WO2012002360A1 - 容器用鋼板およびその製造方法 - Google Patents

容器用鋼板およびその製造方法 Download PDF

Info

Publication number
WO2012002360A1
WO2012002360A1 PCT/JP2011/064754 JP2011064754W WO2012002360A1 WO 2012002360 A1 WO2012002360 A1 WO 2012002360A1 JP 2011064754 W JP2011064754 W JP 2011064754W WO 2012002360 A1 WO2012002360 A1 WO 2012002360A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
steel plate
film
ion
cold
Prior art date
Application number
PCT/JP2011/064754
Other languages
English (en)
French (fr)
Inventor
平野 茂
光 立木
横矢 博一
偉男 柳原
誠 河端
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to CN201180031526.0A priority Critical patent/CN102959136B/zh
Priority to US13/805,071 priority patent/US9212428B2/en
Priority to KR1020127033633A priority patent/KR101330845B1/ko
Priority to JP2011546458A priority patent/JP5196035B2/ja
Priority to CA2802490A priority patent/CA2802490C/en
Priority to EP11800824.2A priority patent/EP2589685B1/en
Priority to ES11800824.2T priority patent/ES2609108T3/es
Publication of WO2012002360A1 publication Critical patent/WO2012002360A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/361Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing titanium, zirconium or hafnium compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/36Phosphatising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/20Electroplating: Baths therefor from solutions of iron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12722Next to Group VIII metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention is used as a material for can manufacturing processing, and in particular, can manufacturing workability, weldability, film adhesion, primary paint adhesion, secondary paint adhesion, under-coating corrosion resistance, non-coating corrosion resistance, and sulfide black resistance.
  • the present invention relates to a steel sheet for containers excellent in modification, post-retort rust resistance, and wettability.
  • Metal containers used for beverages and foods are roughly classified into two-piece cans and three-piece cans.
  • a two-piece can represented by a DI can is squeezed and ironed, then painted on the inner surface of the can and painted and printed on the outer surface of the can.
  • the three-piece can is coated on the surface corresponding to the inner surface of the can and printed on the surface corresponding to the outer surface of the can, and then the can body is welded.
  • a coating process is indispensable before and after canning.
  • Solvent-based or water-based paints are used for painting, followed by baking. In this painting process, waste (such as waste solvents) resulting from the paint is discharged as industrial waste, and exhaust gas (mainly Carbon dioxide) is released to the atmosphere.
  • exhaust gas mainly Carbon dioxide
  • Patent Document 1 Metal for producing squeezed iron cake
  • Patent Document 2 “Squeezed iron cake”
  • Patent Document 3 Production method for thinned deep drawn can”
  • Patent Document 4 Coated steel sheet for squeezed iron cake” It is done.
  • Patent Document 5 “Three-piece can film laminated steel strip and its manufacturing method”
  • Patent Document 6 “Three-piece can having a multilayer organic film on the outer surface of the can”
  • Patent Document 7 “Stripe-shaped multilayer organic film” Examples of the steel plate for a three-piece can having a film
  • Patent Document 8 “Method for producing a three-piece can-stripe laminated steel plate”.
  • a chromate film that has been subjected to electrolytic chromate treatment is used for the steel sheet used for the base of the laminate film.
  • the chromate film has a two-layer structure, and a hydrated Cr oxide layer is present on the metal Cr layer. Therefore, the laminate film (adhesive layer in the case of a film with an adhesive) ensures adhesion to the steel sheet through the hydrated Cr oxide layer of the chromate film.
  • the details of the mechanism of adhesion are not clarified, it is said to be a hydrogen bond between a hydroxyl group of hydrated Cr oxide and a functional group such as a carbonyl group or an ester group of a laminate film.
  • Patent Document 9 Container Steel Plate with Excellent Can-Manufacturability
  • Patent Document 10 Container Steel Plate
  • Patent Document 11 Container Steel Plate
  • Patent Document 12 A steel plate for containers excellent in organic film characteristics and a method for producing the same”.
  • the above-mentioned invention certainly has the effect of greatly advancing the conservation of the global environment, on the other hand, in the beverage container market, cost and quality competition with materials such as PET bottles, bottles and paper have intensified in recent years. Even for the above steel sheets for laminated containers, it has excellent film adhesion, primary paint adhesion, secondary paint adhesion, under-coating corrosion resistance, and non-coating corrosion resistance for conventional coating applications. As a result, better can-making processability, film adhesion, in particular, film adhesion after processing, corrosion resistance under coating film, non-coating corrosion resistance, etc. have been demanded.
  • the Zr film which is a new film that replaces the chromate film
  • the conventional manufacturing method after Ni plating or Sn plating, the Ni or Sn water on the Ni or Sn plating layer is washed by washing off the plating solution. Since an oxide was formed, even if a Zr film was formed thereafter, the bonding between the Zr film and the plated metal was inhibited by the hydroxide film, and sufficient performance could not be exhibited.
  • this phenomenon utilizes the increase in pH caused by the consumption of hydrogen ions by cathode electrolysis and forms a Zr film by converting Zr ions into Zr hydrates, thereby cleaning the surface of the material to be plated. It was an inevitable problem in principle.
  • the object of the present invention is to produce cans, weldability, film adhesion, primary paint adhesion, secondary paint adhesion, corrosion resistance under coating, and non-corrosiveness in a steel sheet for containers mainly composed of a Zr film.
  • An object of the present invention is to provide a steel plate for containers excellent in coating corrosion resistance, sulfur blackening resistance, rust resistance after retort, and wettability.
  • a first aspect of the present invention is a solution containing a cold-rolled steel sheet, at least one metal ion of Sn ions, Fe ions, and Ni ions, Zr ions, nitrate ions, and ammonium ions.
  • a composite film formed on the cold-rolled steel sheet by electrolytic treatment wherein the composite film has a metal Zr equivalent of 0.1 mg / m 2 to 100 mg / m 2 of Zr and a metal Sn equivalent Of 0.3 g / m 2 to 20 g / m 2 of Sn, Fe in terms of metal Fe of 5 mg / m 2 to 2000 mg / m 2 , and Ni in terms of metal Ni of 5 mg / m 2 to 2000 mg / m 2 It is a steel plate for containers provided with at least 1 type.
  • the solution further contains at least one of phosphate ion and phenol resin, and the composite film has a P conversion amount of 0.1 mg / m 2 to 50 mg / m. It may further contain at least one of m 2 phosphoric acid compound and 0.1 mg / m 2 to 50 mg / m 2 of phenol resin in terms of C.
  • the solution may further contain fluorine ions, and the composite coating may further contain 0.1 mg / m 2 or less of a fluorine compound in terms of F.
  • the metal Sn in terms of amount of 0.3g / m 2 ⁇ 20g / m 2
  • At least one of a Sn plating layer having Sn and a Ni plating layer having 5 mg / m 2 to 2000 mg / m 2 of Ni in terms of metallic Ni may be included.
  • at least one surface of the cold-rolled steel plate has the Sn plating layer, and at least a part of the Sn plating layer is processed by the molten tin treatment to form the cold-rolled steel plate. And may be alloyed.
  • At least one surface of the cold-rolled steel plate has the Sn plating layer, and a Ni plating layer and a Fe—Ni alloy plating layer are provided under the Sn plating layer. Or you may have the Ni diffusion plating layer by the heat processing after Ni plating.
  • at least one surface of the cold-rolled steel plate has the Sn plating layer, and a part or all of the Sn plating layer is the cold-rolled by a molten tin treatment. It may be alloyed with a steel plate.
  • a second aspect of the present invention is a cold rolled steel sheet in a solution containing at least one metal ion of Sn ions, Fe ions, and Ni ions, Zr ions, nitrate ions, and ammonium ions.
  • a composite film containing 2 Sn, Fe in metal Fe equivalent of 5 mg / m 2 to 2000 mg / m 2 , and Ni in metal Ni equivalent of 5 mg / m 2 to 2000 mg / m 2 is formed.
  • a method for producing a steel plate for containers In the method of manufacturing a container for a steel sheet according to the above (8), the cold-rolled steel sheet, at least on one side, Sn plating with Sn of the Sn metal equivalent amount in 0.3g / m 2 ⁇ 20g / m 2 It may have at least one of a layer and a Ni plating layer having 5 mg / m 2 to 2000 mg / m 2 of Ni in terms of metallic Ni. (10) In the method for producing a steel sheet for containers according to (8) above, the solution further contains at least one of phosphate ions and a phenol resin, and the composite coating is 0.1 mg / m 2 in terms of P.
  • phosphoric acid compound ⁇ 50mg / m 2 and at least one may further comprise a C equivalent amount in 0.1 mg / m 2 of ⁇ 50 mg / m 2 phenolic resin.
  • (11) In the method for manufacturing a steel plate for containers according to any one of (8) to (10) above, after forming the composite film on the cold-rolled steel plate, 0.5 seconds with hot water at 40 ° C. or higher You may perform the washing process by the above immersion process or spray process.
  • the container steel plate excellent in can characteristics obtained by the present invention has excellent can processability, weldability, film adhesion, primary paint adhesion, secondary paint adhesion, undercoat corrosion resistance, unpainted corrosion resistance, Anti-sulfur blackening, rust resistance after retort, wettability.
  • FIG. It is a block diagram of the steel plate S for containers using the original plate 1.
  • FIG. It is a block diagram of the steel plate S for containers using the original plate 2.
  • FIG. It is a block diagram of the steel plate S for containers using the original plate 3.
  • FIG. It is a block diagram of the steel plate S for containers using the original plate 4.
  • FIG. It is a block diagram of the steel plate S for containers using the original plate 5.
  • FIG. It is a block diagram of the steel plate S for containers using the original plate 6.
  • FIG. It is a block diagram of the steel plate S for containers using the original plate 7.
  • FIG. It is a block diagram of the steel plate S for containers using the original plate 8.
  • FIG. It is a block diagram of the steel plate S for containers using the original plate 9.
  • FIG. It is a block diagram of the steel plate S for containers using the original plate 2.
  • the present inventors have formed a Zr film or a Zr film in which a phosphoric acid film or a phenol resin film is combined with the Zr film.
  • a treatment solution containing Sn ions, Ni ions, etc., Zr film and Sn, Ni film, etc. are deposited at the same time, greatly improving the characteristics for cans such as film adhesion and corrosion resistance under coating film.
  • the metal present on the surface of the plating layer composed of Ni or Sn is precipitated together with the Zr film, thereby strengthening the bond with the surface of the material to be treated.
  • a chromate film is formed by electrolytic treatment before simultaneously depositing the Zr film and Sn, Ni, etc., and this obstructs the formation of the Zr film. Has also found that it is necessary.
  • the steel plate for containers according to the present embodiment is a cold rolled steel plate or a cold rolled steel plate plated with at least one metal of Sn, Fe, and Ni (hereinafter collectively referred to as “original plate”), Sn ions, A container formed by electrolytic treatment in a solution containing at least one metal ion of Fe ion and Ni ion, Zr ion, nitrate ion, and ammonium ion, and forming a composite film containing the metal element on the original plate Steel plate.
  • This composite film is (1) and Zr of 0.1mg / m 2 ⁇ 100mg / m 2 by metal terms of Zr content, (2) metal Sn equivalent amount in 0.3g / m 2 ⁇ 20g / m 2 of Sn, metallic Fe in terms of amount of 5mg / m 2 ⁇ 2000mg / m 2 of Fe, and Ni metal in terms of amount of 5 mg / m 2 ⁇ At least one of 2000 mg / m 2 Ni; including.
  • the steel plate for containers according to the present embodiment is formed by forming a composite film including (1) a predetermined amount of Zr and (2) at least one of Sn, Fe, and Ni of a predetermined amount on an original plate.
  • each of the elements constituting the composite film is made up of cans, weldability, film adhesion, primary paint adhesion, secondary paint adhesion, undercoat corrosion resistance, no coating corrosion resistance, Contributes to the improvement of at least one of the properties of sulfur blackening, rust resistance after retort, and wettability.
  • the “composite film” is not limited as long as it contains the above metal element.
  • the metal element may contain not only a simple metal and each alloy, but also a part of the metal element as a compound such as an oxide, hydroxide, halide, or phosphoric acid compound.
  • the composite film may not have a uniform composition, may have a layered structure in which each constituent element or a part of the constituent elements are separated, or the constituent elements may be gradation in the thickness direction of the film.
  • the original plate is not particularly restricted, and a steel plate usually used as a container material can be used.
  • the original plate is manufactured through processes such as hot rolling, pickling, cold rolling, annealing, and temper rolling from a normal steel plate manufacturing process.
  • the method of applying is not particularly limited.
  • a known technique such as an electroplating method, a vacuum evaporation method, or a sputtering method may be used, and a heat treatment for providing a diffusion layer may be combined. Further, even if Ni is plated with Fe—Ni alloy, the essence of the present invention remains unchanged.
  • the original plate is a steel plate provided with a Ni plating layer, a Fe—Ni alloy plating layer, and a Ni diffusion plating layer by heat treatment after Ni plating, in that a higher quality composite film can be formed. It is more preferable that the original plate is formed by alloying a part or all of the Sn plating with the base metal by a molten tin treatment after Sn plating.
  • the steel plate for containers according to the present embodiment has a composite film formed on the upper layer of the above steel plate (original plate).
  • original plate original plate
  • the thickness of the original plate (raw steel plate) is appropriately determined depending on the application.
  • the role of the metal constituting the composite film will be described.
  • Zr is an essential component of the composite film in the container steel plate according to the present embodiment.
  • the role of Zr is to ensure film adhesion, primary paint adhesion, secondary paint adhesion, corrosion resistance under coating, and non-coating corrosion resistance.
  • sulfur compounds contained in the contents It also has a role of preventing blackening of sulfide, in which the base iron, Sn, and Ni react to form a black sulfide.
  • Zr is composed of a Zr compound such as oxidized Zr, hydroxide Zr, fluoride Zr, phosphoric acid Zr or a composite thereof, and these Zr compounds are excellent in film adhesion, primary paint adhesion, secondary It has paint adhesion, corrosion resistance under coating, non-coating corrosion resistance, and resistance to sulfur blackening.
  • the Zr in the composite film is 0.1 mg / m 2 or more in terms of metal Zr, the film adhesion, primary paint adhesion, secondary paint adhesion, undercoat corrosion resistance, and non-coating corrosion resistance begin to improve.
  • the amount is 1 mg / m 2 or more in terms of metal Zr.
  • the Zr film adhesion amount must be 0.1 to 100 mg / m 2 in terms of metal Zr amount.
  • the composite film contains at least one of Sn, Fe, and Ni.
  • the preferable content of each component will be described below.
  • Sn is usually contained in the composite film in the form of a metal or alloy, but may be in the form of a compound such as an oxide. Sn exhibits excellent can-making processability, corrosion resistance under coating, non-coating corrosion resistance, and weldability. This effect is required to be 0.3 g / m 2 or more as metal Sn in the composite film.
  • the amount of Sn in the composite film is 0.5 g / m 2 or more in terms of metal Sn in order to ensure sufficient weldability at a high speed, and in terms of metal Sn in order to ensure sufficient unpainted corrosion resistance. It is desirable to apply 2 g / m 2 or more.
  • the improvement effect of Sn can processability, corrosion resistance under coating, non-coating corrosion resistance, and weldability increases, but even if it exceeds 20 g / m 2 , the improvement effect is saturated. This is economically disadvantageous. Therefore, the Sn adhesion amount may be 20 g / m 2 or less in terms of metal Sn. Further, by performing Sn reflow treatment (molten tin treatment) after Sn plating, an Sn alloy layer is formed, and the corrosion resistance is further improved.
  • Fe (Fe: 5 to 2000 mg / m 2 in terms of metallic Fe) Fe is usually contained in the composite film in the form of a metal or alloy, but may be in the form of a compound such as an oxide. Fe exerts its effect on weldability. This effect is manifested in that the composite film requires 5 mg / m 2 or more of Fe in terms of metallic Fe. The effect of improving the weldability increases with an increase in the amount of Fe deposited, but even if it exceeds 2000 mg / m 2 , the improvement effect is saturated, which is economically disadvantageous. Therefore, the adhesion amount of Fe may be 5 mg / m 2 or more and 2000 mg / m 2 or less in terms of metal Fe.
  • Ni is usually contained in the composite film in the form of a metal or alloy, but may be in the form of a compound such as an oxide. Ni exerts its effects on primary paint adhesion, secondary paint adhesion, film adhesion, corrosion resistance under coating, and weldability. This effect is manifested by requiring 5 mg / m 2 or more of Ni in terms of metallic Ni in the composite film. In order to ensure sufficient weldability and sufficient corrosion resistance under the coating film at high speed, it is desirable to apply 150 mg / m 2 or more. As Ni adhesion increases, the excellent film adhesion, under-coating corrosion resistance, and weldability improvement effects of Ni increase.
  • the adhesion amount of Ni may be 5 mg / m 2 or more and 2000 mg / m 2 or less in terms of metallic Ni.
  • a solution containing at least one metal ion of Sn ion, Fe ion and Ni ion, Zr ion, nitrate ion and ammonium ion is subjected to cathodic electrolysis treatment (Hereinafter, it may be simply referred to as “electrolytic treatment.”), And it is preferable that the electrolytic treatment is performed under such treatment conditions that these elements are deposited at the same time.
  • nitrate ions are reduced by cathodic electrolysis and release hydroxide ions, which promotes an increase in pH at the steel sheet interface.
  • Ammonium ions are reduced to nitrite ions and nitrate ions, especially when using an insoluble anode, and have the advantage of stabilizing the pH in addition to the effect of replenishing nitrate ions consumed at the cathode. is there.
  • the composite coating is (1) a Zr coating layer mainly composed of Zr; (2) It is preferably composed of a coating layer mainly composed of at least one of Sn, Fe, and Ni, and the skin of the composite coating is preferably composed of the (1) Zr coating layer mainly composed of Zr.
  • a composite comprising an original plate subjected to electrolytic treatment in a solution containing at least one metal ion of Sn ion, Fe ion, and Ni ion, Zr ion, nitrate ion, and ammonium ion, and containing the metal compound on the original plate
  • the composite film is formed on the original plate with a film layer mainly composed of at least one of Sn, Fe, and Ni, and a Zr film layer mainly composed of Zr is formed thereon.
  • a so-called composite film is preferably a steel plate for containers in which gradation of the metal component of the film exists.
  • the steel sheet for containers according to the present invention is a composite film, particularly from the viewpoint of enhancing film adhesion after processing of the composite film and the original plate, (1) and Zr of 0.1mg / m 2 ⁇ 100mg / m 2 by metal terms of Zr content, (2) Sn in terms of metal Sn of 0.3 g / m 2 to 20 g / m 2 , Fe in amount of metal Fe of 5 mg / m 2 to 2000 mg / m 2 , and 5 mg / m 2 to 2000 mg in terms of metal Ni / M 2 Ni, (3) at least one P equivalent amount in 0.1 mg / m 2 phosphorus acid compound ⁇ 50 mg / m 2, and C in terms of amount of 0.1 mg / m 2 of ⁇ 50 mg / m 2 phenolic resin, It is preferable to contain.
  • the steel sheet is electrolytically treated in a solution obtained by adding at least one of fluorine ion, phosphate ion, and phenol resin to the above solution.
  • a composite film containing at least one of phosphoric acid and a phenol resin can also be formed by a method of electrolytic treatment as described above.
  • Fluorine ions form a complex and have the property of ensuring the stability of Zr ions. Therefore, if fluorine ions are added for Zr stabilization (chelation formation and dispersion) in the electrolytic solution, the allowable ranges of pH, concentration, and temperature are widened and the operation becomes easier.
  • F incorporated into the composite film does not affect the normal adhesion (primary adhesion) of paints and films, but adhesion during high-temperature sterilization treatment such as retort treatment (secondary adhesion). It causes deterioration of rust resistance after retorting or corrosion resistance under the coating film.
  • the surface tension needs to be 31 mN / m or more, and preferably 35 mN / m or more.
  • the surface tension described here is a value measured by a method standardized in JIS K 6768. In this standard, test liquids adjusted to various surface tensions are applied, and measurement is performed in the wet state of the test liquid. Will be. Therefore, the wettability can be evaluated in association with the surface tension of the test liquid.
  • immersion treatment or spray treatment may be performed for 0.5 seconds or more with warm water of 40 ° C. or more. If the water temperature is lower than 40 ° C. or the processing time is shorter than 0.5 seconds, the fluorine compound content in the composite film cannot be reduced to 0.1 mg / m 2 or less in terms of F, and the above-mentioned characteristics cannot be exhibited. .
  • the purpose of adding the phosphoric acid compound is to ensure film adhesion, primary paint adhesion, secondary paint adhesion, especially film adhesion after processing.
  • the phosphoric acid compound include films such as Fe phosphate, Sn phosphate, Ni phosphate, Ni phosphate, Zr phosphate, and phenol-phenol resin film formed by reaction with the base, or composites thereof.
  • the phosphoric acid compound has excellent undercoat corrosion resistance, film adhesion, primary paint adhesion, and secondary paint adhesion.
  • the corrosion resistance under the coating and the film adhesion, the primary paint adhesion, and the secondary paint adhesion begin to improve, and the phosphate compound in the composite film is 0.1 mg / kg in terms of P.
  • the amount of the phosphoric acid compound increases, the effect of improving the undercoat corrosion resistance, film adhesion, primary paint adhesion, and secondary paint adhesion also increases, but the amount of phosphoric acid compound is 50 mg / m 2 in terms of P.
  • the amount of phosphoric acid is preferably 0.1 to 50 mg / m 2 in terms of P.
  • the role of the phenol resin film is to ensure film adhesion, primary paint adhesion, secondary paint adhesion, particularly film adhesion after processing. Since the phenol resin itself is an organic substance, it has excellent adhesion to paints and laminate films. When the surface treatment layer undergoes processing that greatly deforms, the surface treatment layer itself may be coherently broken due to the processing, and the adhesion may deteriorate. However, the phenol resin remarkably improves the adhesion after processing the composite film. It has the effect of improving.
  • the amount of phenol resin in the composite film is 0.1 mg / m 2 or more in terms of C, it is practical. In addition, a satisfactory level of adhesion is ensured. Furthermore, when the amount of phenol resin increases, the effect of improving film adhesion, primary paint adhesion, and secondary paint adhesion also increases, but when the amount of phenol resin in the composite film exceeds 50 mg / m 2 in terms of C, Electrical resistance increases and weldability deteriorates. Therefore, the amount of phenol resin is preferably 0.1 to 50 mg / m 2 in terms of C.
  • the polymer represented by following formula (I) is illustrated. This can be produced by polycondensing a phenol compound, naphthol compound or bisphenol (bisphenol A, F, etc.) and formaldehyde, and then introducing functional groups X 1 and X 2 using formaldehyde and an amine. Formalin is usually used as formaldehyde.
  • the molecular weight of the polymer is not particularly limited, but those having a molecular weight of usually about 1,000 to 1,000,000, preferably about 1,000 to 100,000, particularly about 1,000 to 10,000 are preferably used. The molecular weight can be measured by gel permeation chromatography after peeling the film.
  • X 1 independently represents a hydrogen atom or a Z 1 group represented by the following formula (II) in each structural unit
  • Y 1 represents a hydrogen atom, a hydroxyl group, C 1 to C 5.
  • Y 2 represents a hydrogen atom,
  • Y 2 when present at a position adjacent to Y 1 and Y 1 can form a condensed benzene ring, including the bond between Y 1 and Y 2 .
  • the introduction ratio of Z 1 group + Z 2 group is 0.2 to 1.0 per benzene ring.
  • R 1 and R 2 each independently represent a hydrogen atom, a C 1 -C 10 alkyl group or a C 1 -C 10 hydroxyalkyl group.
  • R 3 and R 4 each independently represent a hydrogen atom, a C 1 -C 10 alkyl group, or a C 1 -C 10 hydroxyalkyl group
  • X 2 represents the above-mentioned Y 1
  • each of the structural units represented by the formula (I) independently represents a hydrogen atom or a Z 2 group represented by the following general formula (IV).
  • R 5 and R 6 each independently represent a hydrogen atom, a C 1 -C 10 alkyl group, or a C 1 -C 10 hydroxyalkyl group.
  • Sn amount, Ni amount, Fe amount, Zr amount, P amount, or F amount contained in the composite film in the steel sheet for containers according to the present embodiment is determined by a quantitative analysis method such as fluorescent X-ray analysis, for example. It is possible to measure. Moreover, what is necessary is just to process and measure to another metal plates, such as a copper plate, when the same metal as a to-be-processed steel plate (original plate) adheres. Further, the amount of C contained in the phenol resin film can be measured by subtracting the amount of C existing in the steel sheet using TOC (total organic carbon meter).
  • TOC total organic carbon meter
  • the concentration of various ions in the cathodic electrolysis treatment solution that forms the composite film is Sn ion, Fe ion, Ni ion concentration: about 10-30000 ppm Zr ion concentration: about 100-20000 ppm ammonium ion concentration: about 100-20000 ppm nitrate ion concentration: about 100-20000 ppm phosphate ion concentration: about 100-50000 ppm phenol resin
  • concentration may be appropriately adjusted in the range of about 50 to 2000 ppm fluorine ion concentration of about 500 to 30000 ppm according to the production equipment and production speed (capacity).
  • Table 1 shows a method for manufacturing original plates 1 to 9 having a thickness of 0.15 to 0.25 mm used in Examples 1 to 19 and Comparative Examples 1 to 8.
  • FIGS. 1 to 9 show configuration diagrams of the steel plate S for containers using the original plates 1 to 9.
  • 1 to 9 are original plate numbers
  • A is a cold-rolled steel plate
  • B is plating
  • C is a composite coating
  • S is a steel plate for containers.
  • the Sn plating layer includes a case where at least a part is alloyed with a cold-rolled steel sheet by a molten tin treatment.
  • Tables 2A and 2B show the original plates used in Examples 1 to 19 and Comparative Examples 1 to 8.
  • Sn was melted by electric heating after Sn plating, and immersed in hot water at 80 ° C. for cooling treatment. went.
  • a composite film was applied to the surface of each original plate.
  • the cathode was subjected to cathodic electrolysis based on the electrolysis time and current density shown in Tables 3A and 3B in a state where the original plate was immersed in a treatment solution in which an appropriate amount of the following drug was dissolved, thereby forming a composite film.
  • Commercially available Zr nitrate, Zr ammonium fluoride, hydrofluoric acid, ammonia nitrate, Sn nitrate, Fe nitrate, Ni nitrate, and phosphoric acid were used as chemicals.
  • Z 1 group I a polymer having an introduction rate of 0.5 per benzene ring
  • a low molecular weight phenol resin having an average molecular weight of 3000 is adjusted to a solid content of 2.0 g / L, pH 6.0 (adjusted with phosphoric acid) It was used in the form of a water-soluble polymer.
  • ⁇ Washing treatment> After the composite film was formed by the above treatment, a water washing treatment was performed by the following treatment method (a) or (b) to control the amount of F in the composite film.
  • a PET film having a thickness of 20 ⁇ m is laminated on both surfaces of a test material at 200 ° C., and can manufacturing is performed in stages by drawing and ironing, and molding is performed in four stages (A: very good , B: good, C: wrinkles are observed, D: fractured and incapable of processing).
  • (G) Non-coating corrosion resistance
  • the test material is immersed in a 1.5% citric acid solution at 30 ° C for 48 hours, and the uniformity of Sn dissolution is determined in four stages of tin crystal generation (A: clear tin crystal on the entire surface) (Recognized, B: almost all tin crystals are recognized, C: tin crystals are only partially recognized, and D: almost no tin crystals are recognized).
  • Examples 1 to 29 belonging to the scope of the present invention all have can processability, weldability, film adhesion, primary paint adhesion, secondary paint adhesion, undercoat corrosion resistance, non-coating corrosion resistance, and sulfide black resistance. It has been found that it has excellent rust resistance and wettability after modification and retort.
  • Comparative Examples 1 to 8 that do not satisfy any of the requirements of the present invention are can manufacturing process, weldability, film adhesion, primary paint adhesion, secondary paint adhesion, undercoat corrosion resistance, and non-coating corrosion resistance. It was found that at least some of the characteristics of sulfur blackening resistance, rust resistance after retort, and wettability were inferior.
  • the steel plate for containers according to the present invention is made in cans, weldability, film adhesion, primary paint adhesion, secondary paint adhesion, undercoat corrosion resistance, non-coating corrosion resistance, sulfide black resistance, rust resistance after retort It is excellent in properties and wettability, and is particularly useful as a laminated film container steel plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

 本発明は、冷延鋼板と、Snイオン、Feイオン、及びNiイオンの少なくとも一種の金属イオンと、Zrイオンと、硝酸イオンと、アンモニウムイオンとを含む溶液中で電解処理されることにより前記冷延鋼板上に形成される複合皮膜とを備え、前記複合皮膜が、金属Zr換算量で0.1mg/m2~100mg/m2のZrと、金属Sn換算量で0.3g/m2~20g/m2のSn、金属Fe換算量で5mg/m2~2000mg/m2のFe、及び金属Ni換算量で5mg/m2~2000mg/m2のNiの少なくとも一種とを備えることを特徴とする容器用鋼板を提供する。

Description

容器用鋼板およびその製造方法
本発明は、製缶加工用素材として用いられ、特に、製缶加工性、溶接性、フィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下耐食性、無塗装耐食性、耐硫化黒変性、レトルト後耐錆性、及び、濡れ性に優れた容器用鋼板に関する。
 本願は、2010年6月29日に、日本に出願された特願2010-147860号に基づき優先権を主張し、その内容をここに援用する。
 飲料や食品に用いられる金属容器は、2ピース缶と3ピース缶に大別される。DI缶に代表される2ピース缶は、絞りしごき加工が行われた後、缶内面側に塗装が、缶外面側に塗装及び印刷が行われる。3ピース缶は、缶内面に相当する面に塗装が、缶外面側に相当する面に印刷が行われた後、缶胴部の溶接が行われる。
 何れの缶種においても、製缶前後に塗装工程が不可欠な工程である。塗装には、溶剤系もしくは水系の塗料が使用され、その後、焼付けが行われるが、この塗装工程において、塗料に起因する廃棄物(廃溶剤等)が産業廃棄物として排出され、排ガス(主に炭酸ガス)が大気に放出されている。近年、地球環境保全を目的とし、これら産業廃棄物や排ガスを低減しようとする取組みが行われている。この中で、塗装に代わるものとしてフィルムをラミネートする技術が注目され、急速に広まってきた。
 これまでに、2ピース缶においては、フィルムをラミネートし製缶する缶の製造方法やこれに関連する発明が多数提供されている。例えば、特許文献1「絞りしごき罐の製造方法」、特許文献2「絞りしごき罐」、特許文献3「薄肉化深絞り缶の製造方法」、特許文献4「絞りしごき罐用被覆鋼板」が挙げられる。
 また、3ピース缶においては、特許文献5「スリーピース缶用フィルム積層鋼帯およびその製造方法」、特許文献6「缶外面に多層有機皮膜を有するスリーピース缶」、特許文献7「ストライプ状の多層有機皮膜を有すスリーピース缶用鋼板」、特許文献8「3ピース缶ストライプラミネート鋼板の製造方法」が挙げられる。
 一方、ラミネートフィルムの下地に用いられる鋼板には、多くの場合、電解クロメート処理を施したクロメート皮膜が用いられている。クロメート被膜は、2層構造を有し、金属Cr層の上層に水和酸化Cr層が存在している。従って、ラミネートフィルム(接着剤付きのフィルムであれば接着層)はクロメート皮膜の水和酸化Cr層を介して鋼板との密着性を確保している。この密着性発現の機構について、詳細は明らかにされていないが、水和酸化Crの水酸基とラミネートフィルムのカルボニル基あるいはエステル基などの官能基との水素結合であると言われている。
 また、従来のクロメート皮膜に代わりZr化合物皮膜を活用した技術として、特許文献9「製缶加工性に優れた容器用鋼板」、特許文献10「容器用鋼板」、特許文献11「容器用鋼板」、特許文献12「有機皮膜特性に優れた容器用鋼板およびその製造方法」が挙げられる。
日本国特許第1571783号公報 日本国特許第1670957号公報 日本国特開平2-263523号公報 日本国特許第1601937号公報 日本国特開平3-236954号公報 日本国特開平5-124648号公報 日本国特開平5-111979号公報 日本国特開平5-147181号公報 日本国特開2007-284789号公報 日本国特開2009-1852号公報 日本国特開2009-1854号公報 日本国特開2010-13728号公報
 上記の発明は、確かに、地球環境の保全を大きく前進せしめる効果が得られるが、その一方で、近年、飲料容器市場では、PETボトル、瓶、紙等の素材とのコスト並びに品質競争が激化しており、上記のラミネート容器用鋼板に対しても、従来技術である塗装用途に対して、優れたフィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下耐食性、無塗装耐食性、を確保した上で、より優れた製缶加工性、フィルム密着性、特に、加工後のフィルム密着性、塗膜下耐食性、無塗装耐食性などが求められるようになった。
 特にクロメート皮膜に代わる新たな皮膜であるZr皮膜においては、従来の製法では、NiめっきやSnめっきを行った後、めっき液を洗い落とす水洗処理により、NiやSnめっき層上にNiまたはSnの水酸化物が形成される為、その後にZr皮膜を形成させても、その水酸化皮膜によりZr皮膜とめっき金属との結合が阻害され、十分な性能を発揮できていなかった。また、この現象は、カソード電解による水素イオン消費でもたらされるpH上昇を利用し、ZrイオンをZr水和物にすることでZr皮膜を形成させている為、被めっき材の表面を洗浄する効果は無く、原理的に不可避な問題であった。
 かかる状況下、本発明の目的は、Zr皮膜を主体とする容器用鋼板において、製缶加工性、溶接性、フィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下耐食性、無塗装耐食性、耐硫化黒変性、レトルト後耐錆性、濡れ性に優れた容器用鋼板を提供することにある。
 上述の課題を解決するためになされた本発明の態様は以下の通りである。
(1)本発明の第一の態様は、冷延鋼板と、Snイオン、Feイオン、及びNiイオンの少なくとも一種の金属イオンと、Zrイオンと、硝酸イオンと、アンモニウムイオンとを含む溶液中で電解処理されることにより前記冷延鋼板上に形成される複合皮膜とを備え、前記複合皮膜が、金属Zr換算量で0.1mg/m2~100mg/m2のZrと、金属Sn換算量で0.3g/m2~20g/m2のSn、金属Fe換算量で5mg/m2~2000mg/m2のFe、及び金属Ni換算量で5mg/m2~2000mg/m2のNiの少なくとも一種とを備える容器用鋼板である。
(2)上記(1)に記載の容器用鋼板では、前記溶液が、リン酸イオン及びフェノール樹脂の少なくとも一種を更に含み、前記複合皮膜が、P換算量で0.1mg/m2~50mg/m2のリン酸化合物、及びC換算量で0.1mg/m2~50mg/m2のフェノール樹脂の少なくとも一種を更に含んでもよい。
(3)上記(2)に記載の容器用鋼板では、前記溶液がフッ素イオンを更に含み、前記複合皮膜が、F換算量で0.1mg/m2以下のフッ素化合物を更に含んでもよい。
(4)上記(1)~(3)のいずれか一項に記載の容器用鋼板では、前記冷延鋼板が、少なくとも片面に、金属Sn換算量で0.3g/m2~20g/m2のSnを有するSnめっき層、及び金属Ni換算量で5mg/m2~2000mg/m2のNiを有するNiめっき層の少なくとも一種を有してもよい。
(5)上記(4)に記載の容器用鋼板では、前記冷延鋼板の前記少なくとも片面が前記Snめっき層を有し、前記Snめっき層の少なくとも一部が溶融溶錫処理により前記冷延鋼板と合金化されていてもよい。
(6)上記(4)に記載の容器用鋼板では、前記冷延鋼板の前記少なくとも片面が前記Snめっき層を有し、前記Snめっき層の下に、Niめっき層、Fe-Ni合金めっき層、又はNiめっき後の熱処理によるNi拡散めっき層を有してもよい。
(7)上記(6)に記載の容器用鋼板では、前記冷延鋼板の前記少なくとも片面が前記Snめっき層を有し、前記Snめっき層の一部または全部が溶融溶錫処理により前記冷延鋼板と合金化されていてもよい。
(8)本発明の第二の態様は、冷延鋼板を、Snイオン、Feイオン、及びNiイオンの少なくとも一種の金属イオンと、Zrイオンと、硝酸イオンと、アンモニウムイオンとを含む溶液中で電解処理し、前記冷延鋼板上に析出させることにより、金属Zr換算量で0.1mg/m2~100mg/m2のZrと、金属Sn換算量で0.3g/m2~20g/m2のSn、金属Fe換算量で5mg/m2~2000mg/m2のFe、及び金属Ni換算量で5mg/m2~2000mg/m2のNiの少なくとも一種と、を含む複合皮膜を形成する、容器用鋼板の製造方法である。
(9)上記(8)に記載の容器用鋼板の製造方法では、前記冷延鋼板が、少なくとも片面に、金属Sn換算量で0.3g/m2~20g/m2のSnを有するSnめっき層、及び金属Ni換算量で5mg/m2~2000mg/m2のNiを有するNiめっき層の少なくとも一種を有してもよい。
(10)上記(8)に記載の容器用鋼板の製造方法では、前記溶液が、リン酸イオン、フェノール樹脂の少なくとも一種を更に含み、前記複合皮膜が、P換算量で0.1mg/m2~50mg/m2のリン酸化合物、及びC換算量で0.1mg/m2~50mg/m2のフェノール樹脂の少なくとも一種を更に含んでもよい。
(11)上記(8)~(10)のいずれか一項に記載の容器用鋼板の製造方法では、前記冷延鋼板に前記複合皮膜を形成した後、40℃以上の温水で0.5秒以上の浸漬処理あるいはスプレー処理による洗浄処理を行ってもよい。
 本発明により得られる缶用特性に優れた容器用鋼板は、優れた製缶加工性、溶接性、フィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下耐食性、無塗装耐食性、耐硫化黒変性、レトルト後耐錆性、濡れ性を有する。
原板1を用いた容器用鋼板Sの構成図である。 原板2を用いた容器用鋼板Sの構成図である。 原板3を用いた容器用鋼板Sの構成図である。 原板4を用いた容器用鋼板Sの構成図である。 原板5を用いた容器用鋼板Sの構成図である。 原板6を用いた容器用鋼板Sの構成図である。 原板7を用いた容器用鋼板Sの構成図である。 原板8を用いた容器用鋼板Sの構成図である。 原板9を用いた容器用鋼板Sの構成図である。
 本発明者等は、クロメート皮膜に代わる新たな被膜であるZr皮膜の活用を鋭意検討した結果、Zr皮膜あるいはZr皮膜にリン酸皮膜やフェノール樹脂皮膜を複合させたZr皮膜を形成させる際に、Snイオン、Niイオン等を含んだ処理液で電解処理することで、Zr皮膜とSn、Ni等の皮膜を同時に析出させ、フィルム密着性や塗膜下耐食性を始めとした缶用特性を大幅に向上させることを見出した。これは、NiまたはSnから構成されるめっき層の表面に存在する金属をZr皮膜と共に析出させることで被処理材の表面との結合が強固になるためと考えられる。
 また、処理液中にCrイオンが存在するとZr皮膜とSn、Ni等を同時に析出する前に電解処理でクロメート皮膜が形成され、Zr皮膜の形成を阻害する為、処理液中のCrイオンの除去が必要であることも見出している。
 以下、上述の発見に基づきなされた本発明の一実施形態に係る容器用鋼板につき詳細に説明する。
 本実施形態に係る容器用鋼板は、冷延鋼板又は冷延鋼板にSn、Fe、及びNiの少なくとも一種の金属をめっきした鋼板(以下、総称して「原板」という。)を、Snイオン、Feイオン、及びNiイオンの少なくとも一種の金属イオンと、Zrイオンと、硝酸イオンと、アンモニウムイオンとを含む溶液中で電解処理し、原板上に上記金属元素を含む複合皮膜を形成してなる容器用鋼板である。この複合皮膜は、
(1)金属Zr換算量で0.1mg/m2~100mg/m2のZrと、
(2)金属Sn換算量で0.3g/m2~20g/m2のSn、金属Fe換算量で5mg/m2~2000mg/m2のFe、及び金属Ni換算量で5mg/m2~2000mg/m2のNiの少なくとも一種と、
を含む。
 本実施形態に係る容器用鋼板は、原板の上に、(1)所定量のZrと、(2)所定量のSn、Fe、及びNiの少なくとも一種と、を含む複合皮膜を形成してなり、詳しくは後述するように複合皮膜を構成するそれぞれの元素が、製缶加工性、溶接性、フィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下耐食性、無塗装耐食性、耐硫化黒変性、レトルト後耐錆性、及び濡れ性の少なくともひとつの性質の向上に寄与する。
 なお、「複合皮膜」とは、上記金属元素を含むものであればよく、その形態は限定されない。すなわち、上記金属元素が金属単体、それぞれの合金だけでなく、その一部が酸化物、水酸化物、ハロゲン化物、リン酸化合物等の化合物として含有されていてもよい。
 また、複合皮膜は均一組成でなくてもよく、それぞれの構成元素あるいは一部の構成元素が分離した層状構造であってもよいし、被膜の厚み方向に構成元素がグラデーションしていてもよい。
 本発明において、原板は特に規制されるものではなく、容器材料として通常使用される鋼板を用いることができる。この原板の製造法、材質なども特に規制されるものではなく、通常の鋼板製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造される。この原板にNi、Snの1種以上を含む表面処理層を付与する場合、付与する方法については特に限定するものでは無い。例えば、電気めっき法や真空蒸着法やスパッタリング法などの公知技術を用いれば良く、拡散層を付与するための加熱処理を組み合わせても良い。また、NiはFe-Ni合金めっきを行っても本発明の本質は不変である。
 より高品質な複合被膜が形成できるという点で、前記原板が、Snめっきの前にNiめっき層、Fe-Ni合金めっき層、Niめっき後の熱処理によるNi拡散めっき層を付与した鋼板であることが好ましく、前記原板が、Snめっき後、溶融溶錫処理によりSnめっきの一部または全部を下地金属と合金化させてなることがより好ましい。
 本実施形態に係る容器用鋼板は、上述の鋼板(原板)の上層に複合皮膜が形成されてなる。原板(原料鋼板)の厚さは、用途により適宜決定される。
 以下、複合皮膜を構成する金属の役割について説明する。
 Zrは、本実施形態に係る容器用鋼板における複合皮膜の必須の成分である。
 複合皮膜において、Zrの役割は、フィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下耐食性、無塗装耐食性の確保であるが、これに加え、内容物に含まれる硫黄化合物と地鉄やSn、Niが反応して黒色の硫化物を形成する硫化黒変を防止する役割もある。Zrは、酸化Zr、水酸化Zr、フッ化Zr、リン酸Zr等のZr化合物あるいはこれらの複合体から構成されるが、これらのZr化合物は優れたフィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下耐食性、無塗装耐食性および耐硫化黒変性を有している。
 複合皮膜中のZrが金属Zr量で0.1mg/m2以上になるとフィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下耐食性、無塗装耐食性が向上し始めるが、実用上、安定した問題ないレベルの耐食性と密着性を確保するには、金属Zr換算量で1mg/m2以上にすることが好ましい。
 更に、複合皮膜中のZr量が増加するとフィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下耐食性、無塗装耐食性の向上効果も増加するが、Zr量が金属Zr換算量で100mg/m2を超えると、複合皮膜自体のフィルム密着性、一次塗料密着性、二次塗料密着性が劣化すると共に電気抵抗が上昇し溶接性が劣化する上、金属Snの優れた犠牲防食能による無塗装耐食性を損ない、有機酸含有の内容物中でのSnの均一溶解性を阻害する。従って、Zr皮膜付着量は金属Zr量で0.1~100mg/m2にする必要がある。
 上述のように、複合皮膜においては、Sn、Fe,及びNiの少なくとも一種が含まれるが、各成分の好ましい含有量について以下説明する。
 (Sn:金属Sn換算量で0.3~20g/m2
 Snは通常、金属、あるいは合金の形態で複合皮膜中に含まれるが、酸化物など化合物の形態でもよい。Snは優れた製缶加工性、塗膜下耐食性、無塗装耐食性、溶接性を発揮する。この効果が発現するのは、複合皮膜中に金属Snとして0.3g/m2以上必要である。複合皮膜中のSn量は、高速で十分な溶接性を確保するためには金属Sn換算量で0.5g/m2以上、十分な無塗装耐食性を確保するためには、金属Sn換算量で2g/m2以上付与することが望ましい。Sn付着量の増加に伴い、Snの優れた製缶加工性、塗膜下耐食性、無塗装耐食性、溶接性の向上効果は増加するが、20g/m2を超えてもその向上効果が飽和するため経済的に不利である。従って、Snの付着量は金属Sn換算量で20g/m2以下で良い。また、Snめっき後にSnリフロー処理(溶融溶錫処理)を行うことによりSn合金層が形成され耐食性がより一層向上する。
 (Fe:金属Fe換算量で5~2000mg/m2
 Feは通常、金属、あるいは合金の形態で複合皮膜中に含まれるが、酸化物など化合物の形態でもよい。Feは溶接性にその効果を発揮する。この効果が発現するのは、複合皮膜中に金属Fe換算量で、5mg/m2以上のFeが必要である。Feの付着量の増加に伴い、溶接性の向上効果は増加するが、2000mg/m2を超えてもその向上効果が飽和するため経済的に不利である。従って、Feの付着量は金属Fe換算量で5mg/m2以上、2000mg/m2以下で良い。
 (Ni:金属Ni換算量で5~2000mg/m2
 Niは通常、金属、あるいは合金の形態で複合皮膜中に含まれるが、酸化物など化合物の形態でもよい。Niは一次塗料密着性、二次塗料密着性、フィルム密着性、塗膜下耐食性、溶接性にその効果を発揮する。この効果が発現するのは、複合皮膜中に金属Ni換算量で5mg/m2以上のNiが必要である。高速で十分な溶接性と十分な塗膜下耐食性を確保するためには、150mg/m2以上付与することが望ましい。Niの付着量の増加に伴い、Niの優れたフィルム密着性、塗膜下耐食性、溶接性の向上効果は増加するが、2000mg/m2以上を超えてもその向上効果が飽和するため経済的に不利である。従って、Niの付着量は金属Ni換算量で5mg/m2以上、2000mg/m2以下で良い。
 尚、複合皮膜にCrが含まれる場合、塗膜下耐食性などの向上効果が期待できるが、上述した通り、処理液中にCrイオンが存在するとZr皮膜とSn、Ni等を同時に析出する前に電解処理でクロメート皮膜が形成され、Zr皮膜の形成を阻害してしまう。また、このような理由から、溶接性などの性能が劣化することになるため、本発明においては、複合皮膜にCrは含ませないことが好ましい。
 原板の上に、上述の複合皮膜を付与する方法として、Snイオン、Feイオン及び、Niイオンの少なくとも一種の金属イオンと、Zrイオンと、硝酸イオンと、アンモニウムイオンとを含む溶液を陰極電解処理(以下、単に「電解処理」という場合がある。)により行う方法が挙げられ、特にこれらの元素が同時に析出するような処理条件で電解処理が行われることが好ましい。
 なお、単に上記溶液に鋼板を浸漬して、皮膜を形成する方法もあるが、浸漬処理では、下地をエッチングしてZr皮膜が形成される為、付着が不均一になり、本実施形態に係る容器用鋼板における複合皮膜を形成することは難しい。
 陰極電解処理では、強制的な電荷移動および鋼板界面での水素イオン消費によるpH上昇が起こり、Zr皮膜の付着促進効果も相俟って、均一な皮膜が数秒から数十秒程度の短時間処理が可能であることから、工業的には極めて有利であるためである。また、硝酸イオンは陰極電解によって還元され、水酸化物イオンを放出する為、鋼板界面のpH上昇を促進する。アンモニウムイオンは、特に不溶性陽極を使用する際、亜硝酸イオンや硝酸イオンに還元され、陰極で消費された硝酸イオンの補給する効果に加え、pHを安定化する効果も有しているという利点もある。
 なお、本実施形態に係る容器用鋼板は、前記複合皮膜が
(1)Zrを主体とするZr皮膜層と、
(2)Sn、Fe、及びNiの少なくとも一種を主体とする皮膜層と
からなり、複合皮膜の表皮が前記(1)Zrを主体とするZr皮膜層で構成されていることが好ましい。
 即ち、Snイオン、Feイオン、及びNiイオンの少なくとも一種の金属イオンと、Zrイオンと、硝酸イオンと、アンモニウムイオンとを含む溶液中で原板を電解処理し、原板上に上記金属化合物を含む複合皮膜を形成した場合に、この複合皮膜が、原板上にSn、Fe、及びNiの少なくとも一種を主体とする皮膜層が形成され、その上にZrを主体とするZr皮膜層が形成される、いわゆる複合皮膜に皮膜構成金属成分のグラデーションが存在する容器用鋼板であることが好ましい。
 また、本発明の容器用鋼板は、特に複合皮膜と原板との加工後のフィルム密着性を高めるという観点から、複合皮膜が、
(1)金属Zr換算量で0.1mg/m2~100mg/m2のZrと、
(2)金属Sn換算量で0.3g/m2~20g/m2のSn、金属Fe量で5mg/m2~2000mg/m2のFe、及び金属Ni換算量で5mg/m2~2000mg/m2のNiと、
(3)P換算量で0.1mg/m2~50mg/m2のリン酸化合物及びC換算量で0.1mg/m2~50mg/m2のフェノール樹脂の少なくとも一種と、
を含むことが好ましい。
 このような(3)リン酸及びフェノール樹脂の少なくとも一種を含む複合膜は、上記溶液に、更に、フッ素イオン、リン酸イオン、及びフェノール樹脂の少なくとも一種を加えた溶液中で鋼板を電解処理することによって得ることができる。
 なお、(3)リン酸及びフェノール樹脂の少なくとも一種を含む複合膜を形成する場合も上述と同様に電解処理により行う方法により行うことができる。
 フッ素イオンは錯体を形成しZrイオンの安定性を確保する性質がある。そのため、フッ素イオンは、電解液中のZr安定化(キレート形成して分散化)のために入れるほうがpH、濃度、温度の許容範囲が広くなって操業しやすくなる。
 一方、複合膜中に取り込まれたFは、塗料やフィルムの通常の密着性(一次密着性)には影響を及ぼさないが、レトルト処理などの高温殺菌処理時の密着性(二次密着性)やレトルト後耐錆性あるいは塗膜下耐食性を劣化させる原因となる。これは、水蒸気や腐食液に皮膜中のフッ素イオンが溶出し、有機皮膜との結合を分解、或いは、下地鋼板を腐食することが原因と考えられる。そのため、複合皮膜中のフッ素化合物含有量が、F換算量で0.1mg/m2を超えると、これらの諸特性の劣化が顕在化し始めることから、複合皮膜中のフッ素化合物含有量は、F換算量で0.1mg/m2以下にすることが好ましい。
 なお、上述のようにフッ素が複合膜中に残留するとフィルム密着性、二次塗料密着性低下などを引き起こすので、フッ素を使う場合は、温水洗浄で極力落とす必要がある。上記の複合皮膜を形成させた後、直ちに、温水洗浄で極力落とす必要がある。温水で洗浄する目的は、処理液の洗浄と濡れ性の向上である。特に、温水洗浄は、濡れ性向上により塗装弾きによるピンホールを抑制し、塗装性能が格段に向上し塗装鋼板の品質確保に大きく寄与する。十分な濡れ性を確保するには、表面張力として31mN/m以上が必要であり、好ましくは、35mN/m以上あれば良い。ここで述べた表面張力は、JIS K 6768で規格されている方法で測定された値である。この規格では、種々の表面張力に調整された試験液を塗布し、試験液の濡れ状態で測定する為、表面張力が高い試験液の濡れ状態が良好であれば、優れた濡れ性を示していることとなる。そのため、濡れ性は、試験液の表面張力に対応付けて評価することができる。
 この温水洗浄による濡れ性の向上機構の詳細は不明であるが、皮膜の最表層で親水性の官能基が増加する等の機構が考えられる。これらの効果が発揮されるには、40℃以上の温水で0.5秒以上の浸漬処理あるいはスプレー処理による洗浄処理が必要である。工業的には、液の流動による洗浄促進効果が期待できるスプレー処理または浸漬処理とスプレー処理による複合処理が好ましい。
 更に、温水洗浄の効果として、溶液中にフッ素イオンが含まれる場合、複合皮膜中に取り込まれるフッ素イオンの除去が挙げられる。上述のように複合膜中に取り込まれたフッ素は、複合皮膜のフィルム密着性、二次塗料密着性やレトルト後耐錆性あるいは塗膜下耐食性を低下させるおそれがあり、これを回避するためにフッ素化合物含有量をF換算量で0.1mg/m2以下にするには、複合皮膜を形成した後、温水中での浸漬処理やスプレー処理により洗浄処理を行えば良く、この処理温度を高く、或いは、処理時間を長くすることによりF量を減少させることができる。従って、皮膜中のフッ素化合物含有量をF換算量で0.1mg/m2以下にするには40℃以上の温水で0.5秒以上の浸漬処理あるいはスプレー処理をすればよい。水温が40℃を下回る、あるいは処理時間が0.5秒を下回ると複合皮膜中のフッ素化合物含有量をF換算量で0.1mg/m2以下にできなくなり、上述の諸特性が発揮されなくなる。
 複合皮膜において、リン酸化合物を添加する目的は、フィルム密着性、一次塗料密着性、二次塗料密着性、特に加工後のフィルム密着性の確保である。リン酸化合物としては、下地と反応して形成されるリン酸Fe、リン酸Sn、リン酸Niやリン酸Zrやリン酸-フェノール樹脂皮膜等の皮膜あるいはこれらの複合体が挙げられ、これらのリン酸化合物は優れた塗膜下耐食性とフィルム密着性、一次塗料密着性、二次塗料密着性を有している。従って、リン酸化合物が増加すると、塗膜下耐食性とフィルム密着性、一次塗料密着性、二次塗料密着性が向上し始め、複合皮膜中のリン酸化合物がP換算量で、0.1mg/m2以上になると、実用上、問題ないレベルの塗膜下耐食性とフィルム密着性、一次塗料密着性、二次塗料密着性が確保される。更に、リン酸化合物量が増加すると塗膜下耐食性とフィルム密着性、一次塗料密着性、二次塗料密着性の向上効果も増加するが、リン酸化合物量がP換算量で50mg/m2を超えると、リン酸化合物が多くなり過ぎ複合皮膜のフィルム密着性、一次塗料密着性、二次塗料密着性が劣化すると共に電気抵抗が上昇し溶接性が劣化する。従って、リン酸量はP換算量で0.1~50mg/m2にすることが好ましい。
 複合皮膜において、フェノール樹脂皮膜の役割はフィルム密着性、一次塗料密着性、二次塗料密着性、特に加工後のフィルム密着性の確保である。フェノール樹脂自体が有機物であることから塗料やラミネートフィルムと非常に優れた密着性を有している。表面処理層が大きく変形するような加工を受ける場合、表面処理層自体がその加工により凝集破壊され、密着性が劣化する場合があるが、フェノール樹脂は、複合皮膜の加工後の密着性を著しく向上せしめる効果を有している。従って、フェノール樹脂が増加するとィルム密着性、一次塗料密着性、二次塗料密着性が向上し始め、複合皮膜中のフェノール樹脂量がC換算量で、0.1mg/m2以上になると、実用上、問題ないレベルの密着性が確保される。更に、フェノール樹脂量が増加するとィルム密着性、一次塗料密着性、二次塗料密着性の向上効果も増加するが、複合皮膜中のフェノール樹脂量がC換算量で50mg/m2を超えると、電気抵抗が上昇し溶接性が劣化する。従って、フェノール樹脂量はC換算量で0.1~50mg/m2にすることが好ましい。
 本実施形態に係る容器用鋼板で使用されるフェノール樹脂としては、下記式(I)で表わされる重合体が例示される。これは、フェノール化合物、ナフトール化合物またはビスフェノール類(ビスフェノールA、F等)とホルムアルデヒドとを重縮合し、ついでホルムアルデヒドとアミンを用いて官能基X1、X2を導入することにより製造し得る。ホルムアルデヒドとしては通常ホルマリンを用いる。重合体の分子量については特に制限されないが、通常1000~100万程度、好ましくは1000~10万程度、特に1000~1万程度であるものが好適に使用される。分子量の測定は皮膜を剥離した後、ゲルパーミエーションクロマトグラフィーによって行うことができる。
Figure JPOXMLDOC01-appb-C000001
 
 式(I)において、X1は、それぞれの構成単位において独立に水素原子または下記の式(II)で表されるZ1基を表し、Y1は、水素原子、水酸基、C1~C5のアルキル基、C1~C5のヒドロキシアルキル基、C6~C12のアリール基、ベンジル基または下記の式(III)で表される基を表し、Y2は、水素原子を表すか、またはY1とY1に隣接する位置に存在する場合のY2は、Y1とY2との間の結合も含めて一体となって縮合ベンゼン環を形成することができる。ここにおいて、Z1基+Z2基の導入率はベンゼン環1個あたり0.2~1.0個である。
Figure JPOXMLDOC01-appb-C000002
 式(II)において、R1およびR2は、互いに独立に、水素原子、C1~C10のアルキル基またはC1~C10のヒドロキシアルキル基を表す。
Figure JPOXMLDOC01-appb-C000003
 式(III)において、R3およびR4は、互いに独立に、水素原子、C1~C10のアルキル基、またはC1~C10のヒドロキシアルキル基を表し、X2は、Y1が上記の式(III)で表される基である場合、式(I)で表されるそれぞれの構成単位において独立に水素原子または下記一般式(IV)で表されるZ2基を表す。
Figure JPOXMLDOC01-appb-C000004
 式(IV)において、R5およびR6は、互いに独立に、水素原子、C1~C10のアルキル基、またはC1~C10のヒドロキシアルキル基を表す。
 なお、本実施形態に係る容器用鋼板における複合皮膜中に含有されるSn量、Ni量、Fe量、Zr量、P量、又はF量は、例えば、蛍光X線分析等の定量分析法により測定することが可能である。また、被処理鋼板(原板)と同一金属が付着する場合は、銅板などの別の金属板に処理し、測定すればよい。また、フェノール樹脂皮膜中に含有されるC量は、TOC(全有機体炭素計)を用い、鋼板中に存するC量を差し引くことにより測定することが可能である。
 複合皮膜を形成する陰極電解処理の処理液中における各種のイオンの濃度は、
Snイオン、Feイオン、Niイオン濃度:10~30000ppm程度
Zrイオン濃度     :100~20000ppm程度
アンモニウムイオンの濃度:100~20000ppm程度
硝酸イオン濃度     :100~20000ppm程度
リン酸イオン濃度    :100~50000ppm程度
フェノール樹脂濃度は  :50~2000ppm程度
フッ素イオン濃度    :500~30000ppm程度
の範囲で、生産設備や生産速度(能力)に応じて、適宜調整すればよい。
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を越えない限り以下の実施例に限定されるものではない。
<原板製造>
 表1に、実施例1~19及び比較例1~8で用いた板厚0.15~0.25mmの原板1~9の製造方法を示す。また、図1~9に、原板1~9を用いた容器用鋼板Sの構成図を示す。図中、1~9は原板番号、Aは冷延鋼板、Bはめっき、Cは複合皮膜、Sは容器用鋼板を示す。尚、図中においてSnめっき層は、少なくとも一部が溶融溶錫処理により冷延鋼板と合金化されている場合を含む。
 更に、表2A、表2Bに、実施例1~19及び比較例1~8で用いた原板を示す。尚、実施例9、11~15、23~25、27、28、及び、比較例1、比較例6では、Snめっき後に通電加熱によりSnを溶融させ、80℃の温水に浸漬し冷却処理を行った。
<複合皮膜形成>
 次に、表3A、表3Bに示す複合皮膜処理条件に基づきそれぞれの原板の表面に複合被膜を付与した。具体的には、原板を下記の薬剤を適量溶解させた処理液に浸漬した状態で、表3A、表3Bに示す電解処理時間及び電流密度に基づき陰極電解処理を行い、複合皮膜を形成した。
 薬剤には、市販品の、硝酸Zr、フッ化Zrアンモニウム、フッ化水素酸、硝酸アンモニア、硝酸Sn、硝酸Fe、硝酸Ni、リン酸を使用した。
 また、低分子フェノール樹脂については、前記一般式(I)において、X1が、Z1=-CH2N(CH32であり、Y1=Y2=水素原子であり、Z1基の導入率が、ベンゼン環1個あたり0.5個である重合体であって、平均分子量が3000の低分子フェノール樹脂を固形分 2.0g/L 、pH 6.0(リン酸で調整)とした水溶性重合体の形で使用した。
<水洗処理>
 上記の処理により複合皮膜を形成した後、以下の処理法(a)又は(b)で水洗処理を行い、複合皮膜中のF量を制御した。
(a)40℃以上の温水に浸漬
(b)15℃程度の常温の水に浸漬
<性能評価>
 上記の処理を行った試験材について、複合皮膜におけるZr、P、C、F、Sn、Fe、Niの付着量を測定した。その結果を表4A、表4Bに示す。また、以下に示す(A)~(J)の各項目について性能評価を行った。その結果を表5A、表5Bに示す。
(A)製缶加工性
 試験材の両面に厚さ20μmのPETフィルムを200℃でラミネートし、絞り加工としごき加工による製缶加工を段階的に行い、成型を4段階(A:非常に良い、B:良い、C:疵が認められる、D:破断し加工不能)で評価した。
(B)溶接性
 ワイヤーシーム溶接機を用いて、溶接ワイヤースピード80m/minの条件で、電流を変更して試験材を溶接し、十分な溶接強度が得られる最小電流値とチリ及び溶接スパッタなどの溶接欠陥が目立ち始める最大電流値からなる適正電流範囲の広さから総合的に判断し、4段階(A:非常に良い、B:良い、C:劣る、D:溶接不能)で溶接性を評価した。
(C)フィルム密着性
 試験材の両面に厚さ20μmのPETフィルムを200℃でラミネート氏、絞りしごき加工を行った後、缶体を作製し、125℃、30minのレトルト処理を行い、フィルムの剥離状況を、4段階(A:全く剥離無し、B:実用上問題無い程度の極僅かな剥離有り、C:僅かな剥離有り、D:大部分で剥離)で評価した。
(D)一次塗料密着性
 試験材にエポキシ-フェノール樹脂を塗布し、200℃、30minで焼付けた後、1mm間隔で地鉄に達する深さのゴバン目を入れ、テープで剥離し、剥離状況を4段階(A:全く剥離無し、B:実用上問題無い程度の極僅かな剥離有り、C:僅かな剥離有り、D:大部分で剥離)で評価した。
(E)二次塗料密着性
 試験材にエポキシ-フェノール樹脂を塗布し、200℃、30minで焼付けた後、1mm間隔で地鉄に達する深さのゴバン目を入れ、その後、125℃、30minのレトルト処理を行い、乾燥後、テープで塗膜を剥離し、剥離状況を4段階(A:全く剥離無し、B:実用上問題無い程度の極僅かな剥離有り、C:僅かな剥離有り、D:大部分で剥離)で評価した。
(F)塗膜下耐食性
 試験材にエポキシ-フェノール樹脂を塗布し、200℃、30minで焼付けた後、地鉄に達する深さのクロスカットを入れ、1.5%クエン酸-1.5%食塩混合液からなる試験液に、45℃、72時間浸漬し、洗浄、乾燥後、テープ剥離を行い、クロスカット部の塗膜下腐食状況と平板部の腐食状況を4段階(A:塗膜下腐食が認められない、B:実用上問題無い程度の僅かな塗膜下腐食が認められる、C:微小な腐食下腐食と平板部に僅かな腐食が認められる、D:激しい腐食塗膜下腐食と平板部に腐食が認められる)で判断して評価した。
(G)無塗装耐食性
 試験材を1.5%クエン酸溶液に、30℃、48時間浸漬し、Sn溶解の均一性をティンクリスタルの発生状況を4段階(A:全面に明確なティンクリスタルが認められる、B:ほぼ全面にティンクリスタルが認められる、C:ティンクリスタルが部分的にしか認められない、D:殆どティンクリスタルが認められない)で判断して評価した。
(H)耐硫化黒変性
 試験材を試験液(0.056%システイン塩酸塩、0.4%リン酸2水素カリウム、0.81%リン酸ナトリウム)で121℃、1時間浸漬し、変色(黒変)状況を4段階(A:殆ど変色が認められない、B:実用上問題無い程度の薄い変色が認められる、C:部分的に濃い変色が認められる、D:大部分で濃い変色が認められる)で判断して評価した。
(I)レトルト後耐錆性
 試験材を125℃、30minのレトルト処理し、錆の発生状況を4段階(A:全く発錆無し、B:実用上問題無い程度の極僅かな発錆有り、C:僅かな発錆有り、D:大部分で発錆)で評価した。
(J)濡れ性
 試験材に市販の濡れ張力試験液を塗布し、試験液が弾き始める限界の試験液の張力で評価し、張力の大きさで3段階(A:35mN/m以上、B:31mN/m以上、D:30mN/m以下)で評価した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 本発明の範囲に属する実施例1~29はいずれも、製缶加工性、溶接性、フィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下耐食性、無塗装耐食性、耐硫化黒変性、レトルト後耐錆性、濡れ性に優れることがわかった。一方、本発明のいずれかの要件を満たさない比較例1~8は、製缶加工性、溶接性、フィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下耐食性、無塗装耐食性、耐硫化黒変性、レトルト後耐錆性、濡れ性の少なくとも一部の特性が劣ることがわかった。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明に係る容器用鋼板は、製缶加工性、溶接性、フィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下耐食性、無塗装耐食性、耐硫化黒変性、レトルト後耐錆性、濡れ性に優れ、特に、ラミネートフィルム容器鋼板として有用である。
 A  冷延鋼板
 B  めっき
 C  複合皮膜
 S  容器用鋼板
 1~9  原板

Claims (11)

  1.  冷延鋼板と、
      Snイオン、Feイオン、及びNiイオンの少なくとも一種の金属イオンと、
      Zrイオンと、
      硝酸イオンと、
      アンモニウムイオンと
     を含む溶液中で電解処理されることにより前記冷延鋼板上に形成される複合皮膜と
    を備え、
    前記複合皮膜が、
     金属Zr換算量で0.1mg/m2~100mg/m2のZrと、
      金属Sn換算量で0.3g/m2~20g/m2のSn、
      金属Fe換算量で5mg/m2~2000mg/m2のFe、及び
      金属Ni換算量で5mg/m2~2000mg/m2のNi
     の少なくとも一種と
    を備えることを特徴とする容器用鋼板。
  2.  前記溶液が、リン酸イオン及びフェノール樹脂の少なくとも一種を更に含み、
     前記複合皮膜が、
      P換算量で0.1mg/m2~50mg/m2のリン酸化合物、及び
      C換算量で0.1mg/m2~50mg/m2のフェノール樹脂
     の少なくとも一種
    を更に含むことを特徴とする請求項1に記載の容器用鋼板。
  3.  前記溶液がフッ素イオンを更に含み、
     前記複合皮膜が、F換算量で0.1mg/m2以下のフッ素化合物を更に含むことを特徴とする請求項2に記載の容器用鋼板。
  4.  前記冷延鋼板が、少なくとも片面に、
      金属Sn換算量で0.3g/m2~20g/m2のSnを有するSnめっき層、及び
      金属Ni換算量で5mg/m2~2000mg/m2のNiを有するNiめっき層
    の少なくとも一種を有することを特徴とする請求項1から3のいずれか一項に記載の容器用鋼板。
  5.  前記冷延鋼板の前記少なくとも片面が前記Snめっき層を有し、
     前記Snめっき層の少なくとも一部が溶融溶錫処理により前記冷延鋼板と合金化されていることを特徴とする請求項4に記載の容器用鋼板。
  6.  前記冷延鋼板の前記少なくとも片面が前記Snめっき層を有し、
     前記Snめっき層の下に、
      Niめっき層、
      Fe-Ni合金めっき層、又は
      Niめっき後の熱処理によるNi拡散めっき層
    を有することを特徴とする請求項4に記載の容器用鋼板。
  7.  前記冷延鋼板の前記少なくとも片面が前記Snめっき層を有し、
     前記Snめっき層の一部または全部が溶融溶錫処理により前記冷延鋼板と合金化されていることを特徴とする請求項6に記載の容器用鋼板。
  8.  冷延鋼板を、Snイオン、Feイオン、及びNiイオンの少なくとも一種の金属イオンと、Zrイオンと、硝酸イオンと、アンモニウムイオンとを含む溶液中で電解処理し、前記冷延鋼板上に析出させることにより、
     金属Zr換算量で0.1mg/m2~100mg/m2のZrと、
      金属Sn換算量で0.3g/m2~20g/m2のSn、
      金属Fe換算量で5mg/m2~2000mg/m2のFe、及び
      金属Ni換算量で5mg/m2~2000mg/m2のNi
     の少なくとも一種と、
    を含む複合皮膜を形成することを特徴とする容器用鋼板の製造方法。
  9.  前記冷延鋼板が、少なくとも片面に、
      金属Sn換算量で0.3g/m2~20g/m2のSnを有するSnめっき層、及び
      金属Ni換算量で5mg/m2~2000mg/m2のNiを有するNiめっき層
    の少なくとも一種を有することを特徴とする請求項8に記載の容器用鋼板の製造方法。
  10.  前記溶液が、リン酸イオン、フェノール樹脂の少なくとも一種を更に含み、
     前記複合皮膜が、
      P換算量で0.1mg/m2~50mg/m2のリン酸化合物、及び
      C換算量で0.1mg/m2~50mg/m2のフェノール樹脂
    の少なくとも一種
    を更に含むことを特徴とする請求項8に記載の容器用鋼板の製造方法。
  11. 前記冷延鋼板に前記複合皮膜を形成した後、40℃以上の温水で0.5秒以上の浸漬処理あるいはスプレー処理による洗浄処理を行うことを特徴とする請求項8~10のいずれか一項に記載の容器用鋼板の製造方法。
PCT/JP2011/064754 2010-06-29 2011-06-28 容器用鋼板およびその製造方法 WO2012002360A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201180031526.0A CN102959136B (zh) 2010-06-29 2011-06-28 容器用钢板及其制造方法
US13/805,071 US9212428B2 (en) 2010-06-29 2011-06-28 Steel sheet for container and method of manufacturing the same
KR1020127033633A KR101330845B1 (ko) 2010-06-29 2011-06-28 용기용 강판 및 그 제조 방법
JP2011546458A JP5196035B2 (ja) 2010-06-29 2011-06-28 容器用鋼板およびその製造方法
CA2802490A CA2802490C (en) 2010-06-29 2011-06-28 Steel sheet for container and method of manufacturing the same
EP11800824.2A EP2589685B1 (en) 2010-06-29 2011-06-28 Steel sheet for container and method of manufacturing the same
ES11800824.2T ES2609108T3 (es) 2010-06-29 2011-06-28 Hoja de acero para recipiente y método de fabricación de la misma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010147860 2010-06-29
JP2010-147860 2010-06-29

Publications (1)

Publication Number Publication Date
WO2012002360A1 true WO2012002360A1 (ja) 2012-01-05

Family

ID=45402067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064754 WO2012002360A1 (ja) 2010-06-29 2011-06-28 容器用鋼板およびその製造方法

Country Status (9)

Country Link
US (1) US9212428B2 (ja)
EP (1) EP2589685B1 (ja)
JP (1) JP5196035B2 (ja)
KR (1) KR101330845B1 (ja)
CN (1) CN102959136B (ja)
CA (1) CA2802490C (ja)
ES (1) ES2609108T3 (ja)
TW (1) TWI449813B (ja)
WO (1) WO2012002360A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180056A1 (ja) * 2012-05-31 2013-12-05 新日鐵住金株式会社 3ピースリシール缶
WO2014189081A1 (ja) * 2013-05-21 2014-11-27 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
WO2018016251A1 (ja) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 電解処理用金属表面処理剤
WO2018016250A1 (ja) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 電解処理用金属表面処理剤
JPWO2016207967A1 (ja) * 2015-06-23 2018-04-19 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
JPWO2016207966A1 (ja) * 2015-06-23 2018-04-26 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
JP7460035B1 (ja) 2022-11-24 2024-04-02 Jfeスチール株式会社 表面処理鋼板およびその製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103080380B (zh) * 2010-09-29 2014-06-18 新日铁住金株式会社 酸性液体用三片可再密封罐
TR201910649T4 (tr) * 2013-09-25 2019-08-21 Toyo Kohan Co Ltd Yüzey i̇şlem görmüş çeli̇k sac üreti̇m metodu
JP6530885B2 (ja) * 2013-12-18 2019-06-12 東洋製罐株式会社 表面処理鋼板、有機樹脂被覆金属容器、及び表面処理鋼板の製造方法
WO2016125911A1 (ja) * 2015-02-06 2016-08-11 新日鐵住金株式会社 Snめっき鋼板及び化成処理鋼板並びにこれらの製造方法
US10577705B2 (en) 2015-04-16 2020-03-03 Nippon Steel Corporation Steel sheet for container and method for producing steel sheet for container
JP6119931B2 (ja) * 2015-04-16 2017-04-26 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
CN108779561A (zh) * 2016-03-22 2018-11-09 新日铁住金株式会社 化学转化处理钢板及化学转化处理钢板的制造方法
JP6583538B2 (ja) * 2016-03-22 2019-10-02 日本製鉄株式会社 化成処理鋼板及び化成処理鋼板の製造方法
US10914017B2 (en) * 2016-05-24 2021-02-09 Nippon Steel Corporation Sn-plated steel sheet
WO2017204266A1 (ja) * 2016-05-24 2017-11-30 新日鐵住金株式会社 Sn系合金めっき鋼板
JP6451919B1 (ja) * 2017-07-28 2019-01-16 Jfeスチール株式会社 電池外筒缶用鋼板、電池外筒缶および電池
US11946121B2 (en) 2017-07-28 2024-04-02 Jfe Steel Corporation Steel sheet for battery outer tube cans, battery outer tube can and battery
JP6897875B2 (ja) 2019-04-23 2021-07-07 Jfeスチール株式会社 表面処理鋼板の製造方法および表面処理鋼板
CN114507813A (zh) * 2020-11-17 2022-05-17 上海梅山钢铁股份有限公司 一种超低镀锡层冷轧电镀锡钢板及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264230A (ja) * 2004-03-18 2005-09-29 Nippon Parkerizing Co Ltd 金属表面処理用組成物、金属表面処理用処理液、金属表面処理方法および金属材料
WO2007061011A1 (ja) * 2005-11-22 2007-05-31 Nihon Parkerizing Co., Ltd. 化成処理金属板およびその製造方法
JP2008088552A (ja) * 2006-09-08 2008-04-17 Nippon Paint Co Ltd 金属基材の表面処理方法、当該表面処理方法により処理されてなる金属材料、及び当該金属材料の塗装方法。
JP2010013728A (ja) * 2008-06-05 2010-01-21 Nippon Steel Corp 有機皮膜性能に優れた容器用鋼板およびその製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170532A (ja) 1984-02-14 1985-09-04 Kishimoto Akira 絞りしごき罐の製造方法
JPS60168643A (ja) 1984-02-14 1985-09-02 東洋製罐株式会社 絞りしごき罐用被覆鋼板
JP2504164B2 (ja) 1989-02-16 1996-06-05 東洋製罐株式会社 薄肉化深絞り缶の製造方法
US5249447A (en) 1989-02-16 1993-10-05 Toyo Seikan Kaisha Ltd. Process for preparation of thickness-reduced deep-draw-formed can
JPH0332835A (ja) 1989-11-10 1991-02-13 Toyo Seikan Kaisha Ltd 絞りしごき罐
JPH03236954A (ja) 1990-02-14 1991-10-22 Nippon Steel Corp スリーピース缶用フィルム積層鋼帯およびその製造方法
JP2998042B2 (ja) 1991-05-17 2000-01-11 新日本製鐵株式会社 ストライプ状の多層有機皮膜を有するスリーピース缶用鋼板
JP2969394B2 (ja) 1991-05-17 1999-11-02 新日本製鐵株式会社 缶外面に多層構造有機皮膜を有するスリーピース缶
JP3089433B2 (ja) 1991-05-17 2000-09-18 新日本製鐵株式会社 3ピース缶用ストライプラミネート鋼板の製造方法
CA2437990C (en) * 2000-12-04 2007-05-08 Jfe Steel Corporation Zinc-base plated steel sheet and method for manufacturing same
TWI268965B (en) * 2001-06-15 2006-12-21 Nihon Parkerizing Treating solution for surface treatment of metal and surface treatment method
JP2004263252A (ja) 2003-03-03 2004-09-24 Jfe Steel Kk 耐白錆性に優れたクロムフリー化成処理鋼板
CN101384753B (zh) * 2006-02-09 2011-06-01 新日本制铁株式会社 具有耐腐蚀性的镀锡钢板
JP5093797B2 (ja) 2006-03-24 2012-12-12 新日本製鐵株式会社 製缶加工性に優れた容器用鋼板
CN101410553B (zh) * 2006-03-29 2012-06-27 新日本制铁株式会社 容器用钢板
MY148014A (en) * 2006-09-07 2013-02-28 Jfe Steel Corp Surface-treated steel shee t
KR101144367B1 (ko) 2006-09-08 2012-05-10 신닛뽄세이테쯔 카부시키카이샤 용기용 강판 및 그 제조 방법
TWI391530B (zh) * 2007-04-04 2013-04-01 Nippon Steel Corp A plated steel sheet for use in a tank and a method for manufacturing the same
JP5186815B2 (ja) 2007-06-20 2013-04-24 新日鐵住金株式会社 容器用鋼板
JP5186817B2 (ja) 2007-06-20 2013-04-24 新日鐵住金株式会社 容器用鋼板
JP5157487B2 (ja) * 2008-01-30 2013-03-06 新日鐵住金株式会社 容器用鋼板とその製造方法
EP2256231A4 (en) * 2008-02-18 2011-12-07 Nippon Steel Corp PLATED COPPER STEEL SHEET AND METHOD FOR PRODUCING PLATED STEEL SHEET
US8822037B2 (en) * 2010-05-28 2014-09-02 Toyo Seikan Group Holdings, Ltd. Surface-treated steel plate
US8133594B2 (en) * 2010-06-04 2012-03-13 Nippon Steel Corporation Steel sheet for container use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264230A (ja) * 2004-03-18 2005-09-29 Nippon Parkerizing Co Ltd 金属表面処理用組成物、金属表面処理用処理液、金属表面処理方法および金属材料
WO2007061011A1 (ja) * 2005-11-22 2007-05-31 Nihon Parkerizing Co., Ltd. 化成処理金属板およびその製造方法
JP2008088552A (ja) * 2006-09-08 2008-04-17 Nippon Paint Co Ltd 金属基材の表面処理方法、当該表面処理方法により処理されてなる金属材料、及び当該金属材料の塗装方法。
JP2010013728A (ja) * 2008-06-05 2010-01-21 Nippon Steel Corp 有機皮膜性能に優れた容器用鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2589685A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914584B2 (en) 2012-05-31 2018-03-13 Nippon Steel & Sumitomo Metal Corporation Three-piece resealable can
US20140183086A1 (en) * 2012-05-31 2014-07-03 Nippon Steel & Sumitomo Metal Corporation Three-piece resealable can
JP5578285B2 (ja) * 2012-05-31 2014-08-27 新日鐵住金株式会社 3ピースリシール缶
WO2013180056A1 (ja) * 2012-05-31 2013-12-05 新日鐵住金株式会社 3ピースリシール缶
US10443141B2 (en) 2013-05-21 2019-10-15 Nippon Steel Corporation Steel sheet for containers, and method for producing steel sheet for containers
JP6070836B2 (ja) * 2013-05-21 2017-02-01 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
WO2014189081A1 (ja) * 2013-05-21 2014-11-27 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
JPWO2016207967A1 (ja) * 2015-06-23 2018-04-19 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
JPWO2016207966A1 (ja) * 2015-06-23 2018-04-26 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
US10465309B2 (en) 2015-06-23 2019-11-05 Nippon Steel Corporation Steel sheet for containers, and method for producing steel sheet for containers
US10851467B2 (en) 2015-06-23 2020-12-01 Nippon Steel Corporation Steel sheet for containers, and method for producing steel sheet for containers
WO2018016251A1 (ja) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 電解処理用金属表面処理剤
WO2018016250A1 (ja) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 電解処理用金属表面処理剤
JP2018012857A (ja) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 電解処理用金属表面処理剤、電解処理用金属表面処理剤の製造方法、及び、金属材料の表面処理方法
JP2018012858A (ja) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 電解処理用金属表面処理剤、電解処理用金属表面処理剤の製造方法、及び、金属材料の表面処理方法
JP7460035B1 (ja) 2022-11-24 2024-04-02 Jfeスチール株式会社 表面処理鋼板およびその製造方法

Also Published As

Publication number Publication date
EP2589685A1 (en) 2013-05-08
ES2609108T3 (es) 2017-04-18
CN102959136B (zh) 2016-06-15
CN102959136A (zh) 2013-03-06
US20130089751A1 (en) 2013-04-11
JPWO2012002360A1 (ja) 2013-08-22
CA2802490A1 (en) 2012-01-05
KR101330845B1 (ko) 2013-11-18
EP2589685A4 (en) 2013-12-11
CA2802490C (en) 2014-06-03
TW201217588A (en) 2012-05-01
KR20130031299A (ko) 2013-03-28
JP5196035B2 (ja) 2013-05-15
EP2589685B1 (en) 2016-10-12
TWI449813B (zh) 2014-08-21
US9212428B2 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
JP5196035B2 (ja) 容器用鋼板およびその製造方法
JP4886811B2 (ja) 有機皮膜性能に優れた容器用鋼板およびその製造方法
JP4920800B2 (ja) 容器用鋼板の製造方法
JP5093797B2 (ja) 製缶加工性に優れた容器用鋼板
JP5845563B2 (ja) 容器用鋼板の製造方法
JP5304000B2 (ja) 溶接性、外観、製缶加工密着性に優れた容器用鋼板
JP5015239B2 (ja) 缶用めっき鋼板及びその製造方法
JP5861249B2 (ja) 容器用鋼板の製造方法
JP5754099B2 (ja) 容器用鋼板の製造方法
JP5672775B2 (ja) 有機皮膜性能に優れた容器用鋼板およびその製造方法
JP5214437B2 (ja) 容器用鋼板
JP4897818B2 (ja) 容器用鋼板及びその製造方法
JP5186816B2 (ja) 容器用鋼板とその製造方法
JP5505085B2 (ja) 錫めっき鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031526.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011546458

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2802490

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2011800824

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13805071

Country of ref document: US

Ref document number: 2011800824

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11047/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127033633

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1201006758

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE