WO2012011200A1 - チタン製燃料電池セパレータ - Google Patents

チタン製燃料電池セパレータ Download PDF

Info

Publication number
WO2012011200A1
WO2012011200A1 PCT/JP2010/064939 JP2010064939W WO2012011200A1 WO 2012011200 A1 WO2012011200 A1 WO 2012011200A1 JP 2010064939 W JP2010064939 W JP 2010064939W WO 2012011200 A1 WO2012011200 A1 WO 2012011200A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon layer
titanium
fuel cell
carbon
base material
Prior art date
Application number
PCT/JP2010/064939
Other languages
English (en)
French (fr)
Inventor
鈴木 順
佐藤 俊樹
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US13/811,118 priority Critical patent/US9178222B2/en
Priority to EP10855037.7A priority patent/EP2597710B1/en
Priority to KR1020137001415A priority patent/KR101240697B1/ko
Priority to CN201080067626.4A priority patent/CN102959779B/zh
Publication of WO2012011200A1 publication Critical patent/WO2012011200A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a titanium fuel cell separator used in a fuel cell.
  • the fuel cell can continuously generate electric power by continuously supplying a fuel such as hydrogen and an oxidant such as oxygen. Therefore, unlike primary batteries such as dry batteries and secondary batteries such as lead-acid batteries, fuel cells are not significantly affected by the size of the system, have high power generation efficiency, and have little noise and vibration, so they can be used in a variety of applications. ⁇ It is expected as an energy source covering the scale.
  • the fuel cell includes a polymer electrolyte fuel cell (PEFC), an alkaline electrolyte fuel cell (AFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), and a solid oxide. It has been developed as a type fuel cell (SOFC) and biofuel cell.
  • solid polymer fuel cells are being developed for fuel cell vehicles, household fuel cells (household cogeneration systems), portable devices such as mobile phones and personal computers.
  • a polymer electrolyte fuel cell (hereinafter referred to as a fuel cell) has a plurality of single cells made of a polymer electrolyte membrane sandwiched between an anode electrode and a cathode electrode via an electrode called a separator (also called a bipolar plate). It is configured as a stacked stack. In the separator, a groove serving as a flow path for gas (hydrogen, oxygen, etc.) is formed. The output of the fuel cell can be increased by increasing the number of cells per stack.
  • the separator for the fuel cell is also a part for taking out the generated current to the outside of the fuel cell. Therefore, the separator material can maintain a low contact resistance (resistance causing a voltage drop due to an interface phenomenon between the electrode and the separator surface) over a long period of time during use as a separator. Is required. Furthermore, since the inside of the fuel cell is in an acidic atmosphere, the separator is also required to have high corrosion resistance.
  • Examples of the metal material having both corrosion resistance and conductivity include Au and Pt.
  • corrosion resistance is achieved by coating a base material of a metal material such as aluminum alloy, stainless steel, nickel alloy, titanium alloy, etc., which can be thinned and has excellent workability and high strength, with a noble metal such as Au or Pt.
  • a noble metal such as Au or Pt.
  • separators imparted with conductivity have been studied. However, since these noble metal materials are very expensive, there is a problem that the cost becomes high.
  • Patent Document 1 a separator in which a carbon film is formed on the surface of a base material by vapor phase film formation
  • a separator in which graphite is pressure-bonded on the surface of a stainless steel base material see Patent Documents 2 and 3. Proposed.
  • the separator (refer patent document 4) by which the carbon layer from which the G / D ratio by Raman spectroscopy became 0.5 or less was formed in the surface of a metal base material, and the surface of a metal base material, and an amorphous carbon layer and A separator (see Patent Document 5) in which a carbon layer composed of a graphite portion is formed has been proposed.
  • the present invention has been made in view of the above-mentioned problems, and the problem is to provide a titanium fuel cell separator having excellent conductivity and durability.
  • the present inventors use pure titanium or titanium alloy having excellent corrosion resistance as a base material, and by covering the base material surface with a carbon layer having graphite oriented in a predetermined direction, excellent conductivity and durability are achieved.
  • the present invention was created by finding that a separator having the above could be obtained.
  • a titanium fuel cell separator has a base material made of pure titanium or a titanium alloy, and a carbon layer formed on the surface (one side or both sides) of the base material.
  • the carbon layer has graphite oriented parallel to the (002) plane of the carbon layer, and the amount of the carbon layer deposited is 2 ⁇ g / cm 2 or more. It is characterized by.
  • the titanium fuel cell separator according to the present invention can reduce the weight of the separator and improve the corrosion resistance when the base material is made of pure titanium or a titanium alloy.
  • the base material is made of pure titanium or a titanium alloy, elution of metal ions from the separator does not occur, so there is no possibility of deteriorating the solid polymer film, and the strength and toughness of the base material can be improved. .
  • the titanium fuel cell separator according to the present invention shields the substrate from the environment in the fuel cell because the carbon layer has graphite oriented parallel to the (002) plane of the carbon layer.
  • Environmental shielding can be improved. Therefore, reactions such as oxidation that cause a decrease in conductivity are less likely to occur at the interface between the base material and the carbon layer. That is, conductivity and conductivity durability (property of maintaining conductivity for a long period) can be improved.
  • the titanium fuel cell separator according to the present invention has an adhesion amount of the carbon layer of 2 ⁇ g / cm 2 or more, a wide area of the substrate surface is covered with the carbon layer. Therefore, the area
  • an intermediate layer is formed between the base material and the carbon layer, and the intermediate layer has granular titanium carbide continuous in a direction parallel to the carbon layer. Is preferred.
  • the intermediate layer is formed from conductive titanium carbide
  • the electrical resistance at the interface between the base material and the carbon layer is reduced, and the conductivity of the separator is reduced. Can be improved.
  • titanium carbide is formed by the reaction between the base material and the carbon layer, the adhesion between the base material and the carbon layer can be improved.
  • the intensity ratio (G / D) of the D band peak and the G band peak obtained by measuring the carbon layer by Raman spectroscopic analysis is preferably 0.5 to 2. .
  • the titanium fuel cell separator according to the present invention achieves both conductivity and environmental shielding by defining the intensity ratio (G / D) of the D band peak and the G band peak within a predetermined range. be able to.
  • the conductivity and durability of the separator can be improved because the carbon layer has graphite oriented parallel to the (002) plane of the carbon layer. Moreover, when the adhesion amount of the carbon layer of the titanium fuel cell separator according to the present invention is 2 ⁇ g / cm 2 or more, the conductivity and durability of the separator can be ensured. Furthermore, in the titanium fuel cell separator according to the present invention, the intermediate layer is formed of titanium carbide, so that the conductivity can be further improved and the adhesion between the substrate and the carbon layer can be improved. Furthermore, the titanium fuel cell separator according to the present invention can achieve both conductivity and environmental shielding properties by defining the G / D value within a predetermined range.
  • FIG. 1 It is sectional drawing which shows the titanium fuel cell separator which concerns on embodiment, Comprising: (a) is sectional drawing of the titanium fuel cell separator by which the carbon layer is formed in the single side
  • a titanium fuel cell separator 10 As shown in FIGS. 1A and 1B, a titanium fuel cell separator 10 according to an embodiment (hereinafter, appropriately referred to as a separator) includes a substrate 1 and the surface of the substrate 1 (one side or both sides). And a carbon layer 2 formed on the substrate.
  • middle layer 3 may be formed between the base material 1 and the carbon layer 2, as FIG.1 (c) and (d) show.
  • middle layer 3, and the separator 10 is demonstrated in detail.
  • the substrate 1 of the separator 10 is made of pure titanium or a titanium alloy. Therefore, the base material 1 is lighter than the case where stainless steel or the like is used, and has excellent corrosion resistance. In addition, even if the base 1 is exposed without being covered with the carbon layer 2 (or the carbon layer 2 and the intermediate layer 3) or there is an end face, the surface of the substrate 1 in the environment of the fuel cell is present. Since a passive film is formed on the substrate 1, there is no risk of metal elution, and elution (deterioration) of the substrate 1 can be prevented. In addition, since pure titanium or a titanium alloy is excellent in strength and toughness, the strength and toughness of the substrate 1 can be secured.
  • the base material 1 is produced by a conventionally known method, for example, a method of hot rolling an ingot obtained by melting and casting pure titanium or a titanium alloy and then cold rolling.
  • the substrate 1 is preferably annealed, but the finished state of the substrate 1 is any finish such as “annealing + pickling finish”, “vacuum heat treatment finish”, “bright annealing finish”, etc. It may be in a state.
  • the composition of the titanium material constituting the substrate 1 is not limited to a specific one. However, from the viewpoint of ease of cold rolling and securing press formability thereafter, O: 1500 ppm or less (more preferably 1000 ppm or less), Fe: 1500 ppm or less (more preferably 1000 ppm or less), C: 800 ppm or less, N : Titanium material consisting of 300 ppm or less, H: 130 ppm or less, with the balance being Ti and inevitable impurities. For example, a cold rolled sheet of JIS type 1 pure titanium can be used as the substrate 1.
  • the plate thickness of the substrate 1 is preferably 0.05 to 1.0 mm.
  • the plate thickness is less than 0.05 mm, the strength required for the base material 1 cannot be ensured.
  • the plate thickness exceeds 1.0 mm, workability decreases. .
  • the carbon layer 2 of the separator 10 is made of carbon having conductivity and corrosion resistance.
  • the carbon layer 2 preferably covers the entire surface of the substrate 1, but does not necessarily have to be the entire surface.
  • 40% or more, preferably 50% or more of the surface of the substrate 1 may be covered with the carbon layer 2. Since a passive film of titanium is formed on the surface of the substrate 1 that is not covered with the carbon layer 2, reactions such as oxidation of the substrate 1 can be suppressed.
  • the carbon layer 2 can be formed by rolling the base material 1 in which the carbon powder adhered to the surface.
  • the carbon layer 2 has a graphite 23 oriented parallel to the (002) plane 21 of the carbon layer 2.
  • the graphite 23 is a hexagonal plate-like crystal in which a large number of graphene sheets 24 having a hexagonal lattice structure and having a sheet shape are stacked in layers (see FIG. 3).
  • the (002) plane 21 of the carbon layer 2 is crystallized in the a-axis direction (the length (rolling direction) of the carbon layer 2), the b-axis direction (width direction), and the c-axis direction (thickness direction).
  • the surface of the crystal lattice (unit lattice) 20 is indicated by the Miller index as the axis, and is a surface parallel to the a-axis direction and the b-axis direction while being located at a half position in the c-axis direction ( (See FIG. 2).
  • the state in which the graphite 23 is oriented in parallel to the (002) plane 21 of the carbon layer 2 means that the graphene sheet 24 constituting the graphite 23 is regularly aligned in parallel with the surface of the substrate 1 as shown in FIG. It shows the stacked state. At this time, the c-axis of the graphite 23 is perpendicular to the surface of the substrate 1.
  • the environmental shielding property carrier property which shields the base material 1 from the environment in the cell of the fuel cell is improved. Therefore, a reaction such as oxidation that causes a decrease in conductivity is less likely to occur at the interface between the base material 1 and the carbon layer 2.
  • the state in which the graphite 23 is oriented in parallel to the (002) plane 21 of the carbon layer 2 means that the (002) plane 21 of the carbon layer 2 is measured by an X-ray diffraction method (X-ray crystal structure analysis).
  • the peak intensity is at least three times the peak intensity of the (100) plane 22.
  • the peak intensity of the (002) plane 21 in the X-ray diffraction method increases with respect to the peak intensity of the (100) plane 22 as the number of graphites oriented parallel to the (002) plane 21 increases. .
  • the peak intensity of the (002) plane 21 is less than three times the peak intensity of the (100) plane 22, the ratio of graphite oriented parallel to the (002) plane 21 is low, so the environment of the carbon layer 2 The shielding property (barrier property) is not sufficient. As a result, oxidation or the like is likely to occur at the interface between the base material 1 and the carbon layer 2, and the conductivity may be reduced. Therefore, the peak intensity of the (002) plane 21 of the carbon layer 2 measured by the X-ray diffraction method (X-ray crystal structure analysis) needs to be three times or more than the peak intensity of the (100) plane 22. .
  • the analysis by the X-ray diffraction method can be performed using a conventionally known X-ray diffraction method and X-ray diffraction apparatus. Specifically, the X-ray diffraction intensity from the (002) plane 21 and the X-ray diffraction intensity from the (100) plane 22 on the surface of the carbon layer 2 are measured, and these X-ray diffraction intensities are compared. Thus, it is possible to determine the peak intensity.
  • the carbon layer 2 preferably has a D band peak to G band peak intensity ratio (G / D) measured by Raman spectroscopy in the range of 0.5-2.
  • the graphene sheet 24 as shown in FIG. 3 is formed by sp 2 hybrid orbitals. Therefore, when the presence of the graphene sheet 24 in the carbon layer 2 increases, the intensity ratio (G / D) of the D band peak and the G band peak Decreases.
  • the carbon layer 2 having a graphite structure with a strong G band peak tends to have high conductivity.
  • the carbon layer 2 in which the graphene sheet 24 is abundant is considered preferable. Therefore, in order to achieve both conductivity and environmental shielding properties, the intensity ratio (G / D) of the D band peak and the G band peak is preferably within a specific range, and is within a range of 0.5 to 2. Is preferred.
  • the D band peak is the maximum peak intensity of the D band having a peak in the vicinity of 1350 cm ⁇ 1 .
  • the G band peak is the maximum peak intensity of the G band having a peak in the vicinity of 1590 cm ⁇ 1 (see FIG. 5).
  • Analysis by Raman spectroscopy can be performed using a conventionally known laser Raman spectrometer or the like.
  • the adhesion amount of the carbon layer 2 on the surface of the base material 1 affects the conductivity durability (property for maintaining conductivity for a long period of time).
  • the adhesion amount of the carbon layer 2 is less than 2 ⁇ g / cm 2 , the region where the base material 1 is not covered with the carbon layer 2 increases, and even if the graphite 23 is oriented, environmental barrier properties cannot be obtained. As a result, the region where the base material 1 is oxidized in the environment inside the cell of the fuel cell is increased, and the conductive durability is lowered. Therefore, the adhesion amount of the carbon layer 2 is 2 ⁇ g / cm 2 or more, preferably 5 ⁇ g / cm 2 or more with respect to the surface of the substrate 1.
  • the adhesion of the carbon layer 2 is not particularly limited, since there is no change in conductivity durability by adhering the carbon layer 2 beyond 1000 [mu] g / cm 2, or at 1000 [mu] g / cm 2 or less.
  • the ratio of graphite in the carbon layer 2 (the ratio of graphite oriented in parallel to the (002) plane 21 of the carbon layer 2) is the rolling rate in the cold rolling process described later, and the base material in the carbon coating process described later. It can be controlled by the type and size of the carbon powder applied to 1. The amount of carbon on the surface of the substrate 1 can be controlled by the amount of carbon powder applied to the substrate 1 in the carbon powder application step described later.
  • An intermediate layer 3 is preferably formed between the substrate 1 and the carbon layer 2.
  • the intermediate layer 3 is preferably composed of granular titanium carbide formed by the reaction of the substrate 1 and the carbon layer 2. Since this granular titanium carbide has conductivity, the electrical resistance at the interface between the substrate 1 and the carbon layer 2 is reduced, and the conductivity is improved.
  • the adhesion between the base material 1 and the carbon layer 2 is improved by forming the intermediate layer 3 by the reaction between the base material 1 and the carbon layer 2.
  • the term “grain” means a shape such as a sphere, a solid approximate to a sphere, an ellipsoid, or a polyhedron.
  • the intermediate layer 3 is formed of a series of irregular granular titanium carbides. This is apparent from a photograph (FIG. 6) of the cross section of the separator 10 observed with a TEM (Transmission Electron Microscope), and the titanium carbide 3a is not in the form of a film but in a granular form.
  • the intermediate layer 3 is preferably formed at all the interfaces between the base material 1 and the carbon layer 2, but in order to ensure adhesion, the intermediate layer 3 should be formed at 50% or more of the interface. Good.
  • the average particle diameter (diameter) of the said titanium carbide is It is preferable that it is 5 nm or more. If the average particle size of the titanium carbide is less than 5 nm, sufficient adhesion between the substrate 1 and the carbon layer 2 cannot be obtained. In addition, although the upper limit of the average particle diameter of titanium carbide is not specifically limited, even if the average particle diameter of titanium carbide exceeds 100 nm, the adhesiveness does not change, and may be 100 nm or less.
  • the average particle size of the titanium carbide can be measured by observing the cross section of the substrate 1 and the carbon layer 2 using a transmission electron microscope or the like.
  • the particle diameter (diameter) is an average value of the major and minor diameters of the measured particles when the titanium carbide does not exhibit a spherical shape.
  • the average particle size is, for example, the average particle size measured for 20 titanium carbides.
  • carbon powder is apply
  • coating process a slurry in which carbon powder in powder form is directly attached onto the base material 1 or carbon powder is dispersed in a paint containing an aqueous solution or a resin component such as methylcellulose is used. It may be applied to the surface.
  • carbon powder having a particle size (diameter) of 0.5 to 100.0 ⁇ m As the carbon powder applied to the surface of the substrate 1, carbon powder having a particle size (diameter) of 0.5 to 100.0 ⁇ m is used.
  • the particle size of the carbon powder is less than 0.5 ⁇ m, the orientation in the (002) plane 21 direction does not occur sufficiently in the rolling process described later.
  • the particle size of the carbon powder exceeds 100.0 ⁇ m, it becomes difficult for the carbon powder to adhere to the surface of the substrate 1 in the carbon coating step and the rolling step described later.
  • the method for attaching the carbon powder on the substrate 1 is not limited to the above method.
  • a method of sticking a carbon powder-containing film prepared by kneading carbon powder and a resin onto the substrate 1 a method of driving carbon powder onto the surface of the substrate 1 by shot blasting,
  • a method in which carbon powder and resin powder are mixed and adhered onto the substrate 1 by a cold spray method is conceivable.
  • the carbon powder is pressure-bonded to the surface of the substrate 1 by performing cold rolling (cold rolling process).
  • cold rolling process By passing through the cold rolling process, the carbon powder is pressure-bonded to the surface of the substrate 1 as the carbon layer 2.
  • the carbon powder adhering to the surface of the base material 1 also serves as a lubricant, it is not necessary to use a lubricant during cold rolling.
  • the carbon powder is not granular but is attached in a thin layer on the base material 1 so as to cover the surface of the base material 1 (SEM (Transmission Electron Microscope: Scanning Electron Microscope in FIG. 7). ) See photo).
  • the carbon layer 2 having graphite oriented in parallel to the (002) plane 21 of the carbon layer 2 rolling is performed at a total reduction ratio of 0.1% or more in the cold rolling process.
  • the total rolling reduction is 0.1% or more, the proportion of graphite oriented in parallel to the (002) plane 21 of the carbon layer 2 increases, so that the carbon layer 2 is removed from the environment in the fuel cell.
  • Sufficient environmental shielding (barrier property) for shielding the substrate 1 can be obtained.
  • the total rolling reduction is preferably 0.5% or more, more preferably 1% or more.
  • the layer comprised from the granular titanium carbide formed by reaction with the base material 1 and the carbon layer 2 is formed as the intermediate
  • the heat treatment temperature is preferably in the range of 300 to 850 ° C.
  • the heat treatment temperature is less than 300 ° C.
  • the reaction between carbon and titanium is slow, and it takes time to form granular titanium carbide, resulting in poor productivity.
  • heat treatment is performed at a temperature exceeding 850 ° C., phase transformation of titanium may occur, and mechanical properties may be changed.
  • the heat treatment time is 0.5 to 60 minutes, and it is preferable to appropriately adjust the time depending on the temperature, such as a long time treatment when the temperature is low and a short time treatment when the temperature is high.
  • the non-oxidizing atmosphere is an atmosphere in which the partial pressure of the oxidizing gas is low, for example, an atmosphere having an oxygen partial pressure of 1.3 ⁇ 10 ⁇ 3 Pa.
  • a drying process may be provided between the carbon powder application process and the cold rolling process to blow the substrate 1 on which the carbon powder adheres to the surface.
  • the titanium fuel cell separator according to the present invention will be specifically described by comparing an example satisfying the requirements of the present invention with a comparative example not satisfying the requirements of the present invention.
  • ⁇ Preparation of specimen> JIS 1 type pure titanium (annealing pickling finish) was used.
  • the chemical composition of pure titanium is O: 450 ppm, Fe: 250 ppm, N: 40 ppm, the balance being Ti and inevitable impurities.
  • the plate thickness of the titanium substrate is 0.5 mm.
  • the carbon powder used is graphite (average particle size 5 ⁇ m or 10 ⁇ m: purity 4N) or acetylene black (average particle size 50 nm: purity 4N).
  • the said titanium base material is obtained by performing a conventionally well-known melt
  • a slurry is produced by dispersing carbon powder in a 1 wt% methylcellulose aqueous solution so as to have a predetermined concentration.
  • the slurry is naturally dried after being applied to both surfaces of the titanium substrate. Then, the roll gap was adjusted so that the rolling reduction per pass became a predetermined value, and cold rolling was performed by dividing into a plurality of passes up to a predetermined total rolling reduction. In addition, lubricating oil is not apply
  • a test specimen is obtained by performing heat treatment at a predetermined temperature and for a predetermined time in a non-oxidizing atmosphere (under an oxygen partial pressure of 1.3 ⁇ 10 ⁇ 3 Pa). In addition, about some test bodies, heat processing is not given.
  • the contact resistance was measured using the contact resistance measurement device 40 shown in FIG. Specifically, first, both surfaces of the test body 41 are sandwiched between two carbon cloths 42 and 42, and the outside is sandwiched between two copper electrodes 43 and 43 having a contact area of 1 cm 2 , with a load of 98 N (10 kgf). Pressurize from both sides. Next, by using a direct current power supply 44, a current of 7.4 mA is passed through the copper electrodes 43 and 43, and a voltage applied between the carbon cloths 42 and 42 is measured with a voltmeter 45, thereby making contact resistance (initial contact). Resistance) is calculated. The conductivity was judged to be good when the contact resistance was 10 m ⁇ ⁇ cm 2 or less, and judged to be poor when the contact resistance exceeded 10 m ⁇ ⁇ cm 2 .
  • Durability evaluation (durability test) was performed on the test specimen prepared by the above method. First, the specimen is immersed in an 80 ° C. sulfuric acid aqueous solution (10 mmol / L) having a specific liquid volume of 20 ml / cm 2 for 1000 hours. Then, the test body taken out from the sulfuric acid aqueous solution was washed and dried, and the contact resistance was measured by the same method as described above. Durability was judged to be good when the contact resistance after dipping in sulfuric acid (after the durability test) (contact resistance after the durability test) was 15 m ⁇ ⁇ cm 2 or less, and was judged to be poor when it exceeded 15 m ⁇ ⁇ cm 2 .
  • Table 1 shows the types and average particle diameters of carbon powders used for each specimen, production conditions, (002) plane orientation, G / D value by Raman analysis, carbon adhesion amount, initial and after endurance test contact resistance measurement. Results are shown.
  • the rolling reduction (%) shown in Table 1 is the total rolling reduction (%), and is a value calculated from a change in the thickness of the titanium base material 1 before and after cold rolling.
  • the profile shown in FIG. 5 was obtained. Moreover, the intensity ratio (G / D) of D band peak and G band peak of test body No. 1 was 1.1, which was within a preferable range. Specimen No. The G / D values of 2 to 7 were also within the preferred range. G / D values of 8-10 were outside the preferred range.
  • the intermediate layer was confirmed, the carbon adhesion amount was measured, and the carbon layer adhesion evaluation was performed by the following methods.
  • the carbon adhesion amount was measured by the same method as in the first example.
  • Adhesion evaluation was performed using the contact resistance measuring apparatus 40 shown in FIG. First, both surfaces of the test body 41 are sandwiched between two carbon cloths 42 and 42, and the outside is sandwiched between copper electrodes 43 and 43 having a contact area of 1 cm 2 and pressed from both surfaces with a load of 98 N (10 kgf). Next, the test body 41 was pulled out in the in-plane direction while maintaining the state of being pressurized from both sides (pull-out test). After this pull-out test, the non-friction surface and the friction surface are observed with a SEM / EDX at a magnification of 100 times, and the acceleration voltage is set to 15 kV, and titanium (Ti) and carbon (C) are quantitatively analyzed.
  • the amount of carbon on the non-friction surface (atomic%) is 100% and the amount of carbon on the friction surface is 80% or more of the amount of carbon on the non-friction surface, Is good), when it is 50% or more and less than 80%, it is judged as ⁇ (good), and when it is less than 50%, it is judged as x (bad).
  • Table 2 shows the preparation conditions of each specimen, the type of intermediate layer, the average particle size (nm) of titanium carbide (TiC), the carbon adhesion amount ( ⁇ g / cm 2 ), and the carbon layer adhesion results.

Abstract

本発明は、導電性および耐久性に優れたチタン製燃料電池セパレータを提供する。本発明に係るチタン製燃料電池セパレータ10においては、純チタンまたはチタン合金からなる基材1の表面に、炭素層2が形成されている。前記炭素層2は、前記炭素層2の(002)面に平行に配向しているグラファイトを有する。前記炭素層2の付着量は2μg/cm以上である。

Description

チタン製燃料電池セパレータ
 本発明は、燃料電池に用いられるチタン製燃料電池セパレータに関する。
 燃料電池は、水素等の燃料と酸素等の酸化剤を供給し続けることにより、継続的に電力を発生することができる。したがって、燃料電池は、乾電池等の一次電池や鉛蓄電池等の二次電池とは異なり、システム規模の大小にあまり影響されず、高い発電効率を有し、騒音や振動も少ないため、多様な用途・規模をカバーするエネルギー源として期待されている。燃料電池は、具体的には、固体高分子型燃料電池(PEFC)、アルカリ電解質型燃料電池(AFC)、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)、固体酸化物型燃料電池(SOFC)、バイオ燃料電池等として開発されている。中でも、燃料電池自動車、家庭用燃料電池(家庭用コジェネレーションシステム)、携帯電話やパソコン等の携帯機器向けとして、固体高分子型燃料電池の開発が進められている。
 固体高分子型燃料電池(以下、燃料電池という)は、セパレータと呼ばれる(バイポーラプレートとも呼ばれる)電極を介して、アノード電極とカソード電極とで挟まれた固体高分子電解質膜からなる単セルが複数個重ね合わされたスタックとして構成される。セパレータには、ガス(水素、酸素等)の流路となる溝が形成されている。燃料電池の出力は、スタックあたりのセル数を増やすことにより高くすることができる。
 燃料電池用のセパレータは、発生した電流を燃料電池の外部へ取り出すための部品でもある。したがって、セパレータの材料には、セパレータとしての使用中、長期間にわたり、低い接触抵抗(電極とセパレータ表面との間で、界面現象のために電圧降下を生じさせる抵抗)が維持可能であるという特性が要求される。さらに、燃料電池の内部は酸性雰囲気であるため、セパレータには高耐食性も要求される。
 これらの要求を満足するために、黒鉛粉末の成形体を削り出して形成されたセパレータや、黒鉛と樹脂の混合物成形体から形成されたセパレータが種々提案されている。これらは優れた耐食性を有するものの、強度や靱性に劣り、振動や衝撃が加えられた際に破損するおそれがある。そのため、金属材料をベースにしたセパレータが種々提案されている。
 耐食性と導電性を兼ね備えた金属材料としては、Au、Ptが挙げられる。従来から、薄型化が可能で、優れた加工性および高強度を有するアルミニウム合金、ステンレス鋼、ニッケル合金、チタン合金等の金属材料の基材に、AuやPt等の貴金属を被覆することにより耐食性および導電性が付与されたセパレータが検討されている。しかしながら、これらの貴金属材料は非常に高価であるため、コストが高くなるという問題がある。
 このような問題に対して、貴金属材料を使用しない金属セパレータが提案されている。
 例えば、気相成膜により基材表面に炭素膜が形成されたセパレータ(特許文献1参照)や、ステンレス基材の表面に黒鉛が圧着されているセパレータ(特許文献2、特許文献3参照)が提案されている。
 また、金属基材の表面に、ラマン分光法によるG/D比が0.5以下となる炭素層が形成されたセパレータ(特許文献4参照)や、金属基材の表面に、アモルファスカーボン層と黒鉛部とから構成される炭素層が形成されたセパレータ(特許文献5参照)が提案されている。
日本国特許第4147925号公報 日本国特許第3904690号公報 日本国特許第3904696号公報 日本国特開2007-207718号公報 日本国特開2008-204876号公報
 しかしながら、特許文献1、4、5に開示された技術では、金属基材の表面に形成された炭素層が非晶質であるため、環境遮蔽性(バリア性)が良くなく、金属基材表面において、酸化等の導電性の低下を引き起こす反応が起こり易い。よって、特許文献1、4、5に開示された技術では、導電性および導電耐久性(導電性を長期間維持する性質)が劣るおそれがある。
 また、特許文献2、3に開示された技術では、ステンレスからなる基材をセパレータとして使用するため、使用中に鉄イオンが溶出してしまい、固体高分子膜を劣化させるおそれがある。また、特許文献2、3に開示された技術の炭素層は炭素の含有量が少ないため、基材のステンレスが露出している領域が多くなり、上記した鉄イオンの溶出や基材表面の酸化が起こりやすく、導電性が低下するおそれがある。
 本発明は、前記の課題に鑑みてなされたものであり、その課題は、優れた導電性および耐久性を有するチタン製燃料電池セパレータを提供することである。
 本発明者らは、耐食性に優れる純チタンまたはチタン合金を基材として用いると共に、所定の方向に配向したグラファイトを有する炭素層で基材表面を被覆することにより、優れた導電性および耐久性を有するセパレータが得られることを見出し、本発明を創出した。
 前記課題を解決するために、本発明に係るチタン製燃料電池セパレータは、純チタンまたはチタン合金からなる基材と、前記基材の表面(片面または両面)に形成された炭素層と、を有するチタン製燃料電池セパレータであって、前記炭素層は、前記炭素層の(002)面に平行に配向しているグラファイトを有し、前記炭素層の付着量は、2μg/cm以上であることを特徴とする。
 このように、本発明に係るチタン製燃料電池セパレータは、基材が純チタンまたはチタン合金からなることにより、セパレータを軽量化できるとともに、耐食性を向上することができる。また、基材が純チタンまたはチタン合金からなることにより、セパレータからの金属イオンの溶出が起こらないため、固体高分子膜を劣化させるおそれがなく、基材の強度や靭性も向上することができる。
 また、本発明に係るチタン製燃料電池セパレータは、炭素層が、炭素層の(002)面に平行に配向しているグラファイトを有することから、燃料電池のセル内の環境から基材を遮蔽する環境遮蔽性(バリア性)を向上することができる。よって、基材と炭素層との界面において、導電性の低下を引き起こす酸化等の反応が起こり難くなる。つまり、導電性および導電耐久性(導電性を長期間維持する性質)を向上することができる。
 また、本発明に係るチタン製燃料電池セパレータは、炭素層の付着量が2μg/cm以上であることから、基材表面の広い領域が炭素層によって覆われることとなる。したがって、炭素層によって環境遮蔽性(バリア性)が確保される領域が増え、セパレータの導電性および導電耐久性を確保することができる。
 本発明に係るチタン製燃料電池セパレータにおいて、前記基材と前記炭素層との間に中間層が形成され、前記中間層は、前記炭素層と平行な方向に連なった粒状のチタンカーバイドを有することが好ましい。
 このように、本発明に係るチタン製燃料電池セパレータは、導電性を有するチタンカーバイドから中間層が形成されていることから、基材と炭素層との界面における電気抵抗が小さくなり、セパレータの導電性を向上することができる。加えて、チタンカーバイドは、基材と炭素層とが反応することにより形成されるため、基材と炭素層との密着性を向上することができる。
 本発明に係るチタン製燃料電池セパレータにおいて、ラマン分光分析によって前記炭素層を測定して得られるDバンドピークとGバンドピークの強度比(G/D)が0.5~2であることが好ましい。
 このように、本発明に係るチタン製燃料電池セパレータは、DバンドピークとGバンドピークの強度比(G/D)を所定の範囲に規定することにより、導電性と環境遮蔽性とを両立することができる。
 本発明に係るチタン製燃料電池セパレータによれば、炭素層が炭素層の(002)面に平行に配向しているグラファイトを有することにより、セパレータの導電性および耐久性を向上することができる。
 また、本発明に係るチタン製燃料電池セパレータの炭素層の付着量が2μg/cm以上であることにより、セパレータの導電性および耐久性を確保することができる。
 さらに、本発明に係るチタン製燃料電池セパレータは、中間層がチタンカーバイドから形成されていることにより、導電性をさらに向上するとともに、基材と炭素層との密着性を向上することができる。
 またさらに、本発明に係るチタン製燃料電池セパレータは、G/D値を所定の範囲に規定することにより、導電性と環境遮蔽性とを両立することができる。
実施形態に係るチタン製燃料電池セパレータを示す断面図であって、(a)は、基材の片面に炭素層が形成されているチタン製燃料電池セパレータの断面図、(b)は、基材の両面に炭素層が形成されているチタン製燃料電池セパレータの断面図、(c)は、基材の片面に中間層および炭素層が形成されているチタン製燃料電池セパレータの断面図、(d)は、基材の両面に中間層および炭素層が形成されているチタン製燃料電池セパレータの断面図である。 実施形態に係るチタン製燃料電池セパレータの炭素層の結晶格子面を説明するための概略図である。 実施形態に係るチタン製燃料電池セパレータの炭素層に含まれるグラファイトを説明するための概略図である。 実施例における接触抵抗測定、および、密着性評価において使用される接触抵抗測定装置の概略図である。 実施例に係る試験体のラマン分光分析の結果(プロファイル)である。 (a)は、実施形態に係るチタン製燃料電池セパレータの断面を透過型電子顕微鏡(TEM)で観察した写真に基づく参考図であり、(b)は(a)のA部拡大図である。 炭素粉を塗布し圧延を行った後の基材および炭素層の断面を走査型電子顕微鏡(SEM)で観察した写真に基づく参考図である。
 以下、本発明に係るチタン製燃料電池セパレータの実施するための形態について、適宜図面を参照しながら説明する。
≪チタン製燃料電池セパレータ≫
 実施形態に係るチタン製燃料電池セパレータ10(以下、適宜、セパレータという)は、図1(a)、(b)に示されるように、基材1と、基材1の表面(片面または両面)に形成された炭素層2と、から構成される。
 なお、実施形態に係るセパレータ10は、図1(c)、(d)に示されるように、基材1と炭素層2との間に中間層3が形成されていてもよい。
 以下、基材1、炭素層2、中間層3、およびセパレータ10の製造方法を詳細に説明する。
<基材>
 セパレータ10の基材1は、純チタンまたはチタン合金からなる。よって、基材1は、ステンレス等を用いた場合と比べて軽量であるとともに、優れた耐食性を有する。また、基材1が炭素層2(または、炭素層2および中間層3)により被覆されずに露出している箇所や端面部が存在しても、燃料電池のセル内の環境下ではその表面に不働態皮膜が形成されるため、金属溶出のおそれがなく、基材1の溶出(劣化)を防止することができる。加えて、純チタンまたはチタン合金は、強度、靭性に優れていることから、基材1の強度、靭性が確保できる。
 基材1は、従来公知の方法、例えば、純チタンまたはチタン合金を溶解、鋳造して得られた鋳塊を熱間圧延した後、冷間圧延するという方法により作製される。また、基材1は、焼鈍仕上げされていることが好ましいが、基材1の仕上げ状態は、例えば「焼鈍+酸洗仕上げ」、「真空熱処理仕上げ」、「光輝焼鈍仕上げ」等のいずれの仕上げ状態であってもよい。
 なお、基材1を構成するチタン素材の組成は、特定のものに限定されない。しかしながら、冷間圧延のし易さや、その後のプレス成形性確保の観点から、O:1500ppm以下(より好ましくは1000ppm以下)、Fe:1500ppm以下(より好ましくは1000ppm以下)、C:800ppm以下、N:300ppm以下、H:130ppm以下であり、残部がTiおよび不可避的不純物からなるチタン素材が好ましい。例えば、基材1として、JIS 1種の純チタンの冷間圧延板が使用可能である。
 基材1の板厚は、好ましくは0.05~1.0mmである。板厚が0.05mm未満である場合には、基材1に必要とされる強度を確保することができず、一方、板厚が1.0mmを超えるある場合には、加工性が低下する。
<炭素層>
 セパレータ10の炭素層2は、導電性および耐食性を有する炭素から構成される。この炭素層2が、基材1の表面全体を被覆していることが好ましいが、必ずしも表面全体である必要はない。導電性と耐食性を確保するためには、基材1の表面の40%以上、好ましくは50%以上が炭素層2により被覆されていればよい。炭素層2により被覆されていない基材1の表面には、チタンの不働態皮膜が形成されるため、基材1の酸化等の反応を抑制することができる。
 なお、炭素層2の形成方法の詳細については後記するが、炭素粉が表面に付着した基材1を圧延することにより、炭素層2を形成することができる。
 炭素層2は、炭素層2の(002)面21に平行に配向しているグラファイト23を有している。このグラファイト23は、原子レベルで説明すると、六角形格子構造を有するとともにシート状を呈したグラフェンシート24が、層状に多数積み重なった六角板状結晶のことである(図3参照)。
 ここで、炭素層2の(002)面21とは、a軸方向(炭素層2の長さ(圧延)方向)、b軸方向(幅方向)、およびc軸方向(厚さ方向)を結晶軸として、結晶格子(単位格子)20の面をミラー指数で示した面であり、c軸方向に1/2の箇所に位置するとともに、a軸方向およびb軸方向に平行な面である(図2参照)。
 つまり、グラファイト23が炭素層2の(002)面21に平行に配向している状態とは、図3に示すように、グラファイト23を構成するグラフェンシート24が基材1の表面と平行に規則正しく積み重なっている状態を示す。このとき、グラファイト23のc軸は、基材1の表面と垂直となっている。
 炭素層2がこのようなグラファイト23を有すると、燃料電池のセル内の環境から基材1を遮蔽する環境遮蔽性(バリア性)が向上する。したがって、基材1と炭素層2との界面において、導電性の低下を引き起こす酸化等の反応が起こり難くなる。
(炭素層のX線回折法による分析)
 そして、グラファイト23が炭素層2の(002)面21に平行に配向している状態とは、X線回折法(X線結晶構造解析)によって測定される炭素層2の(002)面21のピーク強度が、(100)面22のピーク強度に対して3倍以上となっている状態である。
 炭素層2において、(002)面21に平行に配向したグラファイトが増えれば増えるほど、X線回折法における(002)面21のピーク強度が、(100)面22のピーク強度に対して大きくなる。
 (002)面21のピーク強度が、(100)面22のピーク強度に対して3倍未満であると、(002)面21に平行に配向したグラファイトの割合が低いため、炭素層2の環境遮蔽性(バリア性)が十分でなくなる。その結果、基材1と炭素層2との界面において酸化等が起こり易くなり、導電性が低下するおそれがある。よって、X線回折法(X線結晶構造解析)によって測定される炭素層2の(002)面21のピーク強度が、(100)面22のピーク強度に対して3倍以上となる必要がある。
 X線回折法による分析は、従来公知のX線回折法およびX線回折装置を用いて行うことができる。詳細には、炭素層2の表面における、(002)面21からのX線回折強度と、(100)面22からのX線回折強度と、を測定し、これらのX線回折強度を比較することにより、ピーク強度の判断が可能である。
(炭素層のラマン分光法による分析)
 炭素層2は、ラマン分光法によって測定されるDバンドピークとGバンドピークの強度比(G/D)が0.5~2の範囲であることが好ましい。
 ここで、炭素層2においてsp混成軌道の存在比率が高いほど、Dバンドピークの強度が高くなり、sp混成軌道の存在比率が高いほど、Gバンドピークの強度が高くなる。通常、図3に示すようなグラフェンシート24はsp混成軌道により形成されるため、炭素層2においてグラフェンシート24の存在が増えると、DバンドピークとGバンドピークの強度比(G/D)が低下する。Gバンドピークの強いグラファイト構造の炭素層2は、導電性が高い傾向がある。一方、環境遮蔽性の点においては、グラフェンシート24が多く存在する炭素層2が好ましいと考えられる。したがって、導電性と環境遮蔽性を両立するため、DバンドピークとGバンドピークの強度比(G/D)は特定の範囲内であることが好ましく、0.5~2の範囲内であることが好ましい。
 なお、Dバンドピークは、1350cm-1付近にピークを有するDバンドの最大ピーク強度である。Gバンドピークは、1590cm-1付近にピークを有するGバンドの最大ピーク強度のことである(図5参照)。
 ラマン分光法による分析は、従来公知のレーザーラマン(Laser Raman)分光装置等を用いて行うことができる。
 基材1の表面における炭素層2の付着量は、導電耐久性(導電性を長期間維持する性質)に影響する。炭素層2の付着量が2μg/cm未満であると、基材1が炭素層2で被覆されていない領域が増え、グラファイト23が配向していても環境遮断性が得られない。その結果、燃料電池のセル内の環境下で基材1が酸化される領域が多くなり、導電耐久性が低下する。したがって、炭素層2の付着量は、基材1の表面に対して2μg/cm以上であり、好ましくは5μg/cm以上である。
 なお、炭素層2の付着量の上限は特に限定されないが、1000μg/cmを越えて炭素層2を付着させても導電耐久性に変化がないことから、1000μg/cm以下でよい。
 なお、炭素層2におけるグラファイトの割合(炭素層2の(002)面21に平行に配向しているグラファイトの割合)は、後記する冷間圧延工程の圧延率、後記する炭素塗布工程において基材1に塗布する炭素粉の種類やサイズ等により制御可能である。
 また、基材1の表面の炭素量は、後記する炭素粉塗布工程において基材1に塗布する炭素粉の量により制御することができる。
<中間層>
 基材1と炭素層2との間に、中間層3が形成されていることが好ましい。特に、中間層3は、基材1と炭素層2とが反応して形成された粒状のチタンカーバイドから構成されることが好ましい。この粒状のチタンカーバイドは導電性を有するため、基材1と炭素層2との界面における電気抵抗が小さくなり、導電性が向上する。これに加え、基材1と炭素層2との反応により中間層3が形成されることにより、基材1と炭素層2との密着性が向上する。
 なお、粒状とは、球体、球に近似した立体、楕円体、多面体等の形状であることを意味する。
 中間層3は、不揃いの粒状のチタンカーバイドが連なって形成される。これは、TEM(透過型電子顕微鏡:Transmission Electron Microscope)により観察されたセパレータ10の断面の写真(図6)から明らかであり、チタンカーバイド3aは膜状ではなく粒状を呈している。
 中間層3は、基材1と炭素層2との間の全ての界面に形成されていることが好ましいが、密着性を確保するためには、当該界面の50%以上に形成されていればよい。
 なお、中間層3として、基材1と炭素層2とが反応して形成された粒状のチタンカーバイドから構成される層が形成される場合は、当該チタンカーバイドの平均粒径(直径)は、5nm以上であることが好ましい。チタンカーバイドの平均粒径が5nm未満であると、基材1と炭素層2との十分な密着性が得られない。
 なお、チタンカーバイドの平均粒径の上限は特に限定されないが、チタンカーバイドの平均粒径が100nmを越えても密着性に変化がないことから、100nm以下でよい。
 このチタンカーバイドの平均粒径は、基材1と炭素層2との断面を透過型電子顕微鏡等を用いて観察することにより、測定することができる。ここで、粒径(直径)とは、チタンカーバイドが球状を呈さない場合は、測定された粒子の長径および短径の加算平均値である。また、平均粒径とは、例えば、20個のチタンカーバイドについて測定された粒径の平均である。
 次に、セパレータ10の製造方法を説明する。
≪セパレータの製造方法≫
 まず、炭素粉が、基材1の表面(片面または両面)に塗布される(炭素粉塗布工程)。塗布方法は特に限定されないが、粉末状のままの炭素粉を基材1上に直接付着させたり、メチルセルロース等の水溶液や樹脂成分を含む塗料中に炭素粉が分散したスラリーを、基材1の表面に塗布したりすればよい。
 基材1の表面に塗布する炭素粉としては、粒径(直径)0.5~100.0μmの炭素粉が使用される。炭素粉の粒径が0.5μm未満だと、後記する圧延工程において(002)面21方向への配向が十分に起こらない。一方、炭素粉の粒径が100.0μmを超えると、炭素塗布工程および後記する圧延工程において、炭素粉が基材1表面に付着し難くなる。
 炭素粉を基材1上に付着させる方法は、上記の方法に限定されない。例えば、炭素粉と樹脂とを混練して作製した炭素粉含有フィルムを基材1上に貼り付ける方法や、ショットブラストにより炭素粉を基材1表面に打ち込み、基材1表面に担持させる方法や、炭素粉末と樹脂粉末とを混合して、コールドスプレー法によって基材1上に付着させる方法等が考えられる。
 炭素粉塗布工程後、冷間圧延を施すことにより、炭素粉が基材1表面に圧着される(冷間圧延工程)。冷間圧延工程を経ることで、炭素粉は、炭素層2として基材1表面に圧着することとなる。なお、基材1の表面に付着した炭素粉が潤滑剤の役割も果たすため、冷間圧延の際に、潤滑剤は使用しなくても良い。圧延後、炭素粉は粒状ではなく、基材1上に薄い層状となって付着して基材1表面を覆うような状態となっている(図7のSEM(透過型電子顕微鏡:Scanning Electron Microscope)写真参照)。
 炭素層2の(002)面21に平行に配向しているグラファイトを有する炭素層2を得るためには、冷間圧延工程において、0.1%以上のトータル圧下率で圧延を施す。
 トータル圧下率が0.1%以上であると、炭素層2の(002)面21に平行に配向しているグラファイトの割合が増えることにより、炭素層2は、燃料電池のセル内の環境から基材1を遮蔽する十分な環境遮蔽性(バリア性)を得ることができる。トータル圧下率は、好ましくは0.5%以上、より好ましくは1%以上である。
 なお、圧下率は、冷間圧延前後の基材の板厚変化から算出される値であり、「圧下率=(t0-t1)/t0×100」(t0:炭素粉塗布工程後の初期板厚、t1:圧延後の板厚)により算出する。
 なお、基材1と炭素層2との反応により形成された粒状のチタンカーバイドから構成される層が、中間層3として形成される場合は、冷間圧延工程後、非酸化性雰囲気において熱処理が行われる(熱処理工程)。熱処理温度は300~850℃の範囲内であることが好ましい。熱処理温度が300℃未満では、炭素とチタンの反応が遅く粒状のチタンカーバイドを形成させるのに時間がかかり、生産性が悪化する。一方、850℃を超える温度で熱処理を行うと、チタンの相変態が起こる可能性があり、機械特性が変化するおそれがある。また、熱処理の時間は、0.5~60分間であり、温度が低い場合は長時間の処理、温度が高い場合は短時間の処理というように、温度によって時間を適宜調整することが好ましい。
 なお、非酸化性雰囲気とは、酸化性ガスの分圧が低い雰囲気、例えば、酸素分圧1.3×10-3Pa下のような雰囲気である。
 また、炭素粉塗布工程と冷間圧延工程との間に、炭素粉が表面に付着している基材1に対しブロー等を行う乾燥工程が設けられてもよい。
 次に、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを比較することにより、本発明に係るチタン製燃料電池セパレータについて具体的に説明する。
[第1実施例]
<試験体の作製>
 基材としては、JIS 1種の純チタン(焼鈍酸洗仕上げ)を使用した。純チタンの化学組成は、O:450ppm、Fe:250ppm、N:40ppm、残部がTiおよび不可避的不純物である。チタン基材の板厚は、0.5mmである。使用した炭素粉は、グラファイト(平均粒径5μmまたは10μm:純度4N)、またはアセチレンブラック(平均粒径50nm:純度4N)である。なお当該チタン基材は、チタン原料に対して従来公知の溶解工程、鋳造工程、熱間圧延工程、冷間圧延工程を施すことにより得られる。
 1wt%メチルセルロース水溶液中に、炭素粉を所定濃度となるように分散させることにより、スラリーが作製される。当該スラリーは、チタン基材の両面に塗布された後、自然乾燥される。
 そして、1パス当たりの圧下率が所定の値となるようにロールギャップを調整し、所定のトータル圧下率まで複数パスに分けて冷間圧延を実施した。なお、圧延ロールに潤滑油は塗布されない。
 次に、非酸化性雰囲気(酸素分圧1.3×10-3Pa下)において、所定温度および所定時間の熱処理を施すことにより、試験体が得られる。なお、一部の試験体については、熱処理が施されていない。
 このようにして作製された試験体について、以下の方法により、(002)面に配向しているグラファイトの測定、Dバンドピーク強度およびGバンドピーク強度の測定、炭素付着量の測定、接触抵抗の評価、および、耐久性評価を行った。
[(002)面に配向しているグラファイトの測定]
 前記方法により作製された試験体に対し、X線回折装置(リガク製 水平型X線回折装置:測定角度20~100°)を用いて、炭素層の(002)面のピーク強度と、(100)面のピーク強度と、を測定した。なお、(002)面のピーク強度は、測定角2θが26.4°で測定され、(100)面のピーク強度は、測定角2θが42.7°で測定される。
 X線回折法(X線結晶構造解析)によって測定される炭素層の(002)面のピーク強度が、(100)面のピーク強度に対して3倍以上となっている試験体が、グラファイトが炭素層の(002)面に平行に配向している((002)面配向あり)と判断される。
[Dバンドピーク強度、Gバンドピーク強度の測定]
 顕微レーザーラマン分光分析装置を用いて、試験体の炭素のラマンスペクトル分析を行った。Dバンドのピークは約1350cm-1の位置に、Gバンドのピークは約1590cm-1の位置に得られる。DバンドピークとGバンドピークの強度比(G/D)は「Gバンドのピーク強度/Dバンドのピーク強度」の計算式で求められる。
 DバンドピークとGバンドピークの強度比(G/D)が0.5~2の試験体は、本発明に適した炭素層が形成されていると判断される。
[炭素付着量の測定]
 前記方法により作製された試験体から切り出された所定サイズの試験片について、重量を測定した。その後、試験片を純水にて超音波洗浄することにより、試験片から炭素層を除去した。そして、炭素層が除去された試験片について、乾燥の後に重量を測定し、減少した重量を算出した。この減少した重量の値を試験片の表面積(端部は除く)で除すことにより、炭素付着量(μg/cm)が算出される。
[接触抵抗測定]
 前記方法により作製された試験体について、図4に示す接触抵抗測定装置40を用いて、接触抵抗を測定した。詳細には、まず、試験体41の両面を2枚のカーボンクロス42,42で挟み、さらにその外側を接触面積1cmの2枚の銅電極43,43で挟んで、荷重98N(10kgf)で両面から加圧する。次いで、直流電流電源44を用いて、7.4mAの電流を銅電極43,43から通電し、カーボンクロス42,42の間に加わる電圧を電圧計45で測定することにより、接触抵抗(初期接触抵抗)が算出される。
 導電性は、接触抵抗が10mΩ・cm以下で良好であると判断し、10mΩ・cmを超えると不良であると判断した。
[耐久性評価]
 前記方法により作製された試験体について、耐久性評価(耐久試験)を行った。まず、比液量が20ml/cmである80℃の硫酸水溶液(10mmol/L)に、試験体を1000時間浸漬する。その後、硫酸水溶液から取り出した試験体を、洗浄、乾燥して、前記と同様の方法で接触抵抗を測定した。
 耐久性は、硫酸浸漬後(耐久試験後)の接触抵抗(耐久試験後接触抵抗)が15mΩ・cm以下で良好であると判断し、15mΩ・cmを超えると不良であると判断した。
 表1は、各試験体に使用した炭素粉の種類および平均粒径、作製条件、(002)面配向、ラマン分析によるG/D値、炭素付着量、初期および耐久試験後の接触抵抗測定の結果を示す。なお、表1に示される圧下率(%)はトータル圧下率(%)であり、冷間圧延前後のチタン基材1の板厚変化から算出された値である。
Figure JPOXMLDOC01-appb-T000001
 試験体No.1~6は、本発明の規定する範囲内の炭素層が形成されているため、初期接触抵抗が低く、導電性が良好であった。また、試験体No.1~6は、耐久試験後の接触抵抗値が合格範囲内であり、耐久性が良好であった。
 一方、試験体No.7は、炭素層のグラファイトの配向は認められるが、炭素付着量が少なかったため、耐久試験後に接触抵抗の上昇が認められ、耐久性が不良という結果になった。
 また、試験体No.8~10については、炭素層がグラファイト構造を示さず、(002)面への配向が認められなかった。また、試験体No.8~10は、耐久試験後に接触抵抗の上昇が認められ、耐久性が不良という結果となり、燃料電池セパレータの材料としては好ましくないことがわかった。
 試験体No.1を用いてラマン分光分析を行った結果、図5に示すプロファイルが得られた。また、試験体No.1のDバンドピークとGバンドピークの強度比(G/D)は1.1であり、好ましい範囲内であった。
 なお、試験体No.2~7のG/D値も、好ましい範囲内であったが、試験体No.8~10のG/D値は、好ましい範囲外であった。
 表1の結果から、炭素層の(002)面に平行に配向しているグラファイトを有する(すなわち、G/D値が0.5~2である)とともに、2μg/cm以上の炭素層を基材表面に形成することによって、導電性および耐久性を向上できることがわかった。
[第2実施例]
 第1実施例で用いたものと同種、同サイズのチタン基材と、グラファイト(試験体No.11~15に使用された、平均粒径5μm、純度4Nのグラファイト)とを用いて、第1実施例と同様の方法により試験体が作製される。
 このようにして作製された試験体について、以下の方法により、中間層の確認、炭素付着量の測定、炭素層密着性評価を行った。
[中間層の確認]
 試験体表層の断面をイオンビーム加工装置(日立集束イオンビーム加工観察装置 FB-2100)でサンプル加工した後、透過型電子顕微鏡(TEM:日立電界放出形分析電子顕微鏡 HF-2200)にて750000倍の倍率で断面観察し、炭素層とチタン基材との界面にチタンカーバイドが存在するか否かを判定した。チタンカーバイドが存在する場合には、チタンカーバイドの平均粒径を測定した。ここで、粒径(直径)とは、チタンカーバイドが球状を呈さない場合は、測定された粒子の長径および短径の加算平均値である。また、平均粒径とは、20個のチタンカーバイドについて測定された粒径の平均である。
[炭素付着量の測定]
 炭素付着量の測定は、第1実施例と同様の方法で行った。
[密着性評価]
 図4に示す接触抵抗測定装置40を用いて、密着性評価を行った。まず、試験体41の両面を2枚のカーボンクロス42,42で挟み、さらにその外側を接触面積1cmの銅電極43,43で挟み、荷重98N(10kgf)で両面から加圧する。次いで、両面から加圧された状態を維持したまま、試験体41を面内方向に引き抜いた(引抜き試験)。
 この引抜き試験後、非摩擦面および摩擦面をSEM/EDXにて100倍の倍率で観察し、加速電圧を15kVとして、チタン(Ti)と炭素(C)を定量分析する。炭素層密着性は、非摩擦面での炭素の量(原子%)を100%として、摩擦面での炭素の量が非摩擦面の炭素の量の80%以上であったときは○(非常に良好)、50%以上且つ80%未満であるときは△(良好)、50%未満であるときを×(不良)と判断される。
 表2は、各試験体の作製条件、中間層の種類、チタンカーバイド(TiC)の平均粒径(nm)、炭素付着量(μg/cm)、炭素層密着性の結果を示す。
Figure JPOXMLDOC01-appb-T000002
 試験体No.1、11~13においては、中間層がチタンカーバイドで構成されていたため、炭素層密着性が非常に良好または良好という結果となった。一方、試験体No.14、15においては、中間層がTi酸化膜であったため、炭素密着性が不良という結果となった。
 表2の結果から、炭素層の形成後、300℃以上の温度で熱処理を行い、炭素層とチタン基材との反応によって粒状のチタンカーバイドからなる中間層を形成することにより、炭素層の密着性を向上できることがわかった。
 以上、本発明の実施形態および実施例について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて、様々に変更して実施することが可能なものである。本出願は2010年7月20日出願の日本特許出願(特願2010-163403)に基づくものであり、その内容はここに参照として取り込まれる。
 1   基材
 2   炭素層
 3   中間層
 3a  チタンカーバイド
 10  チタン製燃料電池セパレータ(セパレータ)
 21  (002)面
 22  (100)面
 23  グラファイト
 24  グラフェンシート
 40  接触抵抗測定装置
 41  試験体
 42  カーボンクロス
 43  銅電極
 44  直流電流電源
 45  電圧計

Claims (3)

  1.  純チタンまたはチタン合金からなる基材と、前記基材の表面に形成された炭素層と、を有するチタン製燃料電池セパレータであって、
     前記炭素層は、前記炭素層の(002)面に平行に配向しているグラファイトを有し、
     前記炭素層の付着量は、2μg/cm以上であることを特徴とするチタン製燃料電池セパレータ。
  2.  前記基材と前記炭素層との間に中間層が形成され、
     前記中間層は、前記炭素層と平行な方向に連なった粒状のチタンカーバイドを有することを特徴とする請求項1に記載のチタン製燃料電池セパレータ。
  3.  ラマン分光分析によって前記炭素層を測定して得られるDバンドピークとGバンドピークの強度比(G/D)が0.5~2であることを特徴とする請求項1または2に記載のチタン製燃料電池セパレータ。
PCT/JP2010/064939 2010-07-20 2010-09-01 チタン製燃料電池セパレータ WO2012011200A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/811,118 US9178222B2 (en) 2010-07-20 2010-09-01 Titanium fuel cell separator
EP10855037.7A EP2597710B1 (en) 2010-07-20 2010-09-01 Polymer electrolyte fuel cell comprising titanium separator
KR1020137001415A KR101240697B1 (ko) 2010-07-20 2010-09-01 티타늄제 연료 전지 세퍼레이터
CN201080067626.4A CN102959779B (zh) 2010-07-20 2010-09-01 钛制燃料电池隔板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010163403A JP4886884B2 (ja) 2010-07-20 2010-07-20 チタン製燃料電池セパレータおよびその製造方法
JP2010-163403 2010-07-20

Publications (1)

Publication Number Publication Date
WO2012011200A1 true WO2012011200A1 (ja) 2012-01-26

Family

ID=45496640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064939 WO2012011200A1 (ja) 2010-07-20 2010-09-01 チタン製燃料電池セパレータ

Country Status (6)

Country Link
US (1) US9178222B2 (ja)
EP (1) EP2597710B1 (ja)
JP (1) JP4886884B2 (ja)
KR (1) KR101240697B1 (ja)
CN (1) CN102959779B (ja)
WO (1) WO2012011200A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111671A1 (ja) * 2011-02-14 2012-08-23 株式会社神戸製鋼所 燃料電池セパレータ
EP2642571A1 (en) * 2012-03-23 2013-09-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Fuel cell separator material, fuel cell, and method for manufacturing fuel cell separator material
US20160056479A1 (en) * 2013-03-27 2016-02-25 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) Titanium sheet material for fuel cell separators and method for producing same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5591784B2 (ja) * 2011-11-25 2014-09-17 株式会社東芝 配線及び半導体装置
JP5564068B2 (ja) * 2012-04-17 2014-07-30 株式会社神戸製鋼所 燃料電池セパレータ及びその製造方法
JP6122589B2 (ja) 2012-07-20 2017-04-26 株式会社神戸製鋼所 燃料電池セパレータ
CA2876276C (en) 2012-07-31 2017-06-06 Nippon Steel & Sumitomo Metal Corporation Titanium or titanium alloy material for fuel cell separator having high contact conductivity with carbon and high durability, fuel cell separator including the same, and manufacturing method therefor
EP2913876B1 (en) 2013-02-01 2017-06-28 Nippon Steel & Sumitomo Metal Corporation Titanium or titanium alloy for fuel cell separator excellent in contact conductivity to carbon and durability, fuel cell separator using same, and fuel cell
KR101741935B1 (ko) 2013-02-01 2017-05-30 신닛테츠스미킨 카부시키카이샤 대 카본 접촉 도전성과 내구성이 우수한 연료 전지 세퍼레이터용 티타늄재 또는 티타늄 합금재, 이를 사용한 연료 전지 세퍼레이터, 및, 연료 전지
US20160268611A1 (en) * 2013-11-11 2016-09-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium separator material for fuel cells, and method for producing titanium separator material for fuel cells
JP5790906B1 (ja) 2014-01-22 2015-10-07 新日鐵住金株式会社 表面の導電性を有するチタン材又はチタン合金材、これを用いた燃料電池セパレータと燃料電池
JP5831670B1 (ja) 2014-01-22 2015-12-09 新日鐵住金株式会社 表面の導電性を有するチタン材又はチタン合金材とその製造方法、及び、これを用いた燃料電池セパレータと燃料電池
JP6225716B2 (ja) * 2014-01-23 2017-11-08 新日鐵住金株式会社 固体高分子形燃料電池のセパレータ用チタン材およびその製造方法
KR20160122843A (ko) 2014-04-03 2016-10-24 신닛테츠스미킨 카부시키카이샤 연료 전지 세퍼레이터용 복합 금속박, 연료 전지 세퍼레이터, 연료 전지 및 연료 전지 세퍼레이터용 복합 금속박의 제조 방법
DE102014016186A1 (de) 2014-11-03 2016-05-04 Forschungszentrum Jülich GmbH Bipolarplatte für elektrochemische Zellen sowie Verfahren zur Herstellung derselben
JP6856012B2 (ja) * 2017-12-14 2021-04-07 トヨタ自動車株式会社 燃料電池用のセパレータ
US20210066729A1 (en) * 2018-02-21 2021-03-04 Nippon Steel Corporation Titanium material, separator, fuel cell, and fuel cell stack
WO2019176911A1 (ja) * 2018-03-16 2019-09-19 日本製鉄株式会社 金属材の製造方法、燃料電池用セパレータの製造方法、およびステンレス鋼材
EP4191715A1 (de) 2021-12-01 2023-06-07 Federal-Mogul Burscheid GmbH Bipolarplatte für brennstoffzelle
CN115995573B (zh) * 2023-03-24 2023-06-09 上海治臻新能源股份有限公司 复合涂层、金属极板及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255823A (ja) * 1997-03-07 1998-09-25 Asahi Glass Co Ltd 固体高分子型燃料電池
JP2001283872A (ja) * 2000-03-30 2001-10-12 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ及びその製造方法
JP2005100697A (ja) * 2003-09-22 2005-04-14 Nissan Motor Co Ltd 燃料電池用セパレータ、燃料電池スタック及び燃料電池車両
JP2006278172A (ja) * 2005-03-29 2006-10-12 Nikko Kinzoku Kk 燃料電池のセパレータ用材料
JP3904696B2 (ja) 1997-11-11 2007-04-11 日新製鋼株式会社 低温型燃料電池用セパレータ及びその製造方法
JP3904690B2 (ja) 1997-10-14 2007-04-11 日新製鋼株式会社 低温型燃料電池用セパレータ
JP2007207718A (ja) 2006-02-06 2007-08-16 Tokai Univ 燃料電池用セパレータおよびその製造方法
JP2008198565A (ja) * 2007-02-15 2008-08-28 Daido Steel Co Ltd 燃料電池用金属セパレータとこれを用いた固体高分子形燃料電池
JP2008204876A (ja) 2007-02-22 2008-09-04 Toyota Motor Corp 燃料電池用セパレータ、燃料電池用セパレータの製造方法及び燃料電池
JP4147925B2 (ja) 2002-12-04 2008-09-10 トヨタ自動車株式会社 燃料電池用セパレータ
JP2010163403A (ja) 2009-01-19 2010-07-29 Nagase Chemtex Corp イソプラスタン低下剤

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440598B1 (en) 1997-10-14 2002-08-27 Nisshin Steel Co., Ltd. Separator for low temperature type fuel cell and method of production thereof
JP2000164228A (ja) * 1998-11-25 2000-06-16 Toshiba Corp 固体高分子電解質型燃料電池のセパレータおよびその製造方法
US6631074B2 (en) 2000-05-12 2003-10-07 Maxwell Technologies, Inc. Electrochemical double layer capacitor having carbon powder electrodes
AU2002335219A1 (en) * 2001-11-21 2003-06-10 Hitachi Powdered Metals Co., Ltd. Coating material for fuel cell separator
JP2003268567A (ja) * 2002-03-19 2003-09-25 Hitachi Cable Ltd 導電材被覆耐食性金属材料
JP2005093172A (ja) 2003-09-16 2005-04-07 Nippon Steel Corp 燃料電池用セパレータおよび燃料電池
JP4395053B2 (ja) 2004-11-15 2010-01-06 新日本製鐵株式会社 燃料電池用金属製セパレータ及びその加工方法
JP5217243B2 (ja) * 2006-05-22 2013-06-19 株式会社豊田中央研究所 非晶質炭素膜、非晶質炭素膜の形成方法、非晶質炭素膜を備えた導電性部材および燃料電池用セパレータ
JP4551429B2 (ja) 2006-09-29 2010-09-29 株式会社神戸製鋼所 燃料電池用セパレータの製造方法、燃料電池用セパレータおよび燃料電池
JP5185720B2 (ja) 2008-02-27 2013-04-17 株式会社神戸製鋼所 電極用チタン材の表面処理方法
CN101604756B (zh) 2008-06-11 2011-05-18 财团法人工业技术研究院 双极板与燃料电池
JP2010033969A (ja) * 2008-07-30 2010-02-12 Nissan Motor Co Ltd 燃料電池用セパレータ
JP5353205B2 (ja) 2008-11-27 2013-11-27 日産自動車株式会社 導電部材、その製造方法、ならびにこれを用いた燃料電池用セパレータおよび固体高分子形燃料電池
JP4825894B2 (ja) * 2009-04-15 2011-11-30 トヨタ自動車株式会社 燃料電池用セパレータおよびその製造方法
JP5321576B2 (ja) * 2009-12-25 2013-10-23 株式会社豊田中央研究所 配向性非晶質炭素膜およびその形成方法
WO2011077755A1 (ja) * 2009-12-25 2011-06-30 トヨタ自動車株式会社 燃料電池用セパレータおよびその製造方法
JP4886885B2 (ja) 2010-07-20 2012-02-29 株式会社神戸製鋼所 チタン製燃料電池セパレータ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255823A (ja) * 1997-03-07 1998-09-25 Asahi Glass Co Ltd 固体高分子型燃料電池
JP3904690B2 (ja) 1997-10-14 2007-04-11 日新製鋼株式会社 低温型燃料電池用セパレータ
JP3904696B2 (ja) 1997-11-11 2007-04-11 日新製鋼株式会社 低温型燃料電池用セパレータ及びその製造方法
JP2001283872A (ja) * 2000-03-30 2001-10-12 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ及びその製造方法
JP4147925B2 (ja) 2002-12-04 2008-09-10 トヨタ自動車株式会社 燃料電池用セパレータ
JP2005100697A (ja) * 2003-09-22 2005-04-14 Nissan Motor Co Ltd 燃料電池用セパレータ、燃料電池スタック及び燃料電池車両
JP2006278172A (ja) * 2005-03-29 2006-10-12 Nikko Kinzoku Kk 燃料電池のセパレータ用材料
JP2007207718A (ja) 2006-02-06 2007-08-16 Tokai Univ 燃料電池用セパレータおよびその製造方法
JP2008198565A (ja) * 2007-02-15 2008-08-28 Daido Steel Co Ltd 燃料電池用金属セパレータとこれを用いた固体高分子形燃料電池
JP2008204876A (ja) 2007-02-22 2008-09-04 Toyota Motor Corp 燃料電池用セパレータ、燃料電池用セパレータの製造方法及び燃料電池
JP2010163403A (ja) 2009-01-19 2010-07-29 Nagase Chemtex Corp イソプラスタン低下剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2597710A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111671A1 (ja) * 2011-02-14 2012-08-23 株式会社神戸製鋼所 燃料電池セパレータ
JP2012186147A (ja) * 2011-02-14 2012-09-27 Kobe Steel Ltd 燃料電池セパレータ
EP2642571A1 (en) * 2012-03-23 2013-09-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Fuel cell separator material, fuel cell, and method for manufacturing fuel cell separator material
US20160056479A1 (en) * 2013-03-27 2016-02-25 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) Titanium sheet material for fuel cell separators and method for producing same

Also Published As

Publication number Publication date
CN102959779B (zh) 2016-03-16
CN102959779A (zh) 2013-03-06
EP2597710B1 (en) 2017-01-18
JP2012028045A (ja) 2012-02-09
EP2597710A4 (en) 2014-01-22
JP4886884B2 (ja) 2012-02-29
KR20130020839A (ko) 2013-02-28
US9178222B2 (en) 2015-11-03
US20130130153A1 (en) 2013-05-23
EP2597710A1 (en) 2013-05-29
KR101240697B1 (ko) 2013-03-07

Similar Documents

Publication Publication Date Title
JP4886884B2 (ja) チタン製燃料電池セパレータおよびその製造方法
JP4886885B2 (ja) チタン製燃料電池セパレータ
JP5108976B2 (ja) 燃料電池セパレータ
JP5507496B2 (ja) 燃料電池セパレータの製造方法
JP6122589B2 (ja) 燃料電池セパレータ
WO2015068559A1 (ja) チタン製燃料電池セパレータ材およびチタン製燃料電池セパレータ材の製造方法
JP5342518B2 (ja) チタン製燃料電池セパレータの製造方法
JP5564068B2 (ja) 燃料電池セパレータ及びその製造方法
JP5968857B2 (ja) チタン製燃料電池セパレータの製造方法
JP2013200970A (ja) 燃料電池セパレータ材、燃料電池、および燃料電池セパレータ材の製造方法
JP2012043775A (ja) チタン製燃料電池セパレータの製造方法
JP6170477B2 (ja) チタン製燃料電池セパレータ材およびチタン製燃料電池セパレータ材の製造方法
JP5466669B2 (ja) 燃料電池セパレータの製造方法
JP7056397B2 (ja) チタン材、セパレータ、セル、および燃料電池スタック
WO2019176911A1 (ja) 金属材の製造方法、燃料電池用セパレータの製造方法、およびステンレス鋼材
JP5108986B2 (ja) 燃料電池セパレータ
JP2012212644A (ja) 燃料電池セパレータの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067626.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137001415

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13811118

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010855037

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010855037

Country of ref document: EP