WO2012023555A1 - 酸素吸収性接着剤用樹脂及び酸素吸収性接着剤 - Google Patents

酸素吸収性接着剤用樹脂及び酸素吸収性接着剤 Download PDF

Info

Publication number
WO2012023555A1
WO2012023555A1 PCT/JP2011/068555 JP2011068555W WO2012023555A1 WO 2012023555 A1 WO2012023555 A1 WO 2012023555A1 JP 2011068555 W JP2011068555 W JP 2011068555W WO 2012023555 A1 WO2012023555 A1 WO 2012023555A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
acid
absorbing
acid component
absorbing adhesive
Prior art date
Application number
PCT/JP2011/068555
Other languages
English (en)
French (fr)
Inventor
芳弘 太田
庸一 石崎
結衣 浅野
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to EP11818196.5A priority Critical patent/EP2607444B1/en
Priority to KR1020147035532A priority patent/KR101796716B1/ko
Priority to KR1020137006675A priority patent/KR20130042023A/ko
Priority to CN201180049930.0A priority patent/CN103180401B/zh
Priority to US13/816,693 priority patent/US20130143734A1/en
Priority to JP2012529599A priority patent/JP5910998B2/ja
Publication of WO2012023555A1 publication Critical patent/WO2012023555A1/ja
Priority to US14/594,579 priority patent/US9428316B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C09J167/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl - and the hydroxy groups directly linked to aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • B65D81/266Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • C08G63/54Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation the acids or hydroxy compounds containing carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/74Oxygen absorber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31794Of cross-linked polyester

Definitions

  • the present invention relates to an oxygen-absorbing adhesive resin and an oxygen-absorbing adhesive that are excellent in adhesiveness, cohesive strength and oxygen-absorbing property.
  • Patent Document 1 proposes an oxygen-absorbing adhesive in which an inorganic oxide having oxygen-absorbing properties is blended with a polyol.
  • the oxygen-absorbing adhesive has problems such as being opaque, having a low oxygen-absorbing performance, and requiring moisture to develop the oxygen-absorbing performance and cannot be used in a dry atmosphere.
  • paints and adhesives using various oxygen-absorbing resins have been proposed (for example, Patent Documents 2 and 3), but there is no example that combines oxygen absorption, adhesiveness, and cohesive force.
  • an object of the present invention is to provide a two-pack curable oxygen-absorbing resin composition having both oxygen absorption, adhesion, and cohesion.
  • the present invention relates to a polyester comprising a structural unit derived from an acid component (A) and an acid component (B), wherein the ratio of the acid component (A) to the total acid component is 70 to 95 mol%, The ratio of B) to the total acid component is 0 to 15 mol%, the glass transition temperature of the polyester is ⁇ 20 ° C. to 2 ° C., and the resin for oxygen-absorbing adhesive used by curing with a curing agent: An acid component (A): tetrahydrophthalic acid or a derivative thereof or tetrahydrophthalic anhydride or a derivative thereof, and an acid component (B): a phthalic acid are provided.
  • the present invention also provides a two-component curable oxygen-absorbing resin composition comprising a main agent comprising the oxygen-absorbing adhesive resin and a curing agent component.
  • the present invention also provides an oxygen-absorbing adhesive comprising the two-component curable oxygen-absorbing resin composition.
  • the present invention also provides an oxygen-absorbing laminated film comprising at least an oxygen barrier film layer, an oxygen-absorbing layer comprising the oxygen-absorbing adhesive, and a sealant film layer.
  • the two-component curable oxygen-absorbing resin composition of the present invention as an adhesive for multilayer packaging materials, for example, as a substitute for a conventional adhesive for dry lamination, a soft packaging material having excellent deoxygenation performance Can be easily manufactured at low cost.
  • this oxygen-absorbing soft packaging material it is possible to maintain the quality of foods, medicines, electronic parts and the like that are sensitive to oxygen for a long period of time.
  • the oxygen-absorbing adhesive resin of the present invention is a polyester containing a structural unit derived from an acid component (A) and an acid component (B).
  • the acid component (A) is tetrahydrophthalic acid or a derivative thereof, or tetrahydrophthalic anhydride or a derivative thereof.
  • the acid component (A) is preferably methyltetrahydrophthalic acid or a derivative thereof or methyltetrahydrophthalic anhydride or a derivative thereof.
  • the derivatives include esters, acid halides, substituted products, oligomers and the like.
  • the acid component (A) preferably contains 50 to 50 acid components having a structure in which the acid component (A) is selected from the group consisting of (i) and (ii).
  • the content is 100 mol%, more preferably 60 to 100 mol%.
  • a dicarboxylic acid or dicarboxylic acid anhydride in which a functional group to be contained or a bonding group derived from the functional group is located in a cis position.
  • the above structures (i) and (ii) are molecular structures having particularly excellent reactivity with oxygen due to the substituent effect.
  • Acids in which the functional group containing a hetero atom in the above structures (i) and (ii) or the linking group derived from the functional group corresponds to dicarboxylic acid and dicarboxylic anhydride in the structure of tetrahydrophthalic acid and tetrahydrophthalic anhydride Ingredients are preferred.
  • Examples of the acid component having the structure (i) include ⁇ 2 -tetrahydrophthalic acid derivatives, ⁇ 3 -tetrahydrophthalic acid derivatives, ⁇ 2 -tetrahydrophthalic anhydride derivatives, and ⁇ 3 -tetrahydrophthalic anhydride derivatives.
  • Preferred is ⁇ 3 -tetrahydrophthalic acid derivative or ⁇ 3 -tetrahydrophthalic anhydride derivative, and particularly preferred is 4-methyl- ⁇ 3 -tetrahydrophthalic acid or 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride.
  • 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride is an isomer containing 4-methyl- ⁇ 4 -tetrahydrophthalic anhydride obtained by reacting a C 5 fraction of naphtha containing isoprene as a main component with maleic anhydride.
  • the body mixture can be obtained by structural isomerization and is industrially produced.
  • the acid component having the structure (ii) is particularly preferably cis-3-methyl- ⁇ 4 -tetrahydrophthalic acid or cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride.
  • Cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride can be obtained, for example, by reacting a naphtha C 5 fraction mainly composed of trans-piperylene with maleic anhydride, and is produced industrially. ing.
  • the functional group containing a hetero atom in the above structures (i) and (ii) or a linking group derived from the functional group corresponds to dicarboxylic acid and dicarboxylic anhydride in the structure of tetrahydrophthalic acid and tetrahydrophthalic anhydride.
  • tetrahydrophthalic acid or derivatives thereof or tetrahydrophthalic anhydride or derivatives thereof include many compounds.
  • the acid component having the structure (i) and the acid component having the structure (ii) Since the reactivity with oxygen is very high, it can be suitably used as a raw material for the oxygen-absorbing adhesive resin of the present invention.
  • the acid component having the structure (i) and the acid component having the structure (ii) can be used alone, but it is also preferable to use two or more types in combination.
  • a mixture of 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride suitable as the structure of (i) and cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride suitable as the structure of (ii) is trans-piperylene.
  • a mixture of cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride and 4-methyl- ⁇ 4 -tetrahydrophthalic anhydride obtained by reacting a C 5 fraction of naphtha containing isoprene as a main component with maleic anhydride.
  • the oxygen-absorbing adhesive resin of the present invention which can be obtained by polymerizing a raw material containing tetrahydrophthalic acid or a derivative thereof or tetrahydrophthalic anhydride or a derivative thereof, absorbs oxygen in order to promote an oxygen absorption reaction.
  • a reaction catalyst oxygen catalyst
  • the oxygen-absorbing adhesive resin of the present invention obtained by polymerizing the raw material containing the acid component having the structure (i) and the acid component having the structure (ii) is reactive with oxygen. Therefore, practical oxygen absorption performance can be expressed in the absence of an oxygen absorption reaction catalyst.
  • the oxygen absorption reaction catalyst include transition metal salts composed of a transition metal of manganese, iron, cobalt, nickel, and copper and an organic acid.
  • not containing a catalytic amount of an oxygen-absorbing reaction catalyst generally means that the oxygen-absorbing reaction catalyst is less than 10 ppm in terms of the amount of transition metal, and preferably less than 1 ppm.
  • the acid component (B) is phthalic acid.
  • the phthalic acid of the acid component (B) include o-phthalic acid, isophthalic acid, terephthalic acid, sulfoisophthalic acid, sodium 5-sulfoisophthalate, or derivatives thereof.
  • the derivatives include esters, acid anhydrides, acid halides, substituents, oligomers and the like.
  • isophthalic acid and terephthalic acid are particularly preferable.
  • terephthalic acid copolymerization the cohesive strength of the resin itself is improved, the adhesive strength of the adhesive is improved, and delamination can be suppressed, which is preferable.
  • isophthalic acid copolymerization is preferable because solubility in a solvent is improved while ensuring cohesion.
  • the ratio of the acid component (A) to the total acid component is 70 to 95 mol%, preferably 75 to 95 mol%, more preferably 80 to 95 mol%.
  • the ratio of the acid component (B) to the total acid component is 0 to 15 mol%, preferably 0 to 12.5 mol%, more preferably 0 to 10 mol%.
  • the glass transition temperature of the oxygen-absorbing adhesive resin of the present invention is ⁇ 20 ° C. to 2 ° C. (for example, ⁇ 20 ° C. to 0 ° C.), preferably ⁇ 15 ° C.
  • the glass transition temperature in order to obtain sufficient oxygen absorption performance. It is in the range of ⁇ 2 ° C., more preferably in the range of ⁇ 12 ° C. to 2 ° C.
  • the glass transition temperature is higher than the above range, the mobility of the molecular chain after curing is remarkably reduced, so the oxygen absorption performance is low.
  • the glass transition temperature is lower than the above range, the mobility is too high and the autooxidation reaction is low. As a result, deactivation reactions such as disproportionation and recombination of radicals necessary for initiating oxygen are likely to occur, and as a result, the initial oxygen absorption performance may be significantly reduced. It is not preferred when applying an absorbent adhesive resin.
  • the oxygen-absorbing adhesive resin of the present invention further contains a structural unit derived from a diol component.
  • the diol component include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 3-methyl- 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 2-phenyl Propanediol, 2- (4-hydroxyphenyl) ethyl alcohol, ⁇ , ⁇ -dihydroxy-1,3-diisopropylbenzene, o-xylene glycol, m-xylene glyco
  • aliphatic diols such as ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, 1,6-hexanediol, and neopentyl glycol, and more preferred is 1,4-butanediol.
  • 1,4-butanediol When 1,4-butanediol is used, the oxygen absorption performance of the resin is high, and the amount of decomposition products generated during the auto-oxidation process is small. These can be used alone or in combination of two or more.
  • the oxygen-absorbing adhesive resin of the present invention is further derived from aromatic dicarboxylic acids other than phthalic acids, aliphatic dicarboxylic acids, aliphatic hydroxycarboxylic acids, polyhydric alcohols, polycarboxylic acids, or derivatives thereof. Structural units may be included.
  • the derivatives include esters, acid anhydrides, acid halides, substituents, oligomers, and the like. Of these, aliphatic dicarboxylic acids are particularly preferred. These can be used alone or in combination of two or more. By copolymerizing the other acid components, the glass transition temperature of the obtained oxygen-absorbing adhesive resin can be easily controlled, and the oxygen absorption performance can be improved.
  • the solubility in an organic solvent can be controlled.
  • the viscosity characteristic of the oxygen-absorbing adhesive composition dissolved in the solvent can be adjusted by controlling the branched structure of the resin by introducing a polyhydric alcohol and a polycarboxylic acid.
  • aromatic dicarboxylic acids other than phthalic acids and derivatives thereof include naphthalenedicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, anthracene dicarboxylic acids, and derivatives thereof.
  • Aliphatic dicarboxylic acids and their derivatives include oxalic acid, malonic acid, succinic acid, succinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, 3 , 3-dimethylpentanedioic acid, or derivatives thereof.
  • adipic acid, succinic acid, and succinic anhydride are preferable, and succinic acid and succinic anhydride are particularly preferable.
  • Examples of the aliphatic hydroxycarboxylic acid and derivatives thereof include glycolic acid, lactic acid, hydroxypivalic acid, hydroxycaproic acid, hydroxyhexanoic acid, and derivatives thereof.
  • Examples of polyhydric alcohols and their derivatives include 1,2,3-propanetriol, sorbitol, 1,3,5-pentanetriol, 1,5,8-heptanetriol, trimethylolpropane, pentaerythritol, 3,5-dihydroxy
  • Examples include benzyl alcohol, glycerin, and derivatives thereof.
  • polyvalent carboxylic acid and derivatives thereof examples include 1,2,3-propanetricarboxylic acid, meso-butane-1,2,3,4-tetracarboxylic acid, citric acid, trimellitic acid, pyromellitic acid, or these Derivatives.
  • the proportion of structural units derived from other acid components to the total acid components is preferably 1 to 30 mol%, more preferably 5 to 20 mol%.
  • copolymerizing the component which has trifunctional or more functional groups, such as a polyhydric alcohol and polyhydric carboxylic acid it is preferable to make it into 5 mol% or less with respect to all the acid components.
  • the oxygen-absorbing adhesive resin of the present invention can be obtained by any polyester polycondensation method known to those skilled in the art. For example, interfacial polycondensation, solution polycondensation, melt polycondensation and solid phase polycondensation.
  • a polymerization catalyst is not always necessary.
  • a normal polyester polymerization catalyst such as titanium, germanium, antimony, tin or aluminum is used. Is possible.
  • known polymerization catalysts such as nitrogen-containing basic compounds, boric acid and boric acid esters, and organic sulfonic acid compounds can also be used.
  • the number average molecular weight of the oxygen-absorbing adhesive resin of the present invention is preferably 500 to 100,000, more preferably 1,000 to 20,000.
  • the preferred weight average molecular weight is 5,000 to 200,000, more preferably 10,000 to 100,000, and still more preferably 20,000 to 90,000.
  • the molecular weight When the molecular weight is lower than the above range, the cohesive strength of the resin, that is, the creep resistance is lowered, and when it is high, the solubility in an organic solvent is lowered and the coating property is lowered due to an increase in the solution viscosity. It is not preferable when the oxygen-absorbing adhesive resin of the present invention is applied.
  • the molecular weight is within the above range, an oxygen-absorbing adhesive resin composition having excellent cohesive strength, adhesiveness and solubility in an organic solvent and having viscosity characteristics suitable as an adhesive solution can be obtained.
  • the molecular weight of the oxygen-absorbing adhesive resin of the present invention can be increased by using a chain extender such as organic diisocyanate.
  • organic diisocyanate chain extender various known aromatic, aliphatic or alicyclic diisocyanates can be used.
  • aromatic diisocyanates include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate.
  • aliphatic diisocyanates include hexamethylene diisocyanate, xylylene diisocyanate, and lysine diisocyanate.
  • alicyclic diisocyanates examples include cyclohexane-1,4-diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, dimerisocyanate obtained by converting a carboxyl group of dimer acid into an isocyanate group, and the like.
  • these organic diisocyanates can also be used as tri- or higher functional polyisocyanate compounds such as adducts such as trimethylolpropane, isocyanurates and burettes.
  • the above organic isocyanates and polyisocyanate compounds may be used alone or in combination of two or more.
  • the oxygen-absorbing adhesive resin of the present invention may be used alone or in combination of two or more.
  • the oxygen-absorbing adhesive resin of the present invention is used as a two-part curable oxygen-absorbing resin composition together with a curing agent.
  • a curing agent a compound capable of reacting with a functional group such as a carboxyl group or a hydroxy group of the oxygen-absorbing polyester to cure the resin can be preferably used. Examples include isocyanate, epoxy, melamine, amine, carbodiimide, oxazoline, aziridine, organic titanium, and organic silane.
  • the cohesive force is improved by the crosslinking reaction, which is preferable.
  • these may be used independently and may be used in combination of 2 or more types of hardening
  • the adhesive strength and the cohesive force are increased, and curing is possible at a low temperature around room temperature, which is particularly preferable.
  • the isocyanate curing agent the organic diisocyanates and polyisocyanate compounds described above as chain extenders can be suitably used.
  • aliphatic diisocyanates such as hexamethylene diisocyanate and xylylene diisocyanate
  • alicyclic diisocyanates such as isophorone diisocyanate
  • trifunctional or higher polyisocyanates such as adducts such as trimethylolpropane, isocyanurates, and burettes. The case where it uses as a compound is preferable.
  • Epoxy curing agents include polypropylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, neopentyl glycol diglycidyl ether, sorbitol polyglycidyl ether, sorbitan polyglycidyl ether, polyglycerol Examples thereof include polyglycidyl ether, pentaerythritol polyglycidyl ether, 1,6-hexanediol diglycidyl ether, 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, and the like.
  • the valence of titanium is not limited, but tetraalkoxy titanium having tetravalent titanium and derivatives thereof are particularly preferable.
  • the organic titanium curing agent include titanium tetramethoxide, titanium tetraethoxide, titanium tetraisopropoxide, titanium tetra-n-butoxide, titanium tetra-2-ethylhexoxide, titanium tetrastearoxide, chlorotrimethyl
  • titanium alkoxides such as methoxy titanium, chlorotriethoxy titanium, ethyl trimethoxy titanium, methyl triethoxy titanium, ethyl triethoxy titanium, diethyl diethoxy titanium, phenyl trimethoxy titanium, phenyl triethoxy titanium, and polymers thereof.
  • Titanium alkoxide derivatives titanium diisopropoxybis (acetylacetonate), titanium tetraacetylacetonate, titanium diisopropoxybis (octylene glycolate), titanium dioctyloxybis (octile) Glycolate), titanium diisopropoxy bis (ethyl acetate), titanium diisopropoxy bis (triethanolamate), titanium di-n-butoxy bis (triethanolamate), titanium lactate, titanium dihydroxybislactate, etc.
  • Chelates and derivatives thereof hydroxytitarate stearate, tri-n-butoxytitanium stearate, isopropoxytitanium tristearate and other acylate titaniums and derivatives thereof such as polymers thereof are not limited to these examples .
  • titanium alkoxides and derivatives thereof, or titanium chelates are particularly preferable, and titanium tetra-n-butoxide polymers having a polymerization degree of 4 to 10 and titanium diisopropoxybis (acetylacetate) are more preferable. Nate).
  • the oxygen-absorbing adhesive resin of the present invention can be dissolved in a solvent such as an organic solvent and used as an oxygen-absorbing adhesive resin composition.
  • a solvent such as an organic solvent
  • the solvent include ethyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, isopropanol, and the like.
  • ethyl acetate is a common solvent for soft packaging dry laminate adhesives because it has relatively few off-flavors caused by residual solvents.
  • One solvent is preferably used as the solvent of the present invention.
  • a silane coupling agent an antioxidant, an ultraviolet absorber, a hydrolysis inhibitor, a fungicide, Various additives such as a curing catalyst, a thickener, a plasticizer, a pigment, a filler, a polyester resin, and an epoxy resin can be added.
  • the two-component curable oxygen-absorbing resin composition of the present invention can be used for the purpose of laminating a plurality of films in the same manner as an ordinary dry laminate adhesive.
  • it can be suitably used for laminating a film substrate having oxygen barrier properties and a sealant film having heat sealability and oxygen gas permeability.
  • the oxygen barrier base material layer / two-component curable oxygen-absorbing resin composition layer / sealant layer is laminated from the outer layer side, and the two-component curing is achieved by blocking oxygen that permeates from the outside with the oxygen barrier substrate.
  • the oxygen absorption performance of the oxygen-absorbing resin composition can be prevented from being deteriorated by oxygen outside the container, and the two-component curable oxygen-absorbing resin composition can quickly absorb oxygen inside the container through the oxygen-permeable sealant film.
  • Each of the film base material and the sealant film having oxygen barrier properties may be a single layer or a laminate.
  • a film substrate having oxygen barrier properties a metal oxide such as silica or alumina or a deposited thin film of metal, a polyvinyl alcohol resin, an ethylene-vinyl alcohol copolymer, a polyacrylic acid resin, or vinylidene chloride is used as a barrier layer.
  • a biaxially stretched PET film, a biaxially stretched polyamide film, a biaxially stretched polypropylene film or the like having a barrier coating layer mainly composed of a gas barrier organic material such as a resin can be suitably used.
  • metal foils such as ethylene-vinyl alcohol copolymer films, polymetaxylylene adipamide films, polyvinylidene chloride films and aluminum foils.
  • film base materials having oxygen barrier properties can be used by laminating the same kind of base material or two or more different kinds of base materials, and also biaxially stretched PET film, biaxially stretched polyamide film, biaxially stretched polypropylene. It is also preferable to use a film, cellophane, paper or the like laminated.
  • the material of the sealant film is low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, cyclic Polyolefins such as olefin polymers, cyclic olefin copolymers, or random or block copolymers of ⁇ -olefins such as ethylene, propylene, 1-butene and 4-methyl-1-pentene, ethylene-vinyl acetate copolymers , Ethylene- (meth) acrylic acid copolymers and their ionic cross-linked products (ionomers), ethylene-vinyl compound copolymers such as ethylene-methyl methacrylate copolymers, heat-sealable PET, A-PET, PETG PBT and other polyesters and amorphous nylon are preferred It can be used for. These can be used by blending two or more kinds of materials, or can be used by
  • a known dry laminator When laminating a plurality of film substrates using the two-component curable oxygen-absorbing resin composition of the present invention, a known dry laminator can be used.
  • a series of laminates consisting of applying a two-part curable oxygen-absorbing resin composition to a barrier film substrate with a dry laminator, evaporating the solvent with a drying oven, and bonding with a sealant film with a nip roll heated to 50-120 ° C The process can be carried out.
  • the coating amount of the two-component curable oxygen-absorbing resin composition is 0.1 to 30 g / m 2 , preferably 1 to 15 g / m 2 , and more preferably 2 to 10 g / m 2 .
  • the oxygen-absorbing laminated film laminated using the two-component curable oxygen-absorbing resin composition is also preferably aged to advance the curing reaction at a temperature near room temperature, for example, 10 to 60 ° C. Curing is preferable due to crystallization of a resin for oxygen-absorbing adhesives or a crosslinking reaction with a curing agent such as organic diisocyanate, and the adhesive strength and cohesive force are improved by curing.
  • a curing agent such as organic diisocyanate
  • the oxygen-absorbing adhesive resin of the present invention can also be used as a solventless adhesive without being dissolved in a solvent.
  • an oxygen-absorbing laminated film can be obtained using a known non-sol laminator.
  • the oxygen-absorbing adhesive resin of the present invention can be used not only for adhesive applications but also for paint applications, and can be applied as a coating film for various films.
  • the oxygen-absorbing laminated film laminated using the oxygen-absorbing adhesive resin of the present invention can be suitably used for various forms of bag-like containers and cup / tray container lids.
  • the bag-like container include three-way or four-side sealed flat pouches, gusseted pouches, standing pouches, pillow packaging bags, and the like.
  • An oxygen-absorbing container using at least a part of the oxygen-absorbing laminated film effectively blocks oxygen permeating from the outside of the container and absorbs oxygen remaining in the container. Therefore, it is useful as a container that keeps the oxygen concentration in the container at a low level for a long period of time, prevents the quality deterioration related to the oxygen in the contents, and improves the shelf life.
  • content that easily deteriorates in the presence of oxygen for example, coffee beans, tea leaves, snacks, rice confectionery, raw and semi-fresh confectionery, fruits, nuts, vegetables, fish and meat products, kneaded products, dried fish, smoked products, Boiled rice, raw rice, cooked rice, infant food, jam, mayonnaise, ketchup, cooking oil, dressing, sauces, dairy products, beverages such as beer, wine, fruit juice, green tea, coffee, etc., pharmaceuticals, cosmetics, electronics Although parts etc. are mentioned, it is not limited to these examples.
  • composition ratio of the acid component in the resin was calculated from the area ratio.
  • the solvent used was deuterated chloroform containing tetramethylsilane as a reference substance. At this time, the composition ratio of the acid component in the resin was substantially equal to the charged amount (molar ratio) of each monomer used for the polymerization.
  • Example 1 Into a 3 L separable flask equipped with a stirrer, a nitrogen introduction tube, and a Dean-Stark type water separator, 45 mol% of 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride as an acid component (A) and cis-3- 399 g of a methyltetrahydrophthalic anhydride isomer mixture (Hitachi Chemical Co., Ltd .; HN-2200) containing 21 mol% of methyl- ⁇ 4 -tetrahydrophthalic anhydride, and terephthalic acid (manufactured by Wako Pure Chemical Industries, Ltd.) as the acid component (B) ), 30 g of succinic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) as the other acid component, 379 g of 1,4-butanediol (manufactured by Wako Pure Chemical Industries, Ltd.) as the diol component, and isopropyl titanate (
  • curing agent A manufactured by Toyo Morton Co., Ltd .; CAT-RT1, alicyclic isocyanate-based curing agent, solid content concentration 70%
  • 10 phr parts per hundred resin
  • an oxygen-absorbing adhesive solution was applied to the aluminum foil surface of a biaxially stretched PET film (film thickness 12 ⁇ m) / aluminum foil (film thickness 7 ⁇ m) laminated film prepared by a dry laminating method using a # 18 bar coater.
  • Example 2 The curing agent A was mixed with the basic solution A by 20 phr in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution. An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Curing agent B (manufactured by Mitsui Chemicals; A-50, alicyclic / aliphatic mixed isocyanate curing agent, solid content concentration 75%) is mixed with 10 phr in terms of solid content and shaken with respect to basic solution A.
  • An oxygen-absorbing adhesive solution was prepared.
  • An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 4 399 g of methyltetrahydrophthalic anhydride isomer mixture (manufactured by Hitachi Chemical Co., Ltd .; HN-2200) as the acid component (A), 25 g of terephthalic acid (manufactured by Wako Pure Chemical Industries) as the acid component (B), and other acid components 45 g of succinic anhydride (Wako Pure Chemical Industries), 379 g of 1,4-butanediol (manufactured by Wako Pure Chemical Industries) as a diol component, 300 ppm of isopropyl titanate (manufactured by Kishida Chemical Co., Ltd.) as a polymerization catalyst, and 20 ml of toluene are used.
  • Example 2 Polymerization was carried out for about 3 hours in the same manner as in Example 1 except that an oxygen-absorbing adhesive resin was obtained. At this time, Mn was about 4600, Mw was 56900, and Tg was ⁇ 5.3 ° C.
  • the obtained oxygen-absorbing adhesive resin was dissolved in ethyl acetate at a concentration of 20 wt% (hereinafter, this solution is referred to as a basic solution B).
  • the basic solution B was mixed with 10 phr of the curing agent A in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution.
  • An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 5 With respect to the basic solution B, the curing agent A was mixed and shaken by 20 phr in terms of solid content to prepare an oxygen-absorbing adhesive solution. An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 6 The basic solution B was mixed with 10 phr of the hardener B in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution. An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 7 399 g of methyltetrahydrophthalic anhydride isomer mixture (manufactured by Hitachi Chemical Co., Ltd .; HN-2200) as the acid component (A), 60 g of succinic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) as the other acid component, 1, Polymerization was carried out for about 3 hours in the same manner as in Example 1 except that 379 g of 4-butanediol (Wako Pure Chemical Industries, Ltd.), 300 ppm of isopropyl titanate (Kishida Chemical Co., Ltd.) and 20 ml of toluene were used as the polymerization catalyst. An oxygen-absorbing adhesive resin was obtained.
  • the obtained oxygen-absorbing adhesive resin was dissolved in ethyl acetate at a concentration of 20 wt% (hereinafter, this solution is referred to as a basic solution C).
  • the basic solution C was mixed with 10 phr of the curing agent A in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution.
  • An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 8 The basic solution C was mixed with 20 phr of the curing agent A in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution. An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 9 The basic solution C was mixed with 10 phr of the curing agent B in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution.
  • An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 10 399 g of methyltetrahydrophthalic anhydride isomer mixture (manufactured by Hitachi Chemical Co., Ltd .; HN-2200) as the acid component (A), 50 g of isophthalic acid (manufactured by Wako Pure Chemical Industries, Ltd.) as the acid component (B), and other acid components 30 g of succinic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.), 379 g of 1,4-butanediol (manufactured by Wako Pure Chemical Industries, Ltd.) as a diol component, 300 ppm of isopropyl titanate (manufactured by Kishida Chemical Co., Ltd.) as a polymerization catalyst, and 20 ml of toluene Polymerization was carried out for about 3 hours in the same manner as in Example 1 except that was used to obtain an oxygen-absorbing adhesive resin.
  • succinic anhydride manufactured by Wako Pure Chemical Industries, Ltd
  • the obtained oxygen-absorbing adhesive resin was dissolved in ethyl acetate at a concentration of 20 wt% (hereinafter, this solution is referred to as a basic solution D).
  • the basic solution D was mixed with 10 phr of the curing agent A in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution.
  • An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 11 399 g of methyltetrahydrophthalic anhydride isomer mixture (manufactured by Hitachi Chemical Co., Ltd .; HN-2200) as the acid component (A), 50 g of terephthalic acid (manufactured by Wako Pure Chemical Industries) as the acid component (B), and other acid components 44 g of adipic acid (manufactured by Wako Pure Chemical Industries, Ltd.), 379 g of 1,4-butanediol (manufactured by Wako Pure Chemical Industries, Ltd.) as a diol component, 300 ppm of isopropyl titanate (manufactured by Kishida Chemical Co., Ltd.) as a polymerization catalyst, and 20 ml of toluene Polymerization was carried out for about 3 hours in the same manner as in Example 1 except that it was used to obtain an oxygen-absorbing adhesive resin.
  • the obtained oxygen-absorbing adhesive resin was dissolved in ethyl acetate at a concentration of 20 wt% (hereinafter, this solution is referred to as a basic solution E).
  • the basic solution E was mixed with 10 phr of the curing agent A in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution.
  • An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 12 449 g of methyltetrahydrophthalic anhydride isomer mixture (manufactured by Hitachi Chemical Co., Ltd .; HN-2200) as the acid component (A), 25 g of terephthalic acid (manufactured by Wako Pure Chemical Industries) as the acid component (B), and other acid components 15 g of succinic anhydride (manufactured by Wako Pure Chemical Industries), 379 g of 1,4-butanediol (manufactured by Wako Pure Chemical Industries) as a diol component, 300 ppm of isopropyl titanate (manufactured by Kishida Chemical Co., Ltd.) as a polymerization catalyst, and 20 ml of toluene Polymerization was carried out for about 3 hours in the same manner as in Example 1 except that was used to obtain an oxygen-absorbing adhesive resin.
  • the obtained oxygen-absorbing adhesive resin was dissolved in ethyl acetate at a concentration of 20 wt% (hereinafter, this solution is referred to as a basic solution F).
  • the basic solution F was mixed with 10 phr of the curing agent A in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution.
  • An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 13 449 g of methyltetrahydrophthalic anhydride isomer mixture (manufactured by Hitachi Chemical Co., Ltd .; HN-2200) as acid component (A), 30 g of succinic anhydride (manufactured by Wako Pure Chemical Industries) as other acid component, 1, Polymerization was carried out for about 3 hours in the same manner as in Example 1 except that 351 g of 4-butanediol (Wako Pure Chemical Industries, Ltd.), isopropyl titanate (Kishida Chemical Co., Ltd.) 300 ppm, and toluene 20 ml were used as the polymerization catalyst. An oxygen-absorbing adhesive resin was obtained.
  • the obtained oxygen-absorbing adhesive resin was dissolved in ethyl acetate at a concentration of 20 wt% (hereinafter, this solution is referred to as a basic solution G).
  • the basic solution G was mixed with 10 phr of a curing agent A in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution.
  • an oxygen-absorbing film was produced in the same manner as in Example 1, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 14 The basic solution G was mixed with 10 phr of the curing agent B in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution. An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 15 449 g of methyltetrahydrophthalic anhydride isomer mixture (Hitachi Chemical Co., Ltd .; HN-2200) as the acid component (A), 50 g of terephthalic acid (Wako Pure Chemical Industries) as the acid component (B), 1, Polymerization was carried out for about 2 hours in the same manner as in Example 1 except that 379 g of 4-butanediol (manufactured by Wako Pure Chemical Industries, Ltd.), 300 ppm of isopropyl titanate (manufactured by Kishida Chemical Co., Ltd.) and 20 ml of toluene were used. An oxygen-absorbing adhesive resin was obtained.
  • the obtained oxygen-absorbing adhesive resin was dissolved in ethyl acetate at a concentration of 20 wt% (hereinafter, this solution is referred to as a basic solution H).
  • the basic solution H was mixed with 10 phr of the curing agent A in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution.
  • An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 16 349 g of methyltetrahydrophthalic anhydride isomer mixture (Hitachi Chemical; HN-2200) as the acid component (A), 75 g of terephthalic acid (Wako Pure Chemical Industries) as the acid component (B), and succinic anhydride ( Example 1 except that 45 g of Wako Pure Chemical Industries, Ltd.), 379 g of 1,4-butanediol (Wako Pure Chemical Industries) as the diol component, 300 ppm of isopropyl titanate (Kishida Chemical) and 20 ml of toluene were used as the polymerization catalyst. Polymerization was conducted for about 2 hours to obtain an oxygen-absorbing adhesive resin.
  • the obtained oxygen-absorbing adhesive resin was dissolved in ethyl acetate at a concentration of 20 wt% (hereinafter, this solution is referred to as a basic solution J).
  • the basic solution J was mixed with 10 phr of the curing agent A in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution.
  • An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • the obtained oxygen-absorbing adhesive resin was dissolved in ethyl acetate at a concentration of 20 wt% (hereinafter, this solution is referred to as a basic solution K).
  • this solution K an oxygen-absorbing film was prepared in the same manner as in Example 1 except that no curing agent was added, and subjected to each evaluation after storage. The results are shown in Table 1.
  • the obtained oxygen-absorbing adhesive resin was dissolved in ethyl acetate at a concentration of 20 wt% (hereinafter, this solution is referred to as a basic solution L).
  • this solution L an oxygen-absorbing film was prepared in the same manner as in Example 1 except that no curing agent was added, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 3 An oxygen-absorbing film was produced in the same manner as in Example 1 except that no curing agent was added to the basic solution H produced in Example 15, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 4 An oxygen-absorbing film was prepared in the same manner as in Example 1 except that the curing agent was not added to the basic solution A prepared in Example 1, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 5 An oxygen-absorbing film was prepared in the same manner as in Example 1 except that no curing agent was added to the basic solution B prepared in Example 4, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 6 An oxygen-absorbing film was produced in the same manner as in Example 1 except that no curing agent was added to the basic solution C produced in Example 7, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Example 7 An oxygen-absorbing film was produced in the same manner as in Example 1 except that no curing agent was added to the basic solution G produced in Example 13, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Comparative Example 8 The basic solution K produced in Comparative Example 1 was mixed with 10 phr of the curing agent A in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution. An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Comparative Example 9 With respect to the basic solution K produced in Comparative Example 1, the curing agent B was mixed and shaken by 10 phr in terms of solid content to prepare an oxygen-absorbing adhesive solution. An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • Comparative Example 10 The basic solution L produced in Comparative Example 2 was mixed with 10 phr of the curing agent A in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution. An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • the obtained oxygen-absorbing adhesive resin was dissolved in ethyl acetate at a concentration of 20 wt% (hereinafter, this solution is referred to as a basic solution M).
  • the basic solution M was mixed with 10 phr of the curing agent A in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution.
  • An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • a resin for absorbent adhesive was obtained. At this time, Mn was about 3700, Mw was 27000, and Tg was ⁇ 25.1 ° C.
  • the obtained oxygen-absorbing adhesive resin was dissolved in ethyl acetate at a concentration of 20 wt% (hereinafter, this solution is referred to as a basic solution N).
  • the basic solution N was mixed with 10 phr of the curing agent B in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution.
  • An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • An oxygen-absorbing adhesive resin was obtained. At this time, Mn was about 6000, Mw was 67000, and Tg was ⁇ 23.6 ° C.
  • the obtained oxygen-absorbing adhesive resin was dissolved in ethyl acetate at a concentration of 20 wt% (hereinafter, this solution is referred to as a basic solution O).
  • the basic solution O was mixed with 10 phr of the curing agent B in terms of solid content and shaken to prepare an oxygen-absorbing adhesive solution.
  • An oxygen-absorbing film was produced in the same manner as in Example 1 using the prepared adhesive solution, and subjected to each evaluation after storage. The results are shown in Table 1.
  • the oxygen-absorbing adhesive containing the oxygen-absorbing adhesive resin and the curing agent of the present invention as an alternative to the conventional dry-laminating adhesive, it is possible to simplify the soft packaging material having excellent deoxygenation performance. Can be manufactured. With this oxygen-absorbing soft packaging material, it is possible to maintain the quality of foods, medicines, electronic parts and the like that are sensitive to oxygen for a long period of time.

Abstract

 本発明は酸素吸収性と接着性及び凝集力を兼ね備えた2液硬化型酸素吸収性樹脂組成物を提供することを目的とする。 本発明は、酸成分(A)及び酸成分(B)に由来する構造単位を含むポリエステルであって、酸成分(A)の全酸成分に対する割合が70~95モル%であり、酸成分(B)の全酸成分に対する割合が0~15モル%であり、前記ポリエステルのガラス転移温度が-20℃~2℃であり、かつ、硬化剤で硬化して用いる酸素吸収性接着剤用樹脂: 酸成分(A):テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体、及び 酸成分(B):フタル酸類 を提供する。

Description

酸素吸収性接着剤用樹脂及び酸素吸収性接着剤
 本発明は接着性、凝集力及び酸素吸収性に優れた酸素吸収性接着剤用樹脂及び酸素吸収性接着剤に関する。
 内容品保存性能を高めることを目的に、各種のガスバリア性包装材料が提案されている。近年では特に、酸素吸収性能を有する材料を包装容器に適用した酸素吸収性包装容器が注目を集めている。酸素吸収性包装容器を実現する方法の一つとして、酸素吸収性樹脂組成物を塗料や接着剤として塗工する方法が提案されている。
 特許文献1には、ポリオールに酸素吸収性を有する無機酸化物を配合した酸素吸収性接着剤が提案されている。しかしながら、前記酸素吸収性接着剤は、不透明であり、酸素吸収性能が低い、酸素吸収性能の発現に水分が必要であり乾燥雰囲気では使用できないなどの問題があった。また、各種酸素吸収性樹脂を用いた塗料や接着剤が提案されている(例えば、特許文献2及び3)が、酸素吸収性と接着性及び凝集力を兼ね備えた例はない。
特開2006-131699号公報 国際公開第2006/080500号パンフレット 特開2008-7739号公報
 したがって、本発明は酸素吸収性と接着性及び凝集力を兼ね備えた2液硬化型酸素吸収性樹脂組成物を提供することを目的とする。
 本発明は、酸成分(A)及び酸成分(B)に由来する構造単位を含むポリエステルであって、酸成分(A)の全酸成分に対する割合が70~95モル%であり、酸成分(B)の全酸成分に対する割合が0~15モル%であり、前記ポリエステルのガラス転移温度が-20℃~2℃であり、かつ、硬化剤で硬化して用いる酸素吸収性接着剤用樹脂:
酸成分(A):テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体、及び
酸成分(B):フタル酸類
を提供する。
 また、本発明は、前記酸素吸収性接着剤用樹脂からなる主剤と、硬化剤成分とを含む2液硬化型酸素吸収性樹脂組成物を提供する。
 また、本発明は、前記2液硬化型酸素吸収性樹脂組成物からなる酸素吸収性接着剤を提供する。
 また、本発明は、少なくとも酸素バリアフィルム層、前記酸素吸収性接着剤からなる酸素吸収層、シーラントフィルム層から構成される酸素吸収性積層フィルムを提供する。
 本発明の2液硬化型酸素吸収性樹脂組成物を多層包装材料の接着剤として用いることにより、例えば従来のドライラミネート用接着剤の代替として用いることにより、優れた脱酸素性能を有する軟包材を低コストかつ簡単に製造することができる。この酸素吸収性軟包材により、酸素に敏感な食品や医薬品、電子部品等の品質を長期間維持することができる。
 本発明の酸素吸収性接着剤用樹脂は、酸成分(A)及び酸成分(B)に由来する構造単位を含むポリエステルである。
 本発明の酸素吸収性接着剤用樹脂において、酸成分(A)は、テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体である。酸成分(A)は、好ましくはメチルテトラヒドロフタル酸若しくはその誘導体又はメチルテトラヒドロ無水フタル酸若しくはその誘導体である。ここで誘導体には、エステル、酸ハロゲン化物、置換体、オリゴマー等が含まれる。
 また、本発明の酸素吸収性接着剤用樹脂において、酸成分(A)は、好ましくは酸成分(A)が(i)及び(ii)からなる群より選ばれる構造を有する酸成分を50~100モル%、より好ましくは60~100モル%含有する。
(i)下記構造(a)及び(b)の両方の基に結合し、かつ、1個又は2個の水素原子と結合した炭素原子を有し、該炭素原子が脂環構造に含まれているジカルボン酸若しくはジカルボン酸無水物;
   (a)炭素-炭素二重結合基、
   (b)複素原子を含む官能基又は該官能基から誘導される結合基;及び
(ii)不飽和脂環構造内の炭素-炭素二重結合に隣接する炭素原子が電子供与性置換基及び水素原子と結合し、かつ、該炭素原子に隣接する別の炭素原子が複素原子を含む官能基又は該官能基から誘導される結合基と結合しており、該電子供与性置換基と複素原子を含む官能基又は該官能基から誘導される結合基とがシス位に位置しているジカルボン酸若しくはジカルボン酸無水物。
 上述の構造(i)および(ii)は、置換基効果により、特に優れた酸素との反応性を有する分子構造である。上述の構造(i)および(ii)における複素原子を含む官能基又は該官能基から誘導される結合基がテトラヒドロフタル酸およびテトラヒドロ無水フタル酸構造中のジカルボン酸およびジカルボン酸無水物に該当する酸成分は好ましい。
 (i)の構造を有する酸成分として、Δ2-テトラヒドロフタル酸誘導体、Δ3-テトラヒドロフタル酸誘導体、Δ2-テトラヒドロ無水フタル酸誘導体、Δ3-テトラヒドロ無水フタル酸誘導体を挙げることが出来る。好ましくは、Δ3-テトラヒドロフタル酸誘導体若しくはΔ3-テトラヒドロ無水フタル酸誘導体であり、特に好ましくは4-メチル-Δ3-テトラヒドロフタル酸若しくは4-メチル-Δ3-テトラヒドロ無水フタル酸である。
 4-メチル-Δ3-テトラヒドロ無水フタル酸は、例えば、イソプレンを主成分とするナフサのC5留分を無水マレイン酸と反応させた、4-メチル-Δ4-テトラヒドロ無水フタル酸を含む異性体混合物を、構造異性化することにより得ることが出来、工業的に製造されている。
 (ii)の構造を有する酸成分として、特に好ましくはcis-3-メチル-Δ4-テトラヒドロフタル酸若しくはcis-3-メチル-Δ4-テトラヒドロ無水フタル酸である。cis-3-メチル-Δ4-テトラヒドロ無水フタル酸は、例えば、トランス-ピペリレンを主成分とするナフサのC5留分を無水マレイン酸と反応させることにより得ることが出来、工業的に製造されている。
 また、上述の構造(i)および(ii)における複素原子を含む官能基又は該官能基から誘導される結合基がテトラヒドロフタル酸およびテトラヒドロ無水フタル酸構造中のジカルボン酸およびジカルボン酸無水物に該当しない酸成分として、exo-3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸無水物を挙げることが出来る。
 テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体として、多くの化合物を挙げることが出来るが、その中でも前述の(i)の構造を有する酸成分及び(ii)の構造を有する酸成分は、酸素との反応性が非常に高いため、本発明の酸素吸収性接着剤用樹脂の原料として好適に使用できる。これらの(i)の構造を有する酸成分及び(ii)の構造を有する酸成分は単独で使用することも出来るが、2種類以上を組み合わせて使用することも好ましい。前述の(i)の構造として好適な4-メチル-Δ3-テトラヒドロ無水フタル酸と(ii)の構造として好適なcis-3-メチル-Δ4-テトラヒドロ無水フタル酸の混合物は、トランス-ピペリレン及びイソプレンを主成分とするナフサのC5留分を無水マレイン酸と反応させた、cis-3-メチル-Δ4-テトラヒドロ無水フタル酸と4-メチル-Δ4-テトラヒドロ無水フタル酸の混合物を構造異性化することにより、工業品として低コストで容易に得ることが出来る。このように安価な異性体混合物を、本発明の酸素吸収性接着剤用樹脂の原料として使用することは、産業応用を考えると特に好ましい。
 テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体を原料として、本発明の酸素吸収性接着剤用樹脂である酸素吸収性ポリエステルを重合する際、ジカルボン酸およびジカルボン酸無水物はメチルエステル等にエステル化されていてもよい。
 また、テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体を含む原料を重合して得ることができる本発明の酸素吸収性接着剤用樹脂には、酸素吸収反応を促進させるために酸素吸収反応触媒(酸化触媒)を添加しても良い。しかしながら、前述の(i)の構造を有する酸成分及び(ii)の構造を有する酸成分を含む原料を重合して得ることができる本発明の酸素吸収性接着剤用樹脂は酸素との反応性が極めて高いことから、酸素吸収反応触媒の不在下において、実用的な酸素吸収性能を発現することができる。また、本発明の酸素吸収性接着剤用樹脂を用いて接着剤の調製や接着剤を用いた加工をする際に、酸素吸収反応触媒が原因となる過度の樹脂劣化に起因するゲル化等を防止するためにも、触媒量の酸素吸収反応触媒を含まないことが望ましい。ここで、酸素吸収反応触媒としては、マンガン、鉄、コバルト、ニッケル、銅の遷移金属と有機酸からなる遷移金属塩が挙げられる。また、「触媒量の酸素吸収反応触媒を含まない」とは、一般に酸素吸収反応触媒が遷移金属量で10ppm未満であることを意味し、好ましくは1ppm未満である。
 本発明の酸素吸収性接着剤用樹脂において、酸成分(B)はフタル酸類である。酸成分(B)のフタル酸類としては、o-フタル酸、イソフタル酸、テレフタル酸、スルホイソフタル酸、5-スルホイソフタル酸ナトリウム、又はこれらの誘導体等が挙げられる。ここで誘導体には、エステル、酸無水物、酸ハロゲン化物、置換体、オリゴマー等が含まれる。これらの中でも特に、イソフタル酸、テレフタル酸が好ましい。テレフタル酸共重合により、樹脂自身の凝集力が向上して接着剤の接着強度が向上し、デラミネーションが抑制できるため好ましい。また、イソフタル酸共重合により,凝集力を確保しつつ溶剤への溶解性が向上するため好ましい。
 酸成分(A)の全酸成分に対する割合は70~95モル%であり、好ましくは75~95モル%、より好ましくは80~95モル%である。また、酸成分(B)の全酸成分に対する割合は0~15モル%であり、好ましくは0~12.5モル%、より好ましくは0~10モル%である。このような組成比にすることにより、酸素吸収性能および接着性に優れ、かつ有機溶剤への溶解性に優れた酸素吸収性接着剤用樹脂を得ることが出来る。
 本発明の酸素吸収性接着剤用樹脂のガラス転移温度は、十分な酸素吸収性能を得るために、-20℃~2℃(例えば、-20℃~0℃)であり、好ましくは-15℃~2℃の範囲であり、より好ましくは-12℃~2℃の範囲である。ガラス転移温度が上記範囲よりも高い場合は、硬化後の分子鎖の運動性が著しく低下するために酸素吸収性能が低くなり、上記範囲よりも低い場合は、運動性が高すぎて自動酸化反応を開始するために必要なラジカルの不均化や再結合などの失活反応が起こりやすくなり、その結果、特に初期の酸素吸収性能が著しく低下する恐れがあるため、接着剤として本発明の酸素吸収性接着剤用樹脂を適用する場合好ましくない。
 本発明の酸素吸収性接着剤用樹脂は、さらにジオール成分に由来する構造単位を含む。ジオール成分としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、2-フェニルプロパンジオール、2-(4―ヒドロキシフェニル)エチルアルコール、α,α―ジヒドロキシ-1,3-ジイソプロピルベンゼン、o-キシレングリコール、m-キシレングリコール、p-キシレングリコール、α,α―ジヒドロキシ-1,4-ジイソプロピルベンゼン、ヒドロキノン、4,4-ジヒドロキシジフェニル、ナフタレンジオール、又はこれらの誘導体などが挙げられる。好ましくは、脂肪族ジオール、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールであり、さらに好ましくは1,4-ブタンジオールである。1,4-ブタンジオールを用いた場合は、樹脂の酸素吸収性能が高く、更に自動酸化の過程で生じる分解物の量も少ない。これらは、単独、又は、2種類以上を組み合わせて使用できる。
 本発明の酸素吸収性接着剤用樹脂は、さらにフタル酸類以外の芳香族ジカルボン酸、脂肪族ジカルボン酸、脂肪族ヒドロキシカルボン酸、多価アルコール、多価カルボン酸、又はそれらの誘導体等に由来する構造単位を含んでもよい。ここで誘導体には、エステル、酸無水物、酸ハロゲン化物、置換体、オリゴマー等が含まれる。これらの中でも特に、脂肪族ジカルボン酸が好ましい。これらは、単独、又は、2種類以上を組み合わせて使用できる。前記その他の酸成分を共重合させることによって、得られる酸素吸収性接着剤用樹脂のガラス転移温度を容易に制御することができ、酸素吸収性能を向上させることが出来る。さらには、有機溶剤への溶解性を制御することも出来る。また、多価アルコールおよび多価カルボン酸の導入で樹脂の分岐構造を制御することにより、溶媒に溶解した酸素吸収性接着剤組成物の粘度特性を調整できる。
 フタル酸類以外の芳香族ジカルボン酸及びその誘導体としては、2,6-ナフタレンジカルボン酸などのナフタレンジカルボン酸、アントラセンジカルボン酸、又はこれらの誘導体等が挙げられる。
 脂肪族ジカルボン酸及びその誘導体としては、シュウ酸、マロン酸、コハク酸、無水コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、3,3-ジメチルペンタン二酸、又はこれらの誘導体等が挙げられる。これらの中でも、アジピン酸、コハク酸、無水コハク酸が好ましく、特にコハク酸、無水コハク酸が好ましい。
 脂肪族ヒドロキシカルボン酸及びその誘導体としては、グリコール酸、乳酸、ヒドロキシピバリン酸、ヒドロキシカプロン酸、ヒドロキシヘキサン酸、又はこれらの誘導体が挙げられる。
 多価アルコール及びその誘導体としては、1,2,3-プロパントリオール、ソルビトール、1,3,5-ペンタントリオール、1,5,8-ヘプタントリオール、トリメチロールプロパン、ペンタエリスリトール、3,5-ジヒドロキシベンジルアルコール、グリセリン又はこれらの誘導体が挙げられる。
 多価カルボン酸及びその誘導体としては、1,2,3-プロパントリカルボン酸、メソ-ブタン-1,2,3,4-テトラカルボン酸、クエン酸、トリメリット酸、ピロメリット酸、又はこれらの誘導体が挙げられる。
 その他の酸成分に由来する構造単位の全酸成分に対する割合は1~30モル%である場合が好ましく、より好ましくは5~20モル%である。
 また、多価アルコールや多価カルボン酸等の3官能以上の官能基を有する成分を共重合させる場合は全酸成分に対し5mol%以内にすることが好ましい。
 本発明の酸素吸収性接着剤用樹脂は当業者に公知の任意のポリエステルの重縮合方法により得ることが出来る。例えば、界面重縮合、溶液重縮合、溶融重縮合および固相重縮合である。
 本発明の酸素吸収性接着剤用樹脂を合成する場合に、重合触媒は必ずとも必要としないが、例えばチタン系、ゲルマニウム系、アンチモン系、スズ系、アルミニウム系等の通常のポリエステル重合触媒が使用可能である。また、含窒素塩基性化合物、ホウ酸及びホウ酸エステル、有機スルホン酸系化合物等の公知の重合触媒を使用することもできる。
 さらに、重合の際にはリン化合物等の着色防止剤や酸化防止剤等の各種添加剤を添加することもできる。酸化防止剤を添加することにより、重合中やその後の加工中の酸素吸収を抑制できるため、酸素吸収性接着剤用樹脂の性能低下やゲル化を抑えることができる。
 本発明の酸素吸収性接着剤用樹脂の数平均分子量は、好ましくは500~100000であり、より好ましくは1000~20000である。また好ましい重量平均分子量は5000~200000、より好ましくは10000~100000であり、さらに好ましくは20000~90000である。分子量が上記の範囲より低い場合は樹脂の凝集力すなわち耐クリープ性が低下し、高い場合は有機溶剤への溶解性の低下や溶液粘度の上昇による塗工性の低下が生じるため、接着剤として本発明の酸素吸収性接着剤用樹脂を適用する場合好ましくない。上記範囲内の分子量の場合には、凝集力、接着性および有機溶剤への溶解性に優れ、接着剤溶液として好適な粘度特性を有する酸素吸収性接着剤樹脂組成物を得ることが出来る。
 また、有機ジイソシアネート等の鎖延長剤を用いて本発明の酸素吸収性接着剤用樹脂を高分子量化することも出来る。有機ジイソシアネート系鎖延長剤としては、芳香族、脂肪族または脂環族の各種公知のジイソシアネート類を使用することができる。芳香族ジイソシアネート類としては、例えば、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。脂肪族ジイソシアネート類としては、例えば、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、リジンジイソシアネート等が挙げられる。脂環族ジイソシアネート類としては、例えば、シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ダイマー酸のカルボキシル基をイソシアネート基に転化したダイマージイソシアネート等が挙げられる。さらには、これら有機ジイソシアネート類をトリメチロールプロパン等のアダクト体やイソシアヌレート体、ビュレット体等の3官能以上のポリイソシアネート化合物として使用することも出来る。以上の有機イソシアネートおよびポリイソシアネート化合物は単独で用いてもよく、また2種以上を組み合わせて用いてもよい。
 本発明の酸素吸収性接着剤用樹脂は、単独で用いてもよく、また2種以上組み合わせて用いてもよい。
 本発明の酸素吸収性接着剤用樹脂は、硬化剤と共に2液硬化型酸素吸収性樹脂組成物として使用する。硬化剤としては、酸素吸収性ポリエステルのカルボキシル基、ヒドロキシ基等の官能基と反応して樹脂を硬化することができる化合物を好適に使用できる。例えば、イソシアネート系、エポキシ系、メラミン系、アミン系、カルボジイミド系、オキサゾリン系、アジリジン系、有機チタン系、有機シラン系等が挙げられる。このとき、3官能以上の反応性官能基を有する化合物を硬化剤として用いた場合には、架橋反応により凝集力が向上するため好ましい。また、これらは単独で用いてもよく、2種以上の硬化剤を組み合わせて用いてもよい。
 上記の硬化剤の中でも、イソシアネート系硬化剤を用いてウレタン系接着剤とした場合は、接着強度及び凝集力が高くなり、また、室温付近の低温でキュアが可能であることから特に好ましい。イソシアネート系硬化剤としては、鎖延長剤として上に記載した有機ジイソシアネートおよびポリイソシアネート化合物を好適に使用できる。特に、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート等の脂肪族ジイソシアネート類、イソホロンジイソシアネート等の脂環族ジイソシアネート類が好ましく、トリメチロールプロパン等のアダクト体やイソシアヌレート体、ビュレット体等の3官能以上のポリイソシアネート化合物として用いる場合が好ましい。
 エポキシ系硬化剤としては、ポリプロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、1 , 6 - ヘキサンジオールジグリシジルエーテル、3,4-エポキシシクロヘキセニルメチル-3‘,4’-エポキシシクロヘキセンカルボキシレート等が挙げられる。
 有機チタン系硬化剤としては、チタンの原子価は限定されないが、特に4価のチタンを有するテトラアルコキシチタン及びその誘導体が好ましい。有機チタン系硬化剤としては、例えばチタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソプロポキシド、チタンテトラ-n-ブトキシド、チタンテトラ-2-エチルヘキソキシド、チタンテトラステアロキシド、クロロトリメトキシチタン、クロロトリエトキシチタン、エチルトリメトキシチタン、メチルトリエトキシチタン、エチルトリエトキシチタン、ジエチルジエトキシチタン、フェニルトリメトキシチタン、フェニルトリエトキシチタン等のチタンアルコキシド類、及びこれらの重合体等のチタンアルコキシド誘導体、チタンジイソプロポキシビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタンジイソプロポキシビス(オクチレングリコレート)、チタンジオクチロキシビス(オクチレングリコレート)、チタンジイソプロポキシビス(エチルアセテート)、チタンジイソプロポキシビス(トリエタノールアミネート)、チタンジ-n-ブトキシ・ビス(トリエタノールアミネート)、チタンラクテート、チタンジヒドロキシビスラクテート等のチタンキレート類及びその誘導体、ヒドロキシチタンステアレート、トリ-n-ブトキシチタンステアレート、イソプロポキシチタントリステアレート等のアシレートチタン類及びその重合体等の誘導体が挙げられるが、これらの例に限定されない。また、これらの中でも特に好ましくは、チタンアルコキシド及びその誘導体、或いはチタンキレート類であり、さらに好ましくは、重合度が4~10のチタンテトラ-n-ブトキシド重合体及びチタンジイソプロポキシビス(アセチルアセトネート)である。
 本発明の酸素吸収性接着剤用樹脂は、有機溶剤等の溶媒に溶解させて酸素吸収性接着剤樹脂組成物として用いることができる。溶媒としては、酢酸エチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、イソプロパノール、などが挙げられる。特に酢酸エチルは残留溶剤を原因とする異臭トラブルが比較的少ないことから、軟包装のドライラミネート用接着剤の溶媒として一般的であり、産業応用を考慮するとトルエンやキシレン等を含有しない酢酸エチル単一溶剤を本発明の溶媒として用いることが好ましい。
 本発明の2液硬化型酸素吸収性樹脂組成物には本発明の目的を損なわない範囲で必要に応じてシランカップリング剤、酸化防止剤、紫外線吸収剤、加水分解防止剤、防カビ剤、硬化触媒、増粘剤、可塑剤、顔料、充填剤、ポリエステル樹脂、エポキシ樹脂等の各種添加剤を添加することができる。
 本発明の2液硬化型酸素吸収性樹脂組成物は通常のドライラミネート用接着剤と同様に複数のフィルムを積層する目的で使用することが出来る。特に酸素バリア性を有するフィルム基材と、ヒートシール性および酸素ガス透過性を有するシーラントフィルムの積層に好適に使用できる。この場合、外層側から酸素バリア基材層/2液硬化型酸素吸収性樹脂組成物層/シーラント層の積層構成となり、外部から透過進入する酸素を酸素バリア基材により遮断することにより2液硬化型酸素吸収性樹脂組成物の容器外酸素による酸素吸収性能の低下を抑えると共に、2液硬化型酸素吸収性樹脂組成物が酸素透過性シーラントフィルムを介して容器内部の酸素を速やかに吸収できるため好ましい。
 酸素バリア性を有するフィルム基材およびシーラントフィルムはそれぞれ単層でも積層体でもよい。酸素バリア性を有するフィルム基材としては、バリア層としてシリカ、アルミナ等の金属酸化物或いは金属の蒸着薄膜や、ポリビニルアルコール系樹脂、エチレン-ビニルアルコール共重合体、ポリアクリル酸系樹脂或いは塩化ビニリデン系樹脂等のガスバリア性有機材料を主剤とするバリアコーティング層を有する、二軸延伸PETフィルム、二軸延伸ポリアミドフィルム或いは二軸延伸ポリプロピレンフィルム等を好適に使用できる。またエチレン-ビニルアルコール共重合体フィルム、ポリメタキシリレンアジパミドフィルム、ポリ塩化ビニリデン系フィルムやアルミ箔等の金属箔も好ましい。これらの酸素バリア性を有するフィルム基材は同種基材や2種以上の異種基材を積層して使用することも出来、また、二軸延伸PETフィルム、二軸延伸ポリアミドフィルム、二軸延伸ポリプロピレンフィルム、セロファン、紙等を積層して使用することも好ましい。
 シーラントフィルムの材料としては低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、ポリプロピレン、ポリ-1-ブテン、ポリ-4-メチル-1-ペンテン、環状オレフィン重合体、環状オレフィン共重合体、或いはエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィン同士のランダム又はブロック共重合体等のポリオレフィン、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体やそのイオン架橋物(アイオノマー)、エチレン-メタクリル酸メチル共重合体等のエチレン-ビニル化合物共重合体、ヒートシール性を有するPET、A-PET、PETG、PBT等のポリエステルやアモルファスナイロン等を好適に使用できる。これらは二種以上の材料をブレンドして使用することも出来、同種材料や異種材料を積層して用いることも出来る。
 本発明の2液硬化型酸素吸収性樹脂組成物を用いて複数のフィルム基材をラミネートする際、公知のドライラミネーターを使用することが出来る。ドライラミネーターにより、2液硬化型酸素吸収性樹脂組成物のバリアフィルム基材への塗布、乾燥オーブンによる溶剤揮散、50~120℃に加温したニップロールでのシーラントフィルムとの貼り合わせの一連のラミネート工程を実施することが出来る。2液硬化型酸素吸収性樹脂組成物の塗布量は0.1~30g/m2、好ましくは1~15g/m2であり、さらに好ましくは2~10g/m2である。2液硬化型酸素吸収性樹脂組成物を用いてラミネートされた酸素吸収性積層フィルムは、室温付近の温度、例えば10~60℃で硬化反応を進めるためにエージングすることも好ましい。硬化は酸素吸収性接着剤用樹脂の結晶化や有機ジイソシアネート等の硬化剤による架橋反応によるものであり、硬化により接着強度や凝集力が向上するため好ましい。なお、エージングは、酸素吸収性積層フィルムを、例えば酸素不透過性の袋等で密封することにより、酸素不在下若しくは酸素遮断下で行うのが好ましい。このようにすることにより、エージング中の空気中の酸素による酸素吸収性能の低下を抑制することが出来る。
 また、本発明の酸素吸収性接着剤用樹脂は、溶剤に溶解させることなく、無溶剤型接着剤として使用することもできる。この場合、公知のノンソルラミネーターを用いて酸素吸収性積層フィルムを得ることが出来る。
 さらに、本発明の酸素吸収性接着剤用樹脂は、接着剤用途に限らず塗料用途にも使用することができ、各種フィルム等のコーティング膜として塗工することができる。
 本発明の酸素吸収性接着剤用樹脂を用いてラミネートされた酸素吸収性積層フィルムは、種々の形態の袋状容器や、カップ・トレイ容器の蓋材に好適に使用できる。袋状容器としては、三方又は四方シールの平パウチ類、ガセット付パウチ類、スタンディングパウチ類、ピロー包装袋等が挙げられる。
 酸素吸収性積層フィルムを少なくとも一部に用いた酸素吸収性容器は、容器外部から透過する酸素を有効に遮断し、容器内に残存した酸素を吸収する。そのため、容器内の酸素濃度を長期間低いレベルに保ち、内容物の酸素が係わる品質低下を防止し、シェルフライフを向上させる容器として有用である。
 特に、酸素存在下で劣化しやすい内容品として、例えば、食品ではコーヒー豆、茶葉、スナック類、米菓、生・半生菓子、果物、ナッツ、野菜、魚・肉製品、練り製品、干物、薫製、佃煮、生米、米飯類、幼児食品、ジャム、マヨネーズ、ケチャップ、食用油、ドレッシング、ソース類、乳製品等、飲料ではビール、ワイン、フルーツジュース、緑茶、コーヒー等、その他では医薬品、化粧品、電子部品等が挙げられるが、これらの例に限定されない。
 以下、本発明を実施例により具体的に説明する。各値は以下の方法により測定した。
(1)数平均分子量(Mn)及び重量平均分子量(Mw)
 ゲルパーミエーションクロマトグラフィー(GPC、東ソー社製;HLC-8120型GPC)により、ポリスチレン換算で測定した。溶媒にはクロロホルムを使用した。
(2)酸素吸収性接着剤用樹脂中の各モノマー単位の組成比
 核磁気共鳴分光法(1H-NMR、日本電子データム社製;EX270)により、テレフタル酸由来のベンゼン環プロトン(8.1ppm)、イソフタル酸由来のベンゼン環プロトン(8.7ppm)、コハク酸由来のメチレンプロトン(2.6ppm)、アジピン酸由来のメチレンプロトン(2.3ppm)、テレフタル酸及びイソフタル酸から誘導されたエステル基に隣接するメチレンプロトン(4.3~4.4ppm)、メチルテトラヒドロ無水フタル酸、コハク酸、アジピン酸およびセバシン酸から誘導されたエステル基に隣接するメチレンプロトン(4.1~4.2ppm)のシグナルの面積比から樹脂中の酸成分の組成比をそれぞれ算出した。溶媒には基準物質としてテトラメチルシランを含む重クロロホルムを使用した。
 このとき、樹脂中の酸成分の組成比は、重合に使用した各モノマーの仕込み量(モル比)とほぼ同等であった。
(3)ガラス転移温度;Tg
 示差走査熱量測定器(セイコーインスツルメンツ社製DSC6220)を用いて、窒素気流中、昇温速度10℃/分で測定した。
(4)酸素吸収量
 2cm×10cmに切り出した積層フィルム試験片を、内容積85cm3の酸素不透過性のスチール箔積層カップに仕込んでアルミ箔積層フィルム蓋でヒートシール密封し、22℃雰囲気下にて保存した。14日間保存後のカップ内酸素濃度をマイクロガスクロマトグラフ装置(アジレント・テクノロジー社製;M200)にて測定し、フィルム1cm2当たりの酸素吸収量を算出した。7日区で0.015ml/cm2以上、かつ14日区で0.025ml/cm2以上の場合に、酸素吸収性能は、良好(○)であるとした。
(5)耐クリープ性
 40℃雰囲気下において、試験片幅25mm、荷重50gでアルミ箔-LDPE間のT型剥離クリープ試験を行い、2時間後に剥離距離(単位:mm)を測定した。20mm以上を不良(×)、20mm未満を良好(○)とした。
(6)総合評価
 酸素吸収性能及び耐クリープ性がともに○である場合を良好(○)とし、酸素吸収性能及び耐クリープ性のいずれか、又は両方が×である場合を不良(×)とした。
(実施例1)
 攪拌装置、窒素導入管、Dean-Stark型水分離器を備えた3Lのセパラブルフラスコに、酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45モル%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21モル%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を399g、酸成分(B)としてテレフタル酸(和光純薬社製)を50g、その他の酸成分として無水コハク酸(和光純薬社製)を30g、ジオール成分として1,4-ブタンジオール(和光純薬社製)を379g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを仕込み、窒素雰囲気中150℃~200℃で生成する水を除きながら約6時間反応させた。引き続いて反応系よりトルエンを除いた後、0.1kPaの減圧下、200~220℃で約3時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約4400、Mwは57200、Tgは-2.2℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Aとする)。この基本溶液Aに対して、硬化剤A(東洋モートン社製;CAT-RT1、脂環族イソシアネート系硬化剤、固形分濃度70%)を固形分換算で10phr(parts per hundred resin)混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を、ドライラミネート法により作成した二軸延伸PETフィルム(膜厚12μm)/アルミ箔(膜厚7μm)の積層フィルムのアルミ箔面に、#18のバーコーターにて塗布した。ヘアドライヤーの温風にて接着剤に含まれる溶剤を飛ばした後、積層フィルムの接着剤塗布面と、30μmLDPEフィルム(タマポリ製;AJ-3)のコロナ処理面を対向させて70℃の熱ロールに通し、二軸延伸PETフィルム(膜厚12μm)/アルミ箔(膜厚7μm)/酸素吸収性樹脂組成物(接着剤)(膜厚4μm)/LDPEからなる酸素吸収性積層フィルムを得た。
 得られた酸素吸収性積層フィルムを、35℃窒素雰囲気下で5日間保管後、酸素吸収量評価及び耐クリープ性評価に供した。結果を表1に示す。
(実施例2)
 基本溶液Aに対して、硬化剤Aを固形分換算で20phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例3)
 基本溶液Aに対して、硬化剤B(三井化学社製;A-50、脂環族・脂肪族混合イソシアネート系硬化剤、固形分濃度75%)を固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例4)
 酸成分(A)としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を399g、酸成分(B)としてテレフタル酸(和光純薬社製)を25g、その他の酸成分として無水コハク酸(和光純薬)を45g、ジオール成分として1,4-ブタンジオール(和光純薬社製)を379g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に約3時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約4600、Mwは56900、Tgは-5.3℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Bとする)。この基本溶液Bに対して、硬化剤Aを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例5)
 基本溶液Bに対して、硬化剤Aを固形分換算で20phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例6)
 基本溶液Bに対して、硬化剤Bを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例7)
 酸成分(A)としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を399g、その他の酸成分として無水コハク酸(和光純薬社製)を60g、ジオール成分として1,4-ブタンジオール(和光純薬社製)を379g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に約3時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約3800、Mwは57800、Tgは-8.5℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Cとする)。この基本溶液Cに対して、硬化剤Aを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例8)
 基本溶液Cに対して、硬化剤Aを固形分換算で20phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例9)
 基本溶液Cに対して、硬化剤Bを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例10)
 酸成分(A)としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を399g、酸成分(B)としてイソフタル酸(和光純薬社製)を50g、その他の酸成分として無水コハク酸(和光純薬社製)を30g、ジオール成分として1,4-ブタンジオール(和光純薬社製)を379g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に約3時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約4100、Mwは41900、Tgは-2.9℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Dとする)。この基本溶液Dに対して、硬化剤Aを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例11)
 酸成分(A)としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を399g、酸成分(B)としてテレフタル酸(和光純薬社製)を50g、その他の酸成分としてアジピン酸(和光純薬社製)を44g、ジオール成分として1,4-ブタンジオール(和光純薬社製)を379g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に約3時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約4600、Mwは53200、Tgは-6.5℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Eとする)。この基本溶液Eに対して、硬化剤Aを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例12)
 酸成分(A)としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を449g、酸成分(B)としてテレフタル酸(和光純薬社製)を25g、その他の酸成分として無水コハク酸(和光純薬社製)を15g、ジオール成分として1,4-ブタンジオール(和光純薬社製)を379g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に約3時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約4000、Mwは51900、Tgは-1.5℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Fとする)。この基本溶液Fに対して、硬化剤Aを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例13)
 酸成分(A)としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を449g、その他の酸成分として無水コハク酸(和光純薬社製)を30g、ジオール成分として1,4-ブタンジオール(和光純薬社製)を351g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に約3時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約3700、Mwは56800、Tgは-4.2℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Gとする)。この基本溶液Gに対して、硬化剤Aを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様にして酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例14)
 基本溶液Gに対して、硬化剤Bを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例15)
 酸成分(A)としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を449g、酸成分(B)としてテレフタル酸(和光純薬社製)を50g、ジオール成分として1,4-ブタンジオール(和光純薬社製)を379g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に約2時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約3500、Mwは24400、Tgは0.2℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Hとする)。この基本溶液Hに対して、硬化剤Aを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(実施例16)
 酸成分(A)としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成;HN-2200)を349g、酸成分(B)としてテレフタル酸(和光純薬)を75g、その他の酸成分として無水コハク酸(和光純薬)を45g、ジオール成分として1,4-ブタンジオール(和光純薬)を379g、重合触媒としてイソプロピルチタナート(キシダ化学)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に約2時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約4900、Mwは50300、Tgは-3.8℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Jとする)。この基本溶液Jに対して、硬化剤Aを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(比較例1)
 酸成分(A)としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を349g、酸成分(B)としてテレフタル酸(和光純薬社製)を150g、ジオール成分として1,4-ブタンジオール(和光純薬社製)を487g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に約2時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約4800、Mwは47500、Tgは5.7℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Kとする)。この基本溶液Kに対して、硬化剤を添加しなかったこと以外は実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(比較例2)
 酸成分(A)としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を399g、酸成分(B)としてテレフタル酸(和光純薬社製)を100g、ジオール成分として1,4-ブタンジオール(和光純薬社製)を432g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に約2時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約4300、Mwは46000、Tgは3.8℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Lとする)。この基本溶液Lに対して、硬化剤を添加しなかったこと以外は実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(比較例3)
 実施例15で作製した基本溶液Hに対して、硬化剤を添加しなかったこと以外は実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(比較例4)
 実施例1で作製した基本溶液Aに対して、硬化剤を添加しなかったこと以外は実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(比較例5)
 実施例4で作製した基本溶液Bに対して、硬化剤を添加しなかったこと以外は実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(比較例6)
 実施例7で作製した基本溶液Cに対して、硬化剤を添加しなかったこと以外は実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(比較例7)
 実施例13で作製した基本溶液Gに対して、硬化剤を添加しなかったこと以外は実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(比較例8)
 比較例1で作製した基本溶液Kに対して、硬化剤Aを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(比較例9)
 比較例1で作製した基本溶液Kに対して、硬化剤Bを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(比較例10)
 比較例2で作製した基本溶液Lに対して、硬化剤Aを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(比較例11)
 酸成分(A)としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を249g、酸成分(B)としてテレフタル酸(和光純薬社製)を150g、その他の酸成分として無水コハク酸(和光純薬社製)を60g、ジオール成分として1,4-ブタンジオール(和光純薬社製)を459g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に約2時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約5100、Mwは36700、Tgは-3.4℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Mとする)。この基本溶液Mに対して、硬化剤Aを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(比較例12)
 酸成分(A)としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を399g、その他の酸成分としてセバシン酸(和光純薬社製)を121g、ジオール成分として1,4-ブタンジオール(和光純薬社製)を351g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に約4時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約3700、Mwは27000、Tgは-25.1℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Nとする)。この基本溶液Nに対して、硬化剤Bを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
(比較例13)
 酸成分(A)としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を449g、その他の酸成分として無水コハク酸(和光純薬社製)を30g、ジオール成分として1,6-ヘキサンジオール(和光純薬社製)を461g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に約3時間重合を行い、酸素吸収性接着剤用樹脂を得た。このときMnは約6000、Mwは67000、Tgは-23.6℃であった。
 得られた酸素吸収性接着剤用樹脂を酢酸エチルに20wt%の濃度で溶解した(以下、この溶液を基本溶液Oとする)。この基本溶液Oに対して、硬化剤Bを固形分換算で10phr混合、振騰し、酸素吸収性接着剤溶液を調製した。調製した接着剤溶液を用いて実施例1と同様に酸素吸収性フィルムを作製し、保管後に各評価に供した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の酸素吸収性接着剤用樹脂と硬化剤とを配合した酸素吸収性接着剤を、従来のドライラミネート用接着剤の代替として用いることにより、優れた脱酸素性能を有する軟包材を簡単に製造することができる。この酸素吸収性軟包材により、酸素に敏感な食品や医薬品、電子部品等の品質を長期間維持することができる。

Claims (9)

  1.  酸成分(A)及び酸成分(B)に由来する構造単位を含むポリエステルであって、酸成分(A)の全酸成分に対する割合が70~95モル%であり、酸成分(B)の全酸成分に対する割合が0~15モル%であり、前記ポリエステルのガラス転移温度が-20℃~2℃であり、かつ、硬化剤で硬化して用いる酸素吸収性接着剤用樹脂:
    酸成分(A):テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体、及び
    酸成分(B):フタル酸類。
  2.  酸成分(A)がメチルテトラヒドロフタル酸若しくはその誘導体又はメチルテトラヒドロ無水フタル酸若しくはその誘導体である、請求項1に記載の酸素吸収性接着剤用樹脂。
  3.  酸成分(A)が(i)及び(ii)からなる群より選ばれる構造を有する酸成分を50モル%以上含有する、請求項1に記載の酸素吸収性接着剤用樹脂:
    (i)下記構造(a)及び(b)の両方の基に結合し、かつ、1個又は2個の水素原子と結合した炭素原子を有し、該炭素原子が脂環構造に含まれているジカルボン酸若しくはジカルボン酸無水物;
       (a)炭素-炭素二重結合基、
       (b)複素原子を含む官能基又は該官能基から誘導される結合基;及び
    (ii)不飽和脂環構造内の炭素-炭素二重結合に隣接する炭素原子が電子供与性置換基及び水素原子と結合し、かつ、該炭素原子に隣接する別の炭素原子が複素原子を含む官能基又は該官能基から誘導される結合基と結合しており、該電子供与性置換基と複素原子を含む官能基又は該官能基から誘導される結合基とがシス位に位置しているジカルボン酸若しくはジカルボン酸無水物。
  4.  (i)の構造を有する酸成分が4-メチル-Δ3-テトラヒドロフタル酸若しくはその誘導体又は4-メチル-Δ3-テトラヒドロ無水フタル酸若しくはその誘導体であり、(ii)の構造を有する酸成分がcis-3-メチル-Δ4-テトラヒドロフタル酸若しくはその誘導体又はcis-3-メチル-Δ4-テトラヒドロ無水フタル酸若しくはその誘導体である、請求項3に記載の酸素吸収性接着剤用樹脂。
  5.  1,4-ブタンジオールに由来する構造単位をさらに含むポリエステルである、請求項1~4のいずれか1項に記載の酸素吸収性接着剤用樹脂。
  6.  その他の酸成分として、脂肪族ジカルボン酸に由来する構造単位を全酸成分に対して1~30モル%含む、請求項1~5のいずれか1項に記載の酸素吸収性接着剤用樹脂。
  7.  脂肪族ジカルボン酸に由来する構造単位がコハク酸又はアジピン酸である、請求項6に記載の酸素吸収性接着剤用樹脂。
  8.  請求項1~7のいずれか1項に記載の2液硬化型酸素吸収性樹脂組成物からなる酸素吸収性接着剤。
  9.  少なくとも酸素バリアフィルム層、請求項8に記載の酸素吸収性接着剤からなる酸素吸収層、シーラントフィルム層から構成される酸素吸収性積層フィルム。
PCT/JP2011/068555 2010-08-19 2011-08-16 酸素吸収性接着剤用樹脂及び酸素吸収性接着剤 WO2012023555A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11818196.5A EP2607444B1 (en) 2010-08-19 2011-08-16 Resin for oxygen-absorbing adhesive and oxygen-absorbing adhesive
KR1020147035532A KR101796716B1 (ko) 2010-08-19 2011-08-16 산소 흡수성 접착제용 수지 및 산소 흡수성 접착제
KR1020137006675A KR20130042023A (ko) 2010-08-19 2011-08-16 산소 흡수성 접착제용 수지 및 산소 흡수성 접착제
CN201180049930.0A CN103180401B (zh) 2010-08-19 2011-08-16 氧吸收性粘结剂用树脂及氧吸收性粘结剂
US13/816,693 US20130143734A1 (en) 2010-08-19 2011-08-16 Resin for Oxygen-absorbing Adhesive and Oxygen-absorbing Adhesive
JP2012529599A JP5910998B2 (ja) 2010-08-19 2011-08-16 酸素吸収性接着剤用樹脂及び酸素吸収性接着剤
US14/594,579 US9428316B2 (en) 2010-08-19 2015-01-12 Resin for oxygen-absorbing adhesive and oxygen-absorbing adhesive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-184026 2010-08-19
JP2010184026 2010-08-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/816,693 A-371-Of-International US20130143734A1 (en) 2010-08-19 2011-08-16 Resin for Oxygen-absorbing Adhesive and Oxygen-absorbing Adhesive
US14/594,579 Division US9428316B2 (en) 2010-08-19 2015-01-12 Resin for oxygen-absorbing adhesive and oxygen-absorbing adhesive

Publications (1)

Publication Number Publication Date
WO2012023555A1 true WO2012023555A1 (ja) 2012-02-23

Family

ID=45605208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068555 WO2012023555A1 (ja) 2010-08-19 2011-08-16 酸素吸収性接着剤用樹脂及び酸素吸収性接着剤

Country Status (6)

Country Link
US (2) US20130143734A1 (ja)
EP (1) EP2607444B1 (ja)
JP (1) JP5910998B2 (ja)
KR (2) KR101796716B1 (ja)
CN (1) CN103180401B (ja)
WO (1) WO2012023555A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090900A1 (ja) * 2010-12-28 2012-07-05 東洋製罐株式会社 2液硬化型酸素吸収性樹脂組成物及び酸素吸収性接着剤
EP2711174A1 (en) * 2012-09-21 2014-03-26 Toyo Seikan Group Holdings, Ltd. Packaging material and package structure using the same
WO2014112621A1 (ja) * 2013-01-18 2014-07-24 東洋製罐グループホールディングス株式会社 酸素吸収性フィルム及び酸素吸収性接着剤樹脂組成物
JP2014136421A (ja) * 2013-01-18 2014-07-28 Toyo Seikan Kaisha Ltd 酸素吸収性フィルム
JP2014136788A (ja) * 2013-01-18 2014-07-28 Toyo Seikan Kaisha Ltd 酸素吸収性接着剤樹脂組成物
JP2017124628A (ja) * 2017-02-10 2017-07-20 東洋製罐株式会社 酸素吸収性フィルム
JP2018149365A (ja) * 2013-05-17 2018-09-27 ホリスター・インコーポレイテッドHollister Incorporated 生分解性臭気バリアフィルム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101624796B1 (ko) * 2013-10-31 2016-05-26 주식회사 엘지화학 편광판용 폴리비닐알코올계 수지 접착제, 이를 포함하는 편광판 및 화상표시장치
JP6154557B2 (ja) 2013-10-31 2017-06-28 エルジー・ケム・リミテッド 偏光板用ポリビニルアルコール系樹脂接着剤、これを含む偏光板および画像表示装置
KR101624797B1 (ko) * 2013-10-31 2016-05-26 주식회사 엘지화학 편광판용 폴리비닐알코올계 수지 접착제, 이를 포함하는 편광판 및 화상표시장치
JP6745035B2 (ja) * 2016-07-20 2020-08-26 東洋製罐グループホールディングス株式会社 酸素吸収性包装材
US10518243B2 (en) 2016-12-15 2019-12-31 Altria Client Services Llc Portion of an electronic vaping device formed of an oxygen sequestering agent
CN114953688B (zh) * 2022-05-26 2023-09-08 上海紫江彩印包装有限公司 一种针剂包装用复合片材及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617352A (ja) * 1984-06-21 1986-01-14 Hitachi Chem Co Ltd ガラス板用接着剤
JPS62265249A (ja) * 1986-02-20 1987-11-18 ユニオン・カ−バイド・コ−ポレ−シヨン カルボキシルを末端基とするラクトンアクリレ−ト
JPH03259917A (ja) * 1990-03-09 1991-11-20 Mitsubishi Kasei Corp ポリエステルの製造方法
JPH04328155A (ja) * 1991-04-30 1992-11-17 Kansai Paint Co Ltd 親水化処理組成物及び親水化処理方法
JPH07292340A (ja) * 1994-04-27 1995-11-07 Nippon Synthetic Chem Ind Co Ltd:The ボルト固定用固着剤
WO2005105887A1 (ja) * 2004-04-30 2005-11-10 Toyo Seikan Kaisha, Ltd. 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器
JP2006131699A (ja) 2004-11-04 2006-05-25 Toppan Printing Co Ltd 酸素吸収能を有する接着剤組成物およびそれを用いた積層体
WO2006080500A1 (ja) 2005-01-31 2006-08-03 Zeon Corporation 接着剤および発光素子
JP2007302874A (ja) * 2006-04-12 2007-11-22 Toyo Seikan Kaisha Ltd 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器
JP2008007739A (ja) 2005-11-21 2008-01-17 Toyo Seikan Kaisha Ltd 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器
JP2011144281A (ja) * 2010-01-15 2011-07-28 Toyo Seikan Kaisha Ltd 酸素吸収性樹脂及び酸素吸収性接着剤樹脂組成物
JP2011184482A (ja) * 2010-03-04 2011-09-22 Toyo Seikan Kaisha Ltd 2液硬化型酸素吸収性樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101298253B1 (ko) 2005-11-21 2013-08-22 도요세이칸 그룹 홀딩스 가부시키가이샤 산소흡수성 수지, 산소흡수성 수지조성물 및 산소흡수성용기
EP2036936B1 (en) 2006-04-12 2018-06-06 Toyo Seikan Group Holdings, Ltd. Oxygen-absorbing resin, oxygen-absorbing resin compositions and oxygen-absorbing containers
WO2010029977A1 (ja) * 2008-09-10 2010-03-18 東洋製罐株式会社 真空断熱体
EP2404948B1 (en) * 2009-03-06 2016-08-24 Toyo Seikan Kaisha, Ltd. Oxygen-absorbable solvent-soluble resin and oxygen-absorbable adhesive resin composition
US9102853B2 (en) * 2010-12-28 2015-08-11 Toyo Seikan Group Holdings, Ltd. Two-part curable oxygen-absorbable resin composition, and oxygen-absorbable adhesive agent

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617352A (ja) * 1984-06-21 1986-01-14 Hitachi Chem Co Ltd ガラス板用接着剤
JPS62265249A (ja) * 1986-02-20 1987-11-18 ユニオン・カ−バイド・コ−ポレ−シヨン カルボキシルを末端基とするラクトンアクリレ−ト
JPH03259917A (ja) * 1990-03-09 1991-11-20 Mitsubishi Kasei Corp ポリエステルの製造方法
JPH04328155A (ja) * 1991-04-30 1992-11-17 Kansai Paint Co Ltd 親水化処理組成物及び親水化処理方法
JPH07292340A (ja) * 1994-04-27 1995-11-07 Nippon Synthetic Chem Ind Co Ltd:The ボルト固定用固着剤
WO2005105887A1 (ja) * 2004-04-30 2005-11-10 Toyo Seikan Kaisha, Ltd. 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器
JP2006131699A (ja) 2004-11-04 2006-05-25 Toppan Printing Co Ltd 酸素吸収能を有する接着剤組成物およびそれを用いた積層体
WO2006080500A1 (ja) 2005-01-31 2006-08-03 Zeon Corporation 接着剤および発光素子
JP2008007739A (ja) 2005-11-21 2008-01-17 Toyo Seikan Kaisha Ltd 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器
JP2007302874A (ja) * 2006-04-12 2007-11-22 Toyo Seikan Kaisha Ltd 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器
JP2011144281A (ja) * 2010-01-15 2011-07-28 Toyo Seikan Kaisha Ltd 酸素吸収性樹脂及び酸素吸収性接着剤樹脂組成物
JP2011184482A (ja) * 2010-03-04 2011-09-22 Toyo Seikan Kaisha Ltd 2液硬化型酸素吸収性樹脂組成物

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090900A1 (ja) * 2010-12-28 2012-07-05 東洋製罐株式会社 2液硬化型酸素吸収性樹脂組成物及び酸素吸収性接着剤
JP5920591B2 (ja) * 2010-12-28 2016-05-18 東洋製罐株式会社 2液硬化型酸素吸収性樹脂組成物及び酸素吸収性接着剤
US9102853B2 (en) 2010-12-28 2015-08-11 Toyo Seikan Group Holdings, Ltd. Two-part curable oxygen-absorbable resin composition, and oxygen-absorbable adhesive agent
CN103895961A (zh) * 2012-09-21 2014-07-02 东洋制罐集团控股株式会社 包装材料及使用该包装材料的包装结构
US20140083890A1 (en) * 2012-09-21 2014-03-27 Nitto Denko Corporation Packaging material and package structure using the same
KR102191302B1 (ko) * 2012-09-21 2020-12-15 도요세이칸 그룹 홀딩스 가부시키가이샤 포장재 및 그것을 이용해서 이루어지는 포장 구조
KR20140038893A (ko) * 2012-09-21 2014-03-31 도요세이칸 그룹 홀딩스 가부시키가이샤 포장재 및 그것을 이용해서 이루어지는 포장 구조
EP2711174A1 (en) * 2012-09-21 2014-03-26 Toyo Seikan Group Holdings, Ltd. Packaging material and package structure using the same
EP2947128A4 (en) * 2013-01-18 2016-08-10 Toyo Seikan Group Holdings Ltd OXYGEN ABSORBENT FILM AND OXYGEN ABSORBENT RESIN COMPOSITION
JP2014136788A (ja) * 2013-01-18 2014-07-28 Toyo Seikan Kaisha Ltd 酸素吸収性接着剤樹脂組成物
JP2014136421A (ja) * 2013-01-18 2014-07-28 Toyo Seikan Kaisha Ltd 酸素吸収性フィルム
US10774248B2 (en) 2013-01-18 2020-09-15 Toyo Seikan Group Holdings, Ltd. Oxygen-absorbing film and oxygen-absorbing adhesive agent resin composition
WO2014112621A1 (ja) * 2013-01-18 2014-07-24 東洋製罐グループホールディングス株式会社 酸素吸収性フィルム及び酸素吸収性接着剤樹脂組成物
US11939495B2 (en) 2013-01-18 2024-03-26 Toyo Seikan Group Holdings, Ltd. Oxygen-absorbing film
JP2018149365A (ja) * 2013-05-17 2018-09-27 ホリスター・インコーポレイテッドHollister Incorporated 生分解性臭気バリアフィルム
US10583029B2 (en) 2013-05-17 2020-03-10 Hollister Incorporated Biodegradable odor barrier film
US11571326B2 (en) 2013-05-17 2023-02-07 Hollister Incorporated Biodegradable odor barrier film
JP2017124628A (ja) * 2017-02-10 2017-07-20 東洋製罐株式会社 酸素吸収性フィルム

Also Published As

Publication number Publication date
KR101796716B1 (ko) 2017-11-10
JPWO2012023555A1 (ja) 2013-10-28
US20130143734A1 (en) 2013-06-06
KR20130042023A (ko) 2013-04-25
US20150125710A1 (en) 2015-05-07
EP2607444B1 (en) 2019-05-01
JP5910998B2 (ja) 2016-04-27
KR20150003923A (ko) 2015-01-09
US9428316B2 (en) 2016-08-30
CN103180401A (zh) 2013-06-26
EP2607444A1 (en) 2013-06-26
EP2607444A4 (en) 2015-10-14
CN103180401B (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5910998B2 (ja) 酸素吸収性接着剤用樹脂及び酸素吸収性接着剤
JP5920591B2 (ja) 2液硬化型酸素吸収性樹脂組成物及び酸素吸収性接着剤
JP5403272B2 (ja) 2液硬化型酸素吸収性樹脂組成物
KR101312669B1 (ko) 산소 흡수성 용제 가용형 수지 및 산소 흡수성 접착제 수지 조성물
JP5671802B2 (ja) 酸素吸収性樹脂及び酸素吸収性接着剤樹脂組成物
JP7406707B2 (ja) 酸素吸収性積層体又はその製造方法
JP5671816B2 (ja) 酸素吸収性溶剤可溶型樹脂及び酸素吸収性接着剤樹脂組成物
JP6115708B2 (ja) 酸素吸収性フィルム
JP6443823B2 (ja) 酸素吸収性フィルム
JP6075710B2 (ja) 酸素吸収性接着剤樹脂組成物
KR101793354B1 (ko) 산소흡수성 필름 및 산소흡수성 접착제 수지 조성물
JP6090566B2 (ja) 酸素吸収性樹脂組成物及び酸素吸収性接着剤樹脂組成物
JP2019199501A (ja) 酸素吸収性樹脂組成物及びそれを含む酸素吸収性フィルム
JP6024892B2 (ja) 酸素吸収性樹脂組成物及び酸素吸収性接着剤樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13816693

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012529599

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011818196

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137006675

Country of ref document: KR

Kind code of ref document: A