WO2012014364A1 - 電気推進車両用充電器及びそれに適用される漏電確認方法 - Google Patents

電気推進車両用充電器及びそれに適用される漏電確認方法 Download PDF

Info

Publication number
WO2012014364A1
WO2012014364A1 PCT/JP2011/003253 JP2011003253W WO2012014364A1 WO 2012014364 A1 WO2012014364 A1 WO 2012014364A1 JP 2011003253 W JP2011003253 W JP 2011003253W WO 2012014364 A1 WO2012014364 A1 WO 2012014364A1
Authority
WO
WIPO (PCT)
Prior art keywords
leakage
charger
electric propulsion
external power
power source
Prior art date
Application number
PCT/JP2011/003253
Other languages
English (en)
French (fr)
Inventor
秀世 湯野
河瀬 知之
徳明 赤井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP11811971.8A priority Critical patent/EP2600484B1/en
Priority to JP2012526278A priority patent/JP5853165B2/ja
Priority to CN201180036828.7A priority patent/CN103026578B/zh
Priority to US13/811,953 priority patent/US8941957B2/en
Publication of WO2012014364A1 publication Critical patent/WO2012014364A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/167Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass combined with other earth-fault protective arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/334Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means to produce an artificial unbalance for other protection or monitoring reasons or remote control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a charger, and more specifically, a charger for charging an electric propulsion vehicle such as an electric vehicle (EV) or a plug-in hybrid vehicle (PHV) from an external power source, and an electric leakage applied thereto. Regarding the confirmation method.
  • a charger for charging an electric propulsion vehicle such as an electric vehicle (EV) or a plug-in hybrid vehicle (PHV) from an external power source, and an electric leakage applied thereto.
  • EV electric vehicle
  • PSV plug-in hybrid vehicle
  • this type of charger performs a leakage check with a predetermined leakage current value set by a leakage check resistor and determined for each product (for example, see Patent Document 1).
  • FIG. 4 is a block diagram showing a configuration of a conventional charger.
  • the conventional charger includes a leakage detection unit 11 that detects a leakage of the charging device, a leakage blocking unit 12 that turns on / off a current from an external commercial power source to the charging device, and a charging device.
  • a leakage check relay 13 that is controlled by an ECU (Electronic Control Unit) 15 provided on the side and forcibly leaks the downstream circuit of the leakage detection unit 11 and sets a current value for leakage.
  • the leakage current value for performing leakage confirmation will increase or decrease depending on the voltage because the leakage detection resistance is fixed. There was a problem that the leakage could not be confirmed and the reliability was poor.
  • An object of the present invention is to solve the above-described conventional problems, and to provide a charging device for an electric propulsion vehicle that is inexpensive, reliable, and easy to use.
  • a first aspect of the present invention is a charger that connects an external power source and an electric propulsion vehicle to charge the electric propulsion vehicle, and the electric leakage of the charger is reduced.
  • a leakage detection unit for detecting, a leakage blocking unit for turning on and off the power from the external power supply, a leakage check relay capable of forcibly leaking a downstream circuit of the leakage detection unit, and the leakage check relay; Based on the detection result of the leakage detection unit, the resistor unit connected in series and configured to be settable to any of a plurality of leakage current values, and the downstream circuit forcibly leaking the current, And a control unit for turning on and off the leakage breaker.
  • a second aspect of the present invention is a leakage check method applied to a charger that connects an external power source and an electric propulsion vehicle and supplies electric power from the external power source to the electric propulsion vehicle, A first selection step of selecting a first resistance determined by a detection voltage value and a predetermined leakage current value, and using the first resistance selected in the first selection step.
  • a second selection step of selecting a second resistor having a resistance value larger than the first resistance, and a second resistor selected in the second selection step are used.
  • a notifying step for notifying the user of the attention and a charging operation step for supplying electric power from the external power source to the electric propulsion vehicle after the notifying step are provided.
  • FIG. 1 is a block diagram showing a configuration of an electric propulsion vehicle charger according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing the operation of the charger of FIG.
  • FIG. 3 is a flowchart showing the operation of the charger according to Embodiment 2 of the present invention.
  • FIG. 4 is a block diagram showing the configuration of a conventional charger.
  • FIG. 1 is a block diagram showing a configuration of an electric propulsion vehicle charger (hereinafter simply referred to as “charger”) according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing the operation of the charging apparatus shown in FIG.
  • a charger is a charging cable that connects, for example, a commercial power outlet provided in a house and a charging device in the electric propulsion vehicle, and is used for charging the electric propulsion vehicle.
  • a charger includes a leakage detector 1, a leakage breaker 2, a leakage check relay 3, preferably a plurality of leakage check resistors 4 i (i is 1, 2,...) And at least one switching.
  • a resistance unit 5 including an earth leakage confirmation resistor 6, a switching unit 7, a control unit 8, and a primary side voltage detection unit 9 are provided.
  • the earth leakage detection unit 1 includes a ZCT (Zero-phase-sequence Current Transformer) that detects the earth leakage of the charger.
  • ZCT Ziero-phase-sequence Current Transformer
  • ZCT is provided in a power line pair from a commercial power source.
  • the earth leakage interrupter 2 is configured by a relay or the like that turns on / off the energization from the commercial power source to the charger.
  • the earth leakage confirmation relay 3 turns on and off the earth leakage confirmation circuit for forcibly causing earth leakage in the downstream circuit of the earth leakage detection unit 1.
