WO2012008237A1 - 銅研磨用研磨液及びそれを用いた研磨方法 - Google Patents

銅研磨用研磨液及びそれを用いた研磨方法 Download PDF

Info

Publication number
WO2012008237A1
WO2012008237A1 PCT/JP2011/062941 JP2011062941W WO2012008237A1 WO 2012008237 A1 WO2012008237 A1 WO 2012008237A1 JP 2011062941 W JP2011062941 W JP 2011062941W WO 2012008237 A1 WO2012008237 A1 WO 2012008237A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polishing
polishing liquid
component
organic acid
Prior art date
Application number
PCT/JP2011/062941
Other languages
English (en)
French (fr)
Inventor
小野 裕
隆 篠田
悠平 岡田
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to KR1020127027891A priority Critical patent/KR101409598B1/ko
Priority to US13/639,512 priority patent/US8877644B2/en
Priority to JP2012524490A priority patent/JP5516734B2/ja
Priority to SG2012072096A priority patent/SG186055A1/en
Priority to CN201180017611.1A priority patent/CN102834479B/zh
Publication of WO2012008237A1 publication Critical patent/WO2012008237A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate

Definitions

  • the present invention relates to a polishing liquid for copper polishing and a polishing method using the same.
  • CMP Chemical mechanical polishing
  • a pad also called polishing pad or polishing cloth
  • platen a circular polishing surface plate
  • polishing pressure a predetermined pressure
  • the metal polishing liquid used in CMP generally contains an oxidizer and solid abrasive grains (hereinafter simply referred to as “abrasive grains”), and further contains a metal oxide solubilizer and a protective film forming agent as necessary. .
  • the basic mechanism of CMP using a polishing liquid containing an oxidizing agent is that the surface of the metal film is first oxidized by the oxidizing agent to form an oxide layer, and the oxidized layer is scraped off by the abrasive grains. It is thought to be polished. In such a polishing method, the oxide layer on the surface of the metal film embedded in the groove portion of the insulating film does not touch the pad so much and the effect of scraping off by the abrasive grains is not exerted. By removing the substrate surface, the surface of the substrate is planarized (for example, see Non-Patent Document 1 below).
  • a copper alloy thin film to be polished has a film thickness of about 1 ⁇ m and a polishing liquid with a polishing rate of about 5000 ⁇ / min is used (for example, see Patent Document 2 below).
  • the CMP process for copper alloys has also been applied to the production of high-performance, fine wiring boards such as package substrates, and the formation of through silicon vias (TSVs) that are attracting attention as a new mounting method. It is going to be done.
  • TSVs through silicon vias
  • the conventional LSI polishing liquid has a problem that the polishing rate is low and the productivity is lowered.
  • a metal film having a film thickness of 4 ⁇ m or more needs to be polished. Therefore, a polishing liquid capable of polishing with excellent polishing rate and flatness after polishing is required.
  • the flatness after polishing is expressed by the degree of depression of the surface of the embedded wiring with respect to the area around the embedded wiring. As the surface of the wiring is recessed from the peripheral region, the flatness is lowered, which causes deterioration of wiring resistance and undulation of the upper layer laminated on the wiring. As a cause of lowering the flatness, the rate at which copper is eluted from the wiring by the polishing liquid (etching rate) is high. Therefore, the etching rate can be handled as one index for evaluating the flatness. In order to improve the flatness, it is necessary to suppress elution of copper from the wiring, that is, to reduce the etching rate.
  • the amount of copper complex generated when polishing a metal film containing copper is more frequently polished at a higher speed than when polished at a relatively low speed. Therefore, when a metal film containing copper is polished at a high speed, a phenomenon (pad stain) in which the copper complex remains on the pad and the characteristics of the pad are deteriorated is a problem.
  • the copper complex adhering to the pad causes clogging of the pad and reduces productivity by reducing the polishing rate.
  • An object of the present invention is to provide a polishing liquid for copper polishing that can be polished with a polishing method and a polishing method using the same.
  • the present inventors include at least one selected from an organic acid, an organic acid salt and an acid anhydride of an organic acid, at least one selected from an inorganic acid and an inorganic acid salt, an amino acid, and a protective film forming agent. It has been found that the above-mentioned problems can be solved by controlling the type and content of each of these components in a polishing liquid containing at least. Specifically, the present inventors use a specific compound as the organic acid and inorganic acid, and by setting the content of each component in a specific range, polishing rate and flatness after polishing. It was found that a metal film containing copper can be polished in a state in which the generation of pad stains is suppressed while improving the thickness.
  • the present invention provides a first organic acid component that is at least one selected from an organic acid having a hydroxyl group, a salt of the organic acid, and an acid anhydride of the organic acid, a divalent or higher-valent inorganic acid, and the inorganic
  • An inorganic acid component that includes at least one inorganic acid component selected from acid salts, an amino acid, a protective film forming agent, abrasive grains, an oxidizing agent, and water, and based on the entire polishing slurry for copper polishing Inorganic acid equivalent content of 0.15% by mass or more, amino acid content of 0.30% by mass or more, protective film forming agent content of 0.10% by mass or more, protective film
  • a polishing slurry for copper polishing wherein the ratio of the content of the first organic acid component in terms of organic acid to the content of the forming agent is 1.5 or more.
  • the metal film containing copper is polished in a state in which the occurrence of pad stain is suppressed while improving the polishing rate and flatness after polishing as compared with the conventional polishing liquid. be able to.
  • the polishing liquid for copper polishing according to the present invention can perform polishing processing in a short time even in applications that require polishing of a thick metal film, such as in the production of high-performance wiring boards and TSVs. Productivity can be secured.
  • the polishing liquid for copper polishing is a pH buffer solution containing the first organic acid component, inorganic acid component and amino acid having a strong dissolving action, the object to be polished is polished and copper is contained in the polishing liquid. Even if dissolved, pH fluctuations are unlikely to occur. Therefore, a high polishing rate can be stably maintained without depending on the degree of progress of polishing.
  • the “content of the inorganic acid component in terms of an inorganic acid” as used in the present invention means an inorganic salt having the same molar amount as the content (mole) of the salt of the inorganic acid. Indicates the mass of the acid. That is, when the content of the inorganic acid salt is X mol, the mass corresponding to X mol of the inorganic acid is indicated.
  • the “content of the first organic acid component in terms of organic acid” as used in the present invention is an organic acid salt.
  • the term “copper” used in the present invention includes pure copper, copper alloys, copper oxides, copper alloy oxides, and the like.
  • the “metal film containing copper” in the present invention is a single film made of a pure copper film, a copper alloy film, a copper oxide film, a copper alloy oxide film, or the like, A composite film, the single film, or a laminated film of the composite film and another metal film is included.
  • the inventors further include at least one selected from an organic acid having no hydroxyl group, a salt of the organic acid, and an acid anhydride of the organic acid, in the polishing slurry for copper polishing according to the present invention.
  • the present inventors have found that a metal film containing copper can be polished in a state in which the generation of pad stains is suppressed while achieving both a high polishing rate and flatness after polishing.
  • a generic name of the five components of the first organic acid component, the inorganic acid component, the amino acid, the protective film forming agent, and the second organic acid component is referred to as “chemical component”.
  • the polishing liquid for copper polishing according to the present invention further includes a second organic acid component that is at least one selected from an organic acid having no hydroxyl group, a salt of the organic acid, and an acid anhydride of the organic acid. You may go out.
  • the total of the content of the first organic acid component in terms of organic acid and the content of the second organic acid component in terms of organic acid is 0.20% by mass or more based on the entire polishing liquid for copper polishing. Is preferred. In this case, the polishing rate can be further improved.
  • the “content of the second organic acid component in terms of organic acid” in the present invention means an organic acid salt.
  • the mass of the organic acid in the same molar amount as the content (mole) of the acid anhydride of the organic acid that is, when the content of the salt of organic acid or the acid anhydride of organic acid is X mol, the mass corresponding to X mol of organic acid is shown.
  • the second organic acid component is at least one selected from an organic acid having no hydroxyl group and two or more carboxyl groups, a salt of the organic acid, and an acid anhydride of the organic acid,
  • the first acid dissociation constant (pKa1) is preferably 1.0 to 3.0. In this case, the polishing rate can be further improved.
  • the first acid dissociation constant (pKa1) means the acid dissociation constant of the first dissociable acidic group, and is the negative common logarithm of the equilibrium constant Ka1 of the group.
  • the second organic acid component is preferably at least one selected from oxalic acid, maleic acid, maleic anhydride, and malonic acid. In this case, the polishing rate can be further improved.
  • the content of the first organic acid component in terms of organic acid is preferably 0.10% by mass or more based on the entire polishing liquid for copper polishing. In this case, the polishing rate can be further improved.
  • the first organic acid component is preferably an aliphatic hydroxycarboxylic acid, and more preferably at least one selected from glycolic acid, malic acid and citric acid.
  • the polishing rate can be further improved and the occurrence of pad stains can be further suppressed.
  • the pH of the polishing liquid for copper polishing according to the present invention is preferably 1.5 to 4.0.
  • the function as a pH buffer solution is improved, and it becomes easy to stably maintain a high polishing rate.
  • the inorganic acid component is preferably at least one selected from sulfuric acid and phosphoric acid. In this case, both the polishing rate and the flatness can be further enhanced.
  • Amino acid selected from glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, cystine, methionine, aspartic acid, glutamic acid, lysine, arginine, phenylalanine, tyrosine, histidine, tryptophan, proline, oxyproline, asparagine and glutamine It is preferable that it is at least one kind, and glycine is more preferable. In this case, the polishing rate can be further improved while further improving the flatness after polishing.
  • the protective film forming agent is preferably at least one selected from quinaldic acid, anthranilic acid, salicylaldoxime, thiazole compound, triazole compound, imidazole compound, pyrazole compound and tetrazole compound, more preferably a triazole compound.
  • the triazole compound is preferably at least one selected from benzotriazole and benzotriazole derivatives.
  • the polishing liquid for copper polishing according to the present invention can be a polishing liquid having an excellent balance between polishing speed and anticorrosion.
  • the abrasive preferably contains at least one selected from silica, alumina, zirconia, ceria, titania, silicon carbide, polystyrene, polyacryl and polyvinyl chloride, and contains at least one selected from colloidal silica and colloidal alumina. It is more preferable. In this case, it is possible to achieve both higher polishing rate and flatness.
  • the average particle size of the abrasive grains is preferably 100 nm or less. In this case, it is possible to achieve both higher polishing rate and flatness.
  • the oxidizing agent is preferably at least one selected from hydrogen peroxide, persulfuric acid, persulfate, periodic acid, periodate, iodate and bromate. In this case, the polishing rate can be further improved.
  • the present invention also provides a polishing method comprising a step of polishing a metal film containing copper using the above polishing liquid for polishing copper and removing at least a part of the metal film.
  • the polishing method according to the present invention it is possible to polish a metal film containing copper in a state in which the occurrence of pad stain is suppressed while improving the polishing rate and the flatness after completion of polishing as compared with conventional polishing liquids.
  • the polishing method according to the present invention is capable of performing a polishing process in a short time and has sufficient productivity and product even in applications that require polishing of a thick metal film, such as in the manufacture of high-performance wiring boards and TSVs. Yield can be secured.
  • the present invention it is possible to polish a metal film containing copper while suppressing the occurrence of pad stain while improving the polishing rate and the flatness after polishing as compared with the conventional polishing liquid.
  • a polishing liquid for polishing and a polishing method using the same can be provided.
  • a significantly faster polishing rate can be obtained for a metal film containing copper than a conventional polishing solution.
  • a polishing solution having a polishing rate for copper of 30000 mm / min or more can be obtained.
  • FIG. 3 is a schematic cross-sectional view showing a first step when a polishing liquid for copper polishing according to an embodiment of the present invention is used for VIA-LAST.
  • FIG. 6 is a schematic cross-sectional view showing a second step when a polishing liquid for copper polishing according to an embodiment of the present invention is used for VIA-LAST.
  • FIG. 5 is a schematic cross-sectional view showing a third step when a polishing liquid for copper polishing according to an embodiment of the present invention is used for VIA-LAST.
  • the copper polishing polishing liquid according to this embodiment is selected from (A) an organic acid having a hydroxyl group, a salt of the organic acid, and an acid anhydride of the organic acid.
  • a first organic acid component that is at least one selected from the group consisting of (B) an inorganic acid component that is at least one selected from a divalent or higher-valent inorganic acid and a salt of the inorganic acid, (C) an amino acid, and (D
  • the polishing liquid according to the present embodiment further includes (H) a second organic acid component that is at least one selected from (H) an organic acid having no hydroxyl group, a salt of the organic acid, and an acid anhydride of the organic acid. May be included.
  • the content of the component (B) is 0.15% by mass or more based on the entire polishing liquid, and the content of the component (C) is 0.30% by mass or more
  • the content of the component (D) is 0.10% by mass or more, and the ratio of the content of the component (A) to the content of the component (D) is 1.5 or more.
  • the protective film forming agent as component (D) has the effect of suppressing the etching of copper by forming a protective film on the copper surface, it may generally suppress the polishing rate and during polishing. It may form an insoluble complex and cause pad stain.
  • the content of the component (A) with respect to the content of the component (D) is set to a predetermined range after the components (A) and (D) are used in combination.
  • the polishing liquid according to this embodiment can improve the polishing rate. That is, the “reaction layer” containing the (D) component and the copper ions is formed on the copper surface by the action of the (A) component, the (B) component, and the (D) component. Further, it is considered that the component (C) is chelated to copper ions, so that the reaction layer is more easily removed and polishing is promoted.
  • the polishing liquid according to the present embodiment has a predetermined polishing as compared with the case where the component (A), the component (B), and the component (C) are used alone or two of them are selected and used. It has the effect that the total content of the above-described components necessary for obtaining the speed improvement effect can be reduced. Further, in the conventional polishing liquid, when the polishing liquid contains at least one selected from the component (A), the component (B) and the component (C) having a content that is soluble in the polishing liquid, the storage stability of the polishing liquid is increased. However, the polishing liquid according to this embodiment can suppress such a decrease in storage stability.
  • the polishing liquid according to the present embodiment will be specifically described.
  • the amount of each component in the composition in the present specification when there are a plurality of substances corresponding to each component in the composition, the plurality of the components present in the composition unless otherwise specified. Means the total amount of substances.
  • the pH of the polishing liquid is not particularly limited, and can be, for example, in the range of 1.0 to 13.0. However, it is acidic or neutral (7.0) in that the polishing rate of copper by CMP is further improved. The following is preferable, and the range of 1.5 to 4.0 is more preferable in that the copper film is less likely to be corroded.
  • the pH is more preferably 2.0 or more. If the pH of the polishing liquid is 4.0 or less, the polishing rate by CMP tends to increase to become a more practical polishing liquid. From the same viewpoint, the pH of the polishing liquid is more preferably 3.8 or less. 3.5 or less is more preferable.
  • the polishing liquid according to the present embodiment is preferably a pH buffer solution containing (A) component and (B) component, and optionally containing (H) component.
  • the inorganic acid that is component (B) is a strong acid
  • the pH of the polishing liquid decreases, and the pH is adjusted to a predetermined range (for example, a range of 1.5 to 4.0). Tend to be difficult to do.
  • the component (A) and the component (C) are contained, and the component (H) is optionally contained.
  • the polishing liquid according to this embodiment can be easily adjusted to a pH within a predetermined range (for example, a range of 1.5 to 4.0). It can be a pH buffer solution.
  • the pH of the polishing liquid can be appropriately adjusted depending on the contents of the component (A), the component (H), the component (B), and the component (C).
  • an acidic component and an alkali component can be contained as a pH adjuster.
  • the acidic component include monovalent inorganic acids such as hydrochloric acid and nitric acid.
  • the alkali component include ammonia, sodium hydroxide, tetramethylammonium hydroxide, and the like. These can be used alone or in combination of two or more.
  • the pH of the polishing liquid is in a desired range without including the pH adjusting agent, the polishing liquid does not need to contain the pH adjusting agent.
  • the pH of the polishing liquid can be measured with a pH meter (for example, model number PH81 manufactured by Yokogawa Electric Corporation).
  • a pH meter for example, model number PH81 manufactured by Yokogawa Electric Corporation.
  • standard buffer solution phthalate pH buffer solution: pH 4.01 (25 ° C.), neutral phosphate pH buffer solution: pH 6.86 (25 ° C.)
  • pH 6.86 25 ° C.
  • the component (A) is at least one selected from an organic acid having a hydroxyl group, a salt of the organic acid, and an acid anhydride of the organic acid in that the polishing rate can be improved and pad stain can be suppressed.
  • a first organic acid component is used. Since the organic acid (A) has a hydroxyl group, the insoluble complex generated by polishing the copper film can be changed to a more water-soluble complex than the organic acid not containing a hydroxyl group. It is thought that the occurrence of the occurrence can be suppressed.
  • the hydroxyl group here does not include the —OH group contained in the carboxyl group.
  • the organic acid which is water-soluble is preferable.
  • the organic acid having a hydroxyl group include aliphatic hydroxycarboxylic acids such as glycolic acid, malic acid, citric acid, lactic acid, tartaric acid, citramalic acid, and isocitric acid; Hydroxyphenylacetic acid such as mandelic acid, 3-hydroxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid, 2,5-dihydroxyphenylacetic acid; Monohydroxybenzoic acid such as salicylic acid, creatinic acid, 3-methoxy-4-hydroxybenzoic acid, 3,5-dimethoxy-4-hydroxybenzoic acid; Dihydroxybenzoic acid such as 2,3-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 2,4-dihydroxy-6-methylbenzoic acid; 2,3,4-trihydroxybenzoic acid, gallic acid, trihydroxybenzoic acid,
  • Examples of these organic acid salts include ammonium salts of the above organic acids.
  • Examples of the acid anhydride of the organic acid include lactic anhydride.
  • the said (A) component can be used individually or in combination of 2 or more types. Among these (A) components, aliphatic hydroxycarboxylic acids are preferred and are selected from glycolic acid, malic acid and citric acid because they are more excellent in the polishing rate improving effect and pad stain inhibiting effect and are easily available. At least one is more preferable.
  • the content of the component (A) (content in terms of organic acid) is preferably 0.10% by mass or more, more preferably 0.20% by mass or more, based on the whole polishing liquid, in that the polishing rate is further improved. 0.30 mass% or more is still more preferable, and 0.40 mass% or more is especially preferable.
  • the content of the component (A) is , Preferably 5.00% by mass or less, more preferably 4.00% by mass or less, still more preferably 3.00% by mass or less, and particularly preferably 2.00% by mass or less.
  • the polishing liquid according to this embodiment may contain a component (H) as an organic acid component different from the component (A).
  • a component As a component, the 2nd organic acid component which is at least 1 type selected from the organic acid which does not have a hydroxyl group, the salt of the said organic acid, and the acid anhydride of the said organic acid is used.
  • the polishing rate may be improved, but the effect of suppressing the occurrence of pad stain tends to be insufficient.
  • the polishing liquid according to the present embodiment by using such a component (H) together with the component (A), it is possible to achieve both a pad stain suppressing effect and a polishing rate improving effect at a higher level.
  • the hydroxyl group means a group that does not contain an —OH group contained in a carboxyl group
  • the component (H) may be an organic acid having a carboxyl group.
  • the component (H) is preferably at least one selected from an organic acid having no hydroxyl group and having two or more carboxyl groups, a salt of the organic acid, and an acid anhydride of the organic acid.
  • the organic acid having two or more carboxyl groups it is preferable that the organic acid has water solubility so that an effective amount is dissolved in order to exert its effect, and a conventionally known substance can be used without particular limitation. it can.
  • the organic acid having two carboxyl groups include oxalic acid, maleic acid, malonic acid, oxaloacetic acid, and the like.
  • Examples of the organic acid having three or more carboxyl groups include trimellitic acid, 1,2,4-butanetricarboxylic acid, 1,2,3-propanetricarboxylic acid, and the like.
  • Examples of the salt of an organic acid having two or more carboxyl groups include ammonium salts of the above organic acids.
  • Examples of the acid anhydride of an organic acid having two carboxyl groups include maleic anhydride.
  • Examples of the acid anhydride of an organic acid having three or more carboxyl groups include trimellitic acid anhydride.
  • the organic acid having no hydroxyl group and two carboxyl groups, the salt of the organic acid, and the acid anhydride of the organic acid in that the polishing rate by CMP can be further improved.
  • the component (H) may be an organic acid having no hydroxyl group and one carboxyl group, a salt of the organic acid, and an acid anhydride of the organic acid. Examples of such an organic acid include acetic acid and the like. Of saturated fatty acids.
  • the said (H) component can be used individually or in combination of 2 or more types.
  • the pKa1 of an organic acid having two or more carboxyl groups is preferably 3.0 or less, more preferably 2.7 or less, and more preferably 2.6 or less in terms of enhancing the interaction with copper and obtaining a higher polishing rate. Further preferred is 2.5 or less.
  • the pKa1 of the organic acid having two or more carboxyl groups is preferably 1.0 or more from the viewpoint that the halogen content tends to be low if it is 1.0 or more, and the environmental load can be reduced.
  • Examples of the organic acid having two or more carboxyl groups and pKa1 of 1.0 to 3.0 include oxalic acid, maleic acid, malonic acid, oxaloacetic acid and the like.
  • the value of “pKa1” of the organic acid the Chemical Handbook, Basic Edition II (5th revised edition, Maruzen Co., Ltd.) can be referred to.
  • the content of the component (H) (content in terms of organic acid) is preferably within a predetermined range with the content of the component (A). That is, the sum of the content of the component (A) and the content of the component (H) is preferably 0.20% by mass or more based on the entire polishing liquid in terms of further improving the polishing rate, and is 0.30% by mass. The above is more preferable, and 0.40% by mass or more is more preferable. In addition, since the polishing rate tends not to increase more than a certain amount even when the component (H) is added in a certain amount or more, the content of the component (A) and the component (H) are suppressed in that the amount of the component (H) is suppressed.
  • the total content of the components is preferably 5.00% by mass or less, more preferably 4.00% by mass or less, still more preferably 3.00% by mass or less, and 2.00% by mass or less, based on the entire polishing liquid. Is particularly preferred.
  • component (B) a known divalent or higher-valent inorganic acid and a salt of the inorganic acid can be used without particular limitation, and a divalent inorganic acid and a salt of the inorganic acid are preferable.
  • the divalent or higher inorganic acid include divalent inorganic acids such as sulfuric acid, sulfurous acid, and phosphonic acid, and trivalent inorganic acids such as phosphoric acid.
  • these inorganic acid salts include ammonium salts of the above inorganic acids.
  • components (B) at least selected from sulfuric acid, phosphoric acid, and a mixture of sulfuric acid and phosphoric acid in that the polishing rate by CMP can be further increased and the flatness of the copper film can be further improved.
  • One type is preferred.
  • the said (B) component can be used individually or in combination of 2 or more types.
  • monovalent inorganic acid has little improvement effect of polishing rate, it may be used together with the component (B).
  • the content of the component (B) (content in terms of inorganic acid) is 0.15% by mass or more, preferably 0.18% by mass or more, preferably 0.18% by mass or more based on the whole polishing liquid in terms of excellent polishing rate. 20 mass% or more is more preferable.
  • the content of the component (B) is such that the polishing rate does not increase more than a certain amount even if the component (B) is added to the polishing solution in a certain amount or more. 5.00% by mass or less is preferable based on the whole, 4.00% by mass or less is more preferable, 3.00% by mass or less is further preferable, and 2.00% by mass or less is particularly preferable.
  • the component (C) is an amino acid used for the purpose of adjusting pH and dissolving copper.
  • amino acids are not particularly limited as long as they are slightly soluble in water.
  • an amino acid having a first acid dissociation constant (pKa1) of 2.0 to 3.0 is used in that the pH of the polishing liquid is easily adjusted to, for example, 1.5 to 4.0. It is preferable.
  • amino acids include glycine, alanine, valine, leucine, isoleucine, serine, threonine, methionine, aspartic acid, glutamic acid, lysine, arginine, and tryptophan.
  • Glycine is particularly preferable in that the effect of improving the polishing rate and flatness is high and it is inexpensive.
  • the component (C) is a compound having a single pKa
  • the single pKa is referred to as “pKa1”.
  • the value of “pKa1” of amino acid refer to Chemical Handbook, Basic Edition II (5th revised edition, Maruzen Co., Ltd.).
  • the content of the component (C) is 0.30% by mass or more, preferably 0.35% by mass or more, based on the entire polishing liquid, in that the polishing rate is excellent.
  • the content of the component (C) is such that the polishing rate does not increase more than a certain amount even when the component (C) is added to the polishing solution in a certain amount or more. 5.00% by mass or less is preferable based on the whole, 4.00% by mass or less is more preferable, 3.00% by mass or less is further preferable, and 2.00% by mass or less is particularly preferable.
  • the protective film forming agent as the component (D) refers to a substance having an action of forming a protective film on the copper surface, and is also a substance called an anticorrosive or an inhibitor.
  • the protective film forming agent is considered to constitute a “reaction layer” that is removed during polishing, and it is necessary to form a “protective film” to prevent copper from being polished. There is no.
  • the component (D) As long as it has the water solubility of the quantity which is effective in order to exhibit the addition effect of a protective film formation agent as a component, a conventionally well-known substance can be especially used without a restriction
  • the component (D) include protective film forming agents such as quinaldic acid, anthranilic acid, salicylaldoxime, thiazole compounds, triazole compounds, imidazole compounds, pyrazole compounds, and tetrazole compounds. Among these, triazole compounds are preferable. .
  • the said (D) component can be used individually or in combination of 2 or more types.
  • the thiazole compound means a compound having a thiazole skeleton in the molecule, and specific examples thereof include 2-mercaptobenzothiazole.
  • the triazole compound refers to a compound having a triazole skeleton in the molecule, specifically, for example, 1,2,3-triazole; 1,2,4-triazole; Triazole derivatives such as 3-amino-1H-1,2,4-triazole; benzotriazole; 1-hydroxybenzotriazole, 1-dihydroxypropylbenzotriazole, 2,3-dicarboxypropylbenzotriazole, 4-hydroxybenzotriazole, 4-carboxyl-1H-benzotriazole, 4-carboxyl-1H-benzotriazole methyl ester, 4 -Carboxyl-1H-benzotriazole butyl ester, 4-carboxyl-1H-benzotriazole octyl ester, 5-hexylbenzotriazole, [1,2,3-benzotriazolyl-1-methyl] [1,2,4- Benzotriazoles such as triazolyl-1-methyl] [2-ethylhexyl] amine
  • the imidazole compound refers to a compound having an imidazole skeleton in the molecule.
  • the pyrazole compound refers to a compound having a pyrazole skeleton in the molecule. Specifically, for example, 3,5-dimethylpyrazole, 3-amino-5-methylpyrazole, 4-methylpyrazole, 3-amino-5-hydroxy And pyrazole.
  • the tetrazole compound refers to a compound having a tetrazole skeleton in the molecule. Specifically, for example, 1H-tetrazole, 5-amino-1H-tetrazole, 5-methyl-1H-tetrazole, 5-phenyl-1H-tetrazole, Examples include 1- (2-diaminoethyl) -5-mercaptotetrazole.
  • the content of the component (D) is 0.10% by mass or more, preferably 0.11% by mass or more based on the entire polishing liquid, in that the polishing rate can be improved while reducing the etching rate. 0.12% by mass or more is more preferable.
  • the content of the component (D) tends to not reduce the etching rate by a certain amount even if it is added above a certain level, so that the amount of the component (D) is suppressed to 2.00% by mass or less based on the entire polishing liquid. Is preferable, and 1.50 mass% or less is more preferable.
  • the inventors of the present invention achieve both the pad stain suppression effect and the polishing rate improvement effect by setting the content of the component (A) relative to the content of the component (D), which is a protective film forming component, within a specific range. Found to be effective.
  • the content of the component (D) increases, the amount of insoluble complex derived from the component (D) tends to increase. Therefore, when the content of the component (D) increases, it is necessary to increase the content of the component (A).
  • the ratio of the content of the component (A) to the content of the component (D) refers to the mass ratio, calculated as “content of the component (A) (mass%) / content of the component (D) (mass%)”) Is excellent in pad stain suppression effect and polishing rate improvement effect, and (D) component because (D) component tends to not decrease more than a certain amount even if component (D) is added to polishing solution in a certain amount or more. Is 1.5 or more, preferably 1.7 or more, more preferably 2.0 or more, and particularly preferably 2.5 or more. Moreover, even if the component (A) is added to the polishing liquid in a certain amount or more, the above-mentioned ratio is 15. 0 or less is preferable, 10.0 or less is more preferable, and 8.0 or less is still more preferable.
  • (E) component: abrasive (E)
  • abrasive component There is no restriction
  • silica and alumina are preferable in that the dispersion stability in the polishing liquid is good, and the number of polishing scratches (scratches) generated by CMP is small. The average particle size is easily controlled, and the polishing characteristics.
  • colloidal silica and colloidal alumina are more preferable, and colloidal silica is more preferable.
  • a method for producing colloidal silica a method by hydrolysis of silicon alkoxide or ion exchange of sodium silicate is known.
  • a method for producing colloidal alumina a method by hydrolysis of aluminum nitrate is known.
  • the average grain size of the abrasive grains is preferably 100 nm or less, and more preferably 80 nm or less, from the viewpoint that the polishing rate and the surface flatness can be further enhanced.
  • E As a component, it is an abrasive grain containing at least 1 type selected from colloidal silica and colloidal alumina, and it is more preferable that the average particle diameter of the abrasive grain is 100 nm or less.
  • the minimum of the average particle diameter of an abrasive grain is not specifically limited, For example, it is 10 nm.
  • the average particle diameter of the abrasive grains is an average particle diameter in the polishing liquid, and D50 when the polishing liquid is measured with a laser diffraction particle size distribution meter (for example, trade name COULTER N4 SD manufactured by COULTER Electronics). (Median diameter of volume distribution, cumulative median). Further, generally, when using abrasive grains containing at least one selected from colloidal silica and colloidal alumina, the average particle diameter measured in the state of colloidal silica or colloidal alumina is mixed with other components and a polishing liquid. In this case, the average particle size is almost the same.
  • the content of the component (E) is preferably 0.10% by mass or more, preferably 0.20% by mass or more based on the entire polishing liquid, in that a physical grinding action is sufficiently obtained and the polishing rate is further increased. More preferred.
  • the polishing rate does not increase more than a certain amount even when component (E) is added to the polishing liquid in a certain amount or more, the amount of component (E) is suppressed, and the aggregation of abrasive grains and polishing scratches are suppressed.
  • the content of the component (E) is preferably 10.0% by mass or less, more preferably 5.00% by mass or less, based on the entire polishing liquid.
  • any oxidizing agent having an oxidizing action on copper can be used without particular limitation.
  • the oxidizing agent include hydrogen peroxide (H 2 O 2 ), persulfuric acid, persulfate, periodic acid, periodate, iodate, bromate and the like.
  • the salt include potassium salt and ammonium salt (for example, ammonium persulfate, potassium persulfate, potassium periodate). Among these, at least one selected from hydrogen peroxide, persulfuric acid and persulfate is preferable in that the polishing rate is further improved.
  • These (F) components can be used individually or in combination of 2 or more types.
