WO2015137099A1 - 充電回路およびそれを用いたモジュール - Google Patents

充電回路およびそれを用いたモジュール Download PDF

Info

Publication number
WO2015137099A1
WO2015137099A1 PCT/JP2015/054936 JP2015054936W WO2015137099A1 WO 2015137099 A1 WO2015137099 A1 WO 2015137099A1 JP 2015054936 W JP2015054936 W JP 2015054936W WO 2015137099 A1 WO2015137099 A1 WO 2015137099A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
photoelectric conversion
voltage
storage element
power
Prior art date
Application number
PCT/JP2015/054936
Other languages
English (en)
French (fr)
Inventor
中井康晴
板谷昌治
吉田友祐
倉谷康浩
三好正子
和田好史
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to EP15760916.5A priority Critical patent/EP3118966B1/en
Priority to CN201580013709.8A priority patent/CN106104962A/zh
Priority to JP2016507428A priority patent/JPWO2015137099A1/ja
Publication of WO2015137099A1 publication Critical patent/WO2015137099A1/ja
Priority to US15/262,214 priority patent/US10461571B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 モジュール(11)は充電回路(10)および駆動部(14)を備える。充電回路(10)は発電素子(12)および蓄電素子(13)を備える。発電素子(12)は、蓄電素子(13)に接続され、蓄電素子(13)を充電する。蓄電素子(13)は、駆動部(14)に接続され、蓄えられた電力で駆動部(14)を駆動する。発電素子(12)の発電電圧は蓄電素子(13)の充電電圧以上の値である。蓄電素子(13)は、正極活物質層にリチウム遷移金属酸化物を含み、負極活物質層に、スピネル型結晶構造を有するリチウムチタン酸化物を含む二次電池である。

