KR100839193B1 - 바인더 수지에 카본입자가 분산되어 있는 코팅층을 가지는연료전지용 금속분리판 및 그 제조방법 - Google Patents
바인더 수지에 카본입자가 분산되어 있는 코팅층을 가지는연료전지용 금속분리판 및 그 제조방법 Download PDFInfo
- Publication number
- KR100839193B1 KR100839193B1 KR1020080006123A KR20080006123A KR100839193B1 KR 100839193 B1 KR100839193 B1 KR 100839193B1 KR 1020080006123 A KR1020080006123 A KR 1020080006123A KR 20080006123 A KR20080006123 A KR 20080006123A KR 100839193 B1 KR100839193 B1 KR 100839193B1
- Authority
- KR
- South Korea
- Prior art keywords
- fuel cell
- metal
- plate
- carbon
- metal separator
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/36—Training appliances or apparatus for special sports for golf
- A63B69/3661—Mats for golf practice, e.g. mats having a simulated turf, a practice tee or a green area
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/36—Training appliances or apparatus for special sports for golf
- A63B69/3621—Contacting or non-contacting mechanical means for guiding the swing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
- C23G1/085—Iron or steel solutions containing HNO3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0213—Gas-impermeable carbon-containing materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0221—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0226—Composites in the form of mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
- H01M8/0208—Alloys
- H01M8/021—Alloys based on iron
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Composite Materials (AREA)
- Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Fuel Cell (AREA)
Abstract
초기뿐만 아니라 자동차와 같은 진동이 심한 작동환경에서 장시간 사용하더라도 다른 부작용 없이 우수한 전기전도성과 내식성을 유지할 수 있으며, 연속 생산공정이 가능하여 높은 생산효율을 가질 수 있는 연료전지용 금속분리판의 제조방법이 제공된다. 본 발명의 연료전지용 금속분리판의 제조방법은 (a) 금속판으로 된 모재를 마련하는 단계; (b) 금속판의 표면을 산세 처리하는 단계; (c) 산세 처리된 금속판의 표면에 바인더 수지, 카본입자, 및 용제를 포함하는 조성물을 코팅하는 단계; 및 (d) 표면에 조성물이 코팅된 금속판을 상기 바인더 수지의 열분해 온도 미만, 상기 용제의 끓는점 이상의 온도에서 건조시켜 금속판의 표면에 바인더 수지 기재(matrix)에 카본입자가 분산되어 있는 코팅층을 형성하는 단계를 포함하며, 상기 공정들은 연속공정으로 수행되는 것을 특징으로 한다.
연료전지, 카본입자, 바인더 수지, 금속분리판, 스테인리스, 건조
Description
본 발명은 연료전지용 금속분리판 및 그 제조방법에 관한 것으로, 보다 상세하게는 고분자 전해질 연료전지(PEMFC)의 분리판에 사용되며 부식전류와 접촉저항이 미국에너지성(DOE) 기준(부식전류는 1㎂/㎠이하, 접촉저항은 20mΩ·㎠이하의 값)에 만족시킬 수 있고, 연속적인 공정으로 생산효율을 향상시킬 수 있는 연료전지용 금속분리판 및 그 제조방법에 관한 것이다.
연료 전지란, 일반적으로 수소와 산소의 산화, 환원반응을 이용하여 화학에너지를 전기에너지로 변환하는 발전 장치이다.
상기 연료전지의 단위셀은 출력전압이 낮아 실용성이 떨어지기 때문에, 일반적으로 수개에서 수백개의 단위 셀(unit cell)을 적층하여 사용한다. 이와 같이 단 위셀의 적층 시 단위 셀 간 전기적 접속이 이루어지게 하고, 반응 가스를 분리시켜주며 냉각수가 흐르는 유로 역할을 하는 것이 분리판(seperator)이다.
상기 분리판(seperator 또는 bipolar plate)은 막-전극 집합체(MEA)와 더불어 연료전지의 핵심부품으로 막-전극 집합체와 기체확산층(GDL)의 구조적 지지, 발생된 전류의 수집 및 전달, 반응가스의 수송 및 제거, 반응열제거를 위한 냉각수 수송 등의 다양한 역할을 담당한다.
이에 따라, 분리판이 가져야할 소재 특성으로는 우수한 전기전도성, 열전도성, 가스밀폐성 및 내식성과 같은 화학적 안정성 등이 있다.
상기 분리판의 소재로서 금속계를 적용할 경우 분리판 두께 감소를 통한 연료전지 스택의 부피감소 및 경량화가 가능하고 스탬핑 등을 이용한 제조가 가능하여 대량생산성을 확보할 수 있다는 장점을 가지고 있다.
상기 연료전지 분리판용 금속 소재로서 스테인리스강, 알루미늄합금, 및 탄소강 강판 등이 사용되어 질 수 있다.
그러나, 이러한 금속 소재를 연료전지의 분리판 재료로 사용하게 되면 표면에 형성된 부동태 피막으로 인하여 전기전도성에 영향을 미칠 수 있고, 또한 연료전지의 작동환경이 고온-다습한 조건임을 감안할 때 장기간 사용 시 산화막의 두께가 증가되어 전기전도성 점차 감소할 수 있고, 또한 부식으로 인해 분리판의 기능을 수행하지 못하게 되는 등의 문제가 발생할 수 있다.
이러한 문제점을 해결하기 위하여 스테인리스 강판의 경우엔 크롬성분, 니켈성분 등의 함량을 증가시키고, 부동태피막의 에칭을 통해 표면의 산화피막을 제거 하여 내식성 및 전기전도성 특성을 향상시키려고 시도하고 있다.
그러나, 상기 크롬성분 및 니켈성분을 스테인리스강에 첨가량을 증가시키게 되면 스테인리스강의 제조비용이 증가될 뿐만 아니라 연료전지 작동 환경하에서 산화피막이 성장하여 장기성능에 악영향을 줄 수가 있다. 또한 과도한 크롬 및 니켈성분의 증가는 금속분리판의 성형성을 저하시켜 복잡하고 정교한 유로설계를 구현하는데 어려움이 있다.
금속소재를 이용한 연료전지 분리판의 전기전도성 및 내식성을 향상시키기 위한 다른 시도로는 미국등록특허 US 6,440,598 B1이 있는데, 이는 금속재질의 강판 표면에 카본코팅층을 형성하여 금속 강판의 표면 산화를 방지하고 동시에 전기전도성이 우수한 카본코팅층을 통하여 분리판의 전기전도성을 높이려는 시도이다.
그러나, 미국등록특허 US 6,440,598 B1의 경우엔 연료전지가 자동차와 같이 진동이 심한 환경에서 사용될 경우 카본층을 구성하는 카본입자의 파우더링(powdering) 현상, 즉 카본입자가 코팅층에서 분리되는 현상이 발생하게 되어, 연료전지 셀 내부를 오염시킴으로써 전체적인 연료전지 동작효율을 떨어뜨리는 요인으로 작용할 가능성을 내포하고 있다.
금속소재의 연료전지 분리판의 전기전도도 및 내식성을 높이기 위한 다른 방안으로는 전기전도성 및 내식성이 우수한 물질을 금속재질의 강판 표면에 플라즈마 코팅 또는 PVD(physical vapor deposition) 해주는 방법이 있는데, 이 방법은 챔버(chamber)라는 별도의 공간을 필요로 하므로 분리판을 연속공정으로 생산하기 어려워 생산효율이 떨어진다는 문제가 있었다.
따라서, 초기뿐만 아니라 자동차와 같은 진동이 심한 연료전지 사용환경 하에서도 일정시간동안 안정적으로 DOE 기준을 만족시키는 전기전도도와 내식성을 가짐과 동시에 저가의 제조비용으로 연속공정이 가능한 연료전지용 금속분리판의 제조방법에 대한 많은 보다 다양한 각도에서의 연구가 필요하다.
본 발명이 해결하고자 하는 과제는 초기뿐만 아니라 자동차와 같은 진동이 심한 작동환경에서 장시간 사용하더라도 다른 부작용 없이 우수한 전기전도성과 내식성을 유지할 수 있으며, 연속 생산공정이 가능하여 높은 생산효율을 가질 수 있는 연료전지용 금속분리판의 제조방법을 제공하는 데에 있다.
본 발명이 해결하고자 하는 다른 과제는 본 발명에서 제시하는 제조방법에 의해 제조되는 연료전지용 금속분리판을 제공하는 데에 있다.
본 발명이 이루고자 하는 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명에 따른 연료전지용 금속분리판의 제조방법은 (a) 금속판으로 된 모재를 마련하는 단계; (b) 금속판의 표면을 산세 처리하는 단계; (c) 산세 처리된 금속판의 표면에 바인더 수지, 카본입자, 및 용제를 포함하는 조성물을 코팅하는 단계; 및 (d) 표면에 조성물이 코팅된 금속판을 상기 바인더 수지의 열분해 온도 미만, 상기 용제의 끓는점 이상의 온도에서 건조시켜 금속판의 표면에 바인더 수지 기재(matrix)에 카본입자가 분산되어 있는 코팅층을 형성하는 단계를 포함하며, 상기 공정들은 연속공정으로 수행되는 것을 특징으로 한 다.
