプ装置
JP2016188593A (ja) 遠心式ポンプ装置
WO2016158172A1 (ja) 遠心式ポンプ装置
JP6452518B2 (ja) 遠心式ポンプ装置
JP2012205349A (ja) 回転駆動装置およびそれを用いた遠心式ポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13822220

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011825062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011825062

Country of ref document: EP