WO2014189081A1 - 容器用鋼板及び容器用鋼板の製造方法 - Google Patents

容器用鋼板及び容器用鋼板の製造方法 Download PDF

Info

Publication number
WO2014189081A1
WO2014189081A1 PCT/JP2014/063478 JP2014063478W WO2014189081A1 WO 2014189081 A1 WO2014189081 A1 WO 2014189081A1 JP 2014063478 W JP2014063478 W JP 2014063478W WO 2014189081 A1 WO2014189081 A1 WO 2014189081A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
amount
plating
steel plate
film layer
Prior art date
Application number
PCT/JP2014/063478
Other languages
English (en)
French (fr)
Inventor
賢明 谷
平野 茂
光 立木
偉男 柳原
誠 河端
横矢 博一
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2015518277A priority Critical patent/JP6070836B2/ja
Priority to MYPI2015704152A priority patent/MY182935A/en
Priority to EP14800433.6A priority patent/EP3000917B1/en
Priority to ES14800433T priority patent/ES2782973T3/es
Priority to US14/891,945 priority patent/US10443141B2/en
Priority to KR1020157032927A priority patent/KR101734747B1/ko
Priority to CN201480028919.XA priority patent/CN105283584B/zh
Publication of WO2014189081A1 publication Critical patent/WO2014189081A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/08Tin or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Definitions

  • the present invention relates to a steel plate for containers and a method for producing a steel plate for containers.
  • container steel plates such as nickel (Ni) plated steel plates, tin (Sn) plated steel plates, tin-based alloy plated steel plates and the like are often used.
  • these container steel plates are subjected to rust prevention treatment with chromate using hexavalent chromate or the like in order to ensure adhesion and corrosion resistance between the steel plate and the coating or between the steel plate and the film.
  • zirconium (Zr) -phosphorus (P) is an alternative to the rust prevention treatment with chromate that has been applied to steel plates for containers.
  • a treatment using a chemical conversion treatment film such as a film has been developed (see, for example, Patent Document 1 below).
  • the metal vessel was made resistant to sulfide blackening by using a chromate that forms a dense film even if the amount of the film is small.
  • a chemical conversion film such as a zirconium-phosphorus film is used instead of chromate, the film defects increase when the film amount is reduced. For this reason, in order to exhibit excellent corrosion resistance, the amount of coating cannot be reduced, and cost reduction is difficult.
  • the present invention has been made in view of the above problems, and the object of the present invention is to use a chemical conversion treatment film to achieve sulfurization blackening resistance and cost reduction. It is providing the manufacturing method of the steel plate for containers and the steel plate for containers.
  • the present inventor has intensively studied, and as a result, can form all the above problems by forming an oxide film layer containing tin oxide (SnOx) between the chemical conversion film and the Sn plating layer. discovered. And the summary is as follows.
  • a first aspect of the present invention is a substrate in which Ni plating or Fe—Ni alloy plating containing 5 to 150 mg / m 2 of Ni in terms of metal Ni is applied to a steel plate and at least one side of the steel plate.
  • Ni plating or Fe—Ni alloy plating containing 5 to 150 mg / m 2 of Ni in terms of metal Ni is applied to a steel plate and at least one side of the steel plate.
  • Sn plating 300 to 3000 mg / m 2 in terms of metal Sn is applied, and the Sn plating and at least a part of the underlying Ni layer are alloyed by molten tin treatment.
  • the oxide film layer contains the tin oxide in an amount such that the amount of electricity required for reduction of the oxide film layer is 5.5 to 10 mC / cm 2. May be.
  • At least one surface of the steel sheet is subjected to Ni plating or Fe—Ni alloy plating, and a base Ni layer containing 5 to 150 mg / m 2 of Ni in the amount of metal Ni is provided.
  • the tin plating and at least a part of the underlying Ni layer are alloyed to form an Sn plating layer containing island-shaped Sn, and the surface of the Sn plating layer is surface oxidized to contain tin oxide.
  • Forming an oxide film layer, Zr ions of 10 ppm to 10000 ppm, fluoride ions of 10 ppm to 10000 ppm, and 10 ppm to 3000 ppm And phosphate ions below includes 30000ppm and less of nitrate and / or sulfate ions above 100 ppm, a, and the temperature in the chemical conversion treatment solution of less than 5 ° C.
  • FIG. 1A and FIG. 1B are explanatory views schematically showing the configuration when the steel plate for containers in this embodiment is viewed from the side.
  • the steel plate 10 for containers in the present embodiment includes a steel plate 101, a base Ni layer 103, a Sn plating layer 105, an oxide film layer 107, a chemical conversion film layer 109, Is provided.
  • the base Ni layer 103, the Sn plating layer 105, the oxide film layer 107, and the chemical conversion film layer 109 may be formed only on one surface of the steel plate 101 as shown in FIG. 1A, or as shown in FIG. 1B. In this manner, the steel plates 101 may be formed on two surfaces facing each other.
  • the steel plate 101 is used as a base material of the container steel plate 10 in the present embodiment.
  • the steel plate 101 used in the present embodiment is not particularly limited, and it is possible to use a known steel plate that is usually used as a container material. There are no particular limitations on the manufacturing method and material of these known steel plates, and from the normal steel slab manufacturing process, known processes such as hot rolling, pickling, cold rolling, annealing, and temper rolling are performed. What was manufactured after passing may be sufficient.
  • a base Ni layer 103 is formed on the surface of the steel plate 101.
  • the underlying Ni layer 103 is a Ni-based plating layer made of Ni or a Fe—Ni alloy containing at least Ni in a metallic Ni amount of 5 to 150 mg / m 2 .
  • the underlying Ni layer 103 is formed by applying Ni plating or Fe—Ni alloy plating to the steel plate 101.
  • Ni-based plating layer made of Ni or Fe—Ni alloy is formed to ensure paint adhesion, film adhesion, corrosion resistance, and weldability. Since Ni is a highly corrosion-resistant metal, it is possible to improve the corrosion resistance of an alloy layer containing Fe and Sn that is formed during the molten tin treatment described later by Ni plating. The effect of improving the paint adhesion, film adhesion, corrosion resistance, and weldability of the alloy layer with Ni begins to appear when the amount of metallic Ni in the base Ni layer 103 is 5 mg / m 2 or more, and the Ni content increases. The effect of improving the corrosion resistance of the alloy layer is increased. Therefore, the amount of metallic Ni in the base Ni layer 103 is set to 5 mg / m 2 or more.
  • the amount of metallic Ni in the base Ni layer 103 is set to 150 mg / m 2 or less. This is because when the amount of metallic Ni in the base Ni layer 103 exceeds 150 mg / m 2 , not only the effects of improving paint adhesion, film adhesion, corrosion resistance and weldability are saturated, but Ni is an expensive metal. For this reason, it is economically disadvantageous to plate more than 150 mg / m 2 of Ni.
  • the amount of metallic Ni in the base Ni layer 103 is more preferably 5 to 100 mg / m 2 .
  • Ni diffusion plating when Ni diffusion plating is performed, after Ni plating, diffusion treatment is performed in an annealing furnace to form a Ni diffusion layer. Nitriding treatment may be performed before or after the Ni diffusion treatment. Even when nitriding is performed, both the effect of Ni as the underlying Ni layer 103 and the effect of the nitriding layer in this embodiment can be exhibited.
  • Ni plating or Fe—Ni alloy plating for example, a publicly known method generally performed in an electroplating method can be used.
  • Sn plating layer 105 On the base Ni layer 103, as shown in FIGS. 1A and 1B, an Sn plating layer 105 is formed by Sn plating.
  • the Sn plating layer 105 is a plating layer containing 300 to 3000 mg / m 2 of at least Sn in terms of metal Sn.
  • Sn plating in this specification includes not only plating with metallic tin, but also metallic tin mixed with irreversible impurities and metallic tin added with trace elements.
  • the Sn plating method is not particularly restricted, but for example, a known electroplating method is preferably used. A method of immersing and plating a steel plate in molten Sn may be used.
  • the Sn plating layer 105 by the above Sn plating is formed to ensure corrosion resistance and weldability. Since Sn itself has high corrosion resistance, it exhibits excellent corrosion resistance and weldability both as metallic tin and as an alloy formed by the molten tin treatment described below.
  • the excellent corrosion resistance of Sn is remarkably improved from the amount of metal Sn of 300 mg / m 2 or more, and the degree of improvement in corrosion resistance increases as the Sn content increases. Therefore, the amount of metallic Sn in the Sn plating layer 105 is set to 300 mg / m 2 or more. Moreover, since the corrosion resistance improving effect is saturated when the amount of metal Sn exceeds 3000 mg / m 2 , the Sn content is set to 3000 mg / m 2 or less from an economical viewpoint.
  • Sn with low electric resistance is soft and spreads by pressurizing Sn between the electrodes during welding, so that a stable energization region can be secured, and thus particularly excellent weldability is exhibited.
  • This excellent weldability is exhibited when the amount of metal Sn is 100 mg / m 2 or more.
  • the weldability improving effect is not saturated.
  • the amount of metal Sn is set to 300 mg / m 2 or more and 3000 mg / m 2 or less.
  • the amount of metallic Sn in the Sn plating layer 105 is more preferably 300 to 2000 mg / m 2 .
  • a molten tin treatment (reflow treatment) is performed.
  • the purpose of the molten tin treatment is to melt Sn and alloy it with the underlying steel plate 101 and the underlying Ni layer 103 to form a Sn—Fe or Sn—Fe—Ni alloy layer, thereby improving the corrosion resistance of the alloy layer.
  • an Sn alloy made of island-like Sn is formed. This island-shaped Sn alloy can be formed by appropriately controlling the molten tin treatment.
  • the surface of the Sn plating layer 105 (the surface opposite to the interface with the underlying Ni layer 103) is oxidized by appropriately controlled molten tin treatment, and an oxide film layer 107 described later becomes an Sn plating layer 105. Formed on top.
  • Oxide film layer 107 On the Sn plating layer 105, as shown in FIGS. 1A and 1B, an oxide film layer 107 containing tin oxide is formed. This oxide film layer 107 contains tin oxide in such an amount that the amount of electricity required to reduce the oxide film layer 107 is 0.3 to 10 mC (millicoulomb) / cm 2 . By forming such an oxide film layer 107 on the Sn plating layer 105, it is possible to improve the blackening resistance of the steel plate 10 for containers.
  • Sulfidation blackening occurs when metal Sn and sulfur S react to produce black SnS. Therefore, in the case of a container steel plate having a Sn plating layer, sulfur S contained in a container holding such as food reacts with the metal Sn in the Sn plating layer. Therefore, by forming the oxide film layer 107 containing tin oxide on the Sn plating layer 105, diffusion of sulfur atoms S to the interface of the Sn plating layer 105 can be suppressed, and resistance to sulfur blackening is improved. As a result, even when the amount of the chemical conversion coating layer deposited on the oxide coating layer 107 is reduced, excellent anti-sulfur blackening resistance can be realized.
  • the sulfur blackening resistance is such that the tin oxide content (tin oxide amount) of the oxide film layer 107 is equal to or more than the amount corresponding to the electric amount of 0.3 mC / cm 2 required for the reduction of the oxide film layer 107. It appears remarkably from the case. Therefore, the amount of tin oxide contained in the oxide film layer 107 is set to be equal to or more than the amount corresponding to the electric amount of 0.3 mC / cm 2 required for the reduction of the oxide film layer 107.
  • the oxide film containing tin oxide is a brittle film, and when the amount of adhesion is too large, the chemical conversion treatment film layer 109 formed on the oxide film layer 107 is easily peeled off.
  • the amount of tin oxide contained in the oxide film layer 107 corresponds to the amount of electricity 10 mC / cm 2 required for the reduction of the oxide film layer 107. Or less.
  • the amount of metal Sn in the oxide film layer 107 is more preferably an amount corresponding to 5.5 to 10 mC / cm 2 .
  • the oxide film layer 107 can be formed by performing a molten tin treatment for forming island-shaped Sn in the Sn plating layer 105 at an appropriate temperature for an appropriate time.
  • the island shape means a state in which the surface of the underlayer is not completely covered by the upper layer and the underlayer is partially exposed. That is, the “island-like Sn plating layer” refers to a state in which the surface of the underlying Ni layer including alloy plating is not completely covered by the Sn plating layer but is partially exposed.
  • the molten tin treatment capable of appropriately forming the Sn plating layer 105 and the oxide film layer 107 is performed at 200 ° C. or higher and 300 ° C.
  • the temperature is raised to below °C, and as soon as a metallic luster is obtained, it is rapidly cooled to room temperature (for example, about 50 ° C.) with cold water or the like.
  • the chemical conversion coating layer 109 contains at least a metal Zr amount of 1 to 500 mg / m 2 of Zr and a P amount of 0.1 to 100 mg / m 2 of phosphoric acid (in other words, a Zr component and a phosphorus content). And a composite coating layer mainly composed of a zirconium compound.
  • the chemical conversion coating layer 109 is a composite coating in which a Zr component and a phosphoric acid component are combined, so that excellent practical performance can be exhibited. .
  • the Zr component contained in the chemical conversion coating layer 109 in this embodiment has a function of improving corrosion resistance and adhesion, and further processing adhesion.
  • the Zr component in the present embodiment is composed of, for example, a plurality of Zr compounds such as zirconium hydroxide and zirconium fluoride in addition to zirconium oxide and zirconium phosphate. Since such a Zr component is excellent in corrosion resistance and adhesion, the corrosion resistance and adhesion of the steel plate 10 for containers improve as the amount of the Zr component contained in the chemical conversion coating layer 109 increases.
  • the content of the Zr component adhering to the oxide film layer 107 as the chemical conversion film layer 109 is 1 mg / m 2 or more in terms of the metal Zr amount, the corrosion resistance and the coating level, etc., which are practically satisfactory. Adhesion is ensured.
  • the content of the Zr component increases, the effect of improving the adhesion resistance such as corrosion resistance and coating also increases.
  • the content of the Zr component exceeds 500 mg / m 2 in terms of the amount of metal Zr, the chemical conversion treatment film As the layer 109 becomes too thick, the adhesion (mainly due to cohesive failure) of the chemical conversion film itself decreases, and the electrical resistance increases and the weldability decreases.
  • the content of Zr component i.e., the content of Zr
  • the content of Zr component is a 1mg / m 2 ⁇ 500mg / m 2 by metal Zr content.
  • the content of the Zr component is more preferably 2 to 50 mg / m 2 in terms of metal Zr content.
  • the chemical conversion treatment film layer 109 further includes a phosphoric acid component formed of one or more phosphoric acid compounds in addition to the Zr component described above.
  • the phosphoric acid component in this embodiment has a function of improving corrosion resistance and adhesion, and further processing adhesion.
  • the phosphoric acid component in the present embodiment includes iron phosphate, nickel phosphate, tin phosphate formed by reacting with the base (steel plate 101, base Ni layer 103, Sn plating layer 105, oxide film layer 107) and the Zr component. And a single component of phosphoric acid such as zirconium phosphate, or a composite component composed of two or more types of phosphoric acid compounds. Since such a phosphoric acid component is excellent in corrosion resistance and adhesiveness, the corrosion resistance and adhesiveness of the steel plate 10 for containers improve, so that the quantity of the phosphoric acid component formed increases.
  • the content of the phosphoric acid component in the chemical conversion coating layer 109 is 0.1 mg / m 2 or more in terms of the amount of P, a level of corrosion resistance and adhesion such as coating that are practically satisfactory are ensured.
  • the effect of improving the corrosion resistance and adhesion such as coating is also increased.
  • the content of the phosphoric acid component exceeds 100 mg / m 2 in terms of the amount of P, the chemical conversion coating layer 109 becomes too thick and the adhesion (mainly due to cohesive failure) of the chemical conversion coating itself decreases. At the same time, the electrical resistance increases and the weldability decreases.
  • the adhesion nonuniformity of a chemical conversion treatment film may appear as an external appearance nonuniformity. Accordingly, the container steel plate 10 in the present embodiment, the content of the phosphoric acid component, and 0.1mg / m 2 ⁇ 100mg / m 2 in the P content.
  • the content of the phosphoric acid component is more preferably 0.5 to 30 mg / m 2 in terms of P amount.
  • the amount of metal Zr is set to a low bottom film amount such as 2 mg / m 2 . Even in this case, excellent resistance to sulfur blackening can be achieved. As a result, it is possible to further reduce the adhesion amount of the chemical conversion treatment film layer 109, thereby realizing cost reduction.
  • the chemical conversion treatment film layer 109 containing such a Zr component and a phosphoric acid component is formed by electrolytic treatment (for example, cathodic electrolytic treatment).
  • electrolytic treatment for example, cathodic electrolytic treatment
  • a chemical conversion treatment solution containing you may add a phenol resin etc. further to these chemical conversion liquids as needed.
  • the temperature of this chemical conversion solution is 5 ° C or higher and lower than 90 ° C.
  • the temperature of a chemical conversion liquid is less than 5 degreeC, the formation efficiency of a film
  • the temperature of a chemical conversion liquid is 90 degreeC or more, the membrane
  • tissue formed is uneven and a defect, a crack, a microcrack, etc. generate
  • Such electrolytic treatment is performed at a current density of 1.0 A / dm 2 or more and 100 A / dm 2 or less and an electrolytic treatment time of 0.2 seconds or more and 150 seconds or less.
  • a current density of less than 1.0 A / dm 2 is not preferable because it causes a decrease in the amount of the chemical conversion coating layer deposited and a decrease in productivity due to the long electrolytic treatment time required.
  • a current density is over 100 A / dm ⁇ 2 >, the adhesion amount of a chemical conversion treatment film layer exceeds a required amount, and is saturated.
  • a film with insufficient adhesion is washed away (peeled off) in a washing step such as washing with water after electrolytic conversion treatment.
  • the electrolytic treatment time is less than 0.2 seconds, it is not preferable because the coating adhesion amount is reduced and the corrosion resistance, coating adhesion, and the like may be reduced.
  • the electrolytic treatment time exceeds 150 seconds, the coating amount exceeds the required amount, and the deposition amount is saturated.
  • it is not economical that a film with insufficient adhesion is washed away (peeled off) in a washing step such as washing with water after electrolytic conversion treatment.
  • the pH is preferably in the range of 3.1 to 3.7, more preferably around 3.5.
  • nitric acid or ammonia may be added to adjust the pH as necessary.
  • tannic acid may be further added to the acidic solution used for the electrolytic treatment.
  • tannic acid reacts with iron (Fe) of the steel plate during the above treatment, and a film of iron tannate is formed on the surface of the steel plate. Since this iron tannate film improves rust resistance and adhesion, the chemical conversion treatment film layer may be formed in an acidic solution to which tannic acid is added, if necessary.
  • the solvent of the acidic solution used for forming the chemical conversion film layer for example, distilled water or the like can be used.
  • the solvent of the acidic solution in the present embodiment is not limited to the above, and can be appropriately selected according to the material to be dissolved, the forming method, the forming conditions of the chemical conversion coating layer, and the like.
  • a Zr complex such as H 2 ZrF 6 can be used as a Zr supply source.
  • Zr in the Zr complex as described above is present in the chemical conversion solution as Zr 4+ by a hydrolysis reaction due to an increase in pH at the cathode electrode interface.
  • Such Zr ions react more rapidly in the chemical conversion solution and become a compound such as ZrO 2 or Zr 3 (PO 4 ) 4 , which undergoes a dehydration condensation reaction with a hydroxyl group (—OH) present on the metal surface.
  • —OH hydroxyl group
  • the container steel plate 10 according to the present embodiment as described above exhibits excellent resistance to sulfur blackening even when the amount of chemical conversion coating layer deposited on the oxide coating layer 107 is reduced.
  • the coating film is formed at the mouth of a heat-resistant bottle holding a 0.6 mass% L-cysteine solution boiled for 1 hour.
  • the container steel plate 10 thus placed is placed and fixed as a lid, and subjected to heat treatment at 110 ° C. for 30 minutes.
  • the steel plate for containers 10 in this embodiment has an area of 50 of the contact portion. Excellent sulfur blackening resistance to such an extent that blackening does not occur at% or more.
  • the amount of metallic Ni in the base Ni layer 103 and the amount of metallic Sn in the Sn plating layer 105 can be measured by, for example, a fluorescent X-ray method.
  • a calibration curve related to the amount of metal Ni is specified in advance using a sample with a known amount of Ni deposited, and the amount of metal Ni is relatively specified using the calibration curve.
  • a calibration curve related to the metal Sn amount is specified in advance using an Sn adhesion amount sample whose metal Sn amount is known, and the metal Sn amount is relatively specified using the calibration curve.
  • the amount of electricity required for the reduction of the oxide film layer 107 is 0.000 in a 0.001 mol / L hydrobromic acid aqueous solution in which the dissolved oxygen is removed from the container steel plate 10 by means such as bubbling of nitrogen gas.
  • Cathodic electrolysis at a constant current of 05 mA / cm 2 can be obtained from a potential-time curve obtained.
  • FIG. 2A and FIG. 2B are schematic diagrams for explaining a method for measuring the content of tin oxide (tin oxide amount) in the oxide film layer.
  • tin oxide amount tin oxide amount
  • an electrolytic treatment bath is prepared in which a hydrobromic acid aqueous solution (HBr aqueous solution) having the above concentration from which dissolved oxygen is removed is retained.
  • An anode and a cathode provided with a measurement sample that is, the steel plate for containers 10) are installed in the electrolytic treatment bath.
  • the materials of the anode and the cathode are not particularly limited.
  • platinum electrodes can be used as the anode and the cathode. It is also possible to use the test piece itself as a cathode.
  • FIG. 2B schematically shows the obtained measurement chart.
  • each of the tangent line on the potential axis side and the tangent line on the time axis side is specified, and the position of the intersection of the tangent lines is specified.
  • the length of the perpendicular drawn from this intersection to the potential axis is the chart length L (unit: mm).
  • the tin oxide amount Q can be calculated by the following equation 101.
  • I is the current density (unit: mA)
  • S is the area of the sample (unit: cm 2 )
  • T completely removes the oxide film layer 107 ( That is, the time required for completely reducing the oxide film layer 107 (unit: sec).
  • the time T required to completely remove the oxide film layer 107 includes the full scale length LFS , the full scale chart feed rate TFS, and the chart length L obtained from the measurement chart. Utilizing this, it can be calculated by the following equation 102. Therefore, the tin oxide amount Q can be calculated by using the following formula 101 and formula 102.
  • the amount of metal Zr and the amount of P in the chemical conversion coating layer 109 can be measured by a quantitative analysis method such as fluorescent X-ray analysis, for example.
  • the measuring method of each component amount as described above is not limited to the above method, and other known measuring methods can be applied.
  • FIG. 3A is a flowchart for explaining an example of a flow of an evaluation method for resistance to sulfurization blackening.
  • FIG. 3B is an explanatory diagram for explaining an evaluation method for resistance to sulfurization blackening.
  • a gold-colored paint (Valsper, 28S93MB) is attached to the surface of a sample and baked to form a coating film (step S101).
  • a gold-colored paint (Valsper, 28S93MB) is attached to the surface of a sample and baked to form a coating film (step S101).
  • the steel plate for containers which formed the base Ni layer, Sn plating layer, the oxide film layer, and the chemical conversion treatment film layer on the steel plate surface by said method is used.
  • a 0.6 mass% L-cysteine solution boiled for 1 hour is sealed in a heat-resistant bottle 201 (manufactured by SCHOTT, 100 mL heat-resistant bottle, 017260-100A) (step S102).
  • the O-ring 202, the packing silicon rubber 203, the sample 204 (42 ⁇ ) created in step S201, and the packing silicon rubber 205 are placed and fixed in this order in the mouth of the heat-resistant bottle (step S103).
  • a lid 206 (GL45, inner diameter 45 ⁇ , outer diameter 55 ⁇ , manufactured by Shibata Chemical Co., Ltd.) is placed on the heat-resistant bottle, and placed in a soaking furnace so that the lid is on the bottom (step S104).
  • the heat-resistant bottle is heat-treated at 110 ° C. for 30 minutes (step S105).
  • the heat-resistant bottle is taken out from the soaking furnace, and the degree of blackening at the contact portion between the sample and the L-cysteine liquid is observed with the naked eye (step S106).
  • Steps S102 to S105 are common to the evaluation method of sulfur blackening resistance by the naked eye and the evaluation method of sulfur blackening resistance by YI.
  • the yellowness of the sample after the reaction with the L-cysteine solution is measured with a spectrocolorimeter in the above step S106.
  • a spectrocolorimeter conforming to JIS Z-8722 condition c may be used, and the measurement method is SCI (including specularly reflected light) measurement which is not easily affected by surface properties.
  • SCI including specularly reflected light
  • FIG. 4 is a flowchart for explaining an example of the flow of the manufacturing method of the steel plate for containers in the present embodiment.
  • the base Ni layer 103 is formed by performing Ni plating or Fe—Ni alloy plating on the steel plate 101 (step S201).
  • step S203 Sn plating is performed on the steel plate 101 on which the base Ni layer 103 is formed. Thereafter, the oxide film layer 107 is formed by surface oxidation while forming the Sn plating layer 105 containing island-like Sn by molten tin treatment (reflow treatment) (step S205).
  • a chemical conversion treatment film layer 109 is formed on the oxide film layer 107 by electrolytic treatment (step S207).
  • the processing is performed in such a flow, whereby the container steel plate 10 in the present embodiment is manufactured.
  • the manufacturing method of the steel plate for containers and the steel plate for containers in the present invention will be specifically described with reference to Examples and Comparative Examples.
  • the Example shown below is only an example of the manufacturing method of the steel plate for containers and the steel plate for containers in this invention, Comprising: The manufacturing method of the steel plate for containers in this invention and a steel plate for containers is limited to the Example shown below. Is not to be done.
  • Example 2 A steel plate generally used as a steel plate for containers was used, and Ni plating and Sn plating were sequentially applied to the steel plate by a known method. Subsequently, a molten tin treatment was performed under the conditions shown in Table 1 below to form a Sn plating layer and an oxide film layer, and then a chemical conversion treatment film layer was formed under the conditions shown in Table 1 below.
  • the amount of metallic Ni in the formed underlying Ni layer and the amount of metallic Sn in the Sn plating layer were measured by the fluorescent X-ray method and are shown in Table 2 below.
  • the amount of tin oxide in the oxide film layer was measured by the method described with reference to FIGS. 2A and 2B and is shown in Table 2 below.
  • the amount of each component in the chemical conversion coating layer was measured by fluorescent X-ray analysis and is shown in Table 2 below.
  • the resistance to blackening resistance of each level of the sample was evaluated with the naked eye by the method described with reference to FIGS. 3A and 3B.
  • the appearance of the contact portion in contact with the heat-resistant bottle was observed, and a score of 1 to 10 was assigned according to the ratio (area ratio) of the portion where the blackening occurred in the contact portion.
  • the score is 8 points or more (that is, when blackening does not occur in 50% or more of the contact portion), excellent resistance to sulfur blackening as a steel plate for containers is exhibited.
  • the area of the blackened portion is less than 10% 9 points: the area of the blackened portion is 10% or more and less than 30% 8 points: the area of the blackened portion is 30% or more, Less than 50% 7 points: The area of the blackened portion is 50% or more and less than 60% 6 points: The area of the blackened portion is 60% or more and less than 65% 5 points: The blackened portion Area of 65% or more and less than 75% 4 points: Area of blackened portion is 75% or more and less than 85% 3 point: Area of blackened portion is 85% or more and less than 90% 2 points : Area of blackened portion is 90% or more and less than 95% 1 point: Area of blackened portion is 95% or more
  • each experimental example shown in Table 1 and Table 2 is an experiment mainly focusing on each condition at the time of manufacturing the steel plate for containers, and each experimental example shown in Table 3 and Table 4 Conducts experiments focusing on the characteristics of the manufactured steel plates for containers.
  • Each experimental example shown in Table 5 and Table 6 is an experiment in which the adhesion amount of tin oxide is changed by changing the molten tin treatment time. As is apparent from Tables 1 to 6, the above-described evaluation test for sulfurization blackening revealed that the steel sheet of the present invention had excellent resistance to blackening.
  • YI As apparent from Table 8 and FIGS. 5A and 5B, the numerical value of YI corresponds well with the sensory evaluation result by the naked eye, and YI is used to quantitatively indicate the color change of the surface due to the blackening of sulfide. It was found that it can be applied as an indicator.
  • the present invention by forming an oxide film layer between the chemical conversion treatment film layer and the Sn plating layer, it is possible to realize sulfurization blackening resistance and cost reduction using the chemical conversion treatment film. Become.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)

