WO2016158172A1 - 遠心式ポンプ装置 - Google Patents

遠心式ポンプ装置 Download PDF

Info

Publication number
WO2016158172A1
WO2016158172A1 PCT/JP2016/056377 JP2016056377W WO2016158172A1 WO 2016158172 A1 WO2016158172 A1 WO 2016158172A1 JP 2016056377 W JP2016056377 W JP 2016056377W WO 2016158172 A1 WO2016158172 A1 WO 2016158172A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
dynamic pressure
chamber
partition
permanent magnets
Prior art date
Application number
PCT/JP2016/056377
Other languages
English (en)
French (fr)
Inventor
山田 裕之
顕 杉浦
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015068650A external-priority patent/JP2016188593A/ja
Priority claimed from JP2015068560A external-priority patent/JP2016188591A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016158172A1 publication Critical patent/WO2016158172A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0666Units comprising pumps and their driving means the pump being electrically driven the motor being of the plane gap type

Definitions

  • the present invention relates to a centrifugal pump device, and more particularly to a centrifugal pump device provided with an impeller that sends a liquid by a centrifugal force during rotation.
  • a canned motor having a structure in which a motor drive chamber and a rotor chamber are separated by a partition wall is often used.
  • Such a motor is used, for example, in a pump for transporting pure water in a semiconductor production line used in an environment where dust is not desired or a pump for transporting biological fluid.
  • Patent Document 1 JP 2010-261394 A (Patent Document 1) describes an axial gap type centrifugal pump characterized by non-contact floating of an impeller by a fluid dynamic pressure bearing and a canned motor structure.
  • a ring shape is formed on the opposite side of the impeller so as to cancel the axial suction force acting between the impeller and the motor. Balance of attractive force in the axial direction by permanent magnets.
  • the attractive force by these permanent magnets or the like is a component of negative rigidity (unstable element) that tends to approach the impeller more in one direction.
  • negative rigidity unstable element
  • the impeller is eccentric from the rotation center of the motor in the radial direction.
  • this centrifugal pump has an impeller that deviates from the normal levitation position due to disturbance and fluid force due to the mutual balance of the axial suction force on the drive motor side and the axial suction force on the ring magnet side to offset it. May end up.
  • Patent Document 1 As described above, as a method for controlling the axial attractive force changed due to the eccentricity of the impeller, in Japanese Patent Application Laid-Open No. 2010-261394 (Patent Document 1), the motor-side attractive force is balanced with the attractive force change of the ring-shaped magnet portion. In addition, the motor current phase was adjusted. As a result, even if the impeller is eccentric in the radial direction due to disturbances or operating conditions, stable rotation can be maintained without changing the floating position of the impeller in the axial direction.
  • changing the motor current phase may cause various problems. For example, if the current phase changes from the situation where the motor is operated at the maximum efficiency point, the motor efficiency may be reduced. Further, for example, when the current phase is changed from the situation where the operation is performed at the maximum torque point, the generated torque is reduced, and there is a possibility that the pump output is reduced or the motor is stepped out.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a centrifugal pump device capable of achieving both prevention of contamination and prevention of reduction in efficiency and performance. .
  • the present invention is a centrifugal pump device including a housing, an impeller, a first drive unit, and a plurality of first permanent magnets.
  • the housing includes first and second chambers separated by a first partition.
  • the impeller is rotatably provided with an axis intersecting the first partition in the second chamber as a rotation axis, and sends liquid by centrifugal force during rotation.
  • the first drive unit is provided in the first chamber and rotationally drives the impeller via the first partition.
  • the plurality of first permanent magnets are provided on one surface of the impeller along the first partition, and are arranged along the same circle.
  • the first drive unit includes a plurality of first air-core coils that are provided to face the plurality of first permanent magnets and generate a rotating magnetic field.
  • a first dynamic pressure groove is formed on one surface of the impeller or the surface of the first partition wall facing the impeller, and the second surface on the opposite side to the one surface of the impeller or the inner wall surface of the second chamber facing the second surface.
  • a dynamic pressure groove is formed, and a third dynamic pressure groove is formed on the outer peripheral surface of the impeller or the inner peripheral surface of the second chamber facing the impeller, or on the inner peripheral surface of the impeller or the outer peripheral surface of the second chamber facing the impeller.
  • the coil of the first drive unit has a coreless structure so that the axial attractive force does not work. Therefore, a ring-shaped permanent magnet for canceling out the first drive unit side attractive force is also arranged. Without the negative stiffness component acting on the impeller. In the conventional structure, the radial restoring force of the impeller is secured by the ring magnet. In the case of this apparatus, a new radial dynamic pressure is applied to the inner and outer peripheral surfaces of the impeller or the inner wall surface of the second chamber facing the impeller. By adding a groove, the radial direction is supported.
  • the first drive unit further includes a magnetic body that is disposed on the opposite side of the plurality of first air-core coils from the first partition and is magnetically coupled to the plurality of first air-core coils. .
  • the plurality of first permanent magnets are arranged along the same circle so that adjacent magnetic poles are different from each other.
  • the housing further includes a third chamber.
  • the second chamber is provided between the first chamber and the third chamber.
  • the second chamber and the third chamber are separated by a second partition.
  • the centrifugal pump device is provided in the third chamber, provided on the other surface of the impeller along the second partition, and on the other side of the second drive unit that rotates the impeller via the second partition.
  • a plurality of second permanent magnets arranged along the line.
  • the second drive unit is provided to face the plurality of second permanent magnets and includes a plurality of second air-core coils for generating a rotating magnetic field.
  • the second dynamic pressure groove is formed on the other surface of the impeller or the surface of the second partition opposite to the other surface.
  • the coil of the drive unit has a coreless structure so that the axial attractive force does not work, so there is no ring-shaped permanent magnet to cancel the drive unit side attractive force, and it acts on the impeller
  • the negative stiffness component is eliminated.
  • the radial restoring force of the impeller is secured by the ring magnet, but in the case of this apparatus, a new radial dynamic pressure groove is provided on the inner and outer peripheral surfaces of the impeller or the first indoor wall surface facing the impeller. By adding, it has a structure that supports the radial direction.
  • drive units are provided on both sides of the impeller.
  • the first drive unit is disposed on the opposite side to the first partition of the plurality of first air-core coils and is magnetically coupled to the plurality of first air-core coils.
  • a second drive unit disposed on the opposite side of the second partition of the plurality of second air-core coils and magnetically coupled to the plurality of second air-core coils. It further includes a magnetic material.
  • the plurality of first permanent magnets are arranged along the same circle so that the adjacent magnetic poles are different from each other, and the plurality of second permanent magnets are the same circle so that the adjacent magnetic poles are different from each other. It is arranged along.
  • the attractive force on the drive motor side and the negative stiffness component in the axial direction of the attractive force on the ring magnet side to cancel it cause instability of the impeller behavior.
  • an air-core coil as the coil of the drive unit, it is possible to eliminate the attractive force acting in the axial direction, and to improve the stability of the impeller during the floating rotation.
  • a structure in which two drive units (coreless motors) are arranged opposite each other with an impeller interposed therebetween is employed to further increase the pump output. Since it is driven by a coreless motor, the cogging torque is reduced as compared with the conventional method, and the impeller can be rotated more smoothly.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • 2 is a plan view showing a detailed arrangement of magnets embedded in a shroud of the impeller 10.
  • FIG. 2 is a side view showing a detailed arrangement of magnets embedded in a shroud of the impeller 10.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 3. It is sectional drawing which shows the state which removed the impeller 10 from FIG. FIG.
  • FIG. 4 is a cross-sectional view showing a state where an impeller is removed from the cross-sectional view taken along line VIII-VIII in FIG. It is a figure which shows the 1st example of the dynamic pressure groove formed in the outer peripheral surface of a shroud. It is a figure which shows the 2nd example of the dynamic pressure groove formed in the outer peripheral surface of a shroud. It is a top view which shows the 1st modification of arrangement
  • FIG. 1 is a front view showing an appearance of a pump unit 1 of a centrifugal pump device according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view of the pump unit 1 shown in FIG. 3 is a cross-sectional view taken along line III-III in FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • the pump unit 1 of the centrifugal pump device includes a housing 2 formed of a nonmagnetic material.
  • the housing 2 includes a columnar main body 3, a cylindrical inflow port 4 erected at the center of one end surface of the main body 3, and a cylindrical outflow port 5 provided on the outer peripheral surface of the main body 3. Including.
  • the outflow port 5 extends in the tangential direction of the outer peripheral surface of the main body 3.
  • a pump chamber 7 and a motor chamber 8 partitioned by a partition wall 6 are provided in the housing 2, as shown in FIG. 3, a pump chamber 7 and a motor chamber 8 partitioned by a partition wall 6 are provided.
  • a disc-shaped impeller 10 having a through hole 10 a at the center is rotatably provided in the pump chamber 7.
  • the impeller 10 includes two shrouds 11 and 12 each having a donut plate shape and a plurality of (for example, six) vanes 13 formed between the two shrouds 11 and 12.
  • the shroud 11 is disposed on the inflow port 4 side, and the shroud 12 is disposed on the partition wall 6 side.
  • the shrouds 11 and 12 and the vane 13 are made of a nonmagnetic material.
  • a plurality of (in this case, six) passages 14 partitioned by a plurality of vanes 13 are formed between the two shrouds 11 and 12.
  • the passage 14 communicates with the central through hole 10 a of the impeller 10, and starts from the through hole 10 a of the impeller 10 and extends so that the width gradually increases to the outer peripheral edge.
  • the vane 13 is formed between two adjacent passages 14.
  • the plurality of vanes 13 are provided at equiangular intervals and are formed in the same shape. Therefore, the plurality of passages 14 are provided at equiangular intervals and are formed in the same shape.
  • 5A and 5B are diagrams showing the detailed arrangement of the magnets embedded in the shroud of the impeller 10. 4, 5 ⁇ / b> A, and 5 ⁇ / b> B, a plurality (e.g., eight) of permanent magnets 17 are embedded in the shroud 12.
  • the plurality of permanent magnets 17 are arranged with gaps along the same circle at equal angular intervals so that adjacent magnetic poles are different from each other.
  • the permanent magnet 17 with the N pole facing the motor chamber 8 side and the permanent magnet 17 with the S pole facing the motor chamber 8 side are alternately provided along the same circle with gaps provided at equal angular intervals. Has been placed.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • a plurality of (for example, nine) air-core coils 20 are provided in the motor chamber 8.
  • the plurality of air-core coils 20 are arranged along the same circle at equal angular intervals so as to face the plurality of permanent magnets 17 of the impeller 10 with a partition wall interposed therebetween.
  • a coil wiring is wound around an air-core portion 18 on which no magnetic material or the like is disposed.
  • a magnetic body 19 serving as a back yoke is arranged on the side opposite to the partition walls of the plurality of air-core coils, and the magnetic flux of the air-core coil 20 is strengthened.
  • the back yoke may not be provided.
  • the voltage is applied to the nine air-core coils 20 by, for example, a 120-degree energization method. That is, nine air-core coils 20 are grouped by three.
  • the U-phase, V-phase, and W-phase three-phase voltages VU, VV, and VW are applied to the first to third air-core coils 20 of each group.
  • a positive voltage is applied to the first air-core coil 20 during a period of 0 to 120 degrees
  • 0 V is applied during a period of 120 to 180 degrees
  • a negative voltage is applied during a period of 180 to 300 degrees
  • 300 to 0V is applied during a period of 360 degrees.
  • the front end face (end face on the impeller 10 side) of the first air-core coil 20 becomes the N pole during the period of 0 to 120 degrees and becomes the S pole during the period of 180 to 300 degrees.
  • the phase of the voltage VV is 120 degrees behind the voltage VU
  • the phase of the voltage VW is 120 degrees behind the voltage VV. Therefore, by applying the voltages VU, VV, and VW to the first to third air-core coils 20, respectively, a rotating magnetic field can be formed, and the plurality of air-core coils 20 and the plurality of permanent magnets 17 of the impeller 10 can be formed.
  • the impeller 10 can be rotated by the suction force and the repulsive force.
  • FIG. 7 is a cross-sectional view showing a state where the impeller is removed from FIG. 8 is a cross-sectional view showing a state where the impeller is removed from the cross-sectional view taken along the line VIII-VIII in FIG.
  • a plurality of dynamic pressure grooves 21 are formed on the surface of the partition wall 6 facing the shroud 12 of the impeller 10, and a plurality of dynamic pressures are formed on the inner wall of the pump chamber 7 facing the shroud 11.
  • a groove 22 is formed.
  • the plurality of dynamic pressure grooves 21 are formed in a size corresponding to the shroud 12 of the impeller 10.
  • Each dynamic pressure groove 21 has one end on the periphery (circumference) of a circular portion slightly spaced from the center of the partition wall 6 and has a width up to the vicinity of the outer edge of the partition wall 6 in a spiral shape (in other words, curved). It extends to gradually spread.
  • the plurality of dynamic pressure grooves 21 have substantially the same shape and are arranged at substantially the same interval.
  • the dynamic pressure groove 21 is a recess, and the depth of the dynamic pressure groove 21 is preferably about 0.005 to 0.4 mm.
  • the number of the dynamic pressure grooves 21 is preferably about 6 to 36.
  • ten dynamic pressure grooves 21 are arranged at an equal angle with respect to the central axis of the impeller 10. Since the dynamic pressure groove 21 has a so-called inward spiral groove shape, when the impeller 10 rotates in the clockwise direction, the liquid pressure increases from the outer diameter portion to the inner diameter portion of the dynamic pressure groove 21. For this reason, a repulsive force is generated between the impeller 10 and the partition wall 6, and this becomes a dynamic pressure.
  • the impeller 10 is separated from the partition wall 6 and rotates in a non-contact state. For this reason, a liquid flow path is ensured between the impeller 10 and the partition wall 6. Further, in a normal state, a portion between the impeller 10 and the partition wall 6 is stirred by the dynamic pressure groove 21 and a liquid flow (leakage flow rate) due to a pressure difference between the inner and outer diameter portions of the impeller generated by the pump operation. Generation of typical liquid retention can be prevented.
  • corner portion of the dynamic pressure groove 21 is preferably rounded so as to have an R of at least 0.05 mm.
  • the plurality of dynamic pressure grooves 22 are formed in a size corresponding to the shroud 11 of the impeller 10 as with the plurality of dynamic pressure grooves 21.
  • Each dynamic pressure groove 22 has one end on the periphery (circumference) of a circular portion slightly spaced from the center of the inner wall of the pump chamber 7, and spirally (in other words, curved) on the inner wall of the pump chamber 7. It extends so that the width gradually increases to the vicinity of the outer edge.
  • the plurality of dynamic pressure grooves 22 have substantially the same shape and are arranged at substantially the same interval.
  • the dynamic pressure groove 22 is a recess, and the depth of the dynamic pressure groove 22 is preferably about 0.005 to 0.4 mm.
  • the number of the dynamic pressure grooves 22 is preferably about 6 to 36. In FIG. 8, ten dynamic pressure grooves 22 are arranged at an equal angle with respect to the central axis of the impeller 10.
  • the corners of the dynamic pressure grooves 22 are preferably rounded so as to have an R of at least 0.05 mm.
  • the impeller 10 is separated from the inner wall of the pump chamber 7 and rotates in a non-contact state. Moreover, when the pump part 1 receives an external impact or when the dynamic pressure by the dynamic pressure groove 21 becomes excessive, it is possible to prevent the impeller 10 from closely contacting the inner wall of the pump chamber 7.
  • the dynamic pressure generated by the dynamic pressure groove 21 and the dynamic pressure generated by the dynamic pressure groove 22 may be different.
  • the impeller 10 rotates with the gap between the shroud 12 of the impeller 10 and the partition wall 6 and the gap between the shroud 11 of the impeller 10 and the inner wall of the pump chamber 7 being substantially the same.
  • the dynamic pressure by the dynamic pressure groove on the narrowing side is made larger than the dynamic pressure by the other dynamic pressure groove, To make the dynamic pressure grooves 21 and 22 different in shape.
  • each of the dynamic pressure grooves 21 and 22 has an inward spiral groove shape, but other shapes of the dynamic pressure grooves 21 and 22 may be used. However, when the liquid is circulated, it is preferable to adopt the inward spiral groove-shaped dynamic pressure grooves 21 and 22 that allow the liquid to flow smoothly.
  • FIG. 9 is a view showing a first example of a dynamic pressure groove formed on the outer peripheral surface of the shroud.
  • FIG. 10 is a diagram illustrating a second example of the dynamic pressure grooves formed on the outer peripheral surface of the shroud.
  • the dynamic pressure grooves 61 and 62 are formed on the outer peripheral surfaces of the shrouds 11 and 12, respectively.
  • the tips of the dynamic pressure grooves 61 and 62 are directed in the direction opposite to the rotation direction of the impeller 10.
  • the impeller 10 rotates in the direction of the arrow, the liquid pressure increases toward the tip portions of the dynamic pressure grooves 61 and 62. For this reason, a repulsive force is generated between the impeller 10 and the inner peripheral surface of the pump chamber 7, and this becomes a dynamic pressure.
  • the dynamic pressure grooves 64 and 65 are formed not on the inner peripheral surface side of the pump chamber 7 but on the outer peripheral surfaces of the shrouds 11 and 12, respectively.
  • the depth of each of the dynamic pressure grooves 64 and 65 is gradually shallower in the direction opposite to the rotation direction of the impeller 10.
  • the pressure of the liquid increases toward the tips of the dynamic pressure grooves 64 and 65. For this reason, a repulsive force is generated between the impeller 10 and the inner peripheral surface of the pump chamber 7, and this becomes a dynamic pressure.
  • Modification of permanent magnet arrangement 5A and 5B show an example in which a plurality of permanent magnets 17 are arranged with gaps along the same circle at equal angular intervals so that adjacent magnetic poles are different from each other.
  • FIG. 11A, FIG. 11B, and FIG. 12 to FIG. 15 are diagrams showing modifications of the arrangement of the permanent magnets shown in FIG. 5A and FIG. 5B.
  • the impeller 10 is provided with a plurality of permanent magnets 17 and a plurality of permanent magnets 67.
  • the number of permanent magnets 67 is the same as the number of permanent magnets 17.
  • the permanent magnet 67 is magnetized in the circumferential direction (the rotation direction of the impeller 10).
  • the plurality of permanent magnets 17 and the plurality of permanent magnets 67 are alternately arranged one by one at equal angular intervals along the same circle in a Halbach array structure. In other words, the permanent magnet 17 with the N pole facing the partition wall 6 side and the permanent magnet 17 with the S pole facing the partition wall 6 side are alternately arranged along the same circle with gaps provided at equal angular intervals. Yes.
  • each permanent magnet 67 is arranged toward the permanent magnet 17 with the N pole facing the partition 6 side, and the S pole of each permanent magnet 67 is arranged toward the permanent magnet 17 with the S pole facing the partition 6 side. Is done.
  • the shapes of the plurality of permanent magnets 17 are the same, and the shapes of the plurality of permanent magnets 67 are the same.
  • the shape of the permanent magnet 17 and the shape of the permanent magnet 67 may be the same or different.
  • the attractive force between the permanent magnet 17 and the air-core coil 20 can be suppressed, and the magnetic flux that causes the torque can be strengthened, so that the permanent magnet can be most miniaturized. That is, the impeller 10 can be most lightweight and energy efficiency can be increased even when the motor gap is wide.
  • the rotor (the shroud 12 of the impeller 10) includes a permanent magnet 17A magnetized in the rotation axis direction, a permanent magnet 67A magnetized in the circumferential direction, and a magnetic body 70A. It is out.
  • the permanent magnet 17A is arranged so that the magnetic poles of adjacent magnets have different orientations, and the permanent magnet 67A is arranged so that the same magnetic pole as the permanent magnet 17A approaches the end face of the permanent magnet 17A on the partition wall 6 side.
  • the number of permanent magnets 17A and the number of permanent magnets 67A is the same.
  • the magnetizing direction length of the permanent magnet 67A is shorter than the width of the permanent magnet 17A, and if the center of the magnetizing direction length of the permanent magnet 67A is made coincident with the boundary between adjacent magnets of the permanent magnet 17A, a gap is formed in the circumferential direction.
  • the magnetic body 70A is disposed in the gap. In this case, the magnetic flux is focused on the magnetic body 70A, and a stronger field magnetic flux can be obtained and torque can be increased compared to the case where there is no magnetic body or the configuration of the normal Halbach arrangement (FIGS. 11A and 11B). Can do. Furthermore, in the arrangement of FIG. 12, it is possible to suppress a decrease in permeance coefficient of the permanent magnets 17A and 67A.
  • FIG. 13 shows that the magnetic body 72 is disposed on the end face of the permanent magnet 17A opposite to the partition wall 6 in the configuration of FIG. Magnetic flux can be further strengthened by the effect of the magnetic body 72.
  • FIG. 14 shows another magnet arrangement.
  • the rotor is composed of a permanent magnet 17B magnetized in the rotation axis direction, a permanent magnet 67B magnetized in the circumferential direction, and a magnetic body 70B.
  • the permanent magnet 17B is arranged with a gap in the direction of the magnetic poles of adjacent magnets, and the permanent magnet 67B is arranged in the gap on the partition 6 side.
  • this configuration allows the permeance coefficient to be larger than that in FIG. 12 because the flatness of the permanent magnet 17B is reduced.
  • the number of permanent magnets 17B and the number of permanent magnets 67B is the same.
  • the permanent magnet 67B is magnetized in the circumferential direction (rotation direction of the rotor).
  • the plurality of permanent magnets 17B and the plurality of permanent magnets 67B are alternately arranged in a Halbach array structure along the same circle at equal angular intervals one by one.
  • the permanent magnet 17B with the N pole facing the partition wall 6 and the permanent magnet 17B with the S pole facing the partition wall 6 are alternately arranged along the same circle with gaps provided at equal angular intervals.
  • the N pole of each permanent magnet 67B is disposed toward the permanent magnet 17B with the N pole directed toward the partition wall 6, and the S pole of each permanent magnet 67B is disposed toward the permanent magnet 17B with the S pole directed toward the partition wall 6. Is done.
  • the shapes of the plurality of permanent magnets 17B are the same, and the shapes of the plurality of permanent magnets 67B are the same.
  • the axial length of the permanent magnet 17B is shorter than the width of the permanent magnet 67B.
  • the magnetic body 72 is arranged on the end surface of the permanent magnet 17 ⁇ / b> B opposite to the partition wall 6 in the configuration of FIG. 14. Magnetic flux can be further strengthened by the effect of the magnetic body 72.
  • the plurality of permanent magnets 17 embedded in the shroud 12 may be arranged without providing gaps along the same circle at equal angular intervals so that adjacent magnetic poles are different from each other.
  • FIG. 16 is a cross-sectional view illustrating a main part of a first modification of the pump unit 1 in which the position where the dynamic pressure groove is provided is changed.
  • FIG. 16 and FIG. 3 are contrasted.
  • this centrifugal pump device is different from the centrifugal pump device of FIG. 3 in that dynamic pressure grooves 161 and 162 are formed on the inner peripheral surface of the pump chamber 7 facing the outer peripheral surface of the impeller 10. It is.
  • the dynamic pressure grooves 161 and 162 generate dynamic pressure on the outer peripheral surface of the impeller 10 and prevent the outer peripheral surface of the impeller 10 from contacting the inner peripheral surface of the pump chamber 7.
  • FIG. 17 is a diagram illustrating a specific configuration of the dynamic pressure grooves 161 and 162.
  • V-shaped dynamic pressure grooves 161 are formed at a predetermined pitch in the rotation direction of the impeller 10 in a region facing the outer peripheral surface of the shroud 11 in the inner peripheral surface of the pump chamber 7.
  • the tip (acute angle portion) of the V-shaped dynamic pressure groove 161 is directed in the rotational direction of the impeller 10.
  • V-shaped dynamic pressure grooves 162 are formed at a predetermined pitch in the rotation direction of the impeller 10 in a region facing the outer peripheral surface of the shroud 12 in the inner peripheral surface of the pump chamber 7.
  • the tip (acute angle portion) of the V-shaped dynamic pressure groove 162 is directed in the rotation direction of the impeller 10.
  • a groove 63 having a predetermined depth is formed in a ring shape in a region of the inner peripheral surface of the pump chamber 7 facing the gap between the shrouds 11 and 12.
  • FIG. 18 is a view showing a modification of the shape of the dynamic pressure groove in FIG.
  • the dynamic pressure grooves 161 and 162 are replaced with dynamic pressure grooves 164 and 165, respectively.
  • Each of the dynamic pressure grooves 164 and 165 is formed in a belt shape and extends in the rotation direction of the impeller 10. The depths of the dynamic pressure grooves 164 and 165 gradually become shallower in the rotation direction of the impeller 10.
  • the pressure of the liquid increases toward the tips of the dynamic pressure grooves 164 and 165. For this reason, a repulsive force is generated between the impeller 10 and the inner peripheral surface of the pump chamber 7, and this becomes a dynamic pressure.
  • FIGS. 19 to 22 are cross-sectional views showing the main parts of the second to fifth modifications of the pump unit 1 in which the positions where the dynamic pressure grooves are provided are changed.
  • the dynamic pressure groove 121 may be provided on the surface of the shroud 12 of the impeller 10.
  • the dynamic pressure groove 122 may be provided on the surface of the shroud 11 of the impeller 10.
  • dynamic pressure grooves 61 and 62 may be formed on the outer peripheral surface of the impeller 10.
  • dynamic pressure grooves 161 and 162 may be formed on the outer peripheral wall of the pump chamber 7 facing the outer peripheral surface of the impeller 10.
  • the dynamic pressure grooves 261 and 262 are provided on the inner peripheral surface of the shroud 11 and 12 of the impeller 10. It may be provided.
  • the dynamic pressure grooves 361 and 362 may be provided on the inner peripheral wall of the pump chamber 7 of the impeller 10.
  • the canned motor having the partition between the stator and the rotor, it is possible to eliminate the attractive force (negative stiffness component) by the drive unit 9 or the permanent magnet.
  • the impeller can be stably levitated and rotated. Furthermore, cogging can be reduced and a smooth rotation start can be realized.
  • the centrifugal pump device includes a housing 2, an impeller 10, a drive unit 9, and a plurality of permanent magnets 17.
  • the housing 2 includes a motor chamber 8 and a pump chamber 7 separated by a partition wall 6.
  • the impeller 10 is rotatably provided with the axis intersecting the partition wall 6 in the pump chamber 7 as a rotation axis, and sends liquid by centrifugal force during rotation.
  • the drive unit 9 is provided in the motor chamber 8 and rotates the impeller 10 via the partition wall 6.
  • the plurality of permanent magnets 17 are provided on one surface of the impeller 10 along the partition wall 6 and are arranged along the same circle.
  • the driving unit 9 includes a plurality of air-core coils 20 that are provided to face the plurality of permanent magnets 17 and generate a rotating magnetic field.
  • the dynamic pressure groove 22 or 122 is formed on the other surface opposite to the one surface of the impeller 10 or the inner wall of the pump chamber 7 facing it, and the dynamic pressure groove 21 or 121 is formed on the one surface of the impeller or the partition wall 6 facing it.
  • the dynamic pressure grooves 61, 62, 161, 162, 261 are formed on the outer peripheral surface of the impeller 10 or the inner peripheral surface of the pump chamber 7 facing it, or the inner peripheral surface of the impeller 10 or the outer peripheral surface of the pump chamber 7 facing it. 262, 361, 362 are formed.
  • FIG. 23 is a front view illustrating an appearance of the pump unit 101 of the centrifugal pump device according to the second embodiment.
  • 24 is a side view of the pump unit 101 shown in FIG. 25 is a cross-sectional view taken along line III-III in FIG.
  • the sectional view taken along the line IV-IV in FIG. 25 is the same as FIG.
  • the pump unit 101 of the centrifugal pump device includes a housing 2 formed of a nonmagnetic material.
  • the housing 2 includes a columnar main body 3, a cylindrical inflow port 4 erected at the center of one end surface of the main body 3, and a cylindrical outflow port 5 provided on the outer peripheral surface of the main body 3. Including.
  • the outflow port 5 extends in the tangential direction of the outer peripheral surface of the main body 3.
  • a pump chamber 7 and motor chambers 8 and 8D partitioned by partition walls 6 and 6D are provided in the housing 2, as shown in FIG. 25, a pump chamber 7 and motor chambers 8 and 8D partitioned by partition walls 6 and 6D are provided in the pump chamber 7, as shown in FIGS. 25 and 4, a disc-shaped impeller 10 having a through hole 10a at the center is rotatably provided in the pump chamber 7, as shown in FIGS. 25 and 4, a disc-shaped impeller 10 having a through hole 10a at the center is rotatably provided.
  • the impeller 10 is driven by the air-core coil 20 so that the axial attractive force does not work. Therefore, a ring-shaped permanent magnet for canceling the axial attractive force is not disposed.
  • the air-core coil 20 has a weak magnetic attraction compared to a normal coil having a magnetic material as a core, so it is difficult to ensure torque. Therefore, the second embodiment is characterized by a structure in which the generated torque is doubled and the pump output is further increased by arranging the air-core coils 20 and 20D to face each other with the impeller 10 therebetween.
  • the impeller 10 includes two donut plate-shaped shrouds 11 and 12 and a plurality of (for example, six) vanes 13 formed between the two shrouds 11 and 12.
  • the shroud 11 is disposed on the inflow port 4 side, and the shroud 12 is disposed on the partition wall 6 side.
  • the shrouds 11 and 12 and the vane 13 are made of a nonmagnetic material.
  • a plurality of (in this case, six) passages 14 partitioned by a plurality of vanes 13 are formed between the two shrouds 11 and 12.
  • the passage 14 communicates with the central through hole 10 a of the impeller 10, and starts from the through hole 10 a of the impeller 10 and extends so that the width gradually increases to the outer peripheral edge.
  • the vane 13 is formed between two adjacent passages 14.
  • the plurality of vanes 13 are provided at equiangular intervals and are formed in the same shape. Therefore, the plurality of passages 14 are provided at equiangular intervals and are formed in the same shape.
  • a plurality of permanent magnets 17D are also provided on the shroud 11, and a motor chamber 8D is also provided on the shroud 11 side.
  • the motor chamber 8D and the pump chamber 7 are partitioned by a partition wall 6D.
  • a plurality of air-core coils 20D are provided in the motor chamber 8D so as to face the plurality of permanent magnets 17D.
  • Each of the plurality of air-core coils 20D is wound around the air-core portion 18D.
  • a magnetic body 19D serving as a back yoke is disposed on the side opposite to the partition wall 6D of the plurality of air-core coils 20D, and the magnetic flux of the air-core coil 20D is strengthened. The back yoke may not be provided.
  • the arrangement of the plurality of permanent magnets 17D and the arrangement of the plurality of air-core coils 20D are basically the arrangements shown in FIGS. 5A, 5B, and 6, so detailed description will not be repeated.
  • the first attraction force between the plurality of permanent magnets 17 and the plurality of magnetic bodies 18 and the second attraction force between the plurality of permanent magnets 17 ⁇ / b> D and the plurality of magnetic bodies 18 ⁇ / b> D are expressed by the pump chamber 7. It is set so as to be balanced at the approximate center of the movable range of the impeller 10 inside. Therefore, the position of the impeller 10 in the rotation axis direction is stabilized, and the impeller can be prevented from contacting the inner wall of the pump chamber 7.
  • a dynamic pressure groove having the same arrangement as that shown in FIGS. 7 to 10 is employed. The description of FIGS. 7 to 10 is not repeated here.
  • the plurality of dynamic pressure grooves 22 are formed on the surface of the partition wall 6D.
  • FIG. 26 is a cross-sectional view illustrating a main part of a first modification of the pump unit 101 in which the position where the dynamic pressure groove is provided is changed.
  • FIG. 26 and FIG. 25 are contrasted views.
  • this centrifugal pump device is different from the centrifugal pump device of FIG. 25 in that dynamic pressure grooves 161 and 162 are formed on the inner peripheral surface of the pump chamber 7 facing the outer peripheral surface of the impeller 10. It is.
  • the dynamic pressure grooves 161 and 162 generate dynamic pressure on the outer peripheral surface of the impeller 10 and prevent the outer peripheral surface of the impeller 10 from contacting the inner peripheral surface of the pump chamber 7.
  • FIGS. 27 to 30 are cross-sectional views showing the main parts of second to fifth modifications of the pump unit 101 in which the positions where the dynamic pressure grooves are provided are changed.
  • the dynamic pressure groove 121 may be provided on the surface of the shroud 12 of the impeller 10.
  • the dynamic pressure groove 122 may be provided on the surface of the shroud 11 of the impeller 10.
  • dynamic pressure grooves 61 and 62 may be formed on the outer peripheral surface of the impeller 10 as shown in FIG. Further, as shown in FIG. 28, dynamic pressure grooves 161 and 162 may be formed on the outer peripheral wall of the pump chamber 7 facing the outer peripheral surface of the impeller 10. Thus, the radial support force of the impeller can be generated.
  • the dynamic pressure grooves 261 and 262 are provided on the inner peripheral surface of the shroud 11 and 12 of the impeller 10. It may be provided.
  • the dynamic pressure grooves 361 and 362 may be provided on the inner peripheral wall of the pump chamber 7 of the impeller 10.
  • the canned motor having the partition between the stator and the rotor, it is possible to eliminate the attractive force (negative stiffness component) by the drive unit 9 or the permanent magnet.
  • the impeller can be stably levitated and rotated. Furthermore, cogging can be reduced and a smooth rotation start can be realized.
  • the centrifugal pump device includes a housing 2, an impeller 10, drive units 9, 9D, a plurality of permanent magnets 17, and a plurality of permanent magnets 17D.
  • the housing 2 includes a pump chamber 7 and motor chambers 8 and 8D.
  • the pump chamber 7 is provided between the motor chamber 8 and the motor chamber 8D, the motor chamber 8 and the pump chamber 7 are partitioned by the partition wall 6, and the pump chamber 7 and the motor chamber 8D are partitioned by the partition wall 6D.
  • the impeller 10 is rotatably provided around the axis intersecting the partition wall 6 and the partition wall 6D in the pump chamber 7 and sends liquid by centrifugal force during rotation.
  • the drive units 9 and 9D are provided in the motor chamber 8 and the motor chamber 8D, respectively, and rotate the impeller 10 via the partition wall 6 or the partition wall 6D.
  • the plurality of permanent magnets 17 are provided on one surface of the impeller 10 along the partition wall 6 and are arranged along the same circle.
  • the plurality of permanent magnets 17D are provided on the other surface of the impeller 10 along the partition wall 6D, and are arranged along the same circle.
  • the drive unit 9 includes a plurality of air-core coils 20 that are provided to face the plurality of permanent magnets 17 and generate a rotating magnetic field.
  • the driving unit 9D includes a plurality of air-core coils 20D that are provided to face the plurality of permanent magnets 17D and generate a rotating magnetic field.
  • a dynamic pressure groove 21 or 121 is formed on one surface of the impeller 10 or on the surface of the partition wall 6 facing it.
  • a dynamic pressure groove 22 or 122 is formed on the other surface of the impeller 10 or the surface of the partition wall 6D facing the other surface.
  • the dynamic pressure grooves 61, 62 or 161, 162, 261, 262 or the outer peripheral surface of the impeller 10 or the inner peripheral surface of the pump chamber 7 facing it, or the inner peripheral surface of the impeller 10 or the outer peripheral surface of the pump chamber 7 facing it. 361 and 362 are formed.
  • the drive unit 9 further includes a magnetic body 19 that is disposed on the side opposite to the partition wall 6 of the plurality of air-core coils 20 and is magnetically coupled to the plurality of air-core coils 20.
  • the drive unit 9D further includes a magnetic body 19D that is disposed on the opposite side of the partition walls 6D of the plurality of air-core coils 20D and is magnetically coupled to the plurality of air-core coils 20D.
  • 1,101 Pump part 2 housing, 3 body part, 4 inflow port, 5 outflow port, 6, 6D partition, 7 pump room, 8, 8D motor room, 9, 9D drive part, 10 impeller, 10a through hole, 11 , 12 shroud, 13 vane, 14 passage, 17, 17A, 17B, 17D, 67, 67A, 67B permanent magnet, 18, 18D air core, 19, 19D, 70A, 70B, 72 magnetic body, 20, 20D air core Coils, 21, 22, 61, 62, 64, 65, 121, 122, 161, 162, 261, 262, 361, 362 dynamic pressure grooves.

Abstract

 ハウジング(2)は、隔壁(6)で仕切られたモータ室(8)およびポンプ室(7)を含む。インペラ(10)は、ポンプ室(7)内において隔壁(6)に交差する軸を回転軸として回転可能に設けられ、回転時の遠心力によって液体を送る。駆動部(9)は、モータ室(8)内に設けられ、隔壁(6)を介してインペラ(10)を回転駆動させる。複数の永久磁石(17)は、隔壁(6)に沿うインペラ(10)の一方面に設けられ、同一の円に沿って配置される。駆動部(9)は、複数の永久磁石(17)にそれぞれ対向して設けられ、回転磁界を生成するための複数の空芯コイル(20)を含む。ポンプ室(7)の内壁に動圧溝(22)が形成され、隔壁(6)に動圧溝(21)が形成され、インペラ(10)の外周面に動圧溝(61,62)が形成されている。このようにして、汚染防止と効率や性能の低下の防止とを両立する遠心式ポンプ装置を提供することができる。

Description

遠心式ポンプ装置
 この発明は遠心式ポンプ装置に関し、特に、回転時の遠心力によって液体を送るインペラを備えた遠心式ポンプ装置に関する。
 近年、隔壁によってモータ駆動室とロータ室とに分離した構造のキャンドモータが多く用いられている。このようなモータは、たとえば、粉塵をきらう環境下で使用される半導体製造ラインの純水輸送用ポンプや、生体液を輸送するポンプに使用されている。
 特開2010-261394号公報(特許文献1)には、流体動圧軸受によるインペラの非接触浮上と、キャンドモータ構造を特徴とするアキシアルギャップ型の遠心式ポンプが記載されている。流体動圧軸受によるインペラの非接触浮上を特徴とするアキシアルギャップ型の遠心式ポンプでは、インペラとモータとの間に働くアキシアル方向吸引力を相殺するように、インペラを挟んだ反対側でリング状永久磁石等によりアキシアル方向の吸引力バランスをとっている。
 しかし、これらの永久磁石等による吸引力は、インペラが一方向へ近づくとよりその方向へ近づこうとする負剛性(不安定要素)の成分である。また、例えば流量が多い場合では、流体出口の位置の影響で周方向に圧力差が生じ、インペラがモータの回転中心からラジアル方向へ偏心してしまう。このため、この遠心式ポンプは、駆動モータ側のアキシアル方向吸引力や、それを相殺するためのリング磁石側のアキシアル方向吸引力の相互バランスにより、外乱や流体力によってインペラが定常浮上位置からずれてしまう場合がある。
 このように、インペラの偏心により変化したアキシアル吸引力を制御する方法として、特開2010-261394号公報(特許文献1)では、モータ側吸引力がリング状磁石部の吸引力変化と釣合うように、モータ電流位相を調整することで対応していた。これにより、外乱や動作条件によりインペラがラジアル方向へ偏心しても、インペラのアキシアル方向の浮上位置を変化させずに安定回転を維持することが可能であった。
特開2010-261394号公報
 上述のように、特開2010-261394号公報に記載されたような遠心式ポンプでは、外乱や動作条件によりインペラがラジアル方向へ偏心しても、インペラのアキシアル方向の浮上位置を変化させずに安定回転を維持するために、モータ側吸引力がリング状永久磁石部の吸引力変化と釣合うようにモータ電流位相を調整する等の対策が行なわれている。
 しかしモータ電流位相を変化させるということは、種々の問題が生じるおそれがある。例えばモータを最大効率点で動作させていた状況から電流位相が変化してしまうと、モータ効率の低下を招く可能性がある。また例えば、最大トルク点で動作させていた状況から電流位相を変化させると、発生トルクが低下しポンプ出力の低下やモータの脱調の可能性があった。
 クリーン状態が必須であるポンプ用途では、インペラとポンプ室の内壁との接触等による汚染物質の発生、およびその混入は確実に防ぐ必要がある。その一方で、モータの効率低下やポンプ出力低下はできる限り避けることが望ましい。
 この発明は、上記の課題を解決するためになされたものであって、その目的は、汚染防止と効率や性能の低下の防止とを両立することができる遠心式ポンプ装置を提供することである。
 この発明は、要約すると、遠心式ポンプ装置であって、ハウジングと、インペラと、第1の駆動部と、複数の第1の永久磁石とを備える。
 ハウジングは、第1の隔壁で仕切られた第1および第2の室を含む。インペラは、第2の室内において第1の隔壁に交差する軸を回転軸として回転可能に設けられ、回転時の遠心力によって液体を送る。第1の駆動部は、第1の室内に設けられ、第1の隔壁を介してインペラを回転駆動させる。複数の第1の永久磁石は、第1の隔壁に沿うインペラの一方面に設けられ、同一の円に沿って配置される。
 第1の駆動部は、複数の第1の永久磁石に対向して設けられ、回転磁界を生成するための複数の第1の空芯コイルを含む。インペラの一方面またはそれに対向する第1の隔壁の面に第1の動圧溝が形成され、インペラの一方面と反対側の他方面またはそれに対向する第2の室の内壁面に第2の動圧溝が形成され、インペラの外周面もしくはそれに対向する第2の室の内周面、またはインペラの内周面もしくはそれに対向する第2の室の外周面に第3の動圧溝が形成されている。
 上記に示したように、第1の駆動部のコイルはコアレス構造とすることでアキシアル吸引力が働かない構成とし、そのため第1の駆動部側吸引力を相殺するためのリング状永久磁石も配置せず、インペラに作用する負剛性成分を排除している。また、従来の構造ではリング磁石によりインペラのラジアル方向復元力を確保していたが、本装置の場合はインペラの内外周面、或いはそれに対向する第2の室の内壁面に新たなラジアル動圧溝を追加することで、ラジアル方向を支持した構造としている。
 好ましくは、第1の駆動部は、複数の第1の空芯コイルの第1の隔壁と反対側に配置され、複数の第1の空芯コイルと磁気的に結合される磁性体をさらに含む。
 好ましくは、複数の第1の永久磁石は、隣接する磁極が互いに異なるように同一の円に沿って配置される。
 好ましくは、ハウジングは、第3の室をさらに含む。第2の室は、第1の室および第3の室に挟まれて設けられる。第2の室および第3の室は第2の隔壁で仕切られる。遠心式ポンプ装置は、第3の室内に設けられ、第2の隔壁を介してインペラを回転駆動させる第2の駆動部と、第2の隔壁に沿うインペラの他方面に設けられ、同一の円に沿って配置された複数の第2の永久磁石とをさらに備える。第2の駆動部は、複数の第2の永久磁石に対向して設けられ、回転磁界を生成するための複数の第2の空芯コイルを含む。第2の動圧溝は、インペラの他方面またはそれに対向する第2の隔壁の面に形成される。
 上記に示したように、駆動部のコイルはコアレス構造とすることでアキシアル吸引力が働かない構成とし、そのため駆動部側吸引力を相殺するためのリング状永久磁石も配置せず、インペラに作用する負剛性成分を排除している。また、従来の構造ではリング磁石によりインペラのラジアル方向復元力を確保していたが、本装置の場合はインペラの内外周面、或いはそれに対向する第1の室内壁面に新たなラジアル動圧溝を追加することで、ラジアル方向を支持した構造としている。そして、コアレス構造を採用したことによるトルクの不足を補うために、駆動部をインペラの両側に設けている。
 より好ましくは、第1の駆動部は、複数の第1の空芯コイルの第1の隔壁と反対側に配置され、複数の第1の空芯コイルと磁気的に結合される第1の磁性体をさらに含み、第2の駆動部は、複数の第2の空芯コイルの第2の隔壁と反対側に配置され、複数の第2の空芯コイルと磁気的に結合される第2の磁性体をさらに含む。
 より好ましくは、複数の第1の永久磁石は、隣接する磁極が互いに異なるように同一の円に沿って配置され、複数の第2の永久磁石は、隣接する磁極が互いに異なるように同一の円に沿って配置される。
 従来の構成では、駆動モータ側の吸引力や、それを相殺するためのリング磁石側の吸引力のアキシアル方向の負剛性成分が、インペラ挙動の不安定の原因となっていたが、本発明では駆動部のコイルを空芯コイルとすることによってアキシアル方向に働く吸引力を排除した構成とし、インペラの浮上回転時の安定性を高めることができる。
 本発明ではさらに、2個の駆動部(コアレスモータ)をインペラを挟んで対向配置させる構造を採用し、さらなるポンプ出力の増加を図っている。コアレスモータにより駆動するため従来方式よりもコギングトルクが低減され、よりスムーズなインペラの回転が可能となる。
本発明の実施の形態1の遠心式ポンプ装置のポンプ部1の外観を示す正面図である。 図1に示したポンプ部1の側面図である。 図2のIII-III線断面図である。 図3のIV-IV線断面図である。 インペラ10のシュラウドに埋設された磁石の詳細な配置を示す平面図である。 インペラ10のシュラウドに埋設された磁石の詳細な配置を示す側面図である。 図3のVI-VI線断面図である。 図4からインペラ10を取り外した状態を示す断面図である。 図3のVIII-VIII線断面図からインペラを取り外した状態を示す断面図である。 シュラウドの外周面に形成された動圧溝の第1例を示す図である。 シュラウドの外周面に形成された動圧溝の第2例を示す図である。 図5Aに示した永久磁石の配置の第1変形例を示す平面図である。 図5Bに示した永久磁石の配置の第1変形例を示す側面図である。 図5Bに示した永久磁石の配置の第2変形例を示す側面図である。 図5Bに示した永久磁石の配置の第3変形例を示す側面図である。 図5Bに示した永久磁石の配置の第4変形例を示す側面図である。 図5Bに示した永久磁石の配置の第5変形例を示す側面図である。 動圧溝を設ける位置を変更したポンプ部1の第1変形例の要部を示す断面図である。 動圧溝161,162の具体的構成を例示する図である。 図17の動圧溝の形状の変形例を示す図である。 動圧溝を設ける位置を変更したポンプ部1の第2変形例の要部を示す断面図である。 動圧溝を設ける位置を変更したポンプ部1の第3変形例の要部を示す断面図である。 動圧溝を設ける位置を変更したポンプ部1の第4変形例の要部を示す断面図である。 動圧溝を設ける位置を変更したポンプ部1の第5変形例の要部を示す断面図である。 実施の形態2の遠心式ポンプ装置のポンプ部101の外観を示す正面図である。 図23に示したポンプ部101の側面図である。 図24のIII-III線断面図である。 動圧溝を設ける位置を変更したポンプ部101の第1変形例の要部を示す断面図である。 動圧溝を設ける位置を変更したポンプ部101の第2変形例の要部を示す断面図である。 動圧溝を設ける位置を変更したポンプ部101の第3変形例の要部を示す断面図である。 動圧溝を設ける位置を変更したポンプ部101の第4変形例の要部を示す断面図である。 動圧溝を設ける位置を変更したポンプ部101の第5変形例の要部を示す断面図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 <実施の形態1>
 [ポンプ部の基本構成の説明]
 図1は、本発明の実施の形態1の遠心式ポンプ装置のポンプ部1の外観を示す正面図である。図2は、図1に示したポンプ部1の側面図である。図3は、図2のIII-III線断面図である。図4は、図3のIV-IV線断面図である。
 図1~図4を参照して、この遠心式ポンプ装置のポンプ部1は、非磁性材料で形成されたハウジング2を備える。ハウジング2は、円柱状の本体部3と、本体部3の一方の端面の中央に立設された円筒状の流入ポート4と、本体部3の外周面に設けられた円筒状の流出ポート5とを含む。流出ポート5は、本体部3の外周面の接線方向に延在している。
 ハウジング2内には、図3に示すように、隔壁6によって仕切られたポンプ室7およびモータ室8が設けられている。ポンプ室7内には、図3および図4に示すように、中央に貫通孔10aを有する円板状のインペラ10が回転可能に設けられている。インペラ10は、ドーナツ板状の2枚のシュラウド11,12と、2枚のシュラウド11,12間に形成された複数(たとえば6つ)のベーン13とを含む。シュラウド11は流入ポート4側に配置され、シュラウド12は隔壁6側に配置される。シュラウド11,12およびベーン13は、非磁性材料で形成されている。
 2枚のシュラウド11,12の間には、複数のベーン13で仕切られた複数(この場合は6つ)の通路14が形成されている。通路14は、図4に示すように、インペラ10の中央の貫通孔10aと連通しており、インペラ10の貫通孔10aを始端とし、外周縁まで徐々に幅が広がるように延びている。換言すれば、隣接する2つの通路14間にベーン13が形成されている。なお、実施の形態1では、複数のベーン13は等角度間隔で設けられ、かつ同じ形状に形成されている。したがって、複数の通路14は等角度間隔で設けられ、かつ同じ形状に形成されている。
 インペラ10が回転駆動されると、流入ポート4から流入した液体は、遠心力によって貫通孔10aから通路14を介してインペラ10の外周部に送られ、流出ポート5から流出する。
 [永久磁石の配置の説明]
 図5A、図5Bは、インペラ10のシュラウドに埋設された磁石の詳細な配置を示す図である。図4および図5A、図5Bを参照して、シュラウド12には複数(たとえば8個)の永久磁石17が埋設されている。複数の永久磁石17は、隣接する磁極が互いに異なるようにして、等角度間隔で同一の円に沿って隙間を設けて配置される。換言すれば、モータ室8側にN極を向けた永久磁石17と、モータ室8側にS極を向けた永久磁石17とが等角度間隔で隙間を設けて同一の円に沿って交互に配置されている。
 図6は、図3のVI-VI線断面図である。図3および図6を参照して、モータ室8内には、複数(たとえば9個)の空芯コイル20が設けられている。複数の空芯コイル20は、インペラ10の複数の永久磁石17に隔壁を挟み対向して、等角度間隔で同一の円に沿って配置される。空芯コイル20は、磁性体などが配置されていない空芯部18の周りにコイル配線が巻回されている。
 複数の空芯コイルの隔壁と反対側にはバックヨークとなる磁性体19を配置し、空芯コイル20の磁束を強めている。なお、バックヨークは無くてもよい。
 9個の空芯コイル20には、たとえば120度通電方式で電圧が印加される。すなわち、9個の空芯コイル20は、3個ずつグループ化される。各グループの第1~第3の空芯コイル20には、U相,V相,W相の三相電圧VU,VV,VWが印加される。第1の空芯コイル20には、0~120度の期間に正電圧が印加され、120~180度の期間に0Vが印加され、180~300度の期間に負電圧が印加され、300~360度の期間に0Vが印加される。したがって、第1の空芯コイル20の先端面(インペラ10側の端面)は、0~120度の期間にN極になり、180~300度の期間にS極になる。電圧VVの位相は電圧VUよりも120度遅れており、電圧VWの位相は電圧VVよりも120度遅れている。したがって、第1~第3の空芯コイル20にそれぞれ電圧VU,VV,VWを印加することにより、回転磁界を形成することができ、複数の空芯コイル20とインペラ10の複数の永久磁石17との吸引力および反発力により、インペラ10を回転させることができる。
 [動圧溝の説明]
 図7は、図4からインペラを取り外した状態を示す断面図である。図8は、図3のVIII-VIII線断面図からインペラを取り外した状態を示す断面図である。
 図7、図8に示すように、インペラ10のシュラウド12に対向する隔壁6の表面には複数の動圧溝21が形成され、シュラウド11に対向するポンプ室7の内壁には複数の動圧溝22が形成されている。インペラ10の回転数が所定の回転数を超えると、動圧溝21,22の各々とインペラ10との間に動圧軸受効果が発生する。これにより、動圧溝21,22の各々からインペラ10に対して抗力が発生し、インペラ10はポンプ室7内で非接触状態で回転する。すなわち、動圧溝21と動圧溝22によりインペラ10のアキシアル方向が支持される。
 詳しく説明すると、複数の動圧溝21は、図7に示すように、インペラ10のシュラウド12に対応する大きさに形成されている。各動圧溝21は、隔壁6の中心から若干離間した円形部分の周縁(円周)上に一端を有し、渦状に(換言すれば、湾曲して)隔壁6の外縁付近まで、幅が徐々に広がるように延びている。また、複数の動圧溝21は略同じ形状であり、かつ略同じ間隔に配置されている。動圧溝21は凹部であり、動圧溝21の深さは0.005~0.4mm程度であることが好ましい。動圧溝21の数は、6~36個程度であることが好ましい。
 図7では、10個の動圧溝21がインペラ10の中心軸に対して等角度で配置されている。動圧溝21は、いわゆる内向スパイラル溝形状となっているので、インペラ10が時計方向に回転すると、動圧溝21の外径部から内径部に向けて液体の圧力が高くなる。このため、インペラ10と隔壁6の間に反発力が発生し、これが動圧力となる。
 このように、インペラ10と複数の動圧溝21の間に形成される動圧軸受効果により、インペラ10は隔壁6から離れ、非接触状態で回転する。このため、インペラ10と隔壁6の間に液体流路が確保される。さらに、通常状態において、動圧溝21によるインペラ10と隔壁6の間の撹拌作用とポンプ動作で生じたインペラの内外径部の圧力差による液体の流れ(漏れ流量)とによって、両者間における部分的な液体滞留の発生を防止することができる。
 また、動圧溝21の角の部分は、少なくとも0.05mm以上のRを持つように丸められていることが好ましい。
 また、複数の動圧溝22は、図8に示すように、複数の動圧溝21と同様、インペラ10のシュラウド11に対応する大きさに形成されている。各動圧溝22は、ポンプ室7の内壁の中心から若干離間した円形部分の周縁(円周)上に一端を有し、渦状に(換言すれば、湾曲して)ポンプ室7の内壁の外縁付近まで、幅が徐々に広がるように延びている。また、複数の動圧溝22は、略同じ形状であり、かつ略同じ間隔で配置されている。動圧溝22は凹部であり、動圧溝22の深さは0.005~0.4mm程度があることが好ましい。動圧溝22の数は、6~36個程度であることが好ましい。図8では、10個の動圧溝22がインペラ10の中心軸に対して等角度に配置されている。
 なお、動圧溝22の角となる部分は、少なくとも0.05mm以上のRを持つように丸められていることが好ましい。
 このように、インペラ10と複数の動圧溝22の間に形成される動圧軸受効果により、インペラ10はポンプ室7の内壁から離れ、非接触状態で回転する。また、ポンプ部1が外的衝撃を受けたときや、動圧溝21による動圧力が過剰となったときに、インペラ10のポンプ室7の内壁への密着を防止することができる。動圧溝21によって発生する動圧力と動圧溝22によって発生する動圧力は異なるものとなっていてもよい。
 ただし、インペラ10のシュラウド12と隔壁6との隙間と、インペラ10のシュラウド11とポンプ室7の内壁との隙間とが略同じ状態でインペラ10が回転することが好ましい。インペラ10に作用する流体力などの外乱が大きく、一方の隙間が狭くなる場合には、その狭くなる側の動圧溝による動圧力を他方の動圧溝による動圧力よりも大きくし、両隙間を略同じにするため、動圧溝21と22の形状を異ならせることが好ましい。
 なお、図7および図8では、動圧溝21,22の各々を内向スパイラル溝形状としたが、他の形状の動圧溝21,22を使用することも可能である。ただし、液体を循環させる場合は、液体をスムーズに流すことが可能な内向スパイラル溝形状の動圧溝21,22を採用することが好ましい。
 図9は、シュラウドの外周面に形成された動圧溝の第1例を示す図である。図10は、シュラウドの外周面に形成された動圧溝の第2例を示す図である。
 図9を参照して、動圧溝61,62は、それぞれシュラウド11,12の外周面に形成される。動圧溝61,62の先端は、インペラ10の回転方向と逆の方向に向けられている。インペラ10が矢印の方向に回転すると、動圧溝61,62の先端部に向けて液体の圧力が高くなる。このため、インペラ10とポンプ室7の内周面との間に反発力が発生し、これが動圧力となる。
 図10に示した第2例でも、動圧溝64,65がポンプ室7の内周面側ではなく、それぞれシュラウド11,12の外周面に形成される。動圧溝64,65の各々の深さは、インペラ10の回転方向と逆の方向に向かって徐々に浅くなっている。この変形例でも、インペラ10が矢印の方向に回転すると、動圧溝64,65の先端部に向けて液体の圧力が高くなる。このため、インペラ10とポンプ室7の内周面との間に反発力が発生し、これが動圧力となる。
 [永久磁石の配置の変形例]
 図5A、図5Bでは、複数の永久磁石17が、隣接する磁極が互いに異なるようにして、等角度間隔で同一の円に沿って隙間を設けて配置された例を示した。
 図11A、図11B、図12~図15は、図5A、図5Bに示した永久磁石の配置の変形例を示す図である。
 図11A、図11Bの変形例では、インペラ10に複数の永久磁石17と複数の永久磁石67とが設けられている。永久磁石67の数は、永久磁石17の数と同じである。永久磁石67は、円周方向(インペラ10の回転方向)に着磁されている。複数の永久磁石17と複数の永久磁石67とは、1つずつ交互に等角度間隔で同一の円に沿ってハルバッハ配列構造で配置されている。換言すると、隔壁6側にN極を向けた永久磁石17と、隔壁6側にS極を向けた永久磁石17とが等角度間隔で隙間を設けて同一の円に沿って交互に配置されている。各永久磁石67のN極は隔壁6側にN極を向けた永久磁石17に向けて配置され、各永久磁石67のS極は隔壁6側にS極を向けた永久磁石17に向けて配置される。複数の永久磁石17同士の形状は同じであり、複数の永久磁石67同士の形状は同じである。永久磁石17の形状と永久磁石67の形状は、同じでもよいし、異なっていてもよい。この変形例では、永久磁石17と空芯コイル20との吸引力を抑制するとともに、トルクの起因となる磁束を強めることができるので、最も永久磁石を小型化することができる。つまり、インペラ10を最も軽量化することができ、かつモータギャップが広い場合でもエネルギ効率を高めることができる。
 図12に示した他の変形例では、回転子(インペラ10のシュラウド12)は回転軸方向に着磁された永久磁石17Aと、周方向に着磁された永久磁石67Aと磁性体70Aを含んでいる。永久磁石17Aは隣り合う磁石の磁極の向きが異なるように配置され、さらに永久磁石17Aの隔壁6側端面に永久磁石67Aが永久磁石17Aと同じ磁極同士が近づくように配置される。
 永久磁石17Aと永久磁石67Aは同じ数である。永久磁石67Aの着磁方向長さは、永久磁石17Aの幅より短く、永久磁石67Aの着磁方向長さの中央を永久磁石17Aの隣り合う磁石同士の境界と一致させると周方向に隙間ができ、その隙間に磁性体70Aを配置する。この場合、磁性体70Aに磁束が集束し、磁性体が無い場合や通常のハルバッハ配列の構成(図11A、図11B)の構成と比べ、より強い界磁磁束が得られ高トルク化を図ることができる。さらに図12の配置では、永久磁石17A,67Aのパーミアンス係数の低下を抑制することができる。
 図13は、図12の構成において、永久磁石17Aの隔壁6と反対側の端面に磁性体72を配置している。磁性体72の効果でさらに磁束を強めることができる。
 図14は別の磁石配置を示す。固定子と回転子の間に隔壁6を備えたキャンドモータにおいて、回転子は回転軸方向に着磁された永久磁石17Bと、周方向に着磁された永久磁石67Bと磁性体70Bから成り、永久磁石17Bは隣り合う磁石の磁極の向きが異なり、隙間を設けて配置され、永久磁石67Bがその隙間に隔壁6側配置される。限られたスペースで磁石を配置する場合、この構成は永久磁石17Bの扁平率が小さくなるためパーミアンス係数を図12より大きくすることができる。永久磁石17Bと永久磁石67Bは同じ数である。永久磁石67Bは、円周方向(ロータの回転方向)に着磁されている。複数の永久磁石17Bと複数の永久磁石67Bとは、1つずつ交互に等角度間隔で同一の円に沿ってハルバッハ配列構造で配置されている。換言すると、隔壁6側にN極を向けた永久磁石17Bと、隔壁6側にS極を向けた永久磁石17Bとが等角度間隔で隙間を設けて同一の円に沿って交互に配置されている。各永久磁石67BのN極は隔壁6側にN極を向けた永久磁石17Bに向けて配置され、各永久磁石67BのS極は隔壁6側にS極を向けた永久磁石17Bに向けて配置される。複数の永久磁石17B同士の形状は同じであり、複数の永久磁石67B同士の形状は同じである。永久磁石17Bの軸方向長さは永久磁石67Bの幅より短く、配置したとき、隔壁6側に段差ができるようにし、その段差部に磁性体70Bを配置する。この場合も磁性体70Bに磁束が集束し、磁性体が無い場合や通常のハルバッハ配列の構成(図11A、図11B)と比べ、より強い界磁磁束が得られ高トルク化を図ることができる。さらに永久磁石17B,67Bのパーミアンス係数の低下を抑制することができる。
 図15に示した構成は、図14の構成において、永久磁石17Bの隔壁6と反対側の端面に磁性体72を配置している。磁性体72の効果でさらに磁束を強めることができる。
 また、シュラウド12に埋設されている複数の永久磁石17は、隣接する磁極が互いに異なるようにして、等角度間隔で同一の円に沿って隙間を設けず配置されてもよい。
 [動圧溝の変形例]
 図16は、動圧溝を設ける位置を変更したポンプ部1の第1変形例の要部を示す断面図である。この図16と図3とは対比される図である。図16において、この遠心式ポンプ装置が図3の遠心式ポンプ装置と異なる点は、インペラ10の外周面に対向するポンプ室7の内周面に動圧溝161,162が形成されている点である。動圧溝161,162は、インペラ10の外周面に対する動圧力を発生し、インペラ10の外周面がポンプ室7の内周面に接触することを防止する。
 図17は、動圧溝161,162の具体的構成を例示する図である。図17において、ポンプ室7の内周面のうちのシュラウド11の外周面に対向する領域には、V字型の動圧溝161がインペラ10の回転方向に所定のピッチで形成されている。V字型の動圧溝161の先端(鋭角部)はインペラ10の回転方向に向けられている。同様に、ポンプ室7の内周面のうちのシュラウド12の外周面に対向する領域には、V字型の動圧溝162がインペラ10の回転方向に所定のピッチで形成されている。V字型の動圧溝162の先端(鋭角部)はインペラ10の回転方向に向けられている。ポンプ室7の内周面のうちのシュラウド11,12の隙間に対向する領域には、所定深さの溝63がリング状に形成されている。インペラ10が矢印の方向に回転すると、動圧溝161,162の先端部に向けて液体の圧力が高くなる。このため、インペラ10とポンプ室7の内周面との間に反発力が発生し、これが動圧力となる。
 図18は、図17の動圧溝の形状の変形例を示す図である。図18において、この変形例では、動圧溝161,162がそれぞれ動圧溝164,165で置換されている。動圧溝164,165の各々は、帯状に形成され、インペラ10の回転方向に延在している。動圧溝164,165の各々の深さは、インペラ10の回転方向に向かって徐々に浅くなっている。この変形例でも、インペラ10が矢印の方向に回転すると、動圧溝164,165の先端部に向けて液体の圧力が高くなる。このため、インペラ10とポンプ室7の内周面との間に反発力が発生し、これが動圧力となる。
 図19~図22は、動圧溝を設ける位置を変更したポンプ部1の第2~第5変形例の要部を示す断面図である。図19、図20に示すように、動圧溝21を隔壁6に設ける代わりに、動圧溝121をインペラ10のシュラウド12の表面に設けてもよい。また、動圧溝22をポンプ室7の内壁側に設ける代わりに、動圧溝122をインペラ10のシュラウド11の表面に設けてもよい。
 さらに、図19に示すようにインペラ10の外周面に動圧溝61,62を形成してもよい。また図20に示すようにインペラ10の外周面に対向するポンプ室7の外周壁に動圧溝161,162を形成してもよい。これらによりインペラのラジアル方向の支持力を発生させることができる。
 また、図21に示すように、動圧溝61,62をインペラのシュラウド11,12の外周面に設ける代わりに、動圧溝261,262をインペラ10のシュラウド11,12の内周面表面に設けてもよい。
 また、図22に示すように、動圧溝161,162をポンプ室7の外周壁に設ける代わりに、動圧溝361,362をインペラ10のポンプ室7の内周壁に設けてもよい。
 以上説明したように、実施の形態1によれば、固定子と回転子の間に隔壁を備えたキャンドモータにおいて、駆動部9や永久磁石等による吸引力(負剛性成分)を無くすことができ、インペラの安定浮上回転が可能となる。さらにコギングの低減が図れ、スムーズな回転始動が実現できる。
 ここで、再び図3、図16、図19~図22を参照して、実施の形態1を総括する。実施の形態1の遠心ポンプ装置は、ハウジング2とインペラ10と駆動部9と、複数の永久磁石17とを含む。
 ハウジング2は、隔壁6で仕切られたモータ室8およびポンプ室7を含む。インペラ10は、ポンプ室7内において隔壁6に交差する軸を回転軸として回転可能に設けられ、回転時の遠心力によって液体を送る。駆動部9は、モータ室8内に設けられ、隔壁6を介してインペラ10を回転駆動させる。複数の永久磁石17は、隔壁6に沿うインペラ10の一方面に設けられ、同一の円に沿って配置される。
 駆動部9は、複数の永久磁石17にそれぞれ対向して設けられ、回転磁界を生成するための複数の空芯コイル20を含む。インペラ10の一方面と反対側の他方面またはそれに対向するポンプ室7の内壁に動圧溝22または122が形成され、インペラの一方面またはそれに対向する隔壁6に動圧溝21または121が形成され、インペラ10の外周面もしくはそれに対向するポンプ室7の内周面、またはインペラ10の内周面もしくはそれに対向するポンプ室7の外周面に動圧溝61,62,161,162,261,262,361,362が形成されている。
 <実施の形態2>
 [ポンプ部の基本構成の説明]
 図23は、実施の形態2の遠心式ポンプ装置のポンプ部101の外観を示す正面図である。図24は、図23に示したポンプ部101の側面図である。図25は、図24のIII-III線断面図である。なお、図25のIV-IV線断面図は、図4と同じである。
 図23、図24、図4を参照して、この遠心式ポンプ装置のポンプ部101は、非磁性材料で形成されたハウジング2を備える。ハウジング2は、円柱状の本体部3と、本体部3の一方の端面の中央に立設された円筒状の流入ポート4と、本体部3の外周面に設けられた円筒状の流出ポート5とを含む。流出ポート5は、本体部3の外周面の接線方向に延在している。
 ハウジング2内には、図25に示すように、隔壁6および6Dによって仕切られたポンプ室7およびモータ室8および8Dが設けられている。ポンプ室7内には、図25および図4に示すように、中央に貫通孔10aを有する円板状のインペラ10が回転可能に設けられている。
 実施の形態2では、インペラ10を空芯コイル20で駆動することによってアキシアル吸引力が働かない構成としたので、アキシアル吸引力を相殺するためのリング状永久磁石を配置していない。一方で、空芯コイル20は、磁性体をコアとする通常のコイルと比べて磁気吸引力が弱まるのでトルクを確保しにくい。そこで、実施の形態2では、空芯コイル20および20Dをインペラ10をはさんで対向配置させることによって、発生トルクを倍増させ、さらなるポンプ出力の増加を図った構造を特徴としている。
 インペラ10は、ドーナツ板状の2枚のシュラウド11,12と、2枚のシュラウド11,12間に形成された複数(たとえば6つ)のベーン13とを含む。シュラウド11は流入ポート4側に配置され、シュラウド12は隔壁6側に配置される。シュラウド11,12およびベーン13は、非磁性材料で形成されている。
 2枚のシュラウド11,12の間には、複数のベーン13で仕切られた複数(この場合は6つ)の通路14が形成されている。通路14は、図4に示すように、インペラ10の中央の貫通孔10aと連通しており、インペラ10の貫通孔10aを始端とし、外周縁まで徐々に幅が広がるように延びている。換言すれば、隣接する2つの通路14間にベーン13が形成されている。なお、実施の形態2では、複数のベーン13は等角度間隔で設けられ、かつ同じ形状に形成されている。したがって、複数の通路14は等角度間隔で設けられ、かつ同じ形状に形成されている。
 インペラ10が回転駆動されると、流入ポート4から流入した液体は、遠心力によって貫通孔10aから通路14を介してインペラ10の外周部に送られ、流出ポート5から流出する。
 [永久磁石の配置の説明]
 実施の形態2においても、図5A、図5B、図6によって示した配置と同様な配置が採用されている。図5A、図5B、図6の説明は、ここでは繰り返さない。
 なお、シュラウド11にも複数の永久磁石17Dが設けられ、シュラウド11側にもモータ室8Dが設けられる。モータ室8Dとポンプ室7は、隔壁6Dで仕切られている。モータ室8D内には、複数の永久磁石17Dに対向して複数の空芯コイル20Dが設けられる。複数の空芯コイル20Dは、各々が空芯部18Dの周りに巻回されている。複数の空芯コイル20Dの隔壁6Dと反対側にはバックヨークとなる磁性体19Dを配置し、空芯コイル20Dの磁束を強めている。なお、バックヨークは無くてもよい。
 なお、複数の永久磁石17Dの配置および複数の空芯コイル20Dの配置は、基本的には図5A、図5Bおよび図6で示した配置であるので詳細な説明は繰り返さない。
 インペラ10の回転中において、複数の永久磁石17および複数の磁性体18間の第1の吸引力と複数の永久磁石17Dおよび複数の磁性体18D間の第2の吸引力とは、ポンプ室7内におけるインペラ10の可動範囲の略中央で釣り合うように設定されている。したがって、インペラ10の回転軸方向の位置が安定し、インペラがポンプ室7の内壁に接触することを避けることができる。
 [動圧溝の説明]
 実施の形態2においても、図7~図10によって示した配置と同様な配置の動圧溝が採用されている。図7~図10の説明は、ここでは繰り返さない。なお、複数の動圧溝22は、実施の形態2では隔壁6Dの表面に形成されている。
 [永久磁石の配置の変形例]
 実施の形態2においても、図11A,図11B、図12~図15によって示した配置と同様な変形例の永久磁石の配置を採用することができる。図11A,図11B、図12~図15の説明は、ここでは繰り返さない。なお、この実施の形態2の変形例では複数の永久磁石17Dに対しても図11A,図11B、図12~図15に示した複数の永久磁石17の変形と同様な変形を行なう。
 [動圧溝の変形例]
 図26は、動圧溝を設ける位置を変更したポンプ部101の第1変形例の要部を示す断面図である。この図26と図25とは対比される図である。図26において、この遠心式ポンプ装置が図25の遠心式ポンプ装置と異なる点は、インペラ10の外周面に対向するポンプ室7の内周面に動圧溝161,162が形成されている点である。動圧溝161,162は、インペラ10の外周面に対する動圧力を発生し、インペラ10の外周面がポンプ室7の内周面に接触することを防止する。
 動圧溝161,162の具体的構成およびその変形例については、実施の形態2においても、図17、図18によって示した配置と同様な構成を採用することができる。図17、図18の説明は、ここでは繰り返さない。
 図27~図30は、動圧溝を設ける位置を変更したポンプ部101の第2~第5変形例の要部を示す断面図である。図27、図28に示すように、動圧溝21を隔壁6に設ける代わりに、動圧溝121をインペラ10のシュラウド12の表面に設けてもよい。また、動圧溝22を隔壁6Dに設ける代わりに、動圧溝122をインペラ10のシュラウド11の表面に設けてもよい。
 さらに、図27に示すようにインペラ10の外周面に動圧溝61,62を形成してもよい。また図28に示すようにインペラ10の外周面に対向するポンプ室7の外周壁に動圧溝161,162を形成してもよい。これらによりインペラのラジアル方向の支持力を発生させることができる。
 また、図29に示すように、動圧溝61,62をインペラのシュラウド11,12の外周面に設ける代わりに、動圧溝261,262をインペラ10のシュラウド11,12の内周面表面に設けてもよい。
 また、図30に示すように、動圧溝161,162をポンプ室7の外周壁に設ける代わりに、動圧溝361,362をインペラ10のポンプ室7の内周壁に設けてもよい。
 以上説明したように、実施の形態2によれば、固定子と回転子の間に隔壁を備えたキャンドモータにおいて、駆動部9や永久磁石等による吸引力(負剛性成分)を無くすことができ、インペラの安定浮上回転が可能となる。さらにコギングの低減が図れ、スムーズな回転始動が実現できる。
 最後に、再び図25、図26、図27~図30を参照して、実施の形態2を総括する。実施の形態2の遠心ポンプ装置は、ハウジング2と、インペラ10と、駆動部9,9Dと、複数の永久磁石17と、複数の永久磁石17Dとを備える。
 ハウジング2は、ポンプ室7およびモータ室8,8Dを含む。ポンプ室7は、モータ室8およびモータ室8Dに挟まれて設けられ、モータ室8およびポンプ室7は隔壁6で仕切られ、ポンプ室7およびモータ室8Dは隔壁6Dで仕切られる。
 インペラ10は、ポンプ室7内において隔壁6および隔壁6Dに交差する軸を回転軸として回転可能に設けられ、回転時の遠心力によって液体を送る。駆動部9,9Dは、モータ室8およびモータ室8D内にそれぞれ設けられ、隔壁6または隔壁6Dを介してインペラ10を回転駆動させる。
 複数の永久磁石17は、隔壁6に沿うインペラ10の一方面に設けられ、同一の円に沿って配置される。複数の永久磁石17Dは、隔壁6Dに沿うインペラ10の他方面に設けられ、同一の円に沿って配置される。駆動部9は、複数の永久磁石17にそれぞれ対向して設けられ、回転磁界を生成するための複数の空芯コイル20を含む。駆動部9Dは、複数の永久磁石17Dにそれぞれ対向して設けられ、回転磁界を生成するための複数の空芯コイル20Dを含む。
 インペラ10の一方面またはそれに対向する隔壁6の面に動圧溝21または121が形成される。インペラ10の他方面またはそれに対向する隔壁6Dの面に動圧溝22または122が形成される。インペラ10の外周面もしくはそれに対向するポンプ室7の内周面、またはインペラ10の内周面もしくはそれに対向するポンプ室7の外周面に動圧溝61,62もしくは161,162または261,262もしくは361,362が形成されている。
 好ましくは、駆動部9は、複数の空芯コイル20の隔壁6と反対側に配置され、複数の空芯コイル20と磁気的に結合される磁性体19をさらに含む。駆動部9Dは、複数の空芯コイル20Dの隔壁6Dと反対側に配置され、複数の空芯コイル20Dと磁気的に結合される磁性体19Dをさらに含む。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,101 ポンプ部、2 ハウジング、3 本体部、4 流入ポート、5 流出ポート、6,6D 隔壁、7 ポンプ室、8,8D モータ室、9,9D 駆動部、10 インペラ、10a 貫通孔、11,12 シュラウド、13 ベーン、14 通路、17,17A,17B,17D,67,67A,67B 永久磁石、18,18D 空芯部、19,19D,70A,70B,72 磁性体、20,20D 空芯コイル、21,22,61,62,64,65,121,122,161,162,261,262,361,362 動圧溝。

Claims (6)

  1.  第1の隔壁で仕切られた第1および第2の室を含むハウジングと、
     前記第2の室内において前記第1の隔壁に交差する軸を回転軸として回転可能に設けられ、回転時の遠心力によって液体を送るインペラと、
     前記第1の室内に設けられ、前記第1の隔壁を介して前記インペラを回転駆動させる第1の駆動部と、
     前記第1の隔壁に沿う前記インペラの一方面に設けられ、同一の円に沿って配置された複数の第1の永久磁石とを備え、
     前記第1の駆動部は、前記複数の第1の永久磁石に対向して設けられ、回転磁界を生成するための複数の第1の空芯コイルを含み、
     前記インペラの前記一方面またはそれに対向する前記第1の隔壁の面に第1の動圧溝が形成され、前記インペラの前記一方面と反対側の他方面またはそれに対向する前記第2の室の内壁の面に第2の動圧溝が形成され、
     前記インペラの外周面もしくはそれに対向する前記第2の室の内周面、または前記インペラの内周面もしくはそれに対向する前記第2の室の外周面に第3の動圧溝が形成されている、遠心式ポンプ装置。
  2.  前記第1の駆動部は、前記複数の第1の空芯コイルの前記第1の隔壁と反対側に配置され、前記複数の第1の空芯コイルと磁気的に結合される磁性体をさらに含む、請求項1に記載の遠心式ポンプ装置。
  3.  前記複数の第1の永久磁石は、隣接する磁極が互いに異なるように同一の円に沿って配置される、請求項1または2に記載の遠心式ポンプ装置。
  4.  前記ハウジングは、第3の室をさらに含み、前記第2の室は、前記第1の室および前記第3の室に挟まれて設けられ、前記第2の室および前記第3の室は第2の隔壁で仕切られ、
     前記遠心式ポンプ装置は、
     前記第3の室内に設けられ、前記第2の隔壁を介して前記インペラを回転駆動させる第2の駆動部と、
     前記第2の隔壁に沿う前記インペラの他方面に設けられ、同一の円に沿って配置された複数の第2の永久磁石とをさらに備え、
     前記第2の駆動部は、前記複数の第2の永久磁石に対向して設けられ、回転磁界を生成するための複数の第2の空芯コイルを含み、
     前記第2の動圧溝は、前記インペラの前記他方面またはそれに対向する前記第2の隔壁の面に形成される、請求項1に記載の遠心式ポンプ装置。
  5.  前記第1の駆動部は、前記複数の第1の空芯コイルの前記第1の隔壁と反対側に配置され、前記複数の第1の空芯コイルと磁気的に結合される第1の磁性体をさらに含み、
     前記第2の駆動部は、前記複数の第2の空芯コイルの前記第2の隔壁と反対側に配置され、前記複数の第2の空芯コイルと磁気的に結合される第2の磁性体をさらに含む、請求項4に記載の遠心式ポンプ装置。
  6.  前記複数の第1の永久磁石は、隣接する磁極が互いに異なるように同一の円に沿って配置され、
     前記複数の第2の永久磁石は、隣接する磁極が互いに異なるように同一の円に沿って配置される、請求項4または5に記載の遠心式ポンプ装置。
PCT/JP2016/056377 2015-03-30 2016-03-02 遠心式ポンプ装置 WO2016158172A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015068650A JP2016188593A (ja) 2015-03-30 2015-03-30 遠心式ポンプ装置
JP2015-068560 2015-03-30
JP2015-068650 2015-03-30
JP2015068560A JP2016188591A (ja) 2015-03-30 2015-03-30 遠心式ポンプ装置

Publications (1)

Publication Number Publication Date
WO2016158172A1 true WO2016158172A1 (ja) 2016-10-06

Family

ID=57005597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056377 WO2016158172A1 (ja) 2015-03-30 2016-03-02 遠心式ポンプ装置

Country Status (1)

Country Link
WO (1) WO2016158172A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112994A (ja) * 1990-08-31 1992-04-14 Ntn Corp ターボ形ポンプ
JP2012062790A (ja) * 2010-09-14 2012-03-29 Ntn Corp 遠心式ポンプ装置
EP2719403A1 (en) * 2012-10-12 2014-04-16 Abiomed Europe GmbH Centrifugal blood pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112994A (ja) * 1990-08-31 1992-04-14 Ntn Corp ターボ形ポンプ
JP2012062790A (ja) * 2010-09-14 2012-03-29 Ntn Corp 遠心式ポンプ装置
EP2719403A1 (en) * 2012-10-12 2014-04-16 Abiomed Europe GmbH Centrifugal blood pump

Similar Documents

Publication Publication Date Title
JP5577506B2 (ja) 遠心式ポンプ装置
JP5656835B2 (ja) 回転駆動装置およびそれを用いた遠心式ポンプ装置
JP5378010B2 (ja) 遠心式ポンプ装置
JP5969979B2 (ja) 回転駆動装置およびそれを用いた遠心式ポンプ装置
JP5443197B2 (ja) 遠心式ポンプ装置
WO2012008297A1 (ja) 遠心式ポンプ装置
JP6083929B2 (ja) 遠心式ポンプ装置
JP5378012B2 (ja) 遠心式ポンプ装置
JP5577503B2 (ja) 遠心式ポンプ装置
WO2016158173A1 (ja) 遠心式ポンプ装置
JP2016178813A (ja) 回転駆動装置または回転駆動装置を備える遠心式ポンプ装置
JP2016188593A (ja) 遠心式ポンプ装置
JP2016188591A (ja) 遠心式ポンプ装置
WO2016158172A1 (ja) 遠心式ポンプ装置
JP6452518B2 (ja) 遠心式ポンプ装置
JP5693812B2 (ja) 遠心式ポンプ装置
WO2016158186A1 (ja) 遠心式ポンプ装置
WO2016158185A1 (ja) 遠心式ポンプ装置
JP2012013043A (ja) 回転駆動装置およびそれを用いた遠心式ポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772056

Country of ref document: EP

Kind code of ref document: A1