  • the resistance section 5 includes a leakage check resistance (hereinafter referred to as “first resistance”) 4 i for setting a current value to be leaked and a switching leakage check resistance (hereinafter referred to as “second resistance”) 6.
  • first resistance a leakage check resistance
  • second resistance a switching leakage check resistance
  • X i [ ⁇ ] of each first resistor 4 i is a voltage value of a commercial power source that may vary from country to country. Selected based on. X 1 [ ⁇ ] is determined corresponding to the voltage value of a certain country, and X 2 [ ⁇ ] is determined corresponding to the voltage value of another country.
  • the value Y [ ⁇ ] of the second resistor 6 is determined from the following viewpoint. Even though it is originally safe, it is not easy for the control unit 8 to determine that there is a leakage current with a slight leakage current. The value Y [ ⁇ ] of the second resistor 6 is determined so that such a slight leakage current can be detected.
  • the switching unit 7 is connected in series with the leakage check relay 3 and the resistor unit 5 and selectively switches one of the plurality of first resistors 4 i and the second resistor 6.
  • the leakage check circuit 10 is configured by connecting the leakage check relay 3, the resistance unit 5, and the switching unit 7 in series. This leakage check circuit 10 is provided between a pair of power lines upstream and downstream of ZCT.
  • the control unit 8 is configured by, for example, a microcomputer or an ECU (Electronic Control Unit), and controls on / off of energization of the charger and a forced leakage check operation. Further, when receiving the leakage detection signal from the leakage detection unit 1, the control unit 8 turns off the leakage blocking unit 2 and blocks the energization.
  • a microcomputer or an ECU Electronic Control Unit
  • the primary side voltage detector 9 detects the applied voltage from the commercial power source.
  • the primary side voltage detection unit 9 detects the applied voltage VIN from the commercial power source and displays the detection result. It passes to the control part 8 (step S1).
  • a leakage current flows through the leakage check circuit 10.
  • the equilibrium state of the currents flowing in the opposite directions to the power line pair breaks down, the leakage detection unit 1 detects the occurrence of leakage due to the generation of an electric field, and outputs the detection result to the control unit 8.
  • step S7 the leakage detector 1 in leakage current value I 2 is detected electrical leakage (step S7), and the control unit 8 turns off the leakage check relay 3 and ground fault interrupter unit 2 (step S8, S9). Thereafter, the control unit 8 ends the leakage check mode (step S10).
  • the control unit 8 is determined to be a leakage even with a slight leakage current that is considered to be inherently safe. Therefore, care should be taken to repair the failure by displaying on a display (not shown) in order to solve this. While informing (step S11), a charging operation is performed (step S12).
  • step S7 if the leakage detection unit 1 at the current leakage value I 2 does not detect leakage in step S7, the control unit 8, it is regarded as operating normally, turn off the leakage check relay 3 and ground fault interrupter unit 2 (Steps S13 and S14). Thereafter, the control unit 8 normally ends the leakage check mode (step S15) and performs a charging operation (step S12).
  • step S5 if the leakage detection unit 1 does not detect the fault current in the leakage current value I 1 in step S5, the control unit 8 is now forced leakage is allowed without leakage detection because the situation is regarded as being abnormal, leakage check
  • the relay 3 and the leakage breaker 2 are turned off (steps S16 and S17). Thereafter, the control unit 8 abnormally ends the leakage check mode (step S18), interrupts energization, and notifies the abnormality by display or the like (step S19).
  • the charger according to the present embodiment can be realized by one variable resistor instead of the resistor unit 5.
  • a primary side voltage detection unit 9 that detects an applied voltage from a commercial power source as an external power source is provided, and the control unit 8 includes a first resistor 4 i according to the applied voltage from the external power source.
  • the control unit 8 includes a first resistor 4 i according to the applied voltage from the external power source.
  • control unit 8 performs a leakage check with a plurality of leakage current values to detect a leakage at a value that is lower than a predetermined leakage current value and has a level that does not cause a safety problem. It can also be recharged, improving usability.
  • Embodiment 2 Next, a charging apparatus according to Embodiment 2 of the present invention will be described.
  • the configuration of the charging device of the present embodiment is substantially the same as the configuration of the charging device shown in FIG. Therefore, in the following description, components corresponding to those shown in FIG.
  • FIG. 3 is a flowchart showing the operation of the charging device according to the second embodiment of the present invention.
  • the flowchart in FIG. 3 is different from the flowchart in FIG. 2 in that steps S20 and S21 are further provided. Therefore, in FIG. 3, the same step numbers are assigned to the steps corresponding to the steps in FIG.
  • step S9 when leakage occurs at X i ⁇ and Y ⁇ after step S9, the control unit 8 writes an error flag in a nonvolatile memory (not shown) included therein (step S20). Then, the process after step S10 is performed and charge control of step S12 is performed.
  • the leakage check mode (next leakage check mode) in FIG. 3 starts at any future timing.
  • step S21 the control unit 8 checks whether or not an error flag is set. If there is an error flag, the control unit 8 notifies the abnormality and does not perform the charging operation (steps S16 to S19). . Thereby, it is possible to prevent the user from continuing to use in some abnormal state while improving usability.
  • the battery charger for electric propulsion according to the present invention is inexpensive and can be improved in reliability and usability. Therefore, it is also applicable to uses such as automobile inspection devices and detachable power cables for various facilities. it can.

