WO2012001904A1 - リチウムシリケート系化合物の製造方法 - Google Patents

リチウムシリケート系化合物の製造方法 Download PDF

Info

Publication number
WO2012001904A1
WO2012001904A1 PCT/JP2011/003488 JP2011003488W WO2012001904A1 WO 2012001904 A1 WO2012001904 A1 WO 2012001904A1 JP 2011003488 W JP2011003488 W JP 2011003488W WO 2012001904 A1 WO2012001904 A1 WO 2012001904A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium silicate
silicate compound
compound
group
Prior art date
Application number
PCT/JP2011/003488
Other languages
English (en)
French (fr)
Inventor
敏勝 小島
琢寛 幸
境 哲男
晶 小島
淳一 丹羽
村瀬 仁俊
一仁 川澄
Original Assignee
株式会社豊田自動織機
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 独立行政法人産業技術総合研究所 filed Critical 株式会社豊田自動織機
Priority to US13/701,746 priority Critical patent/US9315390B2/en
Priority to DE112011102161T priority patent/DE112011102161T5/de
Publication of WO2012001904A1 publication Critical patent/WO2012001904A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to, for example, a method for producing a lithium silicate compound useful as a positive electrode active material of a lithium ion secondary battery, and a use of the lithium silicate compound obtained by this method.
  • Lithium secondary batteries are small and have high energy density, and are widely used as power sources for portable electronic devices.
  • a layered compound such as LiCoO 2 is mainly used.
  • these compounds have a problem that, in a fully charged state, oxygen is easily released at around 150 ° C., which easily causes an oxidative exothermic reaction of the non-aqueous electrolyte.
  • olivine phosphate compounds LiMPO 4 (LiMnPO 4 , LiFePO 4 , LiCoPO 4, etc.) have been proposed as positive electrode active materials. These compounds have improved thermal stability by using a divalent / trivalent redox reaction instead of a trivalent / tetravalent redox reaction using an oxide such as LiCoO 2 as a positive electrode active material. Further, the compound is attracting attention as a compound capable of obtaining a high discharge voltage by disposing a polyanion of a heteroelement having a high electronegativity around a central metal.
  • the theoretical capacity of the positive electrode material made of the olivine phosphate compound is limited to about 170 mAh / g because of the large molecular weight of the phosphate polyanion.
  • LiCoPO 4 and LiNiPO 4 have a problem that the operating voltage is too high and there is no electrolyte solution that can withstand the charging voltage.
  • Li 2 FeSiO 4 (theoretical capacity 331.3 mAh / g) as a cathode material that is inexpensive, has a large amount of resources, has a low environmental burden, has a high theoretical charge / discharge capacity of lithium ions, and does not release oxygen at high temperatures. )
  • Li 2 MnSiO 4 (theoretical capacity 333.2 mAh / g) and other lithium silicate-based materials have attracted attention.
  • These silicate-based materials are expected as positive electrode materials for higher capacity lithium secondary batteries, and further, their discharge is reflected by the fact that the electronegativity of Si, which is a heteroelement, is smaller than phosphorus (P).
  • Co or Ni can be used as an additive element to the silicate because the voltage is about 0.6 V lower than that of phosphoric acid.
  • Li 2 FeSiO 4 the material that exhibits the highest charge / discharge characteristics currently reported is Li 2 FeSiO 4, which has a capacity of about 160 mAh / g. However, Li 2 FeSiO 4 is not reached to obtain charge and discharge characteristics to exceed the theoretical capacity 169.9mAh / g of LiFePO 4 for the current material.
  • the hydrothermal synthesis method can obtain fine particles having a particle size of about 1 to 10 nm.
  • the silicate compound obtained by the hydrothermal synthesis method has a problem that the dope element is hardly dissolved, the impurity phase is likely to be mixed, and the battery characteristics to be expressed are not so good.
  • the solid phase reaction method it is necessary to react at a high temperature of 650 ° C. or higher for a long time, and it is possible to dissolve the dope element. There is a problem of being slow. Since the reaction is performed at a high temperature, the doping element that cannot be completely dissolved in the cooling process is precipitated, impurities are generated, and the resistance is increased.
  • the silicate compound having lithium deficiency or oxygen deficiency is formed because of heating to a high temperature, there is a problem that it is difficult to increase the capacity and improve the cycle characteristics (see Patent Documents 1 to 4 below).
  • the inventors of the present invention have comparatively selected materials having excellent performance with improved cycle characteristics, capacity, etc., for lithium silicate materials useful as positive electrode materials for lithium ion secondary batteries.
  • a method that can be manufactured by simple means Specifically, in a molten salt of a mixture of lithium carbonate and other alkali metal carbonate, selected from the group consisting of Li 2 SiO 3 , iron and manganese in a mixed gas atmosphere of reducing gas and carbon dioxide The lithium silicate compound containing iron and / or manganese was obtained under a relatively mild condition by reacting with the substance containing at least one kind of transition metal element.
  • the resulting lithium silicate compound is a silicate compound that is fine, has a small impurity phase, and contains excessive lithium atoms, and has good cycle characteristics when used as a positive electrode active material for a lithium ion secondary battery. It was found that the material has a capacity. It is known that the active material exhibits better battery characteristics as the particles become finer. Moreover, it is said that the active material with fine particles is more easily obtained when the synthesis is performed under a mild condition at a low temperature.
  • the present inventors have studied a production method capable of synthesizing a compound equivalent to the lithium silicate compound obtained by the above production method under milder conditions.
  • the present invention provides a novel production method capable of producing a lithium silicate material useful as a positive electrode material for a lithium ion secondary battery at a low temperature by a relatively simple means. With the goal.
  • the method for producing a lithium silicate compound of the present invention includes a mixed gas atmosphere containing carbon dioxide and a reducing gas in a molten salt containing at least one selected from the group consisting of alkali metal nitrates and alkali metal hydroxides.
  • the lithium silicate compound represented by Li 2 SiO 3 and a transition metal element-containing substance containing at least one selected from the group consisting of iron and manganese are reacted at 550 ° C. or lower.
  • molten salts containing nitrates and / or hydroxides that release O 2 ⁇ even when the melting point is low and not higher than 550 ° C. are optimal for the synthesis of lithium silicate compounds performed at a relatively low temperature.
  • the lithium silicate compound obtained by the production method of the present invention is obtained using a raw material that is inexpensive, has a large amount of resources, and has a low environmental load. Further, the obtained lithium silicate compound is a material that can suppress the desorption of oxygen when used as a positive electrode active material of a lithium ion secondary battery.
  • the above lithium silicate compound as a positive electrode active material for a lithium ion secondary battery, charging and discharging, the crystal structure of the lithium silicate compound is changed and stabilized, and a stable charge / discharge capacity is obtained. It becomes the positive electrode active material which has.
  • combined by the method of Example 1 is shown.
  • combined by the method of Example 2 is shown.
  • p to q in this specification includes the lower limit p and the upper limit q.
  • the lower limit and the upper limit described in the present specification can be arbitrarily combined to constitute a range such as “rs”.
  • numerical values arbitrarily selected from the numerical value range can be used as the upper and lower limit values.
  • ⁇ Composition of molten salt> In the method for producing a lithium silicate compound of the present invention, it is necessary to carry out a synthesis reaction of the lithium silicate compound in a molten salt containing at least one selected from the group consisting of alkali metal nitrates and alkali metal hydroxides. is there. Since the melting temperature (melting point) of this nitrate and hydroxide is at most 450 ° C. (lithium hydroxide), a low reaction temperature must be achieved even with a molten salt containing one of nitrate and hydroxide alone. I can.
  • the temperature of the molten salt and thus the reaction temperature can be further lowered by lowering the melting point.
  • the target lithium silicate compound can be synthesized at a relatively low reaction temperature of 150 to 550 ° C. As a result, grain growth is suppressed during the synthesis reaction of lithium silicate, and a fine lithium silicate compound is formed. Further, when the reaction is performed in such a molten salt under the above-described conditions, the formation of an impurity phase is small.
  • a molten salt containing lithium nitrate and / or lithium hydroxide as an essential component, a lithium silicate compound containing excessive lithium atoms is formed.
  • the lithium silicate compound thus obtained is a positive electrode material for lithium ion batteries having good cycle characteristics and high capacity.
  • Alkali metal nitrates and alkali metal hydroxides specifically include lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ), rubidium nitrate (RbNO 3 ) and cesium nitrate (CsNO 3 ) and Lithium hydroxide (LiOH), potassium hydroxide (KOH), sodium hydroxide (NaOH), rubidium hydroxide (RbOH) and cesium hydroxide (CsOH).
  • lithium carbonate Li 2 CO 3
  • potassium carbonate K 2 CO 3
  • sodium carbonate Na 2 CO 3
  • rubidium carbonate Rb 2 CO 3
  • cesium carbonate Cs 2 CO 3
  • It may contain at least one alkali metal carbonate selected from the group consisting of
  • the molten salt may be selected from the above alkali metal compounds so that the melting temperature is 550 ° C. or lower. If alkali metal compounds are mixed and used, a mixed molten salt may be obtained by adjusting the mixing ratio so that the melting temperature of the mixture is 550 ° C. or lower. Since the mixing ratio varies depending on the type of salt, it is difficult to define it unconditionally.
  • the mixing ratio of at least one alkali metal nitrate selected from the group consisting of potassium nitrate, sodium nitrate, rubidium nitrate, and cesium nitrate and lithium nitrate is such that when the total nitrate mixture is 100 mol%, lithium nitrate is It is preferably 30 to 100 mol%, more preferably 40 to 70 mol%.
  • An example is a molten salt of a nitrate mixture of lithium nitrate and potassium nitrate.
  • a desirable mixing ratio is 30:70 to 70:30 or 36:64 to 46:54 in terms of a molar ratio of lithium nitrate: potassium nitrate.
  • the weight ratio of nitrate and / or hydroxide to carbonate is 1: 0.5 to 1: 1.2.
  • a transition metal element-containing material containing a lithium silicate compound represented by Li 2 SiO 3 and at least one selected from the group consisting of iron and manganese is used as a raw material.
  • the substance containing iron and the substance containing manganese are not particularly limited, and include iron in a metal state, manganese in a metal state, a compound containing iron having a valence of up to 2, and manganese having a valence of up to 2.
  • a compound or the like can be used.
  • iron, manganese oxide or the like so that the state of divalent iron or divalent manganese is easily maintained during the reaction. Any one or both of the substance containing iron and the substance containing manganese can be used.
  • the transition metal element-containing material used in the present invention contains iron and / or manganese as essential, but may further contain other metal elements as necessary.
  • other metal elements include at least one selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Ti, Cr, Cu, Zn, Zr, V, Mo, and W.
  • the transition metal element-containing substance containing these metal elements may be a metal element in a metal state, or a compound containing a metal element having a valence of up to 2, for example, sulfate, carbonate, hydroxide It may be.
  • the transition metal element-containing substance may be a substance containing only one kind of metal element, or may be a substance containing two or more kinds of metal elements at the same time.
  • the transition metal element-containing substance one kind of compound can be used alone, or two or more kinds of compounds can be mixed and used. That is, the transition metal element-containing substance specifically requires a substance containing iron and / or manganese, and if necessary, cobalt oxide, magnesium oxide, calcium carbonate, calcium oxide, aluminum oxide, nickel oxide, oxidation One or more of niobium, lithium titanate, chromium (III) oxide, copper (II) acetate, zinc oxide, zirconium oxide, vanadium carbide, lithium molybdate, and lithium tungstate may be included.
  • the content of iron and / or manganese is required to be 50 mol% or more of iron and / or manganese, with the total amount of metal elements being 100 mol%. That is, the amount of at least one metal element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Ti, Cr, Cu, Zn, Zr, V, Mo, and W is the total amount of metal elements. Is 100 mol%, and can be 0 to 50 mol%.
  • the total amount of metal elements contained in the transition metal element-containing substance is usually relative to 1 mol of the lithium silicate compound.
  • the amount is preferably 0.9 to 1.2 mol, and more preferably 0.95 to 1.1 mol.
  • the specific reaction method is not particularly limited, but usually after mixing the above-mentioned nitrate and / or hydroxide, lithium silicate compound and transition metal element-containing material, and uniformly mixing them using a ball mill or the like.
  • the nitrate and / or hydroxide may be melted by heating.
  • the reaction between the lithium silicate compound and the transition metal element proceeds in the molten salt, and the target lithium silicate compound can be obtained.
  • the mixing ratio of the raw material composed of the lithium silicate compound and the transition metal element-containing material and the nitrate and / or hydroxide (that is, the molten salt) is not particularly limited.
  • An amount that can be uniformly dispersed is sufficient.
  • the total amount of the molten salt is in the range of 90 to 300 parts by mass with respect to 100 parts by mass of the total amount of the lithium silicate compound and the transition metal element-containing substance.
  • the amount is preferably in the range of 90 to 250 parts by mass, more preferably 100 to 150 parts by mass.
  • the reaction temperature between the lithium silicate compound and the transition metal element-containing substance in the molten salt may be 550 ° C. or lower.
  • a lower reaction temperature is preferred.
  • the temperature is lower than 150 ° C., it is not practical because O 2 ⁇ is not easily released into the molten salt, and it takes a long time to synthesize a lithium silicate compound.
  • grains of the lithium silicate type compound obtained when it exceeds 550 degreeC it is unpreferable.
  • the reaction described above is performed in a mixed gas atmosphere containing carbon dioxide and a reducing gas in order to allow the transition metal element to stably exist in the molten salt as a divalent ion during the reaction. Under this atmosphere, the transition metal element can be stably maintained in a divalent state.
  • the ratio of carbon dioxide and reducing gas for example, the reducing gas may be 0.01 to 0.4 mol, preferably 0.03 to 0.3 mol, per 1 mol of carbon dioxide. .
  • the reducing gas for example, hydrogen, carbon monoxide and the like can be used, and hydrogen is particularly preferable.
  • the pressure of the mixed gas of carbon dioxide and reducing gas there is no particular limitation on the pressure of the mixed gas of carbon dioxide and reducing gas, and it may be usually atmospheric pressure, but it may be under pressure or under reduced pressure.
  • the reaction time between the lithium silicate compound and the transition metal element-containing substance is usually 10 minutes to 70 hours, preferably 5 to 25 hours, and more preferably 10 to 20 hours.
  • the lithium silicate compound is obtained by cooling and removing the alkali metal nitrate and / or alkali metal hydroxide used as the flux.
  • the method for removing the alkali metal nitrate and / or alkali metal hydroxide includes washing the product with a solvent that can dissolve the nitrate and / or hydroxide solidified by cooling after the reaction, thereby washing the nitrate and What is necessary is just to dissolve and remove the hydroxide.
  • a solvent that can dissolve the nitrate and / or hydroxide solidified by cooling after the reaction, thereby washing the nitrate and What is necessary is just to dissolve and remove the hydroxide.
  • water may be used as the solvent.
  • the lithium silicate-based compound obtained by the above-described method has a composition formula: Li 2 + ab- Ab M 1-x M ′ x SiO 4 + c (wherein A is composed of Na, K, Rb and Cs) At least one element selected from the group, M is at least one element selected from the group consisting of Fe and Mn, and M ′ is Mg, Ca, Co, Al, Ni, Nb, Ti, And at least one element selected from the group consisting of Cr, Cu, Zn, Zr, V, Mo and W.
  • Each subscript is as follows: 0 ⁇ x ⁇ 0.5, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.3).
  • the lithium ions in the molten salt enter the Li ion site of the lithium silicate compound, resulting in a stoichiometric amount.
  • the compound contains excessive Li ions. That is, the subscript “a” in the composition formula is 0 ⁇ a ⁇ 1.
  • the reaction by performing the reaction at a low temperature of 550 ° C. or less in the molten salt, the growth of crystal grains is suppressed, the average particle diameter becomes fine particles of 40 nm to 15 ⁇ m, further 50 nm to 10 ⁇ m, and the impurity phase The amount is greatly reduced.
  • the lithium silicate compound obtained by the above method is particularly preferably one having an average particle diameter in the range of 40 nm to 1 ⁇ m.
  • the average particle diameter can be determined by a laser diffraction particle size distribution measuring apparatus (such as “SALD7100” manufactured by Shimadzu Corporation) or an electron microscope such as TEM or SEM.
  • the maximum value of the interval between the parallel lines is measured, and the number average value of the particle diameters May be adopted as the average particle size of the particles.
  • the specific method of the carbon coating treatment is not particularly limited.
  • a carbon coating treatment method in addition to a vapor phase method in which heat treatment is performed in an atmosphere containing a carbon-containing gas such as butane gas, an organic substance that is a carbon source and a lithium silicate compound are uniformly mixed, and then the organic substance is carbonized by heat treatment.
  • the thermal decomposition method by making it apply is also applicable.
  • the lithium silicate compound which is the positive electrode active material, is made amorphous by ball milling, and is uniformly mixed with carbon to increase adhesion. Furthermore, by the heat treatment, carbon can be uniformly deposited around the lithium silicate compound simultaneously with recrystallization of the lithium silicate compound. At this time, due to the presence of Li 2 CO 3 , the lithium excess silicate compound does not become deficient in lithium and exhibits a high charge / discharge capacity.
  • the half-value width of the diffraction peak derived from the (011) plane of the sample having crystallinity before ball milling is represented by B (011) crystal
  • the half width of the peak of the sample obtained by ball milling is in the range of about 0.1-0.5 That's fine.
  • acetylene black (AB), ketjen black (KB), graphite or the like can be used as the carbon material.
  • the carbon material is 20 to 40 parts by mass and Li 2 CO 3 is 20 to 40 parts by mass with respect to 100 parts by mass of the lithium silicate compound. do it.
  • heat treatment is performed.
  • the heat treatment is performed in a reducing atmosphere in order to keep the transition metal ions contained in the lithium silicate compound divalent.
  • carbon dioxide and reducing gas are used to suppress the reduction of the divalent transition metal ions to the metallic state, as in the synthesis reaction of the lithium silicate compound in the molten salt. It is preferable to be in a mixed gas atmosphere.
  • the mixing ratio of carbon dioxide and reducing gas may be the same as in the synthesis reaction of the lithium silicate compound.
  • the heat treatment temperature is preferably 500 to 800 ° C. If the heat treatment temperature is too low, it is difficult to deposit carbon uniformly around the lithium silicate compound, while if the heat treatment temperature is too high, decomposition of the lithium silicate compound or lithium deficiency may occur. This is not preferable because the charge / discharge capacity decreases.
  • the heat treatment time is usually 1 to 10 hours.
  • a carbon material and LiF are added to the lithium silicate compound, and the mixture is uniformly mixed by a ball mill until the lithium silicate compound becomes amorphous, followed by heat treatment. May be performed.
  • carbon is uniformly deposited around and coated around the lithium silicate compound simultaneously with recrystallization of the lithium silicate compound, and the conductivity is improved.
  • Part of the oxygen atom of the silicate compound is replaced with a fluorine atom, Composition formula: Li 2 + ab Ab M 1-x M ′ x SiO 4 + cy F 2y
  • A is at least one element selected from the group consisting of Na, K, Rb and Cs
  • M is Fe or Mn
  • M ′ is Mg, Ca, Co, Al, Ni , Nb, Ti, Cr, Cu, Zn, Zr, V, Mo and W.
  • Each of the subscripts is as follows: 0 ⁇ x ⁇ 0.5, 0
  • a fluorine-containing lithium silicate compound represented by ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.3, 0 ⁇ y ⁇ 1) is formed.
  • the mixing ratio of the lithium silicate compound, the carbon material, and LiF is such that the carbon material is 20 to 40 parts by mass and LiF is 10 to 40 parts by mass with respect to 100 parts by mass of the lithium silicate compound. Good. Furthermore, Li 2 CO 3 may be included as necessary.
  • the conditions for ball milling and heat treatment may be the same as described above.
  • the lithium silicate compound obtained by synthesis in the molten salt, the lithium silicate compound subjected to the carbon coating treatment, and the lithium silicate compound added with fluorine are all active materials for positive electrodes of lithium ion secondary batteries ( Or it can be used effectively as an active material for a positive electrode of a lithium secondary battery.
  • a positive electrode using these lithium silicate compounds can have the same structure as a normal positive electrode for a lithium ion secondary battery.
  • the lithium silicate-based compound may include acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (Vapor Carbon Carbon Fiber: VGCF) and other conductive assistants, polyvinylidene fluoride (Polyvinylidene Fluoride: PVdF), polytetrafluorocarbon.
  • a positive electrode is prepared by adding a binder such as ethylene fluoride (PTFE) or styrene-butadiene rubber (SBR), or a solvent such as N-methyl-2-pyrrolidone (NMP), and applying this to a current collector. can do.
  • a binder such as ethylene fluoride (PTFE) or styrene-butadiene rubber (SBR), or a solvent such as N-methyl-2-pyrrolidone (NMP), and applying this to a current collector. can do.
  • the amount of the conductive auxiliary agent used is not particularly limited, but can be, for example, 5 to 20 parts by mass with respect to 100 parts by mass of the lithium silicate compound.
  • the amount of the binder used is not particularly limited, but may be 5 to 20 parts by mass with respect to 100 parts by mass of the lithium silicate compound, for example.
  • a mixture of a lithium silicate compound, the above conductive additive and a binder is kneaded using a mortar or a press to form a film, and this is crimped to a current collector with a press.
  • the positive electrode can be manufactured also by the method to do.
  • the current collector is not particularly limited, and materials conventionally used as positive electrodes for lithium ion secondary batteries, such as aluminum foil, aluminum mesh, and stainless steel mesh, can be used. Furthermore, a carbon nonwoven fabric, a carbon woven fabric, etc. can be used as a collector.
  • the shape, thickness, etc. of the positive electrode for a lithium ion secondary battery of the present invention is not particularly limited.
  • the positive electrode for a lithium ion secondary battery is preferably 10-200 ⁇ m in thickness by being compressed after filling with an active material. Is preferably 20 to 100 ⁇ m. Therefore, the filling amount of the active material may be appropriately determined so as to have the above-described thickness after compression according to the type and structure of the current collector to be used.
  • Lithium silicate compound in charged or discharged state Lithium silicate compound obtained by reacting raw material compound in molten salt of alkali metal nitrate and / or alkali metal hydroxide by the above-described method, lithium silicate compound subjected to carbon coating treatment, and fluorine-added lithium
  • the crystal structure of the silicate compound is changed by producing a lithium ion secondary battery using this as a positive electrode active material for a lithium ion secondary battery, and performing charging and discharging.
  • the lithium silicate compound obtained by synthesis in molten salt has an unstable structure and a small charge capacity, but a stable charge / discharge capacity can be obtained by stabilizing the structure by charge / discharge. It becomes like this. Once charge / discharge is performed to change the crystal structure of the lithium silicate compound, the crystal structure differs between the charged state and the discharged state, but high stability can be maintained.
  • Stabilization of this structure can be achieved by synthesizing a lithium silicate system by replacing a part of the Li site with an alkali metal ion (for example, Na, K) not involved in charge / discharge when a lithium silicate compound is synthesized by the molten salt method. It is considered that this is due to the fact that it is introduced into the compound, thereby stabilizing the crystal structure and maintaining the crystal structure even when Li is charged and discharged.
  • an alkali metal ion for example, Na, K
  • the charging method and discharging method in this case are not particularly limited.
  • constant current charging / discharging may be performed using a current value of 0.1 C with respect to the battery capacity.
  • the voltage at the time of charging and discharging may be determined according to the constituent elements of the lithium ion secondary battery, but normally it can be about 4.5 V to 1.0 V when metallic lithium is used as a counter electrode. It is preferably about 2V to 1.5V.
  • the relative intensities of the five diffraction peaks having the highest relative intensities in the diffraction angle (2 ⁇ ) range of 5 degrees to 40 degrees.
  • the diffraction angle and the half width are as follows. Note that the diffraction angle and the half width are within a range of about ⁇ 0.03 degrees of the following values.
  • First peak 100% relative intensity, diffraction angle 10.10 degrees, half width 0.11 degree
  • Second peak 81% relative intensity, diffraction angle 16.06 degrees, half width 0.10 degree
  • Third peak relative intensity 76%, diffraction angle 9.88 degrees, half width 0.14 degrees
  • Fourth peak relative intensity 58%, diffraction angle 14.54 degrees, half width 0.16 degrees
  • Fifth peak relative intensity 47%, diffraction angle 15 .50 degrees, half width 0.12 degrees
  • lithium ions were obtained with respect to the diffraction pattern obtained by performing X-ray diffraction measurement using X-rays having a wavelength of 0.7 mm.
  • the value of the lattice parameter is in the range of about ⁇ 0.005.
  • the diffraction peak described above is different from the diffraction peak of the iron-containing lithium silicate compound synthesized in the molten salt, and it can be confirmed that the crystal structure changes upon charging.
  • the charged electrode is washed several times with a chain carbonate solvent to remove impurities adhering to the electrode surface. Thereafter, vacuum drying is performed, and an electrode layer (not including a current collector) is peeled off from the obtained electrode, filled into a glass capillary, and sealed with an epoxy resin adhesive. Thereafter, the lithium silicate compound in a charged state can be confirmed by measuring the X-ray diffraction pattern using X-rays having a wavelength of 0.7 mm. At this time, for example, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) or the like can be used as the chain carbonate solvent.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the iron-containing lithium silicate compound charged to 4.2 V by the above-described method is discharged at a constant current to 1.5 V
  • the resulting lithium silicate compound in a discharged state has a composition formula: Li 2 + a-b A b FeSiO 4 + c (wherein A, a, b and c are the same as above).
  • the relative intensities of the five diffraction peaks having the highest relative intensities in the diffraction angle (2 ⁇ ) range of 5 degrees to 40 degrees.
  • the diffraction angle and the half width are as follows.
  • diffraction angle and the half width are within a range of about ⁇ 0.03 degrees of the following values.