  • the content of the component (F) is preferably 0.10% by mass or more, more preferably 0.20% by mass or more, based on the whole polishing liquid, in that a better polishing rate can be easily obtained. Further, when the component (F) is excessively contained, the polishing rate may not be improved or may be lowered. Therefore, the content of the component (F) is preferably 25.0% by mass or less based on the entire polishing liquid in that the polishing rate is further improved while suppressing an increase in the content of the component (F). 0 mass% or less is more preferable.
  • the component (G) that is a medium of the polishing liquid is not particularly limited, but deionized water, ion exchange water, ultrapure water, and the like are preferable.
  • the content of the component (G) in the polishing liquid may be the remainder of the content of the above-described components, and is not particularly limited as long as it is contained in the polishing liquid.
  • the polishing liquid may further contain a solvent other than water, for example, a polar solvent such as ethanol or acetone, as necessary.
  • the polishing liquid may contain, in addition to the above components, materials generally used for the CMP polishing liquid, such as a dispersant and a colorant, as long as the effects of the polishing liquid are not impaired.
  • the polishing method according to this embodiment includes a polishing step of polishing a metal film containing copper using the polishing liquid according to this embodiment and removing at least a part of the metal film.
  • the polishing step for example, while supplying the polishing liquid between the metal film of the substrate having a metal film as a film to be polished on the surface (for example, the main surface) and the polishing cloth, the metal film of the substrate is applied to the surface of the polishing cloth.
  • the metal film is polished by relatively moving the substrate and the polishing cloth while being pressed, and at least a part of the metal film is removed.
  • the polishing liquid according to the present embodiment has a feature that the polishing rate for a metal film containing copper is extremely high as compared with a conventional polishing liquid for copper polishing.
  • the polishing liquid is representative of a package substrate such as an LSI. It can be particularly suitably used for polishing a thick metal film in the manufacturing process of a high performance / fine wiring board. More specifically, the metal film containing copper to be polished can be particularly preferably used when polishing a substrate having a thickness of, for example, 4 ⁇ m or more.
  • it is possible to provide a polishing liquid for copper polishing which is suitable for use in the CMP process and has a high polishing rate and high smoothness after polishing, and a polishing method using the same.
  • polishing liquid for polishing a metal film containing copper is provided.
  • polishing liquid for polishing a thick metal film for example, a metal film of 4 ⁇ m or more
  • TSV through silicon via
  • VIA-LAST a method of using the polishing liquid according to the present embodiment in the VIA-LAST process will be described with reference to the drawings.
  • FIG. 1 is a schematic cross-sectional view showing a first step of forming a copper film 4 on a silicon substrate 1.
  • an element 2 is formed at a predetermined position on the silicon substrate 1.
  • a recess 3 for forming a through via is formed by a method such as plasma etching.
  • a copper film 4 is formed by laminating copper so as to fill the recess 3 by a method such as sputtering or electrolytic plating, thereby obtaining a substrate 100 having a structure as shown in FIG.
  • FIG. 2 is a schematic cross-sectional view showing a second step of polishing the substrate 100 thus formed and forming bumps 5 on one side. While supplying the polishing liquid between the surface of the copper film 4 in FIG. 2A and a pad (not shown), the copper film 4 is exposed until the element 2 is exposed as shown in FIG. 2B. To polish.
  • polishing is performed in a state where the copper film 4 of the substrate 100 is pressed against the surface of the pad while supplying the polishing liquid between the copper film 4 of the substrate 100 and the surface of the pad of the polishing surface plate.
  • the copper film 4 is polished by relatively moving the surface plate and the substrate 100.
  • a metal or resin brush may be used.
  • the polishing apparatus when polishing with a pad, the polishing apparatus is generally connected to a motor or the like whose rotation speed can be changed and has a polishing platen on which the pad can be attached and a holder that can hold a substrate to be polished.
  • a typical polishing apparatus can be used.
  • the polishing conditions are not limited, but the rotation speed of the polishing surface plate is preferably a low rotation of 200 rpm or less so that the substrate does not jump out.
  • the pressure (polishing pressure) applied to the pad of the substrate having the surface to be polished is preferably 1 to 100 kPa. In order to improve the uniformity of the CMP rate within the surface to be polished and the flatness of the pattern, 5 to 50 kPa is preferable. More preferred.
  • the polishing liquid may be continuously supplied to the pad by a pump or the like. Although there is no restriction
  • the substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the substrate using spin drying or the like.
  • a pad conditioning process before polishing.
  • the pad is conditioned with a liquid containing at least water using a dresser with diamond particles.
  • bumps 5 are formed on the exposed surface portion of the copper film 4 by a method such as electrolytic plating to obtain a substrate 200 having the bumps 5 on one side.
  • Examples of the material of the bump 5 include copper.
  • FIG. 3 is a schematic cross-sectional view showing a third step of forming bumps 6 on the other surface.
  • the surface of the silicon substrate 1 where the bumps 5 are not formed is polished by a method such as CMP to obtain a copper film. 4 is exposed (FIG. 3B).
  • the bump 6 is formed by the same method as the method for forming the bump 5.
  • the substrate 300 on which the TSV is formed is obtained (FIG. 3C).
  • Example 1 6.4 g of phosphoric acid having a concentration of 85%, 13.3 g of glycine, 1.9 g of benzotriazole, 10.7 g of citric acid, and 50 g of colloidal silica having an average particle size of 70 nm (abrasive grain content 20%) as pure grains
  • phosphoric acid having a concentration of 85%, 13.3 g of glycine, 1.9 g of benzotriazole, 10.7 g of citric acid, and 50 g of colloidal silica having an average particle size of 70 nm (abrasive grain content 20%) as pure grains
  • 600 g of water components other than colloidal silica were dissolved, and pure water was further added to make the total amount 700 g.
  • 300 g of hydrogen peroxide solution special grade reagent, 30% aqueous solution
  • Example 2 A polishing liquid 2 was prepared in the same manner as in Example 1 except that 10.7 g of citric acid was changed to 10.7 g of malic acid.
  • Example 3 A polishing liquid 3 was produced in the same manner as in Example 1 except that 10.7 g of citric acid was changed to 10.7 g of glycolic acid.
  • Example 4 A polishing liquid 4 was prepared in the same manner as in Example 1, except that 10.7 g of citric acid was changed to 5.3 g of citric acid and 5.3 g of oxalic acid, and the total amount of pure water was adjusted to 1000 g. .
  • Example 5 A polishing liquid 5 was produced in the same manner as in Example 1 except that 10.7 g of citric acid was changed to 5.3 g of citric acid and 5.3 g of maleic acid, and the addition amount of pure water was adjusted to 1000 g. .
  • Example 6 A polishing liquid 6 was produced in the same manner as in Example 1 except that the amount of citric acid added was changed to 5.3 g and the amount of pure water added was adjusted to a total amount of 1000 g.
  • Example 7 A polishing liquid 7 was produced in the same manner as in Example 1 except that the addition amount of phosphoric acid having a concentration of 85% was changed to 3.2 g and the addition amount of pure water was adjusted to a total amount of 1000 g.
  • Example 8 6.4 g of phosphoric acid with a concentration of 85%, 10.7 g of glycine, 1.9 g of benzotriazole, 10.7 g of citric acid, and 50 g of colloidal silica having an average particle size of 70 nm (abrasive grain content 20%) as pure grains
  • colloidal silica having an average particle size of 70 nm (abrasive grain content 20%) as pure grains
  • 600 g of water components other than colloidal silica were dissolved, and pure water was further added to make a total amount of 690 g.
  • 300 g of hydrogen peroxide solution special grade reagent, 30% aqueous solution
  • ammonia water having a concentration of 25% was added to adjust the pH of the polishing liquid to 2.4.
  • polishing liquid 8 having a total amount of 1000 g. It was also confirmed that the final polishing liquid had a pH of 2.4.
  • Example 9 6.4 g of phosphoric acid with a concentration of 85%, 5.3 g of glycine, 1.9 g of benzotriazole, 10.7 g of citric acid, and 50 g of colloidal silica having an average particle size of 70 nm (abrasive grain content 20%) as pure grains
  • colloidal silica having an average particle size of 70 nm (abrasive grain content 20%) as pure grains
  • pure water was further added to make a total amount of 690 g.
  • Example 10 A polishing liquid 10 was produced in the same manner as in Example 1 except that the addition amount of benzotriazole was changed to 1.3 g and the addition amount of pure water was adjusted to a total amount of 1000 g.
  • Example 11 A polishing liquid 11 was produced in the same manner as in Example 1 except that the addition amount of benzotriazole was changed to 2.7 g and the addition amount of pure water was adjusted to a total amount of 1000 g.
  • Example 12 A polishing liquid 12 was produced in the same manner as in Example 1 except that 5.4 g of phosphoric acid having a concentration of 85% was changed to 5.8 g of sulfuric acid having a concentration of 96% and the addition amount of pure water was adjusted to a total amount of 1000 g. did.
  • Example 13 A polishing liquid 13 was produced in the same manner as in Example 1 except that 13.3 g of glycine was changed to 13.3 g of alanine.
  • Example 14 A polishing liquid 14 was prepared in the same manner as in Example 1 except that 1.9 g of benzotriazole was changed to 1.3 g of 5-methylbenzotriazole (tolyltriazole) and the amount of pure water was adjusted to a total amount of 1000 g. did.
  • Example 15 Other than changing the addition amount of benzotriazole to 1.3 g, changing the addition amount of citric acid to 2.5 g, adding 8.2 g of maleic acid, and adjusting the addition amount of pure water to a total amount of 1000 g A polishing solution 15 was prepared in the same manner as in Example 1.
  • polishing liquid X4 having a total amount of 1000 g. It was also confirmed that the final polishing liquid had a pH of 2.4.
  • Comparative Example 5 6.4 g of phosphoric acid having a concentration of 85%, 1.9 g of benzotriazole, 10.7 g of citric acid, and 50 g of colloidal silica having an average particle diameter of 70 nm (abrasive grain content 20%) as abrasive grains were added to 600 g of pure water. Components other than colloidal silica were dissolved, and pure water was further added to make the total amount 690 g.
  • a polishing liquid X6 was prepared in the same manner as in Comparative Example 1 except that 10.7 g of citric acid was added without adding benzotriazole, and the amount of pure water was adjusted to a total amount of 1000 g.
  • Comparative Example 7 The polishing liquid X7 was changed in the same manner as in Comparative Example 1 except that the addition amount of benzotriazole was changed to 0.3 g, 10.7 g of citric acid was added, and the addition amount of pure water was adjusted to a total amount of 1000 g. Produced.
  • the polishing liquid X8 was changed in the same manner as in Comparative Example 1 except that the addition amount of benzotriazole was changed to 0.8 g, 10.7 g of citric acid was added, and the addition amount of pure water was adjusted to a total amount of 1000 g. Produced.
  • the polishing liquid X9 was changed in the same manner as in Comparative Example 1 except that the addition amount of benzotriazole was changed to 3.7 g, 5.3 g of citric acid was added, and the addition amount of pure water was adjusted to a total amount of 1000 g. Produced.
  • a polishing liquid X10 was produced in the same manner as in Comparative Example 1 except that 2.7 g of citric acid was added and the amount of pure water added was adjusted to a total amount of 1000 g.
  • a polishing liquid X11 was prepared in the same manner as in Comparative Example 1 except that 10.7 g of oxalic acid was added and the amount of pure water was adjusted to a total amount of 1000 g.
  • a polishing liquid X12 was prepared in the same manner as in Comparative Example 1, except that 10.7 g of malonic acid was added and the amount of pure water added was adjusted to 1000 g.
  • a polishing liquid X13 was prepared in the same manner as in Comparative Example 1 except that 10.7 g of maleic acid was added and the amount of pure water added was adjusted to 1000 g.
  • a polishing liquid X14 was prepared in the same manner as in Comparative Example 1 except that 10.7 g of acetic acid was added and the amount of pure water added was adjusted to 1000 g.
  • the pH of the polishing liquids 1 to 15 and X1 to X14 was measured using a model number PH81 manufactured by Yokogawa Electric Corporation.
  • substrate with which the copper film was formed into the stirring polishing liquid room temperature (25 degreeC), stirring 600rpm
  • the measurement substrate a chip obtained by cutting a substrate (manufactured by Global Net Co., Ltd.) having a copper film having a thickness of 20 ⁇ m on a silicon substrate having a diameter of 8 inches (20 cm) ( ⁇ ) into 2 cm ⁇ 2 cm was used.
  • the amount of the polishing liquid was 100 ml.
  • the etching rate was calculated by dividing the film thickness difference of the copper film by the immersion time (min).
  • a substrate manufactured by Global Net Co., Ltd. was prepared by forming a copper film having a thickness of 20 ⁇ m on a silicon substrate having a diameter of 8 inches (20 cm) ( ⁇ ). Using this substrate, CMP polishing was performed while dripping the polishing liquids 1 to 15 and the polishing liquids X1 to X5 and X9 to 14 onto a pad attached to a surface plate of a polishing apparatus. Note that the polishing rate was not measured for the polishing liquids X6 to X8, which resulted in a very high etching rate.
  • polishing apparatus CMP polishing machine (Applied Materials, trade name: Mirra)
  • Pad Foam polyurethane resin with closed cells (trade name: IC-1010, manufactured by Rohm and Haas) Polishing pressure: 32kPa Surface plate / head rotation speed: 110/105 rpm Polishing fluid flow rate: 200 ml / min
  • the polishing rate was calculated as follows. First, using the metal film thickness measuring instrument VR-120 (trade name) manufactured by Hitachi Kokusai Electric Engineering Co., Ltd., 81 locations arranged at equal intervals (approximately 2.4 mm intervals) in the diameter direction of the substrate on the copper film surface. The sheet resistance was measured at each point, and the average value of the sheet resistance was calculated before and after CMP polishing. And it converted from the difference of the average value of the sheet resistance before and behind grinding
  • Tables 1 to 4 show the constituents of the polishing liquids 1 to 15 and X1 to X14, the pH of each polishing liquid, and the evaluation results of the etching rate measurement, polishing rate measurement, and pad stain evaluation.
  • the “chemical component” does not include ammonia that does not correspond to the component (B).
  • the pad stain evaluation in Tables 1 to 4 when pad stain does not occur, “A” is indicated, and when pad stain occurs, “B” is indicated.
  • each of the polishing liquids 1 to 15 in Examples 1 to 15 provided a good etching rate and polishing rate, and no pad stain was observed.
  • the polishing rate was decreased and pad stain was observed.
  • the polishing rate was greatly reduced.
  • the polishing liquids X4 and X5 which are different from the polishing liquid 1 in that the content of the component (C) is outside the range of the present invention, the polishing rate was lowered.
  • the polishing liquids X6, X7, and X8, which are different from the polishing liquid 1 in that the content of the component (D) is outside the range of the present invention the etching rate is greatly increased.
  • the polishing rate was reduced and pad stain was observed.
  • the polishing liquids X11, X12, and X13 containing the component (H) but not the component (A) a pad stain was observed although a sufficient polishing rate was obtained.
  • the polishing liquid X14 containing acetic acid having one carboxyl group as the component (H) but not containing the component (A) the polishing rate was decreased and pad stain was also observed.
  • the polishing liquid 1 the component (B) is the polishing liquid 7
  • a good polishing rate for example, a polishing rate of 30000 mm / min or more. It can be seen that each of the components (A), (B), and (C) must have a certain content or more.
  • the rate of increase in the polishing rate at a relatively high addition amount is low for each component compared to the rate of increase in the polishing rate at a relatively low addition amount.
  • the polishing rate is 10,000 kg / min or less.
  • the polishing rate exceeds 30000 mm / min, while the content of the component (B) is 0.27% by mass (polishing liquid 7). It can be seen that the polishing rate is increased only by 1000 ⁇ / min even when the content is increased from 0.5 to 0.54 mass% (polishing liquid 1).
  • the polishing rate can be improved to some extent even if each of the component (A), the component (B) and the component (C) is used alone or two of them are selected and used. It can be seen that the polishing rate can be further improved efficiently by adding more than the amount and increasing each component in a balanced manner.
  • component (A) and components (B), (C) and (D) above a certain amount in order to obtain a polishing liquid that exhibits excellent etching rate and polishing rate and in which pad stain is not observed, component (A) and components (B), (C) and (D) above a certain amount. It was confirmed that the ratio of the content of the component (A) to the content of the component (D) is required to be a certain value or more.
  • the polishing liquid whose polishing rate with respect to copper exceeds 30000 min / min is particularly suitable for applications in which copper is polished in a large amount in a short time, for example, TSV formation applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 本発明に係る銅研磨用研磨液は、水酸基を有する有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種である第1の有機酸成分と、2価以上の無機酸及び当該無機酸の塩から選択される少なくとも一種である無機酸成分と、アミノ酸と、保護膜形成剤と、砥粒と、酸化剤と、水とを含み、銅研磨用研磨液全体を基準として無機酸成分の無機酸換算の含有量が0.15質量%以上であり、アミノ酸の含有量が0.30質量%以上であり、保護膜形成剤の含有量が0.10質量%以上であり、保護膜形成剤の含有量に対する第1の有機酸成分の有機酸換算の含有量の比率が1.5以上である。

Description

銅研磨用研磨液及びそれを用いた研磨方法
 本発明は、銅研磨用研磨液及びそれを用いた研磨方法に関する。
 LSIを高性能化するために、配線材料として従来のアルミニウム合金に替わって銅合金の利用が進んでいる。銅合金は、従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細加工が困難である。そこで、あらかじめ溝部(凹部)及び隆起部(凸部)が形成された絶縁膜上に銅合金薄膜を堆積して溝部に銅合金を埋め込み、次いで、隆起部上に堆積した銅合金薄膜(溝部以外の銅合金薄膜)をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が、銅合金の微細加工に主に採用されている(例えば、下記特許文献1参照)。
 銅合金等の金属に対するケミカル・メカニカル・ポリッシング(CMP)は、一般的に、円形の研磨定盤(プラテン)上にパッド(研磨パッド、研磨布ともいう)を貼り付け、パッド表面を金属用研磨液で浸し、基体の金属膜が形成された面をパッド表面に押し付けて、その裏面から所定の圧力(以下、「研磨圧力」という。)を金属膜に加えた状態で研磨定盤を回し、研磨液と隆起部上の金属膜との機械的摩擦によって隆起部上の金属膜を除去するものである。
 CMPに用いられる金属用研磨液は、一般には酸化剤及び固体砥粒(以下、単に「砥粒」という。)を含有し、必要に応じて酸化金属溶解剤、保護膜形成剤を更に含有する。酸化剤を含有する研磨液を用いたCMPの基本的なメカニズムは、まず酸化剤によって金属膜表面が酸化されて酸化層が形成され、その酸化層が砥粒によって削り取られることにより、金属膜が研磨されると考えられている。このような研磨方法では、絶縁膜の溝部に埋め込まれた金属膜表面の酸化層はパッドにあまり触れず、砥粒による削り取りの効果が及ばないので、CMPの進行とともに隆起部上の金属膜が除去されて基体表面は平坦化される(例えば、下記非特許文献1参照)。
 一般にLSIの製造において、研磨される銅合金薄膜の膜厚は1μm程度であり、研磨速度が5000Å/min程度となる研磨液が使用されている(例えば、下記特許文献2参照)。そして、近年では銅合金のCMP処理は、パッケージ基板等に代表される高性能・微細配線板の製造や、新しい実装方法として注目されているシリコン貫通ビア(TSV:Through Silicon Via)形成にも適用されようとしている。
特開平2-278822号公報 特開2003-124160号公報
ジャーナル・オブ・エレクトロケミカルソサエティ誌、第138巻、11号(1991年発行)、3460~3464頁
 しかし、これらの用途においてはLSIに比べて金属膜の膜厚が厚いため、従来のLSI用の研磨液では研磨速度が低く生産性が低下するという課題がある。特にTSVを形成する場合には、例えば膜厚4μm以上の金属膜を研磨する必要があるため、研磨速度及び研磨後の平坦性に優れた研磨が可能な研磨液が求められている。
 研磨後の平坦性は、埋め込み配線の周辺の領域に対する、埋め込み配線の表面の凹み具合で表される。配線表面が周辺の領域よりも凹んでいるほど平坦性が低下し、配線抵抗の悪化や、配線上に積層される上層のうねりの原因となる。平坦性を低下させる原因としては、研磨液により配線から銅が溶出する速度(エッチング速度)が高いことが挙げられる。そのため、エッチング速度は、平坦性を評価する指標のひとつとして扱うことができる。平坦性を向上させるためには、配線からの銅の溶出を抑制する、すなわちエッチング速度を低減する必要がある。
 また、銅を含む金属膜を研磨する際に発生する銅錯体の量は、比較的低速で研磨する場合よりも高速で研磨する場合の方が多い。そのため、銅を含む金属膜を高速で研磨する場合には、銅錯体がパッド上に残留してパッドの特性を低下させる現象(パッドステイン)が問題となっている。パッドに付着した銅錯体はパッドの目詰まりの原因となり、研磨速度を低下させるなどして生産性を低下させる。
 本発明は、これらの実情に鑑みてなされたものであり、従来の研磨液よりも研磨速度及び研磨後の平坦性を向上させつつ、銅を含む金属膜をパッドステインの発生が抑制された状態で研磨することが可能な銅研磨用研磨液及びそれを用いた研磨方法を提供することを目的とする。
 本発明者らは、有機酸、有機酸の塩及び有機酸の酸無水物から選択される少なくとも一種と、無機酸及び無機酸の塩から選択される少なくとも一種と、アミノ酸と、保護膜形成剤とを少なくとも含む研磨液において、これらの各成分の種類や含有量を制御することによって、上記課題を解決可能であることを見出した。具体的には、本発明者らは、上記有機酸及び無機酸として特定の化合物を使用した上で、上記各成分の含有量を特定の範囲とすることにより、研磨速度及び研磨後の平坦性を向上させつつ、銅を含む金属膜をパッドステインの発生が抑制された状態で研磨することが可能であることを見出した。
 すなわち、本発明は、水酸基を有する有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種である第1の有機酸成分と、2価以上の無機酸及び当該無機酸の塩から選択される少なくとも一種である無機酸成分と、アミノ酸と、保護膜形成剤と、砥粒と、酸化剤と、水とを含み、銅研磨用研磨液全体を基準として無機酸成分の無機酸換算の含有量が0.15質量%以上であり、アミノ酸の含有量が0.30質量%以上であり、保護膜形成剤の含有量が0.10質量%以上であり、保護膜形成剤の含有量に対する第1の有機酸成分の有機酸換算の含有量の比率が1.5以上である、銅研磨用研磨液を提供する。
 本発明に係る銅研磨用研磨液では、従来の研磨液と比べて、研磨速度及び研磨後の平坦性を向上させつつ、銅を含む金属膜をパッドステインの発生が抑制された状態で研磨することができる。これにより、本発明に係る銅研磨用研磨液では、高性能配線板やTSV等の製造のように厚い金属膜の研磨が必要となる用途においても、短時間で研磨処理が可能で、充分な生産性を確保できる。また、このような銅研磨用研磨液は、溶解作用の強い第1の有機酸成分、無機酸成分及びアミノ酸を含むpH緩衝溶液であるため、被研磨物を研磨して銅が研磨液中に溶解してもpH変動が起こりにくい。そのため、研磨の進行の程度に依存せず、安定して高い研磨速度を維持することができる。
 ここで、無機酸成分が無機酸の塩である場合、本発明でいう「無機酸成分の無機酸換算の含有量」とは、無機酸の塩の含有量(モル)と同モル量の無機酸の質量を示す。すなわち、無機酸の塩の含有量がXモルである場合、無機酸Xモルに相当する質量を示す。また、第1の有機酸成分が有機酸の塩や有機酸の酸無水物である場合、本発明でいう「第1の有機酸成分の有機酸換算の含有量」とは、有機酸の塩や有機酸の酸無水物の含有量(モル)と同モル量の有機酸の質量を示す。すなわち、有機酸の塩や有機酸の酸無水物の含有量がXモルである場合、有機酸Xモルに相当する質量を示す。
 なお、特に断りのない限り、本発明でいう「銅」には、純銅、銅合金、銅の酸化物、銅合金の酸化物等が包含される。また、特に断りのない限り、本発明でいう「銅を含む金属膜」とは、純銅膜、銅合金膜、銅の酸化物膜、銅合金の酸化物膜等からなる単一膜、これらの複合膜、上記単一膜又は上記複合膜と他の金属膜との積層膜などが包含される。
 また、本発明者らは、水酸基を有しない有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種を、本発明に係る銅研磨用研磨液が更に含むことにより、研磨速度及び研磨後の平坦性を更に高度に両立しつつ、銅を含む金属膜をパッドステインの発生が抑制された状態で研磨することが可能であることを見出した。以下、場合により、第1の有機酸成分、無機酸成分、アミノ酸、保護膜形成剤及び第2の有機酸成分の5成分の総称を「化学成分(ケミカル成分)」という。
 すなわち、本発明に係る銅研磨用研磨液は、水酸基を有しない有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種である第2の有機酸成分を更に含んでいてもよい。
 第1の有機酸成分の有機酸換算の含有量と第2の有機酸成分の有機酸換算の含有量との合計は、銅研磨用研磨液全体を基準として0.20質量%以上であることが好ましい。この場合、研磨速度を更に向上させることができる。なお、第2の有機酸成分が有機酸の塩や有機酸の酸無水物である場合、本発明でいう「第2の有機酸成分の有機酸換算の含有量」とは、有機酸の塩や有機酸の酸無水物の含有量(モル)と同モル量の有機酸の質量を示す。すなわち、有機酸の塩や有機酸の酸無水物の含有量がXモルである場合、有機酸Xモルに相当する質量を示す。
 第2の有機酸成分は、水酸基を有さずかつカルボキシル基を2つ以上有する有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種であり、当該有機酸の第1酸解離定数(pKa1)が1.0~3.0であることが好ましい。この場合、研磨速度を更に向上させることができる。なお、第1酸解離定数(pKa1)は、第1解離可能酸性基の酸解離定数を意味し、当該基の平衡定数Ka1の負の常用対数である。
 第2の有機酸成分は、シュウ酸、マレイン酸、無水マレイン酸及びマロン酸から選択される少なくとも一種であることが好ましい。この場合、研磨速度を更に向上させることができる。
 第1の有機酸成分の有機酸換算の含有量は、銅研磨用研磨液全体を基準として0.10質量%以上であることが好ましい。この場合、研磨速度を更に向上させることができる。
 第1の有機酸成分は、脂肪族ヒドロキシカルボン酸であることが好ましく、グリコール酸、リンゴ酸及びクエン酸から選択される少なくとも一種であることがより好ましい。この場合、研磨速度を更に向上させることができると共にパッドステインの発生を更に抑制することができる。
 本発明に係る銅研磨用研磨液のpHは、1.5~4.0であることが好ましい。この場合、pH緩衝溶液としての機能が向上し、安定して高い研磨速度を維持することが容易となる。
 無機酸成分は、硫酸及びリン酸から選択される少なくとも一種であることが好ましい。この場合、研磨速度及び平坦性を更に高度に両立することができる。
 アミノ酸は、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、シスチン、メチオニン、アスパラギン酸、グルタミン酸、リシン、アルギニン、フェニルアラニン、チロシン、ヒスチジン、トリプトファン、プロリン、オキシプロリン、アスパラギン及びグルタミンから選択される少なくとも一種であることが好ましく、グリシンであることがより好ましい。この場合、研磨後の平坦性を更に向上させつつ研磨速度を更に向上させることができる。
 保護膜形成剤は、キナルジン酸、アントラニル酸、サリチルアルドキシム、チアゾール化合物、トリアゾール化合物、イミダゾール化合物、ピラゾール化合物及びテトラゾール化合物から選択される少なくとも一種であることが好ましく、トリアゾール化合物であることがより好ましい。トリアゾール化合物は、ベンゾトリアゾール及びベンゾトリアゾール誘導体から選択される少なくとも一種であることが好ましい。これらの場合、本発明に係る銅研磨用研磨液を研磨速度と防食性とのバランスに優れた研磨液とすることができる。
 砥粒は、シリカ、アルミナ、ジルコニア、セリア、チタニア、炭化珪素、ポリスチレン、ポリアクリル及びポリ塩化ビニルから選択される少なくとも一種を含むことが好ましい、コロイダルシリカ及びコロイダルアルミナから選択される少なくとも一種を含むことがより好ましい。この場合、研磨速度及び平坦性を更に高度に両立することが可能である。
 砥粒の平均粒径は、100nm以下であることが好ましい。この場合、研磨速度及び平坦性を更に高度に両立することが可能である。
 酸化剤は、過酸化水素、過硫酸、過硫酸塩、過ヨウ素酸、過ヨウ素酸塩、ヨウ素酸塩及び臭素酸塩から選択される少なくとも一種であることが好ましい。この場合、研磨速度を更に向上させることができる。
 また、本発明は、上記銅研磨用研磨液を用いて銅を含む金属膜を研磨し、金属膜の少なくとも一部を除去する工程を備える、研磨方法を提供する。
 本発明に係る研磨方法では、従来の研磨液よりも研磨速度及び研磨終了後の平坦性を向上させつつ、銅を含む金属膜をパッドステインの発生が抑制された状態で研磨することができる。これにより、本発明に係る研磨方法では、高性能配線板やTSV等の製造のように厚い金属膜の研磨が必要となる用途においても、短時間で研磨処理が可能で充分な生産性及び製品歩留まりを確保できる。
 本発明によれば、従来の研磨液よりも研磨速度及び研磨後の平坦性を向上させつつ、銅を含む金属膜をパッドステインの発生が抑制された状態で研磨することができる。これにより、本発明によれば、高性能配線板やTSV等の製造のように厚い金属膜の研磨が必要となる用途においても、短時間で研磨処理が可能で充分な生産性を確保できる銅研磨用研磨液及びそれを用いた研磨方法を提供することができる。本発明によれば、従来の研磨液よりも、銅を含む金属膜に対して格段に速い研磨速度が得られ、例えば、銅に対する研磨速度が30000Å/min以上の研磨液が得られる。
本発明の一実施形態に係る銅研磨用研磨液をVIA-LASTに用いた場合の第1の工程を示す模式断面図である。 本発明の一実施形態に係る銅研磨用研磨液をVIA-LASTに用いた場合の第2の工程を示す模式断面図である。 本発明の一実施形態に係る銅研磨用研磨液をVIA-LASTに用いた場合の第3の工程を示す模式断面図である。
 本実施形態に係る銅研磨用研磨液(以下、場合により、単に「研磨液」という。)は、(A)水酸基を有する有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種である第1の有機酸成分と、(B)2価以上の無機酸及び当該無機酸の塩から選択される少なくとも一種である無機酸成分と、(C)アミノ酸と、(D)保護膜形成剤と、(E)砥粒と、(F)酸化剤と、(G)水とを含む。また、本実施形態に係る研磨液は、(H)水酸基を有しない有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種である第2の有機酸成分を更に含んでいてもよい。本実施形態に係る研磨液において、研磨液全体を基準として(B)成分の含有量は0.15質量%以上であり、(C)成分の含有量は0.30質量%以上であり、(D)成分の含有量は0.10質量%以上であり、(D)成分の含有量に対する(A)成分の含有量の比率は1.5以上である。