Abstract

 外部電源と電気推進車両とを接続して、電気推進車両を充電する充電器であって、充電器の漏電を検出する漏電検出部1と、外部電源からの通電を入切する漏電遮断部2と、漏電検出部1の下流側回路を強制的に漏電させることが可能な漏電確認リレー3と、漏電確認リレー3と直列に接続され、複数の漏電電流値のいずれかに設定可能に構成された抵抗部5と、下流側回路を強制的に漏電させている間に、漏電検出部1の検出結果に基づき、漏電遮断部1を入切する制御部8とを備える。

Description

電気推進車両用充電器及びそれに適用される漏電確認方法
 本発明は、充電器に関し、より特定的には、例えば電気自動車(EV)、プラグインハイブリッド自動車(PHV)のような電気推進車両に外部電源から充電するための充電器及びそれに適用される漏電確認方法に関する。
 従来、この種の充電器は、漏電確認抵抗により設定されかつ製品毎に決められた所定の漏電電流値で漏電確認を行っている(例えば、特許文献1参照)。
 図4は、従来の充電器の構成を示すブロック図である。図4に示すように、従来の充電器は、充電装置の漏電を検出する漏電検出部11と、充電装置への外部の商用電源からの通電を入/切する漏電遮断部12と、充電装置側に設けられたECU(Electronic Control Unit)15により制御されかつ漏電検出部11の下流側回路を強制的に漏電させるための漏電確認回路をオンオフする漏電確認リレー13と、漏電させる電流値を設定する漏電確認抵抗14から構成されている。
特開平11-205909号公報
 しかしながら、従来の構成では、漏電確認を行う漏電電流値が異なると製品毎に漏電確認抵抗が異なってしまい、多品種少量生産となって安価な充電装置を提供することができないという課題を有していた。
 また外部の商用電源からの印加電圧が異なる地域で充電すると、漏電確認抵抗が固定されているために漏電確認を行う漏電電流値が電圧に依存して増減してしまい、所定の漏電電流値で漏電確認できず信頼性に劣るという課題を有していた。
 また所定の漏電電流値より低い、安全上問題ない程度の値で漏電検出するような安全側の誤動作でも充電できなくなり、使い勝手が悪いという課題を有していた。
 本発明は、前記従来の課題を解決するもので、安価で、信頼性の高い、使い勝手の良い電気推進車両用充電装置を提供することを目的とする。
 前記従来の課題を解決するために、本発明の第一の態様は、外部電源と電気推進車両とを接続して、前記電気推進車両を充電する充電器であって、前記充電器の漏電を検出する漏電検出部と、前記外部電源からの通電を入切する漏電遮断部と、前記漏電検出部の下流側回路を強制的に漏電させることが可能な漏電確認リレーと、前記漏電確認リレーと直列に接続され、複数の漏電電流値のいずれかに設定可能に構成された抵抗部と、前記下流側回路を強制的に漏電させている間に、前記漏電検出部の検出結果に基づき、前記漏電遮断部を入切する制御部とを備える。
 また、本発明の第二の態様は、外部電源と電気推進車両とを接続して、外部電源からの電力を電気推進車両に与える充電器に適用される漏電確認方法であって、外部電源からの電圧検出後、検出電圧値と予め定められた漏電電流値とで定められる第1の抵抗を選択する第1選択ステップと、第1選択ステップで選択された第1の抵抗を用いた際に充電器内で漏電が発生すると、第1の抵抗よりも大きな抵抗値を有する第2の抵抗を選択する第2選択ステップと、第2選択ステップで選択された第2の抵抗を用いた際に充電器内で漏電が発生すると、ユーザへの注意を報知するための報知ステップと、報知ステップの後に、電気推進車両へと外部電源からの電力を与える充電動作ステップとを備える。
 本発明の各態様によれば、安価で、信頼性の高い、使い勝手の良い電気推進車両用充電装置を提供できる。
図1は本発明の実施の形態1に係る電気推進車両用充電器の構成を示すブロック図 図2は図1の充電器の動作を示すフローチャート 図3は本発明の実施の形態2に係る充電器の動作を示すフローチャート 図4は従来の充電器の構成を示すブロック図
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は、本発明の一実施の形態の係る電気推進車両用充電器(以下、単に「充電器」という)の構成を示すブロック図である。また、図2は、図1に示す充電装置の動作を示すフローチャートである。
 図1において、充電器は、例えば家屋に設けられる商用電源のコンセントと、電気推進車両内の充電装置とを接続する充電ケーブルであり、電気推進車両の充電に用いられる。このような充電器は、漏電検出部1と、漏電遮断部2と、漏電確認用リレー3と、好ましくは複数の漏電確認抵抗4 (iは、1,2,…)及び少なくとも1つの切替用漏電確認抵抗6を含む抵抗部5と、切換部7と、制御部8と、1次側電圧検出部9とを備えている。
 漏電検出部1は、この充電器の漏電を検出するZCT(Zero-phase-sequence Current Transformer)等で構成される。ZCTは、商用電源からの電力線対に設けられる。
 漏電遮断部2は、この充電器への商用電源からの通電を入切するリレー等で構成される。
 漏電確認リレー3は、漏電検出部1の下流側回路を強制的に漏電させるための漏電確認回路をオンオフする。
 抵抗部5は、漏電させる電流値を設定する漏電確認抵抗(以下「第1の抵抗」という)4 や切換用漏電確認抵抗(以下、「第2の抵抗」という)6を含み、各抵抗を漏電確認リレー3と直列に接続可能に構成される。ここで、好ましくは、第1の抵抗4 は、複数個準備されており、各第1の抵抗4 の値X [Ω]は、国ごとに異なることがある商用電源の電圧値に基づき選ばれる。ある国の電圧値に対応してX [Ω]と決められ、また、別の国の電圧値に対応してX [Ω]と決められる。また、第2の抵抗6の値Y[Ω]は以下の観点で決められる。本来は安全であるにもかかわらずわずかの漏電電流で制御部8が漏電と判断するのも使い勝手が悪くなる。第2の抵抗6の値Y[Ω]は、このようなわずかな漏電電流が発生していることを検出できるように決められる。
 切換部7は、漏電確認リレー3および抵抗部5と直列に接続され、前記複数の第1の抵抗4 ,第2の抵抗6のいずれかを選択的に切換える。
 なお、漏電確認リレー3と、抵抗部5と、切換部7とが直列に接続されることにより、漏電確認回路10が構成される。この漏電確認回路10は、ZCTに対し上流側と下流側の電力線対間に設けられている。
 制御部8は、例えばマイコンやECU(Electronic Control Unit)で構成され、この充電器への通電の入/切や強制漏電確認動作を制御する。また、制御部8は、漏電検出部1から漏電検出信号を受信すると漏電遮断部2をオフして通電を遮断する。
 1次側電圧検出部9は、商用電源からの印加電圧を検出する。
 以上のように構成された充電器の動作・作用について、以下、図2のフローチャートを参照して説明する。
 図2において、充電器が正常に漏電検出するかどうかを確認するための漏電確認モードがスタートすると、1次側電圧検出部9は、商用電源からの印加電圧VINを検出し、検出結果を制御部8に渡す(ステップS1)。
 制御部8は、国ごとで異なる場合がある検出結果VINを受け取ると、所定の漏電電流値I となるように、第1の抵抗4 を選択するよう切換部7を切り換える。このとき選択されるのは、X [Ω](X =VIN÷I )となる第1の抵抗4 である(ステップS2)。さらに、制御部8は、漏電遮断部2及び漏電確認リレー3をオンにする(ステップS3,S4)。
 以上により、漏電確認回路10に漏電電流が流れる。その結果、電力線対に互いに反対方向に流れる電流の平衡状態が破綻し、電界の発生により漏電の発生を漏電検出部1が検出し、検出結果を制御部8に出力する。
 制御部8は、漏電発生を検知すると(ステップS5)、前述のI より低い、安全上問題ない程度の漏電電流値I となるように、抵抗部5における第2の抵抗6(抵抗値Y[Ω](Y=VIN÷I ))に切換える(ステップS6)。
 その後、漏電電流値I で漏電検出部1が漏電検出すると(ステップS7)、制御部8は、漏電確認リレー3及び漏電遮断部2をオフにする(ステップS8,S9)。その後、制御部8は、漏電確認モードを終了する(ステップS10)。そして、この場合、制御部8は、本来安全とみなされる程度のわずかの漏電電流でも漏電と判断されてしまうため、これを解消するために図示しないディスプレイへの表示等で修理をするように注意報知しながら(ステップS11)、充電動作を行う(ステップS12)。
 また、ステップS7において漏電電流値I で漏電検出部1が漏電検出しない場合は、制御部8は、正常に動作しているとみなして、漏電確認リレー3及び漏電遮断部2をオフにする(ステップS13,S14)。その後、制御部8は、漏電確認モードを正常終了し(ステップS15)、充電動作を行う(ステップS12)。
 また、ステップS5において漏電電流値I で漏電検出部1が漏電検出しない場合は、制御部8は、現在強制的に漏電させているので漏電検出しない事態が異常であるとみなして、漏電確認リレー3及び漏電遮断部2をオフにする(ステップS16,S17)。その後、制御部8は、漏電確認モードを異常終了し(ステップS18)、通電を遮断して表示等で異常報知する(ステップS19)。
 以上のように、本実施の形態においては、抵抗部5に含まれる複数の第1の抵抗4 ,第2の抵抗6を適宜切り替えることにより、従来は漏電確認を行う漏電電流値ごとに複数の製品を用意しなければならなかったが、これらを1つの製品にまとめることができ、少品種多量生産となって安価な充電器を提供できる。なお、本実施の形態に係る充電器は、抵抗部5に代えて、1つの可変抵抗で実現することも可能である。
 また、本実施の形態では、外部電源としての商用電源からの印加電圧を検出する1次側電圧検出部9を備え、制御部8は外部電源からの印加電圧に応じて第1の抵抗4 を切換え制御することにより電圧に影響されない所定の漏電電流値で漏電確認でき信頼性が向上する。さらに、印加電圧VINを検出してから第2の抵抗6に電流を流すことにより、過電圧検出時にはそれ以降のシーケンスを中止することができ、第2の抵抗6の破損を防止することができる。
 また、本実施の形態では、制御部8は複数の漏電電流値で漏電確認を行うことにより所定の漏電電流値より低い、安全上問題ない程度の値で漏電検出するような安全側の誤動作では充電できるようにすることもでき使い勝手を良くすることができる。
 (実施の形態2)
 次に、本発明の実施の形態2に係る充電装置について説明する。まず、本実施の形態の充電装置の構成は、図1に示す充電装置の構成と実質的に同じである。それゆえ、以下の説明において、図1に示す構成に相当するものには同一の参照符号を付け、それぞれの説明を省略する。
 また、図3は、本発明の実施の形態2の充電装置の動作を示すフローチャートである。図3のフローチャートは、図2のフローチャートと比較すると、ステップS20とS21をさらに備える点で相違する。それゆえ、図3において、図2のステップに相当するものには同一のステップ番号を付け、それぞれの説明を省略する。
 図3において、ステップS9の次に、X ΩおよびYΩで漏電発生した場合に、制御部8は、内部に有する不揮発性メモリ(図示せず)にエラーフラグを書き込む(ステップS20)。その後、ステップS10以降の処理が行われ、ステップS12の充電制御が行われる。今回の充電制御が完了すると、また将来のいずれかのタイミングで図3の漏電確認モード(次回の漏電確認モード)が始まる。
 そして、この次回の漏電確認モードスタート後、ステップS21において、制御部8は、エラーフラグの設定有無を確認し、エラーフラグがある場合は、異常報知し充電動作を行わない(ステップS16~S19)。これによって、使い勝手を良くしつつ、ユーザが若干の異常状態で使用し続けることを回避できる。
 以上のように、本発明の電気推進車両用充電器は、安価で、信頼性、使い勝手の向上が可能となるので、自動車用検査装置、各種設備の着脱可能な電源ケーブルなどの用途にも適用できる。
 1 漏電検出部
 2 漏電遮断部
 3 漏電確認リレー
 4 漏電確認抵抗(第1の抵抗)
 5 抵抗部
 6 切替用漏電確認抵抗(第2の抵抗)
 7 切換部
 8 制御部
 9 1次側電圧検出部

Claims (5)

  1. 外部電源と電気推進車両とを接続して、前記電気推進車両を充電する充電器であって、
     前記充電器の漏電を検出する漏電検出部と、
     前記外部電源からの通電を入切する漏電遮断部と、
     前記漏電検出部の下流側回路を強制的に漏電させることが可能な漏電確認リレーと、
     前記漏電確認リレーと直列に接続され、複数の漏電電流値のいずれかに設定可能に構成された抵抗部と、
     前記下流側回路を強制的に漏電させている間に、前記漏電検出部の検出結果に基づき、前記漏電遮断部を入切する制御部とを備える、電気推進車両用充電器。
  2. 前記外部電源からの印加電圧を検出する1次側電圧検出部をさらに備え、
     前記制御部は、外部電源からの印加電圧に応じて、前記複数の漏電電流値のいずれかに設定することを特徴とする、請求項1に記載の電気推進車両用充電器。
  3. 前記複数の漏電電流値のなかには、安全上問題ない程度に定められるものがあり、
     前記下流側回路を強制的に漏電させている間、前記安全上問題の無い程度に定められた漏電電流値に設定された場合にも、前記制御部は、前記漏電検出部の検出結果に基づき、前記漏電遮断部を入切することを特徴とする、請求項1に記載の電気推進車両用充電器。
  4. 外部電源と電気推進車両とを接続して、前記外部電源からの電力を前記電気推進車両に与える充電器に適用される漏電確認方法であって、
     前記外部電源からの電圧検出後、検出電圧値と予め定められた漏電電流値とで定められる第1の抵抗を選択する第1選択ステップと、
     前記第1選択ステップで選択された第1の抵抗を用いた際に前記充電器内で漏電が発生すると、前記第1の抵抗よりも大きな抵抗値を有する第2の抵抗を選択する第2選択ステップと、
     前記第2選択ステップで選択された第2の抵抗を用いた際に前記充電器内で漏電が発生すると、ユーザへの注意を報知するための報知ステップと、
     前記報知ステップの後に、前記電気推進車両へと前記外部電源からの電力を与える充電動作ステップとを備える、漏電確認方法。
  5. 前記第2選択ステップで選択された第2の抵抗を用いた際に前記充電器内で漏電が発生すると、エラーフラグを書き込む書き込みステップをさらに備え、
     前記漏電確認方法は、
      前記外部電源からの電圧検出前に、前記エラーフラグの有無を確認する確認ステップと、
      前記確認ステップでエラーフラグ有りと判断した場合、ユーザに異常であることを報知する第2報知ステップとをさらに備える、請求項4に記載の漏電確認方法。
PCT/JP2011/003253 2010-07-30 2011-06-09 電気推進車両用充電器及びそれに適用される漏電確認方法 WO2012014364A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11811971.8A EP2600484B1 (en) 2010-07-30 2011-06-09 Battery charger for an electrically-driven vehicle and method of confirming earth leakage applicable thereto
JP2012526278A JP5853165B2 (ja) 2010-07-30 2011-06-09 電気推進車両用充電器及びそれに適用される漏電確認方法
CN201180036828.7A CN103026578B (zh) 2010-07-30 2011-06-09 电气动力车辆用充电器及应用于该电气动力车辆用充电器的漏电确认方法
US13/811,953 US8941957B2 (en) 2010-07-30 2011-06-09 Battery charger for an electrically-driven vehicle and method of confirming earth leakage applicable thereto

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010171628 2010-07-30
JP2010-171628 2010-07-30
JP2011087034 2011-04-11
JP2011-087034 2011-04-11

Publications (1)

Publication Number Publication Date
WO2012014364A1 true WO2012014364A1 (ja) 2012-02-02

Family

ID=45529603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003253 WO2012014364A1 (ja) 2010-07-30 2011-06-09 電気推進車両用充電器及びそれに適用される漏電確認方法

Country Status (5)

Country Link
US (1) US8941957B2 (ja)
EP (1) EP2600484B1 (ja)
JP (1) JP5853165B2 (ja)
CN (1) CN103026578B (ja)
WO (1) WO2012014364A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103729A (ja) * 2012-11-19 2014-06-05 Nitto Kogyo Co Ltd 車両用充電装置
JP2016039703A (ja) * 2014-08-07 2016-03-22 パナソニックIpマネジメント株式会社 漏電保護装置及び給電制御装置
CN106627198A (zh) * 2016-10-27 2017-05-10 扬州汇益智能光电设备有限公司 一种电动车智能充电保护器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121486B4 (de) * 2011-12-16 2020-12-17 Audi Ag Kraftfahrzeug mit einer Vorrichtung zur Erzeugung eines dreiphasigen Drehwechselstroms aus einem ein- oder zweiphasigen Wechselstrom
CN108604805B (zh) 2016-11-15 2021-01-29 华为技术有限公司 一种充电方法及相关设备
CN109787305A (zh) 2017-11-14 2019-05-21 华为技术有限公司 充电装置及充电系统
JP2022174589A (ja) * 2021-05-11 2022-11-24 トヨタ自動車株式会社 充電制御装置、及び車両
US20230322087A1 (en) * 2022-04-08 2023-10-12 Ford Global Technologies, Llc Isolation fault detection on dc charge bus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205909A (ja) 1998-01-16 1999-07-30 Toyota Motor Corp 電気自動車用充電装置
JP2000354332A (ja) * 1999-06-09 2000-12-19 Matsushita Electric Works Ltd 電気自動車用充電装置
JP2002078187A (ja) * 2000-08-28 2002-03-15 Matsushita Electric Works Ltd 漏電遮断器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733517A (en) 1971-08-30 1973-05-15 Westinghouse Electric Corp Electrical apparatus with ground fault detector and instantaneous trip circuit
US3699392A (en) * 1971-11-22 1972-10-17 Joo C Lee Ground fault detection system with sequential line testing
US3978400A (en) * 1974-11-25 1976-08-31 Square D Company Ground fault detector with a nonlinear sensing means
US4024435A (en) 1974-12-05 1977-05-17 Gross Thomas A O Ground fault protective systems with variable rate integration of fault signals
US4833564A (en) * 1987-09-24 1989-05-23 Siemens Energy & Automation, Inc. Current sensing relay circuit with adjustable sensitivity and tracking test circuit
JPH0393422A (ja) 1989-09-05 1991-04-18 Hitachi Ltd 多出力漏電継電器
US5231309A (en) 1990-06-15 1993-07-27 Konica Corporation Current leakage breaking circuit for a copying apparatus
JP3319799B2 (ja) 1993-02-23 2002-09-03 松下電工株式会社 地絡検出装置
KR950020841A (ko) 1993-12-29 1995-07-26 문정환 누전차단기
JP4310892B2 (ja) 2000-06-16 2009-08-12 三菱電機株式会社 配線用遮断器
JP4264817B2 (ja) 2003-11-27 2009-05-20 富士電機機器制御株式会社 漏電遮断器
JP4457379B2 (ja) 2003-12-19 2010-04-28 株式会社ネオインターナショナル 電子ブレーカ
JP4400255B2 (ja) * 2004-03-01 2010-01-20 富士電機機器制御株式会社 漏電遮断器
JP4742232B2 (ja) 2005-04-19 2011-08-10 富士電機株式会社 漏電遮断器
US8278882B2 (en) * 2007-07-24 2012-10-02 Panasonic Corporation Charging monitor
JP4926015B2 (ja) 2007-12-05 2012-05-09 三菱電機株式会社 漏電リレー
JP5155687B2 (ja) 2008-02-19 2013-03-06 パナソニック株式会社 配線器具
US8736226B2 (en) * 2008-10-28 2014-05-27 Panasonic Corporation Charging cable, charging cable unit, and charging system for electric vehicle
AU2010292270A1 (en) * 2009-09-08 2012-04-12 Aerovironment, Inc. Electric vehicle simulator and analyzer (EVSA) for electric vehicle supply equipment
US8466656B2 (en) * 2011-09-09 2013-06-18 General Electric Company Charging devices and methods for charging electrically powered vehicles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205909A (ja) 1998-01-16 1999-07-30 Toyota Motor Corp 電気自動車用充電装置
JP2000354332A (ja) * 1999-06-09 2000-12-19 Matsushita Electric Works Ltd 電気自動車用充電装置
JP2002078187A (ja) * 2000-08-28 2002-03-15 Matsushita Electric Works Ltd 漏電遮断器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103729A (ja) * 2012-11-19 2014-06-05 Nitto Kogyo Co Ltd 車両用充電装置
JP2016039703A (ja) * 2014-08-07 2016-03-22 パナソニックIpマネジメント株式会社 漏電保護装置及び給電制御装置
US10367346B2 (en) 2014-08-07 2019-07-30 Panasonic Intellectual Property Management Co., Ltd. Electric leakage protection device and feed control device
CN106627198A (zh) * 2016-10-27 2017-05-10 扬州汇益智能光电设备有限公司 一种电动车智能充电保护器

Also Published As

Publication number Publication date
EP2600484B1 (en) 2019-02-27
CN103026578A (zh) 2013-04-03
EP2600484A4 (en) 2018-01-10
US8941957B2 (en) 2015-01-27
JP5853165B2 (ja) 2016-02-09
US20130120883A1 (en) 2013-05-16
JPWO2012014364A1 (ja) 2013-09-09
EP2600484A1 (en) 2013-06-05
CN103026578B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5853165B2 (ja) 電気推進車両用充電器及びそれに適用される漏電確認方法
CN108604516B (zh) 继电器装置
JP6111967B2 (ja) 電源システム
JP5920469B2 (ja) 電源装置
JP6399442B2 (ja) 給電制御装置
CN108604515B (zh) 继电器装置
JP6258425B2 (ja) 電気自動車充電器
KR20180023140A (ko) 파워릴레이 어셈블리의 고장제어 시스템 및 그 제어방법
JP2013219955A (ja) 電源装置
KR20160081058A (ko) Pra의 상태 감지방법
KR20180019448A (ko) 전기 자동차의 충전 장치
JP6718350B2 (ja) 電圧検出装置
JP5994652B2 (ja) 車両用電源制御装置
JP5104520B2 (ja) 電動車両の充電装置
JP7221193B2 (ja) 二次電池システム
JP2010182579A (ja) 車両用電源装置
WO2014102955A1 (ja) 充電装置、および、停電時充電復帰方法
JP2017093008A (ja) コンタクタ故障判定装置およびコンタクタ故障判定方法
JP7056434B2 (ja) 故障検出装置
JP2015082874A (ja) 車載充電システム
CN113071322B (zh) 一种交流漏电检测装置的控制方法、装置及轨道车辆
US11535108B2 (en) Method and system for controlling an electrical system
JP2021016281A (ja) 給電システム
JP5819528B2 (ja) 充電装置、および、充電装置の正常性確認方法
JP2016226145A (ja) 充電スタンド

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036828.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526278

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011811971

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13811953

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE