JP2013200970A - 燃料電池セパレータ材、燃料電池、および燃料電池セパレータ材の製造方法 - Google Patents

燃料電池セパレータ材、燃料電池、および燃料電池セパレータ材の製造方法 Download PDF

Info

Publication number
JP2013200970A
JP2013200970A JP2012067718A JP2012067718A JP2013200970A JP 2013200970 A JP2013200970 A JP 2013200970A JP 2012067718 A JP2012067718 A JP 2012067718A JP 2012067718 A JP2012067718 A JP 2012067718A JP 2013200970 A JP2013200970 A JP 2013200970A
Authority
JP
Japan
Prior art keywords
carbon
conductive layer
fuel cell
based conductive
separator material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012067718A
Other languages
English (en)
Inventor
Jun Suzuki
順 鈴木
Toshiki Sato
俊樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012067718A priority Critical patent/JP2013200970A/ja
Priority to EP13001019.2A priority patent/EP2642571A1/en
Priority to US13/788,376 priority patent/US20130252136A1/en
Priority to CN201310092284.7A priority patent/CN103326045B/zh
Priority to KR1020130030981A priority patent/KR20130108191A/ko
Publication of JP2013200970A publication Critical patent/JP2013200970A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】導電性や耐食性に優れるとともに、新規なセパレータ材を規定することにより、ガスケット材と良好に接着することができる燃料電池セパレータ材、燃料電池、および燃料電池セパレータ材の製造方法を提供することを課題とする。
【解決手段】純チタンまたはチタン合金からなる基材1表面に、グラファイトを含む炭素系導電層2が形成されている燃料電池セパレータ材10Aであって、前記炭素系導電層2の被覆率は、電子顕微鏡を用いて200倍の観察倍率で550×400μmの範囲を観察したときに、20〜70%であることを特徴とする。
【選択図】図1

Description

本発明は、燃料電池セパレータ材、燃料電池、および燃料電池セパレータ材の製造方法に係り、特に、チタンまたはチタン合金からなる基材を備えて構成される燃料電池セパレータ材、燃料電池、および燃料電池セパレータ材の製造方法に関する。
水素等の燃料と酸素等の酸化剤を供給し続けることで継続的に電力を取り出すことができる燃料電池は、乾電池等の一次電池や鉛蓄電池等の二次電池とは異なり、発電効率が高く、システム規模の大小にあまり影響されず、また、騒音や振動も少ないため、多様な用途・規模をカバーするエネルギー源として期待されている。燃料電池は、具体的には、固体高分子型燃料電池(PEFC)、アルカリ電解質型燃料電池(AFC)、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)、固体酸化物型燃料電池(SOFC)、バイオ燃料電池等として開発されている。中でも、燃料電池自動車や、家庭用燃料電池(家庭用コジェネレーションシステム)、携帯電話やパソコン等の携帯機器向けとして、固体高分子型燃料電池の開発が進められている。
固体高分子型燃料電池(以下、燃料電池という)は、固体高分子電解質膜を、アノード電極とカソード電極とで挟んだものを単セルとし、ガス(水素、酸素等)の流路となる溝が形成されたセパレータ(バイポーラプレートとも呼ばれる)を介して、前記単セルを複数個重ね合わせたスタックとして構成される。そして、燃料電池は、スタックあたりのセル数を増やすことで、出力を高くすることができる。
燃料電池用のセパレータは、発生した電流を燃料電池の外部へ取り出すための部品でもあるので、その材料には、接触抵抗(電極とセパレータ表面との間で、界面現象のために電圧降下が生じることをいう)が低く、それがセパレータとしての使用中に長期間維持されるという特性が要求される。さらに、燃料電池の内部は酸性雰囲気であるため、セパレータには高耐食性も要求される。
これらの要求を満足するために、黒鉛粉末の成形体を削り出して成るセパレータや、黒鉛と樹脂の混合物成形体から成るセパレータが種々提案されている。これらは優れた耐食性を有するものの、強度や靱性に劣ることから、振動や衝撃が加えられた際に破損する虞がある。そのため、金属材料をベースにしたセパレータが指向され、種々提案されている。
また、前記のようにセパレータに形成された流路内をガス(水素、酸素等)や冷却水が流れるが、ガスや冷却水が外部に漏れないようにするために、通常、セパレータ表面にはシール用のガスケット材が接着されている。したがって、セパレータには、導電性、耐食性とともにガスケット材との接着性も要求される。
このシール性(ガスや冷却水の漏れ防止性)の向上に関する技術については、例えば、カーボンや金属製セパレータ材とフッ素系ゴムやシリコンゴムなどのガスケット材を接着させる接着剤(特許文献1、2)や、ガスケット材自体に粘着機能を持たせた材料(特許文献3)が提案されている。
特許第4486801号公報 特許第4512316号公報 特開2003−56704号公報
しかしながら、特許文献1乃至特許文献3に係る技術は、セパレータとガスケット材とを接着する接着剤またはガスケット材に関する技術であり、セパレータ自体に関する技術ではないことから、これらの技術は、使用するセパレータによりシール性が大きく左右されてしまう。
つまり、新規なセパレータを創出することによって、シール性を向上させる余地、言い換えると、ガスケット材に対するセパレータの接着性を向上させる余地が存在していた。
さらに、セパレータの導電性と耐食性を低コストで向上させるために、金属材料に炭素系導電層を被覆する技術が試みられているが、一般的に炭素系導電層は接着剤との接着性が悪く、十分なシール性を確保することが困難であるという問題があった。
本発明は、前記の問題に鑑みてなされたものであり、その課題は、導電性や耐食性に優れるとともに、新規なセパレータ材を規定することにより、ガスケット材と良好に接着することができる燃料電池セパレータ材、燃料電池、および燃料電池セパレータ材の製造方法を提供することにある。
発明者らは、鋭意検討を行った結果、炭素系導電層の被覆がなされているセパレータ材の場合、ガスケット材と良好に接着させるためには、炭素系導電層が基材表面を全て覆っているのではなく、基材の一部が露出している状態がよく、さらに、導電性と耐食性も良好に併せ持つには、電子顕微鏡を用いて200倍の観察倍率で550×400μmの範囲を観察したときに、炭素系導電層の被覆率を所定範囲に規定することがよいことを見出し、本発明に至った。
すなわち、本発明に係る燃料電池セパレータ材は、純チタンまたはチタン合金からなる基材表面に、グラファイトを含む炭素系導電層が形成されている燃料電池セパレータ材であって、前記炭素系導電層の被覆率は、電子顕微鏡を用いて200倍の観察倍率で550×400μmの範囲を観察したときに、20〜70%であることを特徴とする。
このように、本発明に係る燃料電池セパレータ材は、炭素系導電層の被覆率を所定値以上に規定することにより、セパレータに要求される導電性および耐食性を確保することができる。
また、本発明に係る燃料電池セパレータ材は、炭素系導電層の被覆率を所定値以下に規定することにより、接着剤との接着性を確保することができる。
つまり、本発明に係る燃料電池セパレータ材は、炭素系導電層の被覆率を所定範囲に規定することにより、導電性および耐食性に優れるだけでなく、接着剤を介してガスケット材と良好に接着することができる。
また、本発明に係る燃料電池セパレータ材は、前記基材表面に前記炭素系導電層が形成されている領域において、前記炭素系導電層と前記基材との界面にチタンカーバイドおよび金属チタンが含まれる中間層が形成されていることが好ましい。
このように、本発明に係る燃料電池セパレータ材は、炭素系導電層と基材との界面にチタンカーバイドおよび金属チタンが含まれる中間層が形成されていることから、当該中間層がセパレータ材の導電性および密着性をさらに向上させる。
また、本発明に係る燃料電池セパレータ材は、前記基材の両面に、前記炭素系導電層が形成されている燃料電池セパレータ材であって、前記セパレータ材の両面を2枚のカーボンペーパーで挟み、前記カーボンペーパーの外側から面圧10kg/cmの条件で加圧したときに、前記カーボンペーパーとの接触抵抗が10mΩ・cm以下であることが好ましい。
このように、本発明に係る燃料電池セパレータ材は、セパレータ材を所定の条件で加圧したときに、カーボンペーパーとの接触抵抗が所定値以下であることから、導電性の向上という効果をより確実なものとすることができる。
本発明に係る燃料電池は、前記燃料電池セパレータ材と、前記セパレータ材に接着されたガスケット材と、を備えていることを特徴とする。
このように、本発明に係る燃料電池は、前記燃料電池セパレータ材を備えることにより、導電性および耐食性に優れるだけでなく、接着剤を介してガスケット材と良好に接着することができる。
本発明に係る燃料電池セパレータ材の製造方法は、前記燃料電池セパレータ材の製造方法であって、グラファイト粉、グラファイト粉とカーボンブラック粉、グラファイト粉とアセチレンブラック粉、または、グラファイト粉とカーボンブラック粉とアセチレンブラック粉、を分散させたスラリーを前記基材表面に塗布する炭素系導電層形成工程と、前記炭素系導電層形成工程の後に、前記基材を非酸化雰囲気下において500〜850℃で熱処理する熱処理工程と、を含むことを特徴とする。
このように、本発明に係る燃料電池セパレータ材の製造方法は、所定の炭素系導電層形成工程と、熱処理工程と、を含むことにより、導電性および耐食性に優れるだけでなく、接着剤を介してガスケット材と良好に接着することができる燃料電池セパレータ材を製造することができる。
本発明に係る燃料電池セパレータ材は、炭素系導電層の被覆率を所定範囲に規定することにより、導電性および耐食性に優れるとともに、接着剤を介してガスケット材と良好に接着することができる。
本発明に係る燃料電池は、前記燃料電池セパレータ材を備えることにより、長期にわたって安定した発電性能を維持することができる。
本発明に係る燃料電池セパレータ材の製造方法は、所定の炭素系導電層形成工程と、熱処理工程と、を含むことにより、導電性および耐食性に優れるとともに、接着剤を介してガスケット材と良好に接着することができる燃料電池セパレータ材を製造することができる。
(a)、(b)は、本発明に係る燃料電池セパレータ材の構成を示す断面図である。 本発明に係る燃料電池セパレータ材の製造方法の工程を説明するフローチャートである。 接触抵抗測定方法を説明する模式図である。 接着性評価方法を説明する模式図である。 実施例に係る試験体の表面のSEM反射電子像であって、(a)は、試験体No.4の結果であり、(b)は、試験体No.6の結果である。 本発明に係る燃料電池の概略図であって、(a)は、燃料電池の分解斜視図、(b)は、燃料電池の分解断面図である。
以下、本発明に係る燃料電池セパレータ材の実施するための形態について、詳細を説明する。
≪燃料電池セパレータ材≫
図1(a)に示すように、実施形態に係る燃料電池セパレータ材(以下、適宜、セパレータ材という)10Aは、純チタンまたはチタン合金からなる基材1と、当該基材1の表面(片面または両面)に形成された炭素系導電層2と、から構成される。また、図1(b)に示すように、セパレータ材10Bは、基材1表面に炭素系導電層2が形成されている領域において、基材1と炭素系導電層2との界面に中間層3が形成されているのが好ましい。
以下、セパレータ材10を構成する各要素について詳細に説明する。
<基材>
燃料電池セパレータ材10の基材1は、ガスの流路となる溝を形成するために必要となる加工性の点、ガスバリア性の点、導電性や熱伝導性の点から金属基材を用いるのが好ましく、特に純チタンやチタン合金は、軽量で耐食性に優れ、強度、靭性にも優れていることから非常に好ましい。
基材1は、従来公知の方法、例えば、純チタンまたはチタン合金を溶解、鋳造して鋳塊とし、熱間圧延した後、冷間圧延するという方法により作製されたものである。また、基材1は、焼鈍仕上げされていることが好ましいが、その仕上げ状態は問わず、例えば「焼鈍+酸洗仕上げ」、「真空熱処理仕上げ」、「光輝焼鈍仕上げ」等のいずれの仕上げ状態であっても構わない。
なお、基材1としては、ステンレス鋼よりも純チタンまたはチタン合金からなるものの方が好ましい。その理由は、ステンレス鋼の場合、燃料電池内部の酸性雰囲気下で鉄、ニッケル、クロムといった金属イオンが溶出する可能性があり、これらの溶出金属イオンが固体高分子膜を劣化させる虞があるためである。一方、純チタンまたはチタン合金の場合は、燃料電池内部の酸性雰囲気下で強固な不働態皮膜が形成され金属イオンの溶出の虞がないので非常に好ましい。
チタン材料としては、特定の組成の純チタン、チタン合金に限定されるものではないが、チタン素材(母材)の冷間圧延のし易さ(中間焼鈍なしでトータル圧下率35%以上の冷間圧延を実施できる)や、その後のプレス成形性確保の観点から、O:1500ppm以下(より好ましくは1000ppm以下)、Fe:1500ppm以下(より好ましくは1000ppm以下)、C:800ppm以下、N:300ppm以下、H:130ppm以下であり、残部がTiおよび不可避的不純物からなるものが好ましい。例えば、JIS 1種の冷間圧延板を使用することができる。なお、チタン材料からなる基材1を用いることにより、燃料電池セパレータ材10の強度や靱性が向上する共に、基材1自体が高い耐食性を有しているため、燃料電池環境下で炭素系導電層2に被覆されてない箇所(基材1が露出している箇所)からの基材1の溶出を防ぐことができる。さらに、軽量であるため、特に自動車用途として使用し易い。
また、基材1の板厚は、0.05〜1.0mmが好ましい。板厚が0.05mm未満では、基材1に必要とされる強度を確保することができず、一方、1.0mmを越えると後記するガスの流路となる細かな溝加工をするのが難しくなる。
<炭素系導電層>
炭素系導電層2は、導電性と耐食性を有する層であり、セパレータ材10表面に形成される層である。炭素系導電層2の形成には各種の炭素材料が用いられるが、特にグラファイト(グラファイト粉)は導電性および耐食性に優れ、燃料電池内部の酸性雰囲気中でも良好な導電性が維持されるので好ましい。
このグラファイトを含む炭素系導電層2は、導電性と耐食性を得るためには基材1表面の全域がほぼ100%被覆されているのが良い。しかし、炭素系導電層2は一般にガスケット材を接着する接着剤(シリコンゴム系接着剤など)との接着性が悪いため、被覆率がほぼ100%の状態では十分な接着性が得られず、ガスケット材を接着する接着剤との接着性を高めるためには、基材1の一部が露出しているような状態であることが好ましい。したがって、導電性および耐食性と、接着剤との接着性を両立するためには、炭素系導電層2が基材1表面を覆う被覆率が、電子顕微鏡を用いて200倍の観察倍率で550×400μmの範囲を観察したときに、20〜70%となる必要がある。
単に炭素系導電層2の被覆率が20〜70%であるとしても、例えば10cm四方などのマクロ的な領域での被覆率ではなく、走査型電子顕微鏡を用いて200倍で観察した視野でのミクロ的な被覆率が20〜70%となるのが良い。
炭素系導電層2の被覆率が70%を超えると、導電性および耐食性は良好となるが接着剤との接着性が悪くなる。一方、炭素系導電層2の被覆率が20%未満の場合は、接着剤との接着性は良好になるものの、初期導電性および耐食性が不良となる。
なお、炭素系導電層2の好ましい被覆率の範囲は25〜65%であり、より好ましくは30〜60%である。
炭素系導電層2の被覆率が20〜70%であるセパレータ材10について、炭素系導電層2の被覆している形態は特に制限されないが、グラファイト粉などの粉末状の材料を用いて炭素系導電層2を形成する場合は、炭素系導電層2が島状または島がつながったような形態で基材上に分布する状況となる。また、粉末のサイズやコート手法を選択すればストライプ形状や網目形状にすることもできる。
被覆率の測定は、まず、炭素系導電層2を形成したセパレータ材10の表面を走査型電子顕微鏡で200倍の観察倍率で観察し、その視野の反射電子像を撮影する。そして、反射電子像では炭素系導電層2が基材よりも黒く撮影されるため、画像解析によって炭素系導電層2の部分と基材1が露出する部分とを区別できるように二値化し、550×400μmの範囲において炭素系導電層2の部分が占める面積率を計算することによって被覆率を求めることができる。
<中間層>
中間層3は、基材1表面に炭素系導電層2が形成されている領域において、基材1と炭素系導電層2の界面に形成される層である。そして、中間層3は、基材1と炭素系導電層2とが反応して形成されたチタンカーバイドと、金属チタンが含まれる層であることが好ましい。チタンカーバイドは導電性を有するため、基材1と炭素系導電層2との界面における電気抵抗が小さくなり、導電性が向上するだけでなく、基材1と炭素系導電層2とが反応して形成されたものであるため、基材1と炭素系導電層2との密着性が向上するからである。
なお、中間層3は、後記する熱処理工程S2により形成され、詳細には、炭素系導電層2の炭素が基材1側に拡散して形成される(図1(b)参照)。
中間層3がチタンカーバイドを含むか否かの確認は、透過型電子顕微鏡(Transmission Electron Microscope)等を用いて基材1と炭素系導電層2との界面を調査することで実施することができる。
<接触抵抗>
本発明の燃料電池セパレータ材10は、基材1の両面に炭素系導電層2を形成したときに、セパレータ材10の両面を2枚のカーボンペーパーで挟み、図3に示すように、カーボンペーパーの外側からセパレータ材10を面圧10kg/cmの条件で加圧したときに、カーボンペーパーとの接触抵抗が10mΩ・cm以下であるのが好ましい。
なお、カーボンペーパーとは、カーボン繊維を織り込んだ帯状物であり、例えば、厚み0.3mm、かさ密度0.5g/cmといったものである。
実際の燃料電池内では、セパレータ材10はカーボンペーパーより構成されるガス拡散層と接触しており、およそ10kg/cmの圧力で締め付けられている。
このような状態において、セパレータ材10とカーボンペーパーとの接触抵抗の値が10mΩ・cmを超えると、燃料電池内でセパレータとして使用したときの電流損失が大きくなり、燃料電池としての性能が低くなってしまうため好ましくない。よって、セパレータ材10とカーボンペーパーとの接触抵抗は10mΩ・cm以下であるのが好ましく、より好ましくは9mΩ・cm以下である。
なお、接触抵抗の値を高くするには、炭素系導電層2の被覆率を大きくするとともに、熱処理工程における酸素分圧を低くして、熱処理温度を高くすればよい。
次に、燃料電池セパレータ材を備えた燃料電池を説明する。
≪燃料電池≫
図6に示すように、実施形態に係る燃料電池30は、前記燃料電池セパレータ材10と、当該燃料電池セパレータ材10に接着されたガスケット材4と、を備えている。なお、この燃料電池セパレータ材10とは、プレス加工が施されたものである。
また、ガスケット材4とは、セパレータ材10に形成された流路内を流れるガスや冷却水が外部に漏れることを防止するとともに、外部からの異物の混入を防止する帯状体であり、例えば、厚さ0.5mmのシリコンゴムシートである。
そして、セパレータ材10とガスケット材4とは、接着剤(シリコン系のシール材等)により接着されていればよい。
なお、燃料電池30のその他の構成については、従来公知の構成であればよい。
例えば、図6に示すように、燃料電池30は、固体高分子膜6と、その両側に配置したカーボンペーパー(ガス拡散層)5、5と、その両側に配置したガスケット材4、4と、その両側に配置したセパレータ材10、10とを単セル20とし、当該単セル20を、1つ以上重ねて、当該重ねられた単セル20の両側から2枚のエンドプレート(図示せず)で挟んで構成される。
次に、燃料電池セパレータ材の製造方法を説明する。
≪燃料電池セパレータ材の製造方法≫
実施形態に係る燃料電池セパレータ材の製造方法は、炭素系導電層形成工程S1と、熱処理工程S2とを、含む。以下、燃料電池セパレータ材の製造方法を、工程ごとに説明する。
<炭素系導電層形成工程>
炭素系導電層形成工程S1とは、基材1上に炭素系導電層2を形成する工程であって、バインダ成分(樹脂、増粘剤など)を含む塗料中に炭素粉を分散させた導電性塗料(スラリー)を作製し、この導電性塗料を基材1上に塗布するという工程である。
この導電性塗料に含まれるバインダは、樹脂の場合は、熱硬化性樹脂のフェノール樹脂、エポキシ樹脂、ポリイミド樹脂などが好ましく、増粘剤の場合はカルボキシメチルセルロール、カラギナン、ジェランガムなどが好ましい。これらのバインダは後述する熱処理工程S2により、有機の樹脂成分を無機の非晶質炭素(ダイヤモンド様炭素)へと変化して炭素粉と基材1とを結合させる。
なお、バインダに熱可塑性樹脂のアクリル樹脂系の塗料を用いた場合は、熱処理により樹脂成分が分解してしまい、炭素系導電層2が非常に脆いものになり、炭素粉が基材1より容易に脱落するため好ましくない。
導電性塗料に含まれる炭素粉は、カーボンブラック粉、アセチレンブラック粉、グラファイト粉のいずれか、もしくはこれらの混合粉であるのが好ましい。特に、炭素粉は、グラファイト粉を含むもの、詳細には、グラファイト粉、グラファイト粉とカーボンブラック粉、グラファイト粉とアセチレンブラック粉、または、グラファイト粉とカーボンブラック粉とアセチレンブラック粉、であることが好ましい。
これらの粉末はグラファイト成分を含むため導電性と耐食性が良く、安価な材料であるため生産上好都合である。
炭素粉の粒径は50μm以下であることが好ましい。粒径が50μmを超えると、セパレータ上に流路となる溝を形成するために行うプレス加工時に、炭素粉の脱落などが起こり易くなるからである。
一方、粒径の下限値は特に規定しないが、炭素系導電層2が島状または島がつながったような形態で基材1上に分布させるには、炭素粉の粒径はおよそ0.5μmを超える大きめのものが好ましい。ただし、炭素粉の粒径が0.5μm以下であっても、例えばアセチレンブラック粉のように粉末同士が凝集して凝集体を作りやすいような粉末を選定して用いれば炭素系導電層2が島状または島がつながったような形態で基材1上に分布させることが可能である。しかし、汎用的な炭素粉の粒径はおよそ0.02μm以上であり、粒径がこれ以下の物は入手しにくく、もし入手可能であったとしても高価となるため好ましくない。
導電性塗料を基材の表面に塗付する方法は、従来公知のバーコーター、ロールコーター、リバースロールコーター、グラビアコーター、ダイコーター、キスコーター、ロッドコーター、ディップコーター、スプレーコーターのいずれかを用いて基材1に導電性塗料を塗付する方法が好ましい。
前記の各種コーターを用いることにより、基材1表面に適切にスラリーを連続して塗布することができ、生産性を向上させることができる。
炭素系導電層2について、被覆率を20〜70%とし、島状または島がつながったような形態で基材1上に分布させるためには、前記したような比較的大きめの炭素粉を使用し、導電性塗料中の固形分濃度を低めに設定するとともに、極力薄く塗工するという方法で塗工条件を調整すればよい。
なお、炭素系導電層2の被覆率を下げる場合は、導電性塗料中の固形分濃度を下げるとともに、比較的薄く塗工すればよい。一方、炭素系導電層2の被覆率を上げる場合は、導電性塗料中の固形分濃度を上げるとともに、比較的厚めに塗工すればよい。塗工の厚さについては、バーコーター、ロールコーター、グラビアコーターなどの場合は、使用するロールの番手を適宜調整すればよく、スプレーコーターの場合は、空気量と導電性塗料の量を適宜調整すればよい。
<熱処理工程>
熱処理工程S2とは、炭素系導電層形成工程S1の後に、炭素系導電層2が形成された基材1を熱処理することによって、炭素系導電層2の導電性を高め、また炭素系導電層2と基材1との結合をより強固なものとする工程である。
この熱処理工程S2における熱処理温度は、500〜850℃であることが好ましい。熱処理温度が500℃未満であると、炭素系導電層2の導電性が不十分で、上記のカーボンペーパーとの接触抵抗が十分に低くならないため好ましくない。一方、熱処理温度が850℃を越えると、基材1の機械特性が低下する虞があるからである。
なお、好ましい熱処理温度の範囲は520〜800℃であり、より好ましくは、550〜780℃である。
また、この熱処理工程S2は真空中やArガス雰囲気等の非酸化雰囲気下において前記温度範囲で行うことが好ましい。熱処理における非酸化雰囲気とは、酸素分圧が低い雰囲気であり、好ましくは、酸素分圧が10Pa以下の雰囲気である。10Paを超えると、炭素系導電層2中の炭素が雰囲気中の酸素と反応することで、二酸化炭素となってしまい(燃焼反応を起こしてしまい)、基材1が酸化してしまうことによって導電性が劣化してしまうからである。
また、熱処理の時間は、0.5〜60分間が好ましく、温度が低い場合は長時間の処理、温度が高い場合は短時間の処理というように、温度によって時間を適宜調整すればよい。
なお、この熱処理は、500〜850℃の熱処理温度で熱処理を行うことができ、かつ雰囲気調整ができる熱処理炉であれば、電気炉、ガス炉等、どのような熱処理炉でも用いることができる。
本発明に係る燃料電池セパレータ材の製造方法は、前記した炭素系導電層形成工程S1、熱処理工程S2以外の工程、例えば、熱処理工程S2の前にセパレータ材の炭素系導電層を乾燥する工程(乾燥工程)、熱処理工程S2の後にセパレータ材を放冷する工程(放冷工程)、後記する圧着工程、プレス加工工程等、を含む構成となっていてもよい。
なお、炭素系導電層形成工程S1の後に、一旦、セパレータ材をロール状に巻き取るようなロールtoロールプロセスを適用する場合は、巻き取り時におけるセパレータ材の炭素系導電層の損傷等を回避すべく、炭素系導電層形成工程S1後であって熱処理工程S2前に、前記乾燥工程を行う構成であることが好ましい。
<圧着工程>
熱処理工程S2の前に、導電性塗料を片面または両面に塗布した基材1をロールプレス設備にてプレスし、炭素系導電層2を潰して炭素粉を基材1に圧着(密着)させる圧着工程を行ってもよい。
<プレス加工工程>
熱処理工程S2の後に、ガスの流路となる溝をプレス加工により成形する場合、切断、プレス加工等により、所望の形状に成形して、燃料電池セパレータとするプレス加工工程を行ってもよい。
なお、このプレス加工工程は、炭素系導電層形成工程S1前、もしくは炭素系導電層形成工程S1後、熱処理工程S2前に行うこともできる。プレス加工の際、潤滑油を使用しても良いし、基材1上の炭素系導電層2が潤滑剤としての作用を発揮するため、潤滑油無しでもプレス加工が可能であるとともに、プレス加工後も炭素系導電層2の剥離がほとんど起こらない。このためプレス加工後の脱脂洗浄が不要となりセパレータの生産性も向上する。
以上の製造方法によって製造された燃料電池セパレータ材10は、基材1表面に導電性と耐食性に優れる炭素系導電層2が形成されているとともに、その炭素系導電層2の被覆率が20〜70%であるため、ガスケット材との接着性にも優れる。
以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されず、特許請求の範囲に記載した本発明の要旨を逸脱しない範囲で適宜設計変更可能である。
次に、本発明に係る燃料電池セパレータ材について、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを比較して具体的に説明する。
[試験体の作製(試験体No.1〜13)]
基材には、JIS 1種のチタン基材を使用した。
チタン基材(焼鈍酸洗仕上げ)の化学組成は、O:450ppm、Fe:250ppm、N:40ppm、残部がTiおよび不可避的不純物であり、チタン基材の板厚は、0.1mmであり、サイズは50×150mmとした。当該チタン基材は、チタン原料に対して従来公知の溶解工程、鋳造工程、熱間圧延工程、冷間圧延工程を施して得られたものである。
次に、炭素系導電層形成方法について説明するが、試験体により炭素系導電層形成方法が異なることから、試験体No.1〜7と、試験体No.8、9と、試験体No.10〜13と、に分けて説明する。
[炭素系導電層形成(試験体No.1〜7)]
炭素粉として、膨張化黒鉛粉(SECカーボン社製、SNE−6G、平均粒径7μm、純度99.9%)を用い、膨張化黒鉛粉を0.5wt%カルボキシメチルセルロース水溶液中に5wt%となるように分散させて導電性塗料を作製した。そして、当該導電性塗料を1番から10番までの番手のバーコーターを用いてチタン基材の両面に塗料を塗布し、炭素粉の塗工量が異なる各種塗工材料を作製した。
そして、ワークロール径200mmの2段圧延機を用いて、荷重2.5トンでロールプレスし、炭素系導電層のカーボン粉末を潰して基材上に密着させた。なお、ワークロールには潤滑油を塗布していない。
次に、炭素系導電層を形成した試験体を6.7×10−3Paの真空雰囲気下(酸素分圧1.3×10−3Pa下)もしくは酸素濃度が10ppmのArガス雰囲気下(酸素分圧1.0Paに相当)において、750℃の温度で2分間の熱処理を施して試験体No.1〜7を作製した。
[炭素系導電層形成(試験体No.8、9)]
炭素粉として、膨張化黒鉛粉(SECカーボン社製、SNE−6G、平均粒径7μm、純度99.9%)と、アセチレンブラック粉末(Strem Chemicals,Inc.社製、平均粒径50nm、純度99.99%)を用い、0.5wt%カルボキシメチルセルロース水溶液中に膨張化黒鉛粉を3wt%、アセチレンブラック粉末を0.5wt%となるように分散させて導電性塗料を作製した。そして、当該導電性塗料を3番および5番のバーコーターを用いてチタン基材の両面に塗料を塗布し、炭素粉の塗工量が異なる2種の塗工材料を作製した。
そして、2種の塗工材料に対し、試験体No.1〜7と同様のロールプレス処理および熱処理を行い、試験体No.8および9を得た。なお、3番のバーコーターを用いて作製したのもが試験体No.8であり、5番のバーコーターを用いて作製したのもが試験体No.9である。
[炭素系導電層形成(試験体No.10〜13)]
炭素粉として、膨張化黒鉛粉(SECカーボン社製、SNE−6G、平均粒径7μm、純度99.9%)とアセチレンブラック粉末(Strem Chemicals,Inc.社製、平均粒径50nm、純度99.99%)を用いた。バインダにはフェノール樹脂を用い、フェノール樹脂固形分が15wt%となるようにキシレンに溶解させた溶液中に、膨張化黒鉛粉を3wt%、アセチレンブラック粉末を0.5wt%となるように分散させて導電性塗料を作製した。そして、当該導電性塗料を3番および5番のバーコーターを用いてチタン基材の両面に塗料を塗布し、炭素粉の塗工量が異なる2種の塗工材料を作製した。
そして、2種の塗工材料に対し、試験体No.1〜7と同様のロールプレス処理および熱処理を行い、試験体No.10および11を得た。なお、3番のバーコーターを用いて作製したのもが試験体No.10で、5番のバーコーターを用いて作製したのもが試験体No.11である。
また、2種の塗工材料に対し、ロールプレス処理を行わずに試験体No.1〜7と同様の熱処理のみを行った試験体も作製した。なお、3番のバーコーターを用いて作製したのもが試験体No.12で、5番のバーコーターを用いて作製したのもが試験体No.13である。
次に、炭素粉塗工量および炭素系導電層被覆率の測定方法を説明する。
[炭素粉塗工量測定]
炭素粉を分散させたスラリーを塗工し、ロールプレスをした試験体を用いて炭素粉塗工量を測定した。試験体の一部を切り出し初期の重量を測定し、その後材料を水に浸漬して超音波洗浄を行い表面の炭素粉を除去した。水洗をして乾燥後に再度重量測定を行い、初期重量からの差の値を面積で割り、面積当りの塗工量を測定した。
なお、試験体No.10〜13については、炭素粉の除去を水ではなく、キシレンを用いた。
[炭素系導電層被覆率測定]
試験体の表面を走査型電子顕微鏡を用いて、200倍の観察倍率で550×400μmの範囲を観察し、その反射電子像を撮影した。その反射電子像を画像処理により炭素系導電層が被覆している部分と、炭素系導電層が被覆せず基材が露出する部分と、に分けて二値化し、炭素系導電層が占める面積率を計算し被覆率を求めた。
観察は1試験体あたり3視野行い、3視野の平均値を算出した。
次に、各種評価試験の方法および評価基準を説明する。
[接触抵抗測定]
各試験体について、図3に示す接触抵抗測定装置を用いて、接触抵抗を測定した。詳細には、試験体の両面を2枚のカーボンペーパーで挟み、さらにその外側を接触面積1cmの2枚の銅電極で挟んで荷重10kgfで加圧し、直流電流電源を用いて7.4mAの電流を通電し、カーボンペーパーの間に加わる電圧を電圧計で測定して、接触抵抗(初期接触抵抗)を求めた。
初期接触抵抗が10mΩ・cm以下の場合を導電性が良好、10mΩ・cmを超える場合を導電性が不良とした。
[耐食性評価]
また、初期接触抵抗が合格判定となった試験体において、耐食性評価(耐久試験)を行った。すなわち、試験体を比液量が20ml/cmである80℃の硫酸水溶液(10mmol/L)に浸漬し、さらに飽和カロメル電極(SCE)を基準として試験体に対して+600mVの電位を印加しながら100時間の浸漬処理を行った後、試験体を硫酸水溶液から取り出し、洗浄、乾燥して、前記と同様の方法で接触抵抗を測定した。
耐久試験後の接触抵抗(表1では耐久試験後接触抵抗と示す)が15mΩ・cm以下の場合を耐食性が合格、15mΩ・cmを超える場合を耐食性が不合格とした。
[接着性評価]
ガスケット材として、厚さ0.5mmのシリコンゴムシートを用い、接着剤として、シリコン系のシール剤(スリーボンドTB1212)を用いた。幅20mm、長さ50mmに切断したシリコンゴムシートの端のおよそ20mm四方の部分に接着剤を塗布して熱処理後の各種試験体に貼りあわせた。硬化させるために室温で24時間以上静置後、試験体を固定し、シリコンゴムシートの端を手で持って試験体に対して垂直方向に引っ張り上げて剥離試験を行った(図4)。接着剤と導電層の界面または導電層の中で剥離が起こった場合を接着性不良(×)と判断し、接着剤内部で剥離して材料側に接着剤の一部が残存する、またはシリコンゴムシートと接着剤の界面で剥離が起こった場合を接着性良好(○)と判断し、○のものを合格とした。
各試験体の炭素粉塗工量、炭素系導電層被覆率、中間層の有無、初期および耐久試験後の接触抵抗、ガスケット材との接着性評価の結果を表1に示す。
Figure 2013200970
試験体No.2〜5、8〜13は、炭素系導電層被覆率が本発明の規定する範囲内であったため、初期接触抵抗、耐久試験後の接触抵抗、接着性評価の全ての項目で合格という結果となった。
一方、試験体No.1は、炭素系導電層被覆率が本発明の規定する下限値未満であったため、初期接触抵抗と接着性評価の項目では合格という結果であったが、耐久試験後の接触抵抗が大きくなり、不合格という結果となった。
また、試験体No.6、7は、炭素系導電層被覆率が本発明の規定する上限値を超えたため、初期および耐久試験後の接触抵抗の項目では合格という結果であったが、接着性評価の項目では、不合格という結果となった。
なお、図5は、試験体の表面を走査型電子顕微鏡を用いて、200倍の観察倍率で観察し、反射電子像を撮影し、その電子像を画像処理により炭素系導電層が被覆している部分(黒く写っている部分)と、炭素系導電層が被覆せず基材が露出する部分(白く写っている部分)と、に分けて二値化した結果である。
そして、図5(a)が試験体No.4の結果であり、図5(b)が試験体No.6の結果である。
1 基材
2 炭素系導電層
3 中間層
4 ガスケット
5 カーボンペーパー(ガス拡散層)
6 固体高分子膜
10 燃料電池セパレータ材
10A 燃料電池セパレータ材
10B 燃料電池セパレータ材
20 単セル
30 燃料電池
S1 炭素系導電層形成工程
S2 熱処理工程

Claims (5)

  1. 純チタンまたはチタン合金からなる基材表面に、グラファイトを含む炭素系導電層が形成されている燃料電池セパレータ材であって、
    前記炭素系導電層の被覆率は、電子顕微鏡を用いて200倍の観察倍率で550×400μmの範囲を観察したときに、20〜70%であることを特徴とする燃料電池セパレータ材。
  2. 前記基材表面に前記炭素系導電層が形成されている領域において、前記炭素系導電層と前記基材との界面にチタンカーバイドおよび金属チタンが含まれる中間層が形成されていることを特徴とする請求項1に記載の燃料電池セパレータ材。
  3. 前記基材の両面に、前記炭素系導電層が形成されている燃料電池セパレータ材であって、
    前記セパレータ材の両面を2枚のカーボンペーパーで挟み、前記カーボンペーパーの外側から面圧10kg/cmの条件で加圧したときに、前記カーボンペーパーとの接触抵抗が10mΩ・cm以下であることを特徴とする請求項1または2に記載の燃料電池セパレータ材。
  4. 請求項1〜3のいずれか1項に記載の燃料電池セパレータ材と、前記セパレータ材に接着されたガスケット材と、を備えていることを特徴とする燃料電池。
  5. 請求項1〜3のいずれか1項に記載の燃料電池セパレータ材の製造方法であって、
    グラファイト粉、グラファイト粉とカーボンブラック粉、グラファイト粉とアセチレンブラック粉、または、グラファイト粉とカーボンブラック粉とアセチレンブラック粉、を分散させたスラリーを前記基材表面に塗布する炭素系導電層形成工程と、
    前記炭素系導電層形成工程の後に、前記基材を非酸化雰囲気下において500〜850℃で熱処理する熱処理工程と、を含むことを特徴とする燃料電池セパレータ材の製造方法。
JP2012067718A 2012-03-23 2012-03-23 燃料電池セパレータ材、燃料電池、および燃料電池セパレータ材の製造方法 Pending JP2013200970A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012067718A JP2013200970A (ja) 2012-03-23 2012-03-23 燃料電池セパレータ材、燃料電池、および燃料電池セパレータ材の製造方法
EP13001019.2A EP2642571A1 (en) 2012-03-23 2013-02-28 Fuel cell separator material, fuel cell, and method for manufacturing fuel cell separator material
US13/788,376 US20130252136A1 (en) 2012-03-23 2013-03-07 Fuel cell separator material, fuel cell, and method for manufacturing fuel cell separator material
CN201310092284.7A CN103326045B (zh) 2012-03-23 2013-03-21 燃料电池隔板材、燃料电池和燃料电池隔板材的制造方法
KR1020130030981A KR20130108191A (ko) 2012-03-23 2013-03-22 연료 전지 세퍼레이터재, 연료 전지 및 연료 전지 세퍼레이터재의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067718A JP2013200970A (ja) 2012-03-23 2012-03-23 燃料電池セパレータ材、燃料電池、および燃料電池セパレータ材の製造方法

Publications (1)

Publication Number Publication Date
JP2013200970A true JP2013200970A (ja) 2013-10-03

Family

ID=47826811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067718A Pending JP2013200970A (ja) 2012-03-23 2012-03-23 燃料電池セパレータ材、燃料電池、および燃料電池セパレータ材の製造方法

Country Status (5)

Country Link
US (1) US20130252136A1 (ja)
EP (1) EP2642571A1 (ja)
JP (1) JP2013200970A (ja)
KR (1) KR20130108191A (ja)
CN (1) CN103326045B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111548A (ja) * 2013-11-11 2015-06-18 株式会社神戸製鋼所 チタン製燃料電池セパレータ材およびチタン製燃料電池セパレータ材の製造方法
JP2018063800A (ja) * 2016-10-12 2018-04-19 トヨタ自動車株式会社 燃料電池セル

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105706280A (zh) * 2013-11-11 2016-06-22 株式会社神户制钢所 钛制燃料电池隔板材及钛制燃料电池隔板材的制造方法
CN107851813B (zh) * 2015-08-12 2021-06-18 杰富意钢铁株式会社 固体高分子型燃料电池的隔板用金属板及其制造用金属板
JP7027874B2 (ja) * 2017-12-21 2022-03-02 トヨタ自動車株式会社 燃料電池用セパレータ及びその製造方法
JP2019133838A (ja) * 2018-01-31 2019-08-08 トヨタ自動車株式会社 燃料電池用セパレータ
CN109768295B (zh) * 2018-12-11 2022-03-04 上海治臻新能源股份有限公司 耐腐蚀高电导率燃料电池金属双极板的生产方法
CN111180753B (zh) * 2020-01-15 2021-05-07 浙江泓林新能源科技有限公司 一种燃料电池金属双极板加工方法
CA3153365A1 (en) 2020-02-26 2021-09-02 Treadstone Technologies, Inc. Component having improved surface contact resistance and reaction activity and methods of making the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440598B1 (en) * 1997-10-14 2002-08-27 Nisshin Steel Co., Ltd. Separator for low temperature type fuel cell and method of production thereof
JP4530122B2 (ja) 2001-03-09 2010-08-25 Nok株式会社 ガスケット
JP2003268567A (ja) * 2002-03-19 2003-09-25 Hitachi Cable Ltd 導電材被覆耐食性金属材料
JP4512316B2 (ja) 2003-01-09 2010-07-28 内山工業株式会社 接着剤組成物
US6933333B2 (en) * 2003-06-11 2005-08-23 Bulk Molding Compounds, Inc. Conductive adhesive sealant for bipolar fuel cell separator plate assemblies
JP4486801B2 (ja) 2003-10-02 2010-06-23 内山工業株式会社 接着剤組成物
JP5070548B2 (ja) * 2005-06-17 2012-11-14 国立大学法人山梨大学 燃料電池用金属セパレータ及び製造方法
JP4702304B2 (ja) * 2007-02-22 2011-06-15 トヨタ自動車株式会社 燃料電池用セパレータ、燃料電池用セパレータの製造方法及び燃料電池
JP4823202B2 (ja) * 2007-11-15 2011-11-24 株式会社神戸製鋼所 燃料電池セパレータ用チタン基材の製造方法および燃料電池セパレータの製造方法
JP2009170116A (ja) * 2008-01-10 2009-07-30 Kobe Steel Ltd 燃料電池用セパレータの再生方法、燃料電池用再生セパレータ、および燃料電池
KR100839193B1 (ko) * 2008-01-21 2008-06-17 현대하이스코 주식회사 바인더 수지에 카본입자가 분산되어 있는 코팅층을 가지는연료전지용 금속분리판 및 그 제조방법
JP4886885B2 (ja) * 2010-07-20 2012-02-29 株式会社神戸製鋼所 チタン製燃料電池セパレータ
JP4886884B2 (ja) * 2010-07-20 2012-02-29 株式会社神戸製鋼所 チタン製燃料電池セパレータおよびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111548A (ja) * 2013-11-11 2015-06-18 株式会社神戸製鋼所 チタン製燃料電池セパレータ材およびチタン製燃料電池セパレータ材の製造方法
JP2018063800A (ja) * 2016-10-12 2018-04-19 トヨタ自動車株式会社 燃料電池セル

Also Published As

Publication number Publication date
CN103326045A (zh) 2013-09-25
KR20130108191A (ko) 2013-10-02
CN103326045B (zh) 2016-01-06
EP2642571A1 (en) 2013-09-25
US20130252136A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP4886885B2 (ja) チタン製燃料電池セパレータ
JP2013200970A (ja) 燃料電池セパレータ材、燃料電池、および燃料電池セパレータ材の製造方法
JP4886884B2 (ja) チタン製燃料電池セパレータおよびその製造方法
JP5507496B2 (ja) 燃料電池セパレータの製造方法
JP5342518B2 (ja) チタン製燃料電池セパレータの製造方法
JP5108976B2 (ja) 燃料電池セパレータ
JP5968857B2 (ja) チタン製燃料電池セパレータの製造方法
JP5342462B2 (ja) 燃料電池セパレータの製造方法
JP6122589B2 (ja) 燃料電池セパレータ
JP5564068B2 (ja) 燃料電池セパレータ及びその製造方法
WO2015068559A1 (ja) チタン製燃料電池セパレータ材およびチタン製燃料電池セパレータ材の製造方法
JP5466669B2 (ja) 燃料電池セパレータの製造方法
JP6170477B2 (ja) チタン製燃料電池セパレータ材およびチタン製燃料電池セパレータ材の製造方法
JP2014075287A (ja) 燃料電池セパレータおよびその製造方法
JP5575696B2 (ja) 燃料電池セパレータの製造方法
JP2012186176A (ja) 燃料電池セパレータ
JP2012212644A (ja) 燃料電池セパレータの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150929