 (D)成分である保護膜形成剤は、銅表面に保護膜を形成することによる銅のエッチングの抑制効果がある一方、一般的には研磨速度を抑制してしまう場合があると共に、研磨時に不溶性の錯体を形成し、パッドステインの原因となる場合がある。これに対して本実施形態に係る研磨液では、(A)成分と(D)成分とを併用した上で、(D)成分の含有量に対する(A)成分の含有量を所定範囲とし、更に、(B)成分及び(C)成分を研磨液の含有成分として用いることで、研磨速度及び研磨後の平坦性を向上させつつ、パッドステインの発生を抑制できる。
 なお、本実施形態に係る研磨液によって研磨速度の向上効果が得られる理由は必ずしも明確ではないが、本発明者らは以下のように推察する。すなわち、(A)成分、(B)成分及び(D)成分の作用により、銅表面に(D)成分及び銅イオンを含む「反応層」が形成される。更に、(C)成分が銅イオンにキレート化することで、反応層がより除去しやすい状態となり、研磨が促進されるものと考えられる。
 このような複数の研磨プロセスは、それぞれが独立して同時並行に進むのではなく、個々の研磨プロセスが他の研磨プロセスと連関して進行すると考えられる。そのため、(A)成分、(B)成分、(C)成分、(D)成分のうちの一種の成分のみを増やしても、他の成分による研磨プロセスがボトルネック(律速過程)になり、全体としての研磨速度は効率的に向上しないと考えられる。一方、本実施形態に係る研磨液では、(B)成分、(C)成分及び(D)成分をそれぞれ特定量とした上で、(A)成分、(B)成分、(C)成分、(D)成分を用いることにより、各研磨プロセスが促進され、研磨速度を効率的に向上させることができると考えられる。
 また、本実施形態に係る研磨液は、(A)成分、(B)成分及び(C)成分をそれぞれ単独で又はこれらの中の2種を選択し使用する場合と比較して、所定の研磨速度の向上効果を得るために必要な上記成分の総含有量を低減することができるという効果を有する。更に、従来の研磨液では、研磨液へ溶解可能な含有量以上の(A)成分、(B)成分及び(C)成分から選択される少なくとも一種を研磨液が含有すると、研磨液の保存安定性が低下してしまうが、本実施形態に係る研磨液は、このような保存安定性の低下を抑制することができる。
 以下、本実施形態に係る研磨液について具体的に説明する。なお、本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
(研磨液のpH)
 研磨液のpHは、特に制限はなく、例えば1.0~13.0の範囲とすることができるが、CMPによる銅の研磨速度が更に向上する点で酸性又は中性の範囲(7.0以下)であることが好ましく、銅膜に腐食が生じづらくなる点で、1.5~4.0の範囲であることがより好ましい。研磨液のpHが1.5以上であると、過度なディッシングが発生する等のような、銅膜の平坦性が低下することを回避しやすくなる傾向があり、同様の観点から、研磨液のpHは2.0以上がより好ましい。研磨液のpHが4.0以下であると、CMPによる研磨速度が増加して更に実用的な研磨液となる傾向があり、同様の観点から、研磨液のpHは3.8以下がより好ましく、3.5以下が更に好ましい。
 本実施形態に係る研磨液は、(A)成分、(B)成分を含有し、任意に(H)成分を含有するpH緩衝溶液であることが好ましい。(B)成分である無機酸が強酸である場合、無機酸を多量に含有すると研磨液のpHが低下してしまい、pHを所定の範囲(例えば1.5~4.0の範囲)に調整することは困難である傾向がある。しかし、本実施形態に係る研磨液では、(B)成分に加えて(A)成分及び(C)成分を含有し、任意に(H)成分を含有しており、(A)成分、(H)成分、(B)成分及び(C)成分の含有量を調整することにより、本実施形態に係る研磨液を、容易にpHが所定の範囲(例えば1.5~4.0の範囲)のpH緩衝溶液とすることができる。
 研磨液のpHは、(A)成分、(H)成分、(B)成分及び(C)成分の含有量により適宜調整することができる。また、本実施形態に係る研磨液には、所望のpHに調整するために、酸性成分やアルカリ成分をpH調整剤として含有することができる。酸性成分としては、例えば塩酸、硝酸等の一価の無機酸などを挙げることができる。アルカリ成分としては、例えばアンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド等を挙げることができる。これらは単独で又は二種類以上を組み合わせて使用することができる。もちろん、pH調整剤を含まずに研磨液のpHが所望の範囲である場合には、研磨液がpH調整剤を含有する必要はない。
 研磨液のpHは、pHメータ(例えば、横河電機株式会社製の型番PH81)で測定することができる。pHの測定値としては、標準緩衝液(フタル酸塩pH緩衝液:pH4.01(25℃)、中性りん酸塩pH緩衝液:pH6.86(25℃))を用いて、2点校正した後、電極を研磨液に入れて、2分以上経過し安定した後の値を採用することができる。
((A)成分:水酸基を有する有機酸、当該有機酸の塩及び当該有機酸の酸無水物)
 (A)成分としては、研磨速度を向上可能であると共にパッドステインを抑制可能な点で、水酸基を有する有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種である第1の有機酸成分を使用する。(A)成分の有機酸は水酸基を有することから、水酸基を含有しない有機酸に比べて、銅膜の研磨により発生した不溶性の錯体をより水溶性の錯体に変化させることができるため、パッドステインの発生を抑制できると考えられる。なお、ここでいう水酸基とは、カルボキシル基に含まれる-OH基を含まない。
 (A)成分としては、特に制限はないが、水溶性である有機酸が好ましい。水酸基を有する有機酸としては、例えばグリコール酸、リンゴ酸、クエン酸、乳酸、酒石酸、シトラマル酸、イソクエン酸等の脂肪族ヒドロキシカルボン酸;
マンデル酸、3‐ヒドロキシフェニル酢酸、3,4-ジヒドロキシフェニル酢酸、2,5-ジヒドロキシフェニル酢酸等のヒドロキシフェニル酢酸;
サリチル酸、クレオチン酸、3-メトキシ-4-ヒドロキシ安息香酸、3,5-ジメトキシ-4-ヒドロキシ安息香酸等のモノヒドロキシ安息香酸;
2,3-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、3,4-ジヒドロキシ安息香酸、2,4-ジヒドロキシ-6-メチル安息香酸等のジヒドロキシ安息香酸;
2,3,4-トリヒドロキシ安息香酸、没食子酸、2,4,6‐トリヒドロキシ安息香酸等のトリヒドロキシ安息香酸;などが挙げられる。これらの有機酸の塩としては、例えば上記有機酸のアンモニウム塩等が挙げられる。上記有機酸の酸無水物としては、例えば無水乳酸等が挙げられる。上記(A)成分は、単独で又は二種類以上を組み合わせて使用することができる。これらの(A)成分の中でも、研磨速度の向上効果及びパッドステイン抑制効果に更に優れると共に、入手しやすい点で、脂肪族ヒドロキシカルボン酸が好ましく、グリコール酸、リンゴ酸及びクエン酸から選択される少なくとも一種がより好ましい。
 (A)成分の含有量(有機酸換算の含有量)は、研磨速度に更に優れる点で、研磨液全体を基準として0.10質量%以上が好ましく、0.20質量%以上がより好ましく、0.30質量%以上が更に好ましく、0.40質量%以上が特に好ましい。また、(A)成分を研磨液に一定量以上添加しても研磨速度は一定以上向上しない傾向があるため、(A)成分の使用量を抑制する点で、(A)成分の含有量は、研磨液全体を基準として5.00質量%以下が好ましく、4.00質量%以下がより好ましく、3.00質量%以下が更に好ましく、2.00質量%以下が特に好ましい。
((H)成分:水酸基を有しない有機酸、当該有機酸の塩及び当該有機酸の酸無水物)
 本実施形態に係る研磨液は、(A)成分とは異なる有機酸成分として(H)成分を含有してもよい。(H)成分としては、水酸基を有しない有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種である第2の有機酸成分を使用する。このような(H)成分を(A)成分と併用せずに単独で用いた場合には、研磨速度が向上する場合があるものの、パッドステインの発生を抑制する効果が充分でない傾向にある。一方、本実施形態に係る研磨液では、このような(H)成分を(A)成分と併用することで、パッドステイン抑制効果及び研磨速度の向上効果を更に高度に両立することができる。なお、ここでいう水酸基とは、カルボキシル基に含まれる-OH基を含まないものであり、(H)成分は、カルボキシル基を有する有機酸であってもよい。
 (H)成分としては、水酸基を有さず、かつ、カルボキシル基を2つ以上有する有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種が好ましい。カルボキシル基を2つ以上有する有機酸としては、その効果を発揮するために有効な量が溶解する程度の水溶性を有していることが好ましく、従来公知の物質を特に制限なく使用することができる。カルボキシル基を2つ有する有機酸としては、例えば、シュウ酸、マレイン酸、マロン酸、オキサロ酢酸等が挙げられる。カルボキシル基を3つ以上有する有機酸としては、例えば、トリメリット酸、1,2,4-ブタントリカルボン酸、1,2,3-プロパントリカルボン酸等が挙げられる。カルボキシル基を2つ以上有する有機酸の塩としては、例えば、上記有機酸のアンモニウム塩等が挙げられる。カルボキシル基を2つ有する有機酸の酸無水物としては、例えば、無水マレイン酸等が挙げられる。カルボキシル基を3つ以上有する有機酸の酸無水物としては、例えば、トリメリット酸無水物等が挙げられる。これらの中でも、CMPによる研磨速度を更に向上させることができるという点で、水酸基を有さず、かつ、カルボキシル基を2つ有する有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種が好ましく、シュウ酸、マレイン酸、無水マレイン酸、マロン酸がより好ましい。なお、(H)成分は、水酸基を有さずかつカルボキシル基を1つ有する有機酸、当該有機酸の塩及び当該有機酸の酸無水物でもよく、このような有機酸としては、例えば酢酸等の飽和脂肪酸などが挙げられる。上記(H)成分は、単独で又は二種類以上を組み合わせて使用することができる。
 カルボキシル基を2つ以上有する有機酸のpKa1は、銅との相互作用を強め、更に高い研磨速度を得る点で、3.0以下が好ましく、2.7以下がより好ましく、2.6以下が更に好ましく、2.5以下が極めて好ましい。カルボキシル基を2つ以上有する有機酸のpKa1は、1.0以上であればハロゲンの含有量が少ない傾向があり環境負荷を低減することができる点で、1.0以上が好ましい。カルボキシル基を2つ以上有しかつpKa1が1.0~3.0である有機酸としては、例えばシュウ酸、マレイン酸、マロン酸、オキサロ酢酸等が挙げられる。なお、有機酸の「pKa1」の値については、化学便覧、基礎編II(改訂5版、丸善(株))を参照することができる。
 (H)成分の含有量(有機酸換算の含有量)は、(A)成分の含有量との合計が所定範囲であることが好ましい。すなわち、(A)成分の含有量と(H)成分の含有量との合計は、研磨速度に更に優れる点で、研磨液全体を基準として0.20質量%以上が好ましく、0.30質量%以上がより好ましく、0.40質量%以上が更に好ましい。また、(H)成分を一定量以上添加しても研磨速度は一定以上向上しない傾向があるため、(H)成分の使用量を抑制する点で、(A)成分の含有量と(H)成分との含有量の合計は、研磨液全体を基準として5.00質量%以下が好ましく、4.00質量%以下がより好ましく、3.00質量%以下が更に好ましく、2.00質量%以下が特に好ましい。
((B)成分:2価以上の無機酸及び当該無機酸の塩)
 (B)成分としては、公知の2価以上の無機酸及び当該無機酸の塩を特に制限なく使用することが可能であり、2価の無機酸及び当該無機酸の塩が好ましい。2価以上の無機酸としては、例えば、硫酸、亜硫酸、ホスホン酸等の2価の無機酸や、リン酸等の3価の無機酸などが挙げられる。これらの無機酸の塩としては、上記無機酸のアンモニウム塩等が挙げられる。これらの(B)成分の中でも、CMPによる研磨速度を更に大きくできると共に、銅膜の平坦性を更に向上できる点で、硫酸と、リン酸と、硫酸及びリン酸の混合物とから選択される少なくとも一種が好ましい。上記(B)成分は、単独で又は二種類以上を組み合わせて使用することができる。なお、1価の無機酸は、研磨速度の向上効果が小さいが、(B)成分と共に併用されてもよい。
 (B)成分の含有量(無機酸換算の含有量)は、研磨速度に優れる点で、研磨液全体を基準として0.15質量%以上であり、0.18質量%以上が好ましく、0.20質量%以上がより好ましい。(B)成分の含有量は、(B)成分を研磨液に一定量以上加えても研磨速度が一定以上増加しない傾向があるため、(B)成分の使用量を抑制する点で、研磨液全体を基準として5.00質量%以下が好ましく、4.00質量%以下がより好ましく、3.00質量%以下が更に好ましく、2.00質量%以下が特に好ましい。
((C)成分:アミノ酸)
 (C)成分は、pHを調整し、かつ銅を溶解させる目的で使用されるアミノ酸である。このようなアミノ酸としては、わずかでも水に溶解するものであれば特に制限はなく、例えば、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、シスチン、メチオニン、アスパラギン酸、グルタミン酸、リシン、アルギニン、フェニルアラニン、チロシン、ヒスチジン、トリプトファン、プロリン、オキシプロリン、アスパラギン、グルタミン等が挙げられる。これらは単独で又は二種類以上を組み合わせて使用することができる。
 上記(C)成分の中でも、研磨液のpHを例えば1.5~4.0に調整し易いという点で、第1酸解離定数(pKa1)が2.0~3.0のアミノ酸を使用することが好ましい。このようなアミノ酸としては、上記例示した化合物の中では、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、メチオニン、アスパラギン酸、グルタミン酸、リシン、アルギニン、トリプトファン等が挙げられる。研磨速度及び平坦性の向上効果が高く、安価である点で、特にグリシンが好ましい。なお、(C)成分が単一のpKaを有する化合物である場合には、当該単一のpKaを「pKa1」という。アミノ酸の「pKa1」の値については、化学便覧、基礎編II(改訂5版、丸善(株))を参照することができる。
 (C)成分の含有量は、研磨速度に優れる点で、研磨液全体を基準として0.30質量%以上であり、0.35質量%以上が好ましい。(C)成分の含有量は、(C)成分を研磨液に一定量以上加えても研磨速度が一定以上増加しない傾向があるため、(C)成分の使用量を抑制する点で、研磨液全体を基準として5.00質量%以下が好ましく、4.00質量%以下がより好ましく、3.00質量%以下が更に好ましく、2.00質量%以下が特に好ましい。
((D)成分:保護膜形成剤)
 (D)成分である保護膜形成剤とは、銅表面に対して保護膜を形成する作用を有する物質をいい、防食剤やインヒビターとも呼ばれる物質である。ただし、上述のように保護膜形成剤は、研磨進行時に除去される「反応層」を構成していると考えられ、必ずしも銅が研磨されるのを防ぐための「保護膜」を形成する必要はない。
 (D)成分としては、保護膜形成剤の添加効果を発揮するために有効な量が溶解する程度の水溶性を有していればよく、従来公知の物質を特に制限なく使用することができる。(D)成分としては、例えば、キナルジン酸、アントラニル酸、サリチルアルドキシム、チアゾール化合物、トリアゾール化合物、イミダゾール化合物、ピラゾール化合物、テトラゾール化合物等の保護膜形成剤が挙げられ、これらの中でもトリアゾール化合物が好ましい。上記(D)成分は、単独で又は二種類以上を組み合わせて使用することができる。
 チアゾール化合物とは、分子内にチアゾール骨格を有する化合物をいい、具体的には例えば、2-メルカプトベンゾチアゾール等が挙げられる。
 トリアゾール化合物とは、分子内にトリアゾール骨格を有する化合物をいい、具体的には例えば、1,2,3-トリアゾール;
1,2,4-トリアゾール;
3-アミノ-1H-1,2,4-トリアゾール等のトリアゾール誘導体;ベンゾトリアゾール;
1-ヒドロキシベンゾトリアゾール、1-ジヒドロキシプロピルベンゾトリアゾール、2,3-ジカルボキシプロピルベンゾトリアゾール、4-ヒドロキシベンゾトリアゾール、4-カルボキシル-1H-ベンゾトリアゾール、4-カルボキシル-1H-ベンゾトリアゾールメチルエステル、4-カルボキシル-1H-ベンゾトリアゾールブチルエステル、4-カルボキシル-1H-ベンゾトリアゾールオクチルエステル、5-ヘキシルベンゾトリアゾール、[1,2,3-ベンゾトリアゾリル-1-メチル][1,2,4-トリアゾリル-1-メチル][2-エチルヘキシル]アミン、トリルトリアゾール(別名:5-メチル-1H-ベンゾトリアゾール)、ビス[(1-ベンゾトリアゾリル)メチル]ホスホン酸等のベンゾトリアゾール誘導体;
ナフトトリアゾール;
2-メチルナフトトリアゾール等のナフトトリアゾール誘導体などが挙げられる。これらの中でも、研磨速度と防食性とのバランスに優れるという点で、ベンゾトリアゾール及びベンゾトリアゾール誘導体から選択される少なくとも一種を使用することが好ましい。
 イミダゾール化合物とは、分子内にイミダゾール骨格を有する化合物をいい、具体的には例えば、2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、2-プロピルイミダゾール、2-ブチルイミダゾール、4-メチルイミダゾール、2,4-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-アミノイミダゾール等が挙げられる。
 ピラゾール化合物とは、分子内にピラゾール骨格を有する化合物をいい、具体的には例えば、3,5-ジメチルピラゾール、3-アミノ-5-メチルピラゾール、4-メチルピラゾール、3-アミノ-5-ヒドロキシピラゾール等が挙げられる。
 テトラゾール化合物とは、分子内にテトラゾール骨格を有する化合物をいい、具体的には例えば、1H-テトラゾール、5-アミノ-1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾール、1-(2-ジアミノエチル)-5-メルカプトテトラゾール等が挙げられる。
 (D)成分の含有量は、エッチング速度を低減しつつ、研磨速度を向上させることができる点で、研磨液全体を基準として0.10質量%以上であり、0.11質量%以上が好ましく、0.12質量%以上がより好ましい。(D)成分の含有量は、一定以上加えてもエッチング速度が一定以上低減しない傾向があるため(D)成分の使用量を抑制する点で、研磨液全体を基準として2.00質量%以下が好ましく、1.50質量%以下がより好ましい。
 本発明者らは、保護膜形成成分である(D)成分の含有量に対する(A)成分の含有量を特定の範囲とすることで、パッドステイン抑制効果及び研磨速度の向上効果を両立することに有効であることを見出した。(D)成分の含有量が増加する場合、(D)成分に由来する不溶性の錯体の発生量が増加する傾向がある。従って、(D)成分の含有量が増加する場合、(A)成分の含有量を増加させる必要がある。(D)成分の含有量に対する(A)成分の含有量の比率(質量比をいい、「(A)成分の含有量(質量%)/(D)成分の含有量(質量%)」として計算される)は、パッドステイン抑制効果及び研磨速度の向上効果に優れる点、及び、(D)成分を研磨液に一定量以上加えてもエッチング速度が一定以上低減しない傾向があるため(D)成分の使用量を抑制する点で、1.5以上であり、1.7以上が好ましく、2.0以上が更に好ましく、2.5以上が特に好ましい。また、(A)成分を研磨液に一定量以上添加してもパッドステインの抑制効果は一定以上向上しない傾向があるため(A)成分の使用量を抑制する点で、上記比率は、15.0以下が好ましく、10.0以下がより好ましく、8.0以下が更に好ましい。
((E)成分:砥粒)
 (E)成分としては、特に制限はなく、例えば、シリカ、アルミナ、ジルコニア、セリア、チタニア又は炭化珪素等を含む無機物砥粒、ポリスチレン、ポリアクリル又はポリ塩化ビニル等を含む有機物砥粒を挙げることができる。これらの中でも、研磨液中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数が少ない点で、シリカ及びアルミナが好ましく、平均粒径の制御が容易であり、研磨特性に更に優れる点で、コロイダルシリカ、コロイダルアルミナがより好ましく、コロイダルシリカが更に好ましい。コロイダルシリカの製造方法としては、シリコンアルコキシドの加水分解又は珪酸ナトリウムのイオン交換による方法が知られている。コロイダルアルミナの製造方法としては、硝酸アルミニウムの加水分解による方法が知られている。これらの(E)成分は、単独で又は二種類以上を組み合わせて使用することができる。
 また、研磨速度及び表面平坦性を更に高度に両立することが可能である点で、砥粒の平均粒径は100nm以下であることが好ましく、80nm以下であることがより好ましい。(E)成分としては、コロイダルシリカ及びコロイダルアルミナから選択される少なくとも一種を含む砥粒であり、かつ、その砥粒の平均粒径が100nm以下であることがより好ましい。砥粒の平均粒径の下限は、特に限定されるものではないが、例えば10nmである。なお、砥粒の平均粒径とは、研磨液中の平均粒径であり、研磨液をレーザ回折式粒度分布計(例えば、COULTER Electronics社製の商品名COULTER N4 SD)で測定したときのD50の値(体積分布のメジアン径、累積中央値)をいう。また、一般的に、コロイダルシリカ及びコロイダルアルミナから選択される少なくとも一種を含む砥粒を用いる場合、コロイダルシリカ又はコロイダルアルミナの状態で測定した平均粒径は、他の成分と混合して研磨液とした場合の平均粒径とほぼ同じとなる。
 (E)成分の含有量は、物理的な研削作用が充分に得られ研磨速度が更に高くなる点で、研磨液全体を基準として0.10質量%以上が好ましく、0.20質量%以上がより好ましい。また、(E)成分を研磨液に一定量以上加えても研磨速度が一定以上増加しない傾向があるため(E)成分の使用量を抑制する点、及び、砥粒の凝集や研磨傷を抑制する点で、(E)成分の含有量は、研磨液全体を基準として10.0質量%以下が好ましく、5.00質量%以下がより好ましい。
((F)成分:酸化剤)
 (F)成分としては、銅に対する酸化作用を有する酸化剤であれば特に制限なく使用することができる。酸化剤としては、例えば、過酸化水素(H)、過硫酸、過硫酸塩、過ヨウ素酸、過ヨウ素酸塩、ヨウ素酸塩、臭素酸塩等が挙げられる。塩としては、カリウム塩、アンモニウム塩等を挙げることができる(例えば過硫酸アンモニウム、過硫酸カリウム、過ヨウ素酸カリウム)。これらの中でも、研磨速度が更に優れる点で、過酸化水素、過硫酸及び過硫酸塩から選択される少なくとも一種が好ましい。これらの(F)成分は単独で又は二種類以上を組み合わせて使用することができる。
 (F)成分の含有量は、更に良好な研磨速度が得られやすい点で、研磨液全体を基準として0.10質量%以上が好ましく、0.20質量%以上がより好ましい。また、(F)成分を過剰に含有すると、研磨速度が向上しないか又はかえって低下する場合がある。そのため、(F)成分の含有量の増加を抑制しつつ研磨速度を更に向上させる点で、(F)成分の含有量は、研磨液全体を基準として25.0質量%以下が好ましく、20.0質量%以下がより好ましい。
((G)成分:水)
 研磨液の媒体である(G)成分としては、特に制限されないが、脱イオン水、イオン交換水、超純水等が好ましい。研磨液における(G)成分の含有量は、上記含有成分の含有量の残部でよく、研磨液中に含有されていれば特に限定されない。なお、研磨液は、必要に応じて水以外の溶媒、例えばエタノール、アセトン等の極性溶媒などを更に含有してもよい。
 研磨液は、上記成分の他に、分散剤や着色剤等のように一般にCMP研磨液に使用される材料を、研磨液の作用効果を損なわない範囲で含有してもよい。
(研磨方法)
 本実施形態に係る研磨方法は、本実施形態に係る研磨液を用いて銅を含む金属膜を研磨し、金属膜の少なくとも一部を除去する研磨工程を備えることを特徴とする。研磨工程では、例えば、被研磨膜として金属膜を表面(例えば主面)に有する基板の当該金属膜と研磨布との間に上記研磨液を供給しながら、基板の金属膜を研磨布の表面に押圧した状態で基板と研磨布とを相対的に動かすことにより金属膜を研磨して、金属膜の少なくとも一部を除去する。
 本実施形態に係る研磨液は、従来の銅研磨用研磨液と比較して、銅を含む金属膜に対する研磨速度が極めて速いという特徴を有しており、例えば、LSI等のパッケージ基板等に代表される高性能・微細配線板の製造工程において厚い金属膜を研磨する用途に特に好適に使用することができる。より具体的には、研磨されるべき銅を含む金属膜の厚みが例えば4μm以上である基板を研磨する場合に特に好適に使用することができる。このような本実施形態では、CMP工程での使用に適する、研磨速度及び研磨後の平滑性の高い銅研磨用研磨液及びそれを用いた研磨方法を提供することができる。
 また、本実施形態によれば、研磨液の、銅を含む金属膜の研磨のための使用が提供される。また、本実施形態によれば、研磨液の、厚い金属膜(例えば4μm以上の金属膜)の研磨のための使用が提供される。
 このように非常に厚い金属膜を研磨する必要がある工程として、シリコン貫通ビア(TSV)形成工程を挙げることができる。TSVの形成方法は様々な方法が提案されているが、具体例として、素子を形成した後にビアを形成するVIA-LASTといわれる方法がある。以下、図面を参照しながら、VIA-LAST工程において、本実施形態に係る研磨液を用いた場合の使用方法を説明する。
 図1は、シリコン基板1上に銅膜4を形成する第1の工程を示す模式断面図である。図1(a)に示すように、シリコン基板1上の所定の位置に、素子2を形成する。次に、図1(b)に示すように、貫通ビアとするための凹部3をプラズマエッチング等の方法により形成する。次に、スパッタリングや電解メッキ等の方法により、凹部3を埋め込むように銅を積層して銅膜4を形成し、図1(c)に示すような構造の基板100を得る。
 図2は、このように形成した基板100を研磨し、片面にバンプ5を形成する第2の工程を示す模式断面図である。図2(a)における銅膜4の表面と、パッド(図示せず)との間に上記研磨液を供給しながら、図2(b)に示すように、素子2が露出するまで銅膜4を研磨する。
 より具体的には、基板100の銅膜4と、研磨定盤のパッドの表面との間に上記研磨液を供給しながら、基板100の銅膜4をパッドの表面に押圧した状態で、研磨定盤と基板100とを相対的に動かすことによって銅膜4を研磨する。パッドの代わりに、金属製又は樹脂製のブラシを使用してもよい。また、研磨液を所定の圧力で吹きつけることで研磨してもよい。
 研磨装置としては、例えばパッドにより研磨する場合、回転数が変更可能なモータ等に接続されていると共にパッドを貼り付けることができる研磨定盤と、研磨される基板を保持できるホルダとを有する一般的な研磨装置を使用できる。パッドとしては、特に制限はなく、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等を使用できる。
 研磨条件には制限はないが、研磨定盤の回転速度は、基板が飛び出さないように200rpm以下の低回転が好ましい。被研磨面を有する基板のパッドへの押し付け圧力(研磨圧力)は、1~100kPaが好ましく、CMP速度の被研磨面内の均一性及びパターンの平坦性を向上させるためには、5~50kPaがより好ましい。研磨している間、パッドには研磨液をポンプ等で連続的に供給してもよい。この供給量に制限はないが、パッドの表面が常に研磨液で覆われていることが好ましい。
 研磨終了後の基板は、流水中でよく洗浄後、スピンドライ等を用いて基板上に付着した水滴を払い落としてから乾燥させることが好ましい。パッドの表面状態を常に同一にしてCMPを行うために、研磨の前にパッドのコンディショニング工程を入れることが好ましい。例えば、ダイヤモンド粒子のついたドレッサを用いて、少なくとも水を含む液でパッドのコンディショニングを行う。続いて本実施形態に係る研磨液を用いたCMP研磨工程を実施し、更に、基板洗浄工程を実施することが好ましい。
 続いて、図2(c)に示すように、露出した銅膜4の表面部分に、電解メッキ等の方法によりバンプ5を形成し、片面にバンプ5を有する基板200を得る。バンプ5の材質としては、銅等を挙げることができる。
 図3は、もう一方の面にバンプ6を形成する第3の工程を示す模式断面図である。図3(a)に示す状態の基板200において、シリコン基板1におけるバンプ5の形成されていない面(バンプ5が形成されている面の反対面)を、CMP等の方法により研磨し、銅膜4を露出させる(図3(b))。次に、上記バンプ5の形成方法と同様の方法により、バンプ6を形成する。以上により、TSVが形成された基板300が得られる(図3(c))。
 以下、実施例により本発明を説明するが、本発明はこれらの実施例に制限されるものではない。なお、特に限定しない限り、「%」とは「質量%」を意味するものとする。
(研磨液の作製)
(実施例1)
 濃度85%のリン酸6.4g、グリシン13.3g、ベンゾトリアゾール1.9g、クエン酸10.7g、及び、砥粒として平均粒径70nmのコロイダルシリカ(砥粒含有量20%)50gを純水600gに加えて、コロイダルシリカ以外の成分を溶解させ、純水を更に加えて全量を700gとした。これに過酸化水素水(試薬特級、30%水溶液)300gを加えて、全量1000gの研磨液1を得た。
(実施例2)
 クエン酸10.7gをリンゴ酸10.7gに変更したこと以外は実施例1と同様にして研磨液2を作製した。
(実施例3)
 クエン酸10.7gをグリコール酸10.7gに変更したこと以外は実施例1と同様にして研磨液3を作製した。
(実施例4)
 クエン酸10.7gをクエン酸5.3g及びシュウ酸5.3gに変更し、純水の添加量を調整して全量1000gとしたこと以外は実施例1と同様にして研磨液4を作製した。
(実施例5)
 クエン酸10.7gをクエン酸5.3g及びマレイン酸5.3gに変更し、純水の添加量を調整して全量1000gとしたこと以外は実施例1と同様にして研磨液5を作製した。
(実施例6)
 クエン酸の添加量を5.3gに変更し、純水の添加量を調整して全量1000gとしたこと以外は実施例1と同様にして研磨液6を作製した。
(実施例7)
 濃度85%のリン酸の添加量を3.2gに変更し、純水の添加量を調整して全量1000gとしたこと以外は実施例1と同様にして研磨液7を作製した。
(実施例8)
 濃度85%のリン酸6.4g、グリシン10.7g、ベンゾトリアゾール1.9g、クエン酸10.7g、及び、砥粒として平均粒径70nmのコロイダルシリカ(砥粒含有量20%)50gを純水600gに加えて、コロイダルシリカ以外の成分を溶解させ、純水を更に加えて全量を690gとした。これに過酸化水素水(試薬特級、30%水溶液)300gを加えて全量990gとした後に、濃度25%のアンモニア水を添加し研磨液のpHを2.4とした。その後、残分の純水を加え全量1000gの研磨液8を作製した。また、最終的な研磨液のpHが2.4であることも確認した。
(実施例9)
 濃度85%のリン酸6.4g、グリシン5.3g、ベンゾトリアゾール1.9g、クエン酸10.7g、及び、砥粒として平均粒径70nmのコロイダルシリカ(砥粒含有量20%)50gを純水600gに加えて、コロイダルシリカ以外の成分を溶解させ、純水を更に加えて全量を690gとした。これに過酸化水素水(試薬特級、30%水溶液)300gを加えて全量990gとした後に、濃度25%のアンモニア水を添加し研磨液のpHを2.4とした。その後、残分の純水を加え全量1000gの研磨液9を作製した。また、最終的な研磨液のpHが2.4であることも確認した。
(実施例10)
 ベンゾトリアゾールの添加量を1.3gに変更し、純水の添加量を調整して全量1000gとしたこと以外は実施例1と同様にして研磨液10を作製した。
(実施例11)
 ベンゾトリアゾールの添加量を2.7gに変更し、純水の添加量を調整して全量1000gとしたこと以外は実施例1と同様にして研磨液11を作製した。
(実施例12)
 濃度85%のリン酸5.4gを濃度96%の硫酸5.8gに変更し、純水の添加量を調整して全量1000gとしたこと以外は実施例1と同様にして研磨液12を作製した。
(実施例13)
 グリシン13.3gをアラニン13.3gに変更したこと以外は実施例1と同様にして研磨液13を作製した。
(実施例14)
 ベンゾトリアゾール1.9gを5-メチルベンゾトリアゾール(トリルトリアゾール)1.3gに変更し、純水の添加量を調整して全量1000gとしたこと以外は実施例1と同様にして研磨液14を作製した。
(実施例15)
 ベンゾトリアゾールの添加量を1.3gに変更し、クエン酸の添加量を2.5gに変更し、マレイン酸8.2gを添加し、純水の添加量を調整して全量1000gとしたこと以外は実施例1と同様にして研磨液15を作製した。
(比較例1)
 濃度85%のリン酸6.4g、グリシン13.3g、ベンゾトリアゾール1.9g及び、砥粒として平均粒径70nmのコロイダルシリカ(砥粒含有量20%)50gを純水600gに加えて、コロイダルシリカ以外の成分を溶解させ、純水を更に加えて全量を700gとした。これに過酸化水素水(試薬特級、30%水溶液)300gを加えて、全量1000gの研磨液X1を得た。
(比較例2)
 濃度85%のリン酸の添加量を1.65gに変更し、クエン酸を10.7g添加して、純水の添加量を調整して全量1000gとしたこと以外は比較例1と同様にして研磨液X2を作製した。
(比較例3)
 濃度85%のリン酸の添加量を0.24gに変更し、クエン酸を10.7g添加して、純水の添加量を調整して全量1000gとしたこと以外は比較例1と同様にして研磨液X3を作製した。
(比較例4)
 濃度85%のリン酸6.4g、グリシン2.7g、ベンゾトリアゾール1.9g、クエン酸10.7g、及び、砥粒として平均粒径70nmのコロイダルシリカ(砥粒含有量20%)50gを純水600gに加えて、コロイダルシリカ以外の成分を溶解させ、純水を更に加えて全量を690gとした。これに過酸化水素水(試薬特級、30%水溶液)300gを加えて全量990gとした後に、濃度25%のアンモニア水を添加し研磨液のpHを2.4とした。その後、残分の純水を加え全量1000gの研磨液X4を作製した。また、最終的な研磨液のpHが2.4であることも確認した。
(比較例5)
 濃度85%のリン酸6.4g、ベンゾトリアゾール1.9g、クエン酸10.7g、及び、砥粒として平均粒径70nmのコロイダルシリカ(砥粒含有量20%)50gを純水600gに加えて、コロイダルシリカ以外の成分を溶解させ、純水を更に加えて全量を690gとした。これに過酸化水素水(試薬特級、30%水溶液)300gを加えて全量990gとした後に、濃度25%のアンモニア水を添加し研磨液のpHを2.4とした。その後、残分の純水を加え全量1000gの研磨液X5を作製した。また、最終的な研磨液のpHが2.4であることも確認した。
(比較例6)
 ベンゾトリアゾールを添加せず、クエン酸を10.7g添加して、純水の添加量を調整して全量1000gとしたこと以外は比較例1と同様にして研磨液X6を作製した。
(比較例7)
 ベンゾトリアゾールの添加量を0.3gに変更し、クエン酸を10.7g添加して、純水の添加量を調整して全量1000gとしたこと以外は比較例1と同様にして研磨液X7を作製した。
(比較例8)
 ベンゾトリアゾールの添加量を0.8gに変更し、クエン酸を10.7g添加して、純水の添加量を調整して全量1000gとしたこと以外は比較例1と同様にして研磨液X8を作製した。
(比較例9)
 ベンゾトリアゾールの添加量を3.7gに変更し、クエン酸を5.3g添加して、純水の添加量を調整して全量1000gとしたこと以外は比較例1と同様にして研磨液X9を作製した。
(比較例10)
 クエン酸を2.7g添加して、純水の添加量を調整して全量1000gとしたこと以外は比較例1と同様にして研磨液X10を作製した。
(比較例11)
 シュウ酸を10.7g添加して、純水の添加量を調整して全量1000gとしたこと以外は比較例1と同様にして研磨液X11を作製した。
(比較例12)
 マロン酸を10.7g添加して、純水の添加量を調整して全量1000gとしたこと以外は比較例1と同様にして研磨液X12を作製した。
(比較例13)
 マレイン酸を10.7g添加して、純水の添加量を調整して全量1000gとしたこと以外は比較例1と同様にして研磨液X13を作製した。
(比較例14)
 酢酸を10.7g添加して、純水の添加量を調整して全量1000gとしたこと以外は比較例1と同様にして研磨液X14を作製した。
(研磨液のpH測定)
 上記研磨液1~15、X1~X14のpHを横河電機株式会社製の型番PH81を用いて測定した。
(エッチング速度測定)
 攪拌した研磨液(室温(25℃)、攪拌600rpm)へ銅膜が製膜された測定基板を浸漬し、浸漬前後の銅膜の膜厚差を電気抵抗値から換算して求めた。測定基板は、直径8インチ(20cm)(φ)サイズのシリコン基板上に厚さ20μmの銅膜が製膜された基板(グローバルネット社製)を2cm×2cmに切断したチップを用いた。研磨液の液量は100mlとした。銅膜の膜厚差を浸漬時間(min)で除することによりエッチング速度を算出した。
(研磨速度測定)
 直径8インチ(20cm)(φ)サイズのシリコン基板上に厚さ20μmの銅膜が製膜された基板(グローバルネット社製)を用意した。この基板を使用し、上記研磨液1~15及び研磨液X1~X5、X9~14を、研磨装置の定盤に貼り付けたパッドに滴下しながら、CMP研磨を行った。なお、エッチング速度が非常に大きい結果が得られた研磨液X6~X8については、研磨速度測定を行なわなかった。
 なお、研磨条件は下記の通りである。
 研磨装置:CMP用研磨機(アプライドマテリアルズ製、商品名:Mirra)
 パッド:独立気泡を持つ発泡ポリウレタン樹脂(商品名:IC-1010、ロームアンドハース社製)
 研磨圧力:32kPa
 定盤/ヘッド回転速度:110/105rpm
 研磨液流量:200ml/min
 以下のようにして研磨速度を算出した。まず、日立国際電気エンジニアリング社製の金属膜厚測定器VR-120型(商品名)を用いて、銅膜表面における基板の直径方向に等間隔(約2.4mm間隔)に並んだ81か所のそれぞれの点でシート抵抗を測定し、CMP研磨前後のそれぞれでシート抵抗の平均値を算出した。そして、研磨前後のシート抵抗の平均値の差から換算してCMP研磨前後での銅膜の膜厚差を求め、膜厚差を研磨時間(min)で除することにより研磨速度を算出した。
(パッドステイン評価)
 研磨速度測定後のパッドを目視にて観察し、パッドステインの有無を評価した。
 研磨液1~15、X1~X14の構成成分、各研磨液のpH、並びに、エッチング速度測定、研磨速度測定及びパッドステイン評価の評価結果を表1~4に示す。なお、「ケミカル成分」には、(B)成分に該当しないアンモニアは含まれないものとする。また、表1~4中のパッドステイン評価について、パッドステインが発生しない場合を「A」と表記し、パッドステインが発生した場合を「B」と表記する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4に示す結果より下記のことが確認された。すなわち、実施例1~15におけるそれぞれの研磨液1~15は、良好なエッチング速度及び研磨速度が得られ、パッドステインは観察されなかった。
 一方、(A)成分を含有していない研磨液X1では、研磨速度が低下し、パッドステインが観察された。(B)成分の含有量を本発明の範囲外とした点で研磨液1と異なる研磨液X2,3では、研磨速度が大きく低下した。(C)成分の含有量を本発明の範囲外とした点で研磨液1と異なる研磨液X4及びX5では、研磨速度が低下した。(D)成分の含有量を本発明の範囲外とした点で研磨液1と異なる研磨液X6、X7及びX8では、エッチング速度が大きく増加した。(D)成分の含有量に対する(A)成分の含有量の比率が本発明の範囲外である研磨液X9、X10では、研磨速度が低下しかつパッドステインが観察された。(H)成分を含有するものの(A)成分を含有していない研磨液X11、X12及びX13では、研磨速度は充分に得られたもののパッドステインが観察された。(H)成分としてカルボキシル基を1つ有する酢酸を含有するものの(A)成分を含有していない研磨液X14では、研磨速度が低下し、パッドステインも観察された。
 また、研磨液1を基準として(A)成分、(B)成分、(C)成分の含有量をそれぞれ増減させた場合((B)成分については研磨液7並びに研磨液X2及びX3、(C)成分については研磨液8及び9並びに研磨液X4及びX5、(A)成分については研磨液6及び研磨液X10)、良好な研磨速度(例えば研磨速度30000Å/min以上)を達成するためには、(A)成分、(B)成分、(C)成分のそれぞれが一定の含有量以上でなければならないことが分かる。
 また、各成分とも比較的低い添加量における研磨速度の増加割合に比べて、比較的高い添加量における研磨速度の増加割合は低いことが分かる。例えば、(B)成分の含有量が0.14質量%以下では(研磨液X2及びX3)、研磨速度は10000Å/min以下である。また、(B)成分の含有量が0.27質量%では(研磨液7)、研磨速度は30000Å/minを超える一方、(B)成分の含有量を0.27質量%(研磨液7)から0.54質量%(研磨液1)まで増加させても、研磨速度は1000Å/minしか増加しないことが分かる。
 このことから、目標の研磨速度を得るためには、一定量以上の(B)成分が必要であるが、(B)成分のみを増加させても研磨速度の増加は頭打ちとなり、(B)成分の含有量のみを増大させることは研磨速度の向上効率が良くないといえる。このように、(A)成分、(B)成分及び(C)成分をそれぞれ単独又はこれらの中の2種を選択し使用してもある程度研磨速度を向上させることはできるが、各成分を一定量以上添加して、各成分をバランス良く増加させることで効率的に研磨速度を更に向上させることができることが分かる。
 以上の結果から、優れたエッチング速度と研磨速度を示すと共にパッドステインが観察されない研磨液を得るためには、(A)成分と一定量以上の(B)成分、(C)成分及び(D)成分とが必要であり、(D)成分の含有量に対する(A)成分の含有量の比率が一定値以上必要であることが確認された。このように銅に対する研磨速度が30000Å/minを超えるような研磨液は、特に、短時間で大量に銅を研磨する用途、例えばTSV形成用途に適している。
 1…シリコン基板、2…素子、4…銅膜、5,6…バンプ、100,200,300…基板。

Claims (20)

  1.  水酸基を有する有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種である第1の有機酸成分と、2価以上の無機酸及び当該無機酸の塩から選択される少なくとも一種である無機酸成分と、アミノ酸と、保護膜形成剤と、砥粒と、酸化剤と、水とを含み、
     銅研磨用研磨液全体を基準として前記無機酸成分の無機酸換算の含有量が0.15質量%以上であり、前記アミノ酸の含有量が0.30質量%以上であり、前記保護膜形成剤の含有量が0.10質量%以上であり、
     前記保護膜形成剤の含有量に対する前記第1の有機酸成分の有機酸換算の含有量の比率が1.5以上である、銅研磨用研磨液。
  2.  水酸基を有しない有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種である第2の有機酸成分を更に含む、請求項1に記載の研磨液。
  3.  前記第1の有機酸成分の有機酸換算の含有量と前記第2の有機酸成分の有機酸換算の含有量との合計が、研磨液全体を基準として0.20質量%以上である、請求項2に記載の研磨液。
  4.  前記第2の有機酸成分が、水酸基を有さずかつカルボキシル基を2つ以上有する有機酸、当該有機酸の塩及び当該有機酸の酸無水物から選択される少なくとも一種であり、当該有機酸の第1酸解離定数が1.0~3.0である、請求項2又は3に記載の研磨液。
  5.  前記第2の有機酸成分が、シュウ酸、マレイン酸、無水マレイン酸及びマロン酸から選択される少なくとも一種である、請求項2~4のいずれか一項に記載の研磨液。
  6.  前記第1の有機酸成分の有機酸換算の含有量が、研磨液全体を基準として0.10質量%以上である、請求項1~5のいずれか一項に記載の研磨液。
  7.  前記第1の有機酸成分が脂肪族ヒドロキシカルボン酸である、請求項1~6のいずれか一項に記載の研磨液。
  8.  前記第1の有機酸成分が、グリコール酸、リンゴ酸及びクエン酸から選択される少なくとも一種である、請求項1~7のいずれか一項に記載の研磨液。
  9.  pHが1.5~4.0である、請求項1~8のいずれか一項に記載の研磨液。
  10.  前記無機酸成分が、硫酸及びリン酸から選択される少なくとも一種である、請求項1~9のいずれか一項に記載の研磨液。
  11.  前記アミノ酸が、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、シスチン、メチオニン、アスパラギン酸、グルタミン酸、リシン、アルギニン、フェニルアラニン、チロシン、ヒスチジン、トリプトファン、プロリン、オキシプロリン、アスパラギン及びグルタミンから選択される少なくとも一種である、請求項1~10のいずれか一項に記載の研磨液。
  12.  前記アミノ酸がグリシンである、請求項1~11のいずれか一項に記載の研磨液。
  13.  前記保護膜形成剤が、キナルジン酸、アントラニル酸、サリチルアルドキシム、チアゾール化合物、トリアゾール化合物、イミダゾール化合物、ピラゾール化合物及びテトラゾール化合物から選択される少なくとも一種である、請求項1~12のいずれか一項に記載の研磨液。
  14.  前記保護膜形成剤がトリアゾール化合物である、請求項1~13のいずれか一項に記載の研磨液。
  15.  前記トリアゾール化合物が、ベンゾトリアゾール及びベンゾトリアゾール誘導体から選択される少なくとも一種である、請求項14に記載の研磨液。
  16.  前記砥粒が、シリカ、アルミナ、ジルコニア、セリア、チタニア、炭化珪素、ポリスチレン、ポリアクリル及びポリ塩化ビニルから選択される少なくとも一種を含む、請求項1~15のいずれか一項に記載の研磨液。
  17.  前記砥粒が、コロイダルシリカ及びコロイダルアルミナから選択される少なくとも一種を含む、請求項1~16のいずれか一項に記載の研磨液。
  18.  前記砥粒の平均粒径が100nm以下である、請求項1~17のいずれか一項に記載の研磨液。
  19.  前記酸化剤が、過酸化水素、過硫酸、過硫酸塩、過ヨウ素酸、過ヨウ素酸塩、ヨウ素酸塩及び臭素酸塩から選択される少なくとも一種である、請求項1~18のいずれか一項に記載の研磨液。
  20.  請求項1~19のいずれか一項に記載の研磨液を用いて銅を含む金属膜を研磨し、前記金属膜の少なくとも一部を除去する工程を備える、研磨方法。
PCT/JP2011/062941 2010-07-14 2011-06-06 銅研磨用研磨液及びそれを用いた研磨方法 WO2012008237A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127027891A KR101409598B1 (ko) 2010-07-14 2011-06-06 구리 연마용 연마액 및 그것을 사용한 연마 방법
US13/639,512 US8877644B2 (en) 2010-07-14 2011-06-06 Polishing solution for copper polishing, and polishing method using same
JP2012524490A JP5516734B2 (ja) 2010-07-14 2011-06-06 銅研磨用研磨液及びそれを用いた研磨方法
SG2012072096A SG186055A1 (en) 2010-07-14 2011-06-06 Polishing solution for copper polishing, and polishing method using same
CN201180017611.1A CN102834479B (zh) 2010-07-14 2011-06-06 铜研磨用研磨液及使用了其的研磨方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010159745 2010-07-14
JP2010-159745 2010-07-14

Publications (1)

Publication Number Publication Date
WO2012008237A1 true WO2012008237A1 (ja) 2012-01-19

Family

ID=45469247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062941 WO2012008237A1 (ja) 2010-07-14 2011-06-06 銅研磨用研磨液及びそれを用いた研磨方法

Country Status (7)

Country Link
US (1) US8877644B2 (ja)
JP (1) JP5516734B2 (ja)
KR (1) KR101409598B1 (ja)
CN (1) CN102834479B (ja)
SG (1) SG186055A1 (ja)
TW (1) TWI542677B (ja)
WO (1) WO2012008237A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171748A (ja) * 2014-03-12 2015-10-01 株式会社ディスコ 加工方法
KR20200020397A (ko) * 2018-08-17 2020-02-26 삼성에스디아이 주식회사 금속 배선 연마용 cmp 슬러리 조성물 및 이를 이용한 금속 배선 연마 방법

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526006B1 (ko) * 2012-12-31 2015-06-04 제일모직주식회사 구리 연마용 cmp 슬러리 조성물 및 이를 이용한 연마 방법
TWI611010B (zh) * 2014-08-29 2018-01-11 卡博特微電子公司 拋光藍寶石表面之組合物及方法
JP2019167405A (ja) * 2018-03-22 2019-10-03 Jsr株式会社 化学機械研磨用組成物及び回路基板の製造方法
JP2019167404A (ja) * 2018-03-22 2019-10-03 Jsr株式会社 化学機械研磨用組成物及び回路基板の製造方法
KR102253708B1 (ko) * 2018-04-11 2021-05-18 삼성에스디아이 주식회사 구리 배리어층 연마용 cmp 슬러리 조성물 및 이를 이용한 연마 방법
KR102343435B1 (ko) * 2018-08-08 2021-12-24 삼성에스디아이 주식회사 구리 막 연마용 cmp 슬러리 조성물 및 이를 이용한 구리 막 연마 방법
CN110064973A (zh) * 2019-03-21 2019-07-30 林德谊 一种铜或铜合金的表面抛光处理工艺
CN110757329A (zh) * 2019-10-18 2020-02-07 林德谊 一种金属的表面抛光处理工艺
CN114829538B (zh) * 2019-12-26 2024-04-26 霓达杜邦股份有限公司 研磨用浆料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297779A (ja) * 2002-03-29 2003-10-17 Sumitomo Bakelite Co Ltd 研磨用組成物並びに研磨方法
JP2005014206A (ja) * 2003-05-30 2005-01-20 Sumitomo Chemical Co Ltd 金属研磨剤組成物
JP2006302968A (ja) * 2005-04-15 2006-11-02 Hitachi Chem Co Ltd 磁性金属膜および絶縁材料膜複合材料用研磨材および研磨方法
JP2007103485A (ja) * 2005-09-30 2007-04-19 Fujifilm Corp 研磨方法及びそれに用いる研磨液
JP2007150264A (ja) * 2005-10-27 2007-06-14 Hitachi Chem Co Ltd 有機絶縁材料膜及び銅膜複合材料用研磨材及び研磨方法
JP2008288398A (ja) * 2007-05-18 2008-11-27 Nippon Chem Ind Co Ltd 半導体ウェハーの研磨用組成物、その製造方法、及び研磨加工方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954142A (en) 1989-03-07 1990-09-04 International Business Machines Corporation Method of chemical-mechanical polishing an electronic component substrate and polishing slurry therefor
JP3490038B2 (ja) 1999-12-28 2004-01-26 Necエレクトロニクス株式会社 金属配線形成方法
JP3841995B2 (ja) 1999-12-28 2006-11-08 Necエレクトロニクス株式会社 化学的機械的研磨用スラリー
JP3899456B2 (ja) 2001-10-19 2007-03-28 株式会社フジミインコーポレーテッド 研磨用組成物およびそれを用いた研磨方法
JP2004048033A (ja) 2003-07-24 2004-02-12 Nec Electronics Corp 金属配線形成方法
US20060124026A1 (en) 2004-12-10 2006-06-15 3M Innovative Properties Company Polishing solutions
US20060163206A1 (en) * 2005-01-25 2006-07-27 Irina Belov Novel polishing slurries and abrasive-free solutions having a multifunctional activator
TW200920828A (en) * 2007-09-20 2009-05-16 Fujifilm Corp Polishing slurry for metal and chemical mechanical polishing method
JP5441345B2 (ja) * 2008-03-27 2014-03-12 富士フイルム株式会社 研磨液、及び研磨方法
JP5312887B2 (ja) * 2008-09-24 2013-10-09 富士フイルム株式会社 研磨液

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297779A (ja) * 2002-03-29 2003-10-17 Sumitomo Bakelite Co Ltd 研磨用組成物並びに研磨方法
JP2005014206A (ja) * 2003-05-30 2005-01-20 Sumitomo Chemical Co Ltd 金属研磨剤組成物
JP2006302968A (ja) * 2005-04-15 2006-11-02 Hitachi Chem Co Ltd 磁性金属膜および絶縁材料膜複合材料用研磨材および研磨方法
JP2007103485A (ja) * 2005-09-30 2007-04-19 Fujifilm Corp 研磨方法及びそれに用いる研磨液
JP2007150264A (ja) * 2005-10-27 2007-06-14 Hitachi Chem Co Ltd 有機絶縁材料膜及び銅膜複合材料用研磨材及び研磨方法
JP2008288398A (ja) * 2007-05-18 2008-11-27 Nippon Chem Ind Co Ltd 半導体ウェハーの研磨用組成物、その製造方法、及び研磨加工方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171748A (ja) * 2014-03-12 2015-10-01 株式会社ディスコ 加工方法
US11040427B2 (en) 2014-03-12 2021-06-22 Disco Corporation Workpiece processing method
KR20200020397A (ko) * 2018-08-17 2020-02-26 삼성에스디아이 주식회사 금속 배선 연마용 cmp 슬러리 조성물 및 이를 이용한 금속 배선 연마 방법
KR102343434B1 (ko) * 2018-08-17 2021-12-24 삼성에스디아이 주식회사 금속 배선 연마용 cmp 슬러리 조성물 및 이를 이용한 금속 배선 연마 방법

Also Published As

Publication number Publication date
US20130020283A1 (en) 2013-01-24
KR101409598B1 (ko) 2014-06-20
TW201204817A (en) 2012-02-01
CN102834479A (zh) 2012-12-19
TWI542677B (zh) 2016-07-21
SG186055A1 (en) 2013-02-28
US8877644B2 (en) 2014-11-04
KR20130025386A (ko) 2013-03-11
CN102834479B (zh) 2015-02-18
JP5516734B2 (ja) 2014-06-11
JPWO2012008237A1 (ja) 2013-09-05

Similar Documents

Publication Publication Date Title
JP5516734B2 (ja) 銅研磨用研磨液及びそれを用いた研磨方法
JP4930641B2 (ja) 銅研磨用研磨剤及びそれを用いた研磨方法
WO2015129342A1 (ja) 研磨用組成物
JP5880524B2 (ja) 研磨剤及び研磨方法
JP6050934B2 (ja) 研磨用組成物並びにそれを用いた研磨方法及び基板の製造方法
WO2016038995A1 (ja) 研磨用組成物
KR20070078988A (ko) 금속 연마액 및 이것을 사용한 화학 기계적 연마방법
JP2016069522A (ja) 組成物
WO2011077973A1 (ja) 銅研磨用研磨剤及びそれを用いた研磨方法
JP2014072336A (ja) 研磨用組成物
JP2018157164A (ja) 研磨用組成物、研磨用組成物の製造方法、研磨方法および半導体基板の製造方法
JP2012028516A (ja) 銅研磨用研磨液及びそれを用いた研磨方法
JP2013004660A (ja) 銅研磨用研磨剤及びそれを用いた研磨方法
JP2016017158A (ja) 研磨液及び研磨方法
JP2013004670A (ja) 金属用研磨液及び金属用研磨液を用いた研磨方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017611.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524490

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13639512

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127027891

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806568

Country of ref document: EP

Kind code of ref document: A1