Abstract

 鋼板と、鋼板の少なくとも片面に対して、Niを金属Ni量で5~150mg/m含有するNiめっき又はFe-Ni合金めっきが施された下地Ni層と、前記下地Ni層上に、金属Sn量で300~3000mg/mのSnめっきが施され、溶融溶錫処理により少なくとも一部の前記下地Ni層と前記Snめっきとが合金化された島状のSnを含むSnめっき層と、前記Snめっき層上に形成され、酸化スズを含有する酸化皮膜層と、前記酸化皮膜層上に形成され、金属Zr量で1~500mg/mのZrと、P量で0.1~100mg/mのリン酸と、を少なくとも含有する化成処理皮膜層と、を備え、前記酸化皮膜層は、当該酸化皮膜層の還元に要する電気量が0.3~10mC/cmとなる前記酸化スズを含有することを特徴とする、容器用鋼板。

Description

容器用鋼板及び容器用鋼板の製造方法
 本発明は、容器用鋼板及び容器用鋼板の製造方法に関する。
 本願は、2013年5月21日に、日本に出願された特願2013-107304号に基づき優先権を主張し、その内容をここに援用する。
 飲料用や食品用の容器として、ニッケル(Ni)めっき鋼板、スズ(Sn)めっき鋼板、スズ系合金めっき鋼板等といった容器用鋼板を製缶した金属容器が多く用いられている。これらの容器用鋼板では、多くの場合、鋼板と塗装又は鋼板とフィルムとの密着性及び耐食性を確保するために、6価クロム酸塩等を用いたクロメートによる防錆処理が施されている。しかしながら、クロメートによる防錆処理に用いられる6価クロムは環境上有害であることから、従来、容器用鋼板に施されていたクロメートによる防錆処理の替わりとして、ジルコニウム(Zr)-リン(P)皮膜等の化成処理皮膜を利用した処理が開発されている(例えば、以下の特許文献1を参照。)。
日本国特開2007-284789号公報
 上記のような容器用鋼板を利用した金属容器を、硫黄(S)を含むアミノ酸が含まれる肉・野菜などの食品に対して利用した場合、殺菌処理時にこれら食品が加熱される。このとき、硫黄がスズ、鉄(Fe)等と結合して黒く変色してしまう。この現象は硫化黒変と呼ばれ、これにより金属容器内面の意匠性が低下してしまうという問題がある。
 このような硫化黒変に対応するため、従来では、皮膜量が少なくても緻密な皮膜が形成されるクロメートを利用して、金属容器の耐硫化黒変性を実現していた。しかしながら、クロメートに替えてジルコニウム-リン皮膜等の化成処理皮膜を利用した場合、皮膜量を少なくすると、皮膜欠陥が多くなってしまう。そのため、優れた耐食性を発揮するためには、皮膜量を削減することができず、コスト削減が困難であった。
 そのため、化成処理皮膜を利用して、耐硫化黒変性とコスト削減との両方を実現可能な技術が、望まれていた。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、化成処理皮膜を利用して、耐硫化黒変性及びコストの削減を実現することが可能な、容器用鋼板及び容器用鋼板の製造方法を提供することにある。
 上記課題を解決するために、本発明者は鋭意検討した結果、化成処理皮膜とSnめっき層との間に酸化スズ(SnOx)を含む酸化皮膜層を形成することで上記の課題を全て解決できること発見した。そして、その要旨は、以下のとおりである。
(1)本発明の第一の態様は、鋼板と前記鋼板の少なくとも片面に対して、Niを金属Ni量で5~150mg/m含有するNiめっき又はFe-Ni合金めっきが施された下地Ni層と、前記下地Ni層上に、金属Sn量で300~3000mg/mのSnめっきが施され、溶融溶錫処理により前記Snめっきと少なくとも一部の前記下地Ni層とが合金化された島状のSnを含むSnめっき層と、前記Snめっき層上に形成され、酸化スズを含有する酸化皮膜層と、前記酸化皮膜層上に形成され、金属Zr量で1~500mg/mのZrと、P量で0.1~100mg/mのリン酸と、を含有する化成処理皮膜層と、を備え、前記酸化皮膜層は、当該酸化皮膜層の還元に要する電気量が0.3~10mC/cmとなる量の前記酸化スズを含有することを特徴とする、容器用鋼板。
(2)上記(1)に記載の容器用鋼板では、前記酸化皮膜層は、当該酸化皮膜層の還元に要する電気量が5.5~10mC/cmとなる量の前記酸化スズを含有してもよい。
(3)上記(1)又は(2)に記載の容器用鋼板では、前記容器用鋼板の表面に塗料を付着させ焼き付けて塗膜を形成させた後、1時間沸騰させた0.6質量%L-システイン液を保持する耐熱瓶の口に、前記容器用鋼板を載置して固定し、前記耐熱瓶に蓋をして、前記蓋が下になった状態で110℃で30分間の熱処理を施した後、前記容器用鋼板において前記耐熱瓶と接触していた接触部分の外観観察を行った場合に、当該接触部分の面積の50%以上で黒変が生じなくてもよい。
(4)本発明の第二の態様は、鋼板の少なくとも片面に対して、Niめっき又はFe-Ni合金めっきを施して、Niを金属Ni量で5~150mg/m含有する下地Ni層を形成するステップと、前記下地Ni層上に金属Sn量で300~3000mg/mのSnめっきを施すステップと、200℃以上300℃以下の温度で0.2秒以上20秒以下溶融溶錫処理を行い、前記Snめっきと少なくとも一部の前記下地Ni層とを合金化させて島状のSnを含むSnめっき層を形成しつつ、当該Snめっき層の表面を表面酸化させて酸化スズを含有する酸化皮膜層を形成するステップと、10ppm以上10000ppm以下のZrイオンと、10ppm以上10000ppm以下のフッ化物イオンと、10ppm以上3000ppm以下のリン酸イオンと、100ppm以上30000ppm以下の硝酸イオン及び/又は硫酸イオンと、を含み、かつ、温度が5℃以上90℃未満の化成処理液中で、1.0A/dm以上100A/dm以下の電流密度により0.2秒以上150秒以下の電解処理時間で電解処理を行い、前記酸化皮膜層上に化成処理皮膜層を形成するステップと、を含むことを特徴とする、容器用鋼板の製造方法。
 上述の態様によれば、化成処理皮膜層とSnめっき層との間に酸化皮膜層を形成することによって、化成処理皮膜を利用して、耐硫化黒変性及びコストの削減を実現することが可能となる。
本発明の実施形態における容器用鋼板について模式的に示した説明図である。 同実施形態における容器用鋼板について模式的に示した説明図である。 酸化皮膜層における酸化スズの含有量の測定方法について説明するための説明図である。 酸化皮膜層における酸化スズの含有量の測定方法について説明するための説明図である。 耐硫化黒変性の評価方法の流れの一例について説明するための流れ図である。 耐硫化黒変性の評価方法について説明するための説明図である。 同実施形態における容器用鋼板の製造方法の流れの一例について説明するための流れ図である。 酸化スズ量と黄色度(YI)の関係をプロットした図である。 耐硫化黒変性の評価結果と黄色度(YI)の関係をプロットした図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<容器用鋼板の構成について>
 まず、図1A及び図1Bを参照しながら、本発明の実施形態における容器用鋼板の構成について詳細に説明する。図1A及び図1Bは、本実施形態における容器用鋼板を側方から見た場合の構成について模式的に示した説明図である。
 本実施形態における容器用鋼板10は、図1A及び図1Bに示したように、鋼板101と、下地Ni層103と、Snめっき層105と、酸化皮膜層107と、化成処理皮膜層109と、を備える。下地Ni層103、Snめっき層105、酸化皮膜層107及び化成処理皮膜層109は、図1Aに示したように鋼板101の一方の表面にのみ形成されていてもよいし、図1Bに示したように鋼板101の互いに対向する二つの表面に形成されていてもよい。
[鋼板101について]
 鋼板101は、本実施形態における容器用鋼板10の母材として用いられる。本実施形態で用いられる鋼板101については特に限定されるものではなく、通常、容器材料として用いられる公知の鋼板を使用することが可能である。これらの公知の鋼板の製造方法や材質についても特に限定されるものではなく、通常の鋼片製造工程から、熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の公知の工程を経て製造されたものでよい。
[下地Ni層103について]
 鋼板101の表面上には、図1A及び図1Bに示したように、下地Ni層103が形成される。下地Ni層103は、少なくともNiを金属Ni量で5~150mg/m含有する、Ni又はFe-Ni合金からなるNi系のめっき層である。この下地Ni層103は、鋼板101に対してNiめっき又はFe-Ni合金めっきが施されることで、形成される。
 Ni又はFe-Ni合金からなるNi系のめっき層は、塗料密着性、フィルム密着性、耐食性、溶接性を確保するために形成される。Niは、高耐食金属であるため、Niめっきにより、後述する溶融溶錫処理時に形成されるFeとSnとを含む合金層の耐食性を、向上させることが可能である。Niによる合金層の塗料密着性、フィルム密着性、耐食性、溶接性の向上効果は、下地Ni層103における金属Ni量が5mg/m以上となる時点から発現し始め、Ni含有量が多くなるほど合金層の耐食性向上効果は増加する。そのため、下地Ni層103における金属Ni量を、5mg/m以上とする。
 また、下地Ni層103中の金属Ni量を、150mg/m以下とする。これは、下地Ni層103中の金属Ni量が150mg/m超過の場合には、塗料密着性、フィルム密着性、耐食性、溶接性の向上効果が飽和するだけでなく、Niは高価な金属であるために、150mg/m超過のNiをめっきすることは、経済的に不利だからである。
 なお、下地Ni層103の金属Ni量は、更に好ましくは、5~100mg/mである。
 また、Ni拡散めっきを行う場合には、Niめっきをした後に、焼鈍炉で拡散処理が行われ、Ni拡散層が形成される。Ni拡散処理の前後あるいは同時に、窒化処理を行なっても良い。窒化処理を行なった場合でも、本実施形態における下地Ni層103としてのNiの効果及び窒化処理層の効果を、共に発揮することができる。
 NiめっきやFe-Ni合金めっきの方法としては、例えば、一般的に電気めっき法において行なわれている公知の方法を利用することが可能である。
[Snめっき層105について]
 下地Ni層103上には、図1A及び図1Bに示したように、SnめっきによりSnめっき層105が形成される。Snめっき層105は、少なくともSnを金属Sn量で300~3000mg/m含有するめっき層である。
 なお、本明細書における「Snめっき」とは、金属スズによるめっきだけでなく、金属スズに不可逆的不純物が混入したものや、金属スズに微量元素が添加したものも含む。Snめっきの方法は、特に規制されるわけではないが、例えば、公知の電気めっき法を用いることが好ましい。溶融したSnに鋼板を浸漬してめっきする方法等を用いてもよい。
 上記のSnめっきによるSnめっき層105は、耐食性と溶接性を確保するために形成される。Snは、それ自体が高い耐食性を有していることから、金属スズとしても、また、以下で説明する溶融溶錫処理によって形成される合金としても、優れた耐食性及び溶接性を発揮する。
 Snの優れた耐食性は、金属Sn量が300mg/m以上から顕著に向上し、Snの含有量が多くなるほど、耐食性の向上の度合いも増加する。従って、Snめっき層105における金属Sn量を、300mg/m以上とする。また、耐食性向上効果は、金属Sn量が3000mg/m超過となると飽和するため、経済的な観点から、Sn含有量を、3000mg/m以下とする。
 また、電気抵抗の低いSnは軟らかく、溶接時に電極間でSnが加圧されることにより広がり、安定した通電域を確保できることから、特に優れた溶接性を発揮する。この優れた溶接性は、金属Sn量が100mg/m以上あれば発揮される。また、上記の優れた耐食性を示す金属Sn量の範囲では、この溶接性の向上効果は、飽和することはない。以上のような理由から、優れた耐食性および溶接性を確保するために、金属Sn量を300mg/m以上3000mg/m以下とする。
 なお、Snめっき層105の金属Sn量は、更に好ましくは、300~2000mg/mである。
 上記のようなSnめっきの後に、溶融溶錫処理(リフロー処理)が行なわれる。溶融溶錫処理を行なう目的は、Snを溶融して下地の鋼板101や下地Ni層103と合金化させ、Sn-Fe又はSn-Fe-Ni合金層を形成させ、合金層の耐食性を向上させるとともに、島状のSn(島状スズ)からなるSn合金を形成させることにある。この島状のSn合金は、溶融溶錫処理を適切に制御することで形成することが可能である。また、適切に制御した溶融溶錫処理により、Snめっき層105の表面(下地Ni層103との界面とは逆側の表面)が酸化されていき、後述する酸化皮膜層107がSnめっき層105上に形成される。
[酸化皮膜層107について]
 Snめっき層105上には、図1A及び図1Bに示したように、酸化スズを含有する酸化皮膜層107が形成される。この酸化皮膜層107は、当該酸化皮膜層107の還元に要する電気量が0.3~10mC(ミリクーロン)/cmとなる量の酸化スズを含有する。Snめっき層105上にこのような酸化皮膜層107を形成することで、容器用鋼板10の耐硫化黒変性を向上させることができる。
 硫化黒変は、金属Snと硫黄Sとが反応し、黒色のSnSが生成することで発生する。従って、Snめっき層を有する容器用鋼板の場合、食品等の容器保持物に含まれる硫黄SがSnめっき層中の金属Snと反応することで生じる。そのため、Snめっき層105上に酸化錫を含む酸化皮膜層107を形成することで、硫黄原子SのSnめっき層105界面までの拡散を抑制することが可能となり、耐硫化黒変性が向上する。その結果、酸化皮膜層107上への化成処理皮膜層の付着量を削減した場合であっても、優れた耐硫化黒変性を実現することができる。
 上記のような耐硫化黒変性は、酸化皮膜層107が有する酸化スズの含有量(酸化スズ量)が、酸化皮膜層107の還元に要する電気量0.3mC/cmに相当する量以上となった場合から顕著に発現する。従って、酸化皮膜層107が含有する酸化スズの量は、酸化皮膜層107の還元に要する電気量0.3mC/cmに相当する量以上とする。一方、酸化スズを含む酸化皮膜は脆い皮膜であり、付着量が多くなりすぎると、酸化皮膜層107上に形成される化成処理皮膜層109が剥離しやすくなる。従って、酸化皮膜層107と化成処理皮膜層109との密着性との観点から、酸化皮膜層107が含有する酸化スズの量は、酸化皮膜層107の還元に要する電気量10mC/cmに相当する量以下とする。酸化皮膜層107の金属Sn量は、更に好ましくは、5.5~10mC/cmに相当する量である。
 なお、酸化皮膜層107の還元に要する電気量の測定方法については、以下で改めて説明する。
 従来、Snめっきの施された容器用鋼板の耐硫化黒変性はCrを含む皮膜を利用することで実現していた。そのため、Crを用いることなく耐硫化黒変性を実現する技術については不明な点が多かった。しかしながら、本実施形態では、Snめっき層105上に上記のような金属Sn量の酸化スズを含む酸化皮膜層107を形成することで、Crを用いることなく簡便に耐硫化黒変性を向上させることが可能となった。
 酸化皮膜層107は、上記のように、Snめっき層105における島状Snを形成させるための溶融溶錫処理を適切な温度で適切な時間実施することで、形成することができる。ここで、島状とは、下地層の表面が、上層によって完全に覆われておらず、部分的に下地層が露出した状態をいう。すなわち、「島状のSnめっき層」とは、合金めっきを含む下地Ni層の表面が、Snめっき層によって完全に覆われておらず、部分的に露出した状態をいう。Snめっき層105及び酸化皮膜層107を適切に形成させることが可能な溶融溶錫処理は、Snめっき後に、電気抵抗加熱や高周波誘導加熱等により0.2秒以上20秒以下で200℃以上300℃以下に昇温加熱し、金属光沢が得られ次第、冷水等で室温付近(例えば、50℃程度)まで急速冷却することで行なわれる。
[化成処理皮膜層109について]
 酸化皮膜層107上には、図1A及び図1Bに示したように、化成処理皮膜層109が形成される。化成処理皮膜層109は、金属Zr量で1~500mg/mのZrと、P量で0.1~100mg/mのリン酸と、を少なくとも含有する(換言すれば、Zr成分とリン酸成分と、を少なくとも含有する)、ジルコニウム化合物を主体とする複合皮膜層である。
 上記のZr成分及びリン酸成分がそれぞれ単独でZr皮膜およびリン酸皮膜として形成された場合、耐食性や密着性に関してある程度の効果は認められるものの、十分な実用性能は発揮できない。しかしながら、本実施形態における化成処理皮膜層109のように、化成処理皮膜層109をZr成分とリン酸成分とが複合した複合皮膜とすることで、優れた実用性能を発揮することが可能である。
 本実施形態における化成処理皮膜層109に含まれるZr成分は、耐食性及び密着性、更には加工密着性を向上させる機能を有する。本実施形態におけるZr成分は、例えば、酸化ジルコニウムやリン酸ジルコニウムの他に、水酸化ジルコニウム、フッ化ジルコニウム等といった複数のZr化合物から構成される。このようなZr成分は、耐食性及び密着性に優れるため、化成処理皮膜層109に含有されるZr成分の量が多くなるほど、容器用鋼板10の耐食性及び密着性が向上する。
 具体的には、化成処理皮膜層109として酸化皮膜層107上に付着するZr成分の含有量が金属Zr量に換算して1mg/m以上となると、実用上問題ないレベルの耐食性と塗装等密着性が確保される。一方、Zr成分の含有量の増加に伴い、耐食性及び塗装等密着性の向上効果も増加するが、Zr成分の含有量が金属Zr量に換算して500mg/mを超えると、化成処理皮膜層109が厚くなりすぎて化成処理皮膜自体の密着性(主に凝集破壊起因)が低下するとともに、電気抵抗が上昇して溶接性が低下する。また、Zr成分の含有量が金属Zr量で500mg/mを超えると、化成処理皮膜の付着ムラが外観ムラとなって発現することがある。従って、本実施形態における容器用鋼板10においては、Zr成分の含有量(すなわち、Zrの含有量)は、金属Zr量で1mg/m~500mg/mとする。Zr成分の含有量は、より好ましくは、金属Zr量で2~50mg/mである。
 また、上記の化成処理皮膜層109は、上述したZr成分に加えて、1種又は2種以上のリン酸化合物で形成されたリン酸成分をさらに含む。
 本実施形態におけるリン酸成分は、耐食性及び密着性、更には加工密着性を向上させる機能を有する。本実施形態におけるリン酸成分は、下地(鋼板101、下地Ni層103、Snめっき層105、酸化皮膜層107)やZr成分と反応して形成されるリン酸鉄、リン酸ニッケル、リン酸スズ、リン酸ジルコニウム等の1種のリン酸化合物、又はこれら2種以上のリン酸化合物からなる複合成分から構成される。このようなリン酸成分は、耐食性及び密着性に優れるため、形成されるリン酸成分の量が多くなるほど、容器用鋼板10の耐食性及び密着性が向上する。
 具体的には、化成処理皮膜層109におけるリン酸成分の含有量がP量に換算して0.1mg/m以上となると、実用上問題ないレベルの耐食性と塗装等密着性とが確保される。一方、リン酸成分の含有量の増加に伴い、耐食性及び塗装等密着性の向上効果も増加する。しかしながら、リン酸成分の含有量がP量に換算して100mg/mを超えると、化成処理皮膜層109が厚くなりすぎて化成処理皮膜自体の密着性(主に凝集破壊起因)が低下するとともに、電気抵抗が上昇して溶接性が低下する。また、リン酸成分の含有量がP量で100mg/mを超えると、化成処理皮膜の付着ムラが外観ムラとなって発現することがある。従って、本実施形態における容器用鋼板10においては、リン酸成分の含有量は、P量で0.1mg/m~100mg/mとする。リン酸成分の含有量は、より好ましくは、P量で0.5~30mg/mである。
 本実施形態における容器用鋼板10では、上記のような化成処理皮膜層109の下層に酸化皮膜層107を形成するため、例えば金属Zr量が2mg/m等のような低底皮膜量とした場合であっても、優れた耐硫化黒変性を実現することができる。その結果、化成処理皮膜層109の付着量をより削減することが可能となるため、コストの削減を実現することが可能となる。
 このようなZr成分及びリン酸成分を含む化成処理皮膜層109は、電解処理(例えば、陰極電解処理)により形成される。電解処理により上記の化成処理皮膜層を形成するためには、形成する化成処理皮膜の種類に応じて、化成処理液中の成分を決定することが必要である。具体的には、10ppm以上10000ppm以下のZrイオンと、10ppm以上10000ppm以下のフッ化物イオン(F)と、10ppm以上3000ppm以下のリン酸イオンと、100ppm以上3000ppm以下の硝酸イオン及び/又は硫酸イオンとを含む化成処理液を利用する。また、必要に応じて、これらの化成処理液に対して、更にフェノール樹脂等を添加してもよい。
 この化成処理液の温度は、5℃以上90℃未満とする。化成処理液の温度が5℃未満である場合には、皮膜の形成効率が悪くなって経済的ではなく、好ましくない。また、化成処理液の温度が90℃以上である場合には、形成される皮膜組織が不均一であり、欠陥、割れ、マイクロクラック等が発生する。その結果、緻密な皮膜形成が困難となり、腐食等の起点となるため、好ましくない。
 このような電解処理は、1.0A/dm以上100A/dm以下の電流密度により、0.2秒以上150秒以下の電解処理時間で、実施される。電流密度が1.0A/dm未満である場合には、化成処理皮膜層の付着量の低下を招くとともに、長電解処理時間が必要となることによる生産性の低下を招くため、好ましくない。また、電流密度が100A/dm超過である場合には、化成処理皮膜層の付着量が所要量を超え、かつ、飽和する。場合によっては、電解化成処理後の水洗等による洗浄工程で付着不十分な皮膜が洗い流される(剥離する)など、経済的ではない。また、電解処理時間が0.2秒未満である場合には、皮膜付着量の低下を招き、耐食性や塗装密着性等が低下することがあるため好ましくない。電解処理時間が150秒超過である場合には、皮膜付着量が所要量を超え、かつ付着量が飽和してしまう。場合によっては、電解化成処理後の水洗等による洗浄工程で付着不十分な皮膜が洗い流される(剥離する)など、経済的ではない。
 また、pHは3.1~3.7の範囲が好ましく、より好ましくは3.5前後である。また、pHの調整には、必要に応じて、硝酸あるいはアンモニア等を加えてもよい。
 上記のような電解電流密度及び通電時間で電解処理を行うことにより、鋼板表面に適切な付着量の皮膜を形成することができる。
 なお、本実施形態における化成処理皮膜層の形成にあたっては、電解処理に用いる酸性溶液中に、更にタンニン酸を添加してもよい。酸性溶液中にタンニン酸を添加することで、上記の処理中にタンニン酸が鋼板の鉄(Fe)と反応することとなり、鋼板の表面にタンニン酸鉄の皮膜を形成する。このタンニン酸鉄の皮膜は、耐錆性及び密着性を向上させるため、必要に応じて、タンニン酸を添加した酸性溶液中で、化成処理皮膜層の形成を行ってもよい。
 また、化成処理皮膜層の形成に用いられる酸性溶液の溶媒としては、例えば、蒸留水等を使用することができる。しかしながら、本実施形態における酸性溶液の溶媒は、上記のものに規制されず、溶解する材料や形成方法および化成処理皮膜層の形成条件等に応じて、適宜選択することが可能である。但し、安定的な工業生産性、コスト、環境面から蒸留水を用いることが好ましい。
 また、本発明の化成処理層の形成に用いられる化成処理液においては、例えば、HZrFのようなZr錯体をZrの供給源として使用することが可能である。上記のようなZr錯体中のZrは、カソード電極界面におけるpHの上昇により加水分解反応にてZr4+となって化成溶液中に存在する。このようなZrイオンは、化成処理液中で更に速やかに反応し、ZrOやZr(POといった化合物となって、金属表面に存在する水酸基(-OH)と脱水縮合反応等にてZr皮膜を形成することが可能となる。また、化成処理液にフェノール樹脂を添加するに際しては、フェノール樹脂をアミノアルコール変性させることで、水溶性を持たせても良い。
 以上説明したような本実施形態における容器用鋼板10は、酸化皮膜層107上への化成処理皮膜層の付着量を削減した場合であっても、優れた耐硫化黒変性を示す。例えば、容器用鋼板10の表面に塗料を付着させ焼き付けて塗膜を形成させた後、1時間沸騰させた0.6質量%L-システイン液を保持する耐熱瓶の口に、塗膜の形成された容器用鋼板10を蓋として載置して固定し、110℃で30分間の熱処理を施す。この場合、熱処理後の塗膜の形成された容器用鋼板10において、耐熱瓶と接触していた接触部分の外観観察を行うと、本実施形態における容器用鋼板10は、接触部分の面積の50%以上で黒変が生じない程度の優れた耐硫化黒変性を示す。
<成分含有量の測定方法について>
 ここで、下地Ni層103中の金属Ni量や、Snめっき層105中の金属Sn量は、例えば、蛍光X線法によって測定することができる。この場合、金属Ni量既知のNi付着量サンプルを用いて、金属Ni量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的に金属Ni量を特定する。金属Sn量についても同様に、金属Sn量既知のSn付着量サンプルを用いて、金属Sn量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的に金属Sn量を特定する。
 酸化皮膜層107の還元に要する電気量は、本実施形態における容器用鋼板10を、窒素ガスのバブリング等の手段によって溶存酸素を除去した0.001mol/Lの臭化水素酸水溶液中で0.05mA/cmの定電流で陰極電解し、得られる電位-時間曲線から求めることが可能である。以下、この還元に要する電気量の測定方法について、図2A及び図2Bを参照しながら、簡単に説明する。
 図2A及び図2Bは、酸化皮膜層における酸化スズの含有量(酸化スズ量)の測定方法について説明するための模式図である。図2Aに示したように、酸化スズ量の測定では、まず、溶存酸素を除去した上記濃度の臭化水素酸水溶液(HBr水溶液)が保持された電解処理浴を準備する。この電解処理浴に対し、陽極と、測定試料(すなわち、容器用鋼板10)が設けられた陰極と、を設置する。ここで、陽極及び陰極の材質については特に限定されるものではないが、例えば、陽極及び陰極として白金電極を用いることができる。また、試験片そのものを陰極として用いることも可能である。
 次に、0.05mA/cmの定電流で陰極電解処理を行い、電位-時間曲線の測定を行う。ここで、得られた電位-時間曲線の測定チャート(以下、単にチャートとも称する。)のフルスケールの長さLFS(単位:mm)と、フルスケールのチャートの送り速度TFS(単位:sec)とを、予め特定しておく。
 図2Bは、得られる測定チャートを模式的に示している。得られたチャートにおいて、図2Bに示したように、電位軸側の接線及び時間軸側の接線のそれぞれを特定し、互いの接線の交点の位置を特定する。この交点から電位軸まで降ろした垂線の長さを、図2Bに示したように、チャート長さL(単位:mm)とする。
 酸化皮膜層107を還元するために要する電気量(単位:mC/cm)を、酸化スズ量Qと称することとすると、酸化スズ量Qは、以下の式101で算出することができる。ここで、下記の式101において、Iは、電流密度(単位:mA)であり、Sは、試料の面積(単位:cm)であり、Tは、酸化皮膜層107を完全に除去する(すなわち、酸化皮膜層107を完全に還元する)のに要した時間(単位:sec)である。また、酸化皮膜層107を完全に除去するのに要した時間Tは、フルスケールの長さLFSと、フルスケールのチャートの送り速度TFSと、測定チャートから求めたチャート長さLとを利用して、以下の式102で算出することができる。従って、以下の式101及び式102を利用することで、酸化スズ量Qを算出することができる。
Figure JPOXMLDOC01-appb-M000001
 また、化成処理皮膜層109中の金属Zr量及びP量は、例えば、蛍光X線分析等の定量分析法により測定することが可能である。
 なお、上記のような各成分量の測定方法は上記の方法に限定されるものではなく、その他の公知の測定方法を適用することが可能である。
<肉眼による耐硫化黒変性の評価方法について>
 次に図3A及び図3Bを参照しながら、耐硫化黒変性の評価方法について、詳細に説明する。図3Aは、耐硫化黒変性の評価方法の流れの一例について説明するための流れ図である。図3Bは、耐硫化黒変性の評価方法について説明するための説明図である。
 本実施形態における耐硫化黒変性の評価方法では、試料の表面にゴールド色の塗料(Valsper社製、28S93MB)を付着させ、焼き付けて塗膜を形成する(ステップS101)。なお、試料としては、上記の方法により、鋼板の表面に下地Ni層、Snめっき層、酸化皮膜層、化成処理皮膜層を形成した容器用鋼板を用いる。
 1時間沸騰させた0.6質量%L-システイン液を、耐熱瓶201(SCHOTT社製、100mL耐熱瓶、017260-100A)の中に封入する(ステップS102)。
 耐熱瓶の口に、Oリング202、パッキンシリコンゴム203、ステップS201で作成した試料204(42Φ)、パッキンシリコンゴム205の順番で載置・固定する(ステップS103)。
 耐熱瓶に蓋206(柴田化学株式会社製、GL45、内径45Φ、外径55Φ)をし、蓋が下になるように均熱炉に入れる(ステップS104)。
 均熱炉において、耐熱瓶を110℃で30分間の熱処理を行う(ステップS105)。
 耐熱瓶を均熱炉から取り出し、試料とL-システイン液との接触部分における黒変度合いを肉眼により観察する(ステップS106)。
<YIによる耐硫化黒変性の評価方法について>
 JIS K-7373によって定められるYI(Yellowness Index)により耐硫黒変性を評価する場合には、上記のステップS101において、試料204の表面にゴールド色の塗料(Valsper社製、28S93MB)を付着させ、焼き付けることにより塗膜を形成する。
 肉眼による耐硫化黒変性の評価方法と、YIによる耐硫化黒変性の評価方法とでは、ステップS102~105は共通である。
 YIによる耐硫化黒変性の評価方法では、上記のステップS106において、L-システイン液との反応後の試料の黄色度を分光測色計により測定する。ここで、黄色度の測定には、JIS Z-8722条件cに準拠した分光測色計を用いれば良く、測定方式としては表面性状の影響を受けにくいSCI(正反射光を含む)測定で行う。
 測定条件としては、光源、湿度、温度など、一定の条件下で測定を行う必要がある。
 以上、図1A~図3Bを参照しながら、本実施形態における容器用鋼板10の構成について、詳細に説明した。
<容器用鋼板の製造方法について>
 次に、図4を参照しながら、本実施形態における容器用鋼板10の製造方法について、詳細に説明する。図4は、本実施形態における容器用鋼板の製造方法の流れの一例について説明するための流れ図である。
 本実施形態における容器用鋼板10の製造方法では、まず、鋼板101に対してNiめっき又はFe-Ni合金めっきを施すことで、下地Ni層103が形成される(ステップS201)。
 次に、下地Ni層103の形成された鋼板101に対して、Snめっきを実施する(ステップS203)。その後、溶融溶錫処理(リフロー処理)により、島状Snを含むSnめっき層105を形成しつつ、表面酸化により酸化皮膜層107を形成する(ステップS205)。
 その後、酸化皮膜層107上に、電解処理により化成処理皮膜層109を形成する(ステップS207)。
 このような流れで処理が行われることで、本実施形態における容器用鋼板10が製造される。
 以下、実施例及び比較例を示しながら、本発明における容器用鋼板及び容器用鋼板の製造方法について、具体的に説明する。なお、以下に示す実施例は、本発明における容器用鋼板及び容器用鋼板の製造方法のあくまでも一例であって、本発明における容器用鋼板及び容器用鋼板の製造方法が以下に示す実施例に限定されるものではない。
(実施例)
 容器用の鋼板として一般的に用いられる鋼板を利用し、この鋼板に対して、公知の方法によりNiめっき及びSnめっきを順に施した。続いて、下記の表1に示した条件で溶融溶錫処理を行ってSnめっき層及び酸化皮膜層を形成した後、下記の表1に示した条件で化成処理皮膜層を形成した。
 形成した下地Ni層における金属Ni量及びSnめっき層における金属Sn量は、蛍光X線法により測定し、下記の表2に示した。また、酸化皮膜層の酸化スズ量は、図2A及び図2Bを参照しながら説明した方法により測定し、下記の表2に示した。また、化成処理皮膜層における各成分量は、蛍光X線分析法により測定し、下記の表2に示した。
 耐硫化黒変性の評価では、図3A及び図3Bを参照しながら説明した方法により、各水準の試料の耐硫化黒変性を肉眼により評価した。各水準の試料において、耐熱瓶と接触していた接触部分の外観観察を行い、接触部分における、黒変が生じた部分の占める割合(面積比)により、1~10点の評点をつけた。この評価方法において、評点が8点以上の場合(つまり、接触部分の50%以上で黒変が生じなかった場合)、容器用鋼板として優れた耐硫化黒変性を示す。
   10点:黒変の生じた部分の面積が10%未満
   9点:黒変の生じた部分の面積が10%以上、30%未満
   8点:黒変の生じた部分の面積が30%以上、50%未満
   7点:黒変の生じた部分の面積が50%以上、60%未満
   6点:黒変の生じた部分の面積が60%以上、65%未満
   5点:黒変の生じた部分の面積が65%以上、75%未満
   4点:黒変の生じた部分の面積が75%以上、85%未満
   3点:黒変の生じた部分の面積が85%以上、90%未満
   2点:黒変の生じた部分の面積が90%以上、95%未満
   1点:黒変の生じた部分の面積が95%以上
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 次に、下記の表3に示した条件で、各水準の試料を製造した。試料の各成分量については、上記表2の場合と同様に測定を行い、上記表2と同様の方法で肉眼により耐硫化黒変性を評価した。得られた結果を、下記の表4に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 次に、下記の表5に示した条件で、各水準の試料を製造した。試料の各成分量については、上記表2及び表4の場合と同様に測定を行い、上記表2及び表4と同様の方法で肉眼により耐硫化黒変性を評価した。得られた結果を、下記の表6に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 ここで、表1及び表2に示した各実験例は、主に容器用鋼板の製造時における各条件に着目して実験を行ったものであり、表3及び表4に示した各実験例は、主に製造された容器用鋼板の特性に着目して実験を行っている。表5及び表6に示した各実験例は、溶融溶錫処理時間を変化させることにより、酸化スズの付着量を変化させて実験を行ったものである。
 上記表1~表6から明らかなように、上記の硫化黒変性の評価試験により、本発明の鋼板は、優れた耐硫化黒変性を有することが明らかになった。
 次に下記の表7に示した条件で、各水準の試料を製造した。酸化スズの付着量については上記表2、表4、表6と同様の方法で測定を行った。耐硫化黒変性の評価は、上記表2、表4、表6に示した肉眼による評価方法に加え、YIによる評価方法により行った。得られた結果を表8及び図5A、図5Bに示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表8及び図5A、図5Bから明らかなように、YIの数値は、肉眼による官能的な評価結果とよく対応しており、YIは硫化黒変による表面の色彩変化を定量的に示すための指標として適用可能であることが分かった。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はこれらの例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明によれば、化成処理皮膜層とSnめっき層との間に酸化皮膜層を形成することによって、化成処理皮膜を利用して、耐硫化黒変性及びコストの削減を実現することが可能となる。
  10  容器用鋼板
 101  鋼板
 103  下地Ni層
 105  Snめっき層
 107  酸化皮膜層
 109  化成処理皮膜層

Claims (4)

  1.  鋼板と、
     前記鋼板の少なくとも片面に対して、Niを金属Ni量で5~150mg/m含有するNiめっき又はFe-Ni合金めっきが施された下地Ni層と、
     前記下地Ni層上に、金属Sn量で300~3000mg/mのSnめっきが施され、溶融溶錫処理により前記Snめっきと少なくとも一部の前記下地Ni層とが合金化された島状のSnを含むSnめっき層と、
     前記Snめっき層上に形成され、酸化スズを含有する酸化皮膜層と、
     前記酸化皮膜層上に形成され、金属Zr量で1~500mg/mのZrと、P量で0.1~100mg/mのリン酸と、を含有する化成処理皮膜層と、
    を備え、
     前記酸化皮膜層は、当該酸化皮膜層の還元に要する電気量が0.3~10mC/cmとなる量の前記酸化スズを含有する
    ことを特徴とする、容器用鋼板。
  2.  前記酸化皮膜層は、当該酸化皮膜層の還元に要する電気量が5.5~10mC/cmとなる量の前記酸化スズを含有する
    ことを特徴とする、請求項1に記載の容器用鋼板。
  3.  前記容器用鋼板の表面に塗料を付着させ焼き付けて塗膜を形成させた後、1時間沸騰させた0.6質量%L-システイン液を保持する耐熱瓶の口に、塗膜の形成された前記容器用鋼板を載置して固定し、前記耐熱瓶に蓋をして、前記蓋が下になった状態で110℃で30分間の熱処理を施した後、塗膜の形成された前記容器用鋼板において前記耐熱瓶と接触していた接触部分の外観観察を行った場合に、当該接触部分の面積の50%以上で黒変が生じない
    ことを特徴とする、請求項1又は2に記載の容器用鋼板。
  4.  鋼板の少なくとも片面に対して、Niめっき又はFe-Ni合金めっきを施して、Niを金属Ni量で5~150mg/m含有する下地Ni層を形成するステップと、
     前記下地Ni層上に金属Sn量で300~3000mg/mのSnめっきを施すステップと、
     200℃以上300℃以下の温度で0.2秒以上20秒以下溶融溶錫処理を行い、前記Snめっきと少なくとも一部の前記下地Ni層とを合金化させて島状のSnを含むSnめっき層を形成しつつ、当該Snめっき層の表面を表面酸化させて酸化スズを含有する酸化皮膜層を形成するステップと、
     10ppm以上10000ppm以下のZrイオンと、10ppm以上10000ppm以下のフッ化物イオンと、10ppm以上3000ppm以下のリン酸イオンと、100ppm以上30000ppm以下の硝酸イオン及び/又は硫酸イオンと、を含み、かつ、温度が5℃以上90℃未満の化成処理液中で、1.0A/dm以上100A/dm以下の電流密度により0.2秒以上150秒以下の電解処理時間で電解処理を行い、前記酸化皮膜層上に化成処理皮膜層を形成するステップと、
    を含む
    ことを特徴とする、容器用鋼板の製造方法。
PCT/JP2014/063478 2013-05-21 2014-05-21 容器用鋼板及び容器用鋼板の製造方法 WO2014189081A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015518277A JP6070836B2 (ja) 2013-05-21 2014-05-21 容器用鋼板及び容器用鋼板の製造方法
MYPI2015704152A MY182935A (en) 2013-05-21 2014-05-21 Steel sheet for containers, and method for producing steel sheet for containers
EP14800433.6A EP3000917B1 (en) 2013-05-21 2014-05-21 Steel sheet for containers, and method for producing steel sheet for container
ES14800433T ES2782973T3 (es) 2013-05-21 2014-05-21 Chapa de acero para recipientes y método para producir una chapa de acero para recipientes
US14/891,945 US10443141B2 (en) 2013-05-21 2014-05-21 Steel sheet for containers, and method for producing steel sheet for containers
KR1020157032927A KR101734747B1 (ko) 2013-05-21 2014-05-21 용기용 강판 및 용기용 강판의 제조 방법
CN201480028919.XA CN105283584B (zh) 2013-05-21 2014-05-21 容器用钢板以及容器用钢板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-107304 2013-05-21
JP2013107304 2013-05-21

Publications (1)

Publication Number Publication Date
WO2014189081A1 true WO2014189081A1 (ja) 2014-11-27

Family

ID=51933633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063478 WO2014189081A1 (ja) 2013-05-21 2014-05-21 容器用鋼板及び容器用鋼板の製造方法

Country Status (9)

Country Link
US (1) US10443141B2 (ja)
EP (1) EP3000917B1 (ja)
JP (1) JP6070836B2 (ja)
KR (1) KR101734747B1 (ja)
CN (1) CN105283584B (ja)
ES (1) ES2782973T3 (ja)
MY (1) MY182935A (ja)
TW (1) TWI549812B (ja)
WO (1) WO2014189081A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6066030B2 (ja) * 2015-01-09 2017-01-25 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
WO2017163298A1 (ja) * 2016-03-22 2017-09-28 新日鐵住金株式会社 化成処理鋼板及び化成処理鋼板の製造方法
KR20180019188A (ko) * 2015-06-23 2018-02-23 신닛테츠스미킨 카부시키카이샤 용기용 강판 및 용기용 강판의 제조 방법
JPWO2016207967A1 (ja) * 2015-06-23 2018-04-19 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
EP3336942A4 (en) * 2015-08-12 2018-07-18 JFE Steel Corporation Metal plate for separator of polymer electrolyte fuel cell, and metal plate for producing same
EP3284850A4 (en) * 2015-04-16 2018-09-19 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container and method for producing steel sheet for container
US10431832B2 (en) 2014-04-15 2019-10-01 Jfe Steel Corporation Stainless-steel foil for separator of polymer electrolyte fuel cell
US10563311B2 (en) 2015-04-16 2020-02-18 Nippon Steel Corporation Steel sheet for container and method for producing steel sheet for container
JPWO2021192614A1 (ja) * 2020-03-26 2021-09-30

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779561A (zh) * 2016-03-22 2018-11-09 新日铁住金株式会社 化学转化处理钢板及化学转化处理钢板的制造方法
EP3467155A4 (en) * 2016-05-24 2019-10-30 Nippon Steel Corporation PLATED STEEL SHEET BY SN ALLOY
JP6260752B1 (ja) * 2016-06-24 2018-01-17 Jfeスチール株式会社 電池外筒缶用鋼板、電池外筒缶および電池
US11946121B2 (en) 2017-07-28 2024-04-02 Jfe Steel Corporation Steel sheet for battery outer tube cans, battery outer tube can and battery
KR102339193B1 (ko) * 2017-07-28 2021-12-13 제이에프이 스틸 가부시키가이샤 전지 외통캔용 강판, 전지 외통캔 및 전지
KR102364143B1 (ko) * 2018-03-01 2022-02-18 닛폰세이테츠 가부시키가이샤 Sn 도금 강판 및 Sn 도금 강판의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284789A (ja) 2006-03-24 2007-11-01 Nippon Steel Corp 製缶加工性に優れた容器用鋼板
JP2010261068A (ja) * 2009-04-30 2010-11-18 Jfe Steel Corp 錫めっき鋼板およびその製造方法
WO2011118588A1 (ja) * 2010-03-23 2011-09-29 新日本製鐵株式会社 容器用鋼板及びその製造方法
WO2012002360A1 (ja) * 2010-06-29 2012-01-05 新日本製鐵株式会社 容器用鋼板およびその製造方法
JP2012062521A (ja) * 2010-09-15 2012-03-29 Jfe Steel Corp 容器用鋼板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI391530B (zh) * 2007-04-04 2013-04-01 Nippon Steel Corp A plated steel sheet for use in a tank and a method for manufacturing the same
EP2256231A4 (en) 2008-02-18 2011-12-07 Nippon Steel Corp PLATED COPPER STEEL SHEET AND METHOD FOR PRODUCING PLATED STEEL SHEET
JP5304000B2 (ja) * 2008-04-07 2013-10-02 新日鐵住金株式会社 溶接性、外観、製缶加工密着性に優れた容器用鋼板
JP5760355B2 (ja) * 2010-09-15 2015-08-12 Jfeスチール株式会社 容器用鋼板
MY162540A (en) 2010-09-15 2017-06-15 Jfe Steel Corp Steel sheet for containers and manufacturing method for same
US9127341B2 (en) * 2011-01-18 2015-09-08 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container having excellent organic film performance and process for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284789A (ja) 2006-03-24 2007-11-01 Nippon Steel Corp 製缶加工性に優れた容器用鋼板
JP2010261068A (ja) * 2009-04-30 2010-11-18 Jfe Steel Corp 錫めっき鋼板およびその製造方法
WO2011118588A1 (ja) * 2010-03-23 2011-09-29 新日本製鐵株式会社 容器用鋼板及びその製造方法
WO2012002360A1 (ja) * 2010-06-29 2012-01-05 新日本製鐵株式会社 容器用鋼板およびその製造方法
JP2012062521A (ja) * 2010-09-15 2012-03-29 Jfe Steel Corp 容器用鋼板の製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10431832B2 (en) 2014-04-15 2019-10-01 Jfe Steel Corporation Stainless-steel foil for separator of polymer electrolyte fuel cell
JP6066030B2 (ja) * 2015-01-09 2017-01-25 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
EP3284850A4 (en) * 2015-04-16 2018-09-19 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container and method for producing steel sheet for container
US10577705B2 (en) 2015-04-16 2020-03-03 Nippon Steel Corporation Steel sheet for container and method for producing steel sheet for container
US10563311B2 (en) 2015-04-16 2020-02-18 Nippon Steel Corporation Steel sheet for container and method for producing steel sheet for container
US10851467B2 (en) 2015-06-23 2020-12-01 Nippon Steel Corporation Steel sheet for containers, and method for producing steel sheet for containers
JPWO2016207967A1 (ja) * 2015-06-23 2018-04-19 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
KR102087669B1 (ko) * 2015-06-23 2020-03-11 닛폰세이테츠 가부시키가이샤 용기용 강판 및 용기용 강판의 제조 방법
EP3315636A4 (en) * 2015-06-23 2019-02-13 Nippon Steel & Sumitomo Metal Corporation STEEL SHEET FOR CONTAINER AND METHOD FOR PRODUCING SAME
JPWO2016207966A1 (ja) * 2015-06-23 2018-04-26 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
US10465309B2 (en) 2015-06-23 2019-11-05 Nippon Steel Corporation Steel sheet for containers, and method for producing steel sheet for containers
KR20180019188A (ko) * 2015-06-23 2018-02-23 신닛테츠스미킨 카부시키카이샤 용기용 강판 및 용기용 강판의 제조 방법
EP3336942A4 (en) * 2015-08-12 2018-07-18 JFE Steel Corporation Metal plate for separator of polymer electrolyte fuel cell, and metal plate for producing same
US10516174B2 (en) 2015-08-12 2019-12-24 Jfe Steel Corporation Metal sheet for separators of polymer electrolyte fuel cells, and metal sheet for manufacturing the same
JPWO2017163298A1 (ja) * 2016-03-22 2019-01-31 新日鐵住金株式会社 化成処理鋼板及び化成処理鋼板の製造方法
WO2017163298A1 (ja) * 2016-03-22 2017-09-28 新日鐵住金株式会社 化成処理鋼板及び化成処理鋼板の製造方法
JPWO2021192614A1 (ja) * 2020-03-26 2021-09-30
WO2021192614A1 (ja) * 2020-03-26 2021-09-30 日本製鉄株式会社 Sn系めっき鋼板
CN115315541A (zh) * 2020-03-26 2022-11-08 日本制铁株式会社 Sn系镀覆钢板
JP7295486B2 (ja) 2020-03-26 2023-06-21 日本製鉄株式会社 Sn系めっき鋼板
CN115315541B (zh) * 2020-03-26 2023-10-24 日本制铁株式会社 Sn系镀覆钢板

Also Published As

Publication number Publication date
JPWO2014189081A1 (ja) 2017-02-23
EP3000917B1 (en) 2020-03-11
JP6070836B2 (ja) 2017-02-01
CN105283584A (zh) 2016-01-27
EP3000917A4 (en) 2017-01-18
US10443141B2 (en) 2019-10-15
TW201504034A (zh) 2015-02-01
KR20150143828A (ko) 2015-12-23
EP3000917A1 (en) 2016-03-30
CN105283584B (zh) 2017-09-05
MY182935A (en) 2021-02-05
US20160122891A1 (en) 2016-05-05
ES2782973T3 (es) 2020-09-16
TWI549812B (zh) 2016-09-21
KR101734747B1 (ko) 2017-05-11

Similar Documents

Publication Publication Date Title
JP6070836B2 (ja) 容器用鋼板及び容器用鋼板の製造方法
JP6128280B2 (ja) 酸性内容物貯蔵容器用化成処理鋼板及び酸性内容物貯蔵容器用化成処理鋼板の製造方法
JP6103139B2 (ja) 化成処理鋼板及び化成処理鋼板の製造方法
JP6119930B2 (ja) 容器用鋼板及び容器用鋼板の製造方法
JP6583538B2 (ja) 化成処理鋼板及び化成処理鋼板の製造方法
WO2016207967A1 (ja) 容器用鋼板及び容器用鋼板の製造方法
JP5994960B1 (ja) 容器用鋼板及び容器用鋼板の製造方法
JP6066030B2 (ja) 容器用鋼板及び容器用鋼板の製造方法
JP6583539B2 (ja) 化成処理鋼板及び化成処理鋼板の製造方法
JP6468059B2 (ja) Snめっき鋼板及びSnめっき鋼板の製造方法
JP6565308B2 (ja) 容器用鋼板及び容器用鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480028919.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518277

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14891945

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157032927

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014800433

Country of ref document: EP