WO2012014780A1 - 双極型電極およびそれを用いた双極型二次電池並びに双極型電極の製造方法 - Google Patents

双極型電極およびそれを用いた双極型二次電池並びに双極型電極の製造方法 Download PDF

Info

Publication number
WO2012014780A1
WO2012014780A1 PCT/JP2011/066580 JP2011066580W WO2012014780A1 WO 2012014780 A1 WO2012014780 A1 WO 2012014780A1 JP 2011066580 W JP2011066580 W JP 2011066580W WO 2012014780 A1 WO2012014780 A1 WO 2012014780A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
electrode active
bipolar
negative electrode
Prior art date
Application number
PCT/JP2011/066580
Other languages
English (en)
French (fr)
Inventor
雅信 佐藤
太田 康雄
堀江 英明
成則 青柳
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2012526461A priority Critical patent/JP5573954B2/ja
Priority to US13/811,793 priority patent/US10283774B2/en
Priority to MX2013000832A priority patent/MX2013000832A/es
Priority to EP11812371.0A priority patent/EP2600461B1/en
Priority to RU2013108850/07A priority patent/RU2524572C1/ru
Priority to CN201180035559.2A priority patent/CN103004009B/zh
Priority to KR1020147025446A priority patent/KR101489129B1/ko
Priority to BR112013001937A priority patent/BR112013001937A2/pt
Priority to KR1020137001649A priority patent/KR20130030814A/ko
Publication of WO2012014780A1 publication Critical patent/WO2012014780A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a bipolar electrode, a bipolar secondary battery using the same, and a method for manufacturing the bipolar electrode.
  • the production amount of secondary batteries as drive sources for these electric vehicles has increased.
  • a bipolar secondary battery having a structure in which current collecting plates are arranged on the positive electrode and the negative electrode of a battery element having single cells stacked in series, as disclosed in JP 1997-23003A, for example.
  • JP 1997-23003A JP 1997-23003A
  • blocks at least a positive electrode material layer, a negative electrode material layer, and an electrolyte layer of this laminated body from external air is provided.
  • the present invention has been made in view of the above problems, and provides a bipolar electrode suitable for suppressing the warpage of the bipolar electrode, a bipolar secondary battery using the same, and a method of manufacturing the bipolar electrode. Objective.
  • the present invention provides a first active material layer formed to include a first active material on one surface of a current collector, and a first active material on the other surface of the current collector.
  • a bipolar electrode comprising a second active material layer formed to contain a second active material having a low compressive strength. Then, an additive material having a compressive strength greater than that of the second active material is included in the second active material layer.
  • FIG. 1 is a schematic cross-sectional view schematically showing the overall structure of a bipolar secondary battery showing an embodiment of the present invention.
  • FIG. 2A is an explanatory diagram showing a state before pressing a bipolar electrode in which a density adjusting additive is mixed with a negative electrode active material.
  • FIG. 2B is an explanatory diagram showing a state after pressing the bipolar electrode of FIG. 2A.
  • FIG. 3 is an explanatory view showing a state after pressing a bipolar electrode in which a negative electrode active material is mixed with a density adjusting additive having a large particle size.
  • FIG. 4 is an explanatory view showing a state after pressing of a bipolar electrode in which a density adjusting additive having an anisotropic shape is mixed with a negative electrode active material.
  • FIG. 1 is a schematic cross-sectional view schematically showing the overall structure of a bipolar secondary battery showing an embodiment of the present invention.
  • FIG. 2A is an explanatory diagram showing a state before pressing a bipolar electrode
  • FIG. 5 is an explanatory diagram showing a state after pressing a bipolar electrode in which a density adjusting additive usable as an active material is mixed with a negative electrode active material.
  • FIG. 6A is an explanatory diagram showing a state before pressing a bipolar electrode in which a density adjusting additive having the same mechanical characteristics as the press pressure-elongation relationship of the positive electrode active material layer is mixed with the negative electrode active material.
  • 6B is an explanatory view showing a state after pressing the bipolar electrode of FIG. 6A.
  • FIG. 7 is a characteristic diagram of elongation in the plane direction with respect to the pressing pressure of the positive and negative electrode active materials and the density adjusting additive.
  • FIG. 8A is a perspective view of a current collector in an example in which protrusions corresponding to the density adjusting additive are provided on the current collector.
  • FIG. 8B is an explanatory diagram showing a state after pressing of the bipolar electrode configured by the current collector of FIG. 8A.
  • FIG. 9A is an explanatory view showing a state before pressing a bipolar electrode according to a known technique.
  • FIG. 9B is an explanatory view showing a state after pressing the bipolar electrode of FIG. 9A.
  • a bipolar electrode of the present invention a bipolar secondary battery using the same, and a method of manufacturing the bipolar electrode will be described based on an embodiment.
  • the same reference numerals are used for the same members.
  • the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
  • a bipolar lithium ion secondary battery will be described as an example.
  • FIG. 1 shows a flat (stacked) lithium ion secondary battery (hereinafter simply referred to as a bipolar lithium ion secondary battery), which is a typical embodiment of a lithium ion secondary battery using the bipolar electrode of the present invention.
  • FIG. 2 is a schematic cross-sectional view schematically showing the entire structure of a secondary battery.
  • the bipolar lithium ion secondary battery 10 of the present embodiment has a structure in which a substantially rectangular battery element 17 in which a charge / discharge reaction actually proceeds is sealed inside a battery exterior material 20.
  • the battery element 17 of the bipolar secondary battery 10 of the present embodiment has an electrolyte layer 15 sandwiched between two or more bipolar electrodes 14, and the positive electrode active of adjacent bipolar electrodes 14.
  • the material layer 12 and the negative electrode active material layer 13 are opposed to each other with the electrolyte layer 15 interposed therebetween.
  • the bipolar electrode 14 has a structure in which the positive electrode active material layer 12 is provided on one surface of the current collector 11 and the negative electrode active material layer 13 is provided on the other surface.
  • the bipolar electrode 14 having the positive electrode active material layer 12 on one surface of the current collector 11 and the negative electrode active material layer 13 on the other surface is provided with the electrolyte layer 15.
  • a battery element 17 having a structure in which a plurality of layers are stacked via a battery is provided.
  • the adjacent positive electrode active material layer 12, electrolyte layer 15, and negative electrode active material layer 13 constitute one unit cell layer 16. Therefore, it can be said that the bipolar secondary battery 10 has a configuration in which the single battery layers 16 are laminated. Further, in order to prevent liquid junction due to leakage of the electrolytic solution from the electrolyte layer 15, a seal portion 21 is disposed on the periphery of the unit cell layer 16. By providing the seal portion 21, the adjacent current collectors 11 can be insulated from each other, and a short circuit due to contact between adjacent electrodes, that is, contact between the positive electrode active material layer 12 and the negative electrode active material layer 13 can be prevented.
  • the positive electrode side electrode 14a and the negative electrode side electrode 14b located in the outermost layer of the battery element 17 may not have a bipolar electrode structure.
  • the positive electrode active material layer 12 may be formed on only one surface of the positive electrode outermost layer current collector 11 a located in the outermost layer of the battery element 17.
  • the negative electrode active material layer 13 may be formed only on one side of the negative electrode side outermost layer current collector 11 b located in the outermost layer of the battery element 17.
  • the positive electrode current collector plate 18 and the negative electrode tab functioning also as the positive electrode tab on the positive electrode side outermost layer current collector 11a and the negative electrode side outermost layer current collector 11b at the upper and lower ends, respectively.
  • a functioning negative electrode current collector plate 19 is joined.
  • the positive electrode side outermost layer current collector 11 a may be extended to form the positive electrode current collector plate 18, and may be derived from a laminate sheet that is the battery exterior material 20.
  • the negative electrode side outermost layer current collector 11 b may be extended to form a negative electrode current collector plate 19, and similarly, a structure derived from a laminate sheet that is the battery outer packaging material 20 may be employed.
  • the bipolar lithium ion secondary battery 10 also has a structure in which the battery element 17 portion is sealed in the battery outer packaging material 20 under reduced pressure, and the positive electrode current collecting plate 18 and the negative electrode current collecting plate 19 are taken out of the battery outer packaging material 20. It is good. This is because such a structure can prevent external impact and environmental degradation during use.
  • the basic configuration of the bipolar lithium ion secondary battery 10 can be said to be a configuration in which a plurality of stacked unit cell layers 16 are connected in series.
  • the bipolar electrode 14 of the present invention used in the bipolar secondary battery 10 is composed of at least two layers in which the current collector 11 contains a polymer material.
  • the material of the current collector 11 is not particularly limited, and known materials can be used.
  • aluminum, stainless steel (SUS), or the like is preferably used as the material for the current collector 11.
  • the current collector 11 can also include a polymer material.
  • polyolefin polypropylene, polyethylene, etc.
  • polyester PET, PEN, etc.
  • polyimide polyimide
  • polyamide polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • the positive electrode active material layer 12 includes a positive electrode active material and functions as the positive electrode of the unit cell 26.
  • the positive electrode active material layer 12 can include a conductive additive, a binder, and the like in addition to the positive electrode active material.
  • a composite oxide of transition metal and lithium that is also used in a solution-type lithium ion battery can be used.
  • a lithium-transition metal composite oxide is preferable.
  • a Li—Mn composite oxide such as lithium manganate (LiMn 2 O 4 ) or a Li—Ni composite such as lithium nickelate (LiNiO 2 ) is preferable.
  • An oxide is mentioned.
  • two or more positive electrode active materials may be used in combination.
  • the negative electrode active material layer 13 includes a negative electrode active material and functions as the negative electrode of the unit cell 26.
  • the negative electrode active material layer 13 can include a conductive additive, a binder, and the like in addition to the negative electrode active material.
  • a negative electrode active material that is also used in a solution-type lithium ion battery can be used.
  • a carbon material is preferable.
  • the carbon material include graphite-based carbon materials (hereinafter simply referred to as graphite) such as natural graphite, artificial graphite, and expanded graphite, carbon black, activated carbon, carbon fiber, coke, soft carbon, and hard carbon. More preferably, graphite such as natural graphite, artificial graphite, and expanded graphite.
  • natural graphite for example, scaly graphite, massive graphite and the like can be used.
  • the artificial graphite massive graphite, vapor-grown graphite, flaky graphite, and fibrous graphite can be used.
  • particularly preferable materials are flake graphite and massive graphite. The use of flaky graphite or massive graphite is particularly advantageous for reasons such as high packing density. In some cases, two or more negative electrode active materials may be used in combination.
  • the positive electrode active material layer 12 uses a lithium-transition metal composite oxide as a positive electrode active material
  • the negative electrode active material layer 13 uses carbon or a lithium-transition metal composite oxide as a negative electrode active material.
  • a battery having excellent capacity and output characteristics can be configured.
  • the negative electrode active material is not limited to carbon or a lithium-transition metal composite oxide, and any negative electrode active material can be used as long as it is made of a material capable of occluding and releasing lithium.
  • a form containing an element that can be alloyed with lithium can be used.
  • elements that can be alloyed with lithium include silicon, germanium, tin, lead, aluminum, indium, and zinc.
  • an active material containing such an element as a simple substance, an oxide, or a carbohydrate as the negative electrode active material, the capacity of the battery can be increased.
  • only 1 type of these elements may be contained in a negative electrode active material, and 2 or more types may be contained in a negative electrode active material.
  • silicon or tin is contained in the negative electrode active material, and it is most preferable that silicon is contained.
  • the negative electrode active material containing an element that can be alloyed with lithium include, for example, metal compounds, metal oxides, lithium metal compounds, lithium metal oxides (including lithium-transition metal composite oxides), and the like. It is done.
  • the negative electrode active material in the form of a metal compound include LiAl, Li 4 Si, Li 4.4 Pb, Li 4.4 Sn, and the like.
  • the negative electrode active material in the form of metal oxide SnO, SnO 2 , GeO, GeO 2 , In 2 O, In 2 O 3 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , SiO, ZnO etc. are mentioned.
  • negative electrode active materials may be included in the negative electrode active material layer 15, or two or more types may be included in the negative electrode active material layer 15.
  • Li 4 Si, Li 4.4 Sn, SnO, SnO 2 and SiO are preferably used as the negative electrode active material, and SiO is particularly preferably used.
  • the electrolyte layer 15 is a layer containing a polymer having ion conductivity or a liquid electrolyte.
  • the electrolyte of the present embodiment is a polymer gel electrolyte, which is used as a polymer gel electrolyte by chemical crosslinking or physical crosslinking after impregnating a separator 22 as a base material with a pregel solution.
  • the separator 22 has a melting point of about 120 ° C.
  • the electrolyte solvent has a boiling point of about 140 ° C.
  • the seal portion 21 is for sealing the battery element 17.
  • the seal portion 21 is provided on the outer peripheral portion of the unit cell 26, and sealing the battery element 17 prevents the ionic conductivity of the electrolyte from being lowered. Further, when a liquid or semi-solid gel electrolyte is used, liquid junction due to liquid leakage is prevented.
  • the seal precursor for example, a rubber-based resin that is in close contact with the current collector 11 by being subjected to pressure deformation, or an olefin-based resin that is in close contact with the current collector 11 by being heat-pressed and thermally fused.
  • Possible resins can be preferably used.
  • the rubber-based resin is not particularly limited.
  • a rubber resin selected from the group consisting of silicon rubber, fluorine rubber, olefin rubber, and nitrile rubber is used.
  • These rubber-based resins are excellent in sealing properties, alkali resistance, chemical resistance, durability, weather resistance, heat resistance, etc., and should be maintained for a long period of time without degrading their excellent performance and quality even in the use environment. Can do.
  • the resin that can be heat-sealed is not particularly limited as long as it can exhibit an excellent sealing effect as the seal portion 21 under any use environment of the battery element 17.
  • it is a resin selected from the group consisting of silicon, epoxy, urethane, polybutadiene, olefinic resins (polypropylene, polyethylene, etc.), and paraffin wax.
  • These heat-sealable resins are excellent in sealability, alkali resistance, chemical resistance, durability, weather resistance, heat resistance, etc., and even in the usage environment, these excellent performance and quality are not deteriorated for a long time. Can be maintained.
  • the positive and negative current collecting plates 18 and 19 are for taking out the electric power generated by the battery element 17 to the outside of the bipolar secondary battery 10.
  • the material of the positive electrode and negative electrode current collector plates 18 and 19 is not particularly limited, and known materials can be used. For example, aluminum, stainless steel (SUS), a polymer material, or the like is preferably used.
  • the exterior material 20 is for shielding the inside of the battery of the bipolar secondary battery 10 from the outside air and protecting the inside of the battery.
  • the packaging material 20 is formed of a flexible sheet-like material that can be easily deformed while not being damaged by a pressure difference between the inside of the battery and the outside of the battery. It is desirable that the sheet-like material does not transmit electrolyte or gas, has electrical insulation, and is chemically stable with respect to materials such as electrolyte.
  • a laminate film polyethylene, polypropylene, polycarbonate or the like is preferably used.
  • the laminate film is obtained by coating a metal foil made of a metal such as aluminum, stainless steel, nickel, copper, or an alloy containing the metal with an insulating synthetic resin film such as a polypropylene film.
  • the battery element 17 of the bipolar secondary battery 10 is manufactured as follows. First, the bipolar electrode 14 in which the positive electrode active material layer 12 is formed on one surface of the current collector 11 and the negative electrode active material layer 13 is formed on the other surface, and the electrolyte layer 15 including the separator 22 are uncured.
  • the seal portions 21 are arranged on the outer peripheral portion and are alternately stacked to form a stacked body. And the positive electrode side electrode 14a and the negative electrode side electrode 14b which formed only the positive electrode active material layer 12 or the negative electrode active material layer 13 in the one or other surface of the electrical power collector 11 are arrange
  • a paste containing a positive electrode active material or the like is usually applied to one surface of the current collector 11 and dried, and the paste containing the negative electrode active material or the like is used as the other of the current collector 11. Apply to the surface and dry. Next, the density of the electrode is adjusted by pressing the electrode structure from both sides so as to improve the smoothness of the surface and the uniformity of the thickness and to obtain a desired film thickness.
  • Such a phenomenon occurs in the bipolar lithium ion secondary battery 10 for an electric vehicle, since a higher capacity and higher energy density are required, so that the active material layer to be applied becomes thicker and stress generated by pressing. Becomes larger and becomes more prominent. That is, high filling of the positive electrode active material layer 12 is required, and the negative electrode active material layer 13 is crushed too much by the press pressure for high filling of the positive electrode active material layer 12.
  • the capacity retention rate of the battery element 17 may be reduced, and the durability against vibration may be reduced.
  • stacking process as the bipolar secondary battery 10 may deteriorate, or the reliability of the seal part 21 may be reduced.
  • the active material layer including the active material having a low compressive strength among the positive and negative electrodes includes a material having a strength higher than the compressive strength of the active material. It was.
  • FIG. 2 shows a manufacturing process of the bipolar electrode 14 in this embodiment
  • FIG. 2A shows a state before the positive and negative electrode active material layers 12 and 13 are pressed
  • FIG. 2B shows a state after the press. is there.
  • the paste containing the positive electrode active material or the like is applied to one surface of the current collector 11 and dried, and the paste containing the negative electrode active material or the like is applied to the other surface of the current collector 11.
  • the dried state is shown.
  • the paste containing the negative electrode active material contains a density adjusting additive 25 made of hard particles that are not easily crushed, and N-methylpyrrolidone (NMP) as a slurry viscosity adjusting solvent is contained.
  • NMP N-methylpyrrolidone
  • the positive and negative electrode active material layers 12 and 13 are pressed from both sides of the bipolar electrode 14 shown in FIG. 2A after the positive and negative electrode active material layers 12 and 13 are dried to adjust the density (see FIG. 2B). .
  • the density adjustment by this press is preferably crushed as much as possible in order to increase the energy density.
  • the positive and negative electrode active material layers 12 and 13, particularly the negative electrode active material layer 13 are crushed too much, the gaps between the active materials are filled, the overvoltage increases, lithium is generated, and the life is shortened. For example, in the case of graphite, if the amount exceeds 1.6 g / cc, the life is reduced.
  • the pressing operation may be either a cold press roll method or a hot press roll method.
  • a hot-rolling method if an electrolyte supporting salt or a polymerizable polymer is contained in the active material layer, it is desirable to carry out at a temperature below which they decompose.
  • the roll press machine is not particularly limited, and a conventionally known roll press machine such as a calendar roll can be appropriately used. However, other conventionally known press devices and press techniques such as a flat plate press may be used as appropriate. Conditions such as pressing pressure and time vary depending on the material and the desired film thickness. In the present embodiment, when the optimum pressing pressure of the positive electrode active material layer 12 is, for example, a linear pressure of 60 to 350 t / m, the density adjustment by the press described above is executed at this linear pressure.
  • the negative electrode active material layer 13 includes hard particles that are not easily crushed as the density adjusting additive 25 contained in the paste, the negative electrode active material layer 13 can be hardly crushed even during pressing for density adjustment.
  • the thickness of the negative electrode active material layer 13 with respect to the press pressure is adjusted. Can do. For this reason, even if it presses with a high press pressure for the high filling of the positive electrode side active material layer, the thickness of the negative electrode active material layer 13 can be kept at the optimal design thickness with the best characteristics.
  • the warpage of the bipolar electrode 14 after pressing can be suppressed, the decrease in capacity retention of the battery element 17 can be suppressed, and the decrease in durability against vibration can also be suppressed.
  • stacking process as the bipolar secondary battery 10 improves, and the reliability of the seal part 21 can also be improved.
  • Examples of the density adjusting additive 25 made of hard particles that are not easily crushed include alumina particles. Moreover, particles such as titanium dioxide (TiO 2 ) and magnesium oxide (MgO) can also be used. For example, when the optimum design value of the thickness of the negative electrode active material layer 13 is 100 ⁇ m, particles having a volume particle size distribution of D90: 30 ⁇ m and D50: 20 ⁇ m are dispersed in NMP as a slurry viscosity adjusting solvent at 5-8 wt%. The negative electrode slurry can be used.
  • the hard particles that are not easily crushed as the density adjusting additive 25 may have a maximum particle size substantially equal to the optimum thickness of the electrode active material layer on the crushed side. In this way, even if the amount of the additive is reduced, the effect of keeping the thickness of the negative electrode active material layer 13 at the optimum design thickness with the best characteristics can be exhibited.
  • the particle size of the alumina particles as the density adjusting additive 25 made of hard particles that are hard to be crushed is, for example, when the optimum design value of the thickness of the negative electrode active material layer 13 is 100 ⁇ m, the volume particle size distribution D90: 90 ⁇ m and D50: 60 ⁇ m can be used.
  • the thickness of the negative electrode active material layer 13 can be set to 100 ⁇ m with a small content (5 wt%) in the slurry.
  • the additive has a shape such as an anisotropic cylinder, cone, rectangular parallelepiped, etc. Therefore, it can also be set as the optimal thickness of the electrode active material layer by the side which is easy to be crushed.
  • shapes such as cylinders, cones, and rectangular parallelepipeds having anisotropy can be obtained by electrolytic deposition of copper Cu in a state of masking with a masking tape having holes.
  • Hard particles that are hard to collapse such as cylinders, cones, and cuboids with such anisotropy include those that fall down and have short sides, but the thickness can be adjusted by many standing long sides. . In this case, even if the amount of the additive is further reduced, the effect of keeping the thickness of the negative electrode active material layer 13 at the optimum design thickness with the best characteristics can be exhibited.
  • a material that can be used as an active material can be used.
  • the additive itself is an active material that can be charged and discharged, charging and discharging loss can be eliminated.
  • a hard hard carbon material can be considered.
  • Silica (SnO 2 ) particles such as silicon (Si) and silicon oxide (SiO) can also be used.
  • the slurry viscosity is adjusted at 5 wt%.
  • a negative electrode slurry dispersed in NMP can be used as a solvent.
  • an additive having the same mechanical characteristics as the press pressure-elongation relationship of the electrode active material layer on the side that is not easily crushed, that is, the positive electrode active material layer 12 is crushed. It can also be added to the easy active material layer, that is, the negative electrode active material layer 13.
  • the reason why the bipolar electrode 14 is warped is that, as shown in FIG. 9A, the positive electrode active material layer 12 and the negative electrode active material layer 13 have different elongation amounts during pressing. Then, the active material layer with the larger amount of elongation tries to cancel the displacement difference to the side of the non-elongating active material layer, so that internal stress is applied and warping occurs as shown in FIG. 9B.
  • an additive having mechanical properties of press pressure-elongation equivalent to that of the active material of the electrode active material layer that is not easily crushed is added to the electrode active material layer side that is easily crushed.
  • the elongation of the additive becomes the rate-determining rate on the side of the active material layer that does not stretch, and the warpage is suppressed as shown in FIG. 6B.
  • the handling property in the assembly process of the bipolar secondary battery 10 can be improved, and the reliability of the sealing material to be laminated can be improved.
  • the particle size is, for example, volume particle size distribution D90: 80 ⁇ m, D50: 60 ⁇ m, 5 wt%, and NMP as the slurry viscosity adjusting solvent.
  • a dispersed negative electrode slurry can be used.
  • FIG. 7 shows the elongation characteristics in the surface direction on the positive electrode active material layer 12 side with respect to the press pressure, the elongation characteristics in the surface direction of the negative electrode active material layer 13, and the elongation characteristics in the surface direction of TiO 2 alone as an additive. .
  • the amount of elongation in the plane direction of TiO 2 and the amount of elongation in the surface direction of LiNiO 2 were both about 1%, and no electrode warping occurred.
  • an additive having a mechanical property of press pressure-elongation that is less likely to be crushed than the active material of the electrode active material layer that is not easily crushed may be added to the electrode active material layer side that is easily crushed. Even in this case, the press-elongation mechanical characteristics of the positive electrode active material layer 12 and the negative electrode active material layer 13 become closer, and the difference in elongation rate when pressed is reduced. In particular, by adding an additive that is less likely to be crushed, the amount of addition necessary to balance the strength of both sides of the current collector 11 can be reduced.
  • the embodiment shown in FIG. 8 has a configuration in which a number of hard protrusions that are hard to be crushed are provided on the side of the current collector on which the negative electrode active material layer is formed, and are included in the formed negative electrode active material layer. is there.
  • symbol is attached
  • the current collector 11 to be used is subjected to high-temperature press processing on a conductive filler-containing resin film by a cylindrical embossing roll (for example, cylindrical ⁇ 2, 5 mm pitch, depth: 90 ⁇ m).
  • a cylindrical embossing roll for example, cylindrical ⁇ 2, 5 mm pitch, depth: 90 ⁇ m.
  • many embossing protrusions 26 are provided in the side in which the negative electrode active material layer 13 is formed.
  • a positive electrode active material for example, LiNiO 2 powder is mixed with PVDF as a binder and carbon powder as a conductive additive. Then, a positive electrode slurry is prepared by dispersing in NMP as a slurry viscosity adjusting solvent, and applied to the surface of the current collector 11 where there are no embossed protrusions and dried to form the positive electrode active material layer 12.
  • NMP a slurry viscosity adjusting solvent
  • a negative electrode active material for example, graphite powder is mixed with PVDF as a binder and dispersed in NMP as a slurry viscosity adjusting solvent to prepare a negative electrode slurry. And it apply
  • the thickness of the negative electrode active material layer 13 after each press is regulated by the height of a large number of emboss projections 26 formed on the current collector 11, for example, 90 ⁇ m, and can be, for example, 100 ⁇ m.
  • the negative electrode active material layer 13 includes a large number of hard embossing protrusions 26 provided on the current collector 11 that are hard to be crushed. Therefore, even during pressing for density adjustment, It can be hard to be crushed. For this reason, even if it presses with a high press pressure for the high filling of the positive electrode side active material layer, the thickness of the negative electrode active material layer 13 can be kept at the optimal design thickness with the best characteristics. Accordingly, it is possible to prevent the positive electrode active material layer 12 and the negative electrode active material layer 13 from being different in elongation during pressing as a cause of warping of the bipolar electrode 14.
  • a bipolar electrode 14 including, for example, a negative electrode active material layer 13 as a second active material layer formed to include a second active material having a compressive strength lower than that of the material. Then, the density adjusting additive 25 as an additive material having a compressive strength larger than that of the second active material is included in the second active material layer.
  • the second active material layer can suppress the amount of crushing during pressing by an additive material having a high compressive strength. Therefore, because of the high filling of the positive electrode active material layer side 12, even if the bipolar electrode 14 is pressed from both sides with a high pressing pressure, the difference in elongation ratio of the second active material layer to the first active material layer is reduced. Can be reduced. Thereby, the stress difference which arises in the active material layers 12 and 13 of the front and back of the collector 11 can be made small, and the curvature of the bipolar electrode 14 can be suppressed. As a result, a decrease in the capacity retention rate of the battery element 17 can be suppressed, and a decrease in durability against vibration can also be suppressed. Moreover, the handling at the time of the lamination
  • the bipolar electrode 14 according to any one of (a) to (d) is arranged in a single or plural layers with the seal portion 21 arranged on the outer peripheral portion, and the positive electrode active material layer is formed only on one side at both ends of the laminate.
  • the battery element 17 can be formed by laminating the current collectors 11 a and 11 b provided with the anode 12 and the negative electrode active material layer 13. In this battery element 17, since the warpage of the bipolar electrode 14 is suppressed, a decrease in capacity retention rate of the battery element 17 can be suppressed, and a decrease in durability against vibration can also be suppressed.
  • stacking process as the bipolar secondary battery 10 can be improved, and the manufacturing cost of the battery element 17 can be reduced. Further, since the warpage of the bipolar electrode 14 is suppressed, the reliability of the sealing performance of the seal portion 21 disposed on the outer peripheral portion can be improved.
  • (G) By setting the particle size of the density adjusting additive 25 as an additive material having a compressive strength greater than the compressive strength of the second active material to be equal to the design value of the thickness of the second active material layer
  • the thickness of the second active material layer after the density adjustment of the positive and negative electrode active material layers 12 and 13 by pressing can be set to a thickness that approximates the design value.
  • the amount of additive material to be mixed with the second active material can be reduced.
  • the second active material layer of the current collector 11 is used as a material contained in the second active material layer in order to suppress the amount of collapse of the second active material layer during pressing.
  • a large number of embossed protrusions 26 as hard protrusions having a height equal to the design value and not easily crushed are provided on the formed side.
  • the bipolar electrode 14 when the bipolar electrode 14 is pressed from both sides with a high pressing pressure, the difference in the elongation ratio of the second active material layer to the first active material layer is reduced, so that the current on the front and back sides of the current collector 11 is reduced.
  • the stress difference generated in the material layers 12 and 13 can be reduced, and the warpage of the bipolar electrode 14 can be suppressed. Therefore, a decrease in the capacity retention rate of the battery element 17 can be suppressed, and a decrease in durability against vibration can also be suppressed.
  • the bipolar electrode 14 without a curvature can be formed, without changing a positive / negative electrode active material at all.
  • the hard protrusions that are provided on the current collector 11 and have a height equal to the design value and are not easily crushed are formed by using, for example, a cylindrical embossing roll (cylinder ⁇ 2, 5 mm pitch, depth: 90 ⁇ m). It can be easily formed by high-temperature pressing.
  • the bipolar secondary battery 10 and the bipolar electrode 14 of the present invention will be described using each example.
  • the present invention is not limited at all by the embodiments.
  • the positive electrode active material layer 12 was prepared in the following manner. That is, slurry of LiNiO 2 powder (active material, cumulative particle size distribution 50%: 10 ⁇ m, 10%: 2 ⁇ m), PVDF (binder), carbon powder (conducting aid) at 90: 5: 5 (weight ratio), respectively.
  • a positive electrode slurry was prepared by dispersing in NMP as a viscosity adjusting solvent, applied on a conductive filler-containing resin film as a current collector 11 with a die coater, and a positive electrode active material layer 12 was obtained.
  • the compressive strength of the positive electrode active material layer 12 thus obtained is 1600-2400 kg / cm 2 . The reason why the compressive strength varies is due to the difference in the particle size of the active material. The same applies to graphite, hard carbon, and silicon described later.
  • the negative electrode active material layer 13 was prepared in the following manner. That is, graphite powder (active material, cumulative particle size distribution 50%: 20 ⁇ m, 10%: 5 ⁇ m, compressive strength 480-720 kg / cm 2 ), PVDF (binder), alumina as a density adjusting additive 25 (volume particle size distribution) D90: 30 ⁇ m, D50: 20 ⁇ m) are dispersed in NMP as a slurry viscosity adjusting solvent at a ratio of 90: 5: 5 (weight ratio), respectively, and a negative electrode slurry is prepared and the positive electrode active material layer 12 is formed.
  • a bipolar electrode 14 of the bipolar lithium ion secondary battery 10 shown in FIG. 2 was obtained by applying it on the opposite side of the film with a die coater and drying it.
  • the optimum pressing pressure of the positive electrode active material layer 12 is a linear pressure of 60 to 350 t / m
  • the positive electrode active material layer 12 and the negative electrode active material layer 13 were simultaneously pressed by this linear pressure using a roll press.
  • the thickness of each active material layer after pressing was 100 ⁇ m for the positive electrode and 90 ⁇ m for the negative electrode.
  • the optimum design value was 100 ⁇ m.
  • a bipolar secondary battery 10 was prepared according to the following procedure.
  • a gel polymer electrolyte layer 15 was obtained by immersing a pregel solution consisting of 1%, 1.0M LiBF4, and a polymerization initiator (BDK), sandwiching it in a quartz glass substrate and irradiating with ultraviolet rays for 15 minutes to crosslink the precursor.
  • BDK polymerization initiator
  • the positive electrode active material layer 12 was prepared in the same manner as in Example 1. Moreover, the negative electrode active material layer 13 was created in the following manner. That is, graphite powder (active material, cumulative particle size distribution 50%: 20 ⁇ m, 10%: 5 ⁇ m), PVDF (binder), and alumina (volume particle size distribution D90: 30 ⁇ m, D50: 20 ⁇ m) as the density adjusting additive 25.
  • a negative electrode slurry was prepared by dispersing in NMP as a slurry viscosity adjusting solvent at a weight ratio of 85: 7: 8, respectively, and the positive electrode active material layer 12 was formed on the opposite side of the conductive filler-containing resin film with a die coater.
  • the positive electrode active material layer 12 and the negative electrode active material layer 13 were simultaneously pressed using a roll press machine with the same linear pressure as in Example 1.
  • the thickness of each active material layer after pressing was 100 ⁇ m for the positive electrode and 105 ⁇ m for the negative electrode.
  • the optimum design value was 105 ⁇ m.
  • a bipolar secondary battery 10 was formed in the same manner as in Example 1.
  • the positive electrode active material layer 12 was prepared in the same manner as in Example 1. Moreover, the negative electrode active material layer 13 was created in the following manner. That is, graphite powder (active material, cumulative particle size distribution 50%: 20 ⁇ m, 10%: 5 ⁇ m), PVDF (binder), and alumina (volume particle size distribution D90: 90 ⁇ m, D50: 60 ⁇ m) as additive 25 for density adjustment.
  • a negative electrode slurry is prepared by dispersing in NMP as a slurry viscosity adjusting solvent at a ratio of 90: 5: 5 (weight ratio), and a positive electrode active material layer 12 is formed on the opposite side of the conductive filler-containing resin film by a die coater.
  • the positive electrode active material layer 12 and the negative electrode active material layer 13 were simultaneously pressed using a roll press machine with the same linear pressure as in Example 1.
  • the thickness of each active material layer after pressing was 100 ⁇ m for the positive electrode and 100 ⁇ m for the negative electrode.
  • the optimum design value was 100 ⁇ m.
  • a bipolar secondary battery 10 was formed in the same manner as in Example 1.
  • the positive electrode active material layer 12 was prepared in the same manner as in Example 1. Moreover, the negative electrode active material layer 13 was created in the following manner. That is, graphite powder (active material, cumulative particle size distribution 50%: 20 ⁇ m, 10%: 5 ⁇ m), PVDF (binder), hard carbon additive (volume particle size distribution D90: 80 ⁇ m, D50: density adjusting additive 25) 60 ⁇ m, compressive strength 1440-2160 kg / cm 2 ) is dispersed in NMP as a slurry viscosity adjusting solvent at a ratio of 90: 5: 5 (weight ratio), respectively, and a negative electrode slurry is prepared and the positive electrode active material layer 12 is formed.
  • graphite powder active material, cumulative particle size distribution 50%: 20 ⁇ m, 10%: 5 ⁇ m
  • PVDF binder
  • hard carbon additive volume particle size distribution D90: 80 ⁇ m, D50: density adjusting additive 25
  • compressive strength 1440-2160 kg / cm 2 is dispersed in NMP as a slurry
  • the bipolar electrode 14 of the bipolar lithium ion secondary battery 10 shown in FIG. 5 was obtained by applying and drying on the opposite side of the filler-containing resin film with a die coater. Next, the positive electrode active material layer 12 and the negative electrode active material layer 13 were simultaneously pressed using a roll press machine with the same linear pressure as in Example 1. The thickness of each active material layer after pressing was 100 ⁇ m for the positive electrode and 90 ⁇ m for the negative electrode. The optimum design value was 90 ⁇ m. Next, a bipolar secondary battery 10 was formed in the same manner as in Example 1.
  • Example 5 First, as the current collector 11 to be used, high-temperature press processing was performed on the conductive filler-containing resin film with a cylindrical embossing roll (for example, cylindrical ⁇ 2, 5 mm pitch, depth: 90 ⁇ m), as shown in FIG. 8A. In addition, a large number of embossed protrusions 26 are provided on the side where the negative electrode active material layer 13 is formed.
  • a cylindrical embossing roll for example, cylindrical ⁇ 2, 5 mm pitch, depth: 90 ⁇ m
  • the positive electrode slurry prepared in the same manner as in Example 1 was applied on a surface of the conductive filler-containing resin film that had not been embossed with a die coater and dried to prepare a positive electrode active material layer 12.
  • the negative electrode active material layer 13 was prepared in the following manner. That is, graphite powder (active material, cumulative particle size distribution 50%: 20 ⁇ m, 10%: 5 ⁇ m) and PVDF (binder) are each dispersed in NMP as a slurry viscosity adjusting solvent at a ratio of 95: 5 (weight ratio).
  • the bipolar lithium ion secondary battery 10 shown in FIG. 8B is coated with a die coater on the opposite embossed surface of the conductive filler-containing resin film after forming the positive electrode active material layer 12 and dried.
  • the bipolar electrode 14 was obtained.
  • Example 2 the positive electrode active material layer 12 and the negative electrode active material layer 13 were simultaneously pressed using a roll press machine with the same linear pressure as in Example 1.
  • the thickness of each active material layer after pressing was 100 ⁇ m for the positive electrode and 100 ⁇ m for the negative electrode.
  • the optimum design value was 100 ⁇ m.
  • a bipolar secondary battery 10 was formed in the same manner as in Example 1.
  • the positive electrode active material layer 12 was prepared in the same manner as in Example 1. Moreover, the negative electrode active material layer 13 was created in the following manner. That is, graphite powder (active material, cumulative particle size distribution 50%: 20 ⁇ m, 10%: 5 ⁇ m), PVDF (binder), TiO2 additive (volume particle size distribution D90: 80 ⁇ m, D50: 60 ⁇ m) as density adjusting additive 25 ) Are dispersed in NMP as a slurry viscosity adjusting solvent at a ratio of 90: 5: 5 (weight ratio), respectively, to prepare a negative electrode slurry, and a die coater on the opposite side of the conductive filler-containing resin film after forming the positive electrode active material layer 12 was applied and dried to obtain a bipolar electrode 14 of the bipolar lithium ion secondary battery 10 shown in FIG.
  • graphite powder active material, cumulative particle size distribution 50%: 20 ⁇ m, 10%: 5 ⁇ m
  • PVDF binder
  • TiO2 additive volume particle size distribution D90: 80 ⁇ m
  • the positive electrode active material layer 12 and the negative electrode active material layer 13 were simultaneously pressed using a roll press machine with the same linear pressure as in Example 1.
  • the thickness of each active material layer after pressing was 100 ⁇ m for the positive electrode and 100 ⁇ m for the negative electrode.
  • the optimum design value was 100 ⁇ m.
  • both the positive electrode active material layer 12 and the negative electrode active material layer 13 are finished with an elongation of about 1%, and the bipolar electrode 14 is not warped. Was visually confirmed.
  • a bipolar secondary battery 10 was formed in the same manner as in Example 1.
  • silicon compressive strength 960-1440 kg / cm 2
  • any element that can be alloyed with lithium can be used without limitation to silicon, but silicon is not only preferable from the viewpoint of capacity and energy density among elements that can be alloyed with lithium, but also has practicality and hardness. It is also preferable from the viewpoint.
  • the negative electrode active material layer 13 is more preferable. easily crushed. Therefore, the density adjusting additive 25 is added to the negative electrode.
  • the positive electrode active material layer 12 was prepared in the same manner as in Example 1. Moreover, the negative electrode active material layer 13 was created in the following manner. That is, graphite powder (active material, cumulative particle size distribution 50%: 20 ⁇ m, 10%: 5 ⁇ m) and PVDF (binder) are each dispersed in NMP as a slurry viscosity adjusting solvent at a ratio of 95: 5 (weight ratio). Is applied to the opposite side of the conductive filler-containing resin film after forming the positive electrode active material layer 12 with a die coater, dried and compressed to form the bipolar electrode 14 of the bipolar lithium ion secondary battery 10. Obtained.
  • graphite powder active material, cumulative particle size distribution 50%: 20 ⁇ m, 10%: 5 ⁇ m
  • PVDF binder
  • Example 2 the positive electrode active material layer 12 and the negative electrode active material layer 13 were simultaneously pressed using a roll press machine with the same linear pressure as in Example 1.
  • the thickness of each active material layer after pressing was 100 ⁇ m for the positive electrode and 70 ⁇ m for the negative electrode.
  • the optimum design value was 85 ⁇ m. Further, it was visually confirmed that the obtained bipolar electrode 14 was very warped.
  • a bipolar secondary battery 10 was formed in the same manner as in Example 1.
  • a charge / discharge cycle test was performed on the bipolar secondary batteries 10 of Example 1-6 and Comparative Example 1 in the following manner.
  • a constant current charge (CC) is performed up to 13.5 V with a current equivalent to a battery capacity of 0.5 C, and then a constant voltage (CV) is charged.
  • the battery was discharged to 7.5 V, and this cycle was taken as one cycle, and 100 charge / discharge cycle experiments were conducted.
  • the charge / discharge capacity after 100 charge / discharge cycles is taken as 100% after the first charge / discharge cycle, how much the charge / discharge capacity is retained is defined as the cycle retention rate%. It was measured.
  • Example 1-6 and Comparative Example 1 were each subjected to constant current charging (CC) to 13.5 V with a current equivalent to 0.5 C of the battery capacity, and then After charging (CV) at a constant voltage and charging for 5 hours in total, vibration was applied for a long time in the following manner, and the voltage maintenance rate was measured by subsequent voltage measurement.
  • the vibration test was performed by applying a monotonous vibration with an amplitude of 3 mm and a frequency of 50 Hz for 200 hours to each secondary battery 10 firmly fixed. Then, each of the secondary batteries 10 is evaluated for the presence or absence of liquid leakage from the seal portion 21 after the vibration test, and the output voltage after the vibration test is measured, and the output voltage before the vibration test is measured.
  • the voltage maintenance rate V was evaluated.
  • Table 1 shows the cycle retention% after 100 cycles of charge / discharge of the bipolar secondary battery 10 of Example 1-6 and Comparative Example 1, the evaluation of the presence or absence of liquid leakage from the seal portion 21, and the excitation The evaluation result of the voltage maintenance factor (voltage drop amount V with respect to the output voltage before a vibration test) after a test is shown.
  • Example 1-6 in which the thickness of the negative electrode active material layer 13 was the same as or slightly thinner than the optimum design value, the cycle retention rate was 85-94%, and the charge / discharge capacity was maintained well. .
  • Example 1 in which the thickness of the negative electrode active material layer 13 is slightly smaller than the optimum design value, the cycle retention rate is 85% and the reduction in charge / discharge capacity is large.
  • Example 2-6 in which the thickness of the negative electrode active material layer 13 is kept equal to the optimum design value, the cycle retention rate is 91-94% and the decrease in charge / discharge capacity is slightly suppressed, and good results are obtained. Has been obtained.
  • Example 1-6 the voltage maintenance ratio was suppressed to a slight decrease from ⁇ 0.1 V to 0.2 V on average. Further, in the visual evaluation of the presence or absence of the occurrence of liquid leakage, the occurrence of liquid leakage was 5 out of 20 in Example 1, but the occurrence of liquid leakage was 2-3 in 20 in Example 2-5. In Example 6, the occurrence of liquid leakage did not occur. This is presumed that in Example 1, the thickness of the negative electrode active material layer 13 was slightly smaller than the optimum design value, and the bipolar electrode 14 was warped, which caused a seal failure.
  • Example 2-6 since the thickness of the negative electrode active material layer 13 was kept equal to the optimum design value, the warpage of the bipolar electrode 14 was suppressed, and the sealing failure due to this warpage was suppressed. It is estimated to be. In particular, in Example 6, since the elongation ratio during pressing of the negative electrode active material layer 13 and the positive electrode active material layer 12 is adjusted to be equal, no warpage occurs in the bipolar electrode 14, and thus the seal It is estimated that the defects were greatly suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 集電体の一方の面に第一活物質を含むよう形成された第一活物質層としての、例えば正極活物質層と、集電体の他方の面に第一活物質より圧縮強度の小さい第二活物質を含むよう形成された第二活物質層としての、例えば負極活物質層と、からなる双極型電極である。そして、第二活物質層に第二活物質の圧縮強度より大きい圧縮強度の添加材料としての密度調整用添加剤を含ませるようにした。

Description

双極型電極およびそれを用いた双極型二次電池並びに双極型電極の製造方法
 本発明は、双極型電極およびそれを用いた双極型二次電池並びに双極型電極の製造方法に関するものである。
 近年、ハイブリッド電気自動車(HEV)および電気自動車(EV)などの電動車両の需要の増加に伴い、これら電動車両の駆動源である二次電池の生産量が増加している。二次電池の構造として、例えばJP1997-232003Aに開示されているような、直列に積層された単電池を有する電池要素の正極および負極に集電板が配置された構造の双極型二次電池が良く知られている。
 JP1997-232003Aの双極型二次電池では、片面のみに正極材層を配した集電体と、少なくとも1枚の片面に正極材層、他の面に負極材層を有する集電体と、片面のみに負極材層を配した集電体とを、リチウムイオン伝導性電解質層を介して全ての正極材層が負極材層と対向するよう積層される。そして、この積層体の少なくとも正極材層、負極材層、電解質層を外気から遮断する手段を有している電池要素を備える。
 ところで、JP1997-232003Aに示す、集電体の一方の面に正極活物質層、他方の面に負極活物質層を積層する双極型電極では、集電体の表裏に異なる活物質層が配置されることになる。このため、双極型電極の製作工程において、両活物質層を同時プレスした時に集電体の表裏の両活物質層に発生する応力が異なることになり、双極型電極が反ってしまうおそれがあった。
 そこで本発明は、上記問題点に鑑みてなされたもので、双極型電極の反り抑制に好適な双極型電極およびそれを用いた双極型二次電池並びに双極型電極の製造方法を提供することを目的とする。
 上記目的を達成するため、本発明は、集電体の一方の面に第一活物質を含むよう形成された第一活物質層と、前記集電体の他方の面に第一活物質より圧縮強度の小さい第二活物質を含むよう形成された第二活物質層と、からなる双極型電極である。そして、前記第二活物質層に第二活物質の圧縮強度より大きい圧縮強度の添加材料を含ませるようにした。
 この発明の詳細並びに他の特徴や利点は、明細書の以降の記載の中で説明されるとともに、添付された図面に示される。
図1は本発明の一実施形態を示す双極型二次電池の全体構造を模式的に表わした概略断面図である。 図2Aは密度調整用添加剤を負極活物質に混合させた双極型電極のプレス前の状態を示す説明図である。 図2Bは図2Aの双極型電極のプレス後の状態を示す説明図である。 図3は粒径の大きい密度調整用添加剤を負極活物質に混合させた双極型電極のプレス後の状態を示す説明図である。 図4は異方性形状を備える密度調整用添加剤を負極活物質に混合させた双極型電極のプレス後の状態を示す説明図である。 図5は活物質として使える密度調整用添加剤を負極活物質に混合させた双極型電極のプレス後の状態を示す説明図である。 図6Aは正極活物質層の持つプレス圧力-伸びの関係と同じ機械特性を持つ密度調整用添加剤を負極活物質に混合させた双極型電極のプレス前の状態を示す説明図である。 図6Bは図6Aの双極型電極のプレス後の状態を示す説明図である。 図7は正負極活物質および密度調整用添加剤のプレス圧力に対する面方向伸びの特性図である。 図8Aは密度調整用添加剤に相当する突起を集電体に設けた実施例における集電体の斜視図である。 図8Bは、図8Aの集電体により構成された双極型電極のプレス後の状態を示す説明図である。 図9Aは公知技術による双極型電極のプレス前の状態を示す説明図である。 図9Bは図9Aの双極型電極のプレス後の状態を示す説明図である。
 以下、本発明の双極型電極およびそれを用いた双極型二次電池並びに双極型電極の製造方法を一実施形態に基づいて説明する。なお、図中、同一の部材には同一の符号を用いた。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。以下の各実施形態では、双極型リチウムイオン二次電池を例示して説明する。
 <電池の全体構造>
 図1は、本発明の双極型電極を使用したリチウムイオン二次電池の代表的な一実施形態である扁平型(積層型)のリチウムイオン二次電池(以下、単に双極型リチウムイオン二次電池、または双極型二次電池とも称する)の全体構造を模式的に表わした概略断面図である。
 図1に示すように、本実施形態の双極型リチウムイオン二次電池10は、実際に充放電反応が進行する略矩形の電池要素17が、電池外装材20の内部に封止された構造を有する。図1に示すように、本実施形態の双極型二次電池10の電池要素17は、2枚以上で構成される双極型電極14で電解質層15を挟み、隣り合う双極型電極14の正極活物質層12と負極活物質層13とが電解質層15を介して対向するようになっている。ここで、双極型電極14は、集電体11の片面に正極活物質層12を設け、もう一方の面に負極活物質層13を設けた構造を有している。すなわち、双極型二次電池10では、集電体11の片方の面上に正極活物質層12を有し、他方の面上に負極活物質層13を有する双極型電極14を、電解質層15を介して複数枚積層した構造の電池要素17を具備してなるものである。
 隣接する正極活物質層12、電解質層15および負極活物質層13は、一つの単電池層16を構成する。したがって、双極型二次電池10は、単電池層16が積層されてなる構成を有するともいえる。また、電解質層15からの電解液の漏れによる液絡を防止するために単電池層16の周辺部にはシール部21が配置されている。該シール部21を設けることで隣接する集電体11間を絶縁し、隣接する電極間の接触、つまり正極活物質層12と負極活物質層13の接触による短絡を防止することもできる。
 なお、電池要素17の最外層に位置する正極側電極14a及び負極側電極14bは、双極型電極構造でなくてもよい。例えば、電池要素17の最外層に位置する正極側の最外層集電体11aには、片面のみに正極活物質層12が形成されているようにしてもよい。同様に、電池要素17の最外層に位置する負極側の最外層集電体11bには、片面のみに負極活物質層13が形成されているようにしてもよい。また、双極型リチウムイオン二次電池10では、上下両端の正極側最外層集電体11a及び負極側最外層集電体11bにそれぞれ正極タブとしても機能する正極集電板18および負極タブとしても機能する負極集電板19が接合されている。但し、正極側最外層集電体11aが延長されて正極集電板18とされ、電池外装材20であるラミネートシートから導出されていてもよい。同様に、負極側最外層集電体11bが延長されて負極集電板19とされ、同様に電池外装材20であるラミネートシートから導出される構造としてもよい。
 また、双極型リチウムイオン二次電池10でも、電池要素17部分を電池外装材20に減圧封入し、正極集電板18及び負極集電板19を電池外装材20の外部に取り出した構造とするのがよい。かかる構造とすることで、使用する際の外部からの衝撃、環境劣化を防止することができるためである。この双極型リチウムイオン二次電池10の基本構成は、複数積層した単電池層16が直列に接続された構成ともいえるものである。双極型二次電池10に使用する本発明の双極型電極14は、集電体11が高分子材料を含む少なくとも2層で構成される。
 次に、双極型リチウムイオン二次電池10およびそれに使用する双極型電極14の各部材について説明する。
 集電体11の材料は、特に制限されるものではなく、公知のものが使用されうる。例えば、集電体11の材料としてアルミニウム、ステンレス(SUS)などが好適に使用される。また、集電体11は、高分子材料を含むこともできる。例えば、ポリオレフィン(ポリプロピレン、ポリエチレン等)、ポリエステル(PET、PEN等)、ポリイミド、ポリアミド、ポリフッ化ビニリデン(PVDF)を用いることができる。その際、高分子材料に導電性をもたせるために、カーボン(ケッチェンブラック、アセチレンブラック、カーボンブラック等)や、金属(Al、Cu、SUS、Ti等)などの粒子を分散させることが好ましい。
 正極活物質層12は、正極活物質を含み、単電池26の正極として機能するものである。正極活物質層12は、正極活物質に加えて、導電助剤、バインダーなどを含みうる。正極活物質としては、例えば、溶液系のリチウムイオン電池でも使用される、遷移金属とリチウムとの複合酸化物を使用できる。具体的には、リチウム-遷移金属複合酸化物が好ましく、例えば、マンガン酸リチウム(LiMn24)などのLi-Mn系複合酸化物やニッケル酸リチウム(LiNiO2)などのLi-Ni系複合酸化物が挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。
 負極活物質層13は、負極活物質を含み、単電池26の負極として機能するものである。負極活物質層13は、負極活物質に加えて、導電助剤、バインダーなどを含みうる。負極活物質としては、溶液系のリチウムイオン電池でも使用される負極活物質を用いることができる。
 具体的には、炭素材料が好ましい。炭素材料としては、例えば、天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛系炭素材料(以下、単に黒鉛という)、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、ハードカーボン等が挙げられる。より好ましくは、天然黒鉛、人造黒鉛、膨張黒鉛などの黒鉛である。天然黒鉛は、例えば鱗片状黒鉛、塊状黒鉛などが使用できる。人造黒鉛としては塊状黒鉛、気相成長黒鉛、鱗片状黒鉛、繊維状黒鉛が使用できる。これらのなかで、特に好ましい材料は、鱗片状黒鉛、塊状黒鉛である。鱗片状黒鉛、塊状黒鉛を用いた場合、充填密度が高い等の理由で、特に有利である。場合によっては、2種以上の負極活物質が併用されてもよい。
 特に、正極活物質層12は、正極活物質として、リチウム-遷移金属複合酸化物を用い、負極活物質層13は、負極活物質として、カーボンまたはリチウム-遷移金属複合酸化物を用いることによって、容量、出力特性に優れた電池を構成することができる。
 なお、負極活物質は、カーボンまたはリチウム-遷移金属複合酸化物に限られず、リチウムを吸蔵、放出可能な材料からなるものであれば特に制限されることなく用いることができる。例えば、リチウムと合金化し得る元素を含む形態も使用可能である。リチウムと合金化し得る元素の例としては、ケイ素、ゲルマニウム、スズ、鉛、アルミニウム、インジウム、および亜鉛等が挙げられる。かような元素を単体、酸化物、または炭水化物として含む活物質を負極活物質として用いることで、電池の高容量化が可能となる。なお、これらの元素は1種のみが負極活物質に含まれてもよいし、2種以上が負極活物質に含まれてもよい。なかでも、ケイ素またはスズが負極活物質に含まれることが好ましく、ケイ素が含まれることが最も好ましい。
 リチウムと合金化し得る元素を含む負極活物質の具体的な例としては、例えば、金属化合物、金属酸化物、リチウム金属化合物、リチウム金属酸化物(リチウム-遷移金属複合酸化物を含む)などが挙げられる。金属化合物の形態の負極活物質としては、LiAl、Li4Si、Li4.4Pb、Li4.4Sn等が挙げられる。また、金属酸化物の形態の負極活物質としては、SnO、SnO2、GeO、GeO2、In2O、In23、PbO、PbO2、Pb23、Pb34、SiO、ZnO等が挙げられる。なお、これらの負極活物質は1種のみが負極活物質層15に含まれてもよいし、2種以上が負極活物質層15に含まれてもよい。なかでも、Li4Si、Li4.4Sn、SnO、SnO2、SiOが負極活物質として好ましく用いられ、特に好ましくはSiOが用いられる。
 電解質層15は、イオン伝導性を有する高分子を含む層または液体電解質である。本実施形態の電解質は、高分子ゲル電解質であり、基材としてセパレータ22にプレゲル溶液を含浸させた後、化学架橋または物理架橋により高分子ゲル電解質として用いている。なお、本実施形態のセパレータ22の融点は約120℃であり、電解質溶媒の沸点は約140℃である。
 <シール部>
 シール部21は、電池要素17を密封するためのものである。シール部21は、単電池26の外周部に設けられており、電池要素17を密封することにより、電解質のイオン伝導度が低下することが防止される。また、液体または半固体のゲル状の電解質を使用する場合おいて、液漏れによる液絡が防止される。
 シール前駆体として、たとえば、加圧変形させることによって集電体11に密着するゴム系樹脂、または加熱加圧して熱融着させることによって集電体11に密着するオレフィン系樹脂などの熱融着可能な樹脂を好適に利用することができる。
 ゴム系樹脂としては、特に制限されるものではない。好ましくは、シリコン系ゴム、フッ素系ゴム、オレフィン系ゴム、ニトリル系ゴムよりなる群から選択されるゴム系樹脂が用いられる。これらのゴム系樹脂は、シール性、耐アルカリ性、耐薬品性、耐久性、耐候性、耐熱性などに優れ、使用環境下でもこれらの優れた性能、品質を劣化させずに長期間維持することができる。
 熱融着可能な樹脂としては、シール部21として電池要素17のあらゆる使用環境下にて、優れたシール効果を発揮することができるものであれば特に制限されるものではない。好ましくは、シリコン、エポキシ、ウレタン、ポリブタジエン、オレフィン系樹脂(ポリプロピレン、ポリエチレン等)、パラフィンワックスよりなる群から選択される樹脂である。これらの熱融着可能な樹脂は、シール性、耐アルカリ性、耐薬品性、耐久性、耐候性、耐熱性などに優れ、使用環境下でもこれらの優れた性能、品質を劣化させずに長期間維持することができる。
 <集電板(タブ)>
 正極および負極集電板18,19は、電池要素17で生成した電力を双極型二次電池10の外部へ取出すものである。また、正極および負極集電板18,19の材料は、特に制限されるものではなく、公知のものが使用されうる。たとえば、アルミニウム、ステンレス(SUS)、高分子材料などが好適に使用される。
 <外装材>
 外装材20は、双極型二次電池10の電池内部を外気から遮断し、電池内部を保護するためのものである。外装材20は、電池内部と電池外部との圧力差により損傷されることがない一方で、容易に変形しうる可撓性を有するシート状素材により形成される。シート状素材は、電解液や気体を透過させず、電気絶縁性を有し、電解液などの材料に対して化学的に安定であることが望ましい。
 シート状素材としては、ラミネートフィルム、ポリエチレン、ポリプロピレン、ポリカーボネートなどが好適に用いられる。ラミネートフィルムは、アルミニウム、ステンレス、ニッケル、銅などの金属または当該金属を含む合金からなる金属箔を、ポリプロピレンフィルムなどの絶縁性の合成樹脂膜で被覆したものである。
 双極型二次電池10の電池要素17は、以下のように作製する。まず集電体11の一方の面に正極活物質層12が形成され他方の面に負極活物質層13が形成された双極型電極14と、セパレータ22を含む電解質層15とを、未硬化のシール部21を外周部に配置して、交互に積層して積層体を形成する。そして、集電体11の一方若しくは他方の面に正極活物質層12若しくは負極活物質層13のみを形成した正極側電極14aおよび負極側電極14bを、積層体の積層方向両端面に配置する。その後に、熱プレス機により熱プレスすることにより、シール部21を所定の厚みまで圧縮してシール部21を硬化させ、双極型の電池要素17を完成させる。
 ところで、双極型電極14の製造においては、通常、正極活物質等を含むペーストを集電体11の一方の面に塗布して乾燥させ、負極活物質等を含むペーストを集電体11の他方の面に塗布して乾燥させる。次いで、表面の平滑性および厚さの均一性を向上させるため、かつ所望の膜厚になるように、この電極構造体を両面からプレスすることにより、電極の密度調整を行う。
 しかしながら、電極の密度調整のためのプレスの際に、正極活物質層12と負極活物質層13との充填性の違いにより、充填性の低い活物質層側の面方向の伸びが大きくなり、片面に潰しすぎを生じて、集電体11の表裏で活物質層の厚さが相違する現象を生じる。そうすると、集電体11の表裏に、活物質層により発生する応力が異なることになり、集電体11すなわち双極型電極14が反ることとなる。
 このような現象は、電動自動車用の双極型リチウムイオン二次電池10においては、より高容量・高エネルギ密度が要求されることから塗布する活物質層が厚くなり、プレスすることにより発生する応力も大きくなるので、より顕著となる。すなわち、正極活物質層12の高充填が求められており、正極活物質層12を高充填するためのプレス圧力では、負極活物質層13が潰れすぎることとなる。このように双極型電極14の反りが大きくなると、電池要素17の容量保持率を低下させ、振動に対する耐久性を低下させるおそれがある。また、双極型二次電池10としての積層工程時のハンドリングが悪化したり、シール部21の信頼性を低下させるおそれが生じる。
 そこで、このような不具合を解消するために、双極型電極14において、正負極のうち圧縮強度の小さい活物質を含む活物質層に、その活物質の圧縮強度より強度の大きい材料を含ませる構成とした。
 図2は本実施形態における双極型電極14の製造過程を示すものであり、図2Aは正負極活物質層12,13のプレス前の状態を示し、図2Bはプレス後の状態を示すものである。
 図2Aの双極型電極14は、正極活物質等を含むペーストを集電体11の一方の面に塗布して乾燥させ、負極活物質等を含むペーストを集電体11の他方の面に塗布して乾燥させた状態を示す。負極活物質等を含むペーストには、負極活物質および結着剤に加えて、潰れ難い硬い粒子からなる密度調整用添加剤25を含ませて、スラリー粘度調整溶媒としてのN-メチルピロリドン(NMP)に分散させて負極スラリーにしている。そして、正極活物質層12を形成した後の集電体11の反対側面に、この負極活物質等を含むペーストを塗布して乾燥させた状態である。
 そして、正負極活物質層12,13を乾燥させた後の図2Aに示す双極型電極14に対して、正負極活物質層12,13を両面からプレスして密度調整する(図2B参照)。このプレスによる密度調整は、エネルギ密度を上げるために、出来るだけ潰した方が望ましい。しかしながら、正負極活物質層12,13、特に負極活物質層13を潰しすぎると、活物質の隙間が埋められてしまい、過電圧が大きくなって、リチウムの電斥が起こり、寿命が低下する。例えば、グラファイトの場合1.6g/ccを超えて潰すと、寿命が低下する。すなわち、プレスによる密度調整による潰し量と電池の寿命低下とは、トレードオフの関係にある。このため、寿命の低下を生じない範囲で、活物質毎に最適な潰し量としての「設計最適ライン」とすることが望ましい。
 プレス操作は冷間でプレスロールする方法または熱間でプレスロールする方法のいずれの方法でもよい。熱間でプレスロールする方法の場合は、電解質支持塩や重合性ポリマーが活物質層に含まれていれば、それらが分解する温度以下で行うのが望ましい。ロールプレス機としては、特に制限されるものではなく、カレンダーロールなど従来公知のロールプレス機を適宜利用することができる。但し、平板プレスなど従来公知の他のプレス装置やプレス技術を適宜利用してもよい。プレス圧力や時間等の条件は材料や所望の膜厚によって変わってくる。本実施形態では、正極活物質層12の最適プレス圧力が、例えば、線圧60-350t/mである場合には、上述したプレスによる密度調整はこの線圧で実行する。
 負極活物質層13は、ペーストに含まれている密度調整用添加剤25として潰れ難い硬い粒子が含まれているため、密度調整のためにされるプレス時においても、潰れにくくできる。この密度調整用添加剤25としての潰れ難い硬い粒子は、その添加量、及び、粒径、粒子の充填圧縮性を調整することで、プレス圧力に対する負極活物質層13の厚さを調整することができる。このため、正極側活物質層の高充填のために、高いプレス圧力でプレスしても、負極活物質層13の厚みを、特性が最も良好な設計最適厚みに保つことができる。
 このため、プレス後の双極型電極14の反りを抑制でき、電池要素17の容量保持率の低下を抑制でき、振動に対する耐久性の低下も抑制できる。また、双極型二次電池10としての積層工程時のハンドリングが向上し、シール部21の信頼性も向上できる。
 潰れ難い硬い粒子からなる密度調整用添加剤25としては、例えば、アルミナ粒子がある。また、二酸化チタン(TiO2)、酸化マグネシウム(MgO)等の粒子も使用することができる。そして、例えば、負極活物質層13の厚みの設計最適値を100μmとした場合には、体積粒度分布D90:30μm、D50:20μmの粒子を、5-8wt%でスラリー粘度調整溶媒としてNMPに分散させた負極スラリーが使用できる。
 密度調整用添加剤25としての潰れ難い硬い粒子は、図3に示すように、その最大粒径が、潰れ易い側の電極活物質層の最適厚みとほぼ等しいものとすることもできる。このようにすると、その添加物量を少なくしても、負極活物質層13の厚みを特性が最も良好な設計最適厚みに保つ効果を発揮させることができる。潰れ難い硬い粒子からなる密度調整用添加剤25としての、例えば、アルミナ粒子の粒径は、例えば、負極活物質層13の厚みの設計最適値を100μmとした場合には、体積粒度分布D90:90μm、D50:60μmが使用できる。しかも、スラリーへの少ない含有量(5wt%)で負極活物質層13の厚みを100μmとすることができる。
 また、密度調整用添加剤25としての潰れ難い硬い粒子として、図4に示すように、添加物の形状が、異方性を持つ円柱、円錐、直方体などの形状を備え、その長辺側でもって、潰れ易い側の電極活物質層の最適厚みとすることもできる。このように異方性を持つ円柱・円錐・直方体などの形状は、穴が開いたマスキングテープによるマスキングをした状態で銅Cuを電解析出させることにより得ることができる。このような異方性を持つ円柱、円錐、直方体など潰れ難い硬い粒子は、倒れて短辺となるものも含まれるが、多数の長辺が立っているものにより、その厚み調整することができる。この場合においては、その添加物量をさらに少なくしても、負極活物質層13の厚みを特性が最も良好な設計最適厚みに保つ効果を発揮させることができる。
 さらに、密度調整用添加剤25としての潰れ難い硬い粒子として、図5に示すように、添加物自体が活物質として使える材料を使用することもできる。この場合においては、添加物自体が充放電可能な活物質であるため、充放電ロスを無くすることができる。密度調整用添加剤25としての潰れ難い硬い粒子としては、例えば、硬いハードカーボン材が考えられる。また、ケイ素(Si)、酸化ケイ素(SiO)等のシリカ(SnO2)粒子も使用することができる。そして、例えば、負極活物質層13の厚みの設計最適値は90μmとした場合に、その粒径としては、例えば、体積粒度分布D90:80μm、D50:60μmとすれば、5wt%でスラリー粘度調整溶媒としてNMPに分散させた負極スラリーが使用できる。
 また、密度調整用添加剤25としての潰れ難い硬い粒子として、潰れ難い側の電極活物質層、つまり正極活物質層12の持つプレス圧力-伸びの関係と同じ機械特性を持つ添加物を、潰れ易い極側活物質層、つまり負極活物質層13に添加することもできる。
 すなわち、双極型電極14に反りが生じる原因は、図9Aに示すように、正極活物質層12と負極活物質層13で、プレスの際に伸び量が異なるためである。そして、伸び量が多い方の極活物質層が、伸びない方の極活物質層側に変位差を打ち消そうとして、内部応力がかかり、図9Bに示すように反りが発生する。
 したがって、その解消のために、図6Aに示すように、潰れ易い電極活物質層側に、潰れ難い電極活物質層の活物質と同等のプレス圧力-伸びの機械特性を持つ添加物を添加した。これにより、添加物の伸びが、伸びない方の極活物質層側の律速になり、図6Bに示すように、反りが抑制される。この反りが抑制されることで、電池要素17の容量保持率の低下を抑制でき、振動に対する耐久性の低下も抑制できる。また、双極型二次電池10の組立工程でのハンドリング性を向上でき、しかも、積層するシール材の信頼性も向上させることができる。
 使用する添加物としては、例えば、TiO2添加剤がある。また、MgO等の粒子も使用することができる。そして、例えば、負極活物質層13の厚みの設計最適値は100μmとした場合に、その粒径を例えば、体積粒度分布D90:80μm、D50:60μmとして、5wt%でスラリー粘度調整溶媒としてNMPに分散させた負極スラリーが使用できる。
 出願人による実験では、正極活物質にLiNiO2、負極活物質にグラファイト及び添加物にTiO2のそれぞれ単体にバインダーを5wt%加え、集電体11としてのアルミ箔に塗布した後に、プレス圧力-面方向伸びの関係を調査した。図7は、プレス圧力に対する正極活物質層12側の面方向の伸び特性と負極活物質層13の面方向の伸び特性、および添加物としてのTiO2単体の面方向の伸び特性を示している。この実験結果では、TiO2の面方向伸び量とLiNiO2の面方向伸び量とがいずれも約1%程度になり、電極の反りも発生していないことを確認した。
 なお、潰れ易い電極活物質層側に、潰れ難い電極活物質層の活物質より潰れ難いプレス圧力-伸びの機械特性を持つ添加物を添加してもよい。この場合でも、正極活物質層12と負極活物質層13のプレス―伸びの機械特性がより近くなり、プレスしたときの伸び率の差が減少する。特に、より潰れ難い添加物を添加することで、集電体11の両面の強度バランスをとる為に必要な添加量を低減することができる。
 図8に示す実施例は、集電体の負極活物質層が形成される側に潰れ難い硬い突起を多数に設けて、形成される負極活物質層に含ませるようにした構成を備えるものである。なお、上述した説明に登場する装置と同一の装置には同一符号を付してその説明を省略ないし簡略化する。
 この実施例おいて、使用する集電体11は、円柱状のエンボスロール(例えば、円柱φ2、5mmピッチ、深さ:90μm)により、導電フィラー含有樹脂フィルムに高温プレス加工を実施して、図8Aに示すように、多数のエンボス突起26を負極活物質層13が形成される側に設けている。
 次いで、正極活物質、例えば、LiNiO2粉末を結着剤としてのPVDFおよび導電助剤としてのカーボン粉末を混合する。そして、スラリー粘度調整溶媒としてNMPに分散させて正極スラリーを作成し、上記集電体11のエンボス突起のない面に塗布し乾燥させて正極活物質層12を形成する。
 次いで、負極活物質、例えば、グラファイト粉末を結着剤としてのPVDFと混合し、スラリー粘度調整溶媒としてNMPに分散させて負極スラリーを作成する。そして、集電体11のエンボス突起26のある面に塗布し乾燥させて負極活物質層13を形成し、双極型電極14を形成する。
 そして、双極型電極14に対して、正負極活物質層12,13を両面からプレスして密度調整した後の双極型電極14を、図8Bに示す。各々のプレス後の負極活物質層13の厚みは、集電体11に形成した多数のエンボス突起26の高さ、例えば90μm、に規制されて、例えば、100μmとすることができる。
 したがって、本実施例においては、負極活物質層13は、集電体11に設けた潰れ難い硬い多数のエンボス突起26を内部に含んでいるため、密度調整のためにされるプレス時においても、潰れにくくできる。このため、正極側活物質層の高充填のために、高いプレス圧力でプレスしても、負極活物質層13の厚みを、特性が最も良好な設計最適厚みに保つことができる。したがって、双極型電極14に反りが生じる原因としての、正極活物質層12と負極活物質層13で、プレスの際に伸び量が異なることを防止できる。このように、反りを抑制することで、電池要素17の容量保持率の低下を抑制でき、振動に対する耐久性の低下も抑制できる。また、双極型二次電池10としての積層工程時のハンドリングが向上でき、しかも、積層するシール材の信頼性も向上させることができる。
 本実施形態においては、以下に記載する効果を奏することができる。
 (ア)集電体11の一方の面に第一活物質を含むよう形成された第一活物質層としての、例えば正極活物質層12と、集電体11の他方の面に第一活物質より圧縮強度の小さい第二活物質を含むよう形成された第二活物質層としての、例えば負極活物質層13と、からなる双極型電極14である。そして、第二活物質層に第二活物質の圧縮強度より大きい圧縮強度の添加材料としての密度調整用添加剤25を含ませるようにした。
 このため、第二活物質層は圧縮強度の大きい添加材料によりプレス時の潰れ量を抑制できる。したがって、正極活物質層側12の高充填のために、高いプレス圧力で双極型電極14に対して両面からプレスしても、第二活物質層の第一活物質層に対する延び率の差を減少できる。これにより集電体11の表裏の活物質層12,13に生じる応力差を小さくでき、双極型電極14の反りを抑制できる。その結果、電池要素17の容量保持率の低下を抑制でき、振動に対する耐久性の低下も抑制できる。また、双極型二次電池10としての積層工程時のハンドリングが向上し、シール部21の信頼性も向上できる。
 (イ)図3に示す双極型電極14では、添加材料としての密度調整用添加剤25の粒径が第二活物質の粒径よりも大きいため、効果(ア)を得るために必要とする添加材料の添加量を少なくできる。また、図4に示すように、密度調整用添加剤25の形状として、その長辺寸法が第二活物質層のプレス後の厚さ寸法に近い大きさを備えた、円柱、円錐、または直方体などの異方性を持つ形状とする場合には、効果(ア)を得るために必要とする添加材料の添加量をより一層少なくできる。
 (ウ)図6に示す双極型電極14では、添加材料としての密度調整用添加剤25の圧縮強度を第一活物質の圧縮強度に等しくしたため、含まれる添加材料により第二活物質層のプレス時の伸びが第一活物質層と同等にでき、プレス圧力に係わらず双極型電極14の反りを抑制できる。
 (エ)図5に示す双極型電極14では、添加材料がそれ自体で活物質として使えるものであるため、双極型電極14の反りを抑制しつつ、添加物自体が充放電可能な活物質であるため、充放電ロスを無くすることができる。
 (オ)効果(ア)-(エ)のいずれかに記載の双極型電極14を、外周部分にシール部21を配置して単独若しくは複数個積層し、積層両端に片面のみに正極活物質層12および負極活物質層13を配した集電体11a,11bを積層することで電池要素17を形成できる。この電池要素17は、双極型電極14の反りが抑制されているため、電池要素17の容量保持率の低下を抑制でき、振動に対する耐久性の低下も抑制できる。また、双極型二次電池10としての積層工程時のハンドリングが向上でき、電池要素17の製造コストを低減できる。また、双極型電極14の反りが抑制されているため、外周部分に配置するシール部21のシール性能の信頼性を向上できる。
 (カ)集電体11の一方の面に第一活物質を含むスラリーを塗布する工程と、第一活物質より圧縮強度の小さい第二活物質と第二活物質の圧縮強度より大きい圧縮強度の添加材料としての密度調整用添加剤25とを混合したスラリーを集電体11の他方の面に塗布する工程と、を含む製造方法であるため、その製造工程を増加させることなく双極型電極14を製造することができる。しかも、集電体11の両面に塗布されたスラリーの乾燥後になされる正負極活物質層12,13の密度調整の為のプレスの際に、第二活物質層の第一活物質層に対する延び率の差を減少できる。その結果、集電体11の表裏の活物質層12,13に生じる応力差を小さくでき、双極型電極14の反りを抑制できる。
 (キ)第二活物質の圧縮強度より大きい圧縮強度の添加材料としての密度調整用添加剤25の粒径を、第二活物質層の厚さの設計値と等しい大きさに設定することにより、プレスによる正負極活物質層12,13の密度調整後の第二活物質層の厚さを、設計値に近似する厚さとすることができる。しかも、第二活物質に混合する添加材料の添加量を少なくすることができる。
 (ク)図8に示す双極型電極では、第二活物質層のプレス時の潰れ量を抑制するために第二活物質層に内在させる材料として、集電体11の第二活物質層が形成される側に、設計値と等しい高さの潰れ難い硬い突起としてのエンボス突起26を多数に設けている。これにより、プレスによる正負極活物質層12,13の密度調整後の第二活物質層の厚さを、設計値に近似する厚さとすることができるので、正極活物質層側12の高充填のために、高いプレス圧力で双極型電極14に対して両面からプレスした際における第二活物質層の第一活物質層に対する延び率の差を減少させて、集電体11の表裏の活物質層12,13に生じる応力差を小さくし、双極型電極14の反りを抑制できる。したがって、電池要素17の容量保持率の低下を抑制でき、振動に対する耐久性の低下も抑制できる。しかも、正負極活物質を何ら変更することなく、反りのない双極型電極14を形成することができる。また、集電体11に設ける、設計値と等しい高さの潰れ難い硬い突起は、例えば、円柱状のエンボスロール(円柱φ2、5mmピッチ、深さ:90μm)を用いて、集電体11を高温プレス加工することにより容易に形成できる。
 以下、各実施例を用いて本発明の双極型二次電池10及び双極型電極14を説明する。しかしながら、本発明は、各実施例によって何ら限定されるものではない。
 実施例1
 まず、正極活物質層12を下記の要領により作成した。すなわち、LiNiO2粉末(活物質、累積粒度分布50%:10μm,10%:2μm)、PVDF(結着材)、カーボン粉末(導電助剤)をそれぞれ90:5:5(重量比)でスラリー粘度調整溶媒としてNMPに分散させて正極スラリーを作成し、集電体11としての導電フィラー含有樹脂フィルム上にダイコーターにて塗布し乾燥させて正極活物質層12を得た。このようにして得られる正極活物質層12の圧縮強度は1600-2400kg/cm2である。圧縮強度に幅があるのは、活物質の粒径の違い等が原因である。これは、後述するグラファイト、ハードカーボン、シリコンについても同様である。
 次いで、負極活物質層13を下記の要領により作成した。すなわち、グラファイト粉末(活物質、累積粒度分布50%:20μm,10%:5μm、圧縮強度480-720kg/cm2)、PVDF(結着材)、密度調整用添加剤25としてアルミナ(体積粒度分布D90:30μm、D50:20μm)をそれぞれ90:5:5(重量比)でスラリー粘度調整溶媒としてNMPに分散させて負極スラリーを作成し、正極活物質層12を形成した後の導電フィラー含有樹脂フィルムの反対側にダイコーターにて塗布し乾燥させて、図2に示す双極型リチウムイオン二次電池10の双極型電極14を得た。
 次いで、正極活物質層12の最適プレス圧が線圧60-350t/mであるため、この線圧により、正極活物質層12と負極活物質層13とを同時にロールプレス機を用いてプレスした。各々の活物質層のプレス後の厚みは、正極が100μm、負極が90μmであった。なお、設計最適値は100μmであった。
 次いで、下記に示す要領により双極型二次電池10を作成した。ポリプロピレン製の不織布50μmに、イオン伝導性高分子マトリックスの前駆体である平均分子量7500-9000のモノマー溶液(ポリエチレンオキシドとポリプロピレンオキシドの共重合体)5wt%、電解液としてEC+DMC(1:3)95wt%、1.0M LiBF4、重合開始剤(BDK)からなるプレゲル溶液を浸漬させて、石英ガラス基板に挟み込み紫外線を15分照射して前駆体を架橋させて、ゲルポリマー電解質層15を得た。
 その後、双極型電極14の負極活物質層13上に電解質保持不織布をのせ、その周りに三層構造のホットメルトをおきシール材とした。これらを積層し、4層積層した後にシール部21を上下から熱と圧力をかけ融着し、各層をシールした。これらの積層体をラミネートパックで封止し、双極型二次電池10を形成した。
 実施例2
 まず、正極活物質層12を実施例1と同様に作成した。また、負極活物質層13を下記の要領により作成した。すなわち、グラファイト粉末(活物質、累積粒度分布50%:20μm, 10%:5μm)、PVDF(結着材)、密度調整用添加剤25としてアルミナ(体積粒度分布D90:30μm、D50:20μm)をそれぞれ85:7:8(重量比)でスラリー粘度調整溶媒としてNMPに分散させて負極スラリーを作成し、正極活物質層12を形成した後の導電フィラー含有樹脂フィルムの反対側にダイコーターにて塗布し乾燥させて、図2に示す双極型リチウムイオン二次電池10の双極型電極14を得た。次いで、実施例1と同様の線圧により正極活物質層12と負極活物質層13とを同時にロールプレス機を用いてプレスした。各々の活物質層のプレス後の厚みは、正極が100μm、負極が105μmであった。なお設計最適値は105μmであった。次いで、実施例1と同様の方法で双極型二次電池10を形成した。
 実施例3
 まず、正極活物質層12を実施例1と同様に作成した。また、負極活物質層13を下記の要領により作成した。すなわち、グラファイト粉末(活物質、累積粒度分布50%:20μm,10%:5μm)、PVDF(結着材)、密度調整用添加剤25としてアルミナ(体積粒度分布D90:90μm、D50:60μm)をそれぞれ90:5:5(重量比)でスラリー粘度調整溶媒としてNMPに分散させて負極スラリーを作成し、正極活物質層12を形成した後の導電フィラー含有樹脂フィルムの反対側にダイコーターにて塗布し乾燥させて、図3に示す双極型リチウムイオン二次電池10の双極型電極14を得た。次いで、実施例1と同様の線圧により正極活物質層12と負極活物質層13とを同時にロールプレス機を用いてプレスした。各々の活物質層のプレス後の厚みは、正極が100μm、負極が100μmであった。なお設計最適値は100μmであった。次いで、実施例1と同様の方法で双極型二次電池10を形成した。
 実施例4
 まず、正極活物質層12を実施例1と同様に作成した。また、負極活物質層13を下記の要領により作成した。すなわち、グラファイト粉末(活物質、累積粒度分布50%:20μm,10%:5μm)、PVDF(結着材)、密度調整用添加剤25としてハードカーボン添加剤(体積粒度分布D90:80μm、D50:60μm、圧縮強度1440-2160kg/cm2)をそれぞれ90:5:5(重量比)でスラリー粘度調整溶媒としてNMPに分散させて負極スラリーを作成し、正極活物質層12を形成した後の導電フィラー含有樹脂フィルムの反対側にダイコーターにて塗布し乾燥させて、図5に示す双極型リチウムイオン二次電池10の双極型電極14を得た。次いで、実施例1と同様の線圧により正極活物質層12と負極活物質層13とを同時にロールプレス機を用いてプレスした。各々の活物質層のプレス後の厚みは、正極が100μm、負極が90μmであった。なお設計最適値は90μmであった。次いで、実施例1と同様の方法で双極型二次電池10を形成した。
 実施例5
 先ず、使用する集電体11として、円柱状のエンボスロール(例えば、円柱φ2、5mmピッチ、深さ:90μm)により、導電フィラー含有樹脂フィルムに高温プレス加工を実施して、図8Aに示すように、多数のエンボス突起26を負極活物質層13が形成される側に設ける。
 次いで、実施例1と同様に作成した正極スラリーを、導電フィラー含有樹脂フィルムのエンボス加工を行っていない面上にダイコーターにて塗布し乾燥させて正極活物質層12を作成した。
 次いで、負極活物質層13を下記の要領により作成した。すなわち、グラファイト粉末(活物質、累積粒度分布50%:20μm,10%:5μm)、PVDF(結着材)をそれぞれ95:5(重量比)でスラリー粘度調整溶媒としてNMPに分散させて負極スラリーを作成し、正極活物質層12を形成した後の導電フィラー含有樹脂フィルムの反対側のエンボス加工した面側にダイコーターにて塗布し乾燥させて図8Bに示す双極型リチウムイオン二次電池10の双極型電極14を得た。
 次いで、実施例1と同様の線圧により正極活物質層12と負極活物質層13とを同時にロールプレス機を用いてプレスした。各々の活物質層のプレス後の厚みは、正極が100μm、負極が100μmであった。なお設計最適値は100μmであった。次いで、実施例1と同様の方法で双極型二次電池10を形成した。
 実施例6
 まず、正極活物質層12を実施例1と同様に作成した。また、負極活物質層13を下記の要領により作成した。すなわち、グラファイト粉末(活物質、累積粒度分布50%:20μm,10%:5μm)、PVDF(結着材)、密度調整用添加剤25としてTiO2添加剤(体積粒度分布D90:80μm、D50:60μm)をそれぞれ90:5:5(重量比)でスラリー粘度調整溶媒としてNMPに分散させて負極スラリーを作成し、正極活物質層12を形成した後の導電フィラー含有樹脂フィルムの反対側にダイコーターにて塗布し乾燥させて、図6に示す双極型リチウムイオン二次電池10の双極型電極14を得た。
 次いで、実施例1と同様の線圧により正極活物質層12と負極活物質層13とを同時にロールプレス機を用いてプレスした。各々の活物質層のプレス後の厚みは、正極が100μm、負極が100μmであった。なお設計最適値は100μmであった。
 また、正極活物質のLiNiO2、負極活物質のグラファイト及び添加物のTiO2のそれぞれ単体にバインダーを5wt%加え、集電体11としてのアルミ箔に夫々塗布した後にプレス圧力-面方向伸びの関係を調査した。狙いのプレス圧力の時はTiO2の面方向伸び量とLiNiO2の面方向伸び量が同じであることを確認した。
 また、仕上がりの双極型電極14の伸び率に関しても、正極活物質層12及び負極活物質層13、共に約1%程度の伸びで仕上がっており、双極型電極14の反りも発生していないことを目視確認した。次いで、実施例1と同様の方法で双極型二次電池10を形成した。
 なお、上記各実施例のグラファイト粉末に代えて、ケイ素(圧縮強度960-1440kg/cm2)を用いてもよい。上述したように、リチウムと合金化し得る元素であればケイ素に限らず使用できるが、ケイ素はリチウムと合金化し得る元素の中でも、容量及びエネルギ密度の観点から好ましいだけでなく、実用性や硬度の観点からも好ましい。
 ただし、グラファイト粉末またはリチウムと合金化し得る元素のいずれを負極活物質とした場合でも、上記各実施例の正極活物質層12と負極活物質層13を比較すると、負極活物質層13の方が潰れ易い。したがって、密度調整用添加剤25は負極に添加することになる。
 比較例1
 まず、正極活物質層12を実施例1と同様に作成した。また、負極活物質層13を下記の要領により作成した。すなわち、グラファイト粉末(活物質、累積粒度分布50%:20μm,10%:5μm)、PVDF(結着材)をそれぞれ95:5(重量比)でスラリー粘度調整溶媒としてNMPに分散させて負極スラリーを作成し、正極活物質層12を形成した後の導電フィラー含有樹脂フィルムの反対側にダイコーターにて塗布し、乾燥、圧縮をして双極型リチウムイオン二次電池10の双極型電極14を得た。
 次いで、実施例1と同様の線圧により正極活物質層12と負極活物質層13とを同時にロールプレス機を用いてプレスした。各々の活物質層のプレス後の厚みは、正極が100μm、負極が70μmであった。なお設計最適値は85μmであった。また、得られた双極型電極14は非常に反りが大きいことを目視確認した。次いで、実施例1と同様の方法で双極型二次電池10を形成した。
 [評価試験方法]
 <容量確認試験>
 実施例1-6及び比較例1の双極型二次電池10、各20個を、下記要領にて、先ず、容量確認試験を行った。容量確認試験は、電池容量の0.1C相当の電流で13.5Vまで定電流充電(CC)し、その後に、定電圧で充電(CV)し、合わせて15時間充電した後、0.1Cの電流で7.5Vまで放電を行い、充放電容量の確認を行った。
 <充放電サイクル試験>
 次に、実施例1-6及び比較例1の双極型二次電池10、各20個に対して、下記要領にて、充放電サイクル試験を行った。試験は、電池容量の0.5C相当の電流で13.5Vまで定電流充電(CC)し、その後、定電圧で充電(CV)し、合わせて5時間充電した後、0.5Cの電流で7.5Vまで放電を行い、このサイクルを1サイクルとして、100サイクルの充放電サイクル実験を行った。そして、100サイクルの充放電サイクル後の充放電容量を、一回目の充放電サイクル後の充放電容量を100%とした場合に、どの程度充放電容量が保持されているかをサイクル保持率%として測定した。
 <加振試験>
 次に、実施例1-6及び比較例1の双極型二次電池10、各20個に対して、電池容量の0.5C相当の電流で13.5Vまで定電流充電(CC)し、その後、定電圧で充電(CV)し、合わせて5時間充電した後、下記要領で、振動を長時間加え、その後の電圧測定により電圧維持率の測定を行った。振動試験は、しっかり固定した各二次電池10に対して、垂直の方向に振幅が3mmで50Hzの単調な振動を200時間加えることにより行った。そして、各二次電池10、夫々20個ずつの、振動試験後のシール部21からの液漏れ発生の有無の評価、および、振動試験後の出力電圧を測定し、振動試験前の出力電圧に対する電圧維持率Vの評価を行った。
 表1は、実施例1-6及び比較例1の双極型二次電池10の充放電100サイクル後のサイクル保持率%と、シール部21からの液漏れ発生の有無の評価、及び、加振試験後の電圧維持率(振動試験前の出力電圧に対する電圧低下量V)の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、充放電サイクル試験の試験結果では、比較例1と実施例1-6を比較すると、比較例1では、負極活物質層13の厚みが設計最適値85μmに対して70μmと潰れすぎているため、充放電容量がサイクル保持率50%と大きく低下している。
 これに対して、負極活物質層13の厚みが設計最適値と同等若しくは若干だけ薄くなっている実施例1-6では、サイクル保持率85-94%と良好に充放電容量が保たれていた。
 また、1-6を比較すると、負極活物質層13の厚みが設計最適値に比較して若干だけ薄くなっている実施例1では、サイクル保持率85%と充放電容量の低下は大きい。しかし、負極活物質層13の厚みが設計最適値と同等に保たれている実施例2-6では、サイクル保持率91-94%と充放電容量の低下は僅かに抑えられて良好な結果を得られている。
 また、加振試験の結果では、比較例1と実施例1-6を比較すると、比較例1では、電圧維持率が平均で-4.5Vと大幅に低下していた。これは、シール部21よりの液漏れにより集電体11間の液絡短絡により電位降下が発生したことが原因と考えられる。また、20個中18個は液漏れがなく、2個は液漏れしていた。
 これに対して、実施例1-6では、電圧維持率が平均で-0.1Vから0.2Vと僅かな低下に抑えられていた。また、液漏れ発生の有無の目視評価では、実施例1では液漏れの発生が20個中5個であったが、実施例2-5では液漏れの発生が20個中2-3個と少なくなっており、実施例6では液漏れの発生は生じなかった。これは、実施例1では負極活物質層13の厚みが設計最適値に比較して若干だけ薄くなって双極型電極14に反りが発生し、この反りによりシール不良になっていたものと推定される。他方、実施例2-6では、負極活物質層13の厚みが設計最適値と同等に保たれていることにより、双極型電極14の反りが抑制され、この反りによるシール不良が抑制されたものと推定される。特に、実施例6では、負極活物質層13と正極活物質層12とのプレス時における伸び率が同等に調整されているため、双極型電極14に反りが発生しておらず、このためシール不良が大幅に抑制されたものと推定される。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2010年7月28日に日本国特許庁に出願された特願2010-168984に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (8)

  1.  集電体の一方の面に第一活物質を含むよう形成された第一活物質層と、前記集電体の他方の面に第一活物質より圧縮強度の小さい第二活物質を含むよう形成された第二活物質層と、からなる双極型電極であり、
     前記第二活物質層に第二活物質の圧縮強度より大きい圧縮強度の添加材料を含ませることを特徴とする双極型電極。
  2.  請求項1に記載の双極型電極において、前記添加材料の粒径は、第二活物質の粒径よりも大きい。
  3.  請求項1または2に記載の双極型電極において、前記添加材料の圧縮強度は、第一活物質の圧縮強度に等しい。
  4.  請求項1または2に記載の双極型電極において、前記添加材料の圧縮強度は、第一活物質の圧縮強度より大きい。
  5.  請求項1から4のいずれかに記載の双極型電極において、前記添加材料は、それ自体で活物質として使えるものである。
  6.  請求項1-5のいずれか1項に記載の双極型電極を用いた双極型二次電池。
  7.  集電体の一方の面に第一活物質を含むスラリーを塗布する工程と、
     前記第一活物質より圧縮強度の小さい第二活物質と第二活物質の圧縮強度より大きい圧縮強度の添加材料とを混合したスラリーを前記集電体の他方の面に塗布する工程と、を含む双極型電極の製造方法。
  8.  請求項7に記載の双極型電極の製造方法において、前記第二活物質の圧縮強度より大きい圧縮強度の添加材料の粒径を、第二活物質層の厚さの設計値と等しい大きさに設定する双極型電極の製造方法。
PCT/JP2011/066580 2010-07-28 2011-07-21 双極型電極およびそれを用いた双極型二次電池並びに双極型電極の製造方法 WO2012014780A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2012526461A JP5573954B2 (ja) 2010-07-28 2011-07-21 双極型電極およびそれを用いた双極型二次電池並びに双極型電極の製造方法
US13/811,793 US10283774B2 (en) 2010-07-28 2011-07-21 Bipolar electrode, bipolar secondary battery using the same and method for manufacturing bipolar electrode
MX2013000832A MX2013000832A (es) 2010-07-28 2011-07-21 Electrodo bipolar, bateria secundaria bipolar que utiliza el mismo y metodo para fabricar electrodo bipolar.
EP11812371.0A EP2600461B1 (en) 2010-07-28 2011-07-21 Bipolar electrode, bipolar secondary battery using same, and method for producing bipolar electrode
RU2013108850/07A RU2524572C1 (ru) 2011-07-21 2011-07-21 Биполярный электрод, биполярная аккумуляторная батарея с его использованием и способ изготовления биполярного электрода
CN201180035559.2A CN103004009B (zh) 2010-07-28 2011-07-21 双极型电极及使用它的双极型二次电池以及双极型电极的制造方法
KR1020147025446A KR101489129B1 (ko) 2010-07-28 2011-07-21 쌍극형 전극 및 그것을 사용한 쌍극형 2차 전지와 쌍극형 전극의 제조 방법
BR112013001937A BR112013001937A2 (pt) 2010-07-28 2011-07-21 eletrodo bipolar, bateria secundária bipolar utilizando o mesmo e método de fabricação de eletrodo bipolar
KR1020137001649A KR20130030814A (ko) 2010-07-28 2011-07-21 쌍극형 전극 및 그것을 사용한 쌍극형 2차 전지와 쌍극형 전극의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010168984 2010-07-28
JP2010-168984 2010-07-28

Publications (1)

Publication Number Publication Date
WO2012014780A1 true WO2012014780A1 (ja) 2012-02-02

Family

ID=45529992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066580 WO2012014780A1 (ja) 2010-07-28 2011-07-21 双極型電極およびそれを用いた双極型二次電池並びに双極型電極の製造方法

Country Status (10)

Country Link
US (1) US10283774B2 (ja)
EP (1) EP2600461B1 (ja)
JP (1) JP5573954B2 (ja)
KR (2) KR101489129B1 (ja)
CN (1) CN103004009B (ja)
BR (1) BR112013001937A2 (ja)
MX (1) MX2013000832A (ja)
MY (1) MY158978A (ja)
TW (1) TWI464943B (ja)
WO (1) WO2012014780A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048672A (ja) * 2014-08-25 2016-04-07 パナソニックIpマネジメント株式会社 塗膜物の製造装置、及びこれを用いた塗膜物の製造方法
JP2016058309A (ja) * 2014-09-11 2016-04-21 トヨタ自動車株式会社 非水電解質二次電池
WO2016067402A1 (ja) * 2014-10-29 2016-05-06 株式会社日立製作所 リチウムイオン電池
JP2016192277A (ja) * 2015-03-31 2016-11-10 株式会社Gsユアサ 蓄電素子
JP2017501549A (ja) * 2014-01-13 2017-01-12 エルジー・ケム・リミテッド 不活性粒子を使用して電池の安全性を向上させた電池セル
US11018332B2 (en) 2017-05-18 2021-05-25 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery including lithium metal as negative electrode active material
US11031584B2 (en) 2017-05-18 2021-06-08 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery including lithium metal as negative electrode active material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150138699A1 (en) * 2013-11-15 2015-05-21 Semiconductor Energy Laboratory Co., Ltd. Electronic device
WO2015137099A1 (ja) * 2014-03-14 2015-09-17 株式会社村田製作所 充電回路およびそれを用いたモジュール
KR102220904B1 (ko) * 2014-05-21 2021-02-26 삼성에스디아이 주식회사 전극 구조체 및 이를 채용한 리튬 전지
JP6186385B2 (ja) * 2014-07-10 2017-08-23 東洋ゴム工業株式会社 密閉型二次電池の劣化診断方法及び劣化診断システム
JP6656370B2 (ja) * 2016-06-08 2020-03-04 株式会社カネカ リチウムイオン二次電池および組電池
TWI676315B (zh) * 2017-10-20 2019-11-01 輝能科技股份有限公司 複合式電池芯
CN112186130A (zh) * 2020-08-25 2021-01-05 合肥国轩高科动力能源有限公司 一种双极性复合电极片及其制备方法
CN112289981B (zh) * 2020-10-26 2022-04-12 合肥国轩高科动力能源有限公司 一种双极性电极及电池的制作方法
CN115642217B (zh) * 2021-02-24 2024-05-24 厦门海辰储能科技股份有限公司 一种极片的制作方法
CN114759266B (zh) * 2022-06-15 2022-10-04 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种固态电池的预制模块、固态电池及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232003A (ja) 1995-12-18 1997-09-05 Shin Kobe Electric Mach Co Ltd リチウム二次電池
JP2006128039A (ja) * 2004-11-01 2006-05-18 Nissan Motor Co Ltd 電池電極の製造方法
JP2007026725A (ja) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd リチウムイオン二次電池
JP2007179956A (ja) * 2005-12-28 2007-07-12 Sony Corp 負極およびそれを用いた電池
JP2008166047A (ja) * 2006-12-27 2008-07-17 Sony Corp 負極およびそれを用いた電池
JP2008262791A (ja) * 2007-04-11 2008-10-30 Nissan Motor Co Ltd リチウムイオン二次電池
JP2009054552A (ja) * 2007-08-29 2009-03-12 Sony Corp 非水電解質電池および非水電解質電池の製造方法
JP2010168984A (ja) 2009-01-22 2010-08-05 Hitachi-Ge Nuclear Energy Ltd ジェットポンプ及び原子炉

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800946A (en) 1996-12-06 1998-09-01 Grosvenor; Victor L. Bipolar lead-acid battery plates
EP1334119B2 (en) * 2000-10-18 2018-11-28 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Compositions and methods for modulating rsv infection and immunity
JP4135473B2 (ja) * 2002-11-07 2008-08-20 日産自動車株式会社 バイポーラ電池
US20040157101A1 (en) 2003-02-11 2004-08-12 Smedley Stuart I. Fuel cell electrode assembly
DE602004016006D1 (de) * 2003-09-11 2008-10-02 Takeda Pharmaceutical Screening-verfahren
JP4449447B2 (ja) * 2003-12-22 2010-04-14 日産自動車株式会社 固体電解質電池の製造方法
JP5098150B2 (ja) * 2004-12-07 2012-12-12 日産自動車株式会社 バイポーラ電池およびその製造方法
JP4439456B2 (ja) * 2005-03-24 2010-03-24 株式会社東芝 電池パック及び自動車
JP4297133B2 (ja) * 2006-05-15 2009-07-15 ソニー株式会社 リチウムイオン電池
EP2034542B1 (en) 2006-06-27 2015-06-03 Kao Corporation Composite positive electrode material for lithium ion battery and battery using the same
JP5398962B2 (ja) * 2006-06-30 2014-01-29 三洋電機株式会社 リチウム二次電池及びその製造方法
JP2008021614A (ja) * 2006-07-14 2008-01-31 Nissan Motor Co Ltd 電池用電極
JP5526481B2 (ja) * 2007-06-06 2014-06-18 日産自動車株式会社 二次電池およびその製造方法
US8852785B2 (en) * 2009-03-05 2014-10-07 Nissan Motor Co., Ltd. Bipolar secondary battery and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232003A (ja) 1995-12-18 1997-09-05 Shin Kobe Electric Mach Co Ltd リチウム二次電池
JP2006128039A (ja) * 2004-11-01 2006-05-18 Nissan Motor Co Ltd 電池電極の製造方法
JP2007026725A (ja) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd リチウムイオン二次電池
JP2007179956A (ja) * 2005-12-28 2007-07-12 Sony Corp 負極およびそれを用いた電池
JP2008166047A (ja) * 2006-12-27 2008-07-17 Sony Corp 負極およびそれを用いた電池
JP2008262791A (ja) * 2007-04-11 2008-10-30 Nissan Motor Co Ltd リチウムイオン二次電池
JP2009054552A (ja) * 2007-08-29 2009-03-12 Sony Corp 非水電解質電池および非水電解質電池の製造方法
JP2010168984A (ja) 2009-01-22 2010-08-05 Hitachi-Ge Nuclear Energy Ltd ジェットポンプ及び原子炉

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2600461A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017501549A (ja) * 2014-01-13 2017-01-12 エルジー・ケム・リミテッド 不活性粒子を使用して電池の安全性を向上させた電池セル
JP2016048672A (ja) * 2014-08-25 2016-04-07 パナソニックIpマネジメント株式会社 塗膜物の製造装置、及びこれを用いた塗膜物の製造方法
JP2016058309A (ja) * 2014-09-11 2016-04-21 トヨタ自動車株式会社 非水電解質二次電池
WO2016067402A1 (ja) * 2014-10-29 2016-05-06 株式会社日立製作所 リチウムイオン電池
JP2016192277A (ja) * 2015-03-31 2016-11-10 株式会社Gsユアサ 蓄電素子
US11018332B2 (en) 2017-05-18 2021-05-25 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery including lithium metal as negative electrode active material
US11031584B2 (en) 2017-05-18 2021-06-08 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery including lithium metal as negative electrode active material

Also Published As

Publication number Publication date
TWI464943B (zh) 2014-12-11
US10283774B2 (en) 2019-05-07
CN103004009B (zh) 2015-11-25
EP2600461B1 (en) 2017-05-10
KR20130030814A (ko) 2013-03-27
US20130122362A1 (en) 2013-05-16
MY158978A (en) 2016-11-30
EP2600461A4 (en) 2016-09-14
KR20140130471A (ko) 2014-11-10
JPWO2012014780A1 (ja) 2013-09-12
CN103004009A (zh) 2013-03-27
JP5573954B2 (ja) 2014-08-20
MX2013000832A (es) 2013-02-11
BR112013001937A2 (pt) 2016-05-24
TW201222950A (en) 2012-06-01
KR101489129B1 (ko) 2015-02-04
EP2600461A1 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5573954B2 (ja) 双極型電極およびそれを用いた双極型二次電池並びに双極型電極の製造方法
US6558438B1 (en) Method for producing a pressurized package for a film packed battery
US10177387B2 (en) Bipolar battery current collector that contracts to interrupt a flow of electric current in a direction thereof and bipolar battery
WO2014162532A1 (ja) 全固体電池、および全固体電池の製造方法
JP2012038425A (ja) 電極体の製造方法及び電極体
JP5601186B2 (ja) 双極型電極の製造方法
JP3457624B2 (ja) 扁平型電池の製造方法
JP3533117B2 (ja) フィルム外装電池の製造方法
KR20160100348A (ko) 전기 디바이스
EP2765629A1 (en) Separator with heat-resistant insulating layer
JP2013127845A (ja) 電気デバイス
RU2524572C1 (ru) Биполярный электрод, биполярная аккумуляторная батарея с его использованием и способ изготовления биполярного электрода
KR100943569B1 (ko) 폴리머 전해질 전지 및 그 형성 방법
JP6843580B2 (ja) リチウムイオン電池の製造方法
US11837691B2 (en) Battery manufacturing method
CN115461909A (zh) 一种电化学装置及包含该电化学装置的电子装置
KR102083712B1 (ko) 편평형 이차 전지
CN111937209A (zh) 电池的制造方法
JP7392828B2 (ja) 蓄電デバイス用電極およびリチウムイオン二次電池
JP2011258435A (ja) 電池用電極、双極型電池用電極及び双極型電池
JP2008016381A (ja) 電池用電極
US11563253B1 (en) Method and system for formation of cylindrical and prismatic can cells
US12027671B2 (en) Laminated battery and production method thereof
US20210104778A1 (en) Laminated battery and production method thereof
KR20160024088A (ko) 이차전지용 전극조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812371

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/000832

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20137001649

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13811793

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012526461

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011812371

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011812371

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013108850

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013001937

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013001937

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130125