  • First peak 100% relative intensity, diffraction angle 16.07 degrees, half width 0.08 degree
  • Second peak 71% relative intensity, diffraction angle 14.92 degrees, half width 0.17 degree
  • Third peak relative intensity 44%, diffraction angle 10.30 degrees
  • Fourth peak 29% relative intensity, diffraction angle 9.82 degrees
  • Fifth peak relative intensity 26%, diffraction angle 21 .98 degrees, half width 0.14 degrees
  • the value of the lattice parameter is in the range of about ⁇ 0.005.
  • the diffraction peak of the iron-containing lithium silicate compound synthesized in the molten salt is different from the diffraction peak of the iron-containing lithium silicate compound after charging, and the crystal structure changes depending on the discharge. I can confirm that.
  • the lithium silicate compound in a charged state obtained by performing constant current charging up to 4.2 V has a composition It will be represented by the formula: Li 1 + ab Ab MnSiO 4 + c (wherein A, a, b and c are the same as above).
  • Diffraction angle, and full width at half maximum are as follows. Note that the diffraction angle and the half width are within a range of about ⁇ 0.03 degrees of the following values.
  • First peak 100% relative intensity, diffraction angle 8.15 degrees, half width 0.18 degrees
  • Second peak 64% relative intensity, diffraction angle 11.60 degrees, half width 0.46 degrees
  • Third peak relative intensity 41%, diffraction angle 17.17 degrees, half width 0.18 degrees
  • Fourth peak relative intensity 37%, diffraction angle 11.04 degrees, half width 0.31 degrees
  • Fifth peak relative intensity 34%, diffraction angle 19 .87 degrees, half width 0.29 degrees
  • the diffraction peak described above is different from the manganese-containing lithium silicate compound synthesized in the molten salt, and it can be confirmed that the crystal structure is changed by charging.
  • the resulting manganese-containing lithium silicate compound in a discharged state has a composition formula: Li 2 + a ⁇ b A b MnSiO 4 + c (wherein A, a, b and c are the same as above).
  • diffraction angle and the half width are within a range of about ⁇ 0.03 degrees of the following values.
  • First peak 100% relative intensity, diffraction angle 8.16 degrees, half width 0.22 degree
  • Second peak 71% relative intensity, diffraction angle 11.53 degrees, half width 0.40 degree
  • Third peak relative intensity 67%, diffraction angle 11.66 degrees, half width 0.53 degree
  • Fourth peak 61% relative intensity, diffraction angle 11.03 degrees, half width 0.065 degree
  • Fifth peak 52% relative intensity, diffraction angle 11 .35 degrees, half width 0.70 degrees
  • the diffraction peak described above is different from the diffraction peak of the manganese-containing lithium silicate compound synthesized in the molten salt and the diffraction peak of the manganese-containing lithium silicate compound after charging, and the crystal structure changes depending on the discharge. It can be confirmed.
  • the substitution amount of element A that is, the value of b is preferably about 0.0001 to 0.05. More preferably, it is about 0.02.
  • the lithium ion secondary battery (or lithium secondary battery) using the positive electrode described above can be manufactured by a known method. That is, the positive electrode described above is used as the positive electrode material, and as the negative electrode material, carbon-based materials such as known metallic lithium and graphite, silicon-based materials such as silicon thin films, alloy-based materials such as copper-tin and cobalt-tin, An oxide material such as lithium titanate is used, and as an electrolytic solution, a known nonaqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate, lithium perchlorate, LiPF 6 , LiBF 4 , LiCF 3 SO 3
  • Example 1> ⁇ Synthesis of iron-containing lithium silicate compound> Acetone was added to 0.03 mol of iron (purity 99.9%, manufactured by Kojun Chemical Co., Ltd.) and 0.03 mol of lithium silicate Li 2 SiO 3 (product of Kishida Chemical Co., Ltd., purity 99.5%). 20 ml was added and mixed for 60 minutes at 500 rpm in a zirconia ball mill and dried. This was mixed with a nitrate mixture in a mortar.
  • lithium nitrate manufactured by Kishida Chemical Co., 99% purity
  • potassium nitrate manufactured by Kishida Chemical Co., Ltd., 99% purity
  • the total amount of iron and lithium silicate was made into the ratio of 120 mass parts of nitrate mixtures with respect to 100 mass parts.
  • the obtained powder was heated in a gold crucible using an electric furnace and heated to 500 ° C. in a mixed gas atmosphere of carbon dioxide (flow rate: 100 mL / min) and hydrogen (flow rate: 3 mL / min). Then, the reaction was carried out for 13 hours in a molten state of the nitrate mixture.
  • the entire reactor core (including the gold crucible) as a reaction system was taken out of the electric furnace and rapidly cooled to room temperature while passing the mixed gas.
  • the obtained product was subjected to X-ray diffraction measurement using a CuK ⁇ ray by a powder X-ray diffractometer.
  • the XDR pattern is shown in FIG.
  • the XDR pattern was almost consistent with a reported of space group P2 1 monoclinic Li 2 FeSiO 4 patterns.
  • TEM transmission electron microscope
  • Example 2> Synthesis of manganese-containing lithium silicate compound> Instead of iron used in Example 1, manganese oxide (II) (manufactured by Kojun Chemical Co., Ltd., purity 99.9%) was used in an amount of 0.03 mol, and manganese-containing lithium silicate was synthesized under the same synthesis conditions as in Example 1. A powder of the system compound was obtained.
  • II manganese oxide
  • the obtained product was subjected to X-ray diffraction measurement using a CuK ⁇ ray by a powder X-ray diffractometer.
  • the XDR pattern is shown in FIG.
  • the XDR pattern of this product almost coincided with the XDR pattern of orthorhombic Li 2 MnSiO 4 in the space group Pmn2 1 .
  • TEM transmission electron microscope
  • the entire reactor core as a reaction system was taken out of the electric furnace and rapidly cooled to room temperature while passing the mixed gas.
  • the obtained product was subjected to X-ray diffraction measurement using a CuK ⁇ ray by a powder X-ray diffractometer.
  • the XDR pattern was almost consistent with a reported of space group P2 1 monoclinic Li 2 FeSiO 4 patterns. That is, even when the reaction temperature was 400 ° C., a product equivalent to Example 1 reacted at 500 ° C. was obtained. Further, when the product obtained using a transmission electron microscope (TEM) was observed, particles having a particle size of about 40 nm to 10 ⁇ m were observed. The average particle size was calculated to be 550 nm.
  • TEM transmission electron microscope
  • Example 4 ⁇ Synthesis of manganese-containing lithium silicate compound> Instead of iron used in Example 3, 0.03 mol of the above manganese oxide was used, and a manganese-containing lithium silicate compound powder was obtained under the same synthesis conditions as in Example 3.
  • the obtained product was subjected to X-ray diffraction measurement using a CuK ⁇ ray by a powder X-ray diffractometer.
  • the XDR pattern of this product almost coincided with the XDR pattern of orthorhombic Li 2 MnSiO 4 in the space group Pmn2 1 . That is, even when the reaction temperature was 400 ° C., a product equivalent to Example 2 reacted at 500 ° C. was obtained. Further, when the product obtained using a transmission electron microscope (TEM) was observed, particles having a particle size of about 40 nm to 10 ⁇ m were observed. The average particle size was calculated to be 330 nm.
  • TEM transmission electron microscope
  • Additional iron oxalate FeC 2 O 4 ⁇ 2H 2 O0.03 mol and lithium silicate Li 2 SiO 3 (Kishida Chemical Ltd., purity 99.5%) 0.03 mol of a mixture of a carbonate mixture (lithium carbonate (Kishida Chemical, purity 99.9%), sodium carbonate (Kishida Chemical, purity 99.5%) and potassium carbonate (Kishida Chemical, purity 99.5%) in molar ratio 43.5: 31.5: 25 And a mixture thereof.
  • the mixing ratio was such that the total amount of iron oxalate and lithium silicate was 225 parts by mass with respect to 100 parts by mass of the carbonate mixture.
  • Acetone (20 ml) was added thereto, mixed in a zirconia ball mill at 500 rpm for 60 minutes, and dried. Thereafter, the obtained powder is heated in a gold crucible and heated to 550 ° C. in a mixed gas atmosphere of carbon dioxide (flow rate: 100 mL / min) and hydrogen (flow rate: 3 mL / min) to form carbonate. The mixture was reacted for 21 hours in the molten state.
  • the entire reactor core as a reaction system was taken out of the electric furnace and rapidly cooled to room temperature while passing the mixed gas.
  • acetic anhydride (20 ml) was added to the product and ground in a mortar, and acetic acid (10 ml) was added to react and remove carbonates and the like, followed by filtration to obtain a powder of an iron-containing lithium silicate compound.
  • the obtained product was subjected to X-ray diffraction measurement using a CuK ⁇ ray by a powder X-ray diffractometer.
  • the XDR pattern was almost consistent with a reported of space group P2 1 monoclinic Li 2 FeSiO 4 patterns.
  • coin batteries were subjected to a charge / discharge test at 60 ° C.
  • the test conditions were [1] voltage of 4.2 to 1.5 V at 0.1 C or [2] voltage of 4.2 to 1.5 V at 0.5 C.
  • Table 1 shows the discharge capacity after 5 cycles, the average voltage after 5 cycles, and the number of cycles capable of maintaining 90% of the discharge capacity.
  • the batteries of # E1, # E3 and # 01 have a discharge capacity of about 250 mAh / g and an average voltage of 2.6 V under the condition [1]. The degree was high. In particular, the batteries # E1 and # E3 maintained 90% or more of the initial capacity until 70 cycles. Battery # 01 was superior to battery # C1 in all battery characteristics. When battery # E3 and battery # 01 were compared in terms of discharge capacity and average voltage, there was no significant difference in the test results under condition [1]. However, comparing the results of Condition [1] and Condition [2] for each battery, the deterioration of the battery characteristics of Battery # 01 due to the change from 0.1 C to 0.5 C is more remarkable than Battery # E3. there were.
  • Example 1 and Example 3 when used as a positive electrode active material, a high-capacity lithium silicate compound having excellent cycle characteristics and rate characteristics can be obtained.
  • the iron-containing lithium silicate compound was synthesized at a low temperature of 500 ° C. or lower.
  • the temperature of the molten salt is set to 550 ° C. in the method of Example 1 or Example 3 using nitrate, it is estimated that the same reaction as in Reference Example 1 in which nitrate is not used is performed.
  • the manganese-containing lithium silicate compound has the same tendency as the iron-containing lithium silicate compound described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Silicon Compounds (AREA)

Abstract

 本発明のリチウムシリケート系化合物の製造方法は、アルカリ金属硝酸塩ならびにアルカリ金属水酸化物からなる群から選ばれた少なくとも一種を含む溶融塩中で、二酸化炭素および還元性ガスを含む混合ガス雰囲気下において、LiSiOで表される珪酸リチウム化合物と、鉄およびマンガンからなる群から選ばれた少なくとも一種を含む遷移金属元素含有物質と、を550℃以下で反応させることを特徴とする。 本発明によれば、リチウムイオン二次電池用正極材料などとして有用なリチウムシリケート系材料を、比較的簡単な手段によって低温で製造することができる。

Description

リチウムシリケート系化合物の製造方法
 本発明は、たとえば、リチウムイオン二次電池の正極活物質として有用なリチウムシリケート系化合物の製造方法、およびこの方法で得られるリチウムシリケート系化合物の用途に関する。
 リチウム二次電池は、小型でエネルギー密度が高く、ポータブル電子機器の電源として広く用いられている。その正極活物質としては、主としてLiCoO2などの層状化合物が使われている。しかしながら、これらの化合物は満充電状態において、150℃前後で酸素が脱離しやすく、これが非水電解液の酸化発熱反応を引き起こしやすいという問題点がある。
 近年、正極活物質としては、リン酸オリビン系化合物LiMPO(LiMnPO、LiFePO、LiCoPOなど)が提案されている。これらの化合物は、LiCoOのような酸化物を正極活物質とする3価/4価の酸化還元反応の代わりに、2価/3価の酸化還元反応を用いることにより熱安定性を向上させ、さらに中心金属の周りに電気陰性度の大きいヘテロ元素のポリアニオンを配置することにより高放電電圧の得られる化合物として注目されている。
 しかしながら、リン酸オリビン系化合物からなる正極材料は、リン酸ポリアニオンの大きな分子量のため、その理論容量が170mAh/g程度に制限される。さらに、LiCoPOやLiNiPOは、動作電圧が高すぎて、その充電電圧に耐え得る電解液が無いという問題がある。
 そこで、安価で、資源量が多く、環境負荷が低く、高いリチウムイオンの理論充放電容量を有し、かつ高温時に酸素を放出しないカソード材料として、LiFeSiO(理論容量331.3mAh/g)、LiMnSiO(理論容量333.2mAh/g)等のリチウムシリケート系材料が注目されている。これらのシリケート系材料は、より高容量のリチウム二次電池の正極材料として期待されており、さらに、ヘテロ元素であるSiの電気陰性度がリン(P)より小さいことを反映して、その放電電圧がリン酸系より約0.6V程度低く、シリケートへの添加元素としてCoやNiが使える可能性がある。
 これらのシリケート材料のうちで、現在報告されている最も高い充放電特性を示す材料は、LiFeSiOであり、160mAh/g程度の容量を示す。しかし、LiFeSiOは、現行材料のLiFePOの理論容量169.9mAh/gを超えるまでの充放電特性を得るに至っていない。
 上記したシリケート系化合物の合成法としては、水熱合成法と固相反応法が知られている。
 これらの方法のうち、水熱合成法によれば、粒径1~10nm程度の微粒子を得ることが可能である。しかし、水熱合成法により得られたシリケート系化合物は、ドープ元素が固溶し難い、不純物相が混在し易い、また、発現する電池特性もさほど良好ではない、という問題がある。
 一方、固相反応法では、650℃以上という高温で長時間反応させることが必要であり、ドープ元素を固溶させることは可能であるが、結晶粒が10μm以上と大きくなり、イオンの拡散が遅いという問題がある。高温で反応させるため、冷却過程において固溶しきれないドープ元素が析出して不純物が生成し、抵抗が高くなるという問題もある。さらに、高温まで加熱するために、リチウム欠損や酸素欠損のシリケート系化合物ができ、容量の増加やサイクル特性の向上が難しいという問題もある(下記特許文献1~4等参考)。
特開2008-218303号公報 特開2007-335325号公報 特開2001-266882号公報 特開2008-293661号公報
 このような事情に鑑み、本発明者等は、リチウムイオン二次電池用正極材料などに有用なリチウムシリケート系材料について、サイクル特性、容量等が改善された、優れた性能を有する材料を比較的簡単な手段によって製造できる方法を見出した。
 具体的には、炭酸リチウムとその他のアルカリ金属炭酸塩との混合物の溶融塩中で、還元性ガスと二酸化炭素の混合ガス雰囲気下において、LiSiOと、鉄およびマンガンからなる群から選ばれた少なくとも一種を含む遷移金属元素を含む物質と、を反応させることで、比較的穏和な条件下において、鉄および/またはマンガンを含むリチウムシリケート系化合物を得た。そして、得られたリチウムシリケート系化合物は、微細で不純物相が少なく、リチウム原子を過剰に含むシリケート系化合物となり、リチウムイオン二次電池の正極活物質として用いる場合に、サイクル特性が良好で、高容量を有する材料となることがわかった。活物質は、粒子が微細であるほど良好な電池特性を示すことが知られている。また、温度が低く穏和な条件で合成を行う方が、微細な粒子の活物質が得られやすいとされている。しかし、炭酸リチウムとその他のアルカリ金属炭酸塩との混合物の溶融塩を用いる上記の製造方法では、用いる炭酸塩の融点よりも低い温度で合成を行うと、不純物の生成を抑制することが困難であった。
 そこで、本発明者等は、上記の製造方法により得られるリチウムシリケート系化合物と同等の化合物をさらに穏和な条件下で合成することが可能な製造方法を検討した。
 すなわち本発明は、上記問題点に鑑み、リチウムイオン二次電池用正極材料などとして有用なリチウムシリケート系材料を、比較的簡単な手段によって低温で製造することができる新規の製造方法を提供することを目的とする。
 本発明者等が鋭意研究し試行錯誤を重ねた結果、上記の製造条件よりもさらに穏和な条件下においても、鉄および/またはマンガンを含むリチウムシリケート系化合物を得ることができることを新たに見出した。この際、炭酸塩からなる混合物のかわりに低温で溶融塩となりうる特定の溶融塩を使用することで、上記の製造方法で得られるリチウムシリケート系化合物と同等の化合物が容易に得られることが新たにわかった。
 すなわち、本発明のリチウムシリケート系化合物の製造方法は、アルカリ金属硝酸塩ならびにアルカリ金属水酸化物からなる群から選ばれた少なくとも一種を含む溶融塩中で、二酸化炭素および還元性ガスを含む混合ガス雰囲気下において、LiSiOで表される珪酸リチウム化合物と、鉄およびマンガンからなる群から選ばれた少なくとも一種を含む遷移金属元素含有物質と、を550℃以下で反応させることを特徴とする。
 本発明のリチウムシリケート系化合物の製造方法では、上記の硝酸塩および/または水酸化物の溶融塩を使用することで、比較的低温での合成が可能となる。本発明者等の調査の結果、上記の珪酸リチウム化合物と上記の遷移金属元素含有物質とを反応させてリチウムシリケート系化合物を得るには、溶融塩に溶存種としてLi、Si、Feおよび/またはMn、等とともに酸化物イオン(O2-)が存在することが重要であると考えられる。しかし、酸素を含む化合物を溶融塩として使用すれば必ず所望のリチウムシリケート系化合物が得られる訳ではない。比較的低温での合成を前提とした場合、たとえば硫酸塩の溶融塩および燐酸塩の溶融塩は、溶融塩中にO2-を放出し難くリチウムシリケート系化合物を合成することが困難であることがわかった。つまり、融点が低く550℃以下であってもO2-を放出する硝酸塩および/または水酸化物を含む溶融塩は、比較的低温で行われるリチウムシリケート系化合物の合成に最適である。
 本発明の製造方法によって得られるリチウムシリケート系化合物は、安価で、資源量が多く、かつ環境負荷が低い原料を用いて得られるものである。また、得られるリチウムシリケート系化合物は、リチウムイオン二次電池の正極活物質として用いた場合に、酸素の脱離を抑えることができる材料である。
 特に、本発明の製造方法によれば、比較的低温の溶融塩中における穏和な条件下で、正極活物質として用いた場合に優れた電池特性を示すリチウムシリケート系化合物を得ることができる。
 また、上記したリチウムシリケート系化合物をリチウムイオン二次電池用正極活物質として用いて、充電および放電を行うことによって、リチウムシリケート系化合物の結晶構造が変化して安定化し、安定した充放電容量を有する正極活物質となる。
実施例1の方法により合成された化合物のX線回折パターンを示す。 実施例2の方法により合成された化合物のX線回折パターンを示す。
 発明の実施形態を挙げて本発明をより詳しく説明する。なお、特に断らない限り、本明細書でいう「p~q」は下限pおよび上限qを含む。また、本明細書に記載した下限および上限は任意に組み合わせて「r~s」のような範囲を構成し得る。さらに、数値範囲内から任意に選択した数値を上下限値とすることができる。
<溶融塩の組成>
 本発明のリチウムシリケート系化合物の製造方法では、アルカリ金属硝酸塩ならびにアルカリ金属水酸化物からなる群から選ばれた少なくとも一種を含む溶融塩中において、リチウムシリケート系化合物の合成反応を行うことが必要である。この硝酸塩および水酸化物の溶融温度(融点)は高くても450℃(水酸化リチウム)であるため、硝酸塩または水酸化物のうち一種を単独で含む溶融塩でも、低い反応温度を実現することはできる。しかし、二種以上を混合した混合溶融塩とする場合には、融点が低下することで溶融塩の温度ひいては反応温度をさらに低下させることができる。たとえば150~550℃という比較的低い反応温度において、目的とするリチウムシリケート系化合物を合成することが可能となる。その結果、リチウムシリケートの合成反応時に粒成長が抑制されて微細なリチウムシリケート系化合物が形成される。また、このような溶融塩中において上記した条件で反応させる場合には、不純物相の形成が少ない。特に、硝酸リチウムおよび/または水酸化リチウムを必須として含む溶融塩を用いることによって、リチウム原子を過剰に含むリチウムシリケート系化合物が形成される。この様にして得られるリチウムシリケート系化合物は、良好なサイクル特性と高い容量を有するリチウムイオン電池用正極材料となる。
 アルカリ金属硝酸塩ならびにアルカリ金属水酸化物は、具体的には、硝酸リチウム(LiNO)、硝酸カリウム(KNO)、硝酸ナトリウム(NaNO)、硝酸ルビシウム(RbNO)および硝酸セシウム(CsNO)ならびに水酸化リチウム(LiOH)、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、水酸化ルビシウム(RbOH)および水酸化セシウム(CsOH)である。さらに必要に応じて、炭酸リチウム(LiCO)炭酸カリウム(KCO)、炭酸ナトリウム(NaCO)、炭酸ルビシウム(RbCO)および炭酸セシウム(CsCO)からなる群から選ばれた少なくとも一種のアルカリ金属炭酸塩を含んでもよい。
 溶融塩は、溶融温度が550℃以下となるように上記のアルカリ金属化合物から選択するとよい。アルカリ金属化合物を混合して用いるのであれば、混合物の溶融温度が550℃以下となるように混合比を調節して混合溶融塩を得ればよい。混合比は、塩の種類に応じて異なるため、一概に規定することは困難である。たとえば、硝酸カリウム、硝酸ナトリウム、硝酸ルビシウムおよび硝酸セシウムからなる群から選ばれた少なくとも一種のアルカリ金属硝酸塩と、硝酸リチウムとの混合割合は、硝酸塩混合物全体を100モル%としたときに、硝酸リチウムを30~100モル%さらには40~70モル%であることが好ましい。
 一例として、硝酸リチウムと硝酸カリウムとの硝酸塩混合物の溶融塩が挙げられる。望ましい混合比は、硝酸リチウム:硝酸カリウムが、モル比で30:70~70:30さらには36:64~46:54である。
 また、硝酸塩および/または水酸化物とともに炭酸塩を含む溶融塩を使用する場合には、硝酸塩および/または水酸化物と炭酸塩とを質量比で1:0.5~1:1.2さらには1:0.8~1:1の比率で混合して用いるとよい。炭酸塩を含むことで、溶融塩の融点が低下し、低温での合成が容易となる。炭酸塩の割合が過少では溶融温度を低下させる効果が得られにくいが、過剰になると硝酸塩および/または水酸化物から放出されるO2-が十分ではなくなるため望ましくない。
<原料化合物>
 本発明では、原料としては、LiSiOで表される珪酸リチウム化合物と、鉄およびマンガンからなる群から選ばれた少なくとも一種を含む遷移金属元素含有物質を用いる。
 鉄を含む物質とマンガンを含む物質については、特に限定的ではなく、金属状態の鉄、金属状態のマンガン、2価までの価数の鉄を含む化合物、2価までの価数のマンガンを含む化合物等を用いることができる。特に、反応時に2価の鉄または2価のマンガンの状態に維持されやすいように、鉄、酸化マンガンなどを用いることが好ましい。鉄を含む物質とマンガンを含む物質は、いずれか一方または両方を混合して用いることができる。
 本発明で使用される遷移金属元素含有物質は、鉄および/またはマンガンを必須として含むが、さらに必要に応じて、その他の金属元素を含んでもよい。その他の金属元素としては、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、MoおよびWからなる群から選ばれた少なくとも一種を例示できる。これらの金属元素を含む遷移金属元素含有物質は、金属状態の金属元素であってもよく、あるいは、2価までの価数の金属元素を含む化合物、たとえば、硫酸塩、炭酸塩、水酸化物などであってもよい。遷移金属元素含有物質は、金属元素を一種のみ含む物質であってもよく、あるいは、二種以上の金属元素を同時に含む物質であってもよい。遷移金属元素含有物質は、一種の化合物を単独または二種以上の化合物を混合して用いることができる。すなわち、遷移金属元素含有物質は、具体的には、鉄および/またはマンガンを含む物質を必須とし、必要に応じて、酸化コバルト、酸化マグネシウム、炭酸カルシウム、酸化カルシウム、酸化アルミニウム、酸化ニッケル、酸化ニオブ、チタン酸リチウム、酸化クロム(III)、酢酸銅(II)、酸化亜鉛、酸化ジルコニウム、炭化バナジウム、モリブデン酸リチウムおよびタングステン酸リチウムのうちの一種または二種以上を含むとよい。
 遷移金属元素含有物質において、鉄および/またはマンガンの含有量は、金属元素の合計量を100モル%として、鉄および/またはマンガンが50モル%以上であることが必要である。即ち、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、MoおよびWからなる群から選ばれた少なくとも一種の金属元素の量は、金属元素の合計量を100モル%として、0~50モル%とすることができる。
 LiSiOで表される珪酸リチウム化合物と、遷移金属元素含有物質との混合割合については、通常、珪酸リチウム化合物1モルに対して、遷移金属元素含有物質に含まれる金属元素の合計量が0.9~1.2モルとなる量とすることが好ましく、0.95~1.1モルとなる量とすることがより好ましい。
<リチウムシリケート系化合物の製造方法>
 本発明のリチウムシリケート系化合物の製造方法では、上記の溶融塩中で、二酸化炭素および還元性ガスを含む混合ガス雰囲気下において、上記の原料化合物を550℃以下で反応させることが必要である。
 具体的な反応方法については特に限定的ではないが、通常は、上記した硝酸塩および/または水酸化物、珪酸リチウム化合物および遷移金属元素含有物質を混合し、ボールミル等を用いて均一に混合した後、加熱して硝酸塩および/または水酸化物を溶融させればよい。これにより、溶融塩中において、珪酸リチウム化合物と遷移金属元素との反応が進行して、目的とするリチウムシリケート系化合物を得ることができる。
 この際、珪酸リチウム化合物と遷移金属元素含有物質とからなる原料と、硝酸塩および/または水酸化物(つまり溶融塩)と、の混合割合については特に限定的ではなく、溶融塩中において、原料を均一に分散できる量であればよく、たとえば、珪酸リチウム化合物と遷移金属元素含有物質の合計量100質量部に対して、溶融塩の合計量が90~300質量部の範囲となる量であることが好ましく、90~250質量部さらには100~150質量部の範囲となる量であることがより好ましい。
 溶融塩中における珪酸リチウム化合物と遷移金属元素含有物質との反応温度は、550℃以下であればよい。特に、150~550℃さらには300~550℃が好ましく、特に375~525℃であれば実用的な速度で反応が進行するため好ましい。サイクル特性およびレート特性を高めるには、反応温度は低い方が好ましい。しかし、150℃未満では、溶融塩中にO2-が放出されにくく、リチウムシリケート系化合物が合成されるまでに長時間を要するため、実用的ではない。また、550℃を超えると、得られるリチウムシリケート系化合物の粒子が粗大化し易くなるため好ましくない。
 上記した反応は、反応時において、遷移金属元素を2価イオンとして溶融塩中に安定に存在させるために、二酸化炭素および還元性ガスを含む混合ガス雰囲気下で行う。この雰囲気下では、遷移金属元素を2価の状態で安定に維持することが可能となる。二酸化炭素と還元性ガスの比率については、たとえば、二酸化炭素1モルに対して還元性ガスを0.01~0.4モルとすればよく、0.03~0.3モルとすることが好ましい。還元性ガスとしては、たとえば、水素、一酸化炭素などを用いることができ、水素が特に好ましい。
 二酸化炭素と還元性ガスの混合ガスの圧力については、特に限定はなく、通常、大気圧とすればよいが、加圧下、あるいは減圧下のいずれであっても良い。
 珪酸リチウム化合物と遷移金属元素含有物質との反応時間は、通常、10分~70時間とすればよく、好ましくは5~25時間さらには10~20時間とすればよい。
 上記の反応終了後、冷却し、フラックスとして用いたアルカリ金属硝酸塩および/またはアルカリ金属水酸化物を除去することで、リチウムシリケート系化合物が得られる。
 アルカリ金属硝酸塩および/またはアルカリ金属水酸化物を除去する方法としては、反応後の冷却により固化した硝酸塩および/または水酸化物を溶解できる溶媒を用いて、生成物を洗浄することによって、硝酸塩および/または水酸化物を溶解除去すればよい。たとえば、溶媒として、水を用いるとよい。
<リチウムシリケート系化合物>
 上記した方法によって得られるリチウムシリケート系化合物は、組成式:Li2+a-b1-xM’SiO4+c(式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、Mは、FeおよびMnからなる群から選ばれた少なくとも一種の元素であり、M’は、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、MoおよびWからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0≦a<1、0≦b<0.2、0<c<0.3)で表される化合物である。
 この化合物は、溶融塩中に硝酸リチウムおよび/または水酸化リチウムが含まれている場合には、溶融塩中のリチウムイオンが、リチウムシリケート系化合物のLiイオンサイトに浸入して、化学量論量と比較して、Liイオンを過剰に含む化合物となる。つまり、上記の組成式の添字“a”は、0<a<1となる。また、溶融塩中において、550℃以下という低温で反応を行うことによって、結晶粒の成長が抑制され、平均粒径が40nm~15μmさらには50nm~10μmという微細な粒子となり、さらに、不純物相の量が大きく減少する。その結果、リチウムイオン二次電池の正極活物質として用いる場合に、良好なサイクル特性およびレート特性を示すとともに高容量を有する材料となる。上記した方法で得られるリチウムシリケート系化合物は、特に、平均粒径が40nm~1μmの範囲内にあるものが好ましい。なお、平均粒径は、レーザー回折粒度分布測定装置(株式会社島津製作所製「SALD7100」など)またはTEM、SEMなどの電子顕微鏡によって求めることができる。たとえば、リチウムシリケート系化合物を電子顕微鏡で観察し、識別できる粒子の粒子径を2本の平行線で挟んだとき、その平行線の間隔の最大値を測定し、それらの粒子径の数平均値をその粒子の平均粒径として採用すればよい。
<カーボン被覆処理>
 上記した方法で得られる組成式:Li2+a-b1-xM’SiO4+cで表されるリチウムシリケート系化合物は、さらに、カーボンによる被覆処理を行って導電性を向上させることが好ましい。
 カーボン被覆処理の具体的な方法については、特に限定的ではない。カーボン被覆処理の方法としては、ブタンガスのような炭素含有ガスを含む雰囲気において熱処理を行う気相法の他、炭素源となる有機物とリチウムシリケート系化合物とを均一に混合した後に熱処理によって有機物を炭化させることによる熱分解法も、適用可能である。特に、上記リチウムシリケート系化合物に、カーボン材料とLiCOを加え、ボールミルによってリチウムシリケート系化合物がアモルファス化するまで均一に混合した後、熱処理を行うボールミリング法を適用することが好ましい。この方法によれば、ボールミリングによって正極活物質であるリチウムシリケート系化合物がアモルファス化され、カーボンと均一に混合されて密着性が増加する。さらに、熱処理により、リチウムシリケート系化合物の再結晶化と同時にカーボンがリチウムシリケート系化合物の周りに均一に析出して被覆することができる。この際、LiCOが存在することにより、リチウム過剰シリケート系化合物はリチウム欠損になることはなく、高い充放電容量を示すものとなる。
 アモルファス化の程度については、CuのKα線を光源とするX線回折測定において、ボールミリング前の結晶性を有する試料についての(011)面由来の回折ピークの半値幅をB(011)crystal、ボールミリングにより得られた試料の同ピークの半値幅をB(011)millとした場合に、B(011)crystal/B(011)millの比が0.1~0.5程度の範囲であればよい。
 この方法では、カーボン材料としては、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛等を用いることができる。
 リチウムシリケート系化合物、カーボン材料およびLiCOの混合割合については、リチウムシリケート系化合物100質量部に対して、カーボン系材料を20~40質量部、LiCOを20~40質量部とすればよい。
 リチウムシリケート系化合物がアモルファス化するまでボールミリング処理を行った後、熱処理を行う。熱処理は、リチウムシリケート系化合物に含まれる遷移金属イオンを2価に保持するために、還元性雰囲気下で行う。この場合の還元性雰囲気としては、溶融塩中でのリチウムシリケート系化合物の合成反応と同様に、2価の遷移金属イオンが金属状態まで還元されることを抑制するめに、二酸化炭素と還元性ガスの混合ガス雰囲気中であることが好ましい。二酸化炭素と還元性ガスの混合割合は、リチウムシリケート系化合物の合成反応時と同様とすればよい。
 熱処理温度は、500~800℃とすることが好ましい。熱処理温度が低すぎる場合には、リチウムシリケート系化合物の周りにカーボンを均一に析出させることが難しく、一方、熱処理温度が高すぎると、リチウムシリケート系化合物の分解やリチウム欠損が生じることがあり、充放電容量が低下するので好ましくない。また、熱処理時間は、通常、1~10時間とすればよい。
 また、その他のカーボン被覆処理方法として、上記リチウムシリケート系化合物に、カーボン材料とLiFを加え、上記した方法と同様にして、ボールミルによってリチウムシリケート系化合物がアモルファス化するまで均一に混合した後、熱処理を行ってもよい。この場合には、上記した場合と同様に、リチウムシリケート系化合物の再結晶化と同時にカーボンが該リチウムシリケート系化合物の周りに均一に析出して被覆して、導電性が向上し、さらに、リチウムシリケート系化合物の酸素原子の一部がフッ素原子と置換して、
   組成式:Li2+a-b1-xM’SiO4+c-y2y
(式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、Mは、FeまたはMnであり、M’は、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、MoおよびWからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0≦a<1、0≦b<0.2、0<c<0.3、0<y<1)で表されるフッ素含有リチウムシリケート系化合物が形成される。
 この化合物は、Fが添加されたことにより、正極として用いた場合に、平均電圧が2.6Vから2.8Vに上昇して、より優れた性能を有する正極材料となる。この際、LiFが存在することにより、リチウム過剰シリケート系化合物がリチウム欠損になることはなく、高い充放電容量を示すものとなる。
 この方法では、リチウムシリケート系化合物、カーボン材料およびLiFの混合割合については、リチウムシリケート系化合物100質量部に対して、カーボン系材料を20~40質量部、LiFを10~40質量部とすればよい。さらに、必要に応じて、LiCOが含まれていても良い。ボールミリングおよび熱処理の条件については、上記した場合と同様とすればよい。
<リチウムイオン二次電池用正極>
 上記した溶融塩中で合成して得られるリチウムシリケート系化合物、カーボン被覆処理を行ったリチウムシリケート系化合物、およびフッ素添加されたリチウムシリケート系化合物は、いずれもリチウムイオン二次電池正極用活物質(またはリチウム二次電池正極用活物質)として有効に使用できる。これらのリチウムシリケート系化合物を用いる正極は、通常のリチウムイオン二次電池用正極と同様の構造とすることができる。
 たとえば、上記リチウムシリケート系化合物に、アセチレンブラック(AB)、ケッチェンブラック(KB)、気相法炭素繊維(VaporGrownCarbonFiber:VGCF)等の導電助剤、ポリフッ化ビニリデン(PolyVinylidineDiFluoride:PVdF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)等のバインダー、N-メチル-2-ピロリドン(NMP)等の溶媒を加えてペースト状として、これを集電体に塗布することによって正極を作製することができる。導電助剤の使用量については、特に限定的ではないが、たとえば、リチウムシリケート系化合物100質量部に対して、5~20質量部とすることができる。また、バインダーの使用量についても、特に限定的ではないが、たとえば、リチウムシリケート系化合物100質量部に対して、5~20質量部とすることができる。また、その他の方法として、リチウムシリケート系化合物と、上記の導電助剤およびバインダーを混合したものを、乳鉢やプレス機を用いて混練してフィルム状とし、これを集電体へプレス機で圧着する方法によっても正極を製造することが出来る。
 集電体としては、特に限定はなく、従来からリチウムイオン二次電池用正極として使用されている材料、たとえば、アルミ箔、アルミメッシュ、ステンレスメッシュなどを用いることができる。さらに、カーボン不織布、カーボン織布なども集電体として使用できる。
 本発明のリチウムイオン二次電池用正極は、その形状、厚さなどについては特に限定的ではないが、たとえば、活物質を充填した後、圧縮することによって、厚さを10~200μm、より好ましくは20~100μmとすることが好ましい。従って、使用する集電体の種類、構造等に応じて、圧縮後に上記した厚さとなるように、活物質の充填量を適宜決めればよい。
<充電状態または放電状態のリチウムシリケート系化合物>
 上記した方法によってアルカリ金属硝酸塩および/またはアルカリ金属水酸化物の溶融塩中で原料化合物を反応させて得られるリチウムシリケート系化合物、カーボン被覆処理を行ったリチウムシリケート系化合物、およびフッ素添加されたリチウムシリケート系化合物は、これをリチウムイオン二次電池用正極活物質として用いてリチウムイオン二次電池を作製し、充電および放電を行うことによって、その結晶構造が変化する。溶融塩中で合成して得たリチウムシリケート系化合物は、構造が不安定であり、充電容量も少ないが、充放電により構造が変化して安定化することによって、安定した充放電容量が得られるようになる。一旦、充放電を行ってリチウムシリケート系化合物の結晶構造を変化させた後は、充電状態と放電状態でそれぞれ異なる結晶構造となるが、高い安定性を維持することができる。
 この構造の安定化は、溶融塩法によってリチウムシリケート系化合物を合成する際に、充放電に関与しないアルカリ金属イオン(たとえば、Na、K)がLiサイトの一部を置換することによってリチウムシリケート系化合物中に導入され、これにより結晶構造が安定化され、Liが充放電しても結晶構造が維持されることによるものと考えられる。さらに、Naのイオン半径(約0.99Å)とKのイオン半径(約1.37Å)は、Liのイオン半径(約0.590Å)より大きいため、Liの移動がしやすくなり、Liの挿入・脱離量が増加し、結果的に充放電容量の向上につながると考えられる。この場合の充電方法および放電方法は特に限定されないが、たとえば、電池容量に対して0.1Cの電流値を用いて定電流充電・放電させれば良い。充電および放電時の電圧は、リチウムイオン二次電池の構成要素に応じて決めればよいが、通常は、金属リチウムを対極とした場合に4.5V~1.0V程度とすることができ、4.2V~1.5V程度とすることが好ましい。
 以下、充電状態および放電状態のそれぞれのリチウムシリケート系化合物の結晶構造について、具体例を挙げて説明する。
(i)鉄含有リチウムシリケート系化合物
 まず、溶融塩中で合成して得られた組成式:Li2+a-bFeSiO4+c(式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0≦a<1、0≦b<0.2、0<c<0.3)で表される鉄含有リチウムシリケート系化合物について説明する。
 該鉄含有リチウムシリケート系化合物を正極活物質として用い、負極材料としてリチウム金属を用いたリチウム二次電池について、4.2Vまで定電流充電を行うことによって、得られる充電状態のリチウムシリケート系化合物は、組成式:Li1+a-bFeSiO4+c(式中、A、a、bおよびcは上記に同じ)で表されるものとなる。
 該化合物について、波長0.7ÅのX線を用いてX線回折測定を行うと、回折角(2θ)が5度から40度の範囲において、相対強度が最も高い5本の回折ピークの相対強度、回折角および半値幅はそれぞれ下記の値となる。なお、回折角および半値幅は、下記の値の±0.03度程度の範囲内となる。
 第1ピーク:相対強度100%、回折角10.10度、半値幅0.11度
 第2ピーク:相対強度 81%、回折角16.06度、半値幅0.10度
 第3ピーク:相対強度 76%、回折角 9.88度、半値幅0.14度
 第4ピーク:相対強度 58%、回折角14.54度、半値幅0.16度
 第5ピーク:相対強度 47%、回折角15.50度、半値幅0.12度
 該化合物について、波長0.7ÅのX線を用いてX線回折測定を行うと、波長0.7ÅのX線を用いてX線回折測定を行って得られた回折パターンに対して、リチウムイオンと鉄イオンの不規則化を考慮したモデルで構造解析した結果、以下の結晶構造を有する。つまり、充電状態のリチウムシリケート系化合物は、結晶系:斜方晶、空間群:P2、格子パラメーター:a=8.3576Å、b=5.0276Å、c=8.3940Å、β=103.524度、体積:342.9Åを有することを特徴としている。なお、上記の結晶構造について、格子パラメーターの値は±0.005程度の範囲内となる。
 上記した回折ピークは、溶融塩中で合成した鉄含有リチウムシリケート系化合物の回折ピークとは異なっており、充電によって結晶構造が変化することを確認できる。
 なお、上記した回折ピークについては、たとえば、次の方法で測定することができる。
 まず、充電した電極を鎖状炭酸エステル系溶媒で数回洗浄して、電極表面に付着した不純物を取り除く。その後真空乾燥し、得られた電極から電極層(集電体を含まない)を剥がし、ガラスキャピラリーに充填し、エポキシ樹脂接着剤を用いて封入する。その後、波長0.7ÅのX線を用い、X線回折パターン測定することによって、充電状態のリチウムシリケート系化合物を確認することができる。この際、鎖状炭酸エステル系溶媒としては、たとえば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネネート(EMC)等を用いることができる。
 また、上記した方法で4.2Vまで充電した鉄含有リチウムシリケート系化合物について、1.5Vまで定電流放電すると、得られる放電状態のリチウムシリケート系化合物は、組成式:Li2+a-bFeSiO4+c(式中、A、a、bおよびcは上記に同じ)で表されるものとなる。該化合物について、波長0.7ÅのX線を用いてX線回折測定を行うと、回折角(2θ)が5度から40度の範囲において、相対強度が最も高い5本の回折ピークの相対強度、回折角および半値幅はそれぞれ下記の値となる。なお、回折角および半値幅は、下記の値の±0.03度程度の範囲内となる。
 第1ピーク:相対強度100%、回折角16.07度、半値幅0.08度
 第2ピーク:相対強度 71%、回折角14.92度、半値幅0.17度
 第3ピーク:相対強度 44%、回折角10.30度、半値幅0.08度
 第4ピーク:相対強度 29%、回折角 9.82度、半値幅0.11度
 第5ピーク:相対強度 26%、回折角21.98度、半値幅0.14度
 該化合物について、波長0.7ÅのX線を用いてX線回折測定を行うと、波長0.7ÅのX線を用いてX線回折測定を行って得られた回折パターンに対して、リチウムイオンと鉄イオンの不規則化を考慮したモデルで構造解析した結果、以下の結晶構造を有する。つまり、放電状態のリチウムシリケート系化合物は、結晶系:斜方晶、空間群:P2、格子パラメーター:a=8.319Å、b=5.0275Å、c=8.2569Å、β=98.47度、格子体積:341.6Åを有することを特徴としている。なお、上記の結晶構造について、格子パラメーターの値は±0.005程度の範囲内となる。
 上記した回折ピークは、溶融