WO2012020763A1 - 硬化性組成物及び透明複合シート - Google Patents

硬化性組成物及び透明複合シート Download PDF

Info

Publication number
WO2012020763A1
WO2012020763A1 PCT/JP2011/068172 JP2011068172W WO2012020763A1 WO 2012020763 A1 WO2012020763 A1 WO 2012020763A1 JP 2011068172 W JP2011068172 W JP 2011068172W WO 2012020763 A1 WO2012020763 A1 WO 2012020763A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
curable composition
acrylate compound
cured product
refractive index
Prior art date
Application number
PCT/JP2011/068172
Other languages
English (en)
French (fr)
Inventor
穣 末▲崎▼
亮 奥井
阿由子 沖
維敏 石丸
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020137003339A priority Critical patent/KR20130096238A/ko
Priority to JP2011538775A priority patent/JP4944277B2/ja
Publication of WO2012020763A1 publication Critical patent/WO2012020763A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators

Definitions

  • the present invention relates to a curable composition that gives a cured product excellent in transparency and heat resistance. Furthermore, the present invention is used, for example, in applications requiring transparency such as a display element substrate, and a cured product obtained by curing the curable composition, and a glass fiber embedded in the cured product.
  • the present invention relates to a transparent composite sheet.
  • Patent Document 1 discloses a plastic substrate obtained by impregnating a glass cloth with a resin composition and drying to obtain a prepreg, and then thermally curing the prepreg while pressing. Yes.
  • an inorganic material layer is often formed as a semiconductor layer or a conductive layer using an inorganic material.
  • the substrate is heated to about 200 to 300.degree. Since the glass substrate has high heat resistance, it can withstand high temperatures of about 200 to 300 ° C.
  • heat resistance in the process of forming the inorganic material layer is a problem. That is, there is a problem that the heat resistance of the conventional plastic substrate as described in Patent Document 1 is lower than that of the glass substrate.
  • the heat resistance mentioned here means that the plastic material is decomposed by heating when the heat resistance is low, and the plastic material is greatly deformed by heating, or the elastic modulus of the plastic material is greatly decreased by heating. It also means to do. Particularly in the use of a plastic substrate, deformation due to heating and a decrease in elastic modulus become a major problem in the process of forming an inorganic material layer. Deformation and a decrease in elastic modulus due to heating of the plastic substrate are noticeable at the boundary of the glass transition temperature of the resin material (curable compound) used for the plastic substrate. For this reason, the glass transition temperature of the resin material constituting the plastic substrate is important for the heat resistance of the plastic substrate.
  • An object of the present invention is to provide a curable composition that gives a cured product that is excellent in transparency and has high heat resistance, and that can provide a cured product that can withstand the process of forming an inorganic material layer at 200 ° C. or higher, and the curable composition. It is to provide a transparent composite sheet using the composition.
  • a limited object of the present invention is a curable composition that gives a cured product that is excellent in transparency and has high heat resistance, and that can provide a cured product that can withstand the process of forming an inorganic material layer at 220 ° C. or higher, and It is to provide a transparent composite sheet using the curable composition.
  • a further limited object of the present invention is to provide a curable composition that gives a cured product excellent in toughness, and a transparent composite sheet using the curable composition.
  • R1 to R6 each represents a hydrogen atom or a methyl group
  • n1 to n3 each represents 1 or 2.
  • R1 to R6 each represent a hydrogen atom or a methyl group, and the sum of n1, n2 and n3 represents 0.5 to 3 on average.
  • the curable composition is preferably a curable composition in which glass fibers are embedded in a cured product after curing.
  • a (meth) acrylate compound having a triazine skeleton represented by the above formula (1) and a triazine skeleton represented by the above formula (2) (meta ) Acrylate compounds.
  • a refractive index adjusting agent is further included.
  • the refractive index adjusting agent has a (meth) acrylate compound having a dicyclopentanyl skeleton, a (meth) acrylate compound having a fluorene skeleton, and a dioxane skeleton.
  • a (meth) acrylate compound or a bismaleimide compound is included.
  • a (meth) acrylate compound having a dicyclopentanyl skeleton, a (meth) acrylate compound having a fluorene skeleton, or a dioxane skeleton is used as the refractive index adjusting agent.
  • the (meth) acrylate compound which has is contained.
  • the (meth) acrylate compound having a dicyclopentanyl skeleton has a dicyclopentanyl skeleton represented by the following formula (3) (meta ) Acrylate compound.
  • the refractive index adjuster is a (meth) acrylate compound having a dicyclopentanyl skeleton represented by the above formula (3).
  • the (meth) acrylate compound having a fluorene skeleton has a (meth) acrylate compound having a fluorene skeleton represented by the following formula (11), the following formula It is a (meth) acrylate compound having a fluorene skeleton represented by (12) or a (meth) acrylate compound having a fluorene skeleton represented by the following formula (13).
  • R11 to R14 each represent a hydrogen atom or a methyl group, and m1 and m2 each represent 1 or 2.
  • R11 and R12 each represent a hydrogen atom or a methyl group.
  • R11 and R12 represent a hydrogen atom or a methyl group, respectively.
  • the refractive index modifier is a (meth) acrylate compound having a fluorene skeleton represented by the above formula (11), represented by the above formula (12). Or a (meth) acrylate compound having a fluorene skeleton represented by the above formula (13).
  • the (meth) acrylate compound having the dioxane skeleton is a (meth) acrylate compound represented by the following formula (21).
  • R11 and R12 represent a hydrogen atom or a methyl group, respectively.
  • the refractive index adjuster is a (meth) acrylate compound having a dioxane skeleton represented by the above formula (21).
  • the bismaleimide compound is a bismaleimide compound represented by the following formula (31).
  • R21 to R24 each represent a hydrogen atom or a methyl group
  • R25 and R26 each represent a hydrogen atom, a methyl group or an ethyl group.
  • the refractive index adjuster is a bismaleimide compound represented by the above formula (31).
  • the cured product after curing has a refractive index at 589 nm of 1.525 or more and 1.535 or less, and the glass transition temperature of the cured product is 200 ° C. That's it.
  • the cured product after curing has a refractive index at 589 nm of 1.557 or more and 1.571 or less, and the glass transition temperature of the cured product is 200 ° C. That's it.
  • the transparent composite sheet which concerns on this invention has the hardened
  • the said glass fiber is T glass or E glass.
  • the glass fiber is preferably T glass and is preferably E glass.
  • the light transmittance at a wavelength of 550 nm is 85% or more.
  • the average linear expansion coefficient at 50 to 200 ° C. is 20 ppm / ° C. or less.
  • the thickness is 25 to 200 ⁇ m.
  • the curable composition of the present invention comprises at least one of a (meth) acrylate compound having a triazine skeleton represented by formula (1) and a (meth) acrylate compound having a triazine skeleton represented by formula (2).
  • the refractive index at 589 nm of the cured product after curing is 1.525 or more and 1.535 or less, or the refractive index at 589 nm of the cured product after curing is 1.557 or more and 1.571 or less. Therefore, a cured product having excellent transparency is provided.
  • cured material after hardening of the curable composition which concerns on this invention is 200 degreeC or more
  • cured material of a curable composition can be made high.
  • the heat resistance of the transparent composite sheet in which the glass fiber is embedded in the cured product of the curable composition can also be increased. Therefore, the curable composition concerning this invention can endure the process of forming the inorganic material layer etc. of 200 degreeC or more.
  • FIG. 1 is a graph showing the relationship between the blending ratio of tris (2-acryloyloxyethyl) isocyanurate, the refractive index nD of the cured product of the curable composition, and the haze value of the transparent composite sheet.
  • the curable composition according to the present invention includes a (meth) acrylate compound having a triazine skeleton represented by the following formula (1) and a (meth) acrylate compound having a triazine skeleton represented by the following formula (2). Including at least one.
  • R1 to R6 each represents a hydrogen atom or a methyl group
  • n1 to n3 each represents 1 or 2.
  • R1 to R6 each represents a hydrogen atom or a methyl group, and the sum of n1, n2 and n3 represents 0.5 to 3 on average.
  • the sum of n1, n2 and n3 is an average, preferably 0.5-2.
  • the refractive index at 589 nm of the cured product after curing of the curable composition according to the present invention is 1.525 or more and 1.535 or less, or 1.557 or more and 1.571 or less.
  • the glass transition temperature of the cured product after curing of the curable composition according to the present invention is 200 ° C. or more when the refractive index is 1.525 or more and 1.535 or less.
  • the glass transition temperature of the cured product after curing of the curable composition according to the present invention is 200 ° C. or higher even when the refractive index is 1.557 or more and 1.571 or less.
  • the cured product after curing preferably has a refractive index at 589 nm of 1.525 or more and 1.535 or less, and the glass transition temperature of the cured product is 200 ° C. or more.
  • the cured product after curing preferably has a refractive index at 589 nm of 1.557 or more and 1.571 or less, and the glass transition temperature of the cured product is 200 ° C. or more.
  • the transparency of the cured product of the curable composition is improved.
  • the haze value of the cured product can be 10% or less, and can be 5% or less. Therefore, a transparent transparent composite sheet can be obtained by using the curable composition according to the present invention.
  • cured material of a curable composition can be made high by employ
  • the heat resistance mentioned here means that the plastic material is decomposed by heating when the heat resistance is low, and the plastic material is greatly deformed by heating, or the elastic modulus of the plastic material is greatly decreased by heating. It also means to do.
  • an inorganic material layer is often formed as a semiconductor layer or a conductive layer using an inorganic material.
  • the substrate is heated to about 180 to 300.degree. Since the heat resistance of the hardened
  • the glass transition temperature of the cured product after curing of the curable composition according to the present invention is 220 ° C. or higher, it can withstand the process of forming an inorganic material layer of 220 ° C. or higher. Even when this cured product is exposed to a high temperature of 220 ° C. or higher, it is difficult to decompose, hardly deform, and the elastic modulus is hardly lowered.
  • the curable composition according to the present invention is preferably a curable composition in which glass fibers are embedded.
  • the curable composition according to the present invention is preferably used for obtaining a transparent composite sheet having a cured product obtained by curing the curable composition and glass fibers embedded in the cured product.
  • the curable composition according to the present invention is preferably a curable composition in which T glass or E glass which is glass fiber is embedded.
  • the curable composition according to the present invention is preferably a curable composition used by embedding T-glass as glass fiber, and is a curable composition used by embedding E-glass as glass fiber.
  • the transparent composite sheet which concerns on this invention has the hardened
  • the transparent composite sheet can be obtained by curing the curable composition by at least one of heating and irradiation with actinic rays.
  • the transparent composite sheet can be obtained, for example, by impregnating glass fiber with a curable composition and then curing the curable composition.
  • the curable composition according to the present invention includes a (meth) acrylate compound having a triazine skeleton represented by the above formula (1) (hereinafter sometimes abbreviated as (meth) acrylate compound (1)) and the above formula ( 2) At least one of (meth) acrylate compounds having a triazine skeleton represented by (2) may be abbreviated as (meth) acrylate compound (2)).
  • the (meth) acrylate compound (1) and the (meth) acrylate compound (2) are curable compounds and polymerizable compounds.
  • “(Meth) acrylate” refers to acrylate and methacrylate.
  • the refractive indexes of the cured products of the (meth) acrylate compound (1) and the (meth) acrylate compound (2) are 1.520 or more and 1.545 or less, respectively. At least one of these (meth) acrylate compounds (1) and (meth) acrylate compounds (2) is appropriately selected and used, and (meth) acrylate compounds (1) and (meth) acrylate compounds as necessary.
  • the refractive index of the cured product of the curable composition is adjusted to 1.525 or more and 1.535 or less by mixing at least one of (2) and an appropriate refractive index adjusting agent, or It is adjusted to 557 or more and 1.571 or less.
  • the refractive index of the cured product can be adjusted to 1.525 or more and 1.535 or less.
  • the refractive index of the cured product is adjusted to 1.525 or more and 1.535 or less also by the combined use of at least one of (meth) acrylate compound (1) and (meth) acrylate compound (2) and a refractive index modifier. Is possible.
  • the combined use of at least one of the (meth) acrylate compound (1) and the (meth) acrylate compound (2) and the refractive index modifier makes the refractive index of the cured product 1.557 or more and 1.571 or less. It is possible to adjust.
  • the glass transition temperature of the cured product of the (meth) acrylate compound (1) is about 250 to 280 ° C.
  • the glass transition temperature of the cured product of the (meth) acrylate compound (2) is about 200 to 250 ° C. Therefore, the use of the (meth) acrylate compound (1) or the (meth) acrylate compound (2) can increase the heat resistance of the cured product of the curable composition, and the glass transition temperature of the cured product is 200 ° C. or higher. It is possible to Furthermore, the glass transition temperature of the cured product can be set to 220 ° C. or higher by using the (meth) acrylate compound (1).
  • cured material which can endure the high temperature process which forms the inorganic material layer in a display element and a solar cell by using (meth) acrylate compound (1) or (meth) acrylate compound (2) is obtained. be able to.
  • the curable composition according to the present invention may contain a refractive index adjusting agent.
  • the curable composition according to the present invention preferably contains a refractive index adjusting agent.
  • the refractive index of the cured product of the curable composition When the refractive index of the cured product of the curable composition is 1.525 or more and 1.535 or less, the refractive index of the cured product of the (meth) acrylate compound (1) may be relatively high. Therefore, by appropriately selecting a component that lowers the refractive index and using it together with the (meth) acrylate compound (1), the refractive index of the cured product of the curable composition is easily set to 1.525 or more and 1.535 or less. It is possible. Further, the refractive index of the cured product of the (meth) acrylate compound (2) may be relatively low.
  • the refractive index of the cured product of the curable composition can be easily set to 1.525 or more and 1.535 or less. It is possible.
  • the refractive index of the cured product of the curable composition is 1.557 or more and 1.571 or less
  • the cured product of the (meth) acrylate compound (1) and the refraction of the (meth) acrylate compound (2) The rate is relatively low. Therefore, the refractive index of the cured product of the curable composition can be adjusted to 1.557 or more and 1.571 or less by appropriately selecting a component for increasing the refractive index and using it together with the (meth) acrylate compound (1). it can.
  • the refractive index adjuster is preferably a refractive index improver.
  • the refractive index adjusting agent examples include (meth) acrylate compounds having a dicyclopentanyl skeleton, (meth) acrylate compounds having a fluorene skeleton, (meth) acrylate compounds having a dioxane skeleton, and bismaleimide compounds.
  • other refractive index adjusting agents may be used.
  • the curable composition according to the present invention includes a (meth) acrylate compound having a dicyclopentanyl skeleton, a (meth) acrylate compound having a fluorene skeleton, a (meth) acrylate compound having a dioxane skeleton, or a bismaleimide compound. preferable.
  • the curable composition according to the present invention may be a (meth) acrylate compound having a dicyclopentanyl skeleton, a (meth) acrylate compound having a fluorene skeleton, a (meth) acrylate compound having a dioxane skeleton, or a bismaleimide compound. preferable.
  • the refractive index adjusting agent may be a (meth) acrylate compound having a dicyclopentanyl skeleton or a (meth) acrylate compound having a fluorene skeleton, and a (meth) acrylate compound or dioxane skeleton having a dicyclopentanyl skeleton.
  • a compound may be sufficient and a bismaleimide compound may be sufficient.
  • a combination of refractive index adjusting agents other than these may be used.
  • the curable composition according to the present invention includes a (meth) acrylate compound having a dicyclopentanyl skeleton, a (meth) acrylate compound having a fluorene skeleton, or a (meth) acrylate compound having a dioxane skeleton.
  • This preferable refractive index adjusting agent is suitably used when the refractive index of the cured product of the curable composition is 1.525 or more and 1.535 or less.
  • the refractive index adjuster is more preferably a (meth) acrylate compound having a dicyclopentanyl skeleton, a (meth) acrylate compound having a fluorene skeleton, or a (meth) acrylate compound having a dioxane skeleton.
  • the refractive index of the cured product of the curable composition can be controlled within a suitable range, and the transparency of the cured product can be further enhanced.
  • the curable composition according to the present invention preferably contains a (meth) acrylate compound or a bismaleimide compound having a fluorene skeleton.
  • This preferable refractive index adjusting agent is suitably used when the refractive index of the cured product of the curable composition is 1.557 or more and 1.571 or less.
  • the curable composition according to the present invention preferably contains a (meth) acrylate compound having a fluorene skeleton, and preferably contains a bismaleimide compound.
  • the (meth) acrylate compound having the dicyclopentanyl skeleton is: A (meth) acrylate compound having a dicyclopentanyl skeleton represented by the formula (3) is particularly preferable.
  • the refractive index adjusting agent has a dicyclopentanyl skeleton (meta ) Acrylate compounds are preferred, and (meth) acrylate compounds having a dicyclopentanyl skeleton represented by the following formula (3) are particularly preferred.
  • R11 and R12 represent a hydrogen atom or a methyl group, respectively.
  • bonded with the dicyclopentadienyl skeleton is not specifically limited.
  • the (meth) acrylate compound having the fluorene skeleton is represented by the following formula (11).
  • An acrylate compound is preferred.
  • the refractive index adjusting agent is a (meth) acrylate having a fluorene skeleton.
  • the compound is a (meth) acrylate compound having a fluorene skeleton represented by the following formula (11), a (meth) acrylate compound having a fluorene skeleton represented by the following formula (12), or the following formula (13) It is preferable that it is a (meth) acrylate compound which has a fluorene skeleton represented by this.
  • R11 to R14 each represent a hydrogen atom or a methyl group, and m1 and m2 each represent 1 or 2.
  • R11 and R12 each represent a hydrogen atom or a methyl group.
  • R11 and R12 represent a hydrogen atom or a methyl group, respectively.
  • the (meth) acrylate compound having a dioxane skeleton is represented by the following formula (21).
  • the refractive index adjusting agent is a (meth) acrylate compound having a dioxane skeleton.
  • a (meth) acrylate compound having a dioxane skeleton represented by the following formula (21) is particularly preferable.
  • R11 and R12 represent a hydrogen atom or a methyl group, respectively.
  • the bismaleimide compound is not particularly limited. Examples of the bismaleimide compound include N, N ′-(1,3-phenylene) bismaleimide, N, N ′-[1,3- (2-methylphenylene)] bismaleimide, N, N ′-[ 1,3- (4-methylphenylene)] bismaleimide, N, N ′-(1,4-phenylene) bismaleimide, bis (4-maleimidophenyl) methane, bis (3-methyl-4-maleimidophenyl) methane 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, bis (4-maleimidophenyl) ether, bis (4-maleimidophenyl) sulfone, bis (4-maleimidophenyl) sulfide Bis (4-maleimidophenyl) ket
  • the bismaleimide compound is represented by the following formula (31). Particularly preferred are compounds. Further, the refractive index of the cured product of the curable composition can be controlled to a more suitable range, and from the viewpoint of further enhancing the transparency of the cured product, the refractive index adjusting agent is preferably a bismaleimide compound, A bismaleimide compound represented by the following formula (31) is particularly preferable.
  • R21 to R24 each represent a hydrogen atom or a methyl group
  • R25 and R26 each represent a hydrogen atom, a methyl group or an ethyl group.
  • the (meth) acrylate compound having the fluorene skeleton and the bismaleimide compound are uniformly compatible with the (meth) acrylate compound (1). Also by this, the hardened
  • the glass transition temperature of the cured product of the (meth) acrylate compound having a fluorene skeleton and the cured product of the bismaleimide compound is relatively high.
  • the glass transition temperature of the cured product of the (meth) acrylate compound having a fluorene skeleton and the cured product of the bismaleimide compound is 250 to 300 ° C. Therefore, by using together the (meth) acrylate compound or bismaleimide compound having a fluorene skeleton with the (meth) acrylate compound (1) or the (meth) acrylate compound (2), the glass transition temperature of the cured product of the curable composition. Can be further increased, and the heat resistance of the cured product can be further increased.
  • the transparent composite sheet according to the present invention is obtained by embedding glass fibers in a curable composition and curing the curable composition.
  • higher transparency is exhibited by bringing the refractive indexes of the cured product of the curable composition and the glass fiber closer to each other.
  • a refractive index difference between a cured product of a curable compound serving as a matrix and a glass fiber embedded in the cured product is 0.005 or less. Is desirable. In reality, it is difficult to completely match the refractive index of the cured product of the curable compound serving as the matrix and the refractive index of the glass fiber over the entire visible light range. In the present invention, light scattering is minimized by appropriately designing the refractive index of the cured product of the curable compound serving as the matrix for the glass fiber.
  • the glass fiber is preferably T glass or E glass.
  • T glass is preferably used as the glass fiber, and E glass is also preferably used.
  • T glass is preferably used as the glass fiber.
  • the refractive index of T glass at 589 nm is around 1.525. By setting the refractive index at 589 nm of the cured product of the curable composition to 1.525 or more and 1.535 or less, light scattering of the transparent composite sheet having the cured product of the curable composition and glass fibers, that is, haze value Can be minimized.
  • the cured product after curing of the curable composition according to the present invention has a refractive index at 589 nm of 1.525 or more and 1.535 or less and the glass transition temperature of the cured product is 200 ° C. or more.
  • the curable composition according to the present invention is preferably a curable composition in which T glass, which is a glass fiber, is embedded.
  • the refractive index at 589 nm of the cured product of the curable composition according to the present invention is preferably 1.527 or more, and preferably 1.533 or less.
  • the refractive index of the cured product is not less than the above lower limit and not more than the above upper limit, the transparency of the transparent composite sheet can be increased, and the haze value of the transparent composite sheet can be further reduced.
  • E glass As the glass fiber, it is preferable to use E glass as the glass fiber.
  • the refractive index at 589 nm of E glass is about 1.560.
  • the curable composition according to the present invention is preferably a curable composition in which E glass, which is a glass fiber, is embedded.
  • the refractive index at 589 nm of the cured product of the curable composition according to the present invention is preferably 1.560 or more, and preferably 1.568 or less.
  • the refractive index of the cured product is not less than the above lower limit and not more than the above upper limit, the transparency of the transparent composite sheet can be increased, and the haze value of the transparent composite sheet can be further reduced.
  • At least one of (meth) acrylate compound (1) and (meth) acrylate compound (2) is appropriately selected and used, or (meth) acrylate compound (1) and ( The refractive index at 589 nm of the cured product of the curable composition is adjusted to 1.525 or more by appropriately adjusting the type and amount of the refractive index adjusting agent used together with at least one of the (meth) acrylate compound (2). , 1.535 or less, or 1.557 or more and 1.571 or less.
  • the curable composition according to the present invention includes a (meth) acrylate compound ((meth) acrylate compound (1)) having a triazine skeleton represented by the above formula (1) and a triazine represented by the above formula (2). And a (meth) acrylate compound having a skeleton ((meth) acrylate compound (2)).
  • the curable composition concerning this invention does not need to contain the refractive index regulator.
  • the curable composition according to the present invention may contain a refractive index adjusting agent.
  • the blending ratio of the (meth) acrylate compound (1), the (meth) acrylate compound (2) and the refractive index adjuster can be arbitrarily set. Further, a total of 100 weights of at least one of the (meth) acrylate compound (1) and (meth) acrylate compound (2) (hereinafter sometimes abbreviated as component (X)) and the refractive index adjusting agent. %, The content of component (X) (the total content when (meth) acrylate compound (1) and (meth) acrylate compound (2) are used in combination) is 30 to 100% by weight, The content of the rate adjusting agent is preferably 0 to 70% by weight.
  • component (X) In 100% by weight of the curable compound in the curable composition according to the present invention, 30 to 100% by weight is preferably component (X).
  • the total amount of the curable compound may be component (X).
  • the content of component (X) is 30 to 70% by weight in a total of 100% by weight of component (X) and refractive index adjuster, and the refractive index It is more preferable that the content of the adjusting agent is 30 to 70% by weight.
  • the content of the component (X) is 40 to 60% by weight in 100% by weight of the curable compound, and the content of the refractive index adjusting agent is 40%. More preferably, it is ⁇ 60% by weight.
  • the component (X) and the refractive index adjusting agent are used.
  • the total content of component (X) is preferably 50 to 90% by weight, and the refractive index modifier content is preferably 10 to 50% by weight.
  • the content of the component (X) is 50 to 90% by weight in 100% by weight of the curable compound, and the content of the refractive index adjusting agent is 10%. It is preferably ⁇ 50% by weight.
  • the above-mentioned “content of refractive index adjusting agent” means “(meth) acrylate compound and bismaleimide compound having a fluorene skeleton” when a (meth) acrylate compound having a fluorene skeleton and a bismaleimide compound are used as the refractive index adjusting agent.
  • the "content of (meth) acrylate compound or bismaleimide compound having a fluorene skeleton” Is shown.
  • the glass transition temperature of the cured product of the curable composition according to the present invention is 200 ° C. or higher so that it can withstand the process of forming an inorganic material layer or the like of 200 ° C. or higher.
  • the substrate may be heated to 200 ° C. or higher, and may be further heated to near 220 ° C. Therefore, the glass transition temperature of the cured product of the curable composition according to the present invention is preferably 220 ° C or higher, more preferably more than 200 ° C, still more preferably 205 ° C or higher, particularly preferably 235 ° C or higher, most preferably. It is 250 ° C or higher.
  • the curable composition according to the present invention preferably contains a polymerization initiator in order to cure the curable compound by polymerization.
  • Examples of the method for curing the curable composition according to the present invention include a method for curing by heating and a method for curing by actinic rays. You may use together hardening by heating, and hardening by actinic light. From the viewpoint of shortening the reaction time and completing the curing reaction, it is preferable to cure the curable composition by heating after curing the curable composition with actinic rays.
  • the active light is preferably ultraviolet light.
  • the light source for irradiating the ultraviolet light include a metal halide lamp and a high-pressure mercury lamp.
  • an oven and a heater are used.
  • the curable composition is cured by heating, it is preferably heated at 150 to 300 ° C. for 1 to 24 hours in a nitrogen atmosphere or in a vacuum state. .
  • the curable composition preferably contains a thermal polymerization initiator.
  • the thermal polymerization initiator is preferably a radical polymerization initiator.
  • the radical polymerization initiator include peroxide radical polymerization initiators, azo radical polymerization initiators, and redox radical polymerization initiators. Thermal polymerization initiators other than these may be used. As for the said thermal-polymerization initiator, only 1 type may be used and 2 or more types may be used together.
  • azo radical polymerization initiator examples include azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobisdimethylvaleronitrile, and the like.
  • Examples of the peroxide radical polymerization initiator include a diacyl radical polymerization initiator, a peroxyester radical polymerization initiator, a dialkyl radical polymerization initiator, a carbonate radical polymerization initiator, and a ketone peroxide radical polymerization start. Agents and the like.
  • Examples of the diacyl radical polymerization initiator include lauroyl peroxide and benzoyl peroxide.
  • Examples of the peroxyester radical polymerization initiator include t-butyl peroxybenzoate, t-butyl peroxyacetate, t-butyl peroxypivalate, and t-butyl peroxy-2-ethylhexanoate. .
  • dialkyl radical polymerization initiator examples include dicumyl peroxide and di-t-butyl peroxide.
  • percarbonate-based radical polymerization initiator examples include diisopropyl peroxydicarbonate.
  • ketone peroxide radical polymerization initiator examples include methyl ethyl ketone peroxide.
  • the redox radical polymerization initiator includes, for example, a peroxide and a reducing agent or a metal-containing compound.
  • Specific examples of the redox radical polymerization initiator include a mixture of benzoyl peroxide and organic amines, a mixture of the peroxyester radical polymerization initiator and a reducing agent such as mercaptans, and methyl ethyl ketone peroxide and organic. Examples thereof include a mixture with a cobalt salt.
  • a peroxide radical polymerization initiator is preferred.
  • the amount of the thermal polymerization initiator used is not particularly limited.
  • the content of the thermal polymerization initiator is preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the curable compound in the curable composition.
  • the curable composition according to the present invention contains at least one of (meth) acrylate compound (1) and (meth) acrylate compound (2), it is effectively polymerized and cured by irradiation with actinic rays. Therefore, in order to cure the curable composition by irradiation with actinic rays, the curable composition preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include a photo radical polymerization initiator and a photo cationic polymerization initiator.
  • the photopolymerization initiator is preferably a radical photopolymerization initiator. As for a photoinitiator, only 1 type may be used and 2 or more types may be used together.
  • the radical photopolymerization initiator is not particularly limited, and examples thereof include benzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, and 2,2-diethoxyacetophenone.
  • Benzoin benzoin methyl ether, benzoin propyl ether, benzoin isobutyl ether, benzyl dimethyl ketal, ⁇ -hydroxyisobutylphenone, thioxanthone, 2-chlorothioxanthone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio ) Phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2,6-dimethylbenzoyldiphenylphosphi Oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, t-butylanthraquinone, 1-chloroanthraquinone, 2,3-dichloroanthraquinone, 3-chloro-2-methylanthraquinone, 2-ethylanthra
  • the photocationic polymerization initiator is not particularly limited, and examples thereof include sulfonium salts, iodonium salts, metallocene compounds, and benzoin tosylate. As for the said photocationic polymerization initiator, only 1 type may be used and 2 or more types may be used together.
  • the content of the photopolymerization initiator is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the curable compound in the curable composition.
  • a curable composition can fully be hardened as content of the said photoinitiator is more than the said minimum.
  • the content of the polymerization initiator is less than or equal to the above upper limit, polymerization does not proceed rapidly, and problems such as increased birefringence, coloring, and cracking during curing are less likely to occur.
  • the content of the photoradical polymerization initiator is preferably 0.01% by weight with respect to 100 parts by weight of the curable compound in the curable composition. Part or more, more preferably 0.1 part by weight or more, preferably 2 parts by weight or less, more preferably 1 part by weight or less.
  • the content of the photocationic polymerization initiator is preferably 1 part by weight or more with respect to 100 parts by weight of the curable compound in the curable composition. , Preferably 10 parts by weight or less, more preferably 5 parts by weight or less.
  • the curable composition includes the (meth) acrylate compound (1), the (meth) acrylate compound (2), the (meth) acrylate compound having a dicyclopentanyl skeleton, the (meth) acrylate compound having a fluorene skeleton, Other curable compounds different from the (meth) acrylate compound having a dioxane skeleton and the bismaleimide compound may be included.
  • the other curable compound may be a thermosetting compound or a photocurable compound.
  • the other curable compound is not particularly limited, and examples thereof include a polyfunctional thiol compound and an epoxy compound.
  • the curable composition preferably contains a polyfunctional thiol compound or an epoxy compound, and more preferably contains a polyfunctional thiol compound.
  • the curable composition further contains a polyfunctional thiol compound or an epoxy compound, the curing rate and the flexibility, toughness and chemical resistance of the cured product can be adjusted or improved.
  • the epoxy compound is preferably a polyfunctional epoxy compound.
  • polyfunctional thiol compound examples include 1,2-ethanedithiol, 1,2-propanedithiol, 1,3-propanedithiol, 1,3-butanedithiol, 1,4-butanedithiol, 2,3-butane.
  • Dithiol 1,5-pentanedithiol, 1,6-hexanedithiol, 1,9-nonanedithiol, 1,8-octanedithiol, 1,10-decanedithiol, 1,4-butanediol bisthiopropionate, , 4-butanediol bisthioglycolate, ethylene glycol bisthioglycolate, ethylene glycol bisthiopropionate, 1,2-benzenedithiol, 1,3-benzenedithiol, 1,4-benzenedithiol, toluene-3, 4-dithiol, 3,6-dichloro-1,2-benzenedithio 1,5-naphthalenedithiol, 1,2-benzenedimethanethiol, 1,3-benzenedimethanethiol, 1,4-benzenedimethanethiol, 4,4′-thiobisbenzenethiol, 2-di N-Butylamino-4,6-d
  • the use of a polyfunctional thiol compound improves the curability of the cured composition and the flexibility and toughness of the cured product.
  • the content of the polyfunctional thiol compound in 100% by weight of the curable compound is preferably 2% by weight or more, preferably 40% by weight or less, more preferably 20% by weight or less.
  • the above-mentioned polyfunctional thiol compound is a trimercaptopropionic acid tris.
  • the thiol group-containing silsesquioxane compound is preferably “Composeran HBSQ series” manufactured by Arakawa Chemical Industries.
  • a conventionally known epoxy resin can be used as the epoxy compound.
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triglycidyl isocyanurate type epoxy resin, and hydantoin type epoxy resin.
  • a bisphenol A type epoxy resin an alicyclic epoxy resin, a triglycidyl isocyanurate type epoxy resin or a dicyclopentadiene type epoxy resin is preferable.
  • the said epoxy compound only 1 type may be used and 2 or more types may be used together.
  • the curable composition according to the present invention may contain a curing agent.
  • the curable composition concerning this invention may contain the epoxy compound and the hardening
  • the curing agent include organic acids, amine compounds, amide compounds, hydrazide compounds, imidazole compounds, imidazoline compounds, phenol compounds, urea compounds, polysulfide compounds, and acid anhydrides.
  • curing agent only 1 type may be used and 2 or more types may be used together.
  • Examples of the organic acid include tetrahydrophthalic acid, methyltetrahydrophthalic acid, hexahydrophthalic acid, and methylhexahydrophthalic acid.
  • Examples of the amine compound include ethylenediamine, propylenediamine, diethylenetriamine, triethylenetetramine, metaphenylenediamine, diaminediphenylmethane, and diaminodiphenylsulfonic acid. These amine adducts may be used as the curing agent.
  • Examples of the amide compound include dicyandiamide and polyamide.
  • Examples of the hydrazide compound include dihydragit.
  • Examples of the imidazole compounds include methylimidazole, 2-ethyl-4-methylimidazole, ethyldiimidazole, isopropylimidazole, 2,4-dimethylimidazole, phenylimidazole, undecylimidazole, heptadecylimidazole, and 2-phenyl-4-methyl. Examples include imidazole.
  • imidazoline compound examples include methyl imidazoline, 2-ethyl-4-methyl imidazoline, ethyl imidazoline, isopropyl imidazoline, 2,4-dimethyl imidazoline, phenyl imidazoline, undecyl imidazoline, heptadecyl imidazoline and 2-phenyl-4-methyl imidazoline. Etc.
  • the curing agent is preferably an acid anhydride.
  • the acid anhydride include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, nadic acid anhydride, glutaric anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic acid Anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl nadic anhydride, dodecenyl succinic anhydride, dichlorosuccinic anhydride, benzophenone tetracarboxylic anhydride and chlorophene Examples include Rendic acid anhydride.
  • the mixing ratio of the epoxy compound and the curing agent is not particularly limited.
  • the acid anhydride equivalent is preferably 0.5 equivalents or more, more preferably 0.7 equivalents or more, preferably 1.5 equivalents or less, more preferably 1.2 equivalents with respect to 1 equivalent of the epoxy group of the epoxy compound. It is as follows. When the equivalent of the acid anhydride is not less than the above lower limit, the transparency of the cured product is further enhanced. The moisture resistance of hardened
  • the curable composition according to the present invention may contain a curing accelerator.
  • the curing accelerator is not particularly limited, and examples thereof include tertiary amines, imidazoles, quaternary ammonium salts, quaternary phosphonium salts, organometallic salts, phosphorus compounds and urea compounds. Of these, tertiary amines, imidazoles or quaternary phosphonium salts are particularly preferred.
  • the said hardening accelerator only 1 type may be used and 2 or more types may be used together.
  • the content of the curing accelerator is preferably 0.05 parts by weight or more, more preferably 0.2 parts by weight or more, preferably 7.0 parts by weight or less, more preferably 100 parts by weight of the epoxy compound. 3.0 parts by weight or less.
  • a curable composition can fully be hardened as content of the said hardening accelerator is more than the said minimum. When the content of the curing accelerator is not more than the above upper limit, the transparency of the cured product is further increased.
  • the curable composition according to the present invention may contain a solvent, if necessary, for the purpose of adjusting the viscosity.
  • the solvent is preferably a solvent that does not react with the components in the curable composition.
  • a volatile solvent is preferred because it needs to be removed by heating in an oven or hot plate and reduced pressure in a vacuum chamber before the curing reaction of the curable composition.
  • the curable composition according to the present invention includes a weathering agent, an antioxidant, a heat stabilizer, an antistatic agent, a whitening agent, a colorant, a conductive agent, a release agent, a surface treatment agent, and a viscosity as necessary. It may contain a regulator or the like.
  • the transparent composite sheet which concerns on this invention has the hardened
  • a transparent composite sheet can be obtained by bridge
  • the glass fiber include chopped strands of glass fiber, woven fabric of glass fiber, and nonwoven fabric of glass fiber.
  • the glass fiber is preferably a glass fiber woven fabric.
  • glass fiber woven fabric examples include, for example, yarn obtained by twisting about 100 to 800 long fibers (filaments) having a circular or elliptical cross section and a longest cross sectional diameter of about 3 to 10 ⁇ m. And obtained by weaving these yarns so as to cross each other.
  • the weaving method include plain weave, twill weave and satin weave.
  • the thickness of the glass fiber is the thickest part and is usually 10 to 500 ⁇ m.
  • the thickness of the glass fiber is the thickest part and is preferably 15 to 350 ⁇ m.
  • the glass fiber is preferably T glass or E glass.
  • the glass fiber is preferably T glass.
  • T glass is used as a core material for glass fiber reinforced circuit boards.
  • the T glass has various standard products.
  • T glass since T glass has a small coefficient of thermal expansion, T glass is preferably used from the viewpoint of thermal dimensional stability of the obtained transparent composite sheet.
  • the glass fiber is preferably E glass.
  • E glass is widely used as a core material for glass fiber reinforced circuit boards.
  • the fiber diameter, fiber bundle diameter, basis weight as a glass cloth, weaving density, thickness, and the like the E glass has various standard products.
  • E glass is used suitably from a viewpoint of performance, cost, and availability.
  • the tensile elastic modulus of the glass fiber is preferably 5 GPa or more, more preferably 10 GPa or more, preferably 500 GPa or less, more preferably 200 GPa or less.
  • strength of a transparent composite sheet becomes it high that the said tensile elasticity modulus is more than the said minimum.
  • the thickness of the transparent composite sheet of the present invention is not particularly limited.
  • the thickness of the transparent composite sheet according to the present invention is preferably 20 to 1000 ⁇ m.
  • the thickness of the transparent composite sheet is 20 ⁇ m or more, sufficient strength and rigidity can be maintained as a display device substrate.
  • the thickness of the transparent composite sheet is 1000 ⁇ m or less, volume shrinkage at the time of curing the curable composition becomes small, a phase difference due to residual stress hardly occurs, and a display contrast is hardly lowered.
  • the thickness of the transparent composite sheet is 1000 ⁇ m or less, the transparent composite sheet is difficult to warp, and the thickness of the transparent composite sheet becomes uniform.
  • the thickness of the transparent composite sheet according to the present invention is more preferably 25 ⁇ m or more, and more preferably 200 ⁇ m or less. Even when the thickness of the transparent composite sheet is not less than the above lower limit and not more than the above upper limit, the heat resistance can be sufficiently enhanced.
  • the “thickness” indicates an average thickness.
  • the transparent composite sheet may be cured after being divided into a plurality of sheets and laminated. Furthermore, a sheet laminate may be obtained by repeating sheeting and curing.
  • the light transmittance at 550 nm of the transparent composite sheet according to the present invention is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more. If the light transmittance is 90% or more, for example, when an image display device is obtained using a transparent composite sheet as a liquid crystal display device substrate or an organic EL display device substrate, a clear image with high display quality is obtained. It is done.
  • the light transmittance can be determined by measuring the total light transmittance at a wavelength of 550 nm using a commercially available spectrophotometer.
  • the haze value of the transparent composite sheet according to the present invention is preferably 10% or less, more preferably 5% or less, and particularly preferably 4% or less.
  • the haze value is measured based on JIS K7136.
  • a commercially available haze meter is used as the measuring device. Examples of the measuring apparatus include “Fully Automatic Haze Meter TC-HIIIDPK” manufactured by Tokyo Denshoku Co., Ltd.
  • the average linear expansion coefficient at 50 to 200 ° C. of the transparent composite sheet according to the present invention is preferably 20 ppm / ° C. or less.
  • a surface smoothing layer, a hard coat layer, or a gas barrier layer may be laminated on the transparent composite sheet according to the present invention.
  • the surface smoothing layer or hard coat layer for example, a known surface smoothing agent or hard coat agent is applied onto the transparent composite sheet, and dried to remove the solvent as necessary. . Next, the surface smoothing agent or hard coat agent is cured by heating or irradiation with actinic rays.
  • the method for applying the surface smoothing agent or the hard coating agent on the transparent composite sheet is not particularly limited, and examples thereof include a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, an extrusion method, and a curtain coating. Conventionally known methods such as a method and a spray coating method can be employed.
  • the gas barrier layer is not particularly limited, and for example, a metal such as aluminum, a silicon compound such as SiO 2 and SiN, a transparent material such as magnesium oxide, aluminum oxide, and zinc oxide can be used. Among them, the gas barrier properties, because excellent adhesion and transparency to the substrate layer, it is preferable to use a silicon compound such as SiO 2 and SiN.
  • the method for forming the gas barrier layer is not particularly limited, and examples thereof include dry methods such as vapor deposition and sputtering, and wet methods such as sol-gel. Among these, the sputtering method is particularly preferable from the viewpoint of forming a dense gas barrier layer having excellent gas barrier properties and good adhesion to a substrate.
  • the transparent composite sheet which concerns on this invention is used suitably for the plastic substrate for liquid crystal display elements, the plastic substrate for organic EL display elements, a solar cell substrate, a touch panel, etc.
  • the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited only to the following examples.
  • Example 1 50 parts by weight of tris (2-acryloyloxyethyl) isocyanurate (“A-9300” manufactured by Shin-Nakamura Chemical Co., Ltd.) and tris (2-acryloyloxyethyl) isocyanurate modified with ⁇ -caprolactone (represented by the formula (2)) 2-methyl-1- [4- (methylthio) phenyl as a photopolymerization initiator is added to 50 parts by weight of “A-9300-1CL” manufactured by Shin-Nakamura Chemical Co., Ltd., corresponding to a (meth) acrylate compound having a triazine skeleton.
  • A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd.
  • 2-methyl-1- [4- (methylthio) phenyl as a photopolymerization initiator
  • a glass cloth (manufactured by Nittobo Co., Ltd.) corresponding to IPC # 2013, which is a T glass fiber, was prepared. This glass cloth was immersed in a curable composition heated to 70 ° C., and the glass cloth was impregnated with the curable composition while being irradiated with ultrasonic waves. Then, the glass cloth impregnated with the curable composition was pulled up and placed on the release-treated glass plate.
  • the glass cloth impregnated with the curable composition on the glass plate is covered with a PET film having a thickness of 100 ⁇ m (“Cosmo Shine A4100” manufactured by Toyobo Co., Ltd.) and passed through a laminator whose temperature is adjusted to 50 ° C. The thickness was made uniform.
  • the curable composition is cured by irradiating ultraviolet rays of 2000 mJ / cm 2 (365 nm) with a high pressure mercury lamp from the glass plate side, and the cured sheet is peeled off from the PET film and the glass plate to obtain a transparent composite sheet. Obtained.
  • the thickness of the obtained transparent composite sheet was 80 ⁇ m.
  • Example 2 50 parts by weight of tris (2-acryloyloxyethyl) isocyanurate (“A-9300” manufactured by Shin-Nakamura Chemical Co., Ltd.) and 50 parts by weight of tricyclodecane dimethanol diacrylate (“A-DCP” manufactured by Shin-Nakamura Chemical Co., Ltd.) 0.2 parts by weight of a photopolymerization initiator 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (“Irgacure 907” manufactured by Ciba Japan)
  • the mixture was stirred while being heated to 100 ° C., and mixed and dissolved to prepare a curable composition.
  • a transparent composite sheet was obtained under the same operations and conditions as in Example 1. The thickness of the obtained transparent composite sheet was 80 ⁇ m.
  • Example 3 ⁇ -caprolactone-modified isocyanuric acid tris (2-acryloyloxyethyl) (“A-9300-1CL” manufactured by Shin-Nakamura Chemical Co., Ltd., corresponding to a (meth) acrylate compound having a triazine skeleton represented by formula (2)) 50 50 parts by weight of tricyclodecane dimethanol diacrylate (“A-DCP” manufactured by Shin-Nakamura Chemical Co., Ltd.) and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- 0.2 parts by weight of 1-one (“Irgacure 907” manufactured by Ciba Japan Co., Ltd.) was added and stirred while heating to 100 ° C., and mixed and dissolved to prepare a curable composition. Using the obtained curable composition, a transparent composite sheet was obtained under the same operations and conditions as in Example 1. The thickness of the obtained transparent composite sheet was 80 ⁇ m.
  • Example 4 ⁇ -Caprolactone-modified isocyanuric acid tris (2-acryloyloxyethyl) (“A-9300-1CL” manufactured by Shin-Nakamura Chemical Co., Ltd., corresponding to a (meth) acrylate compound having a triazine skeleton represented by the formula (2)) 100 0.4 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone (“Irgacure 184” manufactured by Ciba Japan Co., Ltd.) is added to parts by weight, and the mixture is stirred and heated to 100 ° C., mixed and dissolved, and cured. A composition was prepared. Using the obtained curable composition, a transparent composite sheet was obtained under the same operations and conditions as in Example 1. The thickness of the obtained transparent composite sheet was 80 ⁇ m.
  • a transparent composite sheet was obtained under the same operations and conditions as in Example 1.
  • the thickness of the obtained transparent composite sheet was 80 ⁇ m.
  • Example 5 To 100 parts by weight of tris (2-acryloyloxyethyl) isocyanurate (“A-9300” manufactured by Shin-Nakamura Chemical Co., Ltd.), 2-methyl-1- [4- (methylthio) phenyl] -2- 0.2 parts by weight of morpholinopropan-1-one (“Irgacure 907” manufactured by Ciba Japan Co., Ltd.) was added, stirred while heating to 100 ° C., and mixed and dissolved to prepare a curable composition. .
  • A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd.
  • 2-methyl-1- [4- (methylthio) phenyl] -2- 0.2 parts by weight of morpholinopropan-1-one (“Irgacure 907” manufactured by Ciba Japan Co., Ltd.) was added, stirred while heating to 100 ° C., and mixed and dissolved to prepare a curable composition.
  • Irgacure 907 manufactured by Ciba Japan
  • Example 6 48.5 parts by weight of tris (2-acryloyloxyethyl) isocyanurate (“A-9300” manufactured by Shin-Nakamura Chemical Co., Ltd.), ⁇ -caprolactone-modified isocyanuric acid tris (2-acryloyloxyethyl) (formula (2)) Corresponding to a (meth) acrylate compound having a triazine skeleton, “A-9300-1CL” manufactured by Shin-Nakamura Chemical Co., Ltd.), 48.5 parts by weight, and 9,9′-bis [4- ( Photopolymerization started in 3 parts by weight of 2-acryloyloxyethoxy) phenyl] fluorene (“A-BPEF” manufactured by Shin-Nakamura Chemical Co., Ltd., corresponding to the (meth) acrylate compound having a fluorene skeleton represented by the formula (11)) 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinoprop
  • Example 7 48 parts by weight of tris (2-acryloyloxyethyl) isocyanurate (“A-9300” manufactured by Shin-Nakamura Chemical Co., Ltd.), tris (2-acryloyloxyethyl) ⁇ -caprolactone-modified isocyanurate (triazine represented by the formula (2)) 48 parts by weight of “A-9300-1CL” manufactured by Shin-Nakamura Chemical Co., which corresponds to a (meth) acrylate compound having a skeleton, and a synthesized bisphenol full orange epoxy acrylate (formula (12)) which is a refractive index adjusting agent 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1- as a photopolymerization initiator in 4 parts by weight (corresponding to a (meth) acrylate compound having a fluorene skeleton). Add 0.2 parts by weight of ON (“Irgacure 907" manufactured by Ci
  • a transparent composite sheet was obtained under the same operations and conditions as in Example 1.
  • the thickness of the obtained transparent composite sheet was 80 ⁇ m.
  • Example 8 47 parts by weight of tris (2-acryloyloxyethyl) isocyanurate (“A-9300” manufactured by Shin-Nakamura Chemical Co., Ltd.), ⁇ -caprolactone-modified tris (2-acryloyloxyethyl) isocyanurate (triazine represented by the formula (2)) 47 parts by weight of “A-9300-1CL” manufactured by Shin-Nakamura Chemical Co., which corresponds to a (meth) acrylate compound having a skeleton, and a synthesized bisphenol full orange urethane acrylate which is a refractive index adjuster (formula (13)) 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-, which is a photopolymerization initiator, in 6 parts by weight (corresponding to a (meth) acrylate compound having a fluorene skeleton).
  • Example 9 To 80 parts by weight of tris (2-acryloyloxyethyl) isocyanurate (“A-9300” manufactured by Shin-Nakamura Chemical Co., Ltd.), dioxane glycol diacrylate (a (meth) acrylate compound having a dioxane skeleton represented by the formula (21)) Corresponding 20 parts by weight of Shin-Nakamura Chemical Co., Ltd.
  • A-DOG 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one as a photopolymerization initiator
  • Irgacure 907 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one
  • a curable composition Using the obtained curable composition, a transparent composite sheet was obtained under the same operations and conditions as in Example 1. The thickness of the obtained transparent composite sheet was 80 ⁇ m.
  • the refractive index nD (sodium D line (589 nm), 25 ° C.) of the test piece was measured using an Abbe refractometer (“NAR-1T” manufactured by Atago Co., Ltd.).
  • NAR-1T Abbe refractometer
  • the manufacturer (Nittobo) nominal value was adopted.
  • the haze value of the transparent composite sheet obtained was measured using a haze meter ("Fully automatic haze meter TC-HIIIDPK" manufactured by Tokyo Denshoku Co., Ltd.). When the haze value is 5% or less, the transparency is excellent.
  • Example 10 70 parts by weight of tris (2-acryloyloxyethyl) isocyanurate (“A-9300” manufactured by Shin-Nakamura Chemical Co., Ltd.), 9,9′-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene (formula (11 And 30 parts by weight of “A-BPEF” (manufactured by Shin-Nakamura Chemical Co., Ltd.) corresponding to a (meth) acrylate compound having a fluorene skeleton represented by the formula) and 2-methyl-1- [4- ( 0.2 parts by weight of methylthio) phenyl] -2-morpholinopropan-1-one (“Irgacure 907” manufactured by Ciba Japan Co., Ltd.), and while stirring at 100 ° C., the mixture was mixed and dissolved. A curable composition was prepared.
  • a glass cloth (manufactured by Nittobo Co., Ltd.) corresponding to IPC # 2013, which is an E glass fiber, was prepared.
  • the glass cloth was immersed in a curable composition heated to 100 ° C., and the glass cloth was impregnated with the curable composition while being irradiated with ultrasonic waves. Then, the glass cloth impregnated with the curable composition was pulled up and placed on the release-treated glass plate.
  • the glass cloth impregnated with the curable composition on the glass plate is covered with a PET film having a thickness of 100 ⁇ m (“Cosmo Shine A4100” manufactured by Toyobo Co., Ltd.), passed through a laminator whose temperature is adjusted to 70 ° C., The thickness was made uniform.
  • the curable composition was cured by irradiating with 2000 mJ / cm 2 (365 nm) of ultraviolet light from the PET film side with a high-pressure mercury lamp. Further, the cured sheet was peeled off from the PET film and the glass plate, and heat-treated in an oven at 200 ° C. for 1 hour to obtain a transparent composite sheet. The thickness of the obtained transparent composite sheet was 80 ⁇ m.
  • Example 11 65 parts by weight of tris (2-acryloyloxyethyl) isocyanurate (“A-9300” manufactured by Shin-Nakamura Chemical Co., Ltd.) was mixed with 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide ( 35 parts by weight of "MBI-5100” manufactured by Daiwa Kasei Co., Ltd.) and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (“Irgacure 907" manufactured by Ciba Japan) ) 0.5 part by weight was added, stirred while heating to 120 ° C., mixed and dissolved to prepare a curable composition. Using the obtained curable composition, a transparent composite sheet was obtained under the same operations and conditions as in Example 10. The thickness of the obtained transparent composite sheet was 75 ⁇ m.
  • Example 12 40 parts by weight of 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide (“MBI-5100” manufactured by Daiwa Kasei Co., Ltd.) with 60 parts by weight of tris (2-acryloyloxypropyl) isocyanurate And 0.5 parts by weight of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (“Irgacure 907” manufactured by Ciba Japan) as a photopolymerization initiator And stirred while heating to 120 ° C., and mixed and dissolved to prepare a curable composition. Using the obtained curable composition, a transparent composite sheet was obtained under the same operations and conditions as in Example 10. The thickness of the obtained transparent composite sheet was 75 ⁇ m.
  • a transparent composite sheet was obtained under the same operation and conditions as in Example 10 except that the temperature during impregnation was 70 ° C.
  • the thickness of the obtained transparent composite sheet was 75 ⁇ m.
  • a transparent composite sheet was obtained under the same operation and conditions as in Example 10 except that the temperature during impregnation was 70 ° C.
  • the thickness of the obtained transparent composite sheet was 80 ⁇ m.
  • a transparent composite sheet was obtained under the same operation and conditions as in Example 10 except that the temperature during impregnation was 70 ° C.
  • the thickness of the obtained transparent composite sheet was 75 ⁇ m.
  • a transparent composite sheet was obtained under the same operation and conditions as in Example 10 except that the temperature during impregnation was 70 ° C.
  • the thickness of the obtained transparent composite sheet was 80 ⁇ m.
  • Ethoxy) phenyl] fluorene (“A-BPEF” manufactured by Shin-Nakamura Chemical Co., Ltd.) and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane as a photopolymerization initiator 1-one (“Irgacure 907” manufactured by Ciba Japan Co., Ltd.) was added in an amount of 0.2 parts by weight, stirred while heating to 100 ° C., and mixed and dissolved to prepare a curable composition. . Using the obtained curable composition, a transparent composite sheet was obtained under the same operations and conditions as in Example 10. The thickness of the obtained transparent composite sheet was 80 ⁇ m.
  • tris (2-acryloyloxyethyl) isocyanurate corresponding to a (meth) acrylate compound having a triazine skeleton represented by the formula (1) and a fluorene skeleton represented by the formula (11) as a refractive index adjusting agent are used.
  • a curable composition was prepared by using 9,9′-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene corresponding to the (meth) acrylate compound having the compounding ratio changed.

Abstract

 透明性に優れており、かつ耐熱性が高い硬化物を与え、200℃以上の無機材料層を形成する過程に耐え得る硬化物を与える硬化性組成物を提供する。 本発明に係る硬化性組成物は、下記式(1)で表されるトリアジン骨格を有する(メタ)アクリレート化合物及び下記式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物の内の少なくとも一種を含む。本発明に係る硬化性組成物の硬化後の硬化物の589nmにおける屈折率は1.525以上、1.535以下であり、かつ該硬化物のガラス転移温度は200℃以上であるか、又は、硬化後の硬化物の589nmにおける屈折率が1.557以上、1.571以下であり、かつ該硬化物のガラス転移温度が200℃以上である。

Description

硬化性組成物及び透明複合シート
 本発明は、透明性及び耐熱性に優れた硬化物を与える硬化性組成物に関する。さらに、本発明は、例えば、表示素子用基板などの透明性が要求される用途に用いられ、上記硬化性組成物を硬化させた硬化物と、該硬化物中に埋め込まれたガラス繊維とを有する透明複合シートに関する。
 液晶表示素子又は有機EL表示素子等の表示素子用基板、並びに太陽電池用基板等に、ガラス基板が広く用いられている。しかしながら、ガラス基板は、割れやすく、曲げ性が低く、更に軽量化できないという問題がある。このため、近年、ガラス基板のかわりに、プラスチック基板を用いることが検討されている。
 例えば、下記の特許文献1には、ガラスクロスに樹脂組成物を含浸させ、乾燥することによりプリプレグを得た後、該プリプレグをプレスしながら熱硬化させることにより得られたプラスチック基板が開示されている。
特開2004-151291号公報
 表示素子及び太陽電池では、無機材料を用いて、半導体層又は導電層として無機材料層が形成されていることが多い。この無機材料層を形成する過程では、基板が200~300℃程度に加熱される。ガラス基板は、耐熱性が高いため、200~300℃程度の高温に耐え得る。これに対して、プラスチック基板を用いる場合には、無機材料層を形成する過程における耐熱性が問題となっている。すなわち、ガラス基板に比べて、特許文献1に記載のような従来のプラスチック基板の耐熱性は低いという問題がある。ここで言う耐熱性とは、耐熱性が低い場合に、加熱によりプラスチック材料が分解することを意味し、更に加熱によりプラスチック材料が大きく変形したり、加熱によりプラスチック材料の弾性率が大きく低下したりすることも意味する。
 特にプラスチック基板の用途では、加熱による変形及び弾性率の低下が、無機材料層を形成する過程で大きな問題となる。プラスチック基板の加熱による変形及び弾性率の低下は、該プラスチック基板に用いられる樹脂材料(硬化性化合物)のガラス転移温度を境として顕著に現れる。このため、プラスチック基板の耐熱性に対して、プラスチック基板を構成する樹脂材料のガラス転移温度は重要である。
 一方で、プラスチック基板の耐熱性の問題に対して、無機材料層を比較的低温(例えば180℃程度)で形成するための技術も検討されている。しかし、低温プロセスでは、無機材料層の半導体又は導電体としての特性、並びに素子動作の信頼性を充分に確保することが難しい。このため、無機材料層を形成するために200℃程度の温度が必須である。
 さらに、従来のプラスチック基板では、耐熱性が低いだけでなく、透明性及び靭性が低いこともある。
 本発明の目的は、透明性に優れており、かつ耐熱性が高い硬化物を与え、200℃以上の無機材料層を形成する過程に耐え得る硬化物を与える硬化性組成物、並びに該硬化性組成物を用いた透明複合シートを提供することである。
 本発明の限定的な目的は、透明性に優れており、かつ耐熱性が高い硬化物を与え、220℃以上の無機材料層を形成する過程に耐え得る硬化物を与える硬化性組成物、並びに該硬化性組成物を用いた透明複合シートを提供することである。
 本発明のさらに限定的な目的は、靭性にも優れた硬化物を与える硬化性組成物、並びに該硬化性組成物を用いた透明複合シートを提供することである。
 本発明の広い局面によれば、下記式(1)で表されるトリアジン骨格を有する(メタ)アクリレート化合物及び下記式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物の内の少なくとも一種を含み、硬化後の硬化物の589nmにおける屈折率が1.525以上、1.535以下であり、かつ該硬化物のガラス転移温度が200℃以上であるか、又は、硬化後の硬化物の589nmにおける屈折率が1.557以上、1.571以下であり、かつ該硬化物のガラス転移温度が200℃以上である、硬化性組成物が提供される。
Figure JPOXMLDOC01-appb-C000011
 上記式(1)中、R1~R6はそれぞれ、水素原子又はメチル基を表し、n1~n3はそれぞれ、1又は2を表す。
Figure JPOXMLDOC01-appb-C000012
 上記式(2)中、R1~R6はそれぞれ、水素原子又はメチル基を表し、n1とn2とn3との合計は平均で、0.5~3を表す。
 上記硬化性組成物は、硬化後の硬化物中にガラス繊維が埋め込まれて用いられる硬化性組成物であることが好ましい。
 本発明に係る硬化性組成物のある特定の局面では、上記式(1)で表されるトリアジン骨格を有する(メタ)アクリレート化合物と、上記式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物とが含まれている。
 本発明に係る硬化性組成物の他の特定の局面では、屈折率調整剤がさらに含まれている。
 本発明に係る硬化性組成物の別の特定の局面では、上記屈折率調整剤として、ジシクロペンタニル骨格を有する(メタ)アクリレート化合物、フルオレン骨格を有する(メタ)アクリレート化合物、ジオキサン骨格を有する(メタ)アクリレート化合物又はビスマレイミド化合物が含まれている。
 本発明に係る硬化性組成物の他の特定の局面では、上記屈折率調整剤として、ジシクロペンタニル骨格を有する(メタ)アクリレート化合物、フルオレン骨格を有する(メタ)アクリレート化合物、又はジオキサン骨格を有する(メタ)アクリレート化合物が含まれている。
 本発明に係る硬化性組成物のさらに他の特定の局面では、上記ジシクロペンタニル骨格を有する(メタ)アクリレート化合物が、下記式(3)で表されるジシクロペンタニル骨格を有する(メタ)アクリレート化合物である。
Figure JPOXMLDOC01-appb-C000013
 上記式(3)中、R11及びR12はそれぞれ、水素原子又はメチル基を表す。
 本発明に係る硬化性組成物のさらに他の特定の局面では、上記屈折率調整剤が、上記式(3)で表されるジシクロペンタニル骨格を有する(メタ)アクリレート化合物である。
 本発明に係る硬化性組成物のさらに他の特定の局面では、上記フルオレン骨格を有する(メタ)アクリレート化合物が、下記式(11)で表されるフルオレン骨格を有する(メタ)アクリレート化合物、下記式(12)で表されるフルオレン骨格を有する(メタ)アクリレート化合物、又は下記式(13)で表されるフルオレン骨格を有する(メタ)アクリレート化合物である。
Figure JPOXMLDOC01-appb-C000014
 上記式(11)中、R11~R14はそれぞれ、水素原子又はメチル基を表し、m1及びm2はそれぞれ、1又は2を表す。
Figure JPOXMLDOC01-appb-C000015
 上記式(12)中、R11及びR12はそれぞれ、水素原子又はメチル基を表す。
Figure JPOXMLDOC01-appb-C000016
 上記式(13)中、R11及びR12はそれぞれ、水素原子又はメチル基を表す。
 本発明に係る硬化性組成物のさらに他の特定の局面では、上記屈折率調整剤が、上記式(11)で表されるフルオレン骨格を有する(メタ)アクリレート化合物、上記式(12)で表されるフルオレン骨格を有する(メタ)アクリレート化合物、又は上記式(13)で表されるフルオレン骨格を有する(メタ)アクリレート化合物である。
 本発明に係る硬化性組成物の別の特定の局面では、上記ジオキサン骨格を有する(メタ)アクリレート化合物が、下記式(21)で表される(メタ)アクリレート化合物である
Figure JPOXMLDOC01-appb-C000017
 上記式(21)中、R11及びR12はそれぞれ、水素原子又はメチル基を表す。
 本発明に係る硬化性組成物のさらに別の特定の局面では、上記屈折率調整剤が、上記式(21)で表されるジオキサン骨格を有する(メタ)アクリレート化合物である。
 本発明に係る硬化性組成物の他の特定の局面では、上記ビスマレイミド化合物は、下記式(31)で表されるビスマレイミド化合物である。
Figure JPOXMLDOC01-appb-C000018
 上記式(31)中、R21~R24はそれぞれ、水素原子又はメチル基を表し、R25及びR26はそれぞれ、水素原子、メチル基又はエチル基を表す。
 本発明に係る硬化性組成物の別の特定の局面では、上記屈折率調整剤は、上記式(31)で表されるビスマレイミド化合物である。
 本発明に係る硬化性組成物の他の特定の局面では、硬化後の硬化物の589nmにおける屈折率が1.525以上、1.535以下であり、かつ該硬化物のガラス転移温度が200℃以上である。
 本発明に係る硬化性組成物の別の特定の局面では、硬化後の硬化物の589nmにおける屈折率が1.557以上、1.571以下であり、かつ該硬化物のガラス転移温度が200℃以上である。
 本発明に係る透明複合シートは、本発明に従って構成された硬化性組成物を硬化させた硬化物と、該硬化物中に埋め込まれたガラス繊維とを有する。
 本発明に係る透明複合シートのある特定の局面では、上記ガラス繊維は、Tガラス又はEガラスである。上記ガラス繊維は、Tガラスであることが好ましく、Eガラスであることも好ましい。
 本発明に係る透明複合シートの他の特定の局面では、波長550nmにおける光線透過率は85%以上である。
 本発明に係る透明複合シートの別の特定の局面では、50~200℃における平均線膨張係数が20ppm/℃以下である。
 本発明に係る透明複合シートのさらに別の特定の局面では、厚みは25~200μmである。
 本発明の硬化性組成物は、式(1)で表されるトリアジン骨格を有する(メタ)アクリレート化合物及び式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物の内の少なくとも一種を含み、硬化後の硬化物の589nmにおける屈折率が1.525以上、1.535以下であるか、又は、硬化後の硬化物の589nmにおける屈折率が1.557以上、1.571以下であるため、透明性に優れた硬化物を与える。さらに、本発明に係る硬化性組成物の硬化後の硬化物のガラス転移温度は200℃以上であるため、硬化性組成物の硬化物の耐熱性を高くすることができる。また、硬化性組成物の硬化物中にガラス繊維が埋め込まれた透明複合シートの耐熱性を高くすることもできる。従って、本発明に係る硬化性組成物は、200℃以上の無機材料層などを形成する過程に耐え得る。
図1は、イソシアヌル酸トリス(2-アクリロイルオキシエチル)の配合比率と、硬化性組成物の硬化物の屈折率nD及び透明複合シートのヘイズ値との関係を示す図である。
 以下、本発明を詳細に説明する。
 本発明に係る硬化性組成物は、下記式(1)で表されるトリアジン骨格を有する(メタ)アクリレート化合物及び下記式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物の内の少なくとも一種を含む。
Figure JPOXMLDOC01-appb-C000019
 上記式(1)中、R1~R6はそれぞれ、水素原子又はメチル基を表し、n1~n3はそれぞれ、1又は2を表す。
Figure JPOXMLDOC01-appb-C000020
 上記式(2)中、R1~R6はそれぞれ、水素原子又はメチル基を表し、n1とn2とn3との合計は平均で、0.5~3を表す。n1とn2とn3との合計は平均で、好ましくは0.5~2である。
 なお、上記式(2)におけるn1とn2とn3との合計の平均の値は、硬化性組成物中に含まれる式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物全体における値である。すなわち、例えば、上記式(2)で表される化合物として、n1=1、n2=0及びn3=0(n1+n2+n3=1)である化合物と、n1=1、n2=1及びn3=0(n1+n2+n3=2)である化合物とが同じ数で含まれる場合には、n1とn2とn3との合計は平均で1.5である。
 さらに、本発明に係る硬化性組成物の硬化後の硬化物の589nmにおける屈折率は、1.525以上、1.535以下であるか、又は1.557以上、1.571以下である。本発明に係る硬化性組成物の硬化後の硬化物のガラス転移温度は、上記屈折率が1.525以上、1.535以下である場合に200℃以上である。本発明に係る硬化性組成物の硬化後の硬化物のガラス転移温度は、上記屈折率が1.557以上、1.571以下である場合にも200℃以上である。
 本発明に係る硬化性組成物では、硬化後の硬化物の589nmにおける屈折率が1.525以上、1.535以下であり、かつ該硬化物のガラス転移温度が200℃以上であることが好ましく、硬化後の硬化物の589nmにおける屈折率が1.557以上、1.571以下であり、かつ該硬化物のガラス転移温度が200℃以上であることも好ましい。
 上述の構成を備えることによって、硬化性組成物の硬化物の透明性が良好になる。例えば、硬化物のヘイズ値を10%以下にすることができ、5%以下にすることもできる。従って、本発明に係る硬化性組成物の使用により、透明な透明複合シートを得ることができる。さらに、上記構成の採用により、硬化性組成物の硬化物の耐熱性を高くすることができる。ここで言う耐熱性とは、耐熱性が低い場合に、加熱によりプラスチック材料が分解することを意味し、更に加熱によりプラスチック材料が大きく変形したり、加熱によりプラスチック材料の弾性率が大きく低下したりすることも意味する。
 表示素子及び太陽電池では、無機材料を用いて、半導体層又は導電層として無機材料層が形成されていることが多い。この無機材料層を形成する過程では、基板が180~300℃程度に加熱される。本発明に係る硬化性組成物の硬化物の耐熱性は高いので、200℃以上の無機材料層を形成する過程に耐え得る。本発明に係る硬化性組成物の硬化物は、200℃以上の高温に晒されても、分解し難く、大きく変形し難く、かつ弾性率が大きく低下し難い。
 本発明に係る硬化性組成物の硬化後の硬化物のガラス転移温度が220℃以上である場合には、220℃以上の無機材料層を形成する過程に耐え得る。この硬化物は、220℃以上の高温に晒されても、分解し難く、大きく変形し難く、かつ弾性率が大きく低下し難い。
 さらに、上述の構成の採用により、硬化性組成物の硬化物の靭性を高めることもできる。
 本発明に係る硬化性組成物は、ガラス繊維が埋め込まれて用いられる硬化性組成物であることが好ましい。本発明に係る硬化性組成物は、硬化性組成物を硬化させた硬化物と、該硬化物中に埋め込まれたガラス繊維とを有する透明複合シートを得るために用いられることが好ましい。本発明に係る硬化性組成物は、ガラス繊維であるTガラス又はEガラスが埋め込まれて用いられる硬化性組成物であることが好ましい。本発明に係る硬化性組成物は、ガラス繊維であるTガラスが埋め込まれて用いられる硬化性組成物であることが好ましく、ガラス繊維であるEガラスが埋め込まれて用いられる硬化性組成物であることも好ましい。
 本発明に係る透明複合シートは、硬化性組成物を硬化させた硬化物と、該硬化物中に埋め込まれたガラス繊維とを有する。上記透明複合シートは、加熱及び活性光線の照射の内の少なくとも1種により、硬化性組成物を硬化させることにより得ることができる。上記透明複合シートは、例えば、硬化性組成物をガラス繊維に含浸させた後、硬化性組成物を硬化させることにより得ることができる。
 以下、先ず、本発明に係る硬化性組成物及び本発明に係る透明複合シートに含まれている各成分の詳細を説明する。
 [硬化性化合物]
 本発明に係る硬化性組成物は、上記式(1)で表されるトリアジン骨格を有する(メタ)アクリレート化合物(以下、(メタ)アクリレート化合物(1)と略記することがある)及び上記式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物(以下、(メタ)アクリレート化合物(2)と略記することがある)の内の少なくとも一種を含む。(メタ)アクリレート化合物(1)及び(メタ)アクリレート化合物(2)は、硬化性化合物であり、重合性化合物である。「(メタ)アクリレート」は、アクリレートとメタクリレートとを示す。
 上記(メタ)アクリレート化合物(1)及び(メタ)アクリレート化合物(2)の硬化物の屈折率はそれぞれ、1.520以上、1.545以下である。この(メタ)アクリレート化合物(1)及び(メタ)アクリレート化合物(2)の内の少なくとも一種を適宜選択して用いて、また必要に応じて(メタ)アクリレート化合物(1)及び(メタ)アクリレート化合物(2)の内の少なくとも一種と適宜の屈折率調整剤とを混合して、硬化性組成物の硬化物の屈折率が1.525以上、1.535以下に調整されるか、又は1.557以上、1.571以下に調整される。(メタ)アクリレート化合物(1)と(メタ)アクリレート化合物(2)との併用により、硬化物の屈折率を1.525以上、1.535以下に調整することが可能である。(メタ)アクリレート化合物(1)及び(メタ)アクリレート化合物(2)の内の少なくとも一種と屈折率調整剤との併用によっても、硬化物の屈折率を1.525以上、1.535以下に調整することが可能である。また、(メタ)アクリレート化合物(1)及び(メタ)アクリレート化合物(2)の内の少なくとも一種と屈折率調整剤との併用により、硬化物の屈折率を1.557以上、1.571以下に調整することが可能である。
 また、(メタ)アクリレート化合物(1)の硬化物のガラス転移温度は250~280℃程度である。(メタ)アクリレート化合物(2)の硬化物のガラス転移温度は200~250℃程度である。従って、(メタ)アクリレート化合物(1)又は(メタ)アクリレート化合物(2)の使用により、硬化性組成物の硬化物の耐熱性を高めることができ、該硬化物のガラス転移温度を200℃以上にすることが可能である。更に、(メタ)アクリレート化合物(1)の使用により、上記硬化物のガラス転移温度を220℃以上にすることも可能である。また、(メタ)アクリレート化合物(1)又は(メタ)アクリレート化合物(2)の使用により、表示素子及び太陽電池における無機材料層を形成する高温過程に耐え得る硬化物を与える硬化性組成物を得ることができる。
 本発明に係る硬化性組成物は、屈折率調整剤を含んでもよい。上記硬化性組成物の硬化物の屈折率を1.557以上、1.571以下にする場合に、本発明に係る硬化性組成物は、屈折率調整剤を含むことが好ましい。
 上記硬化性組成物の硬化物の屈折率を1.525以上、1.535以下にする場合に、(メタ)アクリレート化合物(1)の硬化物の屈折率は比較的高いことがある。従って、屈折率を低くする成分を適宜選択して(メタ)アクリレート化合物(1)とともに用いることにより、硬化性組成物の硬化物の屈折率を容易に1.525以上、1.535以下にすることが可能である。また、(メタ)アクリレート化合物(2)の硬化物の屈折率は比較的低いことがある。従って、屈折率を高くする成分を適宜選択して(メタ)アクリレート化合物(2)とともに用いることにより、硬化性組成物の硬化物の屈折率を容易に1.525以上、1.535以下にすることが可能である。
 上記硬化性組成物の硬化物の屈折率を1.557以上、1.571以下にする場合に、上記(メタ)アクリレート化合物(1)の硬化物及び上記(メタ)アクリレート化合物(2)の屈折率は比較的低い。従って、屈折率を高くする成分を適宜選択して(メタ)アクリレート化合物(1)とともに用いることにより、硬化性組成物の硬化物の屈折率を1.557以上、1.571以下にすることができる。上記屈折率調整剤は、屈折率向上剤であることが好ましい。
 上記屈折率調整剤としては、ジシクロペンタニル骨格を有する(メタ)アクリレート化合物、フルオレン骨格を有する(メタ)アクリレート化合物、ジオキサン骨格を有する(メタ)アクリレート化合物及びビスマレイミド化合物が挙げられる。但し、これ以外の屈折率調整剤を用いてもよい。本発明に係る硬化性組成物は、ジシクロペンタニル骨格を有する(メタ)アクリレート化合物、フルオレン骨格を有する(メタ)アクリレート化合物、ジオキサン骨格を有する(メタ)アクリレート化合物又はビスマレイミド化合物を含むことが好ましい。本発明に係る硬化性組成物は、ジシクロペンタニル骨格を有する(メタ)アクリレート化合物、フルオレン骨格を有する(メタ)アクリレート化合物、ジオキサン骨格を有する(メタ)アクリレート化合物又はビスマレイミド化合物であることが好ましい。
 上記屈折率調整剤は、ジシクロペンタニル骨格を有する(メタ)アクリレート化合物又はフルオレン骨格を有する(メタ)アクリレート化合物であってもよく、ジシクロペンタニル骨格を有する(メタ)アクリレート化合物又はジオキサン骨格を有する(メタ)アクリレート化合物であってもよく、フルオレン骨格を有する(メタ)アクリレート化合物又はジオキサン骨格を有する(メタ)アクリレート化合物であってもよく、フルオレン骨格を有する(メタ)アクリレート化合物又はビスマレイミド化合物であってもよく、ビスマレイミド化合物であってもよい。これら以外の屈折率調整剤の組み合わせであってもよい。
 本発明に係る硬化性組成物は、ジシクロペンタニル骨格を有する(メタ)アクリレート化合物、フルオレン骨格を有する(メタ)アクリレート化合物、又はジオキサン骨格を有する(メタ)アクリレート化合物を含むことがより好ましい。この好ましい屈折率調整剤は、上記硬化性組成物の硬化物の屈折率を1.525以上、1.535以下にする場合に好適に用いられる。屈折率調整剤は、ジシクロペンタニル骨格を有する(メタ)アクリレート化合物、フルオレン骨格を有する(メタ)アクリレート化合物、又はジオキサン骨格を有する(メタ)アクリレート化合物であることがより好ましい。この好ましい屈折率調整剤の使用により、硬化性組成物の硬化物の屈折率を好適な範囲に制御でき、硬化物の透明性をより一層高めることができる。
 本発明に係る硬化性組成物は、フルオレン骨格を有する(メタ)アクリレート化合物又はビスマレイミド化合物を含むことが好ましい。この好ましい屈折率調整剤は、上記硬化性組成物の硬化物の屈折率を1.557以上、1.571以下にする場合に好適に用いられる。本発明に係る硬化性組成物は、フルオレン骨格を有する(メタ)アクリレート化合物を含むことが好ましく、ビスマレイミド化合物を含むことが好ましい。このような好ましい屈折率調整剤の使用により、硬化性組成物の硬化物の屈折率を好適な範囲に制御でき、硬化物の透明性をより一層高めることができる。
 上記硬化性組成物の硬化物の屈折率をより一層好適な範囲に制御でき、硬化物の透明性をさらに一層高める観点からは、上記ジシクロペンタニル骨格を有する(メタ)アクリレート化合物は、下記式(3)で表されるジシクロペンタニル骨格を有する(メタ)アクリレート化合物であることが特に好ましい。また、硬化性組成物の硬化物の屈折率をより一層好適な範囲に制御でき、硬化物の透明性をさらに一層高める観点からは、屈折率調整剤は、ジシクロペンタニル骨格を有する(メタ)アクリレート化合物であることが好ましく、下記式(3)で表されるジシクロペンタニル骨格を有する(メタ)アクリレート化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000021
 上記式(3)中、R11及びR12はそれぞれ、水素原子又はメチル基を表す。なお、ジシクロペンタジエニル骨格に結合している2つの基の結合部位は特に限定されない。
 硬化性組成物の硬化物の屈折率をより一層好適な範囲に制御でき、硬化物の透明性をさらに一層高める観点からは、上記フルオレン骨格を有する(メタ)アクリレート化合物は、下記式(11)で表されるフルオレン骨格を有する(メタ)アクリレート化合物、下記式(12)で表されるフルオレン骨格を有する(メタ)アクリレート化合物、又は下記式(13)で表されるフルオレン骨格を有する(メタ)アクリレート化合物であることが好ましい。また、硬化性組成物の硬化物の屈折率をより一層好適な範囲に制御でき、硬化物の透明性をさらに一層高める観点からは、上記屈折率調整剤は、フルオレン骨格を有する(メタ)アクリレート化合物であることが好ましく、下記式(11)で表されるフルオレン骨格を有する(メタ)アクリレート化合物、下記式(12)で表されるフルオレン骨格を有する(メタ)アクリレート化合物、又は下記式(13)で表されるフルオレン骨格を有する(メタ)アクリレート化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記式(11)中、R11~R14はそれぞれ、水素原子又はメチル基を表し、m1及びm2はそれぞれ、1又は2を表す。
Figure JPOXMLDOC01-appb-C000023
 上記式(12)中、R11及びR12はそれぞれ、水素原子又はメチル基を表す。
Figure JPOXMLDOC01-appb-C000024
 上記式(13)中、R11及びR12はそれぞれ、水素原子又はメチル基を表す。
 硬化性組成物の硬化物の屈折率をより一層好適な範囲に制御でき、硬化物の透明性をさらに一層高める観点からは、上記ジオキサン骨格を有する(メタ)アクリレート化合物は、下記式(21)で表されるジオキサン骨格を有する(メタ)アクリレート化合物であることが特に好ましい。また、硬化性組成物の硬化物の屈折率をより一層好適な範囲に制御でき、硬化物の透明性をさらに一層高める観点からは、屈折率調整剤は、ジオキサン骨格を有する(メタ)アクリレート化合物であることが好ましく、下記式(21)で表されるジオキサン骨格を有する(メタ)アクリレート化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000025
 上記式(21)中、R11及びR12はそれぞれ、水素原子又はメチル基を表す。
 上記ビスマレイミド化合物は特に限定されない。上記ビスマレイミド化合物としては、例えば、N,N’-(1,3-フェニレン)ビスマレイミド、N,N’-[1,3-(2-メチルフェニレン)]ビスマレイミド、N,N’-[1,3-(4-メチルフェニレン)]ビスマレイミド、N,N’-(1,4-フェニレン)ビスマレイミド、ビス(4-マレイミドフェニル)メタン、ビス(3-メチル-4-マレイミドフェニル)メタン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、ビス(4-マレイミドフェニル)スルフィド、ビス(4-マレイミドフェニル)ケトン、ビス(4-マレイミドシクロヘキシル)メタン、1,4-ビス(4-マレイミドフェニル)シクロヘキサン、1,4-ビス(マレイミドメチル)シクロヘキサン、1,4-ビス(マレイミドメチル)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、ビス[4-(3-マレイミドフェノキシ)フェニル]メタン、ビス[4-(4-マレイミドフェノキシ)フェニル]メタン、1,1-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,1-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4-ビス(3-マレイミドフェノキシ)ビフェニル、4,4-ビス(4-マレイミドフェノキシ)ビフェニル、ビス[4-(3-マレイミドフェノキシ)フェニル]ケトン、ビス[4-(4-マレイミドフェノキシ)フェニル]ケトン、2,2’-ビス(4-マレイミドフェニル)ジスルフィド、ビス(4-マレイミドフェニル)ジスルフィド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルフィド、ビス[4-(4-マレイミドフェノキシ)フェニル]スルフィド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルホキシド、ビス[4-(4-マレイミドフェノキシ)フェニル]スルホキシド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルホン、ビス[4-(4-マレイミドフェノキシ)フェニル]スルホン、ビス[4-(3-マレイミドフェノキシ)フェニル]エーテル、ビス[4-(4-マレイミドフェノキシ)フェニル]エーテル、1,4-ビス[4-(4-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(3-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(3-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、4-メチル-1,3-フェニレンビスマレイミド及びポリフェニルメタンマレイミド等が挙げられる。上記ビスマレイミド化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 硬化性組成物の硬化物の屈折率をより一層好適な範囲に制御でき、硬化物の透明性をさらに一層高める観点からは、上記ビスマレイミド化合物は、下記式(31)で表されるビスマレイミド化合物であることが特に好ましい。また、硬化性組成物の硬化物の屈折率をより一層好適な範囲に制御でき、硬化物の透明性をさらに一層高める観点からは、屈折率調整剤は、ビスマレイミド化合物であることが好ましく、下記式(31)で表されるビスマレイミド化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000026
 上記式(31)中、R21~R24はそれぞれ、水素原子又はメチル基を表し、R25及びR26はそれぞれ、水素原子、メチル基又はエチル基を表す。
 上記フルオンレン骨格を有する(メタ)アクリレート化合物、及び上記ビスマレイミド化合物は、(メタ)アクリレート化合物(1)と均一に相溶する。このことによっても、硬化性組成物の硬化物が、可視光線に対して高い透明性を有するようになる。
 フルオレン骨格を有する(メタ)アクリレート化合物の硬化物及びビスマレイミド化合物の硬化物のガラス転移温度は比較的高い。フルオレン骨格を有する(メタ)アクリレート化合物の硬化物及びビスマレイミド化合物の硬化物のガラス転移温度は、250~300℃である。従って、フルオレン骨格を有する(メタ)アクリレート化合物又はビスマレイミド化合物を(メタ)アクリレート化合物(1)又は(メタ)アクリレート化合物(2)と併用することにより、硬化性組成物の硬化物のガラス転移温度をより一層高くし、該硬化物の耐熱性をより一層高くすることができる。
 本発明に係る透明複合シートは、硬化性組成物にガラス繊維を埋め込んで、硬化性組成物を硬化させることによって得られる。本発明に係る透明複合シートでは、硬化性組成物の硬化物とガラス繊維との屈折率を近づけることにより、より一層高い透明性が発現する。
 一般に、表示素子基板等に適用可能な十分な透明性を得るためには、マトリックスとなる硬化性化合物の硬化物と、該硬化物中に埋め込まれるガラス繊維との屈折率差を0.005以下とすることが望ましい。現実には、マトリックスとなる硬化性化合物の硬化物の屈折率とガラス繊維の屈折率とを可視光域全体に渡って完全に一致させることは困難である。本発明では、ガラス繊維に対して、マトリックスとなる硬化性化合物の硬化物の屈折率を適切に設計することにより、光の散乱を極小化する。
 上記ガラス繊維は、Tガラス又はEガラスであることが好ましい。本発明においては、ガラス繊維として、Tガラスを用いることが好ましく、Eガラスを用いることも好ましい。
 本発明においては、ガラス繊維として、Tガラスを用いることが好ましい。Tガラスの589nmにおける屈折率は、1.525前後である。硬化性組成物の硬化物の589nmにおける屈折率を1.525以上、1.535以下とすることで、硬化性組成物の硬化物とガラス繊維とを有する透明複合シートの光散乱、すなわちヘイズ値を極小化することができる。
 従って、本発明に係る硬化性組成物の硬化後の硬化物の589nmにおける屈折率が1.525以上、1.535以下であり、かつ該硬化物のガラス転移温度が200℃以上である場合には、本発明に係る硬化性組成物は、ガラス繊維であるTガラスが埋め込まれて用いられる硬化性組成物であることが好ましい。
 本発明に係る硬化性組成物の硬化物の589nmでの屈折率は、好ましくは1.527以上、好ましくは1.533以下である。硬化物の屈折率が上記下限以上及び上記上限以下であると、透明複合シートの透明性を高めることができ、該透明複合シートのヘイズ値をより一層小さくすることができる。
 また、本発明においては、ガラス繊維として、Eガラスを用いることが好ましい。EガラスのEガラスの589nmにおける屈折率は、1.560程度である。硬化性組成物の硬化物の589nmにおける屈折率を1.557以上、1.571以下とすることで、硬化性組成物の硬化物とガラス繊維とを有する透明複合シートの光散乱、すなわちヘイズ値を極小化することができる。
 従って、本発明に係る硬化性組成物の硬化後の硬化物の589nmにおける屈折率が1.557以上、1.571以下であり、かつ該硬化物のガラス転移温度が200℃以上である場合には、本発明に係る硬化性組成物は、ガラス繊維であるEガラスが埋め込まれて用いられる硬化性組成物であることが好ましい。
 本発明に係る硬化性組成物の硬化物の589nmでの屈折率は、好ましくは1.560以上、好ましくは1.568以下である。硬化物の屈折率が上記下限以上及び上記上限以下であると、透明複合シートの透明性を高めることができ、該透明複合シートのヘイズ値をより一層小さくすることができる。
 本発明に係る硬化性組成物では、(メタ)アクリレート化合物(1)及び(メタ)アクリレート化合物(2)の内の少なくとも一種を適宜選択して用いたり、(メタ)アクリレート化合物(1)及び(メタ)アクリレート化合物(2)の内の少なくとも一種とともに用いられる屈折率調整剤の種類及び使用量を適宜調整したりすることにより、硬化性組成物の硬化物の589nmにおける屈折率を1.525以上、1.535以下に調整するか、又は1.557以上、1.571以下に調整する。
 本発明に係る硬化性組成物は、上記式(1)で表されるトリアジン骨格を有する(メタ)アクリレート化合物((メタ)アクリレート化合物(1))と、上記式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物((メタ)アクリレート化合物(2))とを含んでいてもよい。この場合に、本発明に係る硬化性組成物は、屈折率調整剤を含んでいなくてもよい。但し、この場合にも、本発明に係る硬化性組成物は、屈折率調整剤を含んでいてもよい。
 硬化物の屈折率を最適な範囲に制御するために、(メタ)アクリレート化合物(1)と(メタ)アクリレート化合物(2)と屈折率調整剤との配合比率は任意に設定できる。また、(メタ)アクリレート化合物(1)及び(メタ)アクリレート化合物(2)の内の少なくとも一種の成分(以下、成分(X)と略記することがある)と屈折率調整剤との合計100重量%中、成分(X)の含有量((メタ)アクリレート化合物(1)と(メタ)アクリレート化合物(2)とを併用する場合には合計の含有量)が30~100重量%であり、屈折率調整剤の含有量が0~70重量%であることが好ましい。本発明に係る硬化性組成物中の硬化性化合物100重量%中、30~100重量%が成分(X)であることが好ましい。硬化性化合物の全量が成分(X)であってもよい。硬化物の屈折率を最適な範囲に制御するために、成分(X)と屈折率調整剤との合計100重量%中、成分(X)の含有量が30~70重量%であり、屈折率調整剤の含有量が30~70重量%であることがより好ましい。さらに、硬化物の屈折率を最適な範囲に制御するために、硬化性化合物100重量%中、成分(X)の含有量が40~60重量%であり、屈折率調整剤の含有量が40~60重量%であることが更に好ましい。
 上記硬化性組成物の硬化物の屈折率を1.557以上、1.571以下にする場合に、硬化物の屈折率を最適な範囲に制御するために、成分(X)と屈折率調整剤との合計100重量%中、上記成分(X)の含有量が50~90重量%であり、屈折率調整剤の含有量が10~50重量%であることが好ましい。さらに、硬化物の屈折率を最適な範囲に制御するために、硬化性化合物100重量%中、成分(X)の含有量が50~90重量%であり、屈折率調整剤の含有量が10~50重量%であることが好ましい。上記「屈折率調整剤の含有量」は、屈折率調整剤としてフルオレン骨格を有する(メタ)アクリレート化合物とビスマレイミド化合物とを用いる場合には「フルオレン骨格を有する(メタ)アクリレート化合物とビスマレイミド化合物との合計の含有量」を示し、屈折率調整剤としてフルオレン骨格を有する(メタ)アクリレート化合物又はビスマレイミド化合物を用いる場合には「フルオレンン骨格を有する(メタ)アクリレート化合物又はビスマレイミド化合物の含有量」を示す。
 200℃以上の無機材料層などを形成する過程に耐え得るように、本発明に係る硬化性組成物の硬化物のガラス転移温度は、200℃以上である。無機材料層を形成する過程では、基板が200℃以上に加熱されることがあり、更に220℃近くに加熱されることがある。従って、本発明に係る硬化性組成物の硬化物のガラス転移温度は、好ましくは220℃以上、より好ましくは200℃を超え、更に好ましくは205℃以上、特に好ましくは235℃以上、最も好ましくは250℃以上である。
 本発明に係る硬化性組成物は、硬化性化合物を重合により硬化させるために、重合開始剤を含むことが好ましい。
 本発明に係る硬化性組成物を硬化させる方法としては、加熱により硬化させる方法、及び活性光線により硬化させる方法等が挙げられる。加熱による硬化と活性光線による硬化とを併用してもよい。反応時間を短縮し、かつ硬化反応を完結させる観点からは、活性光線により硬化性組成物を硬化させた後に、更に加熱により硬化性組成物を硬化させることが好ましい。
 上記活性光線は、紫外線であることが好ましい。該紫外線を照射するための光源としては、例えば、メタルハライドランプ及び高圧水銀灯ランプ等が挙げられる。加熱により硬化性組成物を硬化させる際には、オーブン及びヒーター等が用いられる。酸化による着色及び硬化性化合物の劣化を抑制するために、加熱により硬化性組成物を硬化させる際には、窒素雰囲気下又は真空状態で、150~300℃で1~24時間加熱することが好ましい。
 加熱により硬化性組成物を硬化させるために、上記硬化性組成物は、熱重合開始剤を含むことが好ましい。上記熱重合開始剤は、ラジカル重合開始剤であることが好ましい。該ラジカル重合開始剤としては、過酸化物系ラジカル重合開始剤、アゾ系ラジカル重合開始剤及びレドックス系ラジカル重合開始剤等が挙げられる。これら以外の熱重合開始剤を用いてもよい。上記熱重合開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記アゾ系ラジカル重合開始剤としては、アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル及びアゾビスジメチルバレロニトリル等が挙げられる。
 上記過酸化物系ラジカル重合開始剤としては、ジアシル系ラジカル重合開始剤、パーオキシエステル系ラジカル重合開始剤、ジアルキル系ラジカル重合開始剤、パーカーボネート系ラジカル重合開始剤及びケトンパーオキサイド系ラジカル重合開始剤等が挙げられる。上記ジアシル系ラジカル重合開始剤としては、ラウロイルパーオキサイド及びベンゾイルパーオキサイド等が挙げられる。上記パーオキシエステル系ラジカル重合開始剤としては、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシアセテート、t-ブチルパーオキシピバレート及びt-ブチルパーオキシ-2-エチルヘキサノエート等が挙げられる。上記ジアルキル系ラジカル重合開始剤としては、ジクミルパーオキサイド及びジ-t-ブチルパーオキサイド等が挙げられる。上記パーカーボネート系ラジカル重合開始剤としては、ジイソプロピルパーオキシジカーボネート等が挙げられる。上記ケトンパーオキサイド系ラジカル重合開始剤としては、メチルエチルケトンパーオキサイド等が挙げられる。
 上記レドックス系ラジカル重合開始剤は、例えば、過酸化物と還元剤又は金属含有化合物とを含む。上記レドックス系ラジカル重合開始剤の具体例としては、ベンゾイルパーオキサイドと有機アミン類との混合物、上記パーオキシエステル系ラジカル重合開始剤とメルカプタン類などの還元剤との混合物、並びにメチルエチルケトンパーオキサイドと有機コバルト塩との混合物等が挙げられる。
 硬化物の靭性をより一層高める観点からは、過酸化物系ラジカル重合開始剤が好ましい。熱重合開始剤の使用量は特に制限されない。硬化性組成物中の硬化性化合物100重量部に対して、熱重合開始剤の含有量は0.05~5重量部であることが好ましい。
 本発明に係る硬化性組成物は(メタ)アクリレート化合物(1)及び(メタ)アクリレート化合物(2)の内の少なくとも一種を含むので、活性光線の照射により効果的に重合し、硬化する。従って、活性光線の照射により硬化性組成物を硬化させるために、上記硬化性組成物は、光重合開始剤を含むことが好ましい。該光重合開始剤としては、光ラジカル重合開始剤及び光カチオン重合開始剤等が挙げられる。該光重合開始剤は、光ラジカル重合開始剤であることが好ましい。光重合開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記光ラジカル重合開始剤としては特に限定されず、例えば、ベンゾフェノン、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2,2-ジエトキシアセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール、α-ヒドロキシイソブチルフェノン、チオキサントン、2-クロロチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1,2,6-ジメチルベンゾイルジフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、t-ブチルアントラキノン、1-クロロアントラキノン、2,3-ジクロロアントラキノン、3-クロロ-2-メチルアントラキノン、2-エチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、1,2-ベンゾアントラキノン、1,4-ジメチルアントラキノン、2-フェニルアントラキノン、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール2量体、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、及び4-(p-メトキシフェニル)-2,6-ジ-(トリクロロメチル)-s-トリアジン等が挙げられる。上記光ラジカル重合開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記光カチオン重合開始剤としては特に限定されず、例えば、スルホニウム塩、ヨードニウム塩、メタロセン化合物及びベンゾイントシレート等が挙げられる。上記光カチオン重合開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記光カチオン重合開始剤の市販品としては、サイラキュアUVI-6970、サイラキュアUVI-6974及びサイラキュアUVI-6990(いずれもユニオンカーバイド社製)、イルガキュア264(チバ・ジャパン社製)、並びにCIT-1682(日本曹達社製)等が挙げられる。
 硬化性組成物中の硬化性化合物100重量部に対して、上記光重合開始剤の含有量は0.01~10重量部であることが好ましい。上記光重合開始剤の含有量が上記下限以上であると、硬化性組成物を十分に硬化させることができる。上記重合開始剤の含有量が上記上限以下であると、重合が急激に進行し難くなり、複屈折の増大、着色及び硬化時の割れ等の問題が発生し難くなる。
 上記光重合開始剤が光ラジカル重合開始剤である場合には、硬化性組成物中の硬化性化合物100重量部に対して、上記光ラジカル重合開始剤の含有量は、好ましくは0.01重量部以上、より好ましくは0.1重量部以上、好ましくは2重量部以下、より好ましくは1重量部以下である。
 上記光重合開始剤が光カチオン重合開始剤である場合には、硬化性組成物中の硬化性化合物100重量部に対して、上記光カチオン重合開始剤の含有量は、好ましくは1重量部以上、好ましくは10重量部以下、より好ましくは5重量部以下である。
 上記硬化性組成物は、上述した(メタ)アクリレート化合物(1)、(メタ)アクリレート化合物(2)、ジシクロペンタニル骨格を有する(メタ)アクリレート化合物、フルオレン骨格を有する(メタ)アクリレート化合物、ジオキサン骨格を有する(メタ)アクリレート化合物、並びにビスマレイミド化合物とは異なる他の硬化性化合物を含んでいてもよい。他の硬化性化合物は、熱硬化性化合物であってもよく、光硬化性化合物であってもよい。
 上記他の硬化性化合物としては特に限定されず、例えば、多官能チオール化合物及びエポキシ化合物等が挙げられる。上記硬化性組成物は、多官能チオール化合物又はエポキシ化合物を含むことが好ましく、多官能チオール化合物を含むことがより好ましい。上記硬化性組成物が多官能チオール化合物又はエポキシ化合物をさらに含むことにより、硬化速度、並びに硬化物の柔軟性、強靭性及び耐薬品性等を調整したり、改善したりすることができる。上記エポキシ化合物は、多官能エポキシ化合物であることが好ましい。
 上記多官能チオール化合物としては、例えば、1,2-エタンジチオール、1,2-プロパンジチオール、1,3-プロパンジチオール、1,3-ブタンジチオール、1,4-ブタンジチオール、2,3-ブタンジチオール、1,5-ペンタンジチオール、1,6-ヘキサンジチオール、1,9-ノナンジチオール、1,8-オクタンジチオール、1,10-デカンジチオール、1,4-ブタンジオールビスチオプロピオネート、1,4-ブタンジオールビスチオグリコレート、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネート、1,2-ベンゼンジチオール、1,3-ベンゼンジチオール、1,4-ベンゼンジチオール、トルエン-3,4-ジチオール、3,6-ジクロロ-1,2-ベンゼンジチオール、1,5-ナフタレンジチオール、1,2-ベンゼンジメタンチオール、1,3-ベンゼンジメタンチオール、1,4-ベンゼンジメタンチオール、4,4’-チオビスベンゼンチオール、2-ジ-n-ブチルアミノ-4,6-ジメルカプト-s-トリアジン、2,5-ジメルカプト-1,3,4-チアジアゾール、1,8-ジメルカプト-3,6-ジオキサオクタン、1,5-ジメルカプト-3-チアペンタン、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、ペンタエリスリトール テトラキス(3-メルカプトブチレート)、トリメルカプトプロピオン酸トリス(2-ヒドロキシエチル)イソシアヌレート、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6-トリオン、1,4-ジメチルメルカプトベンゼン、2,4,6-トリメルカプト-s-トリアジン、2-(N,N-ジブチルアミノ)-4,6-ジメルカプト-s-トリアジン及びチオール基含有シルセスキオキサン化合物等が挙げられる。上記多官能チオール化合物であるチオール基含有シルセスキオキサン化合物の市販品としては、荒川化学工業製「コンポセランHBSQシリーズ」等が挙げられる。
 一般に、多官能チオール化合物の使用により、硬化組成物の硬化性、並びに硬化物の柔軟及び強靭性が改善される。一方で、多官能チオール化合物の使用量が多すぎると、硬化物のガラス転移温度が低下しやすい。従って、硬化性化合物100重量%中、多官能チオール化合物の含有量は、好ましくは2重量%以上、好ましくは40重量%以下、より好ましくは20重量%以下である。
 硬化物のガラス転移温度の低下を抑えつつ、硬化組成物の硬化性、並びに硬化物の柔軟性及び強靭性をより一層良好にする観点からは、上記多官能チオール化合物は、トリメルカプトプロピオン酸トリス(2-ヒドロキシエチル)イソシアヌレート、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6-トリオン、又はチオール基含有シルセスキオキサン化合物であることが好ましい。また、上記チオール基含有シルセスキオキサン化合物は、荒川化学工業製「コンポセランHBSQシリーズ」であることが好ましい。
 上記エポキシ化合物として、従来公知のエポキシ樹脂を使用できる。上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリグリシジルイソシアヌレート型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、エステル型エポキシ樹脂、及びエーテルエステル型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂の水添加物又は変性物を用いてもよい。硬化性組成物の変色を防止する観点からは、ビスフェノールA型エポキシ樹脂、脂環式エポキシ樹脂、トリグリシジルイソシアヌレート型エポキシ樹脂又はジシクロペンタジエン型エポキシ樹脂が好ましい。上記エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 本発明に係る硬化性組成物は、硬化剤を含んでいてもよい。本発明に係る硬化性組成物は、エポキシ化合物と硬化剤とを含んでいてもよい。該硬化剤としては、有機酸、アミン化合物、アミド化合物、ヒドラジド化合物、イミダゾール化合物、イミダゾリン化合物、フェノール化合物、ユリア化合物、ポリスルフィッド化合物及び酸無水物等が挙げられる。上記硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記有機酸としては、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、ヘキサヒドロフタル酸及びメチルヘキサヒドロフタル酸等が挙げられる。上記アミン化合物としては、エチレンジアミン、プロピレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、メタフェニレンジアミン、ジアミンジフェニルメタン及びジアミノジフェニルスルホン酸等が挙げられる。上記硬化剤として、これらのアミンアダクトを用いてもよい。
 上記アミド化合物としては、ジシアンジアミド及びポリアミド等が挙げられる。上記ヒドラジド化合物としては、ジヒドラジット等が挙げられる。上記イミダゾール化合物としては、メチルイミダゾール、2-エチル-4-メチルイミダゾール、エチルジイミダゾール、イソプロピルイミダゾール、2,4-ジメチルイミダゾール、フェニルイミダゾール、ウンデシルイミダゾール、ヘプタデシルイミダゾール及び2-フェニル-4-メチルイミダゾール等が挙げられる。上記イミダゾリン化合物としては、メチルイミダゾリン、2-エチル-4-メチルイミダゾリン、エチルイミダゾリン、イソプロピルイミダゾリン、2,4-ジメチルイミダゾリン、フェニルイミダゾリン、ウンデシルイミダゾリン、ヘプタデシルイミダゾリン及び2-フェニル-4-メチルイミダゾリン等が挙げられる。
 硬化性組成物の変色を防止する観点からは、上記硬化剤は、酸無水物であることが好ましい。上記酸無水物としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、無水ナジック酸、無水グルタル酸、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物、ジクロロコハク酸無水物、ベンゾフェノンテトラカルボン酸無水物及びクロレンディック酸無水物等が挙げられる。
 上記エポキシ化合物と上記硬化剤との配合比率は、特に限定されない。上記エポキシ化合物のエポキシ基1当量に対して、酸無水物当量は、好ましくは0.5当量以上、より好ましくは0.7当量以上、好ましくは1.5当量以下、より好ましくは1.2当量以下である。上記酸無水物の当量が上記下限以上であると、硬化物の透明性がより一層高くなる。上記酸無水物当量が上記上限以下であると、硬化物の耐湿性が高くなる。
 本発明に係る硬化性組成物は、硬化促進剤を含んでいてもよい。該硬化促進剤としては特に限定されず、例えば、第三級アミン、イミダゾール、第四級アンモニウム塩、第四級ホスホニウム塩、有機金属塩、リン化合物及び尿素系化合物等が挙げられる。なかでも、特に第三級アミン、イミダゾール又は第四級ホスホニウム塩が好ましい。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記エポキシ化合物100重量部に対して、上記硬化促進剤の含有量は、好ましくは0.05重量部以上、より好ましくは0.2重量部以上、好ましくは7.0重量部以下、より好ましくは3.0重量部以下である。上記硬化促進剤の含有量が上記下限以上であると、硬化性組成物を充分に硬化させることができる。上記硬化促進剤の含有量が上記上限以下であると、硬化物の透明性がより一層高くなる。
 本発明に係る硬化性組成物は、粘度を調整する目的などにより、必要に応じて、溶剤を含んでいてもよい。該溶剤としては、硬化性組成物中の成分と反応しない溶剤であることが好ましい。硬化性組成物の硬化反応を行う前にオーブン又はホットプレートでの加熱、並びに減圧チャンバー内での減圧により乾燥除去する必要があることから、揮発性の溶剤が好ましい。
 本発明に係る硬化性組成物は、必要性に応じて、耐候剤、酸化防止剤、熱安定剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤及び粘度調節剤等を含んでいてもよい。
 (透明複合シート)
 本発明に係る透明複合シートは、上記硬化性組成物を硬化させた硬化物と、該硬化物中に埋め込まれたガラス繊維とを有する。
 本発明に係る硬化性組成物をシート状にした後、加熱又は活性光線の照射によって、硬化性組成物を架橋及び硬化させることで、透明複合シートを得ることができる。
 上記ガラス繊維としては、ガラス繊維のチョップドストランド、ガラス繊維の織布及びガラス繊維の不織布等が挙げられる。上記ガラス繊維は、ガラス繊維の織布であることが好ましい。
 上記ガラス繊維の織布としては、例えば、断面が円形又は楕円形等であり、かつ断面最長径が3~10μm程度の長繊維(フィラメント)を、100~800本程度撚り合わせたヤーンを、経糸及び緯糸として用いて、これらの糸を交錯させるように織ることにより得られる。織り方としては、平織、綾織及び朱子織等が挙げられる。
 上記ガラス繊維の厚さは最も厚い部分で、通常10~500μmである。上記ガラス繊維の厚さは最も厚い部分で、15~350μmであることが好ましい。
 上記ガラス繊維は、Tガラス又はEガラスであることが好ましい。
 上記ガラス繊維は、Tガラスであることが好ましい。本発明に係る硬化性組成物とTガラスとの併用により、透明複合シートのヘイズ値をかなり小さくすることができる。また、該Tガラスは、ガラス繊維強化回路基板用の芯材として用いられている。繊維径、繊維束径、ガラスクロスとしての目付、織り密度及び厚さ等に関して、上記Tガラスは、種々の規格品が揃っている。特に、Tガラスは熱膨張係数が小さいことから、得られる透明複合シートの熱寸法安定性の観点から、Tガラスは好適に用いられる。
 上記ガラス繊維は、Eガラスであることも好ましい。本発明に係る硬化性組成物とEガラスとの併用により、透明複合シートのヘイズ値をかなり小さくすることができる。また、該Eガラスは、ガラス繊維強化回路基板用の芯材として広く用いられている。繊維径、繊維束径、ガラスクロスとしての目付、織り密度及び厚さ等に関して、上記Eガラスは、種々の規格品が揃っている。また、性能、コスト及び入手の容易性の観点から、Eガラスは好適に用いられる。
 上記ガラス繊維の引っ張り弾性率は、好ましくは5GPa以上、より好ましくは10GPa以上、好ましくは500GPa以下、より好ましくは200GPa以下である。上記引っ張り弾性率が上記下限以上であると、透明複合シートの強度が高くなる。
 本発明の透明複合シートの厚みは特に限定されない。本発明に係る透明複合シートの厚みは、20~1000μmであることが好ましい。透明複合シートの厚みが20μm以上であれば、表示装置用基材として十分な強度及び剛性を維持できる。透明複合シートの厚みが1000μm以下であると、硬化性組成物を硬化させる際の体積収縮が小さくなり、応力の残留による位相差が生じ難くなり、表示のコントラスト低下を引き起こし難くなる。さらに、透明複合シートの厚みが1000μm以下であると、透明複合シートが反り難くなり、さらに透明複合シートの厚みが均一になる。
 表示素子及び太陽電池の用途に好適に用いることができるので、本発明に係る透明複合シートの厚みは、より好ましくは25μm以上、より好ましくは200μm以下である。透明複合シートの厚みが上記下限以上及び上記上限以下であっても、耐熱性を十分に高めることができる。上記「厚み」は、平均厚みを示す。
 ガラスクロス及びガラス不織布などのガラス繊維布に関しては、1枚だけ用いてもよく、複数枚を重ねて用いてもよい。
 透明複合シートの厚みが1000μmを超える場合には、本発明に係る透明複合シートを得る際に、複数のシートに分けて該シートを積層した後に、硬化してもよい。さらに、シート化と硬化とを繰り返して、シートの積層体を得てもよい。
 本発明に係る透明複合シートの550nmにおける光線透過率は、好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上である。光透過率が90%以上であれば、例えば、液晶表示装置用基板又は有機EL表示装置基板等として透明複合シートを用いて画像表示装置を得た場合に、鮮明な表示品位の高い画像が得られる。上記光線透過率は、市販の分光光度計を用いて、波長550nmの全光線透過率を測定することによって求めることができる。
 本発明に係る透明複合シートのヘイズ値は、好ましくは10%以下、より好ましくは5%以下、特に好ましくは4%以下である。上記ヘイズ値は、JIS K7136に基づいて測定される。測定装置として、市販のヘイズメーターが用いられる。測定装置としては、例えば、東京電色社製「全自動ヘーズメーターTC-HIIIDPK」等が挙げられる。
 透明複合シートの寸法安定性を高める観点からは、本発明に係る透明複合シートの50~200℃における平均線膨張係数は、20ppm/℃以下であることが好ましい。
 本発明に係る透明複合シートに、表面平滑化層、ハードコート層又はガスバリア層を積層してもよい。
 上記表面平滑化層又はハードコート層を形成する際には、例えば、透明複合シート上に、既知の表面平滑化剤又はハードコート剤を塗布し、必要に応じて溶剤を除去するために乾燥する。次に、加熱又は活性光線の照射により、表面平滑化剤又はハードコート剤を硬化させる。
 透明複合シート上に表面平滑化剤又はハードコート剤を塗布する方法としては、特に制限されず、例えば、ロールコート法、スピンコート法、ワイヤバーコート法、ディップコート法、エクストルージョン法、カーテンコート法及びスプレーコート法等の従来公知の方法を採用できる。
 上記ガスバリア層としては特に限定はされず、例えば、アルミニウムなどの金属、SiO及びSiNなどの珪素化合物、酸化マグネシウム、酸化アルミニウム、並びに酸化亜鉛等の透明材料が使用可能である。なかでも、ガスバリア性、基材層への密着性及び透明性に優れているので、SiO及びSiNなどの珪素化合物を用いることが好ましい。
 上記ガスバリア層を形成する方法としては、特に制限されず、蒸着法及びスパッタリング法等の乾式法、並びにゾル-ゲル法等の湿式法等が挙げられる。なかでも、緻密でガスバリア性に優れ、かつ基材への密着性が良好なガスバリア層を形成する観点からは、スパッタリング法が特に好ましい。
 本発明に係る透明複合シートは、液晶表示素子用プラスチック基板、有機EL表示素子用プラスチック基板、太陽電池基板及びタッチパネル等に好適に用いられる。
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
 (実施例1)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)50重量部、及びε-カプロラクトン変性イソシアヌル酸トリス(2-アクリロイルオキシエチル)(式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物に相当する、新中村化学社製「A-9300-1CL」)50重量部に、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部を加え、100℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 ガラス繊維として、Tガラス繊維であるIPC#2013相当のガラスクロス(日東紡社製)を用意した。このガラスクロスを、70℃に加熱した硬化性組成物に浸漬し、超音波を照射しながら、ガラスクロスに硬化性組成物を含浸させた。その後、硬化性組成物を含浸したガラスクロスを引き上げて、離型処理されたガラス板上に乗せた。ガラス板上の硬化性組成物を含浸したガラスクロスを、厚さ100μmのPETフィルム(東洋紡績社製「コスモシャインA4100」)でカバーして、50℃に温度調節されたラミネーターを通過させて、厚みを均一にした。
 次に、ガラス板側より、高圧水銀灯にて2000mJ/cm(365nm)の紫外線を照射して硬化性組成物を硬化し、PETフィルム及びガラス板から硬化したシートを剥離して透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (実施例2)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)50重量部に、トリシクロデカンジメタノールジアクリレート(新中村化学社製「A-DCP」)50重量部と、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部とを加え、100℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例1と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (実施例3)
 ε-カプロラクトン変性イソシアヌル酸トリス(2-アクリロイルオキシエチル)(式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物に相当する、新中村化学社製「A-9300-1CL」)50重量部に、トリシクロデカンジメタノールジアクリレート(新中村化学社製「A-DCP」)50重量部と、2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部とを加え、100℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例1と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (実施例4)
 ε-カプロラクトン変性イソシアヌル酸トリス(2-アクリロイルオキシエチル)(式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物に相当する、新中村化学社製「A-9300-1CL」)100重量部に、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(チバ・ジャパン社製「イルガキュア184」)0.4重量部を加え、100℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例1と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (比較例1)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)100重量部に、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部を加え、100℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例1と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (実施例5)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)100重量部に、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部を加え、100℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例1と同様の操作及び条件で、加熱前の透明複合シートを得た後、さらに220℃のオーブン中で1時間加熱処理を行い透明複合シートを得た。加熱処理後の透明複合シートの厚さは80μmであった。
 (比較例2)
 トリシクロデカンジメタノールジアクリレート(新中村化学社製「A-DCP」)100重量部に、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部とを加え、撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、ラミネーターの温度を室温としたこと以外は実施例1と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (実施例6)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)48.5重量部、ε-カプロラクトン変性イソシアヌル酸トリス(2-アクリロイルオキシエチル)(式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物に相当する、新中村化学社製「A-9300-1CL」)48.5重量部、及び屈折率調整剤である9,9’-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(式(11)で表されるフルオレン骨格を有する(メタ)アクリレート化合物に相当する、新中村化学社製「A-BPEF」)3重量部に、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部を加え、100℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例1と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (実施例7)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)48重量部、ε-カプロラクトン変性イソシアヌル酸トリス(2-アクリロイルオキシエチル)(式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物に相当する、新中村化学社製「A-9300-1CL」)48重量部、及び屈折率調整剤である合成したビスフェノールフルオレンジエポキシアクリレート(式(12)で表されるフルオレン骨格を有する(メタ)アクリレート化合物に相当する)4重量部に、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部を加え、100℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例1と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (実施例8)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)47重量部、ε-カプロラクトン変性イソシアヌル酸トリス(2-アクリロイルオキシエチル)(式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物に相当する、新中村化学社製「A-9300-1CL」)47重量部、及び屈折率調整剤である合成したビスフェノールフルオレンジウレタンアクリレート(式(13)で表されるフルオレン骨格を有する(メタ)アクリレート化合物に相当する)6重量部に、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部を加え、100℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例1と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (実施例9)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)80重量部に、ジオキサングリコールジアクリレート(式(21)で表されるジオキサン骨格を有する(メタ)アクリレート化合物に相当する、新中村化学社製「A-DOG」)20重量部と、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部とを加え、100℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例1と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (実施例1~9及び比較例1,2の評価)
 a)屈折率
 離型処理された2枚のガラス板を用意した。この2枚のガラス板を100μmの間隔を隔てて、ガラス板の間に得られた硬化性組成物を挟み込んで、高圧水銀灯にて2000mJ/cm(365nm)のUV光を照射して、硬化性組成物を架橋及び硬化させた。その後、ガラス板から硬化物を剥離し、200℃のオーブン中で1時間加熱処理を行い、試験片(硬化物)を作製した。アッベ屈折計(アタゴ社製「NAR-1T」)を用いて、試験片の屈折率nD(ナトリウムD線(589nm)、25℃)を測定した。ガラス繊維の屈折率については、メーカー(日東紡)公称値を採用した。
 b)線膨張係数
 熱応力歪測定装置(セイコー電子社製「TMA/EXSTAR6000型」)を用いて、30℃から300℃まで10℃/分の速度で得られた透明複合シートを昇温した後、20℃/分の速度で30℃まで冷却した。その後、再度、30℃から300℃まで10℃/1分の速度で透明複合シートを昇温したときの50℃~200℃での平均線膨張係数を求めた。
 c)ガラス転移温度
 動的粘弾性測定装置(アイティー計測制御社製「DVA-200」)を用いて、30℃から300℃まで10℃/分の速度で得られた透明複合シートを昇温して、引張モードによる測定を行った。tanδのピーク温度をガラス転移温度とした。このガラス転移温度は、硬化性組成物を硬化させた硬化物のガラス転移温度に相当する。
 d)光線透過率
 分光光度計(島津製作所社製「UV-310PC」)を用いて、得られた透明複合シートの550nmにおける光線透過率を測定した。光線透過率が85%以上であると、透明性に優れている。
 e)ヘイズ値
 ヘイズメーター(東京電色社製「全自動ヘーズメーターTC-HIIIDPK」)を用いて、得られた透明複合シートのヘイズ値を測定した。ヘイズ値が5%以下であると、透明性に優れている。
 f)柔軟性
 半径の異なる丸棒に、得られた透明複合シートを巻きつけ、クラック、及び硬化物層とガラス繊維との界面の剥離を観察した。目視により、クラック及び硬化物層とガラス繊維との界面の剥離が生じなかった丸棒の最小の直径を柔軟性の値とした。クラック及び硬化物層とガラス繊維との界面の剥離が生じない丸棒の最小径は2mm以上であることが好ましく、4mm以上であることがより好ましい。
 評価結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000027
 (実施例10)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)70重量部に、9,9’-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(式(11)で表されるフルオレン骨格を有する(メタ)アクリレート化合物に相当する、新中村化学社製「A-BPEF」)30重量部と、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部とを加え、100℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 ガラス繊維として、Eガラス繊維であるIPC#2013相当のガラスクロス(日東紡社製)を用意した。このガラスクロスを、100℃に加熱した硬化性組成物に浸漬し、超音波を照射しながら、ガラスクロスに硬化性組成物を含浸させた。その後、硬化性組成物を含浸したガラスクロスを引き上げて、離型処理されたガラス板上に乗せた。ガラス板上の硬化性組成物を含浸したガラスクロスを、厚さ100μmのPETフィルム(東洋紡績社製「コスモシャインA4100」)でカバーして、70℃に温度調節されたラミネーターを通過させて、厚みを均一にした。
 次に、PETフィルム側より、高圧水銀灯にて2000mJ/cm(365nm)の紫外線を照射して、硬化性組成物を硬化させた。さらに、PETフィルム及びガラス板から硬化したシートを剥離し、200℃のオーブン中で1時間加熱処理を行い、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (実施例11)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)65重量部に、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド(大和化成社製「MBI-5100」)35重量部と、2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.5重量部とを加え、120℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例10と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは75μmであった。
 (実施例12)
 イソシアヌル酸トリス(2-アクリロイルオキシプロピル)60重量部に、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド(大和化成社製「MBI-5100」)40重量部と、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.5重量部とを加え、120℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例10と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは75μmであった。
 (実施例13)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)62重量部に、9,9’-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(新中村化学社製「A-BPEF」)28重量部と、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部とを加え、100℃に加温しながらに撹拌して溶解させ、溶液を得た。次いで、得られた溶液を70℃まで冷却し、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6-トリオン(昭和電工社製「カレンズMT NR1」)10重量部を加えて、撹拌し、混合して、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、含浸時の温度を70℃としたこと以外は実施例10と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは75μmであった。
 (実施例14)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)60重量部に、9,9’-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(新中村化学社製「A-BPEF」)25重量部と、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部とを加え、100℃に加温しながら撹拌して溶解させ、溶液を得た。次いで、得られた溶液を70℃まで冷却し、複数のチオール基を有するシルセスキオキサン化合物(荒川化学工業社製「コンポセランHBSQ101」)15重量部を加えて、撹拌し、混合して、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、含浸時の温度を70℃としたこと以外は実施例10と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (比較例3)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)60重量部に、9,9’-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(新中村化学社製「A-BPEF」)40重量部と、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部とを加え、100℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例10と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (比較例4)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)80重量部に、9,9’-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(新中村化学社製「A-BPEF」)20重量部と、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部とを加え、100℃に加温しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例10と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (比較例5)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)55重量部に、9,9’-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(新中村化学社製「A-BPEF」)25重量部と、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部とを加え、100℃に加温しながらに加熱しながら撹拌して溶解させ、溶液を得た。次いで、得られた溶液を70℃まで冷却し、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6-トリオン(昭和電工社製「カレンズMT NR1」)20重量部を加えて、撹拌し、混合して、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、含浸時の温度を70℃としたこと以外は実施例10と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは75μmであった。
 (実施例15)
 イソシアヌル酸トリス(2-アクリロイルオキシエチル)(新中村化学社製「A-9300」)50重量部に、9,9’-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(新中村化学社製「A-BPEF」)25重量部と、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部とを加え、100℃に加温しながらに加熱しながら撹拌して溶解させ、溶液を得た。次いで、得られた溶液を70℃まで冷却し、複数のチオール基を有するシルセスキオキサン化合物(荒川化学工業社製「コンポセランHBSQ101」)25重量部を加えて、撹拌し、混合して、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、含浸時の温度を70℃としたこと以外は実施例10と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (比較例6)
 2,2’-ビス[4-(アクリロイロキシポリエトキシ)フェニル]プロパン(新中村化学社製「ABE-300」)70重量部に、9,9’-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(新中村化学社製「A-BPEF」)30重量部と、光重合開始剤である2-メチル-1-[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(チバ・ジャパン社製「イルガキュア907」)0.2重量部とを加え、100℃に加温しながらに加熱しながら撹拌して、混合及び溶解し、硬化性組成物を調製した。
 得られた硬化性組成物を用いて、実施例10と同様の操作及び条件で、透明複合シートを得た。得られた透明複合シートの厚さは80μmであった。
 (実施例10~15及び比較例3~6の評価)
 実施例10~15及び比較例3~6について、実施例1~9及び比較例1,2と同様の評価項目について評価を実施した。
 評価結果を下記の表2に示す。
Figure JPOXMLDOC01-appb-T000028
 また、式(1)で表されるトリアジン骨格を有する(メタ)アクリレート化合物に相当するイソシアヌル酸トリス(2-アクリロイルオキシエチル)と、屈折率調整剤として式(11)で表されるフルオレン骨格を有する(メタ)アクリレート化合物に相当する9,9’-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレンとを用いて、これらの配合比率を変化させた硬化性組成物を用意した。イソシアヌル酸トリス(2-アクリロイルオキシエチル)と9,9’-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレンとの合計100重量%中のイソシアヌル酸トリス(2-アクリロイルオキシエチル)の配合比率(重量%)と、硬化物の屈折率nD及び硬化性組成物を用いて作製した透明複合シート(透明シート)のヘイズ値との関係を評価した。この結果を図1に示した。なお、図1では、実施例10、比較例3及び比較例4における評価結果が含まれている。硬化物の屈折率とヘイズ値とを良好にする観点からは、図1に示す結果から、イソシアヌル酸トリス(2-アクリロイルオキシエチル)と9,9’-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレンを用いる場合には、これらの合計100重量%中、イソシアヌル酸トリス(2-アクリロイルオキシエチル)の含有量は63重量%以上、78重量%以下であることが望ましいことがわかる。

Claims (23)

  1.  下記式(1)で表されるトリアジン骨格を有する(メタ)アクリレート化合物及び下記式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物の内の少なくとも一種を含み、
     硬化後の硬化物の589nmにおける屈折率が1.525以上、1.535以下であり、かつ該硬化物のガラス転移温度が200℃以上であるか、又は、硬化後の硬化物の589nmにおける屈折率が1.557以上、1.571以下であり、かつ該硬化物のガラス転移温度が200℃以上である、硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
    前記式(1)中、R1~R6はそれぞれ、水素原子又はメチル基を表し、n1~n3はそれぞれ、1又は2を表す。
    Figure JPOXMLDOC01-appb-C000002
     前記式(2)中、R1~R6はそれぞれ、水素原子又はメチル基を表し、n1とn2とn3との合計は平均で、0.5~3を表す。
  2.  硬化後の硬化物中にガラス繊維が埋め込まれて用いられる硬化性組成物であって、
     下記式(1)で表されるトリアジン骨格を有する(メタ)アクリレート化合物及び下記式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物の内の少なくとも一種を含み、
     硬化後の硬化物の589nmにおける屈折率が1.525以上、1.535以下であり、かつ該硬化物のガラス転移温度が200℃以上であるか、又は、硬化後の硬化物の589nmにおける屈折率が1.557以上、1.571以下であり、かつ該硬化物のガラス転移温度が200℃以上である、硬化性組成物。
    Figure JPOXMLDOC01-appb-C000003
     前記式(1)中、R1~R6はそれぞれ、水素原子又はメチル基を表し、n1~n3はそれぞれ、1又は2を表す。
    Figure JPOXMLDOC01-appb-C000004
     前記式(2)中、R1~R6はそれぞれ、水素原子又はメチル基を表し、n1とn2とn3との合計は平均で、0.5~3を表す。
  3.  前記式(1)で表されるトリアジン骨格を有する(メタ)アクリレート化合物と、前記式(2)で表されるトリアジン骨格を有する(メタ)アクリレート化合物とを含む、請求項1又は2に記載の硬化性組成物。
  4.  屈折率調整剤をさらに含む、請求項1~3のいずれか1項に記載の硬化性組成物。
  5.  前記屈折率調整剤として、ジシクロペンタニル骨格を有する(メタ)アクリレート化合物、フルオレン骨格を有する(メタ)アクリレート化合物、ジオキサン骨格を有する(メタ)アクリレート化合物又はビスマレイミド化合物を含む、請求項4に記載の硬化性組成物。
  6.  前記屈折率調整剤として、ジシクロペンタニル骨格を有する(メタ)アクリレート化合物、フルオレン骨格を有する(メタ)アクリレート化合物、又はジオキサン骨格を有する(メタ)アクリレート化合物を含む、請求項4に記載の硬化性組成物。
  7.  前記ジシクロペンタニル骨格を有する(メタ)アクリレート化合物が、下記式(3)で表されるジシクロペンタニル骨格を有する(メタ)アクリレート化合物である、請求項5又は6に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000005
     前記式(3)中、R11及びR12はそれぞれ、水素原子又はメチル基を表す。
  8.  前記屈折率調整剤が、前記式(3)で表されるジシクロペンタニル骨格を有する(メタ)アクリレート化合物である、請求項7に記載の硬化性組成物。
  9.  前記フルオレン骨格を有する(メタ)アクリレート化合物が、下記式(11)で表されるフルオレン骨格を有する(メタ)アクリレート化合物、下記式(12)で表されるフルオレン骨格を有する(メタ)アクリレート化合物、又は下記式(13)で表されるフルオレン骨格を有する(メタ)アクリレート化合物である、請求項5~7のいずれか1項に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000006
     前記式(11)中、R11~R14はそれぞれ、水素原子又はメチル基を表し、m1及びm2はそれぞれ、1又は2を表す。
    Figure JPOXMLDOC01-appb-C000007
     前記式(12)中、R11及びR12はそれぞれ、水素原子又はメチル基を表す。
    Figure JPOXMLDOC01-appb-C000008
     前記式(13)中、R11及びR12はそれぞれ、水素原子又はメチル基を表す。
  10.  前記屈折率調整剤が、前記式(11)で表されるフルオレン骨格を有する(メタ)アクリレート化合物、前記式(12)で表されるフルオレン骨格を有する(メタ)アクリレート化合物、又は前記式(13)で表されるフルオレン骨格を有する(メタ)アクリレート化合物である、請求項9に記載の硬化性組成物。
  11.  前記ジオキサン骨格を有する(メタ)アクリレート化合物が、下記式(21)で表される(メタ)アクリレート化合物である、請求項5、6、7又は9に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000009
     前記式(21)中、R11及びR12はそれぞれ、水素原子又はメチル基を表す。
  12.  前記屈折率調整剤が、前記式(21)で表されるジオキサン骨格を有する(メタ)アクリレート化合物である、請求項11に記載の硬化性組成物。
  13.  前記ビスマレイミド化合物が、下記式(31)で表されるビスマレイミド化合物である、請求項5、6、7、9又は11に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000010
     前記式(31)中、R21~R24はそれぞれ、水素原子又はメチル基を表し、R25及びR26はそれぞれ、水素原子、メチル基又はエチル基を表す。
  14.  前記屈折率調整剤が、前記式(31)で表されるビスマレイミド化合物である、請求項13に記載の硬化性組成物。
  15.  硬化後の硬化物の589nmにおける屈折率が1.525以上、1.535以下であり、かつ該硬化物のガラス転移温度が200℃以上である、請求項1~14のいずれか1項に記載の硬化性組成物。
  16.  硬化後の硬化物の589nmにおける屈折率が1.557以上、1.571以下であり、かつ該硬化物のガラス転移温度が200℃以上である、請求項1~14のいずれか1項に記載の硬化性組成物。
  17.  前記請求項1~16のいずれか1項に記載の硬化性組成物を硬化させた硬化物と、
     前記硬化物中に埋め込まれたガラス繊維とを有する、透明複合シート。
  18.  前記ガラス繊維が、Tガラス又はEガラスである、請求項17に記載の透明複合シート。
  19.  前記ガラス繊維がTガラスである、請求項18に記載の透明複合シート。
  20.  前記ガラス繊維がEガラスである、請求項18に記載の透明複合シート。
  21.  波長550nmにおける光線透過率が85%以上である、請求項17~20のいずれか1項に記載の透明複合シート。
  22.  50~200℃における平均線膨張係数が20ppm/℃以下である、請求項17~21のいずれか1項に記載の透明複合シート。
  23.  厚みが25~200μmである、請求項17~22のいずれか1項に記載の透明複合シート。
PCT/JP2011/068172 2010-08-11 2011-08-09 硬化性組成物及び透明複合シート WO2012020763A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137003339A KR20130096238A (ko) 2010-08-11 2011-08-09 경화성 조성물 및 투명 복합 시트
JP2011538775A JP4944277B2 (ja) 2010-08-11 2011-08-09 硬化物及び透明複合シート

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010180429 2010-08-11
JP2010-180429 2010-08-11
JP2010219458 2010-09-29
JP2010-219458 2010-09-29
JP2011-107091 2011-05-12
JP2011107091 2011-05-12
JP2011-134769 2011-06-17
JP2011134769 2011-06-17

Publications (1)

Publication Number Publication Date
WO2012020763A1 true WO2012020763A1 (ja) 2012-02-16

Family

ID=45567725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068172 WO2012020763A1 (ja) 2010-08-11 2011-08-09 硬化性組成物及び透明複合シート

Country Status (4)

Country Link
JP (1) JP4944277B2 (ja)
KR (1) KR20130096238A (ja)
TW (1) TW201211011A (ja)
WO (1) WO2012020763A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072316A (ja) * 2010-09-29 2012-04-12 Sekisui Chem Co Ltd 硬化性組成物及び透明複合シート
JP2014074082A (ja) * 2012-10-02 2014-04-24 Three Bond Co Ltd 光硬化性樹脂組成物
WO2014157665A1 (ja) * 2013-03-29 2014-10-02 日本化薬株式会社 エネルギー線硬化型樹脂組成物及びその硬化物
JP2014196387A (ja) * 2013-03-29 2014-10-16 日本化薬株式会社 エネルギー線硬化型樹脂組成物及びその硬化物
CN105017084A (zh) * 2014-04-28 2015-11-04 达兴材料股份有限公司 具有羟基的芴系化合物、感光性组合物及透明膜
CN111040155A (zh) * 2018-10-12 2020-04-21 陈崇贤 寡聚物与锂电池
CN114853799A (zh) * 2022-03-10 2022-08-05 吉林奥来德光电材料股份有限公司 一种用于薄膜封装的化合物、组合物及封装薄膜

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102023975B1 (ko) * 2012-03-16 2019-09-23 주식회사 다이셀 섬유 강화 복합 재료용 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
CN111836857A (zh) * 2018-03-28 2020-10-27 积水化学工业株式会社 树脂材料、叠层结构体及多层印刷布线板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920313A (ja) * 1982-07-28 1984-02-02 Mitsui Petrochem Ind Ltd 被覆用硬化型樹脂組成物
JPS61197614A (ja) * 1985-02-27 1986-09-01 Daicel Chem Ind Ltd 硬化性樹脂組成物
JPS6288156A (ja) * 1985-10-14 1987-04-22 Mitsubishi Chem Ind Ltd 光デイスク基板
JPH0258511A (ja) * 1987-12-08 1990-02-27 Kureha Chem Ind Co Ltd 光学材料の製造方法
JP2003131004A (ja) * 2001-10-23 2003-05-08 Dainippon Ink & Chem Inc フレネルレンズ用活性エネルギー線硬化型樹脂組成物及びフレネルレンズシート
WO2003046615A1 (fr) * 2001-11-30 2003-06-05 Nikon Corporation Composition precurseur de resine optique, resine a utilisation optique, element et article optiques
JP2003261645A (ja) * 2002-03-11 2003-09-19 Jsr Corp 光硬化性樹脂組成物および光学部材
JP2005154614A (ja) * 2003-11-27 2005-06-16 Mitsui Chemicals Inc 重合性組成物およびその用途
JP2006002010A (ja) * 2004-06-16 2006-01-05 Taiyo Ink Mfg Ltd 保護膜用熱硬化性組成物およびその硬化塗膜

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920313A (ja) * 1982-07-28 1984-02-02 Mitsui Petrochem Ind Ltd 被覆用硬化型樹脂組成物
JPS61197614A (ja) * 1985-02-27 1986-09-01 Daicel Chem Ind Ltd 硬化性樹脂組成物
JPS6288156A (ja) * 1985-10-14 1987-04-22 Mitsubishi Chem Ind Ltd 光デイスク基板
JPH0258511A (ja) * 1987-12-08 1990-02-27 Kureha Chem Ind Co Ltd 光学材料の製造方法
JP2003131004A (ja) * 2001-10-23 2003-05-08 Dainippon Ink & Chem Inc フレネルレンズ用活性エネルギー線硬化型樹脂組成物及びフレネルレンズシート
WO2003046615A1 (fr) * 2001-11-30 2003-06-05 Nikon Corporation Composition precurseur de resine optique, resine a utilisation optique, element et article optiques
JP2003261645A (ja) * 2002-03-11 2003-09-19 Jsr Corp 光硬化性樹脂組成物および光学部材
JP2005154614A (ja) * 2003-11-27 2005-06-16 Mitsui Chemicals Inc 重合性組成物およびその用途
JP2006002010A (ja) * 2004-06-16 2006-01-05 Taiyo Ink Mfg Ltd 保護膜用熱硬化性組成物およびその硬化塗膜

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072316A (ja) * 2010-09-29 2012-04-12 Sekisui Chem Co Ltd 硬化性組成物及び透明複合シート
JP2014074082A (ja) * 2012-10-02 2014-04-24 Three Bond Co Ltd 光硬化性樹脂組成物
WO2014157665A1 (ja) * 2013-03-29 2014-10-02 日本化薬株式会社 エネルギー線硬化型樹脂組成物及びその硬化物
JP2014193971A (ja) * 2013-03-29 2014-10-09 Nippon Kayaku Co Ltd エネルギー線硬化型樹脂組成物及びその硬化物
JP2014196387A (ja) * 2013-03-29 2014-10-16 日本化薬株式会社 エネルギー線硬化型樹脂組成物及びその硬化物
CN105017084A (zh) * 2014-04-28 2015-11-04 达兴材料股份有限公司 具有羟基的芴系化合物、感光性组合物及透明膜
CN111040155A (zh) * 2018-10-12 2020-04-21 陈崇贤 寡聚物与锂电池
CN114853799A (zh) * 2022-03-10 2022-08-05 吉林奥来德光电材料股份有限公司 一种用于薄膜封装的化合物、组合物及封装薄膜
CN114853799B (zh) * 2022-03-10 2023-12-26 吉林奥来德光电材料股份有限公司 一种用于薄膜封装的化合物、组合物及封装薄膜

Also Published As

Publication number Publication date
JP4944277B2 (ja) 2012-05-30
KR20130096238A (ko) 2013-08-29
JPWO2012020763A1 (ja) 2013-10-28
TW201211011A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
JP4944277B2 (ja) 硬化物及び透明複合シート
JP2011213821A (ja) 硬化組成物及び透明複合シート
TWI535567B (zh) Transparent composite sheet, laminated sheet, liquid crystal display element and transparent composite sheet
JP6485363B2 (ja) 透明樹脂積層体及び前面板
JP5595867B2 (ja) 透明フィルム
JP2015078310A (ja) プリプレグ
JP5580708B2 (ja) 硬化性組成物及び透明複合シート
JP5584553B2 (ja) 硬化性組成物及び透明複合シート
JP2004307845A (ja) 透明複合体組成物
CN110612324B (zh) 透明复合膜及包含其的挠性显示装置
WO2011149018A1 (ja) 透明フィルム
JP2013028776A (ja) 透明複合シート
JP4424044B2 (ja) 透明複合シート及びそれを用いた表示素子
JP2012219155A (ja) 透明樹脂複合材
CN112513180A (zh) 印刷电路板用树脂组合物、预浸料、层叠板、覆金属箔层叠板、印刷电路板和多层印刷电路板
TW201908371A (zh) 聚醯亞胺膜、積層體、顯示器用表面材料、觸控面板構件、液晶顯示裝置、及有機電激發光顯示裝置
JP2005225104A (ja) 透明複合基板の製造方法
JP4613492B2 (ja) 光学シート
KR20200110245A (ko) 수지 조성물
JP4701613B2 (ja) 光学シート
JP2011068020A (ja) 透明繊維強化樹脂シート
JP2006264196A (ja) 透明複合シートの製造方法
JP2010275552A (ja) 光学シート
KR20200019236A (ko) 광학 필름
JP2011068019A (ja) 透明繊維強化樹脂シート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011538775

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137003339

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816427

Country of ref document: EP

Kind code of ref document: A1