상기 다른 과제를 해결하기 위한 본 발명에 따른 연료전지용 금속분리판은 금속판; 및 금속판의 표면에 형성되며 바인더 수지로 된 기재(matrix)의 부피 전체에 걸쳐서 카본 입자가 분산되어 있는 코팅층을 포함한다.
본 발명에서 제시하는 연료전지용 금속분리판의 제조방법에 따르면 제작 초기뿐만 아니라 자동차와 같은 진동이 심한 작동환경에서 장시간 사용하더라도 파우더링 현상과 같은 다른 부작용 없이 DOE 기준(부식전류 1㎂/㎠이하, 접촉저항 20mΩ·㎠이하)에 만족하는 우수한 전기전도성과 내식성을 유지할 수 있으며, 또한 연속 생산공정이 가능하여 높은 생산효율을 가질 수 있게 된다.
이하에서는 본 발명의 실시예들에 따른 연료전지용 금속분리판 및 그 제조방법에 대하여 구체적인 도면을 이용하여 설명하기로 한다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략한다.
도 1은 본 발명에 따른 연료전지용 금속분리판을 도시한 단면도이다.
도 1을 참조하면, 본 발명에 따른 연료전지용 금속분리판(10)은 금속강판 모재(100)와 금속 강판 모재(100)의 표면에 형성되는 코팅층(105)을 포함한다.
금속강판 모재(100)는 스테인리스 강판, 알루미늄 판, 탄소강 강판 중에서 선택되어질 수 있는데, 바람직하게는 스테인리스 강판이 사용된다.
금속강판 모재(100)로서 스테인리스 강판을 사용할 경우 사용되는 스테인리스 강판은 0.08 wt%이하의 탄소(C), 16∼28 wt%의 크롬(Cr), 0.1∼20 wt%의 니켈(Ni), 0.1∼6 wt%의 몰리브덴(Mo), 0.1∼5 wt%의 텅스텐(W), 0.1∼2 wt%의 주석(Sn), 구리 0.1~2wt% 및 잔량으로 철(Fe)을 포함할 수 있다.
금속강판 모재(100)의 두께는 1t 이하, 바람직하게는 0.2t 이하의 것이 사용된다.
상기 코팅층(105)은 바인더 수지로 된 기재부(matrix; 110)와 카본 입자(carbon particle; 120)로 된 도전성 필러(conductive filler)를 포함하며, 금속 강판 모재(100)의 표면을 부식으로부터 보호하고 연료전지 셀에서 발생되는 전기에너지를 전달하는 역할을 한다.
기재부(110)는 카본입자(120)가 금속강판 모재(100)의 표면으로부터 이탈되어 파우더의 형태로 비산(飛散)되는 현상, 즉 파우더링 현상을 방지하기 위한 일종의 바인더(binder)로서의 역할을 하는 것으로 고분자 수지로 되어 있다.
기재부(110)에 사용될 수 있는 고분자 수지로는 아크릴계 수지, 페놀계 수지, 우레탄계 수지, 우레탄계 수지, 멜리민계 수지, 불소계 수지, 실리콘계 수지, 에폭시계 수지 중에서 선택되는 하나 또는 두개 이상의 혼합물이 사용되어 질 수 있으며, 상기 고분자 수지 중에서는 기재부(110)의 경화를 촉진하기 위한 경화제(hardening agent)로서 역할을 하는 것도 포함되어 있을 수 있다.
카본입자(120)는 전기전도도가 매우 우수한 물질로서 상기 바인더 고분자 수지로 된 기재부(110)의 내부 부피 전체에 걸쳐서 균일 또는 불균일하게 골고루 분산되어 있다.
구체적으로, 카본입자(120)는 기재부(110)의 내부에서 입자끼리 서로 연결되어 금속강판모재(100)로부터 코팅층(105)의 표면까지 전기적으로 연결되도록 분산되어 있다.
보다 구체적으로, 카본입자(120)의 일부는 금속강판 모재(100)의 표면과 접촉하고 있으며(도 1의 도면부호 121로 표시되는 카본입자), 카본입자(120)의 일부는 코팅층(105)의 표면에 노출되거나 돌출되도록 분포하고 있으며(도 1의 도면부포 123으로 표시되는 카본입자), 카본입자(120)의 일부는 상기 금속강판 모재(100)의 표면과 접촉하는 카본입자(121)와 코팅층(105)의 표면에 존재하는 카본입자(123)을 서로 연결해주는 해주면서(도 1의 도면부포 122로 표시되는 카본입자) 기재부(110)의 내부에 분산되어 있다.
카본입자(120)로는 카본블랙(carbon black), 그라파이트(graphite), 탄소나노튜브(carbon nano-tube) 중에서 하나 이상 선택되는 것이 사용되어 질 수 있다.
다만, 카본입자(120)로서 카본블랙을 사용할 경우엔 최대입도는 1㎛ 이하인 것을 사용하는 것이 바람직하며, 그라파이트를 사용할 경우엔 최대입도는 3㎛ 이하인 것을 사용하는 것이 바람직하다.
다만, 카본입자(120) 사이의 보다 조밀하고 치밀한 연결을 위해서는 상기에서 제시하는 입도의 범위 내에서 다양한 크기분포를 가지는 것을 복합적으로 사용 하는 것이 바람직하며, 이를 위해서는 카본블랙, 그라파이트, 및 탄소나노튜브를 적절한 크기분포를 가지도록 혼합하여 사용하는 것이 바람직하다.
코팅층(105)의 카본입자(120) : 기재층(110)을 구성하는 고분자 바인더 수지 함량비는 중량을 기준으로 1 : 1 ~ 6 : 1, 바람직하게는 2 : 1 ~ 4 : 1 인데, 그 이유는 1:1 미만의 경우엔 고분자 수지의 함량이 너무 높아 코팅층(105)의 전기전도성 확보가 어렵게 되고, 6:1 을 초과할 경우엔 내식성이 나빠지고 바인더의 함량이 너무 작아 파우더링 현상(powdering)이 발생하기 쉽게 되기 때문이다.
상기 코팅층(105) 내부에 충진되어 있는 카본입자의 충진율(filling rate)은 전체적인 분리판(10)의 접촉저항에 직접적인 영향을 주게 되는데, 이하에서 그 이유에 대하여 구체적으로 설명하기로 한다.
도 2a 내지 도 2c는 고분자 수지(에폭시 수지) 내부에 카본입자로서 카본블랙과 그라파이트를 단독으로 또는 이들을 혼합하여 사용하여 코팅층을 형성한 이후 코팅층 표면을 AFM(atomic force morphology, SEIKO사의 SPA400) 측정장비를 이용하여 측정한 결과에 대한 사진이다.
먼저, 도 2a는 0.05㎛ 정도의 입경을 가지는 카본블랙을 단독으로 사용하여 코팅층을 형성한 것으로서 AFM 측정결과 표면의 최대 조도(Rmax)는 약 0.5㎛이고 평균조도(Ra)는 0.2㎛임이 확인되었다.
도 2b는 1.0㎛ 정도의 입경을 가지는 그라파이트를 단독으로 사용하여 코팅층을 형성한 것으로 AFM 측정결과 표면의 최대 조도는 약 3.0㎛이고 평균조도(Ra) 는 1.1㎛정도임이 확인되었다.
도 2c는 0.05㎛ 정도의 입경을 가지는 카본블랙과 1.0㎛ 정도의 입경을 가지는 그라파이트를 1 : 2.5의 비율로 혼합한 것을 사용하여 코팅층을 형성한 것으로서 AFM 측정결과 표면의 최대조도는 약 0.26㎛이고 평균조도(Ra)는 0.14㎛정도임이 확인되었다.
상기와 같이 제조되는 시편의 표면에 가스확산층(gas diffusion layer)를 형성한 후 분리판의 전체적인 접촉저항을 측정한 결과, 도 2a의 시편의 경우엔 19.1mΩ·㎠의 값으로 측정되었고, 도 2b 시편의 경우엔 25.6mΩ·㎠의 값으로 측정되었으며, 도 2c의 시편의 경우엔 17.3mΩ·㎠의 값으로 측정되었다.
상기에서 설명한 도 2a 내지 도 2c의 결과를 종합하여 볼 때, 카본블랙이나 그라파이트를 단독으로 사용한 경우보다 이들을 혼합하여 사용할 때 표면조도가 작게 나오는 것으로 확인되었는데, 이는 미세한 카본블랙 입자만을 사용한 도 2a의 경우에는 미세 카본블랙 입자간에 완벽한 분산이 이루어지기 힘들고 서로 응집(aggregation)된 상태로 존재하기 때문이며, 그라파이트만을 사용한 도 2b의 경우엔 그라파이트 자체의 입자조대성과 국부적인 입자응집현상 때문에 표면조도가 상대적으로 크게 나오는 것으로 판단된다.
이에 비하여, 카본블랙과 그라파이트를 혼합하여 사용한 도 2c의 경우엔 도 2a와 도 2b에 비하여 표면 조도가 상대적으로 매우 낮은 수치를 나타내었는데, 그 이유는 조대입자인 그라파이트 사이의 공간에 미세입자인 카본블랙이 위치하는 형태로 코팅층 내부에 충진되므로, 이로 인하여 코팅층 내부에 카본입자의 충진율이 증가될 수 있고, 조대입자와 미세입자가 서로 섞여 있으므로 국부적인 응집이 방지되기 때문에 코팅층 내부 전도성이 개선되는 효과를 볼 수 있다.
또한, 본 발명에 의해 제조되는 코팅층이 형성된 분리판의 경우 코팅층 표면이 낮은 조도를 가질수록 가스확산층(GDL)과의 계면 접촉저항을 낮출 수 있기 때문에 분리판의 전체적인 접촉저항을 줄이는 효과가 현저한 것으로 확인되었다.
상기의 내용을 종합할 때, 코팅층(105) 내부에 사용되는 카본입자는 카본블랙이나 그라파이트 단독으로 된 것을 사용하는 것보다, 이들을 서로 적절한 비율로 혼합하여 사용하는 것이 코팅층(105) 내부에 카본입자의 충진율을 높이고, 코팅층의 표면조도를 작게 할 수 있으며, 이로 인하여 결과적으로 연료전지용 분리판 전체적인 접촉저항을 줄일 수 있음을 알 수 있다.
이를 위하여 본 발명에서는 0.03~0.1㎛의 평균입경을 가지는 카본블랙 : 0.5~1.0㎛의 평균입경을 가지는 그라파이트를 동시에 사용하고, 또한 이들의 혼합비율을 1:1 ~ 1:3이 되도록 혼합하여 사용할 경우 가장 최적화된 충진율, 표면조도 및 접촉저항 값을 얻을 수 있다는 것을 제안하기로 한다.
다시 도 1을 참조하면, 코팅층(105)의 두께는 0.1~10㎛, 바람직하게는 1.5 ~ 3.5㎛ 인데, 그 이유는 0.1㎛ 미만일 경우 내식성이 저하되고, 10㎛를 초과할 경우엔 금속강판 모재(100)에의 결합력이 떨어져 이로 인한 전기전도성이 떨어질 수 있으며 파우더링 현상이 발생될 수 있기 때문이다.
이하 다른 도면을 참조하여, 상기에서 설명한 본 발명에 따른 연료전지용 금속분리판의 제조방법을 설명한다.
도 3는 본 발명에 따른 연료전지용 금속분리판의 제조방법을 설명하기 위한 공정순서도이고, 도 4a 내지 도 4d는 상기 공정순서도의 각 공정단계에 따른 공정단면도들이다.
본 발명에 따른 연료전지용 금속분리판을 제조하기 위해서는 먼저, 도 4a에 도시된 바와 같이 금속강판 모재(100)를 마련한다(S210).
금속강판 모재(100)는 스테인리스 강판, 알루미늄 판, 탄소강 강판 중에서 선택되어질 수 있는데, 바람직하게는 스테인리스 강판이 사용된다.
금속강판 모재(100)로서 스테인리스 강판을 사용할 경우 사용되는 스테인리스 강판은 0.08 wt%이하의 탄소(C), 16∼28 wt%의 크롬(Cr), 0.1∼20 wt%의 니켈(Ni), 0.1∼6 wt%의 몰리브덴(Mo), 0.1∼5 wt%의 텅스텐(W), 0.1∼2 wt%의 주석(Sn), 구리 0.1~2wt% 및 잔량으로 철(Fe)을 포함하는 스테인리스 강판인 것을 특징으로 하며, 보다 구체적으로 오스테나이트(Austenite)계 스테인리스인 SUS 316L, 0.2t와 같은 것이 이용된다.
금속강판 모재(100)의 두께는 1t 이하, 바람직하게는 0.2t 이하의 것이 사용된다.
금속강판 모재(100)의 표면에는 얇은 두께로 산화물로 된 부동태 피막(passive film:102))이 형성되어 있는데, 이는 금속강판 모재(100)를 공기 중에 보관할 때 공기 중의 산소와의 반응에 의해 생기는 산화막이다.
상기와 같이 마련된 금속강판 모재(100)는 후에 행해질 조성물의 코팅밀착성을 향상시켜주기 위하여 알칼리 또는 산성탈지제를 이용하여 금속강판 모재(100)의 표면의 불순물을 제거해 주는 탈지공정이 수행될 수도 있다.
이후 상기와 같이 표면이 탈지 처리된 금속강판 모재(100)는 표면에 묻어 있는 습기가 충분히 마를 때까지 건조된다.
상기와 같은 스테인리스 강판(40)의 탈지처리를 해주게 되면 스테인리스 강판 표면의 불순물을 제거하여 코팅처리성 및 코팅밀착성을 증대시킬 수 있다.
다음으로, 도 4b에 도시된 바와 같이 금속강판 모재(100)의 표면을 산세처리(pickling) 해준다(S220).
산세처리공정은 5-25wt% HNO3 + 2.5-20wt% H2SO4 + 잔량으로 H2O 조성의 산세처리용액을 이용하여 이루어지며, 바람직하게는 10wt% HNO3 + 5wt% H2SO4 + 잔량으로 H2O 조성이 적당하다.
상기 산세 처리온도는 40℃ 내지 80℃, 처리시간은 40초 내지 80초로 딥 처리방식(Dip type), 스프레이 처리방식(Spray type) 등을 이용하여 실시할 수 있다.
산세 처리 이후에는 표면에 존재하는 산(acid) 성분을 제거해 주기 위하여 수세 처리해주게 되고, 이후 표면의 액체가 모두 제거될 때까지 금속강판 모재(100)를 건조해주게 된다.
이와 같은 산세 처리 공정에 의해 금속강판 표면의 산화막(102)을 제거해주게 되는데, 구체적으로 금속강판 모재(100)로서 스테인리스 강판을 사용할 경우엔 표면에 산화철성분이 제거되고 크롬성분이 상대적으로 증가하여 스테인리스 강판의 표면은 크롬리치(Cr-rich)의 성질을 가지게 된다.
크롬-리치층은 내식성을 증가시키는 동시에 모재의 표면에 거칠기(roughness)를 부여하여 후에 행해질 코팅 시 코팅 젖음성(wetting)을 향상시켜주게 된다.
다만, 상기에서는 전처리 공정으로서 탈지공정-산세공정-수세공정-건조공정이 모두 행하여지는 경우를 상정하였으나, 상기 공정 중 일부공정은 생략될 수도 있다.
다음으로, 도 4c에 도시된 바와 같이, 전처리 공정을 거친 금속강판 모재(100)의 표면에 조성물을 코팅한다(S230).
이때 사용되는 조성물은 카본입자, 바인더 역할을 하는 고분자 수지, 및 용제를 포함한다.
바인더로 사용되는 고분자 수지로는 아크릴계 수지, 페놀계 수지, 우레탄계 수지, 멜리민계 수지, 불소계 수지, 실리콘계 수지, 에폭시계 수지 중에서 선택되는 하나 또는 두 개 이상의 혼합물이 사용되어 질 수 있으며, 상기 고분자 수지 중에서는 경화를 촉진하기 위한 경화제(hardening agent)로서 역할을 하는 것도 포함되어 있을 수 있다.
다만, 보다 균일한 코팅막을 얻기 위해서는 바인더 고분자 수지를 두 개 이상 혼합하여 사용하는 것이 바람직한데, 그 이유는 추후 실시되는 건조공정에서 바인더 수지의 건조 온도범위를 다양하게 분포하도록 해줌으로써 고분자 수지가 일정 온도에서 급격하게 건조됨으로써 생기는 내부응력을 최소화 해주기 위함이다.
전체 조성물에서 바인더 고분자 수지가 차지하는 함량은 5~10wt%인 것이 바 람직한데, 그 이유는 5wt% 미만일 경우엔 상대적으로 카본입자의 함량이 많아져 바인더로서의 역할을 제대로 수행할 수 없음으로 인한 파우더링 현상이 발생할 수 있고, 10중량% 이상일 경우엔 상대적으로 카본입자의 함량이 적어지게 되어 원하는 수준의 전기전도성을 얻을 수 없기 때문이다.
카본입자로는 카본블랙(carbon black), 그라파이트(graphite), 탄소나노튜브(carbon nano-tube) 중에서 하나 이상 선택되는 것이 사용되어 질 수 있다.
다만, 카본입자(120)로서 카본블랙을 사용할 경우엔 최대입도는 1㎛ 이하이고 평균입도는 0.05 ~ 0.1 ㎛인 것을 사용하는 것이 바람직하며, 그라파이트를 사용할 경우엔 최대입도는 3㎛ 이하이고 평균입도는 0.5 ~ 1.0㎛인 것을 사용하는 것이 바람직하다.
또한, 상기에서 설명한 바와 같이 상기에서 제시하는 카본입자들의 종류를 단독으로 사용하는 것보다 미세입자인 카본블랙과 조대입자인 그라파이트를 혼합하여 사용하는 것이 코팅층 내부의 입자충진율, 표면조도, 및 표면저항의 측면에서 바람직하다.
이들의 혼합비율과 입자크기는 도 1에 대한 설명에서 상술한 바와 같다.
전체 조성물에서 카본입자가 차지하는 함량은 10~60wt%인 것이 바람직한데, 그 이유는 10wt% 미만일 경우엔 상대적으로 바인더 고분자 수지의 함량이 많아져 원하는 수준의 전기전도도를 얻기 어렵고, 60중량% 이상일 경우엔 상대적으로 바인더 고분자 수지의 함량이 적어지게 되어 파우더링 현상이 발생할 수 있기 때문이다.
상기에서 설명한 바와 같이 최종적으로 형성되는 코팅층의 전기전도성과 파우더링 현상 등을 고려할 때 조성물에서 카본입자 : 바인더 고분자 수지의 혼합비는 중량을 기준으로 1:1 ~ 6:1, 바람직하게는 2:1 ~ 4:1로 해준다.
또한, 상기 조성물 내에서 카본입자와 바인더 고분자 수지가 차지하는 함량은 5 ~ 55중량%로 해주는 것이 바람직한데, 그 이유는 5중량% 미만일 경우엔 코팅층을 형성하는 효과가 미미하기 때문이고, 55중량%를 초과하게 되면 조성물의 점도(viscosity)가 너무 높아져 균일한(uniform) 코팅막을 얻기가 어려워지기 때문이다.
코팅용액인 상기 조성물에 사용되는 용제는 헥산류, 케톤류, 알콜류와 같은 유기용제를 단독으로 또는 혼합하여 사용하거나, 물(H2O)을 사용할 수도 있다. 다만, 상기에서 제시한 용제의 종류는 예시적인 것에 불과하며 다른 종류의 용제도 사용되어 질 수 있다.
다만, 상기 용제는 후에 실시될 건조(경화)공정에서 모두 제거되는데, 이때 일정한 건조온도에서 한꺼번에 다량의 용제의 제거가 이루어질 경우엔 경화된 코팅막 내부에 기공(pore)가 형성되거나 치밀하지 못한 경화 코팅층을 얻을 수 있기 때문에 다양한 끓는점을 가진 용제를 혼합하여 사용함으로써 온도 분포별로 서서히 용제의 제거를 유도하여 이러한 문제를 해결할 수 있을 것이다.
상기 조성물 코팅공정은 스프레이 코팅(spray coating), 딥 코팅(dip coating), 롤 코팅(roll coating) 등에 의해 수행되어 질 수 있는데, 이때 어떠한 코팅방식을 택할 것인지는 연료전지용 금속분리판에 가스유로와 냉각수 유로 형성을 위한 스탬핑 공정을 언제 실시하느냐에 따라 결정된다.
즉, 조성물 코팅공정 이전에 금속 강판 모재(100)의 스탬핑(stamping) 공정이 수행될 경우엔 요철이 있는 면에 적합한 스프레이 코팅 또는 딥 코팅에 의해 코팅공정이 실시되며, 조성물을 코팅한 이후에 스탬핑 공정이 수행될 경우엔 롤 코팅에 의해 코팅공정이 수행될 수 있다.
다만, 조성물을 코팅한 이후에 스탬핑 공정이 수행될 경우라도 스프레이 코팅과 딥 코팅 방식을 사용할 수 있음은 물론이다.
도 4c를 참조하여 조성물 코팅막의 성질을 보다 상세하게 설명하면, 용제 성분까지 모두 포함하고 있는 조성물 코팅막의 상태에서는 카본입자(120)들이 서로 완전하게 연결되어 있지 않은 상태로서 바인더 고분자 수지와 용제성분에 의해 덜 조밀한 상태로 조성물 코팅막 내부에서 분산되어 있는 형태로 되어 있다.
본 발명의 연료전지용 금속분리판의 제조공정의 마지막 단계로서, 도 4d에 도시된 바와 같이 조성물이 코팅된 금속강판 모재(100)를 건조시켜 조성물 코팅막을 경화시켜준다.(S240).
본 공정에 의해 상기 조성물 코팅막 내부의 용제 성분은 대부분 제거되고(일부의 바인더 고분자 수지도 증발될 수 있음), 바인더 고분자 수지(110)와 카본입자(120)만이 코팅층 내부에 잔존하게 된다.
건조온도는 사용된 용제와 바인더 고분자 수지의 종류에 따라 결정되는데, 즉 바인더 고분자 수지의 열분해온도 보다는 낮고, 용제의 끓는점 보다는 높은 정 도의 온도에서 건조온도가 결정되는데, 바람직하게는 160 ~ 340℃의 온도에서 건조된다.
건조시간은 사용된 용제가 전부 또는 적어도 99% 이상 휘발되고 바인더 수지가 완벽히 응고될 때까지 수행되는데, 바람직하게는 13초 ~ 30분 동안 건조공정이 수행될 수 있다.
건조온도가 높을수록 건조시간은 짧아질 수 있으나, 고온에서 급격히 건조하는 경우 용제가 충분히 제거되기 전에 코팅층내 바인더수지가 응고되어 기공이 발생하기 쉽고 카본입자가 적절하게 분산되지 않을 수 있기 때문에 최적의 전도성 및 내식성을 나타내지 못한다.
건조공정은 공기(air) 분위기에서 수행될 수도 있으며, 용제의 제거를 용이하게 해주기 위하여 건조압력을 낮출 수도 있으며, 또한 건조공정 중에 원하지 않는 산화를 방지해주기 위하여 수소환원 분위기에서 건조공정이 수행될 수도 있다.
상기와 같은 건조공정을 거치게 되면 조성물 코팅막은 경화(hardening)되어 일정한 경도를 가지는 전도성 코팅막(105)으로 금속강판 모재(100)의 표면에 존재하게 된다.
건조공정 중에 상기 용제성분은 대부분 휘발되면서 도 4c의 조성물 코팅막이 수축되면서(shrinkage) 그 내부에 존재하는 카본입자가 압축되는 과정을 거치게 되는데, 이러한 압축과정을 통해서 카본입자들은 서로 연결되어 상기 도 1에서 설명하였던 바와 같이 최종적으로 형성되는 경화된 코팅층(105) 내부에 서로 연결된 상태로 존재하게 된다.
이때, 경화된 코팅층(105)에 대한 성질 및 형태는 상기 도 1에 설명하였던 코팅층에 대한 성질 및 형태와 동일하므로 그 부분을 참조하기로 하여 여기서는 그 구체적인 설명을 생략한다.
다만, 상기 도 4c의 조성물 코팅막을 형성한 후, 도 4d의 건조 공정을 실시하기 이전에 조성물 코팅막에 대한 예비건조(pre-heating) 공정을 둠으로써 도 4d의 본 건조공정이전에 조성물 코팅막 내부의 용제 중 일부를 제거해주는 공정을 두는 것이 바람직하다.
그 이유는 도 4d의 본 건조공정이 사용된 용제의 끓는점 이상의 온도에서 수행되므로 이온도에서 용제는 급격하게 조성물 코팅막 내부에서 제거되게 되는데, 이로 인하여 코팅막 내부에 응력(stress)가 발생하게 되어 금속강판모재(100)와의 접촉성 내지는 결합력을 떨어뜨릴 수 있기 때문이다.
예비 건조(pre-heating)는 사용된 용제의 끓는점 이하의 온도에서 수행되는 것이 바람직하며, 구체적으로 50~150℃의 온도에서 5~30분 정도의 시간범위 내에서 수행되는 것이 바람직하다.
상기에서 설명한 공정(S210 ~ S220)들은 연속공정(continuous process)으로 수행되기 때문에 매우 높은 생산효율을 가질 수 있다.
이하에서는 본 발명에서 제시하는 연료전지용 금속분리판의 제조방법에 의해 금속분리판을 제조할 경우 최종적으로 제조되는 금속분리판의 부식전류와 접촉저항 성질이 매우 우수하다는 것을 구체적인 실시예들 및 비교예를 들어 설명한다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술 적으로 유추할 수 있는 것이므로 그 설명을 생략한다.
1. 실시예 및 비교예
<실시예 1 ~ 실시예 16>
금속강판 모재로서 1.0mm 이하의 두께를 가지는 스테인리스 강판 316L을 사용하였으며, 카본입자로는 카본블랙(Printex L, denka black, ketjen black, acetylene black, vulcanXC-72)과 그라파이트(CPB30, HN905)를 사용하였다.
그리고, 바인더 고분자 수지로는 에폭시 수지, 페놀수지, 우레탄 수지를 사용하였으며 용제로는 케톤, 알코올, 및 아세테이트가 혼합된 것을, 분산장비로는 basket mill을 이용하였다.
본 발명에서 제시하는 범위의 카본입자와 바인더 수지의 배합비(P:B), 전체 코팅 조성물에서 용제를 제외한 카본입자와 바인더 수지가 차지하는 함량(NV 함량), 및 건조온도 및 건조시간에 따라 실시예 1 ~ 실시예 16의 시편을 제조하였으며 구체적으로 각 실시예에서 사용된 카본입자, 바인더 수지, 및 용제의 종류, 그리고 건조온도는 표 1과 표 2에 기재하였다.
<비교예 1 ~ 비교예 6>
카본입자와 바인더 수지의 배합비(P:B), 전체 코팅 조성물에서 카본입자와 바인더 수지가 차지하는 함량(NV 함량), 및 건조온도 및 건조시간을 본 발명에서 제시한 범위 이외의 것으로 주면서 비교예 1 ~ 비교예 6의 시편을 제조하였으며, 구체적으로 각 비교예에서 사용된 조건에 대해서는 표 2에 자세하게 기재하였다.
2. 접촉저항의 측정
도 5는 본 발명에 따른 연료전지용 스테인리스 분리판의 접촉저항을 측정하는 접촉저항측정장치를 도시한 도면이다.
도 5를 참조하면, 상기 실시예들 및 비교예들에서 제조된 연료전지용 스테인리스 분리판의 접촉저항 측정을 위해 셀 체결을 위한 최적화된 상수를 얻기 위해 수정된 데이비드 방법(Davies method)을 스테인리스 스틸(Stainless Steel:SS)과 카본 페이퍼 사이의 접촉저항을 측정하기 위해 사용하였다.
접촉저항은 4점법(four-wire current-voltage) 측정 원리를 이용하여 Zahner사의 IM6장비로 측정하였다. 여기서 상기 접촉저항을 4점법으로 형성되는 전극의 면적으로는 25cm2로 형성하였다.
측정방법은 정전류 모드에서 측정 영역 DC 5A 및 AC 0.5A로 하여 10kHz로 부터 10mHz 까지의 범위에서 접촉저항을 측정하였다.
카본페이퍼는 SGL사의 10BB를 사용하였다.
상기 접촉저항측정장치(80)는 카본 페이퍼(810), 금이 도금된 구리플레이트(0)가 시편(800)을 사이에 두고 각각 상하로 마련되고, 상기 구리플레이트(820)는 전류공급장치(830)와 전압측정장치(840)에 연결되어 있다.
상기 시편(800)에 전류를 공급할 수 있는 전류공급장치(830, Zahner사의 IM6)로 DC 5A/AC 0.5A의 전류를 인가하여 전압을 측정하였다.
그리고, 상기 접촉저항측정장치(80)의 구리플레이트(820) 상하에서 상기 시편(800)과 카본페이퍼(810), 구리 플레이트(820)가 적층구조를 갖도록 압력을 제공할 수 있는 압력기(Instron사 모델 5566, 압축유지시험)를 마련한다. 상기 압력기는 상기 접촉저항 측정 장치(80)에 50 ~ 150N/cm2의 압력을 제공한다.
이와 같이 마련된 접촉저항측정장치(80)로 상기 표 1에 나타낸 실시예와 비교예의 시편(800) 즉, 연료전지용 스테인리스 분리판의 접촉저항을 측정하였다.
3. 부식전류의 측정
본 발명의 스테인리스 분리판의 부식전류를 측정하기 측정장비로는 EG&G 273A을 사용하였다. 부식 내구성 실험은 PEFC(Polymer Electrolyte Fuel Cell)의 모사 환경 하에서 이루어 졌다.
본 발명에 따른 스테인리스 강판의 부식시키는 실험용액으로는 0.1N H2SO4 + 5ppm HF을 80℃로 사용하고, 1시간 동안 N2 bubbling 후 OCP(Open Circuit Potential) - 0.25V ∼ 1.2V vs SCE 범위에서 측정하였다.
그리고, PEFC anode 환경에 대해 -0.24V vs SCE, cathode 환경(SCE: Saturated Calomel Electrode)에 대해 0.6V vs SCE (0.842 vs NHE)에서 물성측정을 하였다.
여기서 상기 물성측정 비교는 연료전지 환경과 유사한 cathode 환경의 0.6V vs SCE (0.842 vs NHE)의 부식전류 데이터를 통해 비교 평가하였다.
상기 anode 환경은 수소가 막-전극 접합체(Membrane Electrode Assembly, MEA)를 통과하면서 수소이온과 전자로 분리되는 반응이 일어나는 환경이며, 상기 cathode 환경은 산소가 통과되어 수소전자와 물을 생성하는 반응이 일어나는 환경이다.
여기서 상기의 조건과 같이 cathode환경의 전위가 높으며, 이것이 가혹한 부식조건이기 때문에 cathode 환경을 기준으로 내식성을 시험하는 것이 보다 바람직하다.
그리고 상기 미국에너지성의 기준(Department of energy, DOE)에 따라 ∼ 0.6V vs SCE (0.842 vs NHE)에서 스테인리스 강판의 부식전류밀도가 1μA/cm2 이하의 값으로 나오는 것이 바람직하다.
3. 부식전류 및 접촉저항 측정 결과의 분석
본 발명의 실시예들 및 비교예들 따른 접촉저항 및 부식전류에 대한 측정치를 표 1과 표 2에 정리하였다.
상기 연료전지용 스테인리스 분리판은 미국에너지성(DOE)기준으로 부식전류 1㎂/㎠이하, 접촉저항 20mΩ·㎠ 이하의 값을 가지는 것이 바람직하다.
4. 연료전지 성능평가
반응 가스의 공급을 위해 서펜타인 유로를 가지는 분리판을 사용하였으며 분리판 사이에 막-전극 접합체(Gore사의 모델명 5710)와 가스확산층(SGL사의 모델 10BA)을 둔 후 일정압력으로 체결하여 연료전지 셀을 제작하였다.
연료전지 성능평가는 단위셀을 이용해 평가하였는데, 연료전지 운전 장치는 NSC Test Station 700W class를 사용하였고 연료전지 성능평가를 위한 전자 부하장치로 KIKUSUI PLZ 664 Electronic Loader를 사용하였다.
반응가스로는 수소와 공기를 사용하였고, 유량은 전류에 따라 수소 1.5, 공기 2.0의 화학양론비를 일정하게 유지하며 상대습도 100% 가습 후 공급하였다. 가습기와 셀의 온도는 70℃로 일정하게 유지시켜주며 대기압 조건하에서 성능을 평가하였다. 이때, 작동면적(active area)은 25㎠, 작동압력은 1atm 이었다.
상기 표 1과 표 2를 참조하면, 본 발명의 실시예들에 따라 제조되는 연료전지용 분리판의 경우엔 부식전류는 1㎂/㎠이하, 접촉저항은 20mΩ·㎠이하의 값을 나타내고 있음을 알 수 있으며, 이는 미국에너지성(DOE)에서 제시하는 기준에 맞는 매우 우수한 값이다.
이에 비하여, 비교예 1, 5의 경우엔 파우더링 현상이 발생함을 알 수 있는데, 그 이유는 비교예 1의 경우엔 카본입자의 함량이 너무 높기 때문이며, 비교예 5의 경우엔 본 건조온도가 너무 높아 고분자 바인더의 많은 양이 제거되었기 때문인 것으로 보여진다.
또한, 비교예, 2, 3, 4, 6의 경우엔 접촉저항이 DOE 기준 이상의 값으로 본 발명의 실시예보다 높은 값을 나타내고 있음을 알 수 있는데, 그 이유는 비교예 2의 경우엔 카본입자의 함량이 낮기 때문이고, 비교예 3과 비교예 4의 경우엔 각각 낮은 건조온도와 짧은 건조시간으로 인하여 코팅층 내부에 바인더 수지가 완벽히 형성되지 않아 카본입자의 치밀한 연결이 이루어지지 않았기 때문이며, 비교예 6의 경우엔 코팅되지 않은 스테인리스 소재표면의 부동태피막 때문이다.
도 6은 스테인리스 316L 분리판, 그라파이트 분리판, 상기 실시예 1, 및 비교예 1에 의해 제조된 분리판에 대한 내식성 측정결과를 나타낸 그래프이다.
코팅층의 내식성을 측정하기 위하여 분극실험을 하였으며, 캐소드(cathode)의 연료전지 환경과 유사한 0.6V(vs. SCE)의 전위에서 부식전류 밀도 값으로 비교실험을 하였다.
도 6을 참조하면, 본 발명의 실시예 1에 의해 제조되는 분리판이 SUS 316L 및 그라파이트 분리판에 비해 낮은 부식전류 밀도를 나타내고 있음을 알 수 있으며, 구체적으로 실시예 1의 경우엔 0.5㎂/㎠ 이하, SUS 316L의 경우엔 약 8.1㎂/㎠, 비교예 1의 경우엔 약 21.7㎂/㎠의 값을 나타내고 있음을 알 수 있다.