Description

充電回路およびそれを用いたモジュール
 本発明は、蓄電素子および発電素子を備える充電回路、ならびにそれを用いたモジュールに関する。
 従来の充電回路として、例えば、特許文献1に記載の充電装置がある。この充電装置では、発電素子がDC/DCコンバータを介して蓄電素子に接続されている。発電素子は、照射された光のエネルギーを電力に変換する光電変換素子である。DC/DCコンバータは、光電変換素子で生成された電力を蓄電素子に供給する。蓄電素子は、供給された電力を蓄電する。このようにして、光電変換素子に光を照射することで、蓄電素子を充電することができる。
特開平10-304585号公報
 特許文献1の充電装置では、DC/DCコンバータにより光電変換素子側の電圧を蓄電素子側の電圧に変換する際に、電力損失が生じる。このため、光電変換素子で生成された電力を蓄電素子に効率良く蓄電することができない。また、充電装置がDC/DCコンバータを備えるので、部品数が増え、充電装置のサイズが大きくなる。また、蓄電素子に関しての詳細が記載されておらず、例えば蓄電素子としてコンデンサを用いると、充放電カーブが直線的であるため、駆動部を動作させるのに必要な電圧を駆動部に安定して供給できない。
 本発明の目的は、発電された電力を効率良く蓄電することができる充電回路およびそれを用いたモジュールを提供することにある。
(1)本発明の充電回路は、蓄電素子と、蓄電素子を充電する発電素子とを備える。発電素子の発電電圧は蓄電素子の充電電圧以上の値である。蓄電素子は、正極活物質層にリチウム遷移金属酸化物を含み、負極活物質層に、スピネル型結晶構造を有するリチウムチタン酸化物を含む二次電池である。
 この構成では、蓄電素子を充電するために、発電素子の発電電圧を昇圧回路で昇圧する必要がない。このため、電力損失が低減されるので、効率良く蓄電素子を充電することができる。また、昇圧回路を実装する必要がないので、部品数を抑えることができ、充電回路を小型化することができる。
 また、正極活物質層にリチウム遷移金属酸化物を含み、負極活物質層に、スピネル型結晶構造を有するリチウムチタン酸化物を含む蓄電素子を用いることにより、負極活物質層の充電電位はLi/Li基準で1.55Vと高いため、負極でリチウム金属の析出(デンドライド)が発生せず、蓄電素子の充電時の信頼性を向上させることができる。また、電解液の分解を抑制することができ、さらにサイクル特性に優れた安定した蓄電素子を得ることができる。このような蓄電素子の充電電圧は一般的な二次電池の充電電圧(3.8V)に比べて低くなるので、発電素子に要求される発電電圧を低減することができる。また、蓄電素子に二次電池を用いることで、充放電カーブが直線的なコンデンサに比べて充電電圧が安定しており、安定した電圧で駆動部に電力を供給することが可能である。
(2)本発明の充電回路では、発電素子の発電電圧の変動は、蓄電素子の充電電圧に対して100~130%の範囲に収まることが好ましい。
 この構成では、発電素子と蓄電素子との間で電力損失が小さくなるので、充電効率を向上させることができる。また、蓄電素子に過電圧が印加されて蓄電素子が破壊されることを抑制できる。
(3)本発明の充電回路では、発電素子は、色素増感型光電変換素子、アモルファスSi光電変換素子、化合物半導体薄膜光電変換素子または有機薄膜光電変換素子であることが好ましい。
 この構成では、発電素子が光電変換素子からなる。蓄電素子の充電電圧は一般的な二次電池の充電電圧(3.8V)に比べて低くなるため、光電変換素子を構成する光電変換素子セルの直列数を低減することができ、延いては、発電素子を小型化することができる。
 また、光電変換素子セルの直列数が低減すると、光電変換素子の面積を変えずに個々の光電変換素子セルの面積を広くすることができる。そして、光電変換素子の発電電流量は光電変換素子セルの面積に比例する。このため、発電素子の面積を変えずに充電速度を改善することができる。
 また、色素増感型光電変換素子、アモルファスSi光電変換素子、化合物半導体薄膜光電変換素子または有機薄膜光電変換素子では、照度に対する発電電圧の変化率が小さくなり、幅広い環境で安定した発電電圧が得られる。このため、低照度の環境下でも、十分な発電電圧を得ることができる。また、高照度の環境下でも、過剰に大きな発電電圧が生じにくいので、蓄電素子が破壊されることを抑制できる。
(4)本発明の充電回路では、発電素子は光電変換素子であり、50~2000lxの照度範囲の環境において、光電変換素子の発電電圧は、2000lxでの光電変換素子の発電電圧に対して60%以上を維持することが好ましい。
 この構成では、幅広い環境で安定した発電電圧が得られる。このため、低照度の環境下でも、十分な発電電圧を得ることができる。また、高照度の環境下でも、過剰に大きな発電電圧が生じにくいので、蓄電素子が破壊されることを抑制できる。
(5)本発明の充電回路では、発電素子と蓄電素子との間に保護回路が挿入されてもよい。
 この構成では、蓄電素子に過電圧が印加されて蓄電素子が破壊されることを防止できる。
(6)本発明の充電回路では、正極活物質層および負極活物質層の厚みは100μm以下であることが好ましい。
 この構成では、活物質層と集電体との間の距離が近くなり、充放電反応に伴う抵抗を下げることができる。これにより、蓄電素子は大きな電流を流すことができる。このため、瞬間的に大きな電流を流すためにコンデンサなどを設ける必要がなくなるので、部品数を削減することができ、また、電荷移動にともなう電力損失を低減することができる。
(7)本発明のモジュールは、本発明の充電回路と、充電回路の蓄電素子により駆動される駆動部とを備える。駆動部の動作電圧は蓄電素子の充電電圧以下である。
 この構成では、昇圧回路を使用しなくても駆動部を動かすことが可能となる。このため、電力損失が低減されるので、電力効率が良いモジュールを得ることができる。
(8)本発明のモジュールでは、駆動部は、赤外線、磁気、温度、湿度、気圧、流量、照度、光、音波、におい、触覚の少なくとも一つを計測するセンサを有してもよい。
 この構成では、センサにより得られた情報を用いて環境のモニタリングや防犯等を行うことが可能となる。
(9)本発明のモジュールでは、駆動部は、無線通信部、記憶部およびそれらを制御する制御部を有してもよい。
 この構成では、モジュールに無線でコンピュータ等と通信させることで、モジュールをネットワークシステムのノードとして機能させることができる。
(10)本発明のモジュールでは、記憶部は、当該モジュールを他のモジュールから識別するための個別識別番号を記憶する。
 この構成では、複数のモジュールから構成されるセンサネットワークシステム内において、各モジュールを区別することができる。
(11)本発明のモジュールでは、駆動部は、表示部および表示部を制御する制御部を有してもよい。
 この構成では、センサによる測定結果等を表示部で確認することができる。
 本発明によれば、発電素子で発電された電力を蓄電素子に効率良く蓄電することができる。
本実施形態に係る充電回路およびモジュールのブロック図である。 本実施形態に係る駆動部の具体例を示すブロック図である。 光電変換素子の発電電圧の照度依存性を示すグラフである。 本実施形態に係るリチウムイオン二次電池の充放電カーブを示すグラフである。 発電電圧と充電電圧との電圧比に対する充電効率を示すグラフである。 図6(A)は、第1比較例となる光電変換素子の模式図である。図6(B)は、第1実施例に係る光電変換素子のブロック図である。図6(C)は、第2実施例に係る光電変換素子のブロック図である。 本実施形態に係る色素増感型太陽電池20の断面図である。 本実施形態に係る色素増感型太陽電池20の作製方法を示す断面図である。 本実施形態に係る色素増感型太陽電池20の作製方法を示す断面図である。 本実施形態に係る色素増感型太陽電池40の断面図である。 本実施形態に係る色素増感型太陽電池40の作製方法を示す断面図である。 図12(A)は、本実施形態に係るリチウムイオン二次電池の外観平面図である。図12(B)は、本実施形態に係る電池要素の分解平面図である。 第2比較例となるモジュールのブロック図である。 第3実施例に係るモジュールのブロック図である。
 本発明の第1の実施形態に係る充電回路10について説明する。図1は充電回路10およびモジュール11のブロック図である。モジュール11は充電回路10および駆動部14を備える。充電回路10は発電素子12および蓄電素子13を備える。蓄電素子13は、正極活物質層にリチウム遷移金属酸化物を含み、負極活物質層に、スピネル型結晶構造を有するリチウムチタン酸化物を含む二次電池である。発電素子12は、蓄電素子13に接続され、蓄電素子13を充電する。蓄電素子13は、駆動部14に接続され、蓄えられた電力で駆動部14を駆動する。なお、発電素子12と蓄電素子13との間に、スイッチIC等の保護回路が挿入されてもよい。
 発電素子12として後述のように環境型発電素子を用いる場合、環境型発電素子から得られる電力は数nW~数Wと幅広く、使用環境に依るが、定常的に供給できる電力が小さいことが多い。一方で、蓄電素子13に蓄えられた電力により駆動される駆動部14は、短時間動作を行うが、動作に数十mAといった比較的大きい電流を必要とする。このため、駆動部14を動作させるためには、一旦、蓄電素子13に電力を蓄電し、その蓄積された電力を用いる必要がある。また、環境型発電素子の置かれる環境は安定しておらず、常に安定した電力を駆動部14に供給できるとは限らないため、一旦蓄電素子13に電力を蓄電することで、発電素子12から電力が得られない状況でも駆動部14の動作に必要な電力を駆動部14に供給することができる。
 発電素子12の発電電圧は蓄電素子13の充電電圧以上の値である。蓄電素子13の充電電圧は、2.0~3.0Vであることが望ましく、2.2~2.5Vであることがさらに望ましい。ここで、発電素子の発電電圧とは、エネルギー源が存在する環境に発電素子を設置した際に生じる発電素子の正負端子間の開放電圧である。蓄電素子の充電電圧とは、正極のリチウムイオンの放出電位と負極のリチウムイオンの吸蔵電位との差分である。
 駆動部14の動作電圧は1.8~2.2Vであることが多く、充電電圧が2.0Vである場合、駆動部14を動作させる際に昇圧回路が必要になる。一方で、充電電圧が3.0Vになると、発電素子12の発電電圧が3.0V以上必要になるため、光発電素子を用いた場合、後述の理由(図6に関する説明を参照)により充電の効率が低下する。したがって、蓄電素子13の充電電圧は、2.2~2.5V程度であることがより望ましいと言える。
 特に、発電素子12の発電電圧の変動は、蓄電素子13の充電電圧に対して、100~130%の範囲に収まることが望ましく、100~120%の範囲に収まることがさらに望ましい。例えば、蓄電素子13の充電電圧が2.3Vであるならば、発電素子12の発電電圧の変動は、2.3~3.0Vの範囲に収まることがさらに望ましく、2.3~2.8Vの範囲に収まることがさらに望ましい。
 駆動部14の動作電圧は蓄電素子13の充電電圧以下である。駆動部14の駆動電圧と蓄電素子13の充電電圧とは近い値であることが望ましい。駆動部14は、1つの素子のみから構成されてもよいし、複数の素子から構成される回路であってもよい。
 発電素子12として、外部環境からエネルギーを取り出す環境型発電素子を使用する。これにより、使用環境下でエネルギーがある限り、永久的に発電素子12から蓄電素子13に電力を供給することが可能となる。直流型の発電素子としては、光電変換効果を利用した光電変換素子、ゼーベック効果を利用した熱電変換素子、レクテナを利用した電磁波発電素子等が挙げられる。交流型の発電素子としては、電磁誘導や圧電効果、エレクトレット等を利用して振動エネルギーを電力に変換する振動型発電素子等が挙げられる。
 特に、発電素子12として、種々の発電素子の中で発電電圧が高い光電変換素子を使用することが望ましい。幅広い使用環境下で発電電圧が安定している、色素増感型太陽電池、アモルファスSi太陽電池、化合物半導体薄膜太陽電池または有機薄膜太陽電池等を使用することがより望ましい。低照度環境から高照度環境での電圧安定性に優れている色素増感型太陽電池を使用することがさらにより望ましい。色素増感型太陽電池の詳細については後述する。光電変換素子の発電電圧は、50~2000lxの照度範囲の環境において、2000lxでの光電変換素子の発電電圧に対して60%以上を維持することが望ましい。
 色素増感型太陽電池は本発明の色素増感型光電変換素子に相当する。アモルファスSi太陽電池は本発明のアモルファスSi光電変換素子に相当する。化合物半導体薄膜太陽電池は本発明の化合物半導体薄膜光電変換素子に相当する。有機薄膜太陽電池は本発明の有機薄膜光電変換素子に相当する。
 蓄電素子13は、上述のように、リチウムイオン二次電池である。蓄電素子13の正極は正極集電体上に正極活物質層を形成してなり、蓄電素子13の負極は負極集電体上に負極活物質層を形成してなる。正極活物質層および負極活物質層の厚みは、100μm以下であることが望ましく、50μm以下であることがより望ましく、30μm以下であることがさらにより望ましい。
 上述のように、蓄電素子13の負極活物質層は、スピネル型結晶構造のリチウムチタン酸化物を含み、蓄電素子13の正極活物質層はリチウム遷移金属酸化物を含む。正極活物質は、リチウム遷移金属酸化物であるならば特に限定されず、正極活物質として、リチウムイオン二次電池において一般に使用されているものを用いることができる。例えば、正極活物質として、コバルト酸リチウム酸化物、マンガン酸リチウム酸化物、ニッケル酸リチウム酸化物、リチウム-ニッケル-マンガン-コバルト酸化物、リチウム-マンガン-ニッケル酸化物、リチウム-マンガン-コバルト酸化物、リチウム-ニッケル-コバルト酸化物、リン酸鉄リチウム等を用いることができる。さらに、正極活物質は、上記の材料を混合したものでもよい。これらの材料を用いることにより、蓄電素子13を作製することができる。このように構成された蓄電素子13の詳細については後述する。
 蓄電素子13の負極活物質層は、スピネル型結晶構造のリチウムチタン酸化物を含む合剤層であり、蓄電素子13の正極活物質層は、リン酸鉄リチウム(LiFePO)を含む合剤層であってもよい。これにより、蓄電素子13の充電電圧を2.0Vにすることができる。
 また、蓄電素子13の負極活物質層は、スピネル型結晶構造のリチウムチタン酸化物を含む合剤層であり、蓄電素子13の正極活物質層は、リチウム-マンガン-ニッケル酸化物(Li(Ni0.5Mn1.5)O)を含む合剤層であってもよい。これにより、蓄電素子13の充電電圧を3.0Vにすることができる。
 また、蓄電素子13の負極活物質層は、スピネル型結晶構造のリチウムチタン酸化物を含む合剤層であり、蓄電素子13の正極活物質層は、コバルト酸リチウム酸化物(LiCoO)を含む合剤層であってもよい。これにより、蓄電素子13の充電電圧を2.3Vにすることができる。これらの構成により、充電電圧が2.0V~3.0Vである蓄電素子13を作製することができる。
 図2は、駆動部14の具体例である駆動部14aを示すブロック図である。モジュール11aは、センシング機能と通信機能を有し、センサネットワークシステムのセンサノードの1つとして機能する。駆動部14aは、センサ141、無線通信部142およびマイコン143を備える。センサ141、無線通信部142およびマイコン143は、電力線(実線)により蓄電素子13に接続され、蓄電素子13から電力を供給される。駆動部14aの動作電圧は、一般的に、1.8~2.2Vであることが多い。マイコン143は、制御線(点線)によりセンサ141および無線通信部142に接続されている。
 センサ141は、例えば、赤外線、磁気、温度、湿度、気圧、流量、照度、光、音波、におい、触覚等を計測する。無線通信部142は、無線でセンサ141による計測結果をコンピュータ等に送信する。マイコン143は、モジュール11aに必要なパラメータを記憶する記憶部(図示せず)と、センサ141、無線通信部142、記憶部等を制御する制御部(図示せず)とを有する。マイコン143の制御部は、モジュール11aを安定して動作させるために、発電素子12から得られる電力に応じてモジュール11aの動作を制御できることが望ましい。例えば、マイコン143の制御部は、発電素子12から得られる電力に応じてモジュール11aを間欠的に制御できることが望ましい。マイコン143の記憶部は、センサネットワークシステム内の各センサノードを区別するための個別識別番号を記憶している。なお、駆動部14は、マイコン143の制御部により制御される表示部を備えてもよい。
 モジュール11aでは、センサ141により得られた情報を無線でコンピュータ等に送信することで、環境のモニタリングや防犯等を行うことが可能となる。また、モジュール11aでは、外部から電力線を配線する必要がないので、電源工事を行うことなく、後付けでモジュール11aを設置することが可能である。また、モジュール11aでは環境型発電素子を使用しているので、一次電池や燃料を必要とする電源等と異なり、電池交換や燃料の供給作業等が必要ない。
 図3は、光電変換素子の発電電圧の照度依存性を示すグラフである。図3では、後述の方法で作製された色素増感型太陽電池、一般的なアモルファスSi太陽電池および一般的な多結晶Si太陽電池について測定結果が示されている。図3では、2000lxにおける各光電変換素子の発電電圧で、各光電変換素子の発電電圧を規格化している。
 多結晶Si太陽電池では、約1000lxで発電電圧が60%を下回る。これに対して、アモルファスSi太陽電池では30lxでも発電電圧が60%を保持しており、色素増感型太陽電池では10lxでも発電電圧が60%を保持している。すなわち、50~2000lxの照度範囲の環境において、アモルファスSi太陽電池および色素増感型太陽電池の発電電圧は、2000lxでのそれらの発電電圧に対して60%以上を維持する。また、多結晶Si太陽電池では、約1500lxで発電電圧が80%を下回る。これに対して、アモルファスSi太陽電池では150lxでも発電電圧が80%を保持しており、色素増感型太陽電池では30lxでも発電電圧が80%を保持している。このように、アモルファスSi太陽電池や色素増感型太陽電池では、幅広い環境で安定した発電電圧が得られる。
 図4は、後述の方法で作製されたリチウムイオン二次電池の充放電カーブを示すグラフである。このリチウムイオン二次電池は、約2.3~2.5Vの範囲で変化する平坦な充電電圧カーブおよび放電電圧カーブを有している。充電電圧が約2.3~2.5Vの範囲で、蓄電素子13としてこのリチウムイオン二次電池を使用することで、充電電圧および放電電圧の変化による充放電時の電圧差損が低減される。このため、発電素子12から蓄電素子13に効率良く充電することができ、蓄電素子13から駆動部14に効率良く放電することができる。
 図5は、発電電圧と充電電圧との電圧比に対する充電効率を示すグラフである。ここで、電圧比は(発電素子の発電電圧/蓄電素子の充電電圧)で表される。充電効率は、発電素子で発生した電力を蓄電素子に充電する効率を表す指標であり、(蓄電素子に蓄積される電力/発電素子で発生する電力)で表される。図5では、発電素子として、後述の方法で作製した色素増感型太陽電池を使用し、蓄電素子として、後述の方法で作製したリチウムイオン二次電池を使用した。色素増感型太陽電池の直列数および作製条件を変更することにより、発電素子の発電電圧そして電圧比を変更し、そのときの充電効率を測定した。
 電圧比が大きくなると、徐々に充電効率が低下している。この結果は、発電電圧と充電電圧との差分に起因する電力が電力損失となってしまうことで生じる。電圧比が1.3になるとき、充電効率が約80%になっている。このため、充電電圧に対して100~130%の範囲に発電電圧の変動を抑えることで、余分な素子を設けることなく、発電素子12で発生した電力を蓄電素子13に80%以上の高い充電効率で充電できる。
 図6(A)は、第1比較例となる光電変換素子12aの模式図である。図6(B)は第1実施例の光電変換素子12bの模式図である。図6(C)は第2実施例の光電変換素子12cの模式図である。光電変換素子12b,12cは発電素子12(図1参照)の実施例である。光電変換素子12a~12cは、直列接続された複数の光電変換素子セルから構成されている。各光電変換素子セルの発電電圧は0.5Vである。第1比較例の蓄電素子(図示せず)の充電電圧は3.8Vである。第1実施例および第2実施例の蓄電素子の充電電圧は2.3Vである。第1実施例の光電変換素子セルの面積は第1比較例の光電変換素子セルの面積に等しい。光電変換素子12cの面積は光電変換素子12aの面積に等しい。
 光電変換素子セルの直列数がNである場合、光電変換素子セルの発電電圧をVとして、光電変換素子の発電電圧VはV=NVと表され、光電変換素子の発電電流量Iは光電変換素子セルの発電電流量Iと等しい。また、光電変換素子セルの発電電流量Iは光電変換素子セルの面積Sに比例する。光電変換素子の面積SはS=NSと表される。これらの関係から、光電変換素子の発電電流量IはI=I∝S=S/Nと表される。また、光電変換素子と蓄電素子との間で電力損失が十分小さいとすると、充電速度はほぼ光電変換素子の発電電流量Iに等しい。ここで、充電速度とは、単位時間当たりに蓄電素子に蓄積される電荷量、すなわち、蓄電素子に流入する電流量である。
 光電変換素子12aでは、その発電電圧を蓄電素子の充電電圧に比べて高くするために、8つの光電変換素子セルが直列接続されている。一方、光電変換素子12b,12cでは、その発電電圧を蓄電素子13の充電電圧に比べて高くするために、5つの光電変換素子セルが直列接続されている。
 上述のように、第1実施例の光電変換素子セルの面積は第1比較例の光電変換素子セルの面積と等しい。このため、光電変換素子12bの面積は、光電変換素子12aの面積の5/8倍となる。なお、第1実施例の充電速度は第1比較例の充電速度と変わらない。
 上述のように、光電変換素子12cの面積は光電変換素子12aの面積と等しい。このため、第2実施例の光電変換素子セルの面積は第1比較例の光電変換素子セルの面積の8/5倍となり、光電変換素子12cの発電電流量は光電変換素子12aの発電電流量の8/5倍となる。光電変換素子12a,12cの発電電圧と蓄電素子の充電電圧とが近い値であるので、光電変換素子12a,12cと蓄電素子との間で電力損失が十分小さくなる。このため、第2実施例の充電速度は第1比較例の充電速度の約8/5倍に改善する。
 このように、直列接続された複数の光電変換素子セルから発電素子12が構成される場合、蓄電素子13の充電電圧を低くすることで、発電素子12を小型化したり、充電速度を改善したりすることができる。
 本実施形態では、図1とともに述べたように、発電素子12の発電電圧は蓄電素子13の充電電圧以上の値である。このため、蓄電素子13を充電するために、発電素子12の発電電圧を昇圧回路で昇圧する必要がない。この結果、電力損失が低減されるので、効率良く蓄電素子13を充電することができる。また、昇圧回路を実装する必要がないので、部品数を抑えることができ、充電回路10を小型化することができる。
 また、上述のように、蓄電素子13は、正極活物質層にリチウム遷移金属酸化物を含み、負極活物質層に、スピネル型結晶構造を有するリチウムチタン酸化物を含む二次電池である。負極活物質層の充電電位はLi/Li基準で1.55Vと高いため、負極でリチウム金属の析出(デンドライド)が発生せず、蓄電素子13の充電時の信頼性を向上させることができる。また、電解液の分解を抑制することができ、さらにサイクル特性に優れた安定した蓄電素子13を得ることができる。このような蓄電素子13の充電電圧は一般的な二次電池の充電電圧(3.8V)に比べて低くなるので、発電素子12に要求される発電電圧を低減することができる。また、蓄電素子13に二次電池を用いることで、充放電カーブが直線的なコンデンサに比べて充電電圧が安定しており、安定した電圧で駆動部14に電力を供給することが可能である。
 また、発電素子12の発電電圧の変動が、蓄電素子13の充電電圧に対して、100~130%の範囲に収まる場合、発電素子12と蓄電素子13との間で電力損失が小さくなるので、充電効率を向上させることができる。また、蓄電素子13に過電圧が印加されて蓄電素子13が破壊されることを抑制できる。
 また、上述のように、蓄電素子13の充電電圧は一般的な二次電池の充電電圧(3.8V)に比べて低くなる。このため、発電素子12として光電変換素子を使用する場合、光電変換素子を構成する光電変換素子セルの直列数を低減することができ、延いては、発電素子12を小型化することができる。
 また、光電変換素子セルの直列数が低減すると、光電変換素子の面積を変えずに個々の光電変換素子セルの面積を広くすることができる。そして、光電変換素子の発電電流量は光電変換素子セルの面積に比例する。このため、発電素子12の面積を変えずに充電速度を改善することができる。
 また、発電素子12としてアモルファスSi太陽電池や色素増感型太陽電池を使用すると、照度に対する発電電圧の変化率が小さくなり、幅広い環境で安定した発電電圧が得られる。このため、低照度の環境下でも、十分な発電電圧を得ることができる。また、高照度の環境下でも、過剰に大きな発電電圧が生じにくいので、蓄電素子13が破壊されることを抑制できる。
 また、駆動部14を駆動させる際、瞬間的に大きな電流を流す必要がある。この問題を解決するため、一般的にコンデンサ等が蓄電素子13と並列に挿入される。蓄電素子13の正極活物質層および負極活物質層の厚みを、100μm以下、より好ましくは50μm、さらにより好ましくは30μmにすることで、活物質層と集電体との間の距離が近くなり、充放電反応に伴う抵抗を下げることができる。これにより、蓄電素子13は大きな電流を流すことができる。このため、コンデンサなどを設ける必要がなくなるので、部品数を削減することができ、また、電荷移動にともなう電力損失を低減することができる。
 また、駆動部14の動作電圧は蓄電素子13の充電電圧以下である。このため、昇圧回路を使用しなくても、駆動部14を動かすことが可能となる。また、駆動部14の駆動電圧と蓄電素子13の充電電圧とを近くすることで、降圧回路を設ける必要がなくなるとともに、電圧差損を低減することができる。
 また、発電電圧が0.5Vである光電変換素子セルを5つ直列接続して、発電電圧が2.5Vである発電素子12を構成することができる。蓄電素子13の負極活物質層として、スピネル型結晶構造を有するリチウムチタン酸化物を使用し、蓄電素子13の正極活物質層として、層状結晶構造のリチウム遷移金属酸化物、例えば、コバルト酸リチウム酸化物(LiCoO)を使用して、蓄電素子13の充電電圧を2.3Vにすることができる。また、駆動部14の駆動電圧は一般的に1.8~2.2Vであることが多い。
 このように構成することで、発電素子12の発電電圧、蓄電素子13の充電電圧および駆動部14の駆動電圧が近い値になる。このため、発電素子12と蓄電素子13との間での電力損失および蓄電素子13と駆動部14との間での電力損失を低減することができる。この結果、この構成では、電力効率が良いモジュールを得ることができる。
 なお、本発明の充電回路では、発電素子12と蓄電素子13との間にスイッチICが挿入されてもよい。このスイッチICは、蓄電素子13に過剰な電圧が印加された際、蓄電素子13への充電をオフする。これにより、例えば、蓄電素子13として光電変換素子を使用したとき、光電変換素子が過剰に明るい環境にさらされたため、光電変換素子が想定以上の発電電圧を発生した場合でも、蓄電素子13が破壊されることを防止できる。
 また、本発明の充電回路では、発電素子12と蓄電素子13との間にダイオードが挿入されてもよい。このダイオードは蓄電素子13の充電電圧以上の降伏電圧を有する。これにより、蓄電素子13の充電電圧が発電素子12の発電電圧を上回った際、蓄電素子13から発電素子12に電流が逆流することを防止できる。また、ダイオードの代わりに、蓄電素子13の充電電圧が発電素子12の発電電圧を上回ると、発電素子12と蓄電素子13との間を開放するスイッチICを挿入してもよい。
 また、本発明のモジュールでは、蓄電素子13と駆動部14との間にスイッチICが挿入されてもよい。このスイッチICは、蓄電素子13の充電電圧が所定電圧を下回ると、駆動部14への電力供給をオフにする。これにより、蓄電素子13の充電電圧が駆動部14の駆動電圧を下回った際、駆動部14が誤作動することを防止できる。
 また、本発明のモジュールでは、蓄電素子13と駆動部14との間に昇圧回路等のレギュレータが挿入されてもよい。また、瞬間的に大きな電流を流すために、蓄電素子13と並列にコンデンサが挿入されてもよい。
 図7は、色素増感型太陽電池20の断面図である。色素増感型太陽電池20は太陽電池セル21a,21bを備える。太陽電池セル21aと太陽電池セル21bとは、互いに同様に構成され、互いの取出電極部分24a,24bが導電性接着剤37により接続されることで直列接続されている。太陽電池セル21aは、作用極基板22、対極基板23、封止材35および電解液36を備える。なお、直列接続される太陽電池セルの数は2つに限定されず、色素増感型太陽電池は、所望の発電電圧を得るために必要な所定数だけ直列接続される。
 作用極基板22と対極基板23とは封止材35を介して対向している。作用極基板22および対極基板23は封止材35と当接している。作用極基板22、対極基板23および封止材35から中空部分が形成され、この中空部分に電解液36が充填されている。作用極基板22は、平面視で対極基板23と重ならないように延出した取出電極部分24aを有する。対極基板23は、平面視で作用極基板22と重ならないように延出した取出電極部分24bを有する。太陽電池セル21aにおける対極基板23の取出電極部分24bと、太陽電池セル21bにおける作用極基板22の取出電極部分24aとの間には、導電性接着剤37が設けられている。
 作用極基板22は、基材31a、導電膜32aおよび光電変換層33がこの順に積層されてなる。導電膜32aは基材31aの主面に全面に亘って形成されている。光電変換層33は導電膜32aの主面の一部に形成されている。対極基板23は、基材31b、導電膜32bおよび触媒層34がこの順に積層されてなる。導電膜32bは基材31bの主面に全面に亘って形成されている。触媒層34は導電膜32bの主面に全面に亘って形成されている。
 作用極基板22の主面のうち光電変換層33側の主面と、対極基板23の主面のうち触媒層34側の主面とが対向している。光電変換層33と触媒層34の一部とは、上述の中空部分の内壁の一部を構成し、電解液36に接触している。導電性接着剤37は、太陽電池セル21aの触媒層34および太陽電池セル21bの導電膜32aに接続されている。
 基材31a,31bは、絶縁性および透明性を有し、例えば、PET、PEN、ポリカーボネート等の樹脂基板、ガラス等からなる。導電膜32a,32bは、導電性および透明性を有し、例えば、ITO、FTO、ZnO等の透明酸化物導電膜、ナノAgワイヤ等の金属透明導電膜、PEDOT等の導電性高分子、CNT等の炭素系透明導電膜などからなる。
 光電変換層33は、粒子状の酸化亜鉛を凝集させてなる多孔質膜に増感型色素を吸着させて形成される。酸化亜鉛の粒径サイズについては、多孔質膜の比表面積を大きくし、加えて各粒子間のネッキング性を良くする必要があるため、5~100nmのサイズの粒子が主成分であることが望ましく、より望ましくは10~30nm程度のサイズの粒子が主成分であることが望ましい。また、多孔質膜は必ずしも5~100nmのサイズの粒子のみで構成される必要はなく、多孔質膜には100nm以上のサイズの粒子が混在しても問題がない。なお、多孔質膜の材料として、酸化亜鉛に限られず、酸化チタン、酸化錫等を使用してもよい。
 増感型色素は、酸化亜鉛に吸着できるカルボキシル基やスルホン酸基等の吸着基を少なくとも一つ持っていることが望ましい。また、増感型色素では、LUMO準位が酸化亜鉛の伝導帯準位よりも卑であり、HOMO準位が電解液36の電解質のレドックス準位よりも貴であることが望ましい。増感型色素としては、クマリン系、インドリン系、スクアリリウム系等の有機系色素やRu等の金属錯体色素、天然色素などを使用できるが、酸化亜鉛多孔質膜を使用する場合には有機系色素を使用することがより望ましい。具体的には、増感型色素として、EosinY、D149、D102、D131等を挙げることができる。
 触媒層34は、電解液36の電解質を還元する材料であれば良く、例えば、Pt、PEDOT(3,4-ethylene dioxythiophene)、ポリアニリン等の導電性高分子、CNT(Carbon nanotube)や活性炭、グラフェン、カーボンブラック等のカーボン系材料などからなる。封止材35は、例えば、紫外線硬化樹脂、熱硬化樹脂、熱可塑性樹脂、2液性の硬化樹脂等からなる。封止材35は、未硬化状態でも硬化状態でも電解液36の電解質と相溶しないことが望ましい。
 電解液36の溶媒として、有機溶媒、イオン性液体等が考えられるが、実使用性を考えると沸点が85℃以上の材料を使用することが望ましい。電解液36の溶媒として、例えば、炭酸プロピレン等が考えられる。電解液36の電解質として、ヨウ素化合物-ヨウ素、臭素化合物-臭素、コバルト錯体等が考えられるが、特性面や安定性の面からヨウ素化合物-ヨウ素を使用することがより望ましい。電解質中の酸化体の濃度は0.0001~1M程度であることが望ましく、電解質中の還元体の濃度は0.001~1M程度であることが望ましい。低照度環境下では、酸化体の濃度が0.0001~0.1M程度であることが望ましく、還元体の濃度が0.001~1M程度が望ましい。
 次に、色素増感型太陽電池20の作製方法について説明する。
〈作用極基板22の作製〉
 平均粒径25nmの酸化亜鉛粉末を加熱し、得られた酸化亜鉛粉末をエタノールに投入し、マグネチックスターラを使用して冷却しながら攪拌し、酸化亜鉛ペーストを得る。なお、酸化亜鉛粉末を投入する溶液は、エタノールに限られず、メタノール、プロパノール、ブタノール等を使用しても問題ない。
 また、酸化亜鉛ペーストには、分散剤の役割をする分散剤を添加することがより望ましい。分散剤を添加することにより、酸化亜鉛ペースト中の酸化亜鉛微粒子の凝集が抑制されるため、膜質が優れた多孔質酸化亜鉛膜を得ることができる。分散剤は、酸化亜鉛に配位する官能基を持っていることが望ましく、アミノ基、カルボキシル基、リン酸基、亜リン酸基、ケトン基、ヒドロキシル基、ホスホン酸基等を持っていることが望ましい。また、分散剤の特性については、150℃以下の雰囲気で容易に分散剤を除去できるか、または、極性溶剤により容易に分散剤を除去できることが望ましい。
 次に、ITO(Indium TinOxide)膜付きPET(Polyethylene Terephthalate)フィルムを準備し、ITO膜の主面のうち酸化亜鉛ペーストを塗布する以外のスペースに、マスキングテープを貼る。次に、ITO膜上に酸化亜鉛ペーストを滴下した後、酸化亜鉛ペーストが平坦になるように酸化亜鉛ペーストをITO膜上に塗り広げる。なお、酸化亜鉛ペーストをITO膜上に塗布する方法としては、ドクターブレード法、ガラス棒等による塗布、スクリーン印刷法、スプレー塗布法、グラビア印刷法等が望ましい。
 その後、ITO膜上からマスキングテープを剥離する。次に、酸化亜鉛ペーストが塗られたPETフィルムを加熱することにより、酸化亜鉛ペースト内のエタノールを除去する。これにより、多孔質酸化亜鉛付き導電フィルムが得られる。
 次に、多孔質酸化亜鉛付き導電フィルムを温水に浸漬した後、乾燥することにより、改質多孔質酸化亜鉛付き導電フィルムを得る。次に、改質多孔質酸化亜鉛付き導電フィルムを、D149をエタノールに溶解してなる色素溶液に浸漬する。その後、改質多孔質酸化亜鉛付き導電フィルムからエタノールで余分な色素溶液を除去し、それを自然乾燥する。これにより、作用極基板22を得ることができる。
〈対極基板23の作製〉
 ITO膜付きPETフィルムを準備し、スパッタリング法でITO膜上にPt膜を形成することにより、対極基板23を得ることができる。
〈色素増感型太陽電池20の作製〉
 図8および図9は、色素増感型太陽電池20の作製方法を示す断面図である。まず、図8(A)に示すように、上述の方法で作用極基板22を作製する。次に、図8(B)に示すように、作用極基板22の光電変換層33の外周に、紫外線硬化樹脂からなる封止材35を所定幅で塗布する。次に、図8(C)に示すように、ヨウ素0.05Mとヨウ化ジメチルイミダゾリウム0.5Mを溶かした炭酸プロピレンからなる電解液36を、光電変換層33上に適量滴下する。
 次に、図8(D)に示すように、上述の方法で対極基板23を作製し、作用極基板22と対極基板23とを対向させて貼り合わせる。次に、図9(A)に示すように、高圧水銀ランプにより、貼り合わせた作用極基板22および対極基板23に対極基板23側から紫外線を照射する。この際、光電変換層33と同形状のアルミホイル38で光電変換層33のみを遮光する。これにより、封止材35が硬化し、太陽電池セル21aが完成する。
 次に、図9(B)に示すように、太陽電池セル21aの取出電極部分24bに導電性両面テープからなる導電性接着剤37を設ける。次に、図9(C)に示すように、太陽電池セル21aの場合と同様の方法で太陽電池セル21bを作製する。そして、太陽電池セル21aの取出電極部分24bと太陽電池セル21bの取出電極部分24aとを、導電性接着剤37で接続する。これにより、太陽電池セル21a,21bが直列接続される。さらに、所望の発電電圧を得るために必要な所定数の太陽電池セルを直列接続することで、色素増感型太陽電池20が完成する。
 図10は色素増感型太陽電池40の断面図である。色素増感型太陽電池40では、基材31aと基材31bとの間に、太陽電池セル21a(図7参照)と同様の構造を有する太陽電池セル41が並んで形成されている。各太陽電池セル41は、その取出電極部分44a,44bが導電性部材57a,57bにより接続されることで直列接続されている。
 太陽電池セル41は、基材31aと基材31bとの間が封止材35により区切られることで形成されている。太陽電池セル41の内部には、導電膜32a、光電変換層33、電解液36、触媒層34および導電膜32bがこの順に積層されている。取出電極部分44a,44bは、封止材35の壁面から導電膜32a,32bが延出することで形成されている。
 次に、色素増感型太陽電池40の作製方法について説明する。図11は、色素増感型太陽電池40の作製方法を示す断面図である。
〈作用極基板42の作製〉
 まず、ITO膜付きPETフィルムを準備する。次に、ITO膜上の所定部分に導電性ペーストをスクリーン印刷し、乾燥させる。次に、ITO膜の不要な部分をカットする。ITO膜をカットする方法として、レーザーカット、保護膜を形成してエッチング液により除去する方法、不要な部分にエッチング剤を塗布して処理する方法等が考えられる。次に、作用極基板22(図8参照)の場合と同様に、所定部分に多孔質酸化亜鉛膜を形成し、染色する。これにより、図11(A)に示すように、導電性部材57aが形成された作用極基板42を得ることができる。
〈対極基板43の作製〉
 まず、ITO膜付きPETフィルムを準備する。作用極基板42の場合と同様に、導電性ペーストを形成および乾燥させ、ITO膜の不要な部分をカットする。次に、スパッタリング法でITO膜上の所定部分にPt膜を形成する。これにより、図11(B)に示すように、導電性部材57bが形成された対極基板43を得ることができる。
〈色素増感型太陽電池40の作製〉
 図11(C)に示すように、色素増感型太陽電池20の場合と同様に、作用極基板42の光電変換層33の外周に封止材35を所定幅で塗布し、電解液36を光電変換層33上に適量滴下する。次に、図11(C)および図11(D)に示すように、作用極基板42と対極基板43とを対向させて貼り合わせる。この際、導電性接着剤(図示せず)により導電性部材57aと導電性部材57bとを接着する。次に、封止材35および導電性接着剤を硬化させる。これにより、色素増感型太陽電池40が完成する。
 図12(A)は、リチウムイオン二次電池60の外観平面図である。図12(B)は、リチウムイオン二次電池60の電池要素69を示す分解平面図である。リチウムイオン二次電池60は、電池要素69を非水系電解液(図示せず)とともに外包材68に封入することにより形成される。電池要素69は、正極61、負極62、セパレータ63、リードタブ64,65およびシーラント66,67を備える。正極61、負極62およびセパレータ63は矩形平板状である。正極61と負極62とはセパレータ63を介して対向している。
 正極61にはリードタブ64が設けられ、負極62にはリードタブ65が設けられている。リードタブ64とリードタブ65は平面視で離れて配置されている。リードタブ64,65の端部は外包材68から突出している。リードタブ64にはシーラント66が取り付けられ、リードタブ65にはシーラント67が取り付けられている。シーラント66,67は、外包材68の内部と外包材68の外部との境界に配置され、リードタブ64,65を伝って非水系電解液が外包材から漏れることを防いでいる。
 正極61は正極集電体上に正極活物質層を形成してなる。正極集電体は、例えば、アルミニウム箔等からなる。正極活物質層は、例えば、コバルト酸リチウム酸化物、マンガン酸リチウム酸化物、ニッケル酸リチウム酸化物、リチウム-ニッケル-マンガン-コバルト酸化物、リチウム-マンガン-ニッケル酸化物、リチウム-マンガン-コバルト酸化物、リチウム-ニッケル-コバルト酸化物、リン酸鉄リチウム等のようなリチウム遷移金属酸化物を含む合剤層からなる。負極62は負極集電体上に負極活物質層を形成してなる。負極集電体は、例えば、アルミニウム箔等からなる。負極活物質層は、例えば、スピネル型結晶構造のリチウムチタン酸化物を含む合剤層からなる。正極活物質層および負極活物質層の厚みは、上述のように、100μm以下であることが望ましい。
 セパレータ63は、正極61と負極62との接触による短絡を防止する。セパレータ63として、例えば、ポリアミドイミドからなる多孔性のシート状材料等を使用することができる。
 非水系電解液として、例えば、プロピレンカーボネートの混合溶媒に1mol/LのLiPFを溶解させたもの等を使用することができる。また、次のような有機溶媒に次のような電解質を溶解させた電解液等を使用することができる。有機溶媒は、例えば、一般的にリチウムイオン二次電池で使用されているジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、アセトニトリル、エチルプロピオネート、メチルプロピオネート、またはこれらを混合したものである。電解質は、LiPF、LiBF、LiTFSI、またはこれらを混合したものである。また、次のようなイオン液体に、上述の有機溶媒や電解質を溶解させた電解液等も使用することができる。イオン液体は、例えば、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート、1-エチル-3メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、またはこれらを混合したものである。
 次に、リチウムイオン二次電池60の作製方法について説明する。
〈正極61の作製〉
 組成式LiCoOで表されるリチウムコバルト酸化物(LCO)と、導電剤としてのカーボンと、結着剤としてのポリフッ化ビニリデン(PVDF)とを、重量比率で90:7:3になるように配合して、N-メチル2-ピロリドン(NMP)と混錬することにより、正極活物質スラリーを作製する。
 そして、この正極活物質スラリーを、正極集電体としてのアルミニウム箔に所定の重量となるように塗布し、乾燥させた後、ロールプレスにて圧延し、正極集電体上に正極活物質層を形成する。
 それから、正極活物質層が形成された正極集電体を、平面面積が3cm(縦方向寸法が20mm、横方向寸法が15mmの方形の形状)なるように打ち抜き、正極61を作製する。なお、正極活物質層の電極目付重量は片面8.8mg/cmとなり、充填密度はすべて3.3g/cmとなるようにロールプレスにて厚みを調整する。
〈負極62の作製〉
 負極活物質としてのLiTi12で表されるスピネル型のリチウムチタン酸化物と、結着剤としてのPVDFとを、重量比率で90:10になるように配合して、NMPと混錬することにより、負極活物質スラリーを作製する。
 それから、各負極活物質スラリーを、負極集電体としてのアルミニウム箔に所定の重量となるように塗布し、乾燥させた後、ロールプレスにて圧延し、負極集電体上に負極活物質層を形成する。
 それから、負極活物質層が形成された負極集電体を、平面面積が3cm(縦方向寸法が20mm、横方向寸法が15mmの方形の形状)になるように打ち抜き、負極62を作製する。なお、負極活物質層の電極目付重量は片面10.0mg/cmとなり、充填密度はすべて2.0g/cmとなるようにロールプレスにて厚みを調整する。
〈非水系電解液の作製〉
 プロピレンカーボネートの混合溶媒に1mol/LのLiPFを溶解させ、非水系電解液を作製する。
〈リチウムイオン二次電池60の作製〉
 図12(B)に示すように、上述の方法で作製した正極61にリードタブ64を設け、負極62にリードタブ65を設ける。そして、正極61と負極62を、両者間にポリアミドイミドからなる多孔性のセパレータ63(透気度10sec./100cc、膜厚24μm)を介在させて積層することにより、正極61、負極62およびセパレータ63を備えた電池要素69を作製する。
 それから、リードタブ64にシーラント66を、リードタブ65にシーラント67を取り付けた後、電池要素69を、図12(B)に示すように、樹脂層の間にアルミニウム層を中間層として含むラミネートフィルムからなる外包材68に収容する。その後、上述の方法で作製した非水系電解液を、外包材68の内部に注入した後、外包材68の開口部を封止することにより、リチウムイオン二次電池60を作製する。なお、外包材68は、上述のようなラミネートフィルムを用いた袋状のものに限らず、電池要素を非水系電解液とともに封止することが可能な種々の態様のものを用いることが可能であり、例えば、缶状のもの等を用いることも可能である。
 次に、モジュールの動作試験の結果について説明する。図13は、第2比較例となるモジュール81のブロック図である。光電変換素子72、リチウムイオン二次電池83および駆動部14aを用いてモジュール81を作製した。光電変換素子72は、200lxでの発電電圧が0.5Vである光電変換素子セルを5つ直列接続してなる。従来構成のリチウムイオン二次電池83は、例えば、正極活物質として、コバルト酸リチウム酸化物を含み、負極活物質として、グラファイトを含むように構成され、その充電電圧は3.8Vである。駆動部14aは図2のように構成され、その駆動電圧は2.2Vである。
 光電変換素子72とリチウムイオン二次電池83との間には、光電変換素子72の発電電圧をリチウムイオン二次電池83の充電電圧に昇圧する昇圧回路86を挿入した。リチウムイオン二次電池83と駆動部14aとの間には、リチウムイオン二次電池83の放電電圧を駆動部14aの駆動電圧に変換する昇降圧回路76を挿入した。駆動部14aの駆動時に瞬間的に20~30mAの電流を流すために、リチウムイオン二次電池83と並列にコンデンサ75を挿入した。
 モジュール81では、昇圧回路86および昇降圧回路76で電力が消費されて電力効率が悪いので、動作不良が発生することがあった。また、昇圧回路86、昇降圧回路76およびコンデンサ75を挿入することにより、モジュール81のサイズが大きくなった。
 第3比較例となるモジュールでは、第2比較例の光電変換素子72と比べて、光電変換素子の面積を変えずに光電変換素子セルの直列数を5つから8つに増やした。その他の構成はモジュール81と同様である。第3比較例のモジュールでは、光電変換素子72の発電電圧がリチウムイオン二次電池83の充電電圧以上であるので、昇圧回路86が必要なくなった。しかし、光電変換素子72の場合と比べて、光電変換素子セルの面積が5/8倍になったので、光電変換素子の発電電流量が5/8倍になった。このため、第3比較例のモジュールでは、第2比較例のモジュールに比べて充電速度が下がった。この結果、第3比較例のモジュールでも動作不良が発生した。
 図14は、第3実施例のモジュール71のブロック図である。第3実施例のモジュール71では、第2比較例のリチウムイオン二次電池83の代わりに、リチウムイオン二次電池60を使用し、第2比較例の昇圧回路86を取り外した。リチウムイオン二次電池60は上述の方法で作製され、その充電電圧は2.3Vである。その他の構成は第2比較例と同様である。なお、モジュール71では、コンデンサ75および昇降圧回路76を必ずしも要しないが、第2比較例および第3比較例と比較するために、コンデンサ75および昇降圧回路76を挿入している。
 モジュール71では、昇圧回路を使用せずにリチウムイオン二次電池60を充電することができた。第1比較例のモジュール81に比べて充電効率が上昇し、第2比較例のモジュールに比べて充電速度が上昇した。動作不良なく駆動部14aをより安定的に動作させることができた。
 第4実施例のモジュールでは、光電変換素子72とリチウムイオン二次電池60との間に、降伏電圧が5Vであるダイオードを挿入した。その他の構成は第3実施例のモジュール71と同様である。第4実施例のモジュールでは、照度が0~5lx程度の非常に暗い環境にモジュールを設置しても、電流が逆流することが防止され、駆動部14aを安定的に動作させることができた。
 第5実施例のモジュールでは、リチウムイオン二次電池60の正極活物質層および負極活物質層の厚みを100μmにし、コンデンサ75を取り外した。その他の構成は第3実施例のモジュール71と同様である。第5実施例のモジュールでは、コンデンサ75を介さずにリチウムイオン二次電池60から駆動部14aに20~30mAの電流を供給できるようになり、コンデンサ75を削減してもモジュールの動作に支障をきたさなかった。正極活物質層および負極活物質層の厚みを50μm、30μmと薄くするとさらに大きな電流を供給できるようになり、より大きい電流を必要とする駆動部14aを安定的に動作させることができた。
10…充電回路
11,11a,71,81…モジュール
12,12a~12c…発電素子
13…蓄電素子
14,14a…駆動部
20,40…色素増感型太陽電池
21a,21b,41…太陽電池セル
22,42…作用極基板
23,43…対極基板
24a,24b,44a,44b…取出電極部分
31a,31b…基材
32a,32b…導電膜
33…光電変換層
34…触媒層
35…封止材
36…電解液
37…導電性接着剤
38…アルミホイル
57a,57b…導電性部材
60,83…リチウムイオン二次電池
61…正極
62…負極
63…セパレータ
64,65…リードタブ
66,67…シーラント
68…外包材
69…電池要素
72…光電変換素子
75…コンデンサ
76…昇降圧回路
86…昇圧回路
141…センサ
142…無線通信部
143…マイコン

Claims (11)

  1.  蓄電素子と、前記蓄電素子を充電する発電素子とを備える充電回路であって、
     前記発電素子の発電電圧は前記蓄電素子の充電電圧以上の値であり、
     前記蓄電素子は、正極活物質層にリチウム遷移金属酸化物を含み、負極活物質層に、スピネル型結晶構造を有するリチウムチタン酸化物を含む二次電池である、充電回路。
  2.  前記発電素子の発電電圧の変動は、前記蓄電素子の充電電圧に対して100~130%の範囲に収まる、請求項1に記載の充電回路。
  3.  前記発電素子は、色素増感型光電変換素子、アモルファスSi光電変換素子、化合物半導体薄膜光電変換素子または有機薄膜光電変換素子である、請求項1または2に記載の充電回路。
  4.  前記発電素子は光電変換素子であり、
     50~2000lxの照度範囲の環境において、前記光電変換素子の発電電圧は、2000lxでの前記光電変換素子の発電電圧に対して60%以上を維持する、請求項1ないし3のいずれかに記載の充電回路。
  5.  前記発電素子と前記蓄電素子との間に保護回路が挿入される、請求項1ないし4のいずれかに記載の充電回路。
  6.  前記正極活物質層および前記負極活物質層の厚みは100μm以下である、請求項1ないし5のいずれかに記載の充電回路。
  7.  請求項1ないし6のいずれかに記載の充電回路と、前記充電回路の前記蓄電素子により駆動される駆動部とを備えるモジュールであって、
     前記駆動部の動作電圧は前記蓄電素子の充電電圧以下である、モジュール。
  8.  前記駆動部は、赤外線、磁気、温度、湿度、気圧、流量、照度、光、音波、におい、触覚の少なくとも一つを計測するセンサを有する、請求項7に記載のモジュール。
  9.  前記駆動部は、無線通信部、記憶部およびそれらを制御する制御部を有する、請求項7または8に記載のモジュール。
  10.  前記記憶部は、他のモジュールから自身を識別するための個別識別番号を記憶する、請求項9に記載のモジュール。
  11.  前記駆動部は、表示部および前記表示部を制御する制御部を有する、請求項7ないし請求項10のいずれかに記載のモジュール。
PCT/JP2015/054936 2014-03-14 2015-02-23 充電回路およびそれを用いたモジュール WO2015137099A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15760916.5A EP3118966B1 (en) 2014-03-14 2015-02-23 Charging circuit and module using same
CN201580013709.8A CN106104962A (zh) 2014-03-14 2015-02-23 充电电路以及使用该种充电电路的模块
JP2016507428A JPWO2015137099A1 (ja) 2014-03-14 2015-02-23 充電回路およびそれを用いたモジュール
US15/262,214 US10461571B2 (en) 2014-03-14 2016-09-12 Charging circuit and module using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014052290 2014-03-14
JP2014-052290 2014-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/262,214 Continuation US10461571B2 (en) 2014-03-14 2016-09-12 Charging circuit and module using the same

Publications (1)

Publication Number Publication Date
WO2015137099A1 true WO2015137099A1 (ja) 2015-09-17

Family

ID=54071548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054936 WO2015137099A1 (ja) 2014-03-14 2015-02-23 充電回路およびそれを用いたモジュール

Country Status (5)

Country Link
US (1) US10461571B2 (ja)
EP (1) EP3118966B1 (ja)
JP (1) JPWO2015137099A1 (ja)
CN (1) CN106104962A (ja)
WO (1) WO2015137099A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487087A (zh) * 2016-07-01 2017-03-08 龙彩霞 飞行器的供电系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015586A1 (en) * 2015-07-23 2017-01-26 Briggs & Stratton Corporation Lithium-ion battery including two power supplies
JP6931660B2 (ja) * 2016-11-30 2021-09-08 株式会社ユポ・コーポレーション 圧電素子および楽器
JP6964232B2 (ja) * 2017-04-25 2021-11-10 パナソニックIpマネジメント株式会社 照明器具
JP6958316B2 (ja) * 2017-12-14 2021-11-02 トヨタ自動車株式会社 電池システム及びリチウムイオン二次電池の容量回復方法
EP3809556A4 (en) * 2018-06-14 2022-03-02 Tohoku University SOLAR POWER GENERATION AND STORAGE UNIT, AND SOLAR POWER GENERATION AND STORAGE SYSTEM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312826A (ja) * 1997-03-10 1998-11-24 Sanyo Electric Co Ltd 非水電解質電池及びその充電方法
JP2014158379A (ja) * 2013-02-15 2014-08-28 Renesas Electronics Corp 半導体装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6194129A (ja) * 1984-10-16 1986-05-13 Matsushita Electric Ind Co Ltd メモリ−バツクアツプ装置
US5438225A (en) * 1992-02-06 1995-08-01 Murphy Management Inc. Solar powered annuciator
JPH07140185A (ja) * 1993-11-15 1995-06-02 Canon Inc 二次電池用電圧チェック装置
JPH08340640A (ja) * 1995-06-12 1996-12-24 Sharp Corp 遠隔制御装置およびそれに用いる遠隔制御用送信機
JPH10304585A (ja) 1997-04-25 1998-11-13 Tdk Corp 充電装置
JPH1174002A (ja) * 1997-06-30 1999-03-16 Sanyo Electric Co Ltd 太陽電池一体型二次電池及び時計
JP2003008958A (ja) * 2001-06-21 2003-01-10 Fuji Film Microdevices Co Ltd 撮像装置
US6977479B2 (en) * 2002-01-08 2005-12-20 Hsu Po-Jung John Portable cell phone battery charger using solar energy as the primary source of power
JP4554911B2 (ja) * 2003-11-07 2010-09-29 パナソニック株式会社 非水電解質二次電池
JP4439456B2 (ja) * 2005-03-24 2010-03-24 株式会社東芝 電池パック及び自動車
JP4201035B2 (ja) * 2006-09-05 2008-12-24 セイコーエプソン株式会社 電池素子および電子機器
JP4785699B2 (ja) * 2006-10-17 2011-10-05 三洋電機株式会社 ソーラー充電器
US20090007958A1 (en) * 2007-07-02 2009-01-08 Tsann Kuen Enterprise Co., Ltd. Portable solar energy supplying device
KR100934956B1 (ko) * 2007-09-13 2010-01-06 한국과학기술연구원 광에너지에 의한 자가충전형 이차전지
US20090160396A1 (en) * 2007-12-19 2009-06-25 J Touch Corporation Charging device receiving light from diverse sources
JP2010080211A (ja) * 2008-09-25 2010-04-08 Sumitomo Electric Ind Ltd 電池
JP5363058B2 (ja) * 2008-09-26 2013-12-11 旭化成株式会社 蓄電素子及びその製造方法
JP2010206912A (ja) * 2009-03-03 2010-09-16 Hitachi Koki Co Ltd 充電装置
JP5179410B2 (ja) * 2009-03-05 2013-04-10 日東電工株式会社 電池用セパレータとその製造方法、並びに、リチウムイオン二次電池とその製造方法
KR101578738B1 (ko) * 2009-08-31 2015-12-21 엘지전자 주식회사 이동 단말기의 충전방법
JP5307675B2 (ja) * 2009-09-28 2013-10-02 京セラ株式会社 携帯電子機器
CN102163735B (zh) * 2010-02-15 2014-03-12 夏普株式会社 二次电池;太阳能发电系统、风力发电系统和车辆;以及二次电池的制造方法
US8432124B2 (en) * 2010-02-24 2013-04-30 A&D Concepts, Llc Portable electronic device carrier with charging system
JP5763889B2 (ja) * 2010-03-16 2015-08-12 パナソニック株式会社 非水電解質二次電池の充放電方法
KR101072289B1 (ko) 2010-07-02 2011-10-11 주식회사 샤인 섬유상의 구조체들을 포함하는 전극 조립체
CN103004009B (zh) 2010-07-28 2015-11-25 日产自动车株式会社 双极型电极及使用它的双极型二次电池以及双极型电极的制造方法
JP5876217B2 (ja) * 2010-12-24 2016-03-02 京セラ株式会社 携帯端末装置
JP2012139008A (ja) 2010-12-24 2012-07-19 Sharp Corp 電気自動車充電装置、電気自動車充電システム、電気自動車充電方法、プログラムおよび記録媒体
JP2013048532A (ja) * 2011-08-29 2013-03-07 Sanyo Electric Co Ltd ソーラー充電器
US20130127392A1 (en) * 2011-10-03 2013-05-23 earthCell, Inc. Systems and Methods for transformation and transportation of energy storage devices
US9225003B2 (en) * 2012-06-15 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing storage battery electrode, storage battery electrode, storage battery, and electronic device
US20140004412A1 (en) * 2012-06-29 2014-01-02 Semiconductor Energy Laboratory Co., Ltd. Secondary battery
CN104919642B (zh) * 2013-01-11 2018-03-20 株式会社半导体能源研究所 电子设备充电方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312826A (ja) * 1997-03-10 1998-11-24 Sanyo Electric Co Ltd 非水電解質電池及びその充電方法
JP2014158379A (ja) * 2013-02-15 2014-08-28 Renesas Electronics Corp 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487087A (zh) * 2016-07-01 2017-03-08 龙彩霞 飞行器的供电系统

Also Published As

Publication number Publication date
US20160380474A1 (en) 2016-12-29
CN106104962A (zh) 2016-11-09
JPWO2015137099A1 (ja) 2017-04-06
EP3118966A1 (en) 2017-01-18
US10461571B2 (en) 2019-10-29
EP3118966A4 (en) 2017-11-22
EP3118966B1 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
Gurung et al. Solar charging batteries: advances, challenges, and opportunities
US10461571B2 (en) Charging circuit and module using the same
Zhang et al. Halide perovskite materials for energy storage applications
Vega‐Garita et al. Integrating a photovoltaic storage system in one device: A critical review
Zeng et al. Integrated photorechargeable energy storage system: next‐generation power source driving the future
JP6832827B2 (ja) イオン性ゲル電解質、エネルギー貯蔵デバイス、およびそれらの製造方法
Zheng et al. All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance
Xu et al. Efficiently photo-charging lithium-ion battery by perovskite solar cell
US9761380B2 (en) Apparatus and associated methods
JP6328100B2 (ja) 電池用電極材料およびそれを用いた電池用基板、蓄電池、色素増感太陽電池、キャパシタ、Liイオン二次電池
JP2019516236A (ja) 高電圧用及び太陽電池用の装置及び方法
JP2014187003A (ja) 電子デバイス
JP2007299698A (ja) リチウムイオン蓄電素子の製造方法
JP2009071262A (ja) 光エネルギーによる自家充電式二次電池
CN104599859A (zh) 锂离子电容器及其制作方法
US10333181B2 (en) Transparent autophotorechargeable electrochemical device
JP2015005553A (ja) 蓄電デバイス
US20140315084A1 (en) Method and apparatus for energy storage
Liu et al. Sandwich structure corrosion-resistant current collector for aqueous batteries
Sun et al. Laser-assisted fabrication of microphotocapacitors with high energy density and output voltage
CN207459090U (zh) 一种锂离子电池
JP2011192784A (ja) リチウムイオンキャパシタ
KR101802936B1 (ko) 박막 배터리 일체형 태양전지 및 이의 제조방법
Kansal et al. Integrated energy generation and storage systems for low‐power device applications
KR102009598B1 (ko) 광-에너지 전환/저장 효율이 향상된 염료감응형 자가충전 광 화학전지 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507428

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015760916

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015760916

Country of ref document: EP