WO2012029170A1 - 電動車両およびその制御方法 - Google Patents

電動車両およびその制御方法 Download PDF

Info

Publication number
WO2012029170A1
WO2012029170A1 PCT/JP2010/065133 JP2010065133W WO2012029170A1 WO 2012029170 A1 WO2012029170 A1 WO 2012029170A1 JP 2010065133 W JP2010065133 W JP 2010065133W WO 2012029170 A1 WO2012029170 A1 WO 2012029170A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
electric motor
motor
electric
vibration suppression
Prior art date
Application number
PCT/JP2010/065133
Other languages
English (en)
French (fr)
Inventor
橋本 俊哉
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/820,409 priority Critical patent/US8718854B2/en
Priority to EP10856719.9A priority patent/EP2612787B1/en
Priority to CN201080068893.3A priority patent/CN103079870B/zh
Priority to JP2012531637A priority patent/JP5423898B2/ja
Priority to PCT/JP2010/065133 priority patent/WO2012029170A1/ja
Publication of WO2012029170A1 publication Critical patent/WO2012029170A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Definitions

  • the present invention relates to an electric vehicle and a control method therefor, and more particularly, to electric motor control for suppressing vehicle vibration.
  • electric vehicles such as hybrid vehicles, electric vehicles, and fuel cell vehicles equipped with electric motors for driving vehicles have been attracting attention as environmentally friendly vehicles.
  • vehicle vibration may occur due to periodic fluctuation components in the rotational speed of the electric motor. For example, such a phenomenon may occur during acceleration / deceleration.
  • Patent Document 1 describes motor control for suppressing such vehicle vibration. Specifically, the vibration control is performed by extracting a periodic fluctuation component of the rotational speed of the vehicle drive motor and adding a vibration damping torque having an opposite phase to the extracted fluctuation component to the torque command value. Is realized.
  • vibration suppression control is executed only when pulse width modulation (PWM) control (particularly, sine wave PWM control) with high control response is applied.
  • PWM pulse width modulation
  • Patent Document 2 describes that in a hybrid vehicle, vibration suppression control is executed when the engine is started and stopped.
  • vibration suppression control for mitigating mechanical vibrations of the engine is realized by changing the magnitude of the torque of the electric motor in accordance with a cycle such as an expansion stroke and a contraction stroke of the engine.
  • Patent Document 2 also describes that vibration suppression control is executed only when PWM control (sine wave PWM control) is applied.
  • the present invention has been made to solve such problems, and an object of the present invention is to control vehicle vibrations by controlling the motor torque in an electric vehicle equipped with a plurality of vehicle drive motors.
  • the vibration control is performed appropriately and smoothly to improve driving comfort.
  • an electric vehicle in one aspect of the present invention, includes a plurality of electric motors for generating vehicle driving force and a control device for controlling the plurality of electric motors.
  • the control device selects an electric motor for executing the vibration damping control from the plurality of electric motors according to the respective operation states of the electric motors when executing the vibration damping control, and adds the cycle of the vehicle to the output torque of the selected electric motors.
  • a periodic compensation torque for canceling a typical speed fluctuation component is added.
  • the operation state includes a control mode of each electric motor, and the control mode includes a first control mode to which pulse width modulation control is applied and a second control mode to which rectangular wave voltage control is applied.
  • a control apparatus selects the electric motor to which the 1st control mode is applied among several electric motors, and performs damping control.
  • the operating state includes at least one of temperature, rotational speed, torque and output of each electric motor.
  • the control device prohibits vibration suppression control by a motor in which at least one of temperature, rotational speed, torque, and output is higher than a predetermined value among a plurality of motors.
  • the electric vehicle further includes an internal combustion engine.
  • the plurality of electric motors includes a first electric motor disposed in a power transmission path from the internal combustion engine to the driving wheels via the driving shaft, and a second electric motor mechanically coupled to the driving shaft.
  • the control device executes the vibration suppression control by the second motor, while the operation state of the second motor is the vibration suppression control. If it is not in a state that can be executed, vibration suppression control is executed by the first electric motor.
  • the operating state includes a control mode of each electric motor, and the control mode includes a first control mode to which pulse width modulation control is applied and a second control mode to which rectangular wave voltage control is applied.
  • the control device executes vibration suppression control by the second motor, while the first and second motors both have the first control mode.
  • the control mode is not applied, the output of the second electric motor is decreased, and the output of at least one of the internal combustion engine and the first electric motor is increased in accordance with the decrease amount.
  • the electric vehicle further includes a differential device including first to third rotating elements capable of relative rotation.
  • the first rotating element is mechanically connected to the output shaft of the internal combustion engine
  • the second rotating element is mechanically connected to the output shaft of the first electric motor
  • the third rotating element is driven.
  • the shaft and the output shaft of the second electric motor are mechanically connected.
  • the plurality of electric motors includes a first electric motor for generating the driving force of the auxiliary driving wheel and a second electric motor for generating the driving force of the main driving wheel.
  • the control device executes the vibration suppression control by the second motor, while the operation state of the second motor is the vibration suppression control. If it is not in a state that can be executed, vibration suppression control is executed by the first electric motor.
  • the control device when executing the damping control, calculates a damping torque component having a phase opposite to that of the periodic speed fluctuation component, and executes the damping control with a compensation torque corresponding to the damping torque component. Add to the output torque of the motor. Then, the compensation torque when the damping control is executed by the first motor and the compensation torque when the damping control is executed by the second motor have different phases with respect to the damping torque component.
  • a method for controlling an electric vehicle wherein the electric vehicle includes a plurality of electric motors for generating vehicle driving force.
  • the control method includes a step of calculating a periodic damping torque component for canceling a periodic fluctuation component of the vehicle speed, and executing damping control from the plurality of electric motors in accordance with respective operating states of the plurality of electric motors.
  • the operation state includes a control mode of each electric motor, and the control mode includes a first control mode to which pulse width modulation control is applied and a second control mode to which rectangular wave voltage control is applied.
  • the step to select performs damping control by the electric motor to which the 1st control mode is applied among a plurality of electric motors.
  • the operating state includes at least one of temperature, rotational speed, torque and output of each electric motor.
  • the step of selecting prohibits vibration suppression control by an electric motor in which at least one of temperature, rotational speed, torque, and output is higher than a predetermined value among a plurality of electric motors.
  • the electric vehicle further includes an internal combustion engine.
  • the plurality of electric motors includes a first electric motor disposed in a power transmission path from the internal combustion engine to the driving wheels via the driving shaft, and a second electric motor mechanically coupled to the driving shaft.
  • the vibration suppression control is executed by the second motor, while the operation state of the second motor is If it is not in a state where control can be executed, vibration suppression control is executed by the first electric motor.
  • the operating state includes a control mode of each electric motor, and the control mode includes a first control mode to which pulse width modulation control is applied and a second control mode to which rectangular wave voltage control is applied.
  • the selecting step includes a step of executing vibration suppression control by the second motor when the first control mode is applied to the second motor, and a step of applying the first control mode to the second motor. And when the first control mode is applied to the first electric motor, the step of executing vibration suppression control by the first electric motor is included.
  • the control method when the first control mode is not applied to both the first and second motors, the output of the second motor is reduced, and the internal combustion engine and The method further includes increasing the output of at least one of the first electric motors.
  • the plurality of electric motors includes a first electric motor for generating the driving force of the auxiliary driving wheel and a second electric motor for generating the driving force of the main driving wheel.
  • the vibration suppression control is executed by the second motor, while the operation state of the second motor is If it is not in a state where control can be executed, vibration suppression control is executed by the first electric motor.
  • the compensation torque when the damping control is executed by the first motor and the compensation torque when the damping control is executed by the second motor have different phases with respect to the damping torque component.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a hybrid vehicle shown as a representative example of an electric vehicle according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of an electric system for driving and controlling the motor generator shown in FIG. 1. It is a conceptual diagram explaining selection of the control mode of the motor generator shown in FIG. It is a conceptual diagram which shows roughly the relationship between the operation area
  • FIG. 1 is a configuration diagram showing a schematic configuration of a hybrid vehicle shown as a representative example of an electric vehicle according to an embodiment of the present invention.
  • hybrid vehicle 20 includes an engine 22, a crankshaft 26 as an output shaft of engine 22, a torsional damper 28, and a three-shaft power split mechanism 30. .
  • the crankshaft 26 is connected to the power split mechanism 30 via a torsional damper 28.
  • Hybrid vehicle 20 further includes motor generators MG 1 and MG 2 that are electric motors for driving the vehicle, transmission 60, and an electronic control unit for hybrid (hereinafter also referred to as “HVECU”) 70 that controls the entire drive system of hybrid vehicle 20.
  • Motor generator MG ⁇ b> 2 is connected to power split mechanism 30 via transmission 60.
  • Motor generators MG1 and MG2 correspond to “first electric motor” and “second electric motor”, respectively.
  • Each of motor generators MG1 and MG2 can output both a positive torque and a negative torque, and can be driven as an electric motor as well as a generator.
  • Engine 22 is an “internal combustion engine” that outputs power using hydrocarbon fuel such as gasoline or light oil.
  • the engine electronic control unit (hereinafter also referred to as “engine ECU”) 24 receives signals from various sensors that detect the operating state of the engine 22 such as the crank angle of the crankshaft 26 from the crank angle sensor 23.
  • the engine ECU 24 communicates with the HVECU 70 and receives a control command for the engine 22 from the HVECU 70.
  • the engine ECU 24 performs fuel injection control, ignition control, intake air amount control, etc. of the engine 22 so that the engine 22 operates in accordance with a control command from the HVECU 70 based on the operation state of the engine 22 based on signals from various sensors. Execute engine control.
  • the engine ECU 24 outputs data relating to the operating state of the engine 22 to the HVECU 70 as necessary.
  • the power split mechanism 30 includes an external gear sun gear 31, an internal gear ring gear 32 disposed concentrically with the sun gear 31, a plurality of pinion gears 33 that mesh with the sun gear 31 and mesh with the ring gear 32, and a carrier 34.
  • the carrier 34 is configured to hold the plurality of pinion gears 33 so as to rotate and revolve freely.
  • the power split mechanism 30 is configured as a planetary gear mechanism that performs a differential action with the sun gear 31, the ring gear 32, and the carrier 34 as rotational elements.
  • the crankshaft 26 of the engine 22 is connected to the carrier 34, and the output shaft of the motor generator MG1 is connected to the sun gear 31 via the sun gear shaft 31a.
  • the ring gear shaft 32 a as a “drive shaft” rotates as the ring gear 32 rotates.
  • the output shaft of motor generator MG2 is connected to ring gear shaft 32a via transmission 60.
  • the ring gear shaft 32a is also referred to as a drive shaft 32a.
  • the drive shaft 32a is mechanically connected to the drive wheels 39a and 39b via a gear mechanism 37 and a differential gear 38. Therefore, the power output to the ring gear 32, that is, the drive shaft 32 a by the power split mechanism 30 is output to the drive wheels 39 a and 39 b via the gear mechanism 37 and the differential gear 38.
  • the power split mechanism 30 corresponds to a “differential device”.
  • the carrier 34 corresponds to a “first rotating element”
  • the sun gear 31 corresponds to a “second rotating element”
  • the ring gear 32 corresponds to a “third rotating element”.
  • the transmission 60 is configured to give a predetermined reduction ratio between the output shaft 48 of the motor generator MG2 and the drive shaft 32a.
  • the transmission 60 is typically constituted by a planetary gear mechanism.
  • the transmission 60 includes an external gear sun gear 65, an internal gear ring gear 66 arranged concentrically with the sun gear 65, and a plurality of pinion gears 67 that mesh with the sun gear 65 and mesh with the ring gear 66. Since the planetary carrier is fixed to the case 61, the plurality of pinion gears 67 only rotate without revolving. That is, the ratio (reduction ratio) of the rotational speeds of the sun gear 65 and the ring gear 66 is fixed.
  • the configuration of the transmission 60 is not limited to the example of FIG.
  • the output shaft of motor generator MG2 and ring gear shaft (drive shaft) 32a may be connected without using transmission 60.
  • the motor generator MG1 When the motor generator MG1 functions as a generator, the power from the engine 22 input from the carrier 34 is distributed to the sun gear 31 side and the ring gear 32 side according to the gear ratio. On the other hand, when motor generator MG1 functions as an electric motor, the power from engine 22 input from carrier 34 and the power from motor generator MG1 input from sun gear 31 are integrated and output to ring gear 32.
  • Motor generators MG1 and MG2 are typically constituted by three-phase permanent magnet type synchronous motors. Motor generators MG1 and MG2 exchange power with battery 50 through converter 40 and inverters 41 and 42. Each of inverters 41 and 42 is configured by a general three-phase inverter having a plurality of switching elements.
  • the converter 40 performs bidirectional DC voltage conversion between the voltage VH of the power line 54 and the voltage Vb of the battery 50.
  • the converter 40 is configured by, for example, a current bidirectional type step-up chopper circuit.
  • the duty of the switching element (not shown) of the boost chopper circuit is controlled so that the voltage VH of the power line 54 matches the voltage command value VHr.
  • Inverters 41 and 42 apply, to motor generators MG1 and MG2, a pseudo AC voltage composed of a set of pulsed voltages obtained by switching DC voltage VH by turning on and off switching elements.
  • the power line 54 that electrically connects the converter 40 and the inverters 41 and 42 is configured as a positive electrode bus and a negative electrode bus shared by the inverters 41 and 42. For this reason, the electric power generated by either motor generator MG1 or MG2 can be consumed by another motor. Therefore, battery 50 is charged / discharged by electric power generated from one of motor generators MG1 and MG2 or insufficient electric power. Note that the battery 50 is not charged / discharged if the power balance is balanced by the motor generators MG1, MG2.
  • Motor generators MG1, MG2 are both driven and controlled by a motor electronic control unit (hereinafter also referred to as “motor ECU”) 45.
  • the motor ECU 45 receives signals necessary for driving and controlling the motor generators MG1 and MG2. For example, signals from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motor generators MG1 and MG2, phase currents applied to the motor generators MG1 and MG2 detected by a current sensor (not shown), Input to the motor ECU 45. Based on the signals from the rotational position detection sensors 43 and 44, the rotational speeds of the motor generators MG1 and MG2 can be detected.
  • the motor ECU 45 is in communication with the HVECU 70 and controls the motor generators MG1 and MG2 in accordance with an operation command from the HVECU 70. Specifically, motor ECU 45 outputs a switching control signal to inverters 41 and 42 so that output torques of motor generators MG1 and MG2 match torque command values Trqcom (1) and Trqcom (2). For example, motor ECU 45 outputs output voltages of inverters 41 and 42 based on a deviation between a current command value set according to torque command values Trqcom (1) and Trqcom (2) and a current detection value of motor generators MG1 and MG2. Command (AC voltage) is calculated.
  • motor ECU 45 outputs data relating to the operating state of motor generators MG1, MG2 to HVECU 70 as necessary. The driving of motor generators MG1 and MG2 by motor ECU 45 will be described in more detail later.
  • the battery 50 is managed by a battery electronic control unit (hereinafter also referred to as “battery ECU”) 52.
  • a signal necessary for managing the battery 50 is input to the battery ECU 52.
  • a voltage between terminals from a voltage sensor (not shown) installed between terminals of the battery 50 a charge / discharge current of the battery 50 from a current sensor (not shown), a battery temperature from a temperature sensor (not shown) attached to the battery 50, and the like.
  • the battery ECU 52 outputs data related to the state of the battery 50 to the HVECU 70 by communication as necessary.
  • the battery ECU 52 also calculates a remaining capacity (SOC: State of Charge) based on the integrated value of the charge / discharge current detected by the current sensor.
  • SOC State of Charge
  • the HVECU 70 is configured as a microprocessor centered on a CPU (Central Processing Unit) 72.
  • the HVECU 70 includes a CPU 72, a ROM (Read Only Memory) 74 that stores processing programs, maps, and the like, a RAM (Random Access Memory) 76 that temporarily stores data, and an input / output port and a communication port (not shown).
  • the HVECU 70 includes an ignition signal from the ignition switch 80, a shift position SP from the shift position sensor 82 that detects the operation position of the shift lever 81, and an accelerator opening from the accelerator pedal position sensor 84 that detects the depression amount of the accelerator pedal 83.
  • the brake pedal position BP from the brake pedal position sensor 86 that detects the depression amount of the brake pedal 85, the vehicle speed V from the vehicle speed sensor 88, and the like are input via the input port.
  • the HVECU 70 is connected to the engine ECU 24, the motor ECU 45, and the battery ECU 52 via the communication port. Accordingly, the HVECU 70 exchanges various control signals and data with other ECUs.
  • the engine ECU 24, the motor ECU 45, and the battery ECU 52 can also be configured by a microprocessor, similar to the HVECU 70.
  • the HVECU 70, the engine ECU 24, the motor ECU 45, and the battery ECU 52 are described as separate ECUs, but an ECU in which some or all of these functions are integrated may be arranged. Or you may arrange
  • the HVECU 70 calculates the required torque to be output to the drive shaft 32a based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 83 by the driver. .
  • the engine 22 and the motor generators MG1, MG2 are controlled according to one of the following operation modes so that the required power corresponding to the required torque is output to the drive shaft 32a. That is, motor generators MG1 and MG2 are configured to generate vehicle driving force.
  • the motor generators MG1 and MG2 are controlled so that the operation of the engine 22 is stopped and the power corresponding to the required power from the motor generator MG2 is output to the drive shaft 32a.
  • the engine 22 In the HV (Hybrid Vehicle) operation mode, the engine 22 is operated, and the hybrid vehicle 20 travels using the power from the engine 22 and the power from the motor generators MG1 and MG2. For example, the operation of the engine 22 is controlled so that power that matches the sum of the required power and the power required for charging and discharging the battery 50 is output from the engine 22. Further, the output torque of motor generators MG1 and MG2 is converted into a torque by power split mechanism 30 and motor generators MG1 and MG2 for all or part of the power output from engine 22 with charging / discharging of battery 50. Thus, the required power is controlled to be output to the drive shaft 32a.
  • the required power is controlled to be output to the drive shaft 32a.
  • operation of engine 22 is controlled so that power corresponding to the required power is output from engine 22, and all of the power output from engine 22 is torque-converted by power split mechanism 30 and motor generators MG1, MG2.
  • Motor generators MG1 and MG2 are controlled so as to be output to drive shaft 32a.
  • the torque to be output by motor generators MG1 and MG2 to generate the necessary vehicle driving force is sequentially calculated based on the vehicle state, the driver's operation, and the like. Then, the output torque of motor generators MG1 and MG2 is controlled in accordance with a torque command value set based on the calculated torque.
  • FIG. 2 is a circuit diagram of an electric system for driving and controlling motor generators MG1 and MG2 shown in FIG.
  • the electric system of hybrid vehicle 20 includes a battery 50, an SMR (System Main Relay) 55, a converter 40, and inverters 41 and 42.
  • SMR System Main Relay
  • the SMR 55 is provided between the battery 50 and the converter 40.
  • SMR 55 When SMR 55 is off, battery 50 is disconnected from the electrical system.
  • SMR 55 When SMR 55 is on, battery 50 is connected to the electrical system.
  • the SMR 55 is turned on / off in response to a control signal from the HVECU 70. For example, in a state where the ignition switch 80 is turned on, the user performs an operation for starting operation, thereby instructing activation of the electric system. When the activation of the electric system is instructed, the HVECU 70 turns on the SMR 55.
  • Converter 40 has a general boost chopper circuit configuration including a reactor and two power semiconductor switching elements (hereinafter also simply referred to as switching elements).
  • switching elements As the power semiconductor switching element, a bipolar transistor, a power MOSFET (Metal Oxide Semiconductor Field-Effect Transistor), or an IGBT (Insulated Gate Bipolar Transistor) can be used. An antiparallel diode is connected to each switching element.
  • Inverter 41 connected to motor generator MG1 includes a U-phase arm, a V-phase arm, and a W-phase arm.
  • the U-phase arm, V-phase arm and W-phase arm are connected in parallel.
  • Each of the U-phase arm, the V-phase arm, and the W-phase arm has two switching elements connected in series. Each switching element is provided with an antiparallel diode.
  • Each phase coil (U, V, W) wound around a stator (not shown) of motor generator MG1 is alternately connected at neutral point 112.
  • the connection point of the switching element in each phase arm of inverter 41 is connected to the end of each phase coil of motor generator MG1.
  • the inverter 42 has a general three-phase inverter configuration like the inverter 41. Each phase coil (U, V, W) wound around a stator (not shown) of motor generator MG 2 is connected alternately at neutral point 122. The connection point of the switching element in each phase arm of inverter 42 is connected to the end of each phase coil of motor generator MG2.
  • the voltage is boosted by the converter 40.
  • the voltage is stepped down by the converter 40.
  • System voltage VH which is a DC voltage on power line 54 between converter 40 and inverters 41 and 42, is detected by voltage sensor 180.
  • the detection result of voltage sensor 180 is transmitted to motor ECU 45.
  • the inverter 41 converts the DC voltage on the power line 54 into AC power and supplies it to the motor generator MG1. Inverter 41 converts AC power generated by regenerative power generation by motor generator MG1 into DC power. Similarly, inverter 42 converts the DC voltage on power line 54 into AC power and supplies it to motor generator MG2. Inverter 42 converts AC power generated by regenerative power generation by motor generator MG2 into DC power.
  • either PWM control or rectangular wave voltage control is selected as the control mode.
  • Either PWM control or rectangular wave voltage control is selectively applied according to the respective operation states of motor generators MG1 and MG2.
  • the sine wave PWM control is used as a general PWM control.
  • the on / off state of the switching element in each phase arm of an inverter (not shown) is determined by the voltage between a sine wave voltage command value and a carrier wave (typically a triangular wave). Control according to the comparison.
  • the duty is set so that the fundamental wave component becomes a sine wave within a certain period. The ratio is controlled.
  • this fundamental wave component (effective value) can only be increased to about 0.61 times the inverter input voltage.
  • the ratio of the fundamental wave component (effective value) of the voltage (line voltage) applied to motor generators MG1 and MG2 to the DC link voltage (DC voltage VH) of inverters 41 and 42 is referred to as “modulation rate”. Called.
  • the control mode is selected according to the modulation rate.
  • the modulation factor corresponding to the voltage command (sine wave voltage) calculated by the feedback control according to the torque command value is lower than 0.61
  • the sine wave PWM control is selected.
  • sine wave PWM control cannot be applied.
  • the rectangular wave voltage control one pulse of a rectangular wave with a ratio of 1: 1 between the high level period and the low level period is applied to the motor generators MG1 and MG2 within the predetermined period. As a result, the modulation rate is increased to 0.78.
  • the torque control is executed by the phase control of the rectangular wave voltage pulse based on the deviation between the actual torque value and the torque command value.
  • sine wave PWM control In a region where sine wave PWM control is not applicable, rectangular wave voltage control is selected. Further, when the modulation factor is between 0.61 and 0.78, overmodulation PWM control can be applied.
  • the overmodulation PWM control performs PWM control similar to the sine wave PWM control in a range where the amplitude of the voltage command is larger than the carrier wave amplitude.
  • the fundamental wave component can be increased by distorting the voltage command from the original sine wave waveform, and the modulation rate can be increased from the maximum modulation rate in the sine wave PWM control to a range of 0.78.
  • a high frequency component is easily generated in the current component by distorting the voltage command. For this reason, in order to ensure control stability, it is difficult to improve control responsiveness to a level equivalent to sine wave PWM control. For example, it is necessary to add a low-pass filter, expand the time constant, or the like.
  • the induced voltage increases as the rotational speed and output torque increase, so that the required drive voltage (motor required voltage) increases.
  • the DC voltage VH controlled by the converter 40 needs to be set higher than this motor required voltage.
  • there is a limit value for the boosted voltage by the converter 40 that is, the DC voltage VH. For this reason, when the modulation factor exceeds 0.61 in the high output region, the sine wave PWM control cannot be selected.
  • the modulation rate corresponding to the same voltage command is decreased by increasing the system voltage VH, so that PWM control can be applied.
  • the range can be expanded.
  • the system voltage VH is increased, the step-up ratio in the converter 40 is increased, and the loss in the switching element is increased, so that the efficiency tends to decrease.
  • FIG. 4 shows a schematic correspondence between the operation areas of motor generators MG1 and MG2 and control mode selection.
  • the modulation rate does not increase so much, so sine wave PWM control is used to reduce torque fluctuation.
  • overmodulation PWM control is generally applied in the middle speed region A2, and rectangular wave voltage control is applied in the high speed region A3.
  • FIG. 5 is a waveform diagram showing an example of vibration suppression control.
  • the vibration suppression control shown in FIG. 5 the rotational speed fluctuation of the motor generator MG2 mechanically coupled to the drive shaft 32a in order to suppress the speed fluctuation of the vehicle causing the vehicle longitudinal acceleration fluctuation that causes the vehicle vibration. Suppress.
  • the rotational speed MRN (2) of motor generator MG2 when the vehicle is accelerating, the rotational speed MRN (2) of motor generator MG2 also increases. During such acceleration, the actual rotational speed MRN (2) does not necessarily increase monotonously, but a phenomenon of increasing while undulating is observed. This swell component causes vibrations in the vehicle due to fluctuations in vehicle longitudinal acceleration. As a result, there is a concern that the driving comfort of the vehicle is impaired.
  • a swell component of the rotational speed MRN (2) (hereinafter also referred to as a fluctuation component ⁇ MRN (2)) is extracted from the detected rotational speed MRN (2). Further, a damping torque ⁇ tr0 is calculated based on the antiphase component of the extracted fluctuation component ⁇ MRN (2). That is, the damping torque ⁇ tr0 is a periodic torque component for canceling the periodic fluctuation component ⁇ MRN (2).
  • FIG. 6 is a functional block diagram for explaining vibration suppression control in the electric vehicle according to the embodiment of the present invention.
  • Each functional block shown in FIG. 6 can be realized by execution of a predetermined program (software processing) by an ECU (preferably motor ECU 45) or operation of an electronic circuit built in the ECU (hardware processing). it can.
  • vibration suppression control unit 500 includes rotation speed fluctuation extraction unit 510, vibration suppression torque calculation unit 520, compensation torque setting unit 530, and addition units 540 and 550.
  • the rotational speed fluctuation extraction unit 510 detects periodic speed fluctuation components from the detected value of the rotational speed MRN (2) of the motor generator MG2 corresponding to the rotational speed of the drive wheels 39a, 39b in order to detect the speed fluctuation of the vehicle. ⁇ MRN is extracted.
  • the speed fluctuation component ⁇ MRN corresponds to the fluctuation component ⁇ MRN (2) in FIG.
  • the rotational speed fluctuation extracting unit 510 can be configured by a band pass filter, for example.
  • the damping torque calculation unit 520 calculates damping torque ⁇ tr0 for canceling the speed fluctuation component ⁇ MRN when damping control is requested.
  • the damping torque ⁇ tr0 is a periodic torque component having a phase opposite to that of the speed fluctuation component ⁇ MRN.
  • the vibration suppression control flag FNV is turned on when vibration suppression control is requested, and turned off otherwise.
  • the vibration suppression control is turned on when the vehicle vibration is likely to occur, for example, when the vehicle is accelerated or decelerated, or when the engine 22 is started or stopped.
  • a slight change in output torque appears as the behavior of the vehicle. Therefore, it is possible to reversely generate vehicle vibration by adding damping torque ⁇ tr0.
  • damping torque ⁇ tr0 There is sex. That is, if the vibration suppression control is uniformly applied even when the fluctuation amount of the output torque is small, there is a concern about an adverse effect.
  • Compensation torque setting unit 530 receives signals MDR (1) and MDR (2) indicating the operating state of motor generators MG1 and MG2, and damping torque ⁇ tr0 calculated by damping torque calculation unit 520. Compensation torque setting unit 530 selects a motor generator that executes vibration suppression control based on the operating state of motor generators MG1 and MG2 indicated by signals MDR (1) and MDR (2).
  • each motor generator for determining whether vibration suppression control is possible includes at least the control mode of the motor generator. Specifically, when the control mode is not PWM control (or more specifically, when it is not sine wave PWM control), vibration suppression control by the motor generator is prohibited. This is because the torque control responsiveness is not high, so that the vibration suppression control cannot be executed effectively, and in some cases, the vehicle vibration may be promoted by the phase shift.
  • the operation state of each motor generator for determining whether vibration suppression control is possible may include at least one of motor temperature, rotation speed, torque, and output.
  • the temperature of the motor generator is higher than a predetermined temperature
  • a high output region where the torque and / or output (power) is larger than a predetermined value
  • the compensation torque setting unit 530 basically executes vibration suppression control by the motor generator MG2 that directly changes the rotational speed of the drive wheels 39a and 39b. Therefore, when output of damping torque from motor generator MG2 motor generator MG2, that is, damping control is possible, that is, when none of the above-mentioned prohibition conditions are satisfied, compensation torque setting unit 530 selects motor generator MG2. To do. At this time, compensation torque ⁇ tr (2) of motor generator MG2 is set to ⁇ tr0, while compensation torque ⁇ tr (1) of motor generator MG2 is set to 0.
  • compensation torque setting unit 530 The other motor generator, that is, the motor generator MG1 is selected to execute the vibration suppression control. At this time, compensation torque ⁇ tr (1) of motor generator MG1 is set to ⁇ tr, while compensation torque ⁇ tr (2) of motor generator MG2 is set to 0.
  • a phase difference for maximizing the vibration damping effect is provided between the compensation torques ⁇ tr (1), ⁇ tr (2) and the vibration damping torque ⁇ tr0 as necessary.
  • the necessary phase difference can be obtained in advance by actual machine experiments.
  • Compensation torque setting section 530 calculates compensation torques ⁇ tr (1) and ⁇ tr (2) from damping torque ⁇ tr0 by a transfer function that performs phase lead compensation (or phase delay compensation) in addition to proportional calculation.
  • phase lead compensation or phase delay compensation
  • the power transmission path from the motor generator MG2 to the drive shaft 32a and the power transmission path from the motor generator MG1 to the drive shaft 32a have different path lengths and components.
  • the motor generators MG1 and MG2 have different transfer functions that affect the speed fluctuations of the drive shaft 32a (drive wheels 39a and 39b). Therefore, it is preferable that compensation torque ⁇ tr (2) output from motor generator MG2 and compensation torque ⁇ tr (1) output from motor generator MG1 have a phase difference.
  • the addition point 540 reflects the compensation torque ⁇ tr (1) for damping control and calculates the torque command value Trqcom (1) of the motor generator MG1.
  • the torque command value Trqcom (1) is calculated by adding the original torque command value Tr (1) of MG1 for generating the vehicle driving force and the compensation torque ⁇ tr (1) set by the compensation torque setting unit 530. Is done.
  • the adding unit 550 calculates the torque command value Trqcom (2) of the motor generator MG2 reflecting the compensation torque ⁇ tr (2) for vibration suppression control.
  • the torque command value Trqcom (2) is calculated by adding the original torque command value Tr (2) of MG2 for generating the vehicle driving force and the compensation torque ⁇ tr (2) set by the compensation torque setting unit 530. Is done.
  • FIG. 7 shows a flowchart of vibration suppression control by the vibration suppression control unit 500 shown in FIG.
  • motor ECU 45 determines whether vibration suppression control is requested in step S100.
  • the determination in step S100 can be executed based on the vibration suppression control flag FNV shown in FIG.
  • step S110 corresponds to the functions of the rotational speed fluctuation extraction unit 510 and the damping torque calculation unit 520 shown in FIG.
  • step S120 the motor ECU 45 determines whether vibration suppression control is possible by the motor generator MG2. As described above, the determination in step S120 is performed based on the operating state of motor generator MG2. Most simply, the determination in step S120 is executed based on whether or not the motor generator MG2 is applying PWM control (sine wave PWM control).
  • PWM control sine wave PWM control
  • step S140 determines whether vibration suppression control is possible by motor generator MG1. Further, determine. As described above, the determination in step S140 is performed based on the operating state of motor generator MG1, including the control mode. The determination conditions in steps S120 and S140 may be the same or different.
  • the output torque of motor generators MG1 and MG2 is controlled according to torque command values Trqcom (1) and Trqcom (2). Specifically, AC power supplied to motor generators MG1 and MG2 is controlled by on / off control of switching elements of inverters 41 and 42 in accordance with feedback control for eliminating torque deviation.
  • Vibration control can be executed by selecting a motor generator that is in an operating state capable of outputting vibration suppression torque.
  • the remaining motor generators (MG1) ) can execute vibration suppression control.
  • the speed fluctuation component suppressed by the vibration suppression control according to the present embodiment is not limited to the above example, and can be arbitrarily detected.
  • the speed fluctuation component of the vehicle to be suppressed may be extracted based on the detection value of the acceleration sensor (G sensor) or based on the stroke (crank angle) of the engine as in Patent Document 2. .
  • FIG. 1 the configuration in which the output shafts of the engine 22 and the motor generators MG1 and MG2 are mechanically connected by the power split mechanism 30 configured by the planetary gear mechanism is described. It is described in a confirming manner that the present invention is not limited to such a configuration.
  • the vibration suppression control described in the present embodiment can be applied to a hybrid vehicle having a drive system configured to have a plurality of vehicle drive motors (motor generators).
  • the voltage amplitude applied from the inverter 42 to the motor generator MG2 is also reduced, so that the PWM control (preferably, sine wave PWM control) can be applied by reducing the required modulation rate.
  • the vibration suppression control it is possible to execute the vibration suppression control while keeping the driving force of the entire vehicle constant.
  • FIG. 9 is a flowchart for explaining a modification of the vibration suppression control in the electric vehicle according to the embodiment of the present invention.
  • motor ECU 45 further executes step S180 in addition to steps S100 to S160 shown in FIG. *
  • Step S180 is executed when vibration control cannot be performed by both motor generators MG1 and MG2 (when NO is determined in both steps S120 and S140).
  • step S160 in which the vibration suppression control is not executed is executed only when NO is determined in step S100.
  • step S180 the motor ECU 45 changes the operating point of the motor generator MG2 as described with reference to FIG. For example, the operating point is changed so as to decrease the output torque of motor generator MG2 while increasing the output of engine 22. At this time, the driving force of the entire vehicle is kept constant by determining the output increase amount of the engine 22 in correspondence with the torque decrease amount of the motor generator MG2.
  • the vibration suppression control by the motor generator MG2 becomes possible by changing the control mode to PWM control.
  • the vibration suppression control according to the modification of the present embodiment even when both motor generators MG1 and MG2 are in an operation state in which vibration suppression control is not possible, the vibration generator control is performed by changing the operating point of motor generator MG2. Vibration control can be executed.
  • step S120 when the vibration control by the motor generator MG2 is prohibited under conditions other than the control mode (high temperature or the like), the control mode is changed to PWM control by changing the operating point. Even if it changes, there is a possibility that the vibration control by the motor generator MG2 may be disabled depending on the condition. Therefore, when step S120 is determined to be NO under conditions other than the control mode, it is preferable to execute step S160 in which vibration suppression control is not executed, instead of step S180 for changing the operating point.
  • FIG. 12 shows a modification of the configuration of the electric vehicle according to the embodiment of the present invention.
  • hybrid vehicle 20 # according to a modification of the embodiment of the present invention has a drive unit 90 for driving front wheels 39a and 39b and a drive unit 95 for driving rear wheels 39c and 39d.
  • Hybrid vehicle 20 # is a so-called four-wheel drive vehicle in which both front wheels 39a and 39b and rear wheels 39c and 39d are drive wheels.
  • the rear wheels 39c and 39d correspond to “sub-drive wheels”
  • the front wheels 39a and 39b correspond to “main drive wheels”.
  • Hybrid vehicle 20 # further includes a battery 50 and a power control unit (PCU) 51.
  • the PCU 51 includes a group of devices for power conversion between the battery 50 and the vehicle drive motors (MG1, MG2, MGR) represented by the converter 40 and inverters 41, 42 shown in FIGS. It is described.
  • the drive unit 90 has, for example, the same configuration as the power train of FIG. In other words, the motor generators MG1 and MG2 and the engine 22 are cooperatively operated to generate the driving force of the driving wheels 39a and 39b.
  • the motor generator MG1 that enables power generation by engine power is omitted from the configuration of FIG. 1, and the driving unit 90 is driven by a so-called parallel hybrid system so that vehicle driving force is generated in parallel by the engine 22 and the motor generator MG2. May be configured.
  • the drive unit 90 may be configured by a so-called series hybrid type in which the output of the engine 22 is used only for power generation.
  • the drive unit 95 includes a motor generator MGR for driving the rear wheels and a speed reducer 97 provided between a drive shaft for the rear wheels (not shown).
  • Motor generator MGR is driven by PCU 51 using power supplied from battery 50, similarly to motor generator MG2.
  • the regenerative power generated by the motor generator MGR can charge the battery 50 via the PCU 51.
  • the drive units 90 and 95 can have any configuration as long as a plurality of vehicle drive motors (motor generators) are mounted on the entire vehicle.
  • a plurality of vehicle drive motors are mounted (MG1, MG2, MGR / MG2, MGR). Therefore, while the vibration control is preferentially executed by the motor generator MG2 that generates the driving force of the main driving wheel, the driving force of the auxiliary driving wheel is generated when the motor generator MG2 is in an operation state in which the vibration control cannot be performed. It is also possible to execute vibration suppression control using the motor generator MGR. For example, damping control by motor generator MGR can be realized by adding a periodic torque corresponding to compensation torque ⁇ tr (1) in hybrid vehicle 20 to a torque command value of motor generator MGR.
  • vibration control is not limited to a plurality of vehicle driving motors (motor generators) mounted on an electric vehicle, without being limited to motors that generate driving force for the same driving wheel.
  • motor generator MGR corresponds to “first electric motor”
  • motor generator MG2 corresponds to “second electric motor”.
  • the rear wheels 39c and 39d can be used as main drive wheels, and the front wheels 39a and 39b can be used as auxiliary drive wheels.
  • the electric motor (motor generator) that generates the driving force for the rear wheels corresponds to the “second electric motor”
  • the electric motor (motor generator) that generates the driving force for the front wheels corresponds to the “first electric motor”.
  • hybrid vehicles 20 and 20 # show hybrid vehicles 20 and 20 # as representative examples of electric vehicles.
  • electric vehicles and fuel cell vehicles in which only the electric motor is a vehicle driving force source without the engine 22 being arranged are shown.
  • vehicle drive motors motor generators
  • the present invention can be applied to an electric vehicle equipped with a plurality of vehicle driving motors.

Abstract

 ハイブリッド車(20)は、車両駆動力を発生するための複数のモータジェネレータ(MG1,MG2)およびエンジン(22)を備える。モータECU(45)は、モータジェネレータ(MG1,MG2)をそれぞれのトルク指令値に従って制御する。モータECU(45)は、モータジェネレータ(MG1,MG2)の運転状態に基づいて、制振制御を実行するモータジェネレータを選択する。制振制御を実行するモータジェネレータの出力トルクは、駆動輪(39a,39b)の回転速度の周期的な変動成分を打ち消すための周期的な制振トルク成分に対応した補償トルクが、車両駆動力発生のためのトルクに重畳されるように制御される。

Description

電動車両およびその制御方法
 この発明は、電動車両およびその制御方法に関し、より特定的には、車両振動を抑制するための電動機制御に関する。
 近年、環境に配慮した自動車として、車両駆動用電動機を搭載したハイブリッド車、電気自動車、燃料電池自動車等の電動車両が注目されている。電動車両では、車両駆動用電動機電動機の出力によって駆動輪を駆動する際に、電動機の回転速度に周期的な変動成分が生じることに起因して、車両振動が発生することがある。たとえば、加減速時にこのような現象が発生する可能性がある。
 特開2006-136184号公報(特許文献1)には、このような車両振動を抑制すための電動機制御が記載されている。具体的には、車両駆動用電動機の回転速度の周期的な変動成分を抽出するとともに、抽出した変動成分に対して逆位相の制振トルクをトルク指令値に加算することによって、上記制振制御を実現している。なお、特許文献1では、制振制御は、制御応答性が高いパルス幅変調(PWM)制御(特に、正弦波PWM制御)の適用時に限定して実行される。
 また、車両駆動用電動機に加えてエンジンを搭載したハイブリッド車では、車両状態に応じてエンジンが間欠運転され得る。間欠運転に伴うエンジンの始動・停止の際に、車両の速度変動によって車両振動が発生する可能がある。特開2009-33947号公報(特許文献2)には、ハイブリッド車において、エンジンの始動・停止時に制振制御を実行することが記載されている。特許文献2では、エンジンの膨張行程-収縮行程等のサイクルに合せて電動機のトルクの大きさを変化させることにより、エンジンの機械的振動を緩和するための制振制御が実現される。特許文献2においても、PWM制御(正弦波PWM制御)の適用時に限定して、制振制御を実行することが記載される。
特開2006-136184号公報 特開2009-33947号公報
 上述のように、特許文献1,2では、PWM制御(正弦波PWM制御)の適用時に限定して、車両駆動用電動機のトルク制御による制振制御が実行される。このため、制振制御が必要な状況にもかかわらずPWM制御が適用されていないときには、昇圧コンバータによってインバータの直流側電圧が上昇される。これにより、変調率が低下することからPWM制御が適用できるようになるため、制振制御を実行できるようになる。
 しかしながら、特許文献1,2の制振制御では、車両駆動用電動機の動作状態によっては、制御モードをPWM制御にできないために制振制御が実行できず、車両振動を抑制できなくなるケースが発生し得る。また、直流電圧を上昇させることによって、昇圧コンバータでのスイッチング損失が増加するため、車両全体でのエネルギ効率(すなわち、燃費)が低下することも懸念される。
 したがって、特に、複数の車両駆動用電動機を搭載する電動車両に対しては、特許文献1,2に記載された制振制御を単に適用するだけでは、十分な効果を上げることは難しい。
 この発明はこのような問題点を解決するためになされたものであって、この発明の目的は、複数の車両駆動用電動機を搭載した電動車両において、電動機のトルク制御によって車両振動を抑制する制振制御を、適切かつ円滑に実行して運転快適性を向上することである。
 この発明のある局面では、電動車両は、車両駆動力を発生するための複数の電動機と、複数の電動機を制御するための制御装置とを備える。制御装置は、制振制御の実行時において、複数の電動機のそれぞれの運転状態に応じて複数の電動機から制振制御を実行する電動機を選択するとともに、選択した電動機の出力トルクに、車両の周期的な速度変動成分を打ち消すための周期的な補償トルクを加算するように構成される。
 好ましくは、運転状態は、各電動機の制御モードを含み、制御モードは、パルス幅変調制御が適用される第1の制御モードおよび、矩形波電圧制御が適用される第2の制御モードを含む。そして、制御装置は、複数の電動機のうちの第1の制御モードが適用されている電動機を選択して制振制御を実行する。
 また好ましくは、運転状態は、各電動機の温度、回転速度、トルクおよび出力のうちの少なくとも1つを含む。制御装置は、複数の電動機のうちの、温度・回転速度・トルク・出力のうちの上記少なくとも1つが所定値より高い電動機による制振制御を禁止する。
 あるいは好ましくは、電動車両は、内燃機関をさらに備える。複数の電動機は、内燃機関から駆動軸を介して駆動輪へ至る動力伝達経路に配置された第1の電動機と、駆動軸と機械的に連結された第2の電動機とを含む。制御装置は、第2の電動機の運転状態が制振制御を実行できる状態である場合には、第2の電動機によって制振制御を実行する一方で、第2の電動機の運転状態が制振制御を実行できる状態ではない場合には、第1の電動機によって制振制御を実行する。
 さらに好ましくは、運転状態は、各電動機の制御モードを含み、制御モードは、パルス幅変調制御が適用される第1の制御モードおよび、矩形波電圧制御が適用される第2の制御モードを含む。そして、制御装置は、第2の電動機に第1の制御モードが適用されている場合には第2の電動機によって制振制御を実行する一方で、第1および第2の電動機の両方に第1の制御モードが適用されていない場合には、第2の電動機の出力を減少させるとともに、当該減少量に対応させて内燃機関および第1の電動機の少なくとも一方の出力を増加させる。
 また、さらに好ましくは、電動車両は、相対回転可能な第1から第3の回転要素を含む差動装置をさらに備える。そして、第1の回転要素は、内燃機関の出力軸と機械的に連結され、第2の回転要素は、第1の電動機の出力軸と機械的に連結され、第3の回転要素は、駆動軸および第2の電動機の出力軸と機械的に連結される。
 あるいは好ましくは、複数の電動機は、副駆動輪の駆動力を発生するための第1の電動機と、主駆動輪の駆動力を発生するための第2の電動機とを含む。制御装置は、第2の電動機の運転状態が制振制御を実行できる状態である場合には、第2の電動機によって制振制御を実行する一方で、第2の電動機の運転状態が制振制御を実行できる状態ではない場合には、第1の電動機によって制振制御を実行する。
 さらに好ましくは、制御装置は、制振制御の実行時には、周期的な速度変動成分とは逆位相の制振トルク成分を演算するとともに、制振トルク成分に対応した補償トルクを制振制御を実行する電動機の出力トルクに加算する。そして、第1の電動機によって制振制御を実行するときの補償トルクと、第2の電動機によって制振制御を実行するときの補償トルクとは、制振トルク成分に対する位相が異なる。
 この発明の他の局面では、電動車両の制御方法であって、電動車両は、車両駆動力を発生するための複数の電動機を備える。制御方法は、車両速度の周期的な変動成分を打ち消すための周期的な制振トルク成分を演算するステップと、複数の電動機のそれぞれの運転状態に応じて複数の電動機から制振制御を実行する電動機を選択するステップと、制振制御を実行する電動機の出力トルクに制振トルク成分に対応した補償トルクを加算するステップとを備える。
 好ましくは、運転状態は、各電動機の制御モードを含み、制御モードは、パルス幅変調制御が適用される第1の制御モードおよび、矩形波電圧制御が適用される第2の制御モードを含む。そして、選択するステップは、複数の電動機のうちの第1の制御モードが適用されている電動機によって制振制御を実行する。
 また好ましくは、運転状態は、各電動機の温度、回転速度、トルクおよび出力のうちの少なくとも1つを含む。選択するステップは、複数の電動機のうちの、温度・回転速度・トルク・出力のうちの上記少なくとも1つが所定値より高い電動機による制振制御を禁止する。
 あるいは好ましくは、電動車両は、内燃機関をさらに備える。複数の電動機は、内燃機関から駆動軸を介して駆動輪へ至る動力伝達経路に配置された第1の電動機と、駆動軸と機械的に連結された第2の電動機とを含む。選択するステップは、第2の電動機の運転状態が制振制御を実行できる状態である場合には、第2の電動機によって制振制御を実行する一方で、第2の電動機の運転状態が制振制御を実行できる状態ではない場合には、第1の電動機によって制振制御を実行する。
 さらに好ましくは、運転状態は、各電動機の制御モードを含み、制御モードは、パルス幅変調制御が適用される第1の制御モードおよび、矩形波電圧制御が適用される第2の制御モードを含む。選択するステップは、第2の電動機に第1の制御モードが適用されている場合に、第2の電動機によって制振制御を実行するステップと、第2の電動機に第1の制御モードが適用されておらず、かつ、第1の電動機に第1の制御モードが適用されている場合に、第1の電動機によって制振制御を実行するステップとを含み。そして、制御方法は、第1および第2の電動機の両方に第1の制御モードが適用されていない場合に、第2の電動機の出力を減少させるとともに、当該減少量に対応させて内燃機関および第1の電動機の少なくとも一方の出力を増加させるステップをさらに備える。
 あるいは好ましくは、複数の電動機は、副駆動輪の駆動力を発生するための第1の電動機と、主駆動輪の駆動力を発生するための第2の電動機とを含む。選択するステップは、第2の電動機の運転状態が制振制御を実行できる状態である場合には、第2の電動機によって制振制御を実行する一方で、第2の電動機の運転状態が制振制御を実行できる状態ではない場合には、第1の電動機によって制振制御を実行する。
 さらに好ましくは、第1の電動機によって制振制御を実行するときの補償トルクと、第2の電動機によって制振制御を実行するときの補償トルクとは、制振トルク成分に対する位相が異なる。
 この発明によれば、複数の車両駆動用電動機を搭載した電動車両において、電動機のトルク制御によって車両振動を抑制する制振制御を、適切かつ円滑に実行して運転快適性を向上することができる。
本発明の実施の形態による電動車両の代表例として示されるハイブリッド車の概略構成を示す構成図である。 図1に示したモータジェネレータを駆動制御するための電気システムの回路図である。 図1に示したモータジェネレータの制御モードの選択を説明する概念図である。 モータジェネレータの動作領域と制御モード選択との関係を概略的に示す概念図である。 制振制御の一例を説明する波形図である。 本発明の実施の形態による電動車両における制振制御を説明するための機能ブロック図である。 本発明の実施の形態による電動車両における制振制御の処理手順を説明するためフローチャートである。 モータジェネレータの動作領域変化と制御モード変化との関係を概略的に説明する概念図である。 本発明の実施の形態による電動車両における制振制御の変形例を説明するためフローチャートである。 本発明の実施の形態による電動車両の構成の変形例を説明する構成図である。
 以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお、図中の同一または相当部分には同一符号を付してその説明は原則的に繰返さないものとする。
 (システム構成)
 図1は、本発明の実施の形態による電動車両の代表例として示されるハイブリッド車の概略構成を示す構成図である。
 図1を参照して、実施の形態1によるハイブリッド車20は、エンジン22と、エンジン22の出力軸としてのクランクシャフト26と、トーショナルダンパ28と、3軸式の動力分割機構30とを備える。クランクシャフト26は、トーショナルダンパ28を介して、動力分割機構30に連結される。
 ハイブリッド車20は、さらに、車両駆動用電動機であるモータジェネレータMG1,MG2と、変速機60と、ハイブリッド車20の駆動系全体をコントロールするハイブリッド用電子制御ユニット(以下、「HVECU」とも称する)70とを備える。モータジェネレータMG2は、変速機60を介して動力分割機構30に連結される。モータジェネレータMG1,MG2は、「第1の電動機」および「第2の電動機」にそれぞれ対応する。モータジェネレータMG1,MG2の各々は、正トルクおよび負トルクの両方を出力可能であり、電動機として駆動できるとともに発電機としても駆動することができる。
 エンジン22は、ガソリンまたは軽油などの炭化水素系の燃料により動力を出力する「内燃機関」である。エンジン用電子制御ユニット(以下、「エンジンECU」とも称する)24は、クランク角センサ23からのクランクシャフト26のクランク角度等、エンジン22の運転状態を検出する各種センサから信号を入力される。エンジンECU24は、HVECU70と通信しており、HVECU70からエンジン22の制御指令を受ける。エンジンECU24は、各種センサからの信号に基づくエンジン22の運転状態に基づいて、HVECU70からの制御指令に従ってエンジン22が作動するように、エンジン22の燃料噴射制御や点火制御、吸入空気量制御などのエンジン制御を実行する。さらに、エンジンECU24は、必要に応じて、エンジン22の運転状態に関するデータをHVECU70に出力する。
 動力分割機構30は、外歯歯車のサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車のリングギヤ32と、サンギヤ31に噛合するとともにリングギヤ32に噛合する複数のピニオンギヤ33と、キャリア34とを含む。キャリア34は、複数のピニオンギヤ33を自転かつ公転自在に保持するように構成される。動力分割機構30は、サンギヤ31、リングギヤ32、およびキャリア34を回転要素として差動作用を行なう遊星歯車機構として構成されている。
 キャリア34にはエンジン22のクランクシャフト26が連結され、サンギヤ31には、サンギヤ軸31aを介してモータジェネレータMG1の出力軸が連結される。「駆動軸」としてのリングギヤ軸32aは、リングギヤ32の回転に伴って回転する。リングギヤ軸32aには、変速機60を介してモータジェネレータMG2の出力軸が連結される。以下では、リングギヤ軸32aを、駆動軸32aとも称する。
 駆動軸32aは、ギヤ機構37およびデファレンシャルギヤ38を介して駆動輪39a,39bに機械的に連結されている。したがって、動力分割機構30によりリングギヤ32、すなわち、駆動軸32aに出力された動力は、ギヤ機構37,デファレンシャルギヤ38を介して駆動輪39a,39bに出力されることになる。
 このように、動力分割機構30は「差動装置」に対応する。また、キャリア34は「第1の回転要素」に対応し、サンギヤ31は「第2の回転要素」に対応し、リングギヤ32は「第3の回転要素」に対応する。
 変速機60は、モータジェネレータMG2の出力軸48と駆動軸32aとの間に所定の減速比を与えるように構成される。変速機60は、代表的には、遊星歯車機構により構成される。変速機60は、外歯歯車のサンギヤ65と、このサンギヤ65と同心円上に配置された内歯歯車のリングギヤ66と、サンギヤ65に噛合するとともにリングギヤ66に噛合する複数のピニオンギヤ67とを含む。プラネタリキャリアは、ケース61に固定されるので、複数のピニオンギヤ67は、公転することなく、自転のみを行なう。すなわち、サンギヤ65およびリングギヤ66の回転速度の比(減速比)が固定される。
 なお、変速機60の構成は図1の例に限定されるものではない。また、変速機60を介することなく、モータジェネレータMG2の出力軸およびリングギヤ軸(駆動軸)32aが連結される構成としてもよい。
 モータジェネレータMG1が発電機として機能するときには、キャリア34から入力されるエンジン22からの動力が、サンギヤ31側およびリングギヤ32側にそのギヤ比に応じて分配される。一方、モータジェネレータMG1が電動機として機能するときには、キャリア34から入力されるエンジン22からの動力と、サンギヤ31から入力されるモータジェネレータMG1からの動力とが統合されて、リングギヤ32に出力される。
 モータジェネレータMG1,MG2は、代表的には、三相の永久磁石型同期電動機により構成される。モータジェネレータMG1,MG2は、コンバータ40およびインバータ41,42を介して,バッテリ50との間で電力のやりとりを行なう。インバータ41,42の各々は、複数個のスイッチング素子を有する一般的な三相インバータによって構成される。
 コンバータ40は、電力ライン54の電圧VHと、バッテリ50の電圧Vbとの間で、双方向の直流電圧変換を実行する。コンバータ40は、たとえば、電流双方向型の昇圧チョッパ回路によって構成される。そして、昇圧チョッパ回路のスイッチング素子(図示せず)のデューティは、電力ライン54の電圧VHが電圧指令値VHrに合致するように制御される。インバータ41,42は、直流電圧VHをスイッチング素子のオンオフによりスイッチングしたパルス状電圧の集合で構成された擬似交流電圧を、モータジェネレータMG1,MG2へ印加する。
 コンバータ40とインバータ41,42とを電気的に接続する電力ライン54は、各インバータ41,42が共用する正極母線および負極母線として構成される。このため、モータジェネレータMG1,MG2のいずれかで発電される電力を他のモータで消費することができる。したがって、バッテリ50は、モータジェネレータMG1,MG2のいずれかから生じた電力や不足する電力により充放電されることになる。なお、モータジェネレータMG1,MG2により電力収支のバランスをとるものとすれば、バッテリ50は充放電されない。
 モータジェネレータMG1,MG2は、いずれもモータ用電子制御ユニット(以下、「モータECU」とも称する)45により駆動制御される。モータECU45には、モータジェネレータMG1,MG2を駆動制御するために必要な信号が入力される。たとえば、モータジェネレータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの信号や、図示しない電流センサにより検出されるモータジェネレータMG1,MG2に印加される相電流などが、モータECU45へ入力される。回転位置検出センサ43,44からの信号に基づいて、モータジェネレータMG1,MG2の回転速度が検出できる。
 モータECU45は、HVECU70と通信しており、HVECU70からの動作指令に従って、モータジェネレータMG1,MG2を駆動制御する。具体的には、モータECU45は、モータジェネレータMG1およびMG2の出力トルクが、トルク指令値Trqcom(1)およびTrqcom(2)に合致するように、インバータ41,42へのスイッチング制御信号を出力する。たとえば、モータECU45は、トルク指令値Trqcom(1),Trqcom(2)に従って設定される電流指令値と、モータジェネレータMG1,MG2の電流検出値との偏差に基づいて、インバータ41,42の出力電圧指令(交流電圧)を演算する。そして、インバータ41,42のスイッチング制御信号は、たとえばパルス幅変調制御に従って、インバータ41,42が出力する擬似交流電圧が、それぞれの出力電圧指令に近づくように生成される。さらに、モータECU45は、必要に応じて、モータジェネレータMG1,MG2の運転状態に関するデータをHVECU70に出力する。モータECU45によるモータジェネレータMG1,MG2を駆動については、後程、さらに詳細に説明する。
 バッテリ50は、バッテリ用電子制御ユニット(以下、「バッテリECU」とも称する)52によって管理されている。バッテリECU52には、バッテリ50を管理するのに必要な信号が入力される。たとえば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧、図示しない電流センサからのバッテリ50の充放電電流,バッテリ50に取り付けられた図示しない温度センサからの電池温度などが、バッテリECU52に入力される。バッテリECU52は、必要に応じて、バッテリ50の状態に関するデータを通信によりHVECU70に出力する。なお、バッテリECU52では、バッテリ50を管理するために、電流センサにより検出された充放電電流の積算値に基づいて残容量(SOC:State of Charge)も演算している。
 HVECU70は、CPU(Central Processing Unit)72を中心とするマイクロプロセッサとして構成される。HVECU70は、CPU72と、処理プログラムやマップ等を記憶するROM(Read Only Memory)74と、データを一時的に記憶するRAM(Random Access Memory)76と、図示しない入出力ポートおよび通信ポートとを含む。HVECU70には、イグニッションスイッチ80からのイグニッション信号、シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP、アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc、ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP、車速センサ88からの車速Vなどが入力ポートを介して入力されている。
 また、HVECU70は、上述のように、エンジンECU24、モータECU45および、バッテリECU52と、通信ポートを介して接続されている。これにより、HVECU70は、他のECUとの間で各種制御信号やデータのやりとりを行なっている。なお、エンジンECU24、モータECU45および、バッテリECU52についても、HVECU70と同様に、マイクロプロセッサによって構成できる。また、図1では、HVECU70、エンジンECU24、モータECU45および、バッテリECU52を別個のECUとして記載したが、これらの機能の一部または全部を統合したECUを配置することも可能である。あるいは、図示された各ECUの機能をさらに分割するように、ECUを配置してもよい。
 このように構成されたハイブリッド車20では、HVECU70は、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて、駆動軸32aに出力すべき要求トルクを計算する。この要求トルクに対応する要求動力が駆動軸32aに出力されるように、エンジン22とモータジェネレータMG1,MG2とが、以下の運転モードのいずれかに従って制御される。すなわち、モータジェネレータMG1,MG2は、車両駆動力を発生するように構成されている。
 EV(Electric Vehicle)運転モードでは、エンジン22の運転を停止するとともに、モータジェネレータMG2からの要求動力に見合う動力を、駆動軸32aに出力するように、モータジェネレータMG1,MG2が制御される。
 HV(Hybrid Vehicle)運転モードでは、エンジン22が作動されて、エンジン22からの動力と、モータジェネレータMG1,MG2からの動力とによって、ハイブリッド車20が走行する。たとえば、要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるように、エンジン22は運転制御される。さらに、モータジェネレータMG1,MG2の出力トルクは、バッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部が動力分割機構30とモータジェネレータMG1,MG2とによりトルク変換されることによって、要求動力が駆動軸32aに出力されるように制御される。
 あるいは、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御するとともに、エンジン22から出力される動力のすべてが動力分割機構30とモータジェネレータMG1,MG2とによってトルク変換されて駆動軸32aに出力されるように、モータジェネレータMG1,MG2が制御される。
 このように、必要な車両駆動力を発生するためにモータジェネレータMG1,MG2が出力すべきトルクが、車両状態および運転者操作等に基づいて逐次算出される。そして、算出されたトルクに基づいて設定されたトルク指令値に従って、モータジェネレータMG1,MG2の出力トルクが制御される。
 図2は、図1に示したモータジェネレータMG1,MG2を駆動制御するための電気システムの回路図である。
 図2を参照して、ハイブリッド車20の電気システムは、バッテリ50と、SMR(System Main Relay)55と、コンバータ40と、インバータ41,42とを含む。
 SMR55は、バッテリ50とコンバータ40との間に設けられる。SMR55がオフ状態であると、バッテリ50は電気システムから切離される。SMR55がオン状態であると、バッテリ50が電気システムに接続される。SMR55は、HVECU70からの制御信号に応答してオンオフされる。たとえば、イグニッションスイッチ80がオンされた状態で、ユーザが運転開始のための操作を行うことによって、電気システムの起動が指示される。電気システムの起動が指示されると、HVECU70は、SMR55をオンする。
 コンバータ40は、リアクトルおよび2つの電力用半導体スイッチング素子(以下、単にスイッチング素子とも称する)によって構成される、一般的な昇圧チョッパ回路の構成を有する。電力用半導体スイッチング素子としては、バイポーラトランジスタや、パワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)、あるいは、IGBT(Insulated Gate Bipolar Transistor)等を用いることができる。各スイッチング素子には、逆並列ダイオードが接続される。
 モータジェネレータMG1と接続されたインバータ41は、U相アーム、V相アームおよびW相アームを含む。U相アーム、V相アームおよびW相アームは並列に接続される。U相アーム、V相アームおよびW相アームは、それぞれ、直列に接続された2つスイッチング素子を有する。各スイッチング素子には逆並列ダイオードが設けられている。
 モータジェネレータMG1の図示しない固定子に巻回された各相コイル(U、V,W)は、中性点112において交互に接続される。インバータ41の各相アームにおけるスイッチング素子の接続点は、モータジェネレータMG1の各相コイルの端部にそれぞれ接続される。
 インバータ42は、インバータ41と同様に、一般的な三相インバータの構成を有する。モータジェネレータMG2の図示しない固定子に巻回された各相コイル(U、V,W)は、中性点122において交互に接続される。インバータ42の各相アームにおけるスイッチング素子の接続点は、モータジェネレータMG2の各相コイルの端部にそれぞれ接続される。
 バッテリ50から放電された電力をモータジェネレータMG1もしくはMG2に供給する際、電圧がコンバータ40により昇圧される。逆に、モータジェネレータMG1もしくはMG2により発電された電力をバッテリ150に充電する際、電圧がコンバータ40により降圧される。
 コンバータ40とインバータ41および42との間の電力ライン54上の直流電圧であるシステム電圧VHは、電圧センサ180により検出される。電圧センサ180の検出結果は、モータECU45に送信される。
 インバータ41は、電力ライン54上の直流電圧を交流電力に変換して、モータジェネレータMG1に供給する。また、インバータ41は、モータジェネレータMG1が回生発電によって発生した交流電力を直流電力に変換する。同様に、インバータ42は、電力ライン54上の直流電圧を交流電力に変換して、モータジェネレータMG2に供給する。また、インバータ42は、モータジェネレータMG2が回生発電によって発生した交流電力を直流電力に変換する。
 (基本的な電動機制御について)
 このように、モータジェネレータMG1,MG2は、トルク指令値に従ったトルクを出力するように、インバータ41,42による直流-交流電力変換によって制御される。この電動機制御では、対応のモータジェネレータMG1またはMG2の状態に応じて制御モードが選択される。
 図3を参照して、制御モードとしては、PWM制御および矩形波電圧制御のいずれかが選択される。モータジェネレータMG1,MG2のそれぞれの動作状態に応じて、PWM制御および矩形波電圧制御のいずれかが選択的に適用される。
 正弦波PWM制御は、一般的なPWM制御として用いられるものであり、図示しないインバータの各相アームにおけるスイッチング素子のオンオフを、正弦波状の電圧指令値と搬送波(代表的には三角波)との電圧比較に従って制御する。この結果、上アーム素子のオン期間に対応するハイレベル期間と、下アーム素子のオン期間に対応するローレベル期間との集合について、一定期間内でその基本波成分が正弦波となるようにデューティ比が制御される。
 周知のように、正弦波PWM制御では、この基本波成分(実効値)をインバータ入力電圧の0.61倍程度までしか高めることができない。なお、以下では、インバータ41,42の直流リンク電圧(直流電圧VH)に対する、モータジェネレータMG1,MG2への印加電圧(線間電圧)の基本波成分(実効値)の比を「変調率」と称する。
 したがって、基本的には、変調率に応じて制御モードが選択される。概略的には、トルク指令値に従ったフィードバック制御によって算出された電圧指令(正弦波電圧)に対応する変調率が0.61よりも低いときは、正弦波PWM制御が選択される一方で、変調率が0.61よりも高いときには、正弦波PWM制御を適用することができない。
 一方、矩形波電圧制御では、上記一定期間内で、ハイレベル期間およびローレベル期間の比が1:1の矩形波1パルス分をモータジェネレータMG1,MG2に印加する。これにより、変調率は0.78まで高められる。なお、矩形波電圧制御では、モータ印加電圧の振幅が固定されるため、トルク実績値とトルク指令値との偏差に基づく、矩形波電圧パルスの位相制御によってトルク制御が実行される。
 ただし、矩形波電圧制御では、インバータ41,42からモータジェネレータMG1,MG2に印加される交流電圧の振幅が固定されて、電圧位相のみでトルク制御が実行される。このため、矩形波電圧制御では、トルクの制御応答性がPWM制御(特に、正弦波PWM制御)と比較して低下する。
 正弦波PWM制御が適用できない領域では、矩形波電圧制御が選択される。また、変調率が0.61~0.78の間であるときには、過変調PWM制御を適用することも可能である。
 過変調PWM制御は、電圧指令の振幅が搬送波振幅より大きい範囲で上記正弦波PWM制御と同様のPWM制御を行うものである。特に、電圧指令を本来の正弦波波形から歪ませることによって基本波成分を高めることができ、変調率を正弦波PWM制御での最高変調率から0.78の範囲まで高めることができる。ただし、過変調PWM制御では、電圧指令を歪ませることによって、電流成分にも高周波成分が発生し易くなる。このため、制御安定性を確保するためには、正弦波PWM制御と同等のレベルまで制御応答性を高めることが困難である。たとえば、ローパスフィルタの追加や時定数の拡大等が必要になるからである。
 モータジェネレータMG1,MG2では、回転速度や出力トルクが増加すると誘起電圧が高くなるため、必要となる駆動電圧(モータ必要電圧)が高くなる。コンバータ40によって制御される直流電圧VHは、このモータ必要電圧よりも高く設定する必要がある。その一方で、コンバータ40による昇圧電圧すなわち、直流電圧VHには限界値が存在する。このため、高出力領域において変調率が0.61を超えると、正弦波PWM制御を選択することができなくなる。
 なお、特許文献1,2にも示されるように、コンバータ40を具備した構成では、システム電圧VHを上昇させることによって、同一の電圧指令に対応する変調率が低下するので、PWM制御を適用できる範囲が拡大できる。ただし、システム電圧VHを上昇させると、コンバータ40での昇圧比が大きくなることによって、スイッチング素子での損失が大きくなるため、効率が低下する傾向にある。
 モータジェネレータMG1,MG2のトルク指令値は別個に設定されるので、モータジェネレータMG1,MG2のそれぞれにおいて、そのときの動作状態に応じて、PWM制御および矩形波電圧制御のいずれかが選択される。PWM制御として、正弦波PWM制御に加えて過変調PWM制御が適用される場合には、変調率が0.61~0.78の領域で、正弦波PWM制御に代えて過変調PWM制御が適用される。そして、変調率が0.78を超えると矩形波電圧制御が適用される。過変調PWM制御および矩形波電圧制御の適用により、モータジェネレータMG1,MG2の出力向上が実現される。
 図4には、モータジェネレータMG1,MG2の動作領域と制御モード選択との概略的な対応関係が示される。
 図4を参照して、概略的には、低速度域A1では、変調率がそれ程大きくならないため、トルク変動を小さくするために正弦波PWM制御が用いられる。出力が増大して、正弦波PWM制御が適用できない領域では、概略的に、中速度域A2では過変調PWM制御、高速度域A3では、矩形波電圧制御が適用される。
 (制振制御について)
 次に、本発明の実施の形態による電動車両における制振制御について説明する。
 図5は、制振制御の一例を示す波形図である。図5に示す制振制御では、車両振動を生じされる車両前後加速度変動の原因となる車両の速度変動を抑制するために、駆動軸32aに機械的に連結されたモータジェネレータMG2の回転速度変動を抑制する。
 図5を参照して、たとえば、車両が加速走行しているときには、モータジェネレータMG2の回転速度MRN(2)も増加する。このような加速時には、実際の回転速度MRN(2)は、必ずしも単調増加ではなく、うねりながら増加する現象が見られる。このうねり成分は、車両前後加速度の変動によって車両に振動をもたらす。この結果、車両の運転快適性が損なわれることが懸念される。
 制振制御では、回転速度MRN(2)のうねり成分(以下、変動成分ΔMRN(2)とも称する)が、検出された回転速度MRN(2)から抽出される。さらに、抽出された変動成分ΔMRN(2)の逆位相成分に基づいて、制振トルクΔtr0が算出される。すなわち、制振トルクΔtr0は、周期的な変動成分ΔMRN(2)を打ち消すための周期的なトルク成分である。
 そして、モータジェネレータMG2の出力トルクに、上記制振トルクΔtr0に対応するトルク成分(以下、補償トルクとも称する)を重畳するようにトルク制御を実行することによって、回転速度MRN(2)から変動成分を除去することができる。すなわち、車両振動を抑制するための制振制御が実行できる。
 図6は、本発明の実施の形態による電動車両における制振制御を説明するための機能ブロック図である。
 図6に示した各機能ブロックは、ECU(好ましくは、モータECU45)による、所定プログラムの実行(ソフトウェア処理)あるいは、ECU内に構築された電子回路の動作(ハードウェア処理)によって実現することができる。
 図6を参照して、制振制御部500は、回転速度変動抽出部510と、制振トルク算出部520と、補償トルク設定部530と、加算部540,550とを有する。
 回転速度変動抽出部510は、車両の速度変動を検出するために、駆動輪39a,39bの回転速度に対応するモータジェネレータMG2の回転速度MRN(2)の検出値から、周期的な速度変動成分ΔMRNを抽出する。速度変動成分ΔMRNは、図5における変動成分ΔMRN(2)に対応する。回転速度変動抽出部510は、たとえばバンドパスフィルタによって構成できる。
 制振トルク算出部520は、制振制御が要求されているときに、速度変動成分ΔMRNを相殺するための制振トルクΔtr0を算出する。図5に示したように、制振トルクΔtr0は、速度変動成分ΔMRNと逆位相の周期的なトルク成分である。
 制振制御フラグFNVは、制振制御が要求されているときにオンされる一方で、そうでないときにオフされる。制振制御は、車両振動が発生しやすいシチュエーション、たとえば、車両の加速あるいは減速時、または、エンジン22の始動あるいは停止時にオンされる。一方、車両が定常走行状態や、停止無負荷状態にあるときには、わずかな出力トルクの変動が車両の挙動となって現われるため、制振トルクΔtr0を加えることによって、逆に車両振動を発生させる可能性がある。すなわち、出力トルクの変動量が小さいときにも一律に制振制御を適用すると逆効果が懸念される。
 補償トルク設定部530は、モータジェネレータMG1,MG2の運転状態を示す信号MDR(1),MDR(2)と、制振トルク算出部520によって算出された制振トルクΔtr0を受ける。補償トルク設定部530は、信号MDR(1),MDR(2)によって示される、モータジェネレータMG1,MG2の運転状態に基づいて、制振制御を実行するモータジェネレータを選択する。
 制振制御の可否を決めるための各モータジェネレータの運転状態は、少なくとも、当該モータジェネレータの制御モードを含む。具体的には、制御モードがPWM制御ではないとき(あるいは、より特定的には、正弦波PWM制御ではないとき)に、当該モータジェネレータによる制振制御が禁止される。なぜなら、トルク制御応答性が高くないことによって、制振制御を有効に実行することができず、場合によっては位相ずれによって却って車両振動を助長する虞があるからである。
 あるいは、制振制御の可否を決めるための各モータジェネレータの運転状態は、モータ温度、回転速度、トルクおよび出力の少なくとも1つを含んでもよい。たとえば、モータジェネレータの温度が所定温度よりも高い高温状態であるときには、当該モータジェネレータによる制振制御を禁止することが好ましい。なぜなら、制振トルクを加算することによって、本来の出力トルクよりも大きいトルクが発生されることになるため、さらなる高温状態を招く虞があるからである。また、回転速度が所定値よりも高い高速領域であるときにも、当該モータジェネレータによる制振制御を禁止することが好ましい。なぜなら、制振トルクを加えることによって回転速度がさらに上昇することにより、過回転状態となる虞があるからである。同様に、トルクおよび/または出力(パワー)が所定値よりも大きい高出力領域においても、さらなるトルク・出力の増大を避けるために、当該モータジェネレータによる制振制御を禁止することが好ましい。
 補償トルク設定部530は、基本的には、駆動輪39a,39bの回転速度を直接的に変化させるモータジェネレータMG2によって制振制御を実行する。したがって、モータジェネレータMG2モータジェネレータMG2による制振トルクの出力、すなわち制振制御が可能であるとき、すなわち、上述の禁止条件がいずれも成立しないときには、補償トルク設定部530は、モータジェネレータMG2を選択する。このときは、モータジェネレータMG2の補償トルクΔtr(2)=Δtr0に設定される一方で、モータジェネレータMG2の補償トルクΔtr(1)=0に設定される。
 これに対して、モータジェネレータMG2による制振制御が不可であるとき、たとえば、矩形波電圧制御が適用されている等、いずれかの禁止条件か成立しているときには、補償トルク設定部530は、他のモータジェネレータ、すなわち、モータジェネレータMG1を選択して制振制御を実行する。このときには、モータジェネレータMG1の補償トルクΔtr(1)=Δtrに設定される一方で、モータジェネレータMG2の補償トルクΔtr(2)=0に設定される。
 なお、補償トルクΔtr(1),Δtr(2)と制振トルクΔtr0との間には、制振効果を最大限にするための位相差が必要に応じて設けられる。たとえば、必要な位相差は、実機実験によって予め求めることが可能である。補償トルク設定部530において、比例演算に加えて、位相進み補償(あるいは位相遅れ補償)を行うような伝達関数によって、制振トルクΔtr0から補償トルクΔtr(1),Δtr(2)を算出することで、上述の位相差を設けることができる。
 特に、モータジェネレータMG2から駆動軸32aまでの動力伝達経路と、モータジェネレータMG1から駆動軸32aまでの動力伝達経路とは、経路長および構成要素が異なっている。このため、モータジェネレータMG1,MG2のそれぞれが、駆動軸32a(駆動輪39a,39b)の速度変動に作用する伝達関数も異なってくる。したがって、モータジェネレータMG2から出力される補償トルクΔtr(2)と、モータジェネレータMG1から出力される補償トルクΔtr(1)とは、位相差を有することが好ましい。
 加算点540は、制振制御のための補償トルクΔtr(1)を反映して、モータジェネレータMG1のトルク指令値Trqcom(1)を算出する。トルク指令値Trqcom(1)は、車両駆動力を発生するためのMG1の本来のトルク指令値Tr(1)と、補償トルク設定部530によって設定された補償トルクΔtr(1)との加算によって算出される。
 同様に、加算部550は、制振制御のための補償トルクΔtr(2)を反映して、モータジェネレータMG2のトルク指令値Trqcom(2)を算出する。トルク指令値Trqcom(2)は、車両駆動力を発生するためのMG2の本来のトルク指令値Tr(2)と、補償トルク設定部530によって設定された補償トルクΔtr(2)との加算によって算出される。
 図7には、図6に示した制振制御部500による制振制御のフローチャートが示される。
 図7を参照して、モータECU45は、ステップS100により、制振制御が要求されているかどうかを判定する。ステップS100の判定は、図6に示した制振制御フラグFNVに基づいて実行できる。
 モータECU45は、制振制御が要求されているとき(S100のYES判定時)には、ステップS110に処理を進めて、制振トルクΔtr0を算出する。ステップS110による処理は、図6に示した回転速度変動抽出部510および制振トルク算出部520の機能に相当する。
 さらに、モータECU45は、ステップS120により、モータジェネレータMG2によって制振制御が可能であるかどうかを判定する。上述のように、ステップS120による判定は、モータジェネレータMG2の運転状態に基づいて実行される。最も簡便には、モータジェネレータMG2がPWM制御(正弦波PWM制御)を適用中であるか否かに基づいて、ステップS120による判定が実行される。
 モータジェネレータMG2による制振制御が可能であるとき(S120のYES判定時)には、モータECU45は、ステップS130に処理を進める。ステップS130では、MG2によって制振制御を実行するために、補償トルクΔtr(2)=Δtr0に設定される一方で、Δtr(1)=0に設定される。
 一方、モータジェネレータMG2による制振制御が不可であるとき(S120のNO判定時)には、モータECU45は、ステップS140に処理を進めて、モータジェネレータMG1によって制振制御が可能であるかどうかを、さらに判定する。上述のように、ステップS140による判定は、制御モードを始めとする、モータジェネレータMG1の運転状態に基づいて実行される。ステップS120およびS140による判定の条件は、同じであってもよく、異なっていてもよい。
 モータジェネレータMG1による制振制御が可能であるとき(S140のYES判定時)には、モータECU45は、ステップS150に処理を進めて、モータジェネレータMG1により制振制御を実行する。ステップS150では、MG1によって制振制御を実行するために、補償トルクΔtr(1)=Δtr0に設定される一方で、Δtr(2)=0に設定される。
 なお、制振制御が要求されていないとき(S100のNO判定時)、または、モータジェネレータMG1,MG2の両方が制振制御不可な状態であるとき(S120およびS140ともNO判定時)には、モータECU45は、ステップS160に処理を進める。ステップS160では、制振制御を非実行とするために、補償トルクΔtr(1)=Δtr(2)=0に設定される。
 さらに、モータECU45は、ステップS200により、モータジェネレータMG1,MG2のトルク指令値Trqcom(1),Trqcom(2)を設定する。Trqcom(1)=TR(1)+Δtr(1)によって設定され、Trqcom(2)=TR(2)+Δtr(2)によって設定される。そして、モータジェネレータMG1,MG2の出力トルクは、トルク指令値Trqcom(1),Trqcom(2)に従って制御される。具体的には、トルク偏差を解消するためのフィードバック制御に従って、インバータ41,42のスイッチング素子のオンオフ制御により、モータジェネレータMG1,MG2に供給される交流電力が制御される。
 このように、本実施の形態による電動車両によれば、車両駆動用の複数のモータジェネレータMG1,MG2を搭載した構成において、駆動軸(駆動輪)の周期的な回転速度変動を抑制するための制振トルクを出力可能な運転状態であるモータジェネレータを選択して、制振制御を実行することができる。
 特に、制振効果の高いモータジェネレータ(MG2)を優先的に制振制御に使用する一方で、モータジェネレータMG2が制振トルクを出力不可な運転状態である場合には、残りのモータジェネレータ(MG1)によって制振制御を実行できる。
 この結果、制振制御を実行するモータジェネレータを固定して制振制御を実行させる制御と比較して、制振制御を確実に実行することができる。また、特許文献1,2のようにシステム電圧VHの昇圧により制振制御を可能とする制御と比較して、コンバータ40でのスイッチング損失の増加による効率低下が発生しない。したがって、複数の車両駆動用電動機を搭載した電動車両において、電動機のトルク制御によって車両振動を抑制する制振制御を、適切かつ円滑に実行して運転快適性を向上する。
 なお、図5および図6では、モータジェネレータMG2の回転速度MRN(2)の変動成分ΔMRN(2)を相殺するように制振トルクΔtr0を算出する例を説明した。しかしながら、本実施の形態による制振制御によって抑制される速度変動成分は、上記の例に限定されるものではなく、任意に検出することができる。たとえば、加速度センサ(Gセンサ)の検出値に基づいて、あるいは、特許文献2のようにエンジンの行程(クランク角度)に基づいて、抑制の対象となる車両の速度変動成分を抽出してもよい。
 また、図1では、遊星歯車機構により構成された動力分割機構30によって、エンジン22、モータジェネレータMG1およびMG2の出力軸同士が機械的に連結される構成を記載したが、本発明の適用はこのような構成に限定されるものではないことを確認的に記載する。複数の車両駆動用電動機(モータジェネレータ)を有するように駆動系が構成されたハイブリッド車であれば、本実施の形態で説明した制振制御を適用できる。
 (制振制御の変形例)
 図7に示したフローチャートでは、モータジェネレータMG1,MG2の両方で制振トルクの出力が不可である場合には、制振制御を不実行(S160)とした。以下では、かかる状況においても制振トルクを発生可能とするような、制振制御の変形例について説明する。
 ここで、図8を用いて、モータジェネレータの動作領域変化と制御モード変化との関係を説明する。
 図8を参照して、現在、モータジェネレータMG2が動作点P1で運転しており、制御モードが矩形波電圧制御になっているものとする。この状態で、さらに、モータジェネレータMG1についても制振制御が不可な運転状態であると、上述のように、制振制御が実行できない。
 一方で、ハイブリッド車20では、エンジン22によっても車両駆動力を発生することができる。したがって、車両全体で必要な要求動力の配分を変更することによって、モータジェネレータMG2の出力トルクを低下させることが可能である。この場合、動作点がP1から、図8上で下方向に移動するため、モータジェネレータMG2の出力が低下する。
 この結果、インバータ42からモータジェネレータMG2へ印加される電圧振幅も小さくなるため、必要な変調率が低下することによってPWM制御(好ましくは、正弦波PWM制御)を適用できるようになる。これにより、車両全体での駆動力を一定に維持したままで、制振制御を実行することが可能となる。
 図9には、本発明の実施の形態による電動車両における制振制御の変形例を説明するためフローチャートが示される。
 図9を参照して、本実施の形態の変形例による制振制御では、モータECU45は、図9に示したステップS100~S160に加えて、ステップS180をさらに実行する。 
 ステップS180は、モータジェネレータMG1,MG2の両方で制振制御が不可である場合(ステップS120,S140の両方のNO判定時)に実行される。一方、制振制御を非実行とするステップS160は、ステップS100のNO判定時のみに実行される。
 モータECU45は、ステップS180では、図8で説明したように、モータジェネレータMG2の動作点を変更する。たとえば、エンジン22の出力を増加する一方で、モータジェネレータMG2の出力トルクを減少するように動作点が変更される。この際には、モータジェネレータMG2のトルク減少量に対応させてエンジン22の出力増加量を決めることによって、車両全体での駆動力を一定に維持する。
 このような動作点の変更によって、モータジェネレータMG2の出力が低下するため、制御モードがPWM制御へ変化することで、モータジェネレータMG2による制振制御が可能となる。このように、本実施の形態の変形例による制振制御によれば、モータジェネレータMG1,MG2の両方とも制振制御が不可な運転状態である場合にも、モータジェネレータMG2の動作点変更によって制振制御を実行することができる。
 なお、図9では図示を省略しているが、制御モード以外の条件(高温等)でモータジェネレータMG2による制振制御が禁止されている場合には、動作点の変更によって制御モードがPWM制御に変化しても、当該条件によってモータジェネレータMG2による制振制御が不可となる虞がある。したがって、制御モード以外の条件によってステップS120がNO判定とされたときには、動作点を変更するステップS180ではなく、制振制御を非実行とするステップS160が実行されることが好ましい。
 (電動車両の変形例)
 図12には、本発明の実施の形態による電動車両の構成の変形例が示される。
 図12を参照して、本発明の実施の形態の変形例によるハイブリッド車20♯は、前輪39a,39bを駆動するための駆動ユニット90を、後輪39c,39dを駆動するための駆動ユニット95とを備える。ハイブリッド車20♯は、前輪39a,39bと、後輪39c,39dの両方を駆動輪とするいわゆる四輪駆動車である。図12の構成例では、後輪39c,39dが「副駆動輪」に対応し、前輪39a,39bが「主駆動輪」に対応する。
 ハイブリッド車20♯は、バッテリ50と、電力制御ユニット(PCU)51とをさらに備える。PCU51は、図1,2に示されたコンバータ40およびインバータ41,42に代表される、バッテリ50と車両駆動用電動機(MG1、MG2,MGR)との間の電力変換のための機器群を包括的に記載したものである。
 駆動ユニット90は、たとえば、図1のパワートレーンと同様の構成を有する。すなわち、モータジェネレータMG1,MG2およびエンジン22を協調的に動作させることによって、駆動輪39a,39bの駆動力を発生する。あるいは、図1の構成から、エンジン動力による発電を可能とするモータジェネレータMG1を省略して、エンジン22およびモータジェネレータMG2によってパラレルに車両駆動力を発生するように、いわゆるパラレルハイブリッド式により駆動ユニット90を構成してもよい。また、駆動ユニット90については、エンジン22の出力を発電のみに用いる、いわゆるシリーズハイブリッド式により駆動ユニット90を構成してもよい。
 駆動ユニット95は、後輪駆動用のモータジェネレータMGRと、図示しない後輪の駆動軸との間に設けられた減速器97とを含む。モータジェネレータMGRは、モータジェネレータMG2と同様に、バッテリ50からの供給電力を用いて、PCU51によって駆動される。あるいは、モータジェネレータMGRの回生発電電力は、PCU51を介して、バッテリ50を充電することができる。
 駆動ユニット90,95については、車両全体で複数の車両駆動用電動機(モータジェネレータ)が搭載される限り任意の構成とすることができる。
 図12に示した構成のハイブリッド車20♯においても、ハイブリッド車20と同様に、複数の車両駆動用電動機が搭載されている(MG1,MG2,MGR/MG2,MGR)。したがって、主駆動輪の駆動力を発生するモータジェネレータMG2によって優先的に制振制御を実行する一方で、モータジェネレータMG2が制振制御できない運転状態であるときには、副駆動輪の駆動力を発生するモータジェネレータMGRを用いて制振制御を実行することも可能である。たとえば、ハイブリッド車20での補償トルクΔtr(1)に相当する周期的なトルクを、モータジェネレータMGRのトルク指令値に加算することによって、モータジェネレータMGRによる制振制御を実現することができる。
 すなわち、本発明の適用において、電動車両に搭載された複数の車両駆動用電動機(モータジェネレータ)については、同一の駆動輪に対して駆動力を発生する電動機に限定することなく、制振制御を実行する候補とすることができる。図12の構成例では、モータジェネレータMGRが「第1の電動機」に対応し、モータジェネレータMG2が「第2の電動機」に対応する。
 なお、後輪39c,39dを主駆動輪とし、前輪39a,39bを副駆動輪とすることも可能である。この場合には、後輪の駆動力を発生する電動機(モータジェネレータ)が「第2の電動機」に対応し、前輪の駆動力を発生する電動機(モータジェネレータ)が「第1の電動機」に対応することとなる。
 また、図1および図10では、ハイブリッド車20,20♯を電動車両の代表例として示したが、エンジン22が配置されることなく電動機のみが車両駆動力源となる電気自動車や燃料電池自動車についても、すなわち電動車両全般に対して、複数の車両駆動用電動機(モータジェネレータ)が搭載されていれば、本実施の形態と同様の制振制御を実行することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 この発明は、複数の車両駆動用電動機を搭載した電動車両に適用することができる。
 20,20♯ ハイブリッド車、22 エンジン、24 エンジンECU、23 クランク角センサ、26 クランクシャフト、28 トーショナルダンパ、30 動力分割機構、31,65 サンギヤ、31a サンギヤ軸、32,66 リングギヤ、32a リングギヤ軸(駆動軸)、33,67 ピニオンギヤ、34 キャリア、37 ギヤ機構、38 デファレンシャルギヤ、39a,39b 前輪(第1の駆動輪)、39c,39d 後輪(第2の駆動輪)、40 コンバータ、41,42 インバータ、43,44 回転位置検出センサ、45 モータECU、48 出力軸、50 バッテリ、52 バッテリECU、54 電力ライン、60 変速機、61 ケース、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、90,95 駆動ユニット、97 減速器、112,122 中性点、180 電圧センサ、500 制振制御部、510 回転速度変動抽出部、520 トルク算出部、530 補償トルク設定部、540,550 加算部、Acc アクセル開度、BP ブレーキペダルポジション、FNV 制振制御フラグ、MDR(1)、MDR(2) 信号(モータ運転状態)、MG1,MG2,MGR モータジェネレータ、MRN 回転速度、ΔMRN 速度変動成分、Δtr0 制振トルク、Δtr(1),Δtr(2) 補償トルク(制振制御)、P1 動作点、Tr(1),Tr(2) トルク指令値(車両駆動力)、Trqcom(1)、Trqcom(2) トルク指令値(最終)、VH 直流電圧(システム電圧)。

Claims (15)

  1.  車両駆動力を発生するための複数の電動機(MG1,MG2,MGR)と、
     前記複数の電動機を制御するための制御装置(45)とを備え、
     前記制御装置は、制振制御の実行時において、前記複数の電動機のそれぞれの運転状態に応じて前記複数の電動機から前記制振制御を実行する電動機を選択するとともに、選択した電動機の出力トルクに、車両の周期的な速度変動成分を打ち消すための周期的な補償トルク(Δtr(1),Δtr(2))を加算するように構成される、電動車両。
  2.  前記運転状態は、各前記電動機の制御モードを含み、
     前記制御モードは、パルス幅変調制御が適用される第1の制御モードおよび、矩形波電圧制御が適用される第2の制御モードを含み、
     前記制御装置は、前記複数の電動機のうちの前記第1の制御モードが適用されている電動機を選択して前記制振制御を実行する、請求の範囲第1項に記載の電動車両。
  3.  前記運転状態は、各前記電動機の温度、回転速度、トルクおよび出力のうちの少なくとも1つを含み、
     前記制御装置は、前記複数の電動機のうちの、前記温度、前記回転速度、前記トルクおよび前記出力のうちの前記少なくとも1つが所定値より高い電動機による前記制振制御を禁止する、請求の範囲第1項に記載の電動車両。
  4.  内燃機関(22)をさらに備え、
     前記複数の電動機は、
     前記内燃機関から駆動軸(32a)を介して駆動輪(39a,39b)へ至る動力伝達経路に配置された第1の電動機(MG1)と、
     前記駆動軸と機械的に連結された第2の電動機(MG2)とを含み、
     前記制御装置は、前記第2の電動機の運転状態が前記制振制御を実行できる状態である場合には、前記第2の電動機によって前記制振制御を実行する一方で、前記第2の電動機の運転状態が前記制振制御を実行できる状態ではない場合には、前記第1の電動機によって前記制振制御を実行する、請求の範囲第1項に記載の電動車両。
  5.  前記運転状態は、各前記電動機の制御モードを含み、
     前記制御モードは、パルス幅変調制御が適用される第1の制御モードおよび、矩形波電圧制御が適用される第2の制御モードを含み、
     前記制御装置は、前記第2の電動機に前記第1の制御モードが適用されている場合には前記第2の電動機によって前記制振制御を実行する一方で、前記第1および第2の電動機の両方に前記第1の制御モードが適用されていない場合には、前記第2の電動機の出力を減少させるとともに、当該減少量に対応させて前記内燃機関および前記第1の電動機の少なくとも一方の出力を増加させる、請求の範囲第4項に記載の電動車両。
  6.  相対回転可能な第1から第3の回転要素を含む差動装置(30)をさらに備え、
     前記第1の回転要素(34)は、前記内燃機関(22)の出力軸(26)と機械的に連結され、
     前記第2の回転要素(31)は、前記第1の電動機(MG1)の出力軸と機械的に連結され、
     前記第3の回転要素(32)は、前記駆動軸(32a)および前記第2の電動機(MG2)の出力軸と機械的に連結される、請求の範囲第4項または第5項に記載の電動車両。
  7.  前記複数の電動機は、
     副駆動輪(39c,39d)の駆動力を発生するための第1の電動機(MGR)と、
     主駆動輪(39a,39b)の駆動力を発生するための第2の電動機(MG2)とを含み、
     前記制御装置は、前記第2の電動機の運転状態が前記制振制御を実行できる状態である場合には、前記第2の電動機によって前記制振制御を実行する一方で、前記第2の電動機の運転状態が前記制振制御を実行できる状態ではない場合には、前記第1の電動機によって前記制振制御を実行する、請求の範囲第1項に記載の電動車両。
  8.  前記制御装置(45)は、前記制振制御の実行時には、前記速度変動成分とは逆位相の制振トルク成分(Δtr0)を演算するとともに、前記制振トルク成分に対応した補償トルク(Δtr(1),Δtr(2))を前記制振制御を実行する電動機の出力トルクに加算し、
     前記第1の電動機によって前記制振制御を実行するときの前記補償トルク(Δtr(1))と、前記第2の電動機によって前記制振制御を実行するときの前記補償トルク(Δtr(2))とは、前記制振トルク成分に対する位相が異なる、請求の範囲第4項または第7項に記載の電動車両。
  9.  車両駆動力を発生するための複数の電動機(MG1,MG2,MGR)を備えた電動車両の制御方法であって、
     車両の周期的な速度変動成分を打ち消すための周期的な制振トルク成分(Δtr0)を演算するステップ(S110)と、
     前記複数の電動機のそれぞれの運転状態に応じて前記複数の電動機から制振制御を実行する電動機を選択するステップ(S120-S150)と、
     前記制振制御を実行する電動機の出力トルクに前記制振トルク成分に対応した補償トルク(Δtr(1),Δtr(2))を加算するステップ(S200)とを備える、電動車両の制御方法。
  10.  前記運転状態は、各前記電動機の制御モードを含み、
     前記制御モードは、パルス幅変調制御が適用される第1の制御モードおよび、矩形波電圧制御が適用される第2の制御モードを含み、
     前記選択するステップ(S120-S150)は、前記複数の電動機のうちの前記第1の制御モードが適用されている電動機によって前記制振制御を実行する、請求の範囲第9項に記載の電動車両の制御方法。
  11.  前記運転状態は、各前記電動機の温度、回転速度、トルクおよび出力のうちの少なくとも1つを含み、
     前記選択するステップ(S120-S150)は、前記複数の電動機のうちの、前記温度、前記回転速度、前記トルクおよび前記出力のうちの前記少なくとも1つが所定値より高い電動機による前記制振制御を禁止する、請求の範囲第9項に記載の電動車両の制御方法。
  12.  前記電動車両は、内燃機関(22)をさらに備え、
     前記複数の電動機は、
     前記内燃機関から駆動軸(32a)を介して駆動輪(39a,39b)へ至る動力伝達経路に配置された第1の電動機(MG1)と、
     前記駆動軸と機械的に連結された第2の電動機(MG2)とを含み、
     前記選択するステップ(S120-S150)は、前記第2の電動機の運転状態が前記制振制御を実行できる状態である場合には、前記第2の電動機によって前記制振制御を実行する一方で、前記第2の電動機の運転状態が前記制振制御を実行できる状態ではない場合には、前記第1の電動機によって前記制振制御を実行する、請求の範囲第9項に記載の電動車両の制御方法。
  13.  前記運転状態は、各前記電動機の制御モードを含み、
     前記制御モードは、パルス幅変調制御が適用される第1の制御モードおよび、矩形波電圧制御が適用される第2の制御モードを含み、
     前記選択するステップ(S120-S150)は、
     前記第2の電動機に前記第1の制御モードが適用されている場合に、前記第2の電動機によって前記制振制御を実行するステップ(S120,S130)と、
     前記第2の電動機に前記第1の制御モードが適用されておらず、かつ、前記第1の電動機に前記第1の制御モードが適用されている場合に、前記第1の電動機によって前記制振制御を実行するステップ(S140,S150)とを含み、
     前記制御方法は、
     前記前記第1および第2の電動機の両方に前記第1の制御モードが適用されていない場合に、前記第2の電動機の出力を減少させるとともに、当該減少量に対応させて前記内燃機関および前記第1の電動機の少なくとも一方の出力を増加させるステップ(S180)をさらに備える、請求の範囲第12項に記載の電動車両の制御方法。
  14.  前記複数の電動機は、
     副駆動輪(39c,39d)の駆動力を発生するための第1の電動機(MGR)と、
     主駆動輪(39a,39b)の駆動力を発生するための第2の電動機(MG2)とを含み、
     前記前記選択するステップ(S120-S150)は、前記第2の電動機の運転状態が前記制振制御を実行できる状態である場合には、前記第2の電動機によって前記制振制御を実行する一方で、前記第2の電動機の運転状態が前記制振制御を実行できる状態ではない場合には、前記第1の電動機によって前記制振制御を実行する、請求の範囲第9項に記載の電動車両の制御方法。
  15.  前記第1の電動機によって前記制振制御を実行するときの前記補償トルク(Δtr(1))と、前記第2の電動機によって前記制振制御を実行するときの前記補償トルク(Δtr(1))とは、前記制振トルク成分に対する位相が異なる、請求の範囲第12項または第14項に記載の電動車両の制御方法。
PCT/JP2010/065133 2010-09-03 2010-09-03 電動車両およびその制御方法 WO2012029170A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/820,409 US8718854B2 (en) 2010-09-03 2010-09-03 Electrically-powered vehicle and method for controlling the same
EP10856719.9A EP2612787B1 (en) 2010-09-03 2010-09-03 Electric-powered vehicle and control method therefor
CN201080068893.3A CN103079870B (zh) 2010-09-03 2010-09-03 电动车辆及其控制方法
JP2012531637A JP5423898B2 (ja) 2010-09-03 2010-09-03 電動車両およびその制御方法
PCT/JP2010/065133 WO2012029170A1 (ja) 2010-09-03 2010-09-03 電動車両およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065133 WO2012029170A1 (ja) 2010-09-03 2010-09-03 電動車両およびその制御方法

Publications (1)

Publication Number Publication Date
WO2012029170A1 true WO2012029170A1 (ja) 2012-03-08

Family

ID=45772303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065133 WO2012029170A1 (ja) 2010-09-03 2010-09-03 電動車両およびその制御方法

Country Status (5)

Country Link
US (1) US8718854B2 (ja)
EP (1) EP2612787B1 (ja)
JP (1) JP5423898B2 (ja)
CN (1) CN103079870B (ja)
WO (1) WO2012029170A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175555A1 (ja) * 2012-05-21 2013-11-28 トヨタ自動車株式会社 制振制御装置
WO2014122528A1 (en) * 2013-02-05 2014-08-14 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
CN104039622A (zh) * 2012-04-20 2014-09-10 宝马股份公司 用于减小混合动力车辆的动力系统的转动不均匀性的装置和方法
US9937915B2 (en) 2015-11-05 2018-04-10 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
JP2019127068A (ja) * 2018-01-22 2019-08-01 トヨタ自動車株式会社 ハイブリッド車両

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633650B2 (ja) * 2011-07-12 2014-12-03 トヨタ自動車株式会社 車両および車両の制御方法
US20140139150A1 (en) * 2011-07-14 2014-05-22 Toyota Jidosha Kabushiki Kaisha Vehicle driving device
CN103874613B (zh) * 2011-10-17 2016-11-23 丰田自动车株式会社 混合动力车辆的控制装置
EP2631101B1 (de) * 2012-02-22 2016-06-08 MAGNA STEYR Fahrzeugtechnik AG & Co KG Hybridantrieb
WO2013140559A1 (ja) * 2012-03-22 2013-09-26 トヨタ自動車株式会社 車両の制御装置
US8849460B2 (en) * 2012-05-30 2014-09-30 GM Global Technology Operations LLC Method and apparatus for determining engine pulse cancellation torque
US9274998B2 (en) * 2013-07-30 2016-03-01 Infineon Technologies Ag Drive train control
JP6248596B2 (ja) * 2013-12-10 2017-12-20 トヨタ自動車株式会社 ハイブリッド車両のモータ制御装置
JP2015116092A (ja) * 2013-12-13 2015-06-22 トヨタ自動車株式会社 電動車両
US9154067B2 (en) 2013-12-19 2015-10-06 Kohler Co. Torque sharing on paralleled generators
JP6272178B2 (ja) * 2014-08-06 2018-01-31 株式会社デンソー 回転電機の制御装置
JP6392653B2 (ja) * 2014-12-05 2018-09-19 トヨタ自動車株式会社 ハイブリッド自動車
KR101628577B1 (ko) * 2014-12-26 2016-06-08 현대자동차주식회사 하이브리드 차량의 진동저감 제어장치
US9506509B1 (en) 2015-09-10 2016-11-29 Ford Global Technologies, Llc Clutch control using dither
US9758170B2 (en) 2015-09-28 2017-09-12 Ford Global Technologies, Llc Coordinated control of transmission and accessories
US10081364B2 (en) 2016-01-12 2018-09-25 Ford Global Technologies, Llc System and method for controlling a transmission gear shift
US10479348B2 (en) 2016-02-16 2019-11-19 Ford Global Technologies, Llc Hybrid vehicle and method of reducing engine lugging
CN105946561A (zh) * 2016-05-17 2016-09-21 无锡开普机械有限公司 一种功率分流汇合式大马力拖拉机传动装置
CN105799488A (zh) * 2016-05-17 2016-07-27 无锡开普机械有限公司 一种结构简便的拖拉机传动装置
CN105946546A (zh) * 2016-05-17 2016-09-21 无锡开普机械有限公司 一种功率分流汇合式拖拉机驱动装置
CN105922857A (zh) * 2016-05-17 2016-09-07 无锡开普机械有限公司 一种大马力拖拉机传动装置
JP6790980B2 (ja) * 2017-04-12 2020-11-25 トヨタ自動車株式会社 ハイブリッド車両及びその制御方法
CN109110141A (zh) * 2017-06-26 2019-01-01 深圳市道通智能航空技术有限公司 油门控制方法、装置、动力系统及无人飞行器
CN109062035A (zh) * 2017-10-16 2018-12-21 华晨汽车集团控股有限公司 一种电动汽车动力总成震荡辨识与抑制方法
JP7020293B2 (ja) * 2018-05-25 2022-02-16 トヨタ自動車株式会社 バッテリ放電制御装置
DE102018115310A1 (de) * 2018-06-26 2020-01-02 Schaeffler Technologies AG & Co. KG Drehmomentübertragungsvorrichtung mit einem Steuerungssystem zur Ermittlung der Drehrichtung des Rotors
US11598259B2 (en) 2019-08-29 2023-03-07 Achates Power, Inc. Hybrid drive system with an opposed-piston, internal combustion engine
CN111674381A (zh) * 2020-05-08 2020-09-18 宁波吉利汽车研究开发有限公司 一种利用bsg干预发动机输出扭矩的方法、装置及车辆
US20220140695A1 (en) * 2020-11-02 2022-05-05 Stephen Zarlenga Electro Magnetic Boost (EMB)
JP2022149909A (ja) * 2021-03-25 2022-10-07 本田技研工業株式会社 車両制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136184A (ja) * 2004-10-07 2006-05-25 Toyota Motor Corp モータ駆動装置
JP2007261477A (ja) * 2006-03-29 2007-10-11 Toyota Motor Corp 走行装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380040B2 (ja) * 2000-08-28 2009-12-09 トヨタ自動車株式会社 4輪駆動電気自動車およびその制御方法
JP3508742B2 (ja) * 2001-06-18 2004-03-22 日産自動車株式会社 電動モータを用いた車両の制振制御装置
DE10145891A1 (de) * 2001-09-07 2003-06-12 Daimler Chrysler Ag Verfahren und Regelung zum Dämpfen der Drehmoment-Schwingungen des Antriebsstrangs eines elektrisch angetriebenen Straßenfahrzeugs
US7110867B2 (en) * 2002-08-26 2006-09-19 Nissan Motor Co., Ltd. Vibration suppression apparatus and method for hybrid vehicle
DE602005017098D1 (de) * 2004-07-21 2009-11-26 Nissan Motor Verfahren und Vorrichtung zum Steuern des Drehmoments eines Elektromotors für ein Kraftfahrzeug
CN100346572C (zh) * 2004-10-07 2007-10-31 丰田自动车株式会社 对输出转矩具有振动减小控制功能的电机驱动装置
JP4548374B2 (ja) * 2005-03-31 2010-09-22 マツダ株式会社 ハイブリッド電気自動車のパワートレイン及びパワートレインの制御方法
JP4867491B2 (ja) * 2005-07-28 2012-02-01 トヨタ自動車株式会社 駆動装置およびこれを搭載する自動車
CN1907747B (zh) * 2005-08-01 2010-11-10 爱信艾达株式会社 电动车辆驱动控制装置及电动车辆驱动控制方法
JP4175361B2 (ja) * 2005-11-07 2008-11-05 トヨタ自動車株式会社 ハイブリッド車及びその制御方法
JP4774975B2 (ja) * 2005-12-15 2011-09-21 トヨタ自動車株式会社 電動機の制御装置
JP4175371B2 (ja) * 2006-02-02 2008-11-05 トヨタ自動車株式会社 内燃機関装置およびその制御方法並びに動力出力装置
JP4197013B2 (ja) * 2006-06-28 2008-12-17 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2008162491A (ja) * 2006-12-28 2008-07-17 Toyota Motor Corp 車両およびその制御方法
JP4245069B2 (ja) * 2007-06-27 2009-03-25 トヨタ自動車株式会社 車両用制御装置及び車両駆動制御方法
JP4358264B2 (ja) * 2007-08-08 2009-11-04 株式会社日本自動車部品総合研究所 ハイブリッド車両
US8292012B2 (en) * 2008-06-30 2012-10-23 GM Global Technology Operations LLC Apparatus and method for a quick start engine and hybrid system
JP5104702B2 (ja) * 2008-10-07 2012-12-19 トヨタ自動車株式会社 ハイブリッド車の回生制御装置
EP2341235A1 (en) * 2008-10-31 2011-07-06 Toyota Jidosha Kabushiki Kaisha Damping controller of vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136184A (ja) * 2004-10-07 2006-05-25 Toyota Motor Corp モータ駆動装置
JP2007261477A (ja) * 2006-03-29 2007-10-11 Toyota Motor Corp 走行装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2612787A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039622A (zh) * 2012-04-20 2014-09-10 宝马股份公司 用于减小混合动力车辆的动力系统的转动不均匀性的装置和方法
US9803543B2 (en) 2012-04-20 2017-10-31 Bayerische Motoren Werke Aktiengesellschaft Device and method for reducing rotational imbalances of a drive train for a hybrid vehicle
WO2013175555A1 (ja) * 2012-05-21 2013-11-28 トヨタ自動車株式会社 制振制御装置
JPWO2013175555A1 (ja) * 2012-05-21 2016-01-12 トヨタ自動車株式会社 制振制御装置
WO2014122528A1 (en) * 2013-02-05 2014-08-14 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
US9937915B2 (en) 2015-11-05 2018-04-10 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
JP2019127068A (ja) * 2018-01-22 2019-08-01 トヨタ自動車株式会社 ハイブリッド車両

Also Published As

Publication number Publication date
EP2612787A1 (en) 2013-07-10
CN103079870B (zh) 2015-09-30
CN103079870A (zh) 2013-05-01
JPWO2012029170A1 (ja) 2013-10-28
EP2612787A4 (en) 2015-05-20
JP5423898B2 (ja) 2014-02-19
US20130173108A1 (en) 2013-07-04
US8718854B2 (en) 2014-05-06
EP2612787B1 (en) 2016-05-04

Similar Documents

Publication Publication Date Title
JP5423898B2 (ja) 電動車両およびその制御方法
EP2581284B1 (en) Hybrid vehicle and method of controlling thereof
JP5332740B2 (ja) モータ駆動制御装置
JP5716829B2 (ja) 車両、車両の制御方法および車両の制御装置
JP2009225634A (ja) 電動機駆動制御装置、それを備えた車両および電動機駆動制御方法
JP2008296619A (ja) ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP2018068037A (ja) 駆動装置および自動車
WO2013027290A1 (ja) 車両、および、車両の制御方法ならびに制御装置
JP5221444B2 (ja) 昇降圧コンバータの制御装置およびこれを搭載するハイブリッド車並びに昇降圧コンバータの制御方法
JP2011147207A (ja) 電動車両の駆動制御システム
JP2009280033A (ja) 車両及び車両の制御方法
JP5824824B2 (ja) 電動車両およびその制御方法
JP2009227080A (ja) 動力出力装置やこれを備える車両および駆動装置並びにこれらの制御方法
JP5365189B2 (ja) 電源装置およびこれを搭載する車両
JP2014217112A (ja) 車両の制御装置
JP2009248794A (ja) ハイブリッド車およびその制御方法
JP5696498B2 (ja) ハイブリッド車両およびその制御方法
JP5803462B2 (ja) ハイブリッド車両およびその制御方法
JP2012228902A (ja) 車両の制御装置
JP2014189252A (ja) 車両の制御装置
JP5741030B2 (ja) ハイブリッド車両およびその制御方法
JP2013060041A (ja) ハイブリッド車両およびその制御方法
JP2012240469A (ja) 車両の制御装置
JP2012100419A (ja) 駆動装置および自動車
JP2013063692A (ja) ハイブリッド車

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068893.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856719

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012531637

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13820409

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010856719

Country of ref document: EP