WO2012002030A1 - 蛍光x線分析装置および方法 - Google Patents

蛍光x線分析装置および方法 Download PDF

Info

Publication number
WO2012002030A1
WO2012002030A1 PCT/JP2011/059797 JP2011059797W WO2012002030A1 WO 2012002030 A1 WO2012002030 A1 WO 2012002030A1 JP 2011059797 W JP2011059797 W JP 2011059797W WO 2012002030 A1 WO2012002030 A1 WO 2012002030A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
ray
rays
avoidance
angle
Prior art date
Application number
PCT/JP2011/059797
Other languages
English (en)
French (fr)
Inventor
広明 喜多
小林 寛
Original Assignee
株式会社リガク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リガク filed Critical 株式会社リガク
Priority to US13/807,896 priority Critical patent/US8644450B2/en
Priority to CN201180031886.0A priority patent/CN102959387B/zh
Priority to EP11800500.8A priority patent/EP2589956B1/en
Priority to KR1020137002754A priority patent/KR101277379B1/ko
Publication of WO2012002030A1 publication Critical patent/WO2012002030A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3306Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts object rotates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer

Definitions

  • the present invention is a single crystal wafer (single crystal silicon wafer, single crystal gallium arsenide wafer, etc.) used for semiconductor electronic circuit elements, or a monitor wafer in which an electrode film or the like is attached to the entire measurement surface of a single crystal silicon wafer.
  • the present invention relates to an apparatus and method capable of performing an accurate analysis by easily minimizing the intensity of a diffracted X-ray having a specific wavelength incident on a detector in a fluorescent X-ray analysis of a sample having a crystal structure.
  • the sample surface is irradiated with primary X-rays, and the intensity of secondary X-rays generated from the sample surface is detected and analyzed.
  • a semiconductor substrate in which a wiring film made of aluminum (Al), silicon (Si), and copper (Cu) is locally formed on the measurement surface of a single crystal silicon wafer, the thickness of the wiring film, the component concentration, etc.
  • the same process as that of the semiconductor substrate is performed, and the sample is irradiated with the primary X-ray using a monitor wafer having a wiring film attached to the entire measurement surface of the single crystal silicon wafer.
  • a fluorescent X-ray analyzer that detects and analyzes secondary X-rays generated from a sample is used.
  • the sample Prior to fluorescent X-ray analysis of a sample, the sample is irradiated with primary X-rays while rotating the sample around a predetermined point on the sample by 180 ° (degrees) or more to generate fluorescent X-rays and diffraction generated from the sample. Secondary X-rays including X-rays are detected, and the sample is positioned at a rotational direction position where the obtained secondary X-ray intensity has a minimum value. In this state, the sample is placed in a plane parallel to the measurement surface.
  • Patent Document 1 There is a fluorescent X-ray analysis method in which the entire measurement surface of a sample is analyzed by moving in XY directions orthogonal to each other.
  • a sample stage on which a sample having a crystal structure is fixed an X-ray source that irradiates the sample with primary X-rays, a detector that receives secondary X-rays generated from the sample, an arbitrary surface of the sample
  • Parallel movement means for moving the sample stage so as to irradiate the primary X-ray to the position
  • rotation means for rotating the sample stage around an axis perpendicular to the sample surface, and diffraction that is diffracted by the sample and incident on the detector Total reflection
  • Patent Document 2 There is a fluorescent X-ray analyzer
  • JP-A-5-126768 Japanese Patent Laid-Open No. 10-282022
  • the sample is rotated 180 ° to set the left half region to the right half region.
  • X diffracted X-rays cannot be avoided, so that it was not possible to perform an accurate analysis.
  • the angle at which the secondary X-ray intensity shows the minimum value is not necessarily the optimum angle as the avoidance angle for avoiding the diffracted X-rays, it has not been possible to perform an accurate analysis.
  • a sample is set in an optimum rotation angle range so that the total sum of the intensity of diffracted X-rays is a predetermined value or less by theoretical calculation.
  • the diffraction pattern of the secondary X-ray generated from the sample when the primary X-ray is irradiated the diffraction pattern actually detected by the apparatus does not always match the theoretically calculated diffraction pattern, and the accuracy I could't do a good analysis.
  • a diagram in which the rotation angle of the sample is associated with the intensity of the secondary X-ray generated from the sample at the rotation angle is referred to as a diffraction pattern.
  • the present invention has been made in view of the above-described conventional problems, and is not only a sample having a rotationally symmetric crystal structure but also a sample having a rotationally symmetric crystal structure by a compact device that does not require a large installation space. It is another object of the present invention to provide a fluorescent X-ray analysis apparatus and method that can easily perform an accurate analysis.
  • an X-ray fluorescence analyzer of the present invention generates from a sample stage on which a sample having a crystal structure is placed, an X-ray source that irradiates the sample with primary X-rays, and the sample Detection means for detecting secondary X-rays, rotation means for rotating the sample stage around an axis perpendicular to the sample measurement surface, and primary at an arbitrary position half of the sample measurement surface with the rotation means stopped
  • a parallel moving means for translating the sample stage so as to irradiate X-rays, and the sample is irradiated with primary X-rays from the X-ray source while being rotated 360 ° around the predetermined point of the sample by the rotating means.
  • the control means for displaying the intensity of the secondary X-rays generated from the incident light and incident on the detection means as a diffraction pattern corresponding to the rotation angle of the sample and storing the diffraction pattern, and the measurer performs the display To the diffraction pattern displayed on the means
  • a selection means for selecting at least three avoidance angles at which the adjacent interval is an angle of less than 180 ° and can avoid diffracted X-rays, and the control means is selected by the selection means
  • the avoidance angle is stored, and according to the measurement point of the sample, the avoidance angle at which the sample table, the rotation unit, and the translation unit do not interfere with other structures of the apparatus is read out from the stored avoidance angles,
  • the rotating means is controlled to set the sample at the avoidance angle.
  • the measurer can easily select at least three avoidance angles at which adjacent intervals are less than 180 ° and can avoid diffracted X-rays, and the selected avoidance is possible. Since the sample is set at an angle that prevents the sample stage, rotation means, and translation means from interfering with other structures of the apparatus, the crystal structure can be obtained by a compact apparatus that does not require a large installation space. In addition to a rotationally symmetric sample, even a sample whose crystal structure is not rotationally symmetric can be easily analyzed with high accuracy.
  • the display means displays an avoidance angle mark indicating the position of the avoidance angle selected by the selection means, a diffraction pattern stored in the control means, and / or a measurement surface image of the sample. It is preferable to display together. In this case, since the avoidance angle mark of the selected sample is displayed together with the diffraction pattern and / or the measurement surface image of the sample, the selected avoidance angle position and whether or not the adjacent interval is less than 180 °. The measurer can easily see it.
  • the fluorescent X-ray analysis method of the present invention uses the fluorescent X-ray analysis apparatus of the present invention to select and control at least three avoidance angles at which adjacent intervals are less than 180 ° and can avoid diffracted X-rays.
  • the sample with the avoidance angle set by the means is moved in a plane parallel to the measurement surface, and the entire measurement surface of the sample is analyzed.
  • the fluorescent X-ray analysis method of the present invention not only a sample having a rotationally symmetric crystal structure but also a sample whose crystal structure is not rotationally symmetric can be easily and accurately analyzed using a compact apparatus. be able to.
  • an avoidance angle mark indicating the position of an avoidance angle selected using the selection means is displayed on the display means, and the diffraction pattern and / or sample measurement surface stored in the control means. It is preferable to display the image together with the image. In this case, since the avoidance angle mark of the selected sample is displayed together with the diffraction pattern and / or the measurement surface image of the sample, the selected avoidance angle position and whether or not the adjacent interval is less than 180 °. The measurer can easily see it.
  • FIG. 1 is a schematic view showing a fluorescent X-ray analyzer according to an embodiment of the present invention. It is a figure which shows the area
  • this analyzer is configured to irradiate a sample S by irradiating the X-ray source 1 such as an X-ray tube that irradiates the sample S such as a monitor wafer with the primary X-ray 2 and the primary X-ray 2.
  • the X-ray source 1 such as an X-ray tube that irradiates the sample S such as a monitor wafer with the primary X-ray 2 and the primary X-ray 2.
  • the secondary X-ray 4 including the fluorescent X-rays and the diffracted X-rays generated from the light is dispersed by a spectroscopic element such as a LiF spectral crystal, and the detection means 7 for detecting the intensity of the secondary X-ray 4, and the sample S And a rotating means 11 for rotating the sample table 8 around a center point O (FIG. 2) of the sample S.
  • the sample table 8 is rotated about an axis perpendicular to the measurement surface of the sample S.
  • the detection means 7 is a fixed goniometer provided for each measurement element.
  • the stroke of the parallel moving means 12 can be moved by a stroke of a radius, not the diameter of the sample S, in either the X direction or the Y direction.
  • a stroke of a radius not the diameter of the sample S, in either the X direction or the Y direction.
  • the sample S is moved in the + X direction and the ⁇ Y direction by the parallel moving means 12, thereby
  • the desired measurement point of the half 21 (hatched area) can be moved to the irradiation point of the primary X-ray 2.
  • the center point O of the sample S is moved to the irradiation point of the primary X-ray 2 by the parallel moving unit 12, the sample S is rotated 180 ° by the rotating unit 11, and the sample S is similarly moved by the parallel moving unit 12.
  • the desired measurement point of the left half 22 (the area without hatching) of the sample S can be moved to the irradiation point of the primary X-ray 2.
  • the apparatus is downsized by restricting the movement of the sample S in the X direction to the movement of the radius of the sample S.
  • the fluorescent X-ray analysis apparatus of this embodiment further includes the control means 15, the display means 16, and the selection means 17 shown in FIG.
  • the control unit 15 irradiates the sample S with the primary X-ray 2 from the X-ray source 1 while rotating the sample S around the center point O of the sample S by 360 ° clockwise as viewed from above by the rotating unit 11.
  • a diffraction pattern in which the intensity of the secondary X-ray (diffracted X-ray) 4 generated and incident on the detection means 7 is made to correspond to the rotation angle of the sample S is displayed on the display means 16, and the diffraction pattern is stored. Note that the rotation direction of the sample S may be counterclockwise as viewed from above.
  • the measurer selects at least three avoidance angles at which the adjacent interval is an angle of less than 180 ° and can avoid the diffracted X-rays, based on the diffraction pattern displayed on the display unit 16 by the selection unit 17. Since the movement of the sample S in the X direction is structurally limited to the radius of the sample S in order to reduce the size of the apparatus, the control means controls the rotating means 11 according to the position of the measurement point of the sample S. Then, the sample S is set to an avoidance angle at which the sample stage 8, the rotation means 11 and the parallel movement means 12 do not interfere with other structures of the apparatus among the selected at least three avoidance angles.
  • the display unit 16 may further display an avoidance angle mark indicating the avoidance angle of the sample S selected by the selection unit 17 together with the diffraction pattern stored in the control unit 15 and / or the measurement surface image of the sample S. it can.
  • the sample S is placed on the sample table 8 shown in FIG. 1, and the sample table 8 and the sample S are rotated 360 ° around the center point O of the sample S by the rotating means 11 while the sample S is irradiated with the X-ray source.
  • the primary X-ray 2 is irradiated from the first, and the secondary X-ray 4 including the fluorescent X-ray and the diffracted X-ray generated from the sample S is detected by the detection means 7.
  • the diffraction pattern is stored in the control means 15 and displayed on the display means 16 as shown in FIG.
  • FIG. 3 shows diffraction patterns of a W-L ⁇ ray measured by a fixed goniometer for measuring tungsten and a Ti-K ⁇ ray measured by a fixed goniometer for measuring titanium.
  • the measurer has a low intensity of diffracted X-rays and a sudden increase in intensity at an adjacent angular position.
  • the selection means 17 selects, for example, three avoidance angles that can avoid diffracted X-rays. At this time, for example, 70 °, 180 °, and 290 ° are selected so that the adjacent interval of the selected avoidance angle is less than 180 °, and the avoidance angle selected by the selection unit 17 is set to the direction 1 ( ⁇ 1). , Direction 2 ( ⁇ 2), and direction 3 ( ⁇ 3).
  • the control means 15 stores the avoidance angle as a measurement condition. Further, when registered, as shown in FIG.
  • red vertical lines, blue vertical lines, and green vertical lines are respectively provided at the avoidance angles of 70 °, 180 °, and 290 ° on the diffraction pattern displayed on the display unit 16.
  • a line avoidance angle mark is displayed, and an avoidance angle mark of red radius, blue radius, and green radius is displayed at each of the avoidance angles 70 °, 180 °, and 290 ° of the measurement surface image.
  • the avoidance angle mark may be displayed on both the diffraction pattern and the measurement surface image, or may be either one of them.
  • the selected avoidance angle mark is displayed on the diffraction pattern or on the measurement surface image of the sample S, it is easily visually confirmed whether or not the adjacent interval of the selected avoidance angle is less than 180 °. can do. Furthermore, registration cannot be performed when the interval between adjacent ones exceeds 180 °. In this way, the adjacent interval can be reliably set to an avoidance angle of less than 180 °.
  • the number of avoidance angles selected is at least three and may be four or more.
  • interval which adjoins is set to 180 degrees, it can consider that the sample S is 180 degrees rotationally symmetric and can measure by the method described in patent document 1. FIG.
  • the parallel moving means 12 is controlled by the control means 15, the sample S is moved in the XY direction, and the measurement point A is set as the irradiation point of the primary X-ray 2.
  • the measurement point A of the sample S is irradiated with the primary X-ray 2 from the X-ray source 1, and the secondary X-ray 4 generated from the sample S is detected by the detection means 7. If the sample S is moved in the XY direction in this way, the rotation direction position of the sample S does not change and is kept at the avoidance angle position, so that the influence of noise due to diffraction X-rays is eliminated and the S / N ratio is improved. . Therefore, even if it is a low content element, an accurate analysis can be performed.
  • the control means 15 uses the parallel movement means 12 to set the center point O of the sample S of the primary X-ray 2 so that the sample stage 8, the rotation means 11 and the parallel movement means 12 do not interfere with other structures of the apparatus.
  • the sample S is moved to the irradiation point, and the sample S is rotated by the rotating means 11 at the avoidance angle ⁇ 2 (180 °) in the direction 2 to set the avoidance angle ⁇ 2 shown in FIG. 6B.
  • the parallel moving means 12 is controlled by the control means 15, the sample S is moved in the XY direction, and the measurement point B is set as the irradiation point of the primary X-ray 2.
  • the measurement point B of the sample S is irradiated with the primary X-ray 2 from the X-ray source 1, and the secondary X-ray 4 generated from the sample S is detected by the detection means 7. Since the next measurement point C is in the right half of the sample S, the measurement is performed by moving the measurement point B in the XY direction by the parallel moving means 12 in the same manner as the measurement point B.
  • the control means 15 uses the parallel movement means 12 to set the center point O of the sample S of the primary X-ray 2 so that the sample stage 8, the rotation means 11 and the parallel movement means 12 do not interfere with other structures of the apparatus.
  • the sample S is moved to the irradiation point, and the sample S is rotated by the rotating means 11 at the avoidance angle ⁇ 3 (290 °) in the direction 3 to set the avoidance angle ⁇ 3 shown in FIG. 6C.
  • the parallel moving means 12 is controlled by the control means 15, the sample S is moved in the XY direction, and the measurement point D is set as the irradiation point of the primary X-ray 2.
  • the measurement point D of the sample S is irradiated with the primary X-ray 2 from the X-ray source 1, and the secondary X-ray 4 generated from the sample S is detected by the detection means 7.
  • the avoidance angle that can avoid the diffracted X-rays is stored as the measurement conditions, when analyzing the sample S having the same crystal structure, the stored measurement conditions can be read and measured. It is possible to measure easily and quickly without selecting an avoidance angle that can avoid diffraction X-rays for each sample S. Also, compared to the case of measuring in only one direction and the rotationally symmetric direction as in the prior art, an avoidance angle can be selected for each analysis line to be measured (for example, W-L ⁇ line, Ti-K ⁇ line, etc.). Therefore, it is possible to measure at an avoidance angle that can appropriately avoid diffracted X-rays. When the same avoidance angle is selected for all the analytical lines to be measured, all the measurement elements can be measured at the same avoidance angle at the same time, which facilitates simultaneous multi-element measurement avoiding diffraction X-rays. it can.
  • the fluorescent X-ray analysis apparatus or method of the embodiment of the present invention not only a sample whose crystal structure is rotationally symmetric but also a sample whose crystal structure is not rotationally symmetric by a compact apparatus that does not require a large installation space. However, it is easy to make a precise analysis.
  • the apparatus according to the present embodiment has been described as a multi-element simultaneous wavelength-dispersion X-ray fluorescence analyzer that uses a fixed goniometer and analyzes multiple elements at the same time.
  • a wavelength-dispersed fluorescence that has a scanning goniometer is used.
  • An X-ray analyzer or an energy dispersive fluorescent X-ray analyzer may be used. Further, it may be a top-illuminated X-ray fluorescence analyzer or a bottom-illuminated X-ray fluorescence analyzer.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 本発明の蛍光X線分析装置は、結晶構造を有する試料(S)が載置される試料台(8)と、試料(S)に1次X線(2)を照射するX線源(1)と、試料(S)からの2次X線(4)を検出する検出手段(7)と、試料台(8)を回転させる回転手段(11)と、試料台(8)を平行移動させる平行移動手段(12)と、試料(S)の回転角度とその角度で発生する2次X線(4)の強度とを対応させて取得した回折パターンに基づいて、隣り合う間隔が180°未満であって、回折X線を回避できる回避角度を少なくとも3つ選択するための選択手段(17)と、試料台(8)、回転手段(11)および平行移動手段(12)が当該装置の他の構造物と干渉しない回避角度に試料(S)を設定するように回転手段11を制御する制御手段(15)とを備える。

Description

蛍光X線分析装置および方法 関連技術
 本出願は、2010年7月2日出願の特願2010-151828の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、半導体電子回路素子に用いられる単結晶ウエーハ(単結晶シリコンウエーハ、単結晶ガリウム砒素ウエーハ等)や、単結晶シリコンウエーハの測定面全域に電極膜等を付着してなるモニターウエーハのような、結晶構造を有する試料の蛍光X線分析において、検出器に入射する特定波長の回折X線の強度を容易に最小限に抑えて、正確な分析のできる装置および方法に関するものである。
 従来、例えば、シリコンウエーハの表面層の分析では、試料表面に1次X線を照射して、試料表面から発生する2次X線の強度を検出して分析している。単結晶シリコンウエーハの測定面に、アルミ(Al)、ケイ素(Si)および銅(Cu)からなる配線膜を局部的に形成してなる半導体基板について、その配線膜の膜厚、成分濃度などの品質のチェックを行う場合、一般に、その半導体基板と同一の工程を経て、単結晶シリコンウエーハの測定面全域に配線膜を付着してなるモニターウエーハを試料として、その試料に1次X線を照射し、試料から発生する2次X線を検出して分析する蛍光X線分析装置が使用されている。
 試料の蛍光X線分析に先立って、試料を試料上の所定点まわりに180°(度)以上回転させながら、この試料に1次X線を照射して、試料から発生する蛍光X線および回折X線を含む2次X線を検出し、得られた2次X線強度が最小値を示す回転方向位置に試料を位置決めし、この状態で、試料を、その測定面に平行な面内で互いに直交するXY方向に移動させて、試料の測定面全域の分析を行なう蛍光X線分析方法がある(特許文献1)。また、結晶構造を有する試料が固定される試料台と、試料に1次X線を照射するX線源と、試料から発生する2次X線が入射される検出器と、試料表面の任意の位置に1次X線を照射させるように試料台を移動させる平行移動手段と、試料表面に垂直な軸を中心に試料台を回転させる回転手段と、試料で回折されて検出器に入射する回折X線の強度の総和が所定値以下となるような、理論計算により求められた最適の試料の回転角度範囲内に、試料が設定されるように回転手段を制御する制御手段とを備える全反射蛍光X線分析装置がある(特許文献2)。
特開平5-126768号公報 特開平10-282022号公報
 特許文献1に記載の蛍光X線分析方法では、結晶構造が180°回転対称の試料を測定しているので、2次X線強度が最小値を示す回転角度に試料を位置決めし、試料の右側半分の領域を測定した後、試料を180°回転させて試料の左側半分の領域を右側半分の領域に設定して試料の全領域を測定している。しかし、この方法では、2次X線強度が最小値を示す試料の回転角度と、その角度と180°対称な角度の2方向に設定されており、それ以外の回転角度に設定することはできない。そのため、図7に示すような結晶構造が回転対称でない試料の場合、試料の右側半分の領域を測定した後、試料を180°回転させて左側半分の領域を右側半分の領域に設定して試料を測定すると、回折X線を回避することができないため、精度のよい分析をすることができなかった。また、回折X線を回避する回避角度として、必ずしも2次X線強度が最小値を示す角度が最適な角度ではないことによっても、精度のよい分析をすることができなかった。
 特許文献2に記載の全反射蛍光X線分析装置では、理論計算により回折X線の強度の総和が所定値以下となるような最適の回転角度範囲に試料を設定している。しかし、1次X線が照射されたときに試料から発生する2次X線の回折パターンに関して、装置で実際に検出される回折パターンと理論計算された回折パターンとは必ずしも一致せず、精度のよい分析をすることができなかった。ここで、試料の回転角度と、その回転角度において試料から発生する2次X線の強度とを対応させた図を回折パターンと称している。
 そこで、本発明は前記従来の問題に鑑みてなされたもので、大きな設置スペースを必要としないコンパクトな装置によって、結晶構造が回転対称の試料だけでなく、結晶構造が回転対称でない試料であっても、簡単に精度のよい分析をすることができる蛍光X線分析装置および方法を提供することを目的とする。
 前記目的を達成するために、本発明の蛍光X線分析装置は、結晶構造を有する試料が載置される試料台と、試料に1次X線を照射するX線源と、試料から発生する2次X線を検出する検出手段と、試料測定面に垂直な軸を中心に試料台を回転させる回転手段と、前記回転手段が停止した状態で試料測定面の半分の任意の位置に1次X線を照射させるように試料台を平行移動させる平行移動手段と、試料を試料の所定点のまわりに前記回転手段によって360°回転させながら前記X線源から1次X線を照射させ、試料から発生して前記検出手段に入射する2次X線の強度を試料の回転角度と対応させた回折パターンとして表示手段に表示させ、その回折パターンを記憶する制御手段と、測定者が、前記表示手段に表示された回折パターンに基づいて、隣り合う間隔が180°未満の角度であって、回折X線を回避できる回避角度を少なくとも3つ選択するための選択手段とを備え、前記制御手段が、前記選択手段によって選択された回避角度を記憶し、試料の測定点に応じて、その記憶した回避角度の中から、前記試料台、回転手段および平行移動手段が当該装置の他の構造物と干渉しない回避角度を読み出して、その回避角度に試料を設定するように前記回転手段を制御する。
 本発明の蛍光X線分析装置によれば、測定者が、隣り合う間隔が180°未満の角度であって、回折X線を回避できる回避角度を少なくとも3つ容易に選択でき、選択された回避角度の中から、試料台、回転手段および平行移動手段が当該装置の他の構造物と干渉しない回避角度に、試料が設定されるので、大きな設置スペースを必要としないコンパクトな装置によって、結晶構造が回転対称の試料だけでなく、結晶構造が回転対称でない試料であっても、簡単に精度のよい分析をすることができる。
 本発明の蛍光X線分析装置は、前記表示手段が、前記選択手段によって選択された回避角度の位置を示す回避角度マークを、前記制御手段に記憶された回折パターンおよび/または試料の測定面画像とともに表示するのが好ましい。この場合には、選択された試料の回避角度マークが回折パターンおよび/または試料の測定面画像とともに表示されるので、選択した回避角度位置、および隣り合う間隔が180°未満であるか否かを測定者が容易に視認することができる。
 本発明の蛍光X線分析方法は、本発明の蛍光X線分析装置を用い、隣り合う間隔が180°未満の角度であって、回折X線を回避できる回避角度を少なくとも3つ選択し、制御手段により回避角度を設定された試料について、その測定面に平行な面内で移動させて試料の測定面全域を分析する。
 本発明の蛍光X線分析方法によれば、コンパクトな装置を用いて、結晶構造が回転対称の試料だけでなく、結晶構造が回転対称でない試料であっても、簡単に精度のよい分析をすることができる。
 本発明の蛍光X線分析方法は、前記表示手段に、前記選択手段を用いて選択した回避角度の位置を示す回避角度マークを、前記制御手段に記憶された回折パターンおよび/または試料の測定面画像とともに表示させるのが好ましい。この場合には、選択された試料の回避角度マークが回折パターンおよび/または試料の測定面画像とともに表示されるので、選択した回避角度位置、および隣り合う間隔が180°未満であるか否かを測定者が容易に視認することができる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
本発明の実施形態の蛍光X線分析装置を示す概略図である。 同装置による試料の平行移動可能な領域を示す図である。 同装置によって測定した試料の回折パターンを示す図である。 同装置の回避角度の設定画面を示す図である。 同装置で測定する試料の測定点を示す図である。 同装置において、試料が回避角度の方向1に設定されている図である。 同装置において、試料が回避角度の方向2に設定されている図である。 同装置において、試料が回避角度の方向3に設定されている図である。 結晶構造が回転対称でない試料の回折パターンを示す図である。
 以下、本発明の実施形態の蛍光X線分析装置について説明する。まず、蛍光X線分析装置の構成について、図面にしたがって説明する。図1に示すように、この分析装置は、モニターウエーハなどの試料Sに向けて1次X線2を照射するX線管などのX線源1と、1次X線2の照射によって試料Sから発生する蛍光X線および回折X線を含んだ2次X線4を、たとえばLiF分光結晶などの分光素子によって分光し、その2次X線4の強度を検出する検出手段7と、試料Sを載置する試料台8と、この試料台8を試料Sの測定面に垂直な軸を中心に回転させる、この実施形態では試料Sの中心点O(図2)周りに回転させる回転手段11と、この回転手段11を回転可能に支持した状態で、試料Sの測定面の任意の位置に1次X線2を照射させるように測定面に平行な面内で互いに直交するXY方向(図2)に移動させる平行移動手段12とを備えている。検出手段7は測定元素毎に設けられた固定型のゴニオメータである。
 平行移動手段12のストロークは、X方向またはY方向の一方については、試料Sの直径分ではなく、半径分のストロークで移動できるようにしている。例えば、1次X線2の照射点が図2に示した試料Sの中心点Oにある場合、平行移動手段12によって試料Sを+X方向および±Y方向に移動させることにより、試料Sの右側半分21(ハッチングした領域)の所望の測定点を1次X線2の照射点へ移動することができる。次に、平行移動手段12によって試料Sの中心点Oを1次X線2の照射点に移動させ、回転手段11によって試料Sを180°回転させ、平行移動手段12によって同様に試料Sを移動させることによって試料Sの左側半分22(ハッチングのない領域)の所望の測定点を1次X線2の照射点へ移動することができる。このように、本実施形態の装置では、試料SのX方向の移動を試料Sの半径分の移動に制限することによって装置を小型化している。
 本実施形態の蛍光X線分析装置は、さらに、図1の制御手段15、表示手段16および選択手段17を備えている。制御手段15は、試料Sを試料Sの中心点Oのまわりに回転手段11によって上から見て時計方向に360°回転させながらX線源1から1次X線2を照射させ、試料Sから発生して検出手段7に入射する2次X線(回折X線)4の強度を試料Sの回転角度と対応させた、回折パターンを表示手段16に表示させ、その回折パターンを記憶する。なお、試料Sの回転方向は上から見て反時計方向であってもよい。
 測定者は、選択手段17によって表示手段16に表示された回折パターンに基づいて、隣り合う間隔が180°未満の角度であって、回折X線を回避できる回避角度を少なくとも3つ選択する。試料SのX方向の移動は当該装置の小型化のために構造的に試料Sの半径分に制限されているので、制御手段は、試料Sの測定点の位置に応じて回転手段11を制御して、選択された少なくとも3つの回避角度の中から、試料台8、回転手段11および平行移動手段12が当該装置の他の構造物と干渉しない回避角度に試料Sを設定する。表示手段16は、さらに、選択手段17によって選択された試料Sの回避角度を示す回避角度マークを、制御手段15に記憶されている回折パターンおよび/または試料Sの測定面画像とともに表示することができる。
 次に、本実施形態の蛍光X線分析装置の動作とともに、本発明の実施形態の蛍光X線分析方法について説明する。試料Sの蛍光X線分析に先立って、試料Sの360°の回折パターンを取得する。
 すなわち、図1に示す試料台8に試料Sを載置し、回転手段11によって試料台8および試料Sを、試料Sの中心点Oの周りに360°回転させながら、試料SにX線源1から1次X線2を照射し、試料Sから発生する蛍光X線および回折X線を含んだ2次X線4を検出手段7により検出する。これによって、回折パターンが制御手段15に記憶されるとともに、図3に示すように表示手段16に表示される。タングステン測定用の固定ゴニオメータによって測定されたW-Lα線とチタン測定用の固定ゴニオメータによって測定されたTi-Kα線の回折パターンを図3に示している。
 次に、測定者が、表示手段11に表示された回避角度の設定画面である図4に示された回折パターンの中から、回折X線の強度が低く、近接する角度位置において急激な強度増加を示さない、回折X線を回避できる回避角度を、選択手段17によって例えば3つ選択する。このとき、選択された回避角度の隣り合う間隔が180°未満になるように、例えば、70°、180°、290°を選択し、選択手段17によって選択した回避角度を、方向1(θ1)、方向2(θ2)、方向3(θ3)として登録する。登録されると制御手段15がその回避角度を測定条件として記憶する。また、登録されると、図4に示すように、表示手段16に表示された回折パターン上の回避角度70°、180°、290°のそれぞれの位置に赤色縦線、青色縦線、緑色縦線の回避角度マークが表示され、測定面画像の回避角度70°、180°、290°のそれぞれの位置に赤色半径、青色半径、緑色半径の回避角度マークが表示される。回避角度マークは回折パターンと測定面画像の両方に表示されてもよいし、どちらか一方であってもよい。
 このように、選択された回避角度マークが回折パターン上や試料Sの測定面画像に表示されるので、選択した回避角度の隣り合う間隔が180°未満になっているか、否かを容易に視認することができる。さらに、隣り合う間隔が180°を超えている場合には、登録することができない。このように、隣り合う間隔が180°未満の回避角度に確実に設定できるようになっている。選択される回避角度は、少なくとも3つ必要で4つ以上であってもよい。なお、隣り合う間隔が180°に設定された場合には、試料Sが180°回転対称であると見なし、特許文献1に記載されている方法で測定することができる。
 次に、図5に示す試料Sの測定点A、B、C、Dの測定を開始すると、制御手段15が測定条件に記憶されている回避角度の中から方向1に登録されている回避角度θ1(70°)を読み出して、回転手段11を制御して試料Sを回転させて図6Aに示す回避角度θ1に設定する。これにより、試料Sは回折X線を回避できる回避角度θ1に設定される。次に、制御手段15によって平行移動手段12が制御され、試料SがXY方向に移動されて、測定点Aは1次X線2の照射点に設定される。試料Sの測定点AにX線源1から1次X線2が照射され、試料Sから発生する2次X線4を検出手段7により検出する。このようにXY方向に移動させれば、試料Sの回転方向位置は変化しないで、回避角度位置に保たれるから、回折X線によるノイズの影響が排除され、S/N比が改善される。したがって、低含有量の元素であっても、精度のよい分析を行なうことができる。
 図6Aに示す回避角度θ1では、次の測定点Bは試料Sの左側半分にあるため、平行移動手段12によって移動できない。そのため、制御手段15は試料台8、回転手段11および平行移動手段12が本装置の他の構造物と干渉しないように、平行移動手段12によって試料Sの中心点Oを1次X線2の照射点に移動させ、方向2の回避角度θ2(180°)に試料Sを回転手段11によって回転させて、図6Bに示す回避角度θ2に設定する。次に、制御手段15によって平行移動手段12が制御され、試料SがXY方向に移動されて、測定点Bは1次X線2の照射点に設定される。試料Sの測定点BにX線源1から1次X線2が照射され、試料Sから発生する2次X線4を検出手段7により検出する。次の測定点Cは試料Sの右側半分にあるので、測定点Bと同様に平行移動手段12によってXY方向に移動させて測定する。
 図6Bに示す回避角度θ2では、次の測定点Dは試料Sの左側半分にあるため、平行移動手段12によって移動できない。そのため、制御手段15は試料台8、回転手段11および平行移動手段12が本装置の他の構造物と干渉しないように、平行移動手段12によって試料Sの中心点Oを1次X線2の照射点に移動させ、方向3の回避角度θ3(290°)に試料Sを回転手段11によって回転させて、図6Cに示す回避角度θ3に設定する。次に、制御手段15によって平行移動手段12が制御され、試料SがXY方向に移動されて、測定点Dは1次X線2の照射点に設定される。試料Sの測定点DにX線源1から1次X線2が照射され、試料Sから発生する2次X線4を検出手段7により検出する。
 このように、回折X線を回避できる回避角度が測定条件として記憶されているので、同様の結晶構造を有する試料Sを分析する場合には、記憶されている測定条件を読み出して測定することができ、試料S毎に回折X線を回避できる回避角度を選択することなく、簡単、迅速に測定することができる。また、従来技術のように1つの方向とその回転対称の方向のみで測定する場合に比べて、測定する分析線(例えば、W-Lα線、Ti-Kα線など)毎に回避角度を選択できるので、適切に回折X線を回避できる回避角度で測定することができる。測定する分析線のすべてにおいて同じ回避角度を選択した場合には、同じ回避角度ですべての測定元素を同時に測定することができるので、回折X線を回避した多元素同時測定を容易にすることができる。
 本発明の実施形態の蛍光X線分析装置または方法によれば、大きな設置スペースを必要としないコンパクトな装置によって、結晶構造が回転対称の試料だけでなく、結晶構造が回転対称でない試料であっても、簡単に精度のよい分析をすることができる。
 本実施形態の装置は、固定型のゴニオメータを配して同時に多元素を分析する多元素同時型の波長分散型蛍光X線分析装置として説明したが、走査型のゴニオメータを配した波長分散型蛍光X線分析装置でもよく、エネルギー分散型の蛍光X線分析装置であってもよい。また、上面照射型の蛍光X線分析装置であっても、下面照射型の蛍光X線分析装置であってもよい。
 以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の請求の範囲から定まるこの発明の範囲内のものと解釈される。
1 X線源
2 1次X線
4 2次X線
7 検出手段
8 試料台
11 回転手段
12 平行移動手段
15 制御手段
16 表示手段
17 選択手段
S 試料

Claims (4)

  1.  結晶構造を有する試料が載置される試料台と、
     試料に1次X線を照射するX線源と、
     試料から発生する2次X線を検出する検出手段と、
     試料測定面に垂直な軸を中心に試料台を回転させる回転手段と、
     前記回転手段が停止した状態で試料測定面の半分の任意の位置に1次X線を照射させるように試料台を平行移動させる平行移動手段と、
     試料を試料の所定点のまわりに前記回転手段によって360°回転させながら前記X線源から1次X線を照射させ、試料から発生して前記検出手段に入射する2次X線の強度を試料の回転角度と対応させた回折パターンとして表示手段に表示させ、その回折パターンを記憶する制御手段と、
     測定者が、前記表示手段に表示された回折パターンに基づいて、隣り合う間隔が180°未満の角度であって、回折X線を回避できる回避角度を少なくとも3つ選択するための選択手段とを備え、
     前記制御手段が、前記選択手段によって選択された回避角度を記憶し、試料の測定点に応じて、その記憶した回避角度の中から、前記試料台、回転手段および平行移動手段が当該装置の他の構造物と干渉しない回避角度を読み出して、その回避角度に試料を設定するように前記回転手段を制御する蛍光X線分析装置。
  2.  請求項1に記載の蛍光X線分析装置において、
     前記表示手段が、前記選択手段によって選択された回避角度の位置を示す回避角度マークを、前記制御手段に記憶された回折パターンおよび/または試料の測定面画像とともに表示する蛍光X線分析装置。
  3.  請求項1に記載の蛍光X線分析装置を用い、
     隣り合う間隔が180°未満の角度であって、回折X線を回避できる回避角度を少なくとも3つ選択し、
     前記制御手段により回避角度を設定された試料について、その測定面に平行な面内で移動させて試料の測定面全域を分析する蛍光X線分析方法。
  4.  請求項3に記載の蛍光X線分析方法において、
     前記表示手段に、前記選択手段を用いて選択した回避角度の位置を示す回避角度マークを、前記制御手段に記憶された回折パターンおよび/または試料の測定面画像とともに表示させる蛍光X線分析方法。
PCT/JP2011/059797 2010-07-02 2011-04-21 蛍光x線分析装置および方法 WO2012002030A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/807,896 US8644450B2 (en) 2010-07-02 2011-04-21 X-ray fluorescence spectrometer and X-ray fluorescence analyzing method
CN201180031886.0A CN102959387B (zh) 2010-07-02 2011-04-21 荧光x射线分析装置及方法
EP11800500.8A EP2589956B1 (en) 2010-07-02 2011-04-21 X-ray fluorescence analyzing method
KR1020137002754A KR101277379B1 (ko) 2010-07-02 2011-04-21 형광 x선 분석 장치 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010151828A JP4914514B2 (ja) 2010-07-02 2010-07-02 蛍光x線分析装置および方法
JP2010-151828 2010-07-02

Publications (1)

Publication Number Publication Date
WO2012002030A1 true WO2012002030A1 (ja) 2012-01-05

Family

ID=45401767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059797 WO2012002030A1 (ja) 2010-07-02 2011-04-21 蛍光x線分析装置および方法

Country Status (7)

Country Link
US (1) US8644450B2 (ja)
EP (1) EP2589956B1 (ja)
JP (1) JP4914514B2 (ja)
KR (1) KR101277379B1 (ja)
CN (1) CN102959387B (ja)
TW (1) TWI388821B (ja)
WO (1) WO2012002030A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5806150B2 (ja) * 2012-03-13 2015-11-10 株式会社ジャパンディスプレイ 表示装置
US9778213B2 (en) 2013-08-19 2017-10-03 Kla-Tencor Corporation Metrology tool with combined XRF and SAXS capabilities
US20160274042A1 (en) * 2013-11-12 2016-09-22 X-Ray Optical Systems, Inc. Non-homogeneous sample scanning apparatus, and x-ray analyzer applications thereof
DE102014102684A1 (de) * 2014-02-28 2015-09-03 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Verfahren zur Messung eines Messobjektes mittels Röntgenfluoreszenz
JP2015184039A (ja) * 2014-03-20 2015-10-22 株式会社日立ハイテクサイエンス X線分析装置
JP2016099308A (ja) * 2014-11-26 2016-05-30 株式会社日立ハイテクサイエンス 蛍光x線分析装置及び蛍光x線分析方法
JP6258845B2 (ja) * 2014-12-19 2018-01-10 株式会社日立ハイテクノロジーズ X線検査方法及び装置
CN104807845B (zh) * 2015-04-21 2018-05-08 南京航空航天大学 一种快速检测化妆品中重金属含量的掠入式x荧光测量装置
JP6501230B2 (ja) * 2016-03-08 2019-04-17 株式会社リガク 多元素同時型蛍光x線分析装置および多元素同時蛍光x線分析方法
US10705243B2 (en) * 2018-01-29 2020-07-07 Korea Atomic Energy Research Institute Nondestructive inspection system
KR102157233B1 (ko) * 2020-02-20 2020-09-17 한국원자력연구원 중성자선과 엑스선을 이용하는 비파괴 검사 시스템
WO2023145101A1 (ja) * 2022-01-31 2023-08-03 キヤノンアネルバ株式会社 検査装置および検査方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161844A (ja) * 1990-10-26 1992-06-05 Fujitsu Ltd 蛍光x線分析装置
JPH05126768A (ja) 1991-11-05 1993-05-21 Rigaku Denki Kogyo Kk 蛍光x線の分析方法
JPH10282022A (ja) 1997-04-08 1998-10-23 Rigaku Ind Co 蛍光x線分析方法および装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454811A (en) 1987-08-26 1989-03-02 Hitachi Ltd Circuit for keeping polarity of pulse signal constant
JP2658217B2 (ja) * 1988-07-21 1997-09-30 大豊工業株式会社 排気ガス再循環装置
JP3052435B2 (ja) * 1991-06-28 2000-06-12 大日本印刷株式会社 真空成形用化粧シート
JP2912127B2 (ja) 1993-07-15 1999-06-28 理学電機工業株式会社 蛍光x線分析方法
JPH0933459A (ja) 1995-07-19 1997-02-07 Sumitomo Metal Ind Ltd 蛍光x線分析方法
JPH09304309A (ja) 1996-05-17 1997-11-28 Matsushita Electric Ind Co Ltd 基板表面分析方法および基板表面分析装置
US6271917B1 (en) * 1998-06-26 2001-08-07 Thomas W. Hagler Method and apparatus for spectrum analysis and encoder
JP2001099791A (ja) 1999-10-01 2001-04-13 Sony Corp 歪みの測定方法及び歪みの測定装置
JP3422751B2 (ja) 2000-04-03 2003-06-30 理学電機工業株式会社 蛍光x線分析方法および装置
WO2005005969A1 (ja) 2003-07-11 2005-01-20 Waseda University エネルギー分散型エックス線回折・分光装置
TWI263044B (en) 2005-03-30 2006-10-01 Li-Min Wang Improvement for X-ray diffractometer
US7796726B1 (en) * 2006-02-14 2010-09-14 University Of Maryland, Baltimore County Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation
GB2447252B (en) 2007-03-06 2012-03-14 Thermo Fisher Scientific Inc X-ray analysis instrument
TWI394490B (zh) 2008-09-10 2013-04-21 Omron Tateisi Electronics Co X射線檢查裝置及x射線檢查方法
US8243878B2 (en) * 2010-01-07 2012-08-14 Jordan Valley Semiconductors Ltd. High-resolution X-ray diffraction measurement with enhanced sensitivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161844A (ja) * 1990-10-26 1992-06-05 Fujitsu Ltd 蛍光x線分析装置
JPH05126768A (ja) 1991-11-05 1993-05-21 Rigaku Denki Kogyo Kk 蛍光x線の分析方法
JPH10282022A (ja) 1997-04-08 1998-10-23 Rigaku Ind Co 蛍光x線分析方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2589956A4 *

Also Published As

Publication number Publication date
KR101277379B1 (ko) 2013-06-20
JP4914514B2 (ja) 2012-04-11
TWI388821B (zh) 2013-03-11
CN102959387B (zh) 2014-07-23
EP2589956A4 (en) 2014-04-02
EP2589956B1 (en) 2015-06-03
CN102959387A (zh) 2013-03-06
TW201221947A (en) 2012-06-01
US20130101085A1 (en) 2013-04-25
KR20130019030A (ko) 2013-02-25
EP2589956A1 (en) 2013-05-08
JP2012013606A (ja) 2012-01-19
US8644450B2 (en) 2014-02-04

Similar Documents

Publication Publication Date Title
JP4914514B2 (ja) 蛍光x線分析装置および方法
US9031187B2 (en) Method and apparatus for performing X-ray analysis of a sample
US9506880B2 (en) Diffraction imaging
KR20160063228A (ko) 형광 x 선 분석 장치 및 형광 x 선 분석 방법
WO2017038702A1 (ja) 蛍光x線分析装置
WO2013073238A1 (ja) X線分析装置および方法
JP2613513B2 (ja) 蛍光x線の分析方法
JP5027694B2 (ja) 全反射蛍光x線分析装置
JP4884553B1 (ja) X線分析装置および方法
JPH1151883A (ja) 蛍光x線分析装置および方法
JP2018091691A (ja) 蛍光x線分析装置
JP4439984B2 (ja) 光軸調整機能を有するx線分析方法および装置
JP2000009666A (ja) X線分析装置
JP2004045064A (ja) 蛍光x線分析装置
JP2002365245A (ja) 波長分散型蛍光x線分析装置
JP2004177302A (ja) 蛍光x線分析装置
JPH10232209A (ja) 蛍光x線分析装置
JPH09318565A (ja) X線分析方法および装置
JP2001272361A (ja) 試料分析装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031886.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13807896

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011800500

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137002754

Country of ref document: KR

Kind code of ref document: A