US5725357A - Magnetically suspended type pump - Google Patents

Magnetically suspended type pump Download PDF

Info

Publication number
US5725357A
US5725357A US08/623,760 US62376096A US5725357A US 5725357 A US5725357 A US 5725357A US 62376096 A US62376096 A US 62376096A US 5725357 A US5725357 A US 5725357A
Authority
US
United States
Prior art keywords
impeller
motor
pressure
flow
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/623,760
Inventor
Tsugito Nakazeki
Hiroyoshi Ito
Teruaki Akamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP07787695A priority Critical patent/JP3546092B2/en
Priority to JP7-77876 priority
Priority to JP08926095A priority patent/JP3729889B2/en
Priority to JP7-89260 priority
Application filed by NTN Corp filed Critical NTN Corp
Assigned to NTN CORPORATION reassignment NTN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AKAMATSU, TERUAKI, ITO, HIROYOSHI, NAKAZEKI, TSUGITO
Publication of US5725357A publication Critical patent/US5725357A/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/10Blood pumps; Artificial hearts; Devices for mechanical circulatory assistance, e.g. intra-aortic balloon pumps
    • A61M1/101Non-positive displacement pumps, e.g. impeller, centrifugal, vane pumps
    • A61M1/1012Constructional features thereof
    • A61M1/1013Types of bearings
    • A61M1/1015Magnetic bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/10Blood pumps; Artificial hearts; Devices for mechanical circulatory assistance, e.g. intra-aortic balloon pumps
    • A61M1/101Non-positive displacement pumps, e.g. impeller, centrifugal, vane pumps
    • A61M1/1029Drive systems therefor
    • A61M1/1031Drive systems therefor using a motor with canned rotor, i.e. a motor enclosed within a casing along with the rotor so that the motor bearings are lubricated by the blood that is being pumped
    • A61M1/1036Drive systems therefor using a motor with canned rotor, i.e. a motor enclosed within a casing along with the rotor so that the motor bearings are lubricated by the blood that is being pumped using rotating magnets for driving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/026Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0666Units comprising pumps and their driving means the pump being electrically driven the motor being of the plane gap type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2066Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using controlling means acting on the pressure source
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0676Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on flow sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/10Blood pumps; Artificial hearts; Devices for mechanical circulatory assistance, e.g. intra-aortic balloon pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/10Blood pumps; Artificial hearts; Devices for mechanical circulatory assistance, e.g. intra-aortic balloon pumps
    • A61M1/101Non-positive displacement pumps, e.g. impeller, centrifugal, vane pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/10Blood pumps; Artificial hearts; Devices for mechanical circulatory assistance, e.g. intra-aortic balloon pumps
    • A61M1/101Non-positive displacement pumps, e.g. impeller, centrifugal, vane pumps
    • A61M1/1012Constructional features thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/10Blood pumps; Artificial hearts; Devices for mechanical circulatory assistance, e.g. intra-aortic balloon pumps
    • A61M1/1086Regulating or controlling systems therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/10Blood pumps; Artificial hearts; Devices for mechanical circulatory assistance, e.g. intra-aortic balloon pumps
    • A61M1/12Blood pumps; Artificial hearts; Devices for mechanical circulatory assistance, e.g. intra-aortic balloon pumps implantable into the body
    • A61M1/122Heart assist devices, i.e. for assisting an ailing heart, using additional pumping means in the blood circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/51Bearings magnetic
    • F05B2240/515Bearings magnetic electromagnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/90Rotary blood pump

Abstract

In a magnetically suspended type pump, an operating state of the pump can be obtained without using a pressure gauge and a flowmeter. In addition, in the case where the magnetically suspended type pump is applied to a blood pump, in order to reduce the number of connections in a flow path and to avoid thrombus formation, a correlation between current flowing in a motor and flow or a correlation between current flowing in the motor and pressure is obtained in advance, and the speed of rotation of motor is varied by a speed of rotation control circuit in response to an instruction from a CPU circuit, based on the obtained correlation between current and flow or between current and pressure, whereby flow or pressure is controlled.

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a magnetically suspended type pump. More specifically, the present invention relates to a magnetically suspended type pump which is used for medical instruments such as a blood pump and which calculates pump flow from current and the speed of rotation of a motor for driving an impeller.

2. Description of the Background Art

There are cases where an operating state of a pump is monitored at all times so that an apparatus is operated under optimal conditions, in addition to the case of a blood pump. Indications of an operating state of a pump includes a driving motor input (current and voltage), pressure at an inlet of the pump, output at an outlet thereof, and pump flow.

FIGS. 15 and 16 are diagrams each showing a pump system in which apparatuses for detecting these indications are inserted into a pump circuit. In FIG. 15, although voltage applied to a motor for driving a pump 71, current flowing therein and the speed of rotation thereof can be detected relatively easily, a differential pressure gauge 72 must be connected to both an inlet and an outlet of pump 71 in order to detect pressure, and a flowmeter 73 must be connected to the outlet of pump 71 in order to detect flow.

However, measuring apparatuses such as differential pressure gauge 72 and flowmeter 73 described above are expensive, and the number of connections of circuits such as shown in FIG. 16 is increased, so that thrombus formation is more likely to occur at a stepped portion of the connections if used in a blood pump as an artificial heart. Small clearance, stagnation of blood flow and vortex of flow must be avoided as much as possible in a circuit used for blood.

SUMMARY OF THE INVENTION

It is therefore a primary object of the present invention to provide a magnetically suspended type pump capable of calculating an operating state of the pump without using a pressure gauge and a flowmeter and of reducing the number of connection portions in a circuit when applied to a blood pump so that thrombus formation can be avoided.

In summary, the present invention is a magnetically suspended type pump which supports an impeller by a magnetic bearing and which can be driven by magnetic coupling through a partition therebetween, and in the pump, correlation between motor current and flow or between current and pressure is calculated by an electronic circuit and the speed of rotation of the motor is varied by a driving circuit based on the obtained correlation between current and flow or between current and pressure, whereby flow control or pressure control is carried out.

Consequently, according to the present invention, flow control or pressure control can be achieved without using a pressure gauge or a flowmeter as opposed to a conventional example and the number of connections in a flow path can be reduced, so that thrombus formation can be avoided even if the pump is applied to a blood pump.

In a more preferred embodiment, flow or pressure is corrected according to a value of blood viscosity obtained from disturbance response of the impeller supported by a magnetic bearing. Thus, correction of flow or pressure according to a value of blood viscosity is effective for improvement in accuracy in flow detection.

More preferably, superior sensitivity can be obtained by applying disturbance periodically in order to measure blood viscosity. A frequency of disturbance to be applied is selected to be in the range in which support rigidity of an impeller is smallest.

More preferably, in order to measure blood viscosity, only same frequency as disturbance is passed through a band pass filter.

More preferably, correction according to the speed of rotation is added in order to measure blood viscosity.

More preferably, an impeller has two coaxial blades, and a case includes inlets, outlets and pump chambers which serve as respective flow paths for these two blades. Accordingly, the present embodiment can achieve pumping function of two pumps with a single motor and a single impeller supporting system.

More preferably, these blades are different in shape from each other so that pump chambers have higher pressure and lower pressure at the fixed speed of ration, respectively.

More preferably, the impeller includes circular plates for separating two blades from each other, and the pump has a labyrinth seal structure formed so as to seal space between the circular plate and the case and have diameter increased from the lower pressure side towards the higher pressure side.

The impeller includes a ring-like circular plate provided between the case and the blade located on the lower pressure side for rotating coaxially with the blade, and a self-lubricant provided on the side of inner diameter of the ring-like circular plate for coming in contact with the case when the magnetic bearing malfunctions.

In addition, the magnetic bearing includes a passive type magnetic bearing for radially supporting one side of the impeller, and a control type magnetic bearing for controlling the axial direction of the impeller on the other side. It controls impeller motion about two axis which are at right angles to the axis of rotation.

The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram showing a magnetically suspended type pump in a cross section and a control circuit in accordance with one embodiment of the present invention.

FIG. 2 is a graph showing the relationship between outlet flow of the magnetically suspended type pump and driving current of a motor, which is obtained with the speed of rotation being changed.

FIG. 3 is a graph showing pump outer flow-pressure characteristics for each speed of rotation.

FIG. 4 is a flow chart illustrating the operation of one embodiment of the present invention.

FIG. 5 is a graph showing characteristics of the relationship between motor current and flow, which is obtained at a fixed speed of rotation with viscosity being changed.

FIG. 6 is a block diagram showing another embodiment of the present invention.

FIG. 7 is a block diagram showing another embodiment of the present invention.

FIG. 8 is a graph showing the relationship between motor driving current and pump flow, which is measured with fixed viscosity.

FIG. 9 is a graph showing the relationship between viscosity and displacement of an impeller produced when disturbance having a fixed amplitude is applied thereto in the form of the sin wave, which is obtained with disturbance frequency being changed.

FIG. 10 is a graph showing displacement of the impeller produced when disturbance of 70 Hz is applied thereto, which is measured with the speed of rotation of the impeller being changed.

FIGS. 11A and 11B are cross sections showing a further embodiment of a magnetically suspended type pump to which the present invention is applied.

FIGS. 12A-12D are cross sections each showing a main part of labyrinth seal used in an embodiment of the present invention.

FIGS. 13A and 13B are cross sections showing a still further embodiment of a magnetically suspended type pump.

FIGS. 14A and 14B are cross sections showing a yet further embodiment of a magnetically suspended type pump.

FIG. 15 is a diagram showing a conventional blood pump system.

FIG. 16 is a diagram showing a conventional pump system in which thrombus formation occurs.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 1 is a diagram showing a magnetically suspended type pump in a cross section and a control circuit in accordance with one embodiment of the present invention. In FIG. 1, a magnetically suspended type pump 1 is constituted by a motor portion 10, a pump portion 20 and a magnetic bearing portion 30. An impeller 22 is provided within a casing 21 of pump portion 20. Casing 21 is formed of a non-magnetic member, and impeller 22 includes a non-magnetic member 25 having a permanent magnet 24 constituting a passive type magnetic bearing, and a soft ion member 26 corresponding to a rotor of a control type magnetic bearing. Permanent magnet 24 is divided in the circumferential direction of impeller 22, and magnets adjacent to each other are polarized in opposite directions.

A rotor 12 supported by a shaft 11 is positioned outside casing 21 so as to be opposite to the side of permanent magnet 24 of impeller 22. Rotor 12 rotates when driven by a motor 13. The same number of permanent magnets 14 as that of magnets 24 located on the side of impeller 22 is provided in rotor 12 so as to be opposite to permanent magnet 24 in impeller 22 and to have attraction. On the other hand, an electromagnet 31 and a position sensor which is not shown are positioned in magnetic bearing portion 30 so as to be opposite to the side of soft iron member 26 of impeller 22 and to overcome the attraction of permanent magnets 24 and 14 in casing 21 to hold impeller 22 in the center of casing 21.

In the magnetically suspended type pump structured as described above, permanent magnet 14 embedded in rotor 12 supports the radial direction and driving of impeller 22, and produces axial attraction between permanent magnet 14 itself and permanent magnet 24 provided in impeller 22. Current is applied to a coil of electromagnet 31 so as to balance with this attraction, and impeller 22 is suspended. Then, if rotor 12 rotates due to the driving force of motor 13, permanent magnets 14 and 24 constitute magnetic coupling and impeller 22 rotates, so that fluid is fed from an inlet port into an outlet port which is not shown. Since impeller 22 is separated from rotor 12 by casing 21 and will not be contaminated by electromagnet 31, blood discharged from magnetically suspended type pump 1 is kept clean.

A control circuit 40 includes a CPU (Central Processing Unit) 41, a rotational speed control circuit 42, and a magnetic bearing control circuit 43. Rotational speed control circuit 42 receives a signal from CPU circuit 41 to control the speed of rotation of motor 13, and magnetic bearing control circuit 43 controls electromagnet 31 based on a signal of the position sensor which is not shown. In addition, control unit 40 includes an indicator 51 for indicating the speed of rotation, an indicator 52 for indicating flow, and an indicator 53 for indicating pressure.

FIG. 2 is a graph showing the relationship between outlet flow of the magnetically suspended type pump and driving current of the motor, which is obtained with the speed of rotation being changed, and FIG. 3 is a graph showing pump outlet flow-pressure characteristics for each speed of rotation.

Although characteristics of a magnetically suspended type pump change due to clearance between casing 21 and impeller 22 and fluid viscosity, outlet flow can be easily obtained from motor driving current and the speed of rotation as shown in FIG. 2, and further, outlet pressure can be obtained from flow and the speed of rotation as shown in the characteristics of FIG. 3, so long as characteristics are examined in advance for each pump.

FIG. 4 is a flow chart illustrating the operation of the above described one embodiment of the present invention.

Referring now to FIGS. 1 to 4, specific operation of the present embodiment will be described. The speed of rotation is controlled to be constant by speed of rotation control circuit 42 of control circuit 40. If impeller 22 rotates at a constant speed of rotation of, for example, 2200 rpm, flow can be obtained from the speed of rotation and the motor driving current using the characteristics shown in FIG. 2. In addition, outlet pressure can be obtained from the speed of rotation and the obtained pump flow using the characteristics shown in FIG. 3. In this case, speed of rotation control circuit 42 drives motor 13 based on the signal from CPU circuit 41 so that the speed of rotation of motor 13 is, for example, 2200 rpm. Then, CPU circuit 41 causes indicators 51, 52 and 53 to indicate the speed of rotation, the flow and the discharge pressure, respectively.

Furthermore, in order to control the pump to discharge constant flow, pump flow is obtained from present speed of rotation and present motor driving current and is compared with preset flow, and the speed of rotation is increased if the obtained pump flow is smaller than the preset flow and is decreased otherwise, which is called feed back control. In addition, during operation at a constant outlet pressure, feed back control may be performed with respect to preset pressure.

Consequently, according to the present embodiment, since an operating state of the pump can be obtained without using a pressure gauge and a flowmeter, a magnetically suspended type pump system can be constituted at low cost. Furthermore, if the magnetically suspended type pump system of the present embodiment is applied to a blood pump for artificial heart, the number of connections in a flow path can be reduced, so that thrombus formation can be avoided.

FIG. 5 is a graph showing the relationship between motor driving current and flow, which is obtained at a fixed speed of rotation with viscosity being changed. Flow is calculated from the speed of rotation and driving current of motor 13 in the above described embodiment shown in FIG. 1. As shown in FIG. 5, however, even if the speed of rotation is fixed at, for example, 2000 rpm, driving current to achieve constant flow is different depending on blood viscosity, and therefore, change in blood viscosity might result in error. Thus, an embodiment in which flow and pressure are corrected according to blood viscosity will now be described.

FIG. 6 is a block diagram showing another embodiment of the present invention. A magnetically suspended type pumps has a control loop of three axes Z, θx and θy, and each control axis can be shown in a block diagram of FIG. 6. In FIG. 6, a PID (Proportional, Integral and Derivative) circuit 81 is a compensating circuit for stably suspending impeller 22. If a signal with a fixed amplitude and a fixed frequency is added to an output of PID circuit 81, periodic disturbance then acts on impeller 22. In FIG. 6, Cs 84 is force of fluid viscosity. More specifically, if fluid viscosity C changes, displacement of impeller 22 caused by disturbance also varies, and therefore, viscosity can be obtained from the impeller displacement. This method is effective for any one of these three control axes. It is noted that KVF 82 indicates a constant for converting output voltage of PID circuit 81 into coil current, that is, electromagnetic attraction (F), and 1/(Ms 2 -K) shows a transfer function of controlled system by an electromagnetic bearing.

FIG. 7 is a block diagram showing the above described another embodiment of the present invention. In FIG. 7, a control circuit 60 includes a motor control circuit 61, a magnetic bearing control circuit 62, a CPU 63, a band pass filter 64, a disturbance signal generating circuit 65, and a switch 66. A motor driving current value and a signal of the speed of rotation are applied from motor control circuit 61 to CPU 63. CPU 63 calculates flow from the characteristics shown in FIG. 2, based on the speed of rotation signal and the driving current value. A vibration amplitude of an impeller is extracted from magnetic bearing control circuit 62, and is applied to CPU 63 through band pass filter 64. Band pass filter 64 passes impeller vibration signal having the same frequency as that of disturbance, and applies it to CPU 63. In addition, a disturbance signal is generated by disturbance signal generating circuit 65, and disturbance is applied to magnetic bearing control circuit 62 through switch 66. Switch 66 is turned on and off in response to a disturbance control signal from CPU 63.

FIG. 8 is a graph showing the relationship between motor driving current and pump flow, which is obtained with fixed viscosity, FIG. 9 is a graph showing the relationship between viscosity and amplitude (z) of the impeller produced when disturbance (Fd) having a fixed amplitude is applied thereto in the form of the sin wave, which is obtained with disturbance frequency being changed, and FIG. 10 is a graph showing displacement of the impeller with disturbance of 70 Hz, which is measured with the speed of impeller rotation being changed.

As shown in FIG. 5, motor current and pump flow have an approximately linear relationship at fixed viscosity, and CPU 63 calculates flow from the speed of rotation and the motor current value which are applied from motor control circuit 61.

On the other hand, as can be seen from FIG. 9, it is difficult to obtain viscosity from amplitude (z) of the impeller produced when disturbance (Fd) with low frequency or high frequency is applied to the impeller, while superior sensitivity can be obtained for frequency of about 70 Hz (which changes according to setting of a control system) at which impeller support rigidity is smallest. More specifically, it can be understood that fluid viscosity can be obtained using a magnetic bearing. CPU 63 corrects data of FIG. 8 by means of the difference between viscosity during operation which is obtained by the method described above and the standard viscosity which is used to obtain the characteristics of FIG. 8, whereby accuracy in flow detection is improved.

However, if disturbance is applied continuously from disturbance signal generating circuit 65 to magnetic bearing control circuit 62, damage of blood corpuscles (hemolysis) is increased, and therefore, it is desirable to apply disturbance periodically. Accordingly, CPU 63 turns on and off switch 66. In addition, band pass filter 64 extracts impeller displacement having the same frequency as that of disturbance from impeller displacements output from magnetic bearing control circuit 62, and applies the extracted impeller displacement to CPU 63. Furthermore, as shown in FIG. 10, since Z/Fd tends to be reduced as the speed of rotation of the impeller is increased, the speed of rotation must be considered in order to improve accuracy in compensation.

As described above, according to the present embodiment, since correction can be carried out according to blood viscosity, accuracy in flow detection can be improved.

FIGS. 11A and 11B are cross sections showing a further embodiment of a magnetically suspended type pump to which the present invention is applied, wherein FIG. 11A is a longitudinal section of the pump and FIG. 11B is a cross section taken along the line A--A of FIG. 11A. In FIG. 11A, an impeller 22 is constituted by circular plates 221, 222 and 223, and blades 224 and 225 having different diameters and each provided between the circular plates. Each of blades 224 and 225 is formed to have a spiral shape as shown in FIG. 11B. Permanent magnets 24 and 14 are embedded in circular plate 221 and a rotor 12 which is opposite to circular plate 221, respectively, and these permanent magnets 24 and 14 constitute magnetic coupling. Impeller 22 is passively supported by this magnetic coupling. An electromagnet 31 is provided on the side of circular plate 223 as a control type magnetic bearing, and the axial direction of impeller 22, θx and θy are actively supported by electromagnet 31. Then, rotor 12 is rotated when driven by a motor 13, and transmits driving force to impeller 22 by the magnetic coupling.

In addition, an inlet 15 is provided so as to pass through the center of motor 13, and this inlet 15 communicates with an outlet 233 through a pump chamber 231 where blade 224 is rotated. An inlet 16 is further provided so as to pass through the center of electromagnet 31, and this inlet 16 communicates with an outlet 234 through a pump chamber 232 where blade 225 is rotated.

In the magnetic bearing pump shown in FIG. 11A, when impeller 22 is rotated, blade 224 sucks blood returned from the whole body from inlet 15, and supplies the blood through pump chamber 231 from outlet 223 to lungs. On the other hand, blade 225 sucks blood returned from the lungs from inlet 16, and supplies the blood through pump chamber 232 from outlet 234 to the whole body. Required blood flow for a body is determined by controlling the speed of rotation of motor 13 by control circuit 40 shown in FIG. 1. Since flow path of two routes is constituted in the magnetic bearing pump shown in FIGS. 11A and 11B, pumping function of two pumps can be realized with a single magnetic bearing system and a single motor 13. Normally, pressure of blood to lungs is lower than that to the whole body, and flows in lungs and in the whole body are approximately the same. Thus, blades 224 and 225 have different diameters, and blade 224 has smaller diameter than blade 225 in this example.

It is noted that mixture of flows in these two routes at an outer diameter portion 229 of the impeller. In order to avoid this mixture, labyrinth seal as shown in FIGS. 12A--12D is used. More specifically, in FIG. 12A, a projection 235 is provided between pump chambers 231 and 232 in the casing, and a recess 226 is formed at an outer peripheral surface of circular plate 222. However, pressure in pump chamber 232 is higher than that in pump chamber 231 as described above and a shape of clearance on the left side in the figure is the same as that on the right side in the labyrinth seal shown in FIG. 12A, and therefore, fluid force acts on impeller from the side of higher pressure to the side of lower pressure, that is, from right to left in the figure. Accordingly, current flowing in electromagnet 31 is increased in order to hold impeller 22 at a fixed position, and blood leaks from the higher pressure side 232 to the lower pressure side 231.

Thus, it is desirable to form labyrinth seal as shown in FIGS. 12B to 12D. More specifically, in the example shown in FIG. 12B, a stepped portion 227 is formed on the side of lower pressure in circular plate 222 and a projection 236 is provided in the casing, and in FIG. 12D, a slope 228 inclined to the side of low pressure is formed at the periphery of circular plate 222 and a slope 237 opposite to slope 228 is formed in the case, whereby sealing property can be improved.

In the labyrinth seal shown in FIG. 12C, slopes are further formed at a surface of circular plate 221 which is opposite to motor 13 and at a surface of circular plate 223 which is opposite to electromagnet 31, respectively, in addition to the example shown in FIG. 12D, so that leftward fluid force is eliminated and current of the electromagnet will not be increased.

By the way, if a magnetic bearing malfunctions and impeller 22 cannot be suspended, impeller 22 comes in contact with the side of the motor due to attraction of magnetic coupling. Thus, a self-lubricant such as a Teflon ring 229 is attached on the side of circular plate 221, whereby stable rotation can be ensured even at the time of malfunction. The same effects can be obtained even if the impeller or the case is coated with the self-lubricant.

FIGS. 13A and 13B are cross sections showing a still further embodiment of a magnetically suspended type pump, wherein FIG. 13A is a sectional view and FIG. 13B is a cross section taken along the line A--A of FIG. 13A. In the example shown in FIGS. 13A and 13B, fluid pressure in the axial direction in the embodiment shown in FIGS. 11A and 11B is reduced. More specifically, in order to reduce fluid pressure in the axial direction, a ring-shaped projection 247 is formed in an outer diameter portion of a circular plate 223 such that a clearance 241 in an outer diameter portion of impeller 22 on the side of higher pressure is smaller than a clearance 242 in an inner diameter portion thereof. In addition, in order to make a clearance 243 in an outer diameter portion of impeller 22 on the side of lower pressure smaller than a clearance 244 in an inner diameter portion thereof, a projecting self-lubricant 245 with a ring shape is provided in the inner diameter portion of circular plate 221. Furthermore, a connection port 246 is formed so as to make the higher pressure side and the lower pressure side communicate with each other, and this connection port 246 functions to cause fluid to bypass lungs when balance of right and left hearts is lost due to malfunction of a living body.

FIGS. 14A and 14B are cross sections showing a yet further embodiment of a magnetically suspended type pump, wherein FIG. 14A is a sectional view and FIG. 14B is a cross section taken along the line A--A of FIG. 14A. The impeller 22 is supported by a control type magnetic bearing and a non-control type magnetic bearing in the embodiments shown in FIGS. 11A and 11B and FIGS. 13A and 13B, while an impeller 220 is supported by two non-control type magnetic bearings in the embodiment shown in FIGS. 14A and 14B. More specifically, impeller 220 is constituted by two circular plates 221 and 222, and blades 225 and 224 respectively attached on the left sides of these circular plates 221 and 222. Permanent magnets 24 and 14 are respectively embedded in circular plate 221 and in a rotor 12 so as to have opposite polarities to each other, and constitute a first non-control type magnetic bearing. A permanent magnet 251 is attached on an inner diameter portion of circular plate 222, and a permanent magnet 252 is attached on a case so as to have a polarity opposite to that of this permanent magnet 251. These permanent magnets 251 and 252 radially repulsive to each other, and constitute a second non-control type radial magnetic bearing.

A pivot bearing 253 is put on the center of circular plate 221, and supports impeller 220 by coming in contact with the case. Blades 224 and 225 serve as pumps for right and left hearts, respectively, as in the case of the embodiments shown in FIGS. 11A and 13A. An inlet 256 for the right heart is formed to extend from a pump chamber 231 in the axial direction and to be bent outward at a right angle. An inlet 257 for the left heart is formed to extend outward along the axial direction of the central axis. In addition, two routes of flow path are labyrinth-sealed by clearances 254 and 255, respectively. In the present embodiment, impeller 220 is supported by magnetic bearing with attraction of permanent magnets 14 and 24 and repulsion of permanent magnets 251 and 252, impeller 220 is rotated by the driving force of motor 13, and blood sucked from inlet 256 is discharged through pump chamber 231 from an outlet 233 by rotation of blade 224. In addition, blood sucked from inlet 257 is discharged through pump chamber 232 from an outlet 234 by rotation of blade 225.

As described above, in the present embodiment, two blades are equipped coaxially in the impeller, and this impeller is supported within the case by magnetic bearing and is rotated by the driving force of the motor, whereby blood can be sucked from the inlets corresponding to the respective blades and can be discharged through the respective pump chambers from the respective outlets, resulting in reduction in size, cost and power consumption.

Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.

Claims (11)

What is claimed is:
1. A magnetically suspended type pump in which an impeller is supported within a case by a magnetic bearing without contact and said impeller is rotated by a motor whose speed can be controlled by magnetic coupling through a partition therebetween, comprising:
processing means for obtaining a correlation between current flowing in said motor and fluid flow or between current flowing in said motor and outlet pressure;
control means for changing a speed of rotation of said motor based on the correlation between current and flow or between current and pressure obtained by said processing means, thereby controlling flow or pressure; and
correction means for correcting flow or pressure obtained from blood viscosity which is obtained from disturbance response of said impeller supported by said magnetic bearing.
2. The magnetically suspended type pump in accordance with claim 1, further comprising:
disturbance signal generating means for generating a disturbance signal for periodically applying disturbance in order to measure said viscosity.
3. The magnetically suspended type pump in accordance with claim 2, wherein
said disturbance signal generating means generates a disturbance signal having a frequency at which support rigidity of said impeller is smallest.
4. The magnetically suspended type pump in accordance with claim 2, further comprising:
a band pass filter for passing only a disturbance frequency therethrough to detect displacement in order to measure said viscosity.
5. The magnetically suspended type pump in accordance with claim 4, further comprising:
correction means for adding correction according to a speed of rotation in order to measure said viscosity.
6. The magnetically suspended type pump in accordance with claim 1, wherein
said magnetic bearing includes
a passive type magnetic bearing for radially supporting one side of said impeller, and
a control type magnetic bearing for controlling an axial direction of said impeller on another side and controlling about two axes which are at right angles thereto.
7. The magnetically suspended type pump in accordance with claim 6, wherein
said impeller includes a bypass port for making said lower pressure side and said higher pressure side communicate with each other.
8. A magnetically suspended type pump in which an impeller is supported within a case by a magnetic bearing without contact and said impeller is rotated by a motor whose speed can be controlled by magnetic coupling through a partition therebetween, comprising:
processing means for obtaining a correlation between current flowing in said motor and fluid flow or between current flowing in said motor and outlet pressure; and
control means for changing a speed of rotation of said motor based on the correlation between current and flow or between current and pressure obtained by said processing means, thereby controlling flow or pressure,
wherein said impeller includes two coaxial blades, and
said case includes inlets, outlets and pump chambers which serve as flow paths for said two blades, respectively,
said two blades are different in shape from each other so that said pump chambers have higher pressure or lower pressure at a fixed speed of rotation.
9. The magnetically suspended type pump in accordance with claim 8, wherein
said impeller includes circular plates for separating said two blades from each other, and said pump further comprising:
a seal structure formed so as to seal space between said circular plate and said case and to have a diameter increased from a lower pressure side towards a higher pressure side.
10. The magnetically suspended type pump in accordance with claim 8, wherein
said impeller includes
a ring-shaped circular plate provided between said case and said blade located on the lower pressure side for rotating coaxially with the blade, and
a self-lubricant provided on a side of an inner diameter of said ring-shaped circular plate for coming in contact with said case when said magnetic bearing malfunctions.
11. A magnetically suspended type pump in which an impeller is supported within a case by a magnetic bearing without contact and said impeller is rotated by a motor whose speed can be controlled by magnetic coupling through a partition therebetween, comprising:
processing means for obtaining a correlation between current flowing in said motor and fluid flow or between current flowing in said motor and outlet pressure; and
control means for changing a speed of rotation of said motor based on the correlation between current and flow or between current and pressure obtained by said processing means, thereby controlling flow or pressure,
wherein said magnetic bearing includes:
a first passive type magnetic bearing for radially supporting one side of said impeller, and
a second passive type magnetic bearing having a pair of magnets located on another side of said impeller so as to radially repulsive to each other.
US08/623,760 1995-04-03 1996-03-29 Magnetically suspended type pump Expired - Lifetime US5725357A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP07787695A JP3546092B2 (en) 1995-04-03 1995-04-03 Magnetic levitation type pump
JP7-77876 1995-04-03
JP08926095A JP3729889B2 (en) 1995-04-14 1995-04-14 Magnetic bearing pump
JP7-89260 1995-04-14

Publications (1)

Publication Number Publication Date
US5725357A true US5725357A (en) 1998-03-10

Family

ID=26418930

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/623,760 Expired - Lifetime US5725357A (en) 1995-04-03 1996-03-29 Magnetically suspended type pump

Country Status (2)

Country Link
US (1) US5725357A (en)
DE (1) DE19613388C2 (en)

Cited By (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911558A (en) * 1996-05-10 1999-06-15 Ntn Corporation Magnetically suspended pump having position sensing control
EP0967475A1 (en) * 1998-06-22 1999-12-29 LUST ANTRIEBSTECHNIK GmbH Method for the determination of the viscosity of a liquid
EP0971212A1 (en) * 1998-07-10 2000-01-12 LUST ANTRIEBSTECHNIK GmbH Method to determine the pressure loss and the flow rate through a pump
US6129660A (en) * 1995-08-23 2000-10-10 Ntn Corporation Method of controlling blood pump
WO2000064509A1 (en) * 1999-04-23 2000-11-02 Ventrassist Pty Ltd A rotary blood pump and control system therefor
US6142752A (en) * 1997-09-05 2000-11-07 Ntn Corporation Centrifugal fluid pump assembly
US6181040B1 (en) * 1997-08-25 2001-01-30 Sulzer Electronics Ag Magnetically journalled rotational arrangement
US6220832B1 (en) * 1997-09-25 2001-04-24 Sulzer Electronics Ag Centrifugal pump and centrifugal pump system
US6227817B1 (en) * 1999-09-03 2001-05-08 Magnetic Moments, Llc Magnetically-suspended centrifugal blood pump
US6234772B1 (en) 1999-04-28 2001-05-22 Kriton Medical, Inc. Rotary blood pump
US6250880B1 (en) * 1997-09-05 2001-06-26 Ventrassist Pty. Ltd Rotary pump with exclusively hydrodynamically suspended impeller
US6264635B1 (en) 1998-12-03 2001-07-24 Kriton Medical, Inc. Active magnetic bearing system for blood pump
US6302661B1 (en) 1996-05-03 2001-10-16 Pratap S. Khanwilkar Electromagnetically suspended and rotated centrifugal pumping apparatus and method
US6358224B1 (en) 1999-09-24 2002-03-19 Tyco Healthcare Group Lp Irrigation system for endoscopic surgery
US6416215B1 (en) 1999-12-14 2002-07-09 University Of Kentucky Research Foundation Pumping or mixing system using a levitating magnetic element
EP1255174A1 (en) * 2001-04-30 2002-11-06 Starite S.p.A. Electric Pump with automatic on-off device
AU760610B2 (en) * 1999-04-23 2003-05-15 Thoratec Corporation A rotary blood pump and control system therefor
US6575717B2 (en) * 1999-12-27 2003-06-10 Ntn Corporation Magnetically levitated pump
AU2003201358C1 (en) * 1999-04-23 2003-06-12 Thoratec Corporation A Rotary Blood Pump and Control System Therefor
US6589030B2 (en) * 2000-06-20 2003-07-08 Ntn Corporation Magnetically levitated pump apparatus
US20030152462A1 (en) * 2002-01-09 2003-08-14 Mitsutoshi Yaegashi Centrifugal fluid pump apparatus
US6609883B2 (en) 1997-05-09 2003-08-26 Ventrassist Pty Ltd Rotary pump with hydrodynamically suspended impeller
US6626644B2 (en) * 2000-10-30 2003-09-30 Ntn Corporation Magnetically levitated pump and controlling circuit
US20030187321A1 (en) * 2001-04-30 2003-10-02 Jan Hoffmann Method for adjusting the position of a rotating component which is borne by means of a permanent-magnet
US6634224B1 (en) 1998-07-10 2003-10-21 Levitronix Llc Method for the determination of the pressure in and/or of the through-flow through a pump
US20030223879A1 (en) * 2002-01-28 2003-12-04 Terumo Kabushiki Kaisha Centrifugal fluid pump assembly
US20040064012A1 (en) * 2002-09-30 2004-04-01 Terumo Kabushiki Kaisha Blood pump system
US20040115038A1 (en) * 2001-02-16 2004-06-17 Peter Nuesser Device for axially conveying fluids
US6758593B1 (en) 2000-10-09 2004-07-06 Levtech, Inc. Pumping or mixing system using a levitating magnetic element, related system components, and related methods
US20040152944A1 (en) * 2000-03-27 2004-08-05 Alexander Medvedev Chronic performance control system for rotodynamic blood pumps
US20040209227A1 (en) * 2000-01-18 2004-10-21 Porter Stephan S. Preparation coping for creating an accurate permanent post to support a final prosthesis and method for creating the same
US20050025630A1 (en) * 1999-04-23 2005-02-03 Ayre Peter Joseph Rotary blood pump and control system therefor
US20050135942A1 (en) * 2003-09-25 2005-06-23 Medforte Research Foundation Streamlined unobstructed one-pass axial-flow pump
US20050135948A1 (en) * 2003-09-25 2005-06-23 Medforte Research Foundation Axial-flow blood pump with magnetically suspended, radially and axially stabilized impeller
US6942672B2 (en) 2001-10-23 2005-09-13 Vascor, Inc. Method and apparatus for attaching a conduit to the heart or a blood vessel
US20050214131A1 (en) * 2002-08-21 2005-09-29 Medquest Products, Inc. Methods and systems for determining a viscosity of a fluid
WO2005115539A2 (en) 2004-05-25 2005-12-08 Heartware, Inc. Sensorless flow estimation for implanted ventricle assist device
US20070020108A1 (en) * 2005-07-21 2007-01-25 Walls James C Modular, universal & automatic closed-loop pump pressure controller
US20070260111A1 (en) * 2004-06-11 2007-11-08 Erbe Elektromedizin Gmbh Rinsing Device and Method for the Operation Thereof
US20070280841A1 (en) * 2006-01-13 2007-12-06 Larose Jeffrey A Hydrodynamic thrust bearings for rotary blood pumps
US20080216833A1 (en) * 2007-03-07 2008-09-11 Pujol J Raymond Flow Sensing for Gas Delivery to a Patient
US20080240931A1 (en) * 2004-02-11 2008-10-02 Carsten Kallesoe Method for Determining Faults During the Operation of a Pump Unit
US20090118625A1 (en) * 2005-08-10 2009-05-07 National University Corporation Tokyo Medical And Dental University Method for Measuring Flow Rate and Head of Centrifugal Pump, Apparatus Thereof, and Apparatus for Evaluating Circulatory State of Pulsating Cardiovascular System
US20100168848A1 (en) * 2006-04-26 2010-07-01 The Cleveland Clinic Foundation Two-stage rotodynamic blood pump
US20100222633A1 (en) * 2009-02-27 2010-09-02 Victor Poirier Blood pump system with controlled weaning
US20100222632A1 (en) * 2009-02-27 2010-09-02 Victor Poirier Prevention of aortic valve fusion
US20100222635A1 (en) * 2009-02-27 2010-09-02 Thoratec Corporation Maximizing blood pump flow while avoiding left ventricle collapse
US20100222634A1 (en) * 2009-02-27 2010-09-02 Thoratec Corporation Blood flow meter
US20100222878A1 (en) * 2009-02-27 2010-09-02 Thoratec Corporation Blood pump system with arterial pressure monitoring
CN101871447A (en) * 2009-04-21 2010-10-27 Itt制造企业公司 Pump controller
US20110182752A1 (en) * 2010-01-22 2011-07-28 Josef Frank Method for controlling the feed rate of a feed pump
US20110237863A1 (en) * 2008-09-26 2011-09-29 WorldHeart, Inc. Magnetically-levitated blood pump with optimization method enabling miniaturization
US20120150089A1 (en) * 2009-06-25 2012-06-14 Sorin Group Deutschland Gmbh Device for pumping blood in an extracorporeal circuit
CN102741677A (en) * 2009-11-30 2012-10-17 柏林心脏有限公司 A device and a method for measuring fluid-mechanically effective material parameters of a fluid
US8425200B2 (en) 2009-04-21 2013-04-23 Xylem IP Holdings LLC. Pump controller
US8632449B2 (en) 2009-04-16 2014-01-21 Bivacor Pty Ltd Heart pump controller
US8636638B2 (en) 2009-04-16 2014-01-28 Bivacor Pty Ltd Heart pump controller
CN103615380A (en) * 2013-12-06 2014-03-05 杭州哲达节能科技有限公司 Non-sensor constant-pressure pump and valve integrated device
US8672611B2 (en) 2006-01-13 2014-03-18 Heartware, Inc. Stabilizing drive for contactless rotary blood pump impeller
US8777832B1 (en) 2013-03-14 2014-07-15 The University Of Kentucky Research Foundation Axial-centrifugal flow catheter pump for cavopulmonary assistance
US8821365B2 (en) 2009-07-29 2014-09-02 Thoratec Corporation Rotation drive device and centrifugal pump apparatus using the same
US8827661B2 (en) 2008-06-23 2014-09-09 Thoratec Corporation Blood pump apparatus
US8827663B2 (en) 2004-10-18 2014-09-09 Thoratec Corporation Rotary stability of a rotary pump
US8905910B2 (en) 2010-06-22 2014-12-09 Thoratec Corporation Fluid delivery system and method for monitoring fluid delivery system
US9068572B2 (en) 2010-07-12 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9067005B2 (en) 2008-12-08 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9091271B2 (en) 2010-08-20 2015-07-28 Thoratec Corporation Implantable blood pump
US9089635B2 (en) 2010-06-22 2015-07-28 Thoratec Corporation Apparatus and method for modifying pressure-flow characteristics of a pump
US9132215B2 (en) 2010-02-16 2015-09-15 Thoratee Corporation Centrifugal pump apparatus
US9133854B2 (en) 2010-03-26 2015-09-15 Thoratec Corporation Centrifugal blood pump device
US9162019B2 (en) 2006-04-26 2015-10-20 The Cleveland Clinic Foundation Two-stage rotodynamic blood pump
US9366261B2 (en) 2012-01-18 2016-06-14 Thoratec Corporation Centrifugal pump device
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9381285B2 (en) 2009-03-05 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9382908B2 (en) 2010-09-14 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9410549B2 (en) 2009-03-06 2016-08-09 Thoratec Corporation Centrifugal pump apparatus
US9427510B2 (en) 2012-08-31 2016-08-30 Thoratec Corporation Start-up algorithm for an implantable blood pump
US9433717B2 (en) 2010-09-24 2016-09-06 Thoratec Corporation Generating artificial pulse
EP3081246A1 (en) * 2015-04-13 2016-10-19 Berlin Heart GmbH Pump and method for operating a pump for liquids
EP3088016A1 (en) * 2015-04-29 2016-11-02 Berlin Heart GmbH Pump and method for operating a pump for liquids
US9492599B2 (en) 2012-08-31 2016-11-15 Thoratec Corporation Hall sensor mounting in an implantable blood pump
US20160341202A1 (en) * 2015-05-18 2016-11-24 Johnson Electric S.A. Electric motor and electric pump
US20170016449A1 (en) * 2015-07-14 2017-01-19 Hamilton Sundstrand Corporation Axial-flux induction motor pump
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US9629948B2 (en) 2014-04-15 2017-04-25 Tc1 Llc Methods for upgrading ventricle assist devices
US9656010B2 (en) 2010-07-22 2017-05-23 Tc1 Llc Controlling implanted blood pumps
US9694123B2 (en) 2014-04-15 2017-07-04 Tc1 Llc Methods and systems for controlling a blood pump
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US9744280B2 (en) 2014-04-15 2017-08-29 Tc1 Llc Methods for LVAD operation during communication losses
US9757502B2 (en) 2010-09-24 2017-09-12 Tci Llc Control of circulatory assist systems
US9786150B2 (en) 2014-04-15 2017-10-10 Tci Llc Methods and systems for providing battery feedback to patient
US9782527B2 (en) 2009-05-27 2017-10-10 Tc1 Llc Monitoring of redundant conductors
US9850906B2 (en) 2011-03-28 2017-12-26 Tc1 Llc Rotation drive device and centrifugal pump apparatus employing same
US9849224B2 (en) 2014-04-15 2017-12-26 Tc1 Llc Ventricular assist devices
US9901666B2 (en) 2015-07-20 2018-02-27 Tc1 Llc Flow estimation using hall-effect sensors for measuring impeller eccentricity
US9919090B2 (en) 2009-12-16 2018-03-20 Fresenius Medical Care Deutschland Gmbh Balancing unit, external medical functional unit, treatment apparatus and methods
US10029039B2 (en) 2009-12-30 2018-07-24 Tc1 Llc Mobility-enhancing blood pump system
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US10077777B2 (en) 2014-05-09 2018-09-18 The Cleveland Clinic Foundation Artificial heart system implementing suction recognition and avoidance methods
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
EP3435065A1 (en) * 2017-07-27 2019-01-30 Sulzer Management AG Method for measuring the viscosity of a conveyed fluid conveyed by means of a pump
US10213541B2 (en) 2011-07-12 2019-02-26 Sorin Group Italia S.R.L. Dual chamber blood reservoir
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1003970B1 (en) * 1997-07-01 2004-08-25 Advanced Bionics, Inc. Improved rotor for blood pump
US5685700A (en) * 1995-06-01 1997-11-11 Advanced Bionics, Inc. Bearing and seal-free blood pump
US5964694A (en) * 1997-04-02 1999-10-12 Guidant Corporation Method and apparatus for cardiac blood flow assistance
AT404318B (en) * 1996-07-29 1998-10-27 Heinrich Dr Schima Centrifugal pump comprising a pump head and a disk drive runner for conveying blood and other shear-sensitive fluids
GB9627105D0 (en) * 1996-12-31 1997-02-19 Falmer Investment Ltd Apparatus and method for monitoring and controlling rate of bath turnover
DE29821565U1 (en) 1998-12-02 2000-06-15 Impella Cardiotech Ag Bearingless blood pump
DE10164898B4 (en) 2001-04-30 2010-09-23 Berlin Heart Gmbh A method for controlling an assist pump for fluid delivery systems with pulsatile pressure
DE10231479A1 (en) * 2002-06-21 2004-01-08 Mückter, Helmut, Dr. med. Dipl.-Ing. Blood pump with an impeller
US7416525B2 (en) 2003-09-18 2008-08-26 Myrakelle, Llc Rotary blood pump
WO2007115222A2 (en) 2006-03-31 2007-10-11 Orqis Medical Corporation Rotary blood pump
DE102012100306A1 (en) * 2012-01-13 2013-07-18 Prominent Dosiertechnik Gmbh A method for adapting a metering pump to the viscosity of the medium to be dosed
CN103671060A (en) * 2013-12-06 2014-03-26 杭州哲达节能科技有限公司 Sensor-free constant current pump valve integrated device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4613281A (en) * 1984-03-08 1986-09-23 Goulds Pumps, Incorporated Hydrodynamic seal
US4678404A (en) * 1983-10-28 1987-07-07 Hughes Tool Company Low volume variable rpm submersible well pump
US4732236A (en) * 1986-04-16 1988-03-22 Sundstrand Corporation Dual impeller pump
US4781525A (en) * 1987-07-17 1988-11-01 Minnesota Mining And Manufacturing Company Flow measurement system
JPS6466490A (en) * 1987-09-05 1989-03-13 Ogihara Seisakusho Kk Magnet pump
JPH04148095A (en) * 1990-10-11 1992-05-21 Ntn Corp Turbo-type pump
US5163818A (en) * 1990-02-05 1992-11-17 Ametek, Inc. Automatic constant air flow rate pump unit for sampling air
US5240380A (en) * 1991-05-21 1993-08-31 Sundstrand Corporation Variable speed control for centrifugal pumps
JPH0674184A (en) * 1992-07-06 1994-03-15 Ouken Seiko Kk Centrifugal pump
US5350283A (en) * 1991-12-04 1994-09-27 Ntn Corporation Clean pump
US5470208A (en) * 1990-10-05 1995-11-28 Kletschka; Harold D. Fluid pump with magnetically levitated impeller

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944748A (en) * 1986-10-12 1990-07-31 Bramm Gunter W Magnetically suspended and rotated rotor
JPH0734231Y2 (en) * 1988-03-23 1995-08-02 アイシン精機株式会社 2 system cooling water pump

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678404A (en) * 1983-10-28 1987-07-07 Hughes Tool Company Low volume variable rpm submersible well pump
US4613281A (en) * 1984-03-08 1986-09-23 Goulds Pumps, Incorporated Hydrodynamic seal
US4732236A (en) * 1986-04-16 1988-03-22 Sundstrand Corporation Dual impeller pump
US4781525A (en) * 1987-07-17 1988-11-01 Minnesota Mining And Manufacturing Company Flow measurement system
JPS6466490A (en) * 1987-09-05 1989-03-13 Ogihara Seisakusho Kk Magnet pump
US5163818A (en) * 1990-02-05 1992-11-17 Ametek, Inc. Automatic constant air flow rate pump unit for sampling air
US5470208A (en) * 1990-10-05 1995-11-28 Kletschka; Harold D. Fluid pump with magnetically levitated impeller
JPH04148095A (en) * 1990-10-11 1992-05-21 Ntn Corp Turbo-type pump
US5240380A (en) * 1991-05-21 1993-08-31 Sundstrand Corporation Variable speed control for centrifugal pumps
US5350283A (en) * 1991-12-04 1994-09-27 Ntn Corporation Clean pump
JPH0674184A (en) * 1992-07-06 1994-03-15 Ouken Seiko Kk Centrifugal pump

Cited By (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129660A (en) * 1995-08-23 2000-10-10 Ntn Corporation Method of controlling blood pump
US6302661B1 (en) 1996-05-03 2001-10-16 Pratap S. Khanwilkar Electromagnetically suspended and rotated centrifugal pumping apparatus and method
US5911558A (en) * 1996-05-10 1999-06-15 Ntn Corporation Magnetically suspended pump having position sensing control
US6609883B2 (en) 1997-05-09 2003-08-26 Ventrassist Pty Ltd Rotary pump with hydrodynamically suspended impeller
US6181040B1 (en) * 1997-08-25 2001-01-30 Sulzer Electronics Ag Magnetically journalled rotational arrangement
US6638011B2 (en) 1997-09-05 2003-10-28 Ventrassist Pty Ltd Rotary pump with exclusively hydrodynamically suspended impeller
US6142752A (en) * 1997-09-05 2000-11-07 Ntn Corporation Centrifugal fluid pump assembly
US6966748B2 (en) 1997-09-05 2005-11-22 Ventrassist PTY Ltd. and University of Technology at Sydney Rotary pump with exclusively hydrodynamically suspended impeller
US20090155049A1 (en) * 1997-09-05 2009-06-18 Ventrassist Pty Ltd. Rotary pump with exclusively hydrodynamically suspended impeller
US20050281685A1 (en) * 1997-09-05 2005-12-22 Woodard John C Rotary pump with exclusively hydrodynamically suspended impeller
US6250880B1 (en) * 1997-09-05 2001-06-26 Ventrassist Pty. Ltd Rotary pump with exclusively hydrodynamically suspended impeller
US20040028525A1 (en) * 1997-09-05 2004-02-12 Woodard John C. Rotary pump with exclusively hydrodynamically suspended impeller
US20040030216A1 (en) * 1997-09-05 2004-02-12 Woodard John Campbell Rotary pump with hydrodynamically suspended impeller
US7156802B2 (en) 1997-09-05 2007-01-02 Ventrassist Pty Ltd. And University Of Technology, Sydney Rotary pump with hydrodynamically suspended impeller
US7476077B2 (en) 1997-09-05 2009-01-13 Ventrassist Pty Ltd. Rotary pump with exclusively hydrodynamically suspended impeller
US20060030748A1 (en) * 1997-09-05 2006-02-09 Ventrassist Pty Ltd Rotary pump with hydrodynamically suspended impeller
US8366381B2 (en) 1997-09-05 2013-02-05 Thoratec Corporation Rotary pump with hydrodynamically suspended impeller
US8002518B2 (en) 1997-09-05 2011-08-23 Thoratec Corporation Rotary pump with hydrodynamically suspended impeller
US6220832B1 (en) * 1997-09-25 2001-04-24 Sulzer Electronics Ag Centrifugal pump and centrifugal pump system
US6711943B1 (en) 1998-06-22 2004-03-30 Levitronix Llc Method for the determination of the viscosity of a liquid such as blood
EP0967475A1 (en) * 1998-06-22 1999-12-29 LUST ANTRIEBSTECHNIK GmbH Method for the determination of the viscosity of a liquid
US6634224B1 (en) 1998-07-10 2003-10-21 Levitronix Llc Method for the determination of the pressure in and/or of the through-flow through a pump
EP0971212A1 (en) * 1998-07-10 2000-01-12 LUST ANTRIEBSTECHNIK GmbH Method to determine the pressure loss and the flow rate through a pump
US6264635B1 (en) 1998-12-03 2001-07-24 Kriton Medical, Inc. Active magnetic bearing system for blood pump
AU2003201358C1 (en) * 1999-04-23 2003-06-12 Thoratec Corporation A Rotary Blood Pump and Control System Therefor
EP1602386A1 (en) * 1999-04-23 2005-12-07 University Of Technology, Sydney A rotary blood pump and control system therefor
WO2000064509A1 (en) * 1999-04-23 2000-11-02 Ventrassist Pty Ltd A rotary blood pump and control system therefor
US8282359B2 (en) * 1999-04-23 2012-10-09 Thoratec Corporation Rotary blood pump and control system therefor
US8870552B2 (en) 1999-04-23 2014-10-28 Thoratec Corporation Rotary blood pump and control system therefor
AU760610B2 (en) * 1999-04-23 2003-05-15 Thoratec Corporation A rotary blood pump and control system therefor
AU760610C (en) * 1999-04-23 2004-03-11 Thoratec Corporation A rotary blood pump and control system therefor
AU2003201358B2 (en) * 1999-04-23 2003-06-12 Thoratec Corporation A Rotary Blood Pump and Control System Therefor
US20050025630A1 (en) * 1999-04-23 2005-02-03 Ayre Peter Joseph Rotary blood pump and control system therefor
US20100185280A1 (en) * 1999-04-23 2010-07-22 Ventrassist Pty. Ltd Rotary blood pump and control system therefor
US6866625B1 (en) 1999-04-23 2005-03-15 Ventrassist Pty Ltd Rotary blood pump and control system therefor
US6234772B1 (en) 1999-04-28 2001-05-22 Kriton Medical, Inc. Rotary blood pump
US6227817B1 (en) * 1999-09-03 2001-05-08 Magnetic Moments, Llc Magnetically-suspended centrifugal blood pump
US6358224B1 (en) 1999-09-24 2002-03-19 Tyco Healthcare Group Lp Irrigation system for endoscopic surgery
US6416215B1 (en) 1999-12-14 2002-07-09 University Of Kentucky Research Foundation Pumping or mixing system using a levitating magnetic element
US6575717B2 (en) * 1999-12-27 2003-06-10 Ntn Corporation Magnetically levitated pump
US20040209227A1 (en) * 2000-01-18 2004-10-21 Porter Stephan S. Preparation coping for creating an accurate permanent post to support a final prosthesis and method for creating the same
US7645225B2 (en) * 2000-03-27 2010-01-12 Alexander Medvedev Chronic performance control system for rotodynamic blood pumps
US20040152944A1 (en) * 2000-03-27 2004-08-05 Alexander Medvedev Chronic performance control system for rotodynamic blood pumps
US6589030B2 (en) * 2000-06-20 2003-07-08 Ntn Corporation Magnetically levitated pump apparatus
US20040218468A1 (en) * 2000-10-09 2004-11-04 Terentiev Alexandre N. Set-up kit for a pumping or mixing system using a levitating magnetic element
US6758593B1 (en) 2000-10-09 2004-07-06 Levtech, Inc. Pumping or mixing system using a levitating magnetic element, related system components, and related methods
US6626644B2 (en) * 2000-10-30 2003-09-30 Ntn Corporation Magnetically levitated pump and controlling circuit
US7934909B2 (en) 2001-02-16 2011-05-03 Berlin Heart Gmbh Device for axially conveying fluids
US20040115038A1 (en) * 2001-02-16 2004-06-17 Peter Nuesser Device for axially conveying fluids
US7467929B2 (en) 2001-02-16 2008-12-23 Berlin Heart Gmbh Device for axially conveying fluids
US20080091265A1 (en) * 2001-02-16 2008-04-17 Berlin Heart Gmbh Device for axially conveying fluids
EP1255174A1 (en) * 2001-04-30 2002-11-06 Starite S.p.A. Electric Pump with automatic on-off device
US7229474B2 (en) * 2001-04-30 2007-06-12 Berlin Heart Ag Method for controlling the position of a permanent magnetically supported rotating component
US20030187321A1 (en) * 2001-04-30 2003-10-02 Jan Hoffmann Method for adjusting the position of a rotating component which is borne by means of a permanent-magnet
US6942672B2 (en) 2001-10-23 2005-09-13 Vascor, Inc. Method and apparatus for attaching a conduit to the heart or a blood vessel
US20030152462A1 (en) * 2002-01-09 2003-08-14 Mitsutoshi Yaegashi Centrifugal fluid pump apparatus
US6840735B2 (en) * 2002-01-09 2005-01-11 Terumo Kabushiki Kaisha Centrifugal fluid pump apparatus
US20030223879A1 (en) * 2002-01-28 2003-12-04 Terumo Kabushiki Kaisha Centrifugal fluid pump assembly
US7033147B2 (en) * 2002-01-28 2006-04-25 Terumo Kabushiki Kaisha Centrifugal fluid pump assembly with flow rate calculating section
US7578782B2 (en) 2002-08-21 2009-08-25 World Heart, Inc. Methods and systems for determining a viscosity of a fluid
US20050214131A1 (en) * 2002-08-21 2005-09-29 Medquest Products, Inc. Methods and systems for determining a viscosity of a fluid
US20040064012A1 (en) * 2002-09-30 2004-04-01 Terumo Kabushiki Kaisha Blood pump system
US7160242B2 (en) * 2002-09-30 2007-01-09 Terumo Kabushiki Kaisha Blood pump system
US7229258B2 (en) 2003-09-25 2007-06-12 Medforte Research Foundation Streamlined unobstructed one-pass axial-flow pump
US20050135942A1 (en) * 2003-09-25 2005-06-23 Medforte Research Foundation Streamlined unobstructed one-pass axial-flow pump
US20050135948A1 (en) * 2003-09-25 2005-06-23 Medforte Research Foundation Axial-flow blood pump with magnetically suspended, radially and axially stabilized impeller
US7070398B2 (en) 2003-09-25 2006-07-04 Medforte Research Foundation Axial-flow blood pump with magnetically suspended, radially and axially stabilized impeller
US20080240931A1 (en) * 2004-02-11 2008-10-02 Carsten Kallesoe Method for Determining Faults During the Operation of a Pump Unit
US8070457B2 (en) 2004-02-11 2011-12-06 Grundfos A/S Method for determining faults during the operation of a pump unit
WO2005115539A2 (en) 2004-05-25 2005-12-08 Heartware, Inc. Sensorless flow estimation for implanted ventricle assist device
EP1761306A2 (en) * 2004-05-25 2007-03-14 HeartWare, Inc. Sensorless flow estimation for implanted ventricle assist device
EP1761306A4 (en) * 2004-05-25 2012-02-15 Heartware Inc Sensorless flow estimation for implanted ventricle assist device
US20110137108A1 (en) * 2004-05-25 2011-06-09 Heartware, Inc. Sensorless flow estimation for implanted ventricle assist device
US8961390B2 (en) 2004-05-25 2015-02-24 Heartware, Inc. Sensorless flow estimation for implanted ventricle assist device
US8506470B2 (en) 2004-05-25 2013-08-13 Heartware, Inc. Sensorless flow estimation for implanted ventricle assist device
US8535015B2 (en) * 2004-06-11 2013-09-17 Erbe Elektromedizin Gmbh Rinsing device and method for the operation thereof
US8038414B2 (en) * 2004-06-11 2011-10-18 Erbe Elektromedizin Gmbh Rinsing device and method for the operation thereof
US20070260111A1 (en) * 2004-06-11 2007-11-08 Erbe Elektromedizin Gmbh Rinsing Device and Method for the Operation Thereof
US20120006415A1 (en) * 2004-06-11 2012-01-12 Thomas Baur Rinsing device and method for the operation thereof
US8827663B2 (en) 2004-10-18 2014-09-09 Thoratec Corporation Rotary stability of a rotary pump
US8425202B2 (en) * 2005-07-21 2013-04-23 Xylem Ip Holdings Llc Modular, universal and automatic closed-loop pump pressure controller
US20070020108A1 (en) * 2005-07-21 2007-01-25 Walls James C Modular, universal & automatic closed-loop pump pressure controller
US20090118625A1 (en) * 2005-08-10 2009-05-07 National University Corporation Tokyo Medical And Dental University Method for Measuring Flow Rate and Head of Centrifugal Pump, Apparatus Thereof, and Apparatus for Evaluating Circulatory State of Pulsating Cardiovascular System
US8540477B2 (en) 2006-01-13 2013-09-24 Heartware, Inc. Rotary pump with thrust bearings
US8672611B2 (en) 2006-01-13 2014-03-18 Heartware, Inc. Stabilizing drive for contactless rotary blood pump impeller
US8512013B2 (en) 2006-01-13 2013-08-20 Heartware, Inc. Hydrodynamic thrust bearings for rotary blood pumps
US20080031725A1 (en) * 2006-01-13 2008-02-07 Larose Jeffrey A Shrouded thrust bearings
US9242032B2 (en) 2006-01-13 2016-01-26 Heartware, Inc. Rotary pump with thrust bearings
US7997854B2 (en) 2006-01-13 2011-08-16 Heartware, Inc. Shrouded thrust bearings
US9050405B2 (en) 2006-01-13 2015-06-09 Heartware, Inc. Stabilizing drive for contactless rotary blood pump impeller
US7976271B2 (en) 2006-01-13 2011-07-12 Heartware, Inc. Stabilizing drive for contactless rotary blood pump impeller
US9777732B2 (en) 2006-01-13 2017-10-03 Heartware, Inc. Hydrodynamic thrust bearings for rotary blood pump
US20070280841A1 (en) * 2006-01-13 2007-12-06 Larose Jeffrey A Hydrodynamic thrust bearings for rotary blood pumps
US8932006B2 (en) 2006-01-13 2015-01-13 Heartware, Inc. Rotary pump with thrust bearings
US8210829B2 (en) * 2006-04-26 2012-07-03 The Cleveland Clinic Foundation Two-stage rotodynamic blood pump with axially movable rotor assembly for adjusting hydraulic performance characteristics
US9162019B2 (en) 2006-04-26 2015-10-20 The Cleveland Clinic Foundation Two-stage rotodynamic blood pump
US20100168848A1 (en) * 2006-04-26 2010-07-01 The Cleveland Clinic Foundation Two-stage rotodynamic blood pump
US20080216833A1 (en) * 2007-03-07 2008-09-11 Pujol J Raymond Flow Sensing for Gas Delivery to a Patient
US9109601B2 (en) 2008-06-23 2015-08-18 Thoratec Corporation Blood pump apparatus
US8827661B2 (en) 2008-06-23 2014-09-09 Thoratec Corporation Blood pump apparatus
US20110237863A1 (en) * 2008-09-26 2011-09-29 WorldHeart, Inc. Magnetically-levitated blood pump with optimization method enabling miniaturization
US9314557B2 (en) 2008-09-26 2016-04-19 Worldheart Corporation Magnetically-levitated blood pump with optimization method enabling miniaturization
US9067005B2 (en) 2008-12-08 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US20100222634A1 (en) * 2009-02-27 2010-09-02 Thoratec Corporation Blood flow meter
US8562507B2 (en) 2009-02-27 2013-10-22 Thoratec Corporation Prevention of aortic valve fusion
US9687596B2 (en) 2009-02-27 2017-06-27 Tci Llc Prevention of aortic valve fusion
US20100222632A1 (en) * 2009-02-27 2010-09-02 Victor Poirier Prevention of aortic valve fusion
US8715151B2 (en) 2009-02-27 2014-05-06 Thoratec Corporation Blood flow meter
US8449444B2 (en) 2009-02-27 2013-05-28 Thoratec Corporation Blood flow meter
US20100222633A1 (en) * 2009-02-27 2010-09-02 Victor Poirier Blood pump system with controlled weaning
US10046098B2 (en) 2009-02-27 2018-08-14 Tc1 Llc Prevention of aortic valve fusion
US20100222635A1 (en) * 2009-02-27 2010-09-02 Thoratec Corporation Maximizing blood pump flow while avoiding left ventricle collapse
US20100222878A1 (en) * 2009-02-27 2010-09-02 Thoratec Corporation Blood pump system with arterial pressure monitoring
US9381285B2 (en) 2009-03-05 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9410549B2 (en) 2009-03-06 2016-08-09 Thoratec Corporation Centrifugal pump apparatus
US8632449B2 (en) 2009-04-16 2014-01-21 Bivacor Pty Ltd Heart pump controller
US8636638B2 (en) 2009-04-16 2014-01-28 Bivacor Pty Ltd Heart pump controller
EP2246569A3 (en) * 2009-04-21 2011-06-22 ITT Manufacturing Enterprises, Inc. Pump controller
US8425200B2 (en) 2009-04-21 2013-04-23 Xylem IP Holdings LLC. Pump controller
CN101871447A (en) * 2009-04-21 2010-10-27 Itt制造企业公司 Pump controller
CN101871447B (en) * 2009-04-21 2015-12-16 埃克斯雷姆Ip控股有限责任公司 Pump controller
US9782527B2 (en) 2009-05-27 2017-10-10 Tc1 Llc Monitoring of redundant conductors
US9452250B2 (en) * 2009-06-25 2016-09-27 Sorin Group Deutschland Gmbh Device for pumping blood in an extracorporeal circuit
US20120150089A1 (en) * 2009-06-25 2012-06-14 Sorin Group Deutschland Gmbh Device for pumping blood in an extracorporeal circuit
US8821365B2 (en) 2009-07-29 2014-09-02 Thoratec Corporation Rotation drive device and centrifugal pump apparatus using the same
US10060843B2 (en) 2009-11-30 2018-08-28 Berlin Heart Gmbh Device and a method for measuring fluid-mechanically effective material parameters of a fluid
CN102741677B (en) * 2009-11-30 2015-09-02 柏林心脏有限公司 An apparatus and method effective hydrodynamic material parameters for measuring fluid
US9297735B2 (en) 2009-11-30 2016-03-29 Berlin Heart Gmbh Device and a method for measuring fluid-mechanically effective material parameters of a fluid
CN102741677A (en) * 2009-11-30 2012-10-17 柏林心脏有限公司 A device and a method for measuring fluid-mechanically effective material parameters of a fluid
US9919090B2 (en) 2009-12-16 2018-03-20 Fresenius Medical Care Deutschland Gmbh Balancing unit, external medical functional unit, treatment apparatus and methods
US10029039B2 (en) 2009-12-30 2018-07-24 Tc1 Llc Mobility-enhancing blood pump system
US20110182752A1 (en) * 2010-01-22 2011-07-28 Josef Frank Method for controlling the feed rate of a feed pump
US9132215B2 (en) 2010-02-16 2015-09-15 Thoratee Corporation Centrifugal pump apparatus
US9133854B2 (en) 2010-03-26 2015-09-15 Thoratec Corporation Centrifugal blood pump device
US9839733B2 (en) 2010-06-22 2017-12-12 Tc1 Llc Apparatus and method for modifying pressure-flow characteristics of a pump
US8905910B2 (en) 2010-06-22 2014-12-09 Thoratec Corporation Fluid delivery system and method for monitoring fluid delivery system
US9089635B2 (en) 2010-06-22 2015-07-28 Thoratec Corporation Apparatus and method for modifying pressure-flow characteristics of a pump
US9068572B2 (en) 2010-07-12 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9656010B2 (en) 2010-07-22 2017-05-23 Tc1 Llc Controlling implanted blood pumps
US9675741B2 (en) 2010-08-20 2017-06-13 Tc1 Llc Implantable blood pump
US9091271B2 (en) 2010-08-20 2015-07-28 Thoratec Corporation Implantable blood pump
US9382908B2 (en) 2010-09-14 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9638202B2 (en) 2010-09-14 2017-05-02 Tc1 Llc Centrifugal pump apparatus
US9801988B2 (en) 2010-09-24 2017-10-31 Tc1 Llc Generating artificial pulse
US9433717B2 (en) 2010-09-24 2016-09-06 Thoratec Corporation Generating artificial pulse
US9757502B2 (en) 2010-09-24 2017-09-12 Tci Llc Control of circulatory assist systems
US10086122B2 (en) 2010-09-24 2018-10-02 Tc1 Llc Generating artificial pulse
US9850906B2 (en) 2011-03-28 2017-12-26 Tc1 Llc Rotation drive device and centrifugal pump apparatus employing same
US10213541B2 (en) 2011-07-12 2019-02-26 Sorin Group Italia S.R.L. Dual chamber blood reservoir
US9366261B2 (en) 2012-01-18 2016-06-14 Thoratec Corporation Centrifugal pump device
US9731058B2 (en) 2012-08-31 2017-08-15 Tc1 Llc Start-up algorithm for an implantable blood pump
US9579436B2 (en) 2012-08-31 2017-02-28 Thoratec Corporation Sensor mounting in an implantable blood pump
US9427510B2 (en) 2012-08-31 2016-08-30 Thoratec Corporation Start-up algorithm for an implantable blood pump
US9492599B2 (en) 2012-08-31 2016-11-15 Thoratec Corporation Hall sensor mounting in an implantable blood pump
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9709061B2 (en) 2013-01-24 2017-07-18 Tc1 Llc Impeller position compensation using field oriented control
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US8777832B1 (en) 2013-03-14 2014-07-15 The University Of Kentucky Research Foundation Axial-centrifugal flow catheter pump for cavopulmonary assistance
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
CN103615380A (en) * 2013-12-06 2014-03-05 杭州哲达节能科技有限公司 Non-sensor constant-pressure pump and valve integrated device
CN103615380B (en) * 2013-12-06 2016-08-17 杭州哲达节能科技有限公司 No constant pressure valve integrated sensing device
US10111996B2 (en) 2014-04-15 2018-10-30 Tc1 Llc Ventricular assist devices
US10115290B2 (en) 2014-04-15 2018-10-30 Tci Llc Methods and systems for providing battery feedback to patient
US9786150B2 (en) 2014-04-15 2017-10-10 Tci Llc Methods and systems for providing battery feedback to patient
US9744280B2 (en) 2014-04-15 2017-08-29 Tc1 Llc Methods for LVAD operation during communication losses
US9694123B2 (en) 2014-04-15 2017-07-04 Tc1 Llc Methods and systems for controlling a blood pump
US9849224B2 (en) 2014-04-15 2017-12-26 Tc1 Llc Ventricular assist devices
US9629948B2 (en) 2014-04-15 2017-04-25 Tc1 Llc Methods for upgrading ventricle assist devices
US10207039B2 (en) 2014-04-15 2019-02-19 Tc1 Llc Methods and systems for upgrading ventricle assist devices
US9937284B2 (en) 2014-04-15 2018-04-10 Tc1 Llc Systems for upgrading ventricle assist devices
US9789237B2 (en) 2014-04-15 2017-10-17 Tc1 Llc Systems for upgrading ventricle assist devices
US10077777B2 (en) 2014-05-09 2018-09-18 The Cleveland Clinic Foundation Artificial heart system implementing suction recognition and avoidance methods
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
EP3081246A1 (en) * 2015-04-13 2016-10-19 Berlin Heart GmbH Pump and method for operating a pump for liquids
WO2016166114A1 (en) * 2015-04-13 2016-10-20 Berlin Heart Gmbh Pump and method for operating a pump for liquids
EP3088016A1 (en) * 2015-04-29 2016-11-02 Berlin Heart GmbH Pump and method for operating a pump for liquids
WO2016173896A1 (en) * 2015-04-29 2016-11-03 Berlin Heart Gmbh Pump device and methods for operating a pump for liquids
US20160341202A1 (en) * 2015-05-18 2016-11-24 Johnson Electric S.A. Electric motor and electric pump
US20170016449A1 (en) * 2015-07-14 2017-01-19 Hamilton Sundstrand Corporation Axial-flux induction motor pump
US9901666B2 (en) 2015-07-20 2018-02-27 Tc1 Llc Flow estimation using hall-effect sensors for measuring impeller eccentricity
US10300184B2 (en) 2015-07-20 2019-05-28 Tc1 Llc Flow estimation using hall-effect sensors
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
EP3435065A1 (en) * 2017-07-27 2019-01-30 Sulzer Management AG Method for measuring the viscosity of a conveyed fluid conveyed by means of a pump

Also Published As

Publication number Publication date
DE19613388C2 (en) 2002-02-28
DE19613388A1 (en) 1996-10-10

Similar Documents

Publication Publication Date Title
US3220350A (en) Motor driven pump
US3220349A (en) Motor driven pump
US5326344A (en) Magnetically suspended and rotated rotor
US6135943A (en) Non-invasive flow indicator for a rotary blood pump
EP0071387B1 (en) Torque compensated electric motor
US4779614A (en) Magnetically suspended rotor axial flow blood pump
US4023920A (en) Turbomolecular vacuum pump having a magnetic bearing-supported rotor
RU2326268C2 (en) Device for axial discharge of liquids
US6249067B1 (en) Method and sensor arrangement for the determination of the radial position of a permanent magnetic rotor
US7575423B2 (en) Sealless rotary blood pump
US6201329B1 (en) Pump having magnetic bearing for pumping blood and the like
EP0560466A2 (en) Centrifugal blood pump and motor drive
EP0184703B1 (en) Multiple magnetic pump system
EP1464348B1 (en) Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
US5355042A (en) Magnetic bearings for pumps, compressors and other rotating machinery
US5385581A (en) Magnetically suspended and rotated rotor
RU2266141C2 (en) Device for transferring single-phase or multi-phase fluids without changing their properties
JP3994343B2 (en) Position control method of a permanent magnet support rotating member
US6394769B1 (en) Pump having a magnetically suspended rotor with one active control axis
EP0653022B1 (en) Centrifugal blood pump
EP2605809B1 (en) Implantable blood pump
EP0598287A1 (en) Coriolis flowmeter
AU735578B2 (en) Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
US8114008B2 (en) Blood pump and pump unit
US10160276B2 (en) Contactless sensing of a fluid-immersed electric motor

Legal Events

Date Code Title Description
AS Assignment

Owner name: NTN CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAKAZEKI, TSUGITO;ITO, HIROYOSHI;AKAMATSU, TERUAKI;REEL/FRAME:008634/0862

Effective date: 19960320

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12