도 7은 SUS 316L 분리판, 그라파이트 분리판, 상기 실시예 1에 의해 제조된 분리판에 대한 연료전지 성능평가를 나타내는 그래프이다.
코팅 분리판의 모재로 사용된 SUS 316L의 경우엔 높은 접촉저항으로 인해 낮은 성능을 보이며 본 발명의 실시예 1 코팅 분리판의 경우 가장 좋은 성능 특성을 보인다. 특히 발명예 1의 경우 흑연보다 우수한 성능을 보인다.
따라서, 단기 연료전지 성능평가 결과 본 발명과 같은 코팅이 적용된 금속 분리판의 경우 흑연을 대체해 실제 연료전지에 적용 가능성이 높다는 것을 알 수 있다.
도 1은 본 발명에 따른 연료전지용 금속분리판을 도시한 단면도이다.
도 2a 내지 도 2c는 고분자 수지 내부에 카본입자로서 카본블랙과 그라파이트를 단독으로 또는 이들을 혼합하여 사용하여 코팅층을 형성한 이후 코팅층 표면을 AFM(atomic force morphology, SEIKO사 SPA400) 측정장비를 이용하여 측정한 결과에 대한 사진이다.
도 3는 본 발명의 실시예에 따른 연료전지용 금속분리판의 제조공정을 도시한 공정흐름도이다.
도 4a 내지 도 4d는 본 발명의 실시예에 따른 연료전지용 스테인리스 분리판의 제조방법을 설명하기 위한 공정단면도이다.
도 5는 본 발명에 따른 연료전지용 스테인리스 분리판의 접촉저항을 측정하는 접촉저항측정장치를 도시한 도면이다.
도 6은 스테인리스 316L 분리판, 그라파이트 분리판, 상기 실시예 1, 및 비교예 1에 의해 제조된 분리판에 대한 내식성 측정결과를 나타낸 그래프이다.
도 7은 스테인리스 316L 분리판, 그라파이트 분리판, 상기 실시예 1에 의해 제조된 분리판에 대한 연료전지 성능평가를 나타내는 그래프이다.
Claims (25)
- (a) 금속판으로 된 모재를 마련하는 단계;(b) 상기 금속판의 표면을 탈지 및 산세에 의한 전처리를 하는 단계;(c) 산세 처리된 상기 금속판의 표면에 바인더 수지, 카본입자, 및 용제를 포함하며 상기 카본입자:바인더 수지의 혼합비는 중량을 기준으로 1:1 ~ 6:1인 조성물을 코팅하는 단계; 및(d) 표면에 조성물이 코팅된 상기 금속판을 상기 바인더 수지의 열분해 온도 미만, 상기 용제의 끓는점 이상의 온도에서 건조시켜 상기 금속판의 표면에 상기 바인더 수지 기재(matrix)에 상기 카본입자가 분산되어 있는 코팅층을 형성하는 단계를 포함하는 연료전지용 금속분리판의 제조방법.
- 제 1 항에 있어서,상기 금속판은 스테인리스 강판, 알루미늄판, 탄소강 강판 중에서 선택되는 것을 특징으로 하는 연료전지용 금속분리판의 제조방법.
- 제 1 항에 있어서,상기 (c)단계에서 사용되는 조성물은 카본입자 10~60wt%, 바인더 수지 5~10wt%, 및 잔량으로서 용제를 포함하는 것을 특징으로 하는 연료전지용 금속분리 판의 제조방법.
- 제 1 항 또는 제 3 항에 있어서,상기 바인더 수지는 아크릴계 수지, 페놀계 수지, 우레탄계 수지, 멜라민계 수지, 불소계 수지, 실리콘계 수지, 에폭시계 수지 중 하나 이상 선택되는 것을 특징으로 하는 연료전지용 금속분리판의 제조방법.
- 제 1 항 또는 제 3 항에 있어서,상기 카본입자는 카본블랙, 그라파이트, 탄소나뉴튜브(CNT) 중에서 선택되는 것을 특징으로 하는 연료전지용 금속분리판의 제조방법.
- 제 5 항에 있어서,상기 카본블랙은 1㎛ 이하의 입경을 가지고, 상기 그라파이트는 3㎛ 이하의 입경을 가지는 것을 특징으로 하는 연료전지용 금속분리판의 제조방법.
- 제 1 항 또는 제 3 항에 있어서,상기 카본입자는 0.03~0.1㎛의 평균입경을 가지는 카본블랙 : 0.5~1.0㎛의 평균입경을 가지는 그라파이트의 함량 비율이 1:1 ~ 1:3이 되도록 혼합된 것을 사용함으로써 상기 코팅층 내부에서 상기 카본입자의 충진밀도를 높여주는 것을 특징으로 하는 연료전지용 금속분리판의 제조방법.
- 삭제
- 제 1 항 또는 제 3 항에 있어서,상기 조성물 내에서 바인더 수지와 카본입자의 함량은 55wt% 이하인 것을 특징으로 하는 연료전지용 금속분리판의 제조방법.
- 제 1 항 또는 제 3 항에 있어서,상기 용제는 헥산류, 케톤류, 알콜류, 아세테이트류와 같은 유기용제를 단독 또는 혼합하여 사용하거나, 물(H2O)을 사용하는 것을 특징으로 하는 연료전지용 금 속분리판의 제조방법.
- 제 1 항에 있어서,상기 (d) 단계의 건조온도는 160~340℃인 것을 특징으로 하는 연료전지용 금속분리판의 제조방법.
- 제 1 항에 있어서,상기 (c) 단계와 (d) 단계 사이에 상기 용제의 끓는점보다 낮은 온도에서 표면에 조성물이 코팅된 금속판을 예비 건조해주는 단계를 더 포함하는 것을 특징으로 하는 연료전지용 금속분리판의 제조방법.
- 제 12 항에 있어서,상기 예비건조는 50~150℃의 온도에서 5 ~ 30분간 수행되는 것을 특징으로 하는 연료전지용 금속분리판의 제조방법.
- 제 1 항에 있어서,상기 코팅층의 두께는 0.1 ~ 10㎛ 인 것을 특징으로 하는 연료전지용 금속분리판의 제조방법.
- 제 1 항에 있어서,상기 (d) 단계의 건조 공정은 13초 ~ 30분 동안 수행되는 것을 특징으로 하는 연료전지용 금속분리판의 제조방법.
- 제 1 항에 있어서,상기 (d) 공정 이후에 제조되는 연료전지용 금속분리판의 부식전류는 1㎂/㎠이하, 접촉저항은 20mΩ·㎠이하의 값을 가지는 것을 특징으로 하는 연료전지용 금속분리판의 제조방법.
- 금속판; 및 상기 금속판의 표면에 형성되며 바인더 수지로 된 기재(matrix)의 부피 전체에 걸쳐서 카본 입자가 분산되어 있는 코팅층을 포함하며, 부식전류는 1㎂/㎠이하, 접촉저항은 20mΩ·㎠ 이하의 값을 가지는 것을 특징으로 하는 연료전지용 금속 분리판.
- 제 17항에 있어서,상기 금속판은 스테인리스 강판, 알루미늄 판, 탄소강 강판 중에서 선택되는 것을 특징으로 하는 연료전지용 금속 분리판.
- 제 17 항에 있어서,상기 바인더 수지는 아크릴계 수지, 페놀계 수지, 우레탄계 수지, 멜라민계 수지, 불소계 수지, 실리콘계 수지, 에폭시계 수지 중 하나 이상 선택되는 것을 특징으로 하는 연료전지용 금속 분리판.
- 제 17 항에 있어서,상기 카본입자는 카본블랙, 그라파이트, 탄소나뉴튜브 중에서 선택되는 것을 특징으로 하는 연료전지용 금속 분리판.
- 제 17 항에 있어서,상기 카본블랙의 입도는 1㎛ 이하이고, 그라파이트의 입도는 3㎛ 이하인 것을 특징으로 하는 연료전지용 금속분리판.
- 제 17 항에 있어서,상기 카본입자는 0.03~0.1㎛의 평균입경을 가지는 카본블랙 : 0.5~1.0㎛의 평균입경을 가지는 그라파이트의 함량 비율이 1:1 ~ 1:3가 되도록 혼합되어 있는 것을 특징으로 하는 연료전지용 금속분리판.
- 제 17 항에 있어서,상기 코팅층에서 카본입자:바인더 수지의 함량비는 중량을 기준으로 1:1 ~ 6:1인 것을 특징으로 하는 연료전지용 금속 분리판.
- 제 17 항에 있어서,상기 코팅층의 두께는 0.1~10㎛인 것을 특징으로 하는 연료전지용 금속 분리판.
- 삭제
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080006123A KR100839193B1 (ko) | 2008-01-21 | 2008-01-21 | 바인더 수지에 카본입자가 분산되어 있는 코팅층을 가지는연료전지용 금속분리판 및 그 제조방법 |
JP2010539316A JP5270690B2 (ja) | 2008-01-21 | 2009-01-21 | バインダー樹脂にカーボン粒子が分散しているコーティング層を有する燃料電池用金属分離板及びその製造方法 |
CN2009801015092A CN101911355A (zh) | 2008-01-21 | 2009-01-21 | 燃料电池用金属隔板及其制造方法 |
EP09703865.7A EP2234192B1 (en) | 2008-01-21 | 2009-01-21 | Metal separator plate for a fuel cell having a coating layer comprising carbon particles dispersed in a binder resin, and a production method therefor |
PCT/KR2009/000314 WO2009093843A2 (ko) | 2008-01-21 | 2009-01-21 | 바인더 수지에 카본입자가 분산되어 있는 코팅층을 가지는 연료전지용 금속분리판 및 그 제조방법 |
US12/810,342 US8852827B2 (en) | 2008-01-21 | 2009-01-21 | Metal separator plate for a fuel cell having a coating layer comprising carbon particles dispersed in a binder resin, and a production method therefor |
BRPI0905616-5A BRPI0905616A2 (pt) | 2008-01-21 | 2009-01-21 | "método de fabricação de uma placa bipolar metálica para células combustível e placa bipolar metálica para células combustível" |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080006123A KR100839193B1 (ko) | 2008-01-21 | 2008-01-21 | 바인더 수지에 카본입자가 분산되어 있는 코팅층을 가지는연료전지용 금속분리판 및 그 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100839193B1 true KR100839193B1 (ko) | 2008-06-17 |
Family
ID=39771729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080006123A KR100839193B1 (ko) | 2008-01-21 | 2008-01-21 | 바인더 수지에 카본입자가 분산되어 있는 코팅층을 가지는연료전지용 금속분리판 및 그 제조방법 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8852827B2 (ko) |
EP (1) | EP2234192B1 (ko) |
JP (1) | JP5270690B2 (ko) |
KR (1) | KR100839193B1 (ko) |
CN (1) | CN101911355A (ko) |
BR (1) | BRPI0905616A2 (ko) |
WO (1) | WO2009093843A2 (ko) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101000697B1 (ko) * | 2008-07-17 | 2010-12-10 | 현대자동차주식회사 | 연료전지용 금속분리판 및 이의 표면층 형성 방법 |
US9472815B2 (en) | 2013-03-29 | 2016-10-18 | Hyundai Motor Company | Separator for fuel cell and method for manufacturing the same |
WO2016182131A1 (ko) * | 2015-05-12 | 2016-11-17 | 한국과학기술원 | 연료전지용 복합재료 분리판 및 그 제조방법 |
KR20180096395A (ko) * | 2017-02-21 | 2018-08-29 | 현대자동차주식회사 | 연료전지용 분리판 및 연료전지용 분리판의 코팅 방법 |
WO2023238996A1 (ko) * | 2022-06-07 | 2023-12-14 | 현대제철 주식회사 | 고내식, 고전도 특성을 가지는 연료전지 분리판용 코팅재 및 코팅 방법 |
KR20240121515A (ko) | 2023-02-02 | 2024-08-09 | 현대제철 주식회사 | 금속분리판 및 이의 제조방법 |
US12119477B2 (en) | 2018-05-03 | 2024-10-15 | Lg Energy Solution, Ltd. | Method for manufacturing electrode comprising polymeric solid electrolyte and electrode obtained thereby |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2971628B1 (fr) * | 2011-02-14 | 2013-02-22 | Commissariat Energie Atomique | Pile a combustible a membrane d'echange de protons presentant des performances accrues |
JP5654915B2 (ja) * | 2011-03-23 | 2015-01-14 | 大阪瓦斯株式会社 | 保護膜形成方法 |
JP5466669B2 (ja) * | 2011-05-20 | 2014-04-09 | 株式会社神戸製鋼所 | 燃料電池セパレータの製造方法 |
JP5839161B2 (ja) * | 2011-06-17 | 2016-01-06 | 日産自動車株式会社 | 燃料電池用ガス拡散層及びその製造方法 |
JP5308493B2 (ja) * | 2011-09-06 | 2013-10-09 | マグネクス株式会社 | 燃料電池セパレータのコーティング材及びコーティング方法、及び、燃料電池セパレータのコーティング材及びコーティング方法を用いたセルスタック |
JP2013200970A (ja) * | 2012-03-23 | 2013-10-03 | Kobe Steel Ltd | 燃料電池セパレータ材、燃料電池、および燃料電池セパレータ材の製造方法 |
US8976362B2 (en) * | 2012-08-08 | 2015-03-10 | USA as represented by the Administrator of the National Aeronautics Space Administration | System, apparatus and method for emittance control and suppressing stray light |
JP5708614B2 (ja) * | 2012-11-02 | 2015-04-30 | トヨタ自動車株式会社 | セルモジュール、および、燃料電池スタック |
FR3002368B1 (fr) | 2013-02-15 | 2015-03-06 | Commissariat Energie Atomique | Plaque bipolaire metallique pour pile a combustible a membrane echangeuse de protons |
WO2014137352A1 (en) * | 2013-03-08 | 2014-09-12 | Byk Chemie Gmbh | Process for providing metallic substrates with corrosion resistance |
DE102014005930A1 (de) * | 2013-05-05 | 2014-11-20 | Daimler Ag | Hybride Bipolarplatten-Anordnung für Brennstoffzellen |
JP6163934B2 (ja) * | 2013-07-18 | 2017-07-19 | トヨタ車体株式会社 | 燃料電池のセパレータの製造方法 |
JP6170477B2 (ja) * | 2013-11-11 | 2017-07-26 | 株式会社神戸製鋼所 | チタン製燃料電池セパレータ材およびチタン製燃料電池セパレータ材の製造方法 |
EP2919299B1 (en) * | 2014-03-13 | 2017-10-11 | Robert Bosch Gmbh | Improved lithium/air cathode design |
US9928968B2 (en) * | 2014-08-14 | 2018-03-27 | Carnegie Mellon University | Melanins as active components in energy storage materials |
JP6970495B2 (ja) * | 2015-10-05 | 2021-11-24 | 日鉄ケミカル&マテリアル株式会社 | ステンレス鋼板カーボン複合材及びその製造方法 |
WO2017093869A1 (en) | 2015-12-01 | 2017-06-08 | Tubitak | Method for fast shaping carbon supported metal catalyst powders into flexible plates via subsequent cold and hot compression moulding |
KR101826574B1 (ko) | 2016-10-24 | 2018-03-22 | 현대자동차 주식회사 | 연료전지용 분리판 및 연료전지용 분리판의 코팅 방법 |
CN108123142B (zh) | 2016-11-28 | 2022-01-04 | 财团法人工业技术研究院 | 抗腐蚀结构及包含其抗腐蚀结构的燃料电池 |
JP2019133838A (ja) * | 2018-01-31 | 2019-08-08 | トヨタ自動車株式会社 | 燃料電池用セパレータ |
CN108359929B (zh) * | 2018-03-30 | 2022-11-08 | 浙江福腾宝家居用品有限公司 | 一种不锈钢工件抗变色的处理方法 |
WO2019194112A1 (ja) * | 2018-04-02 | 2019-10-10 | 日鉄ケミカル&マテリアル株式会社 | 金属カーボン積層前駆体及び金属カーボン積層前駆体の製造方法 |
CN109818004B (zh) * | 2019-01-09 | 2020-06-30 | 合肥工业大学 | 一种燃料电池双极板的制备方法 |
CN110137524B (zh) * | 2019-04-26 | 2020-11-20 | 山东岱擎新能源科技有限公司 | 一种金属基复合双极板基材及其制备方法 |
DE102019209766A1 (de) * | 2019-07-03 | 2021-01-07 | Audi Ag | Brennstoffzellenplatte, Bipolarplatte und Brennstoffzellenvorrichtung |
DE102019127626A1 (de) | 2019-10-14 | 2021-04-15 | Elringklinger Ag | Bipolarplatte, Verfahren zur Herstellung und deren Verwendung |
DE102020210209A1 (de) * | 2020-08-12 | 2022-02-17 | Ekpo Fuel Cell Technologies Gmbh | Bipolarplatte, Brennstoffzelle und Verfahren zur Herstellung einer Bipolarplatte |
WO2022150953A1 (zh) * | 2021-01-12 | 2022-07-21 | 舍弗勒技术股份两合公司 | 双极板及其制造方法以及质子交换膜燃料电池 |
DE102021208748A1 (de) | 2021-08-11 | 2023-02-16 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung einer Kontaktplatte |
DE102022200621A1 (de) | 2022-01-20 | 2023-07-20 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung einer Kontaktplatte |
DE102022108476A1 (de) | 2022-04-07 | 2023-10-12 | Ekpo Fuel Cell Technologies Gmbh | Bipolarplatte, Brennstoffzelle und Verfahren zur Herstellung einer Bipolarplatte |
CN114875464B (zh) * | 2022-04-27 | 2024-03-15 | 宁波福至新材料有限公司 | 一种pem电解槽阳极双极板的制备方法 |
CN115000441B (zh) * | 2022-05-12 | 2024-02-06 | 上海安池科技有限公司 | 一种制备燃料电池双极板用的不锈钢带上预涂层制备方法 |
BE1030680B1 (fr) * | 2022-06-29 | 2024-01-29 | Centre De Recherches Metallurgiques Asbl Centrum Voor Res In De Metallurgie Vzw | Revetement d'un substrat metallique avec une couche externe carbonee obtenue par la methode sol-gel |
CN116154204B (zh) * | 2023-02-23 | 2023-07-25 | 浙江菲尔特过滤科技股份有限公司 | 一种燃料电池板用碳膜涂层工艺 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003109618A (ja) * | 2001-09-27 | 2003-04-11 | Mitsubishi Plastics Ind Ltd | 燃料電池用セパレータ |
JP2003308853A (ja) * | 2002-04-15 | 2003-10-31 | Nippon Pillar Packing Co Ltd | 燃料電池用セパレータ |
KR20070049917A (ko) * | 2005-11-09 | 2007-05-14 | 삼성에스디아이 주식회사 | 연료 전지용 세퍼레이터, 이의 제조 방법 및 이를 포함하는연료전지 시스템 |
KR20070112367A (ko) * | 2005-10-17 | 2007-11-23 | 다이니폰 인사츠 가부시키가이샤 | 고분자 전해질형 연료전지용 세퍼레이터 및 그 제조방법 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1135642C (zh) | 1997-10-14 | 2004-01-21 | 日新制钢株式会社 | 低温燃料电池隔板及其生产方法 |
JP4656683B2 (ja) * | 1999-09-02 | 2011-03-23 | パナソニック株式会社 | 高分子電解質型燃料電池 |
JP4366872B2 (ja) * | 2000-03-13 | 2009-11-18 | トヨタ自動車株式会社 | 燃料電池用ガスセパレータおよび該燃料電池用セパレータの製造方法並びに燃料電池 |
KR100338032B1 (ko) * | 2000-06-13 | 2002-05-24 | 김순택 | 리튬-황 전지 |
US6811918B2 (en) * | 2001-11-20 | 2004-11-02 | General Motors Corporation | Low contact resistance PEM fuel cell |
US6866958B2 (en) * | 2002-06-05 | 2005-03-15 | General Motors Corporation | Ultra-low loadings of Au for stainless steel bipolar plates |
US7261963B2 (en) | 2002-11-12 | 2007-08-28 | General Motors Corporation | Corrosion resistant, electrically and thermally conductive coating for multiple applications |
US20040121122A1 (en) | 2002-12-20 | 2004-06-24 | Graftech, Inc. | Carbonaceous coatings on flexible graphite materials |
US6942941B2 (en) | 2003-08-06 | 2005-09-13 | General Motors Corporation | Adhesive bonds for metalic bipolar plates |
FR2876626B1 (fr) * | 2004-10-19 | 2007-01-05 | Arkema Sa | Utilisation d'un polymere fluore pour proteger la surface d' un materiau inorganique contre la corrosion |
-
2008
- 2008-01-21 KR KR1020080006123A patent/KR100839193B1/ko not_active IP Right Cessation
-
2009
- 2009-01-21 EP EP09703865.7A patent/EP2234192B1/en active Active
- 2009-01-21 BR BRPI0905616-5A patent/BRPI0905616A2/pt not_active Application Discontinuation
- 2009-01-21 CN CN2009801015092A patent/CN101911355A/zh active Pending
- 2009-01-21 JP JP2010539316A patent/JP5270690B2/ja active Active
- 2009-01-21 US US12/810,342 patent/US8852827B2/en active Active
- 2009-01-21 WO PCT/KR2009/000314 patent/WO2009093843A2/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003109618A (ja) * | 2001-09-27 | 2003-04-11 | Mitsubishi Plastics Ind Ltd | 燃料電池用セパレータ |
JP2003308853A (ja) * | 2002-04-15 | 2003-10-31 | Nippon Pillar Packing Co Ltd | 燃料電池用セパレータ |
KR20070112367A (ko) * | 2005-10-17 | 2007-11-23 | 다이니폰 인사츠 가부시키가이샤 | 고분자 전해질형 연료전지용 세퍼레이터 및 그 제조방법 |
KR20070049917A (ko) * | 2005-11-09 | 2007-05-14 | 삼성에스디아이 주식회사 | 연료 전지용 세퍼레이터, 이의 제조 방법 및 이를 포함하는연료전지 시스템 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101000697B1 (ko) * | 2008-07-17 | 2010-12-10 | 현대자동차주식회사 | 연료전지용 금속분리판 및 이의 표면층 형성 방법 |
US9472815B2 (en) | 2013-03-29 | 2016-10-18 | Hyundai Motor Company | Separator for fuel cell and method for manufacturing the same |
WO2016182131A1 (ko) * | 2015-05-12 | 2016-11-17 | 한국과학기술원 | 연료전지용 복합재료 분리판 및 그 제조방법 |
KR20180096395A (ko) * | 2017-02-21 | 2018-08-29 | 현대자동차주식회사 | 연료전지용 분리판 및 연료전지용 분리판의 코팅 방법 |
KR102298876B1 (ko) * | 2017-02-21 | 2021-09-06 | 현대자동차 주식회사 | 연료전지용 분리판 및 연료전지용 분리판의 코팅 방법 |
US12119477B2 (en) | 2018-05-03 | 2024-10-15 | Lg Energy Solution, Ltd. | Method for manufacturing electrode comprising polymeric solid electrolyte and electrode obtained thereby |
WO2023238996A1 (ko) * | 2022-06-07 | 2023-12-14 | 현대제철 주식회사 | 고내식, 고전도 특성을 가지는 연료전지 분리판용 코팅재 및 코팅 방법 |
KR20240121515A (ko) | 2023-02-02 | 2024-08-09 | 현대제철 주식회사 | 금속분리판 및 이의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
JP5270690B2 (ja) | 2013-08-21 |
JP2011508376A (ja) | 2011-03-10 |
US8852827B2 (en) | 2014-10-07 |
US20100279209A1 (en) | 2010-11-04 |
WO2009093843A3 (ko) | 2009-10-22 |
EP2234192B1 (en) | 2019-04-03 |
EP2234192A4 (en) | 2013-07-24 |
WO2009093843A2 (ko) | 2009-07-30 |
BRPI0905616A2 (pt) | 2015-06-30 |
EP2234192A2 (en) | 2010-09-29 |
CN101911355A (zh) | 2010-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100839193B1 (ko) | 바인더 수지에 카본입자가 분산되어 있는 코팅층을 가지는연료전지용 금속분리판 및 그 제조방법 | |
KR101165542B1 (ko) | 표면에 코팅막이 형성된 연료전지용 금속 분리판 및 그 제조방법 | |
EP2112250B1 (en) | Stainless separator for fuel cell and method of manufacturing the same | |
KR100885041B1 (ko) | 표면에 금속 질화물층(MNx), 금속 탄화물층(MCy), 금속 붕소화물층(MBz) 중에서 선택되는 코팅층이 형성된 연료전지용 스테인리스 분리판 및 그 제조방법 | |
US20090017361A1 (en) | Separator for fuel cell and method for fabricating the same | |
JP5634604B2 (ja) | 燃料電池用分離板およびその製造方法 | |
JP6225716B2 (ja) | 固体高分子形燃料電池のセパレータ用チタン材およびその製造方法 | |
KR101022153B1 (ko) | 연료전지용 분리판 및 그의 제조 방법 | |
JP6686822B2 (ja) | 金属材、セパレータ、セル、および燃料電池 | |
KR100909374B1 (ko) | 표면개질 공정과 열처리 공정을 포함하는 연료전지용스테인리스 분리판 및 그 제조방법 | |
KR100844023B1 (ko) | 표면에 금속 코팅층이 형성된 연료전지용 스테인리스분리판 및 그 제조방법 | |
KR101168119B1 (ko) | 친수화처리를 이용한 연료전지용 금속분리판 제조 방법 | |
KR100777125B1 (ko) | CrN이 코팅된 연료전지용 금속분리판 및 그 제조방법 | |
US20150155572A1 (en) | Flexible fuel cell and method of manufacturing the same | |
KR101372645B1 (ko) | 연료전지용 금속 분리판 제조 방법 | |
WO2014081316A1 (en) | Bipolar plates, method and use of these plates in polymer electrolyte membrane (pem) fuel cells or other electrochemical cells | |
JP2005302610A (ja) | 燃料電池及び燃料電池用金属製拡散層の製造方法 | |
KR100796526B1 (ko) | 표면에 비연속적인 크롬질화물층을 가지는 연료전지용스테인리스 분리판 및 그 제조방법 | |
JP2020155299A (ja) | 燃料電池用セパレータの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130603 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140602 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20150601 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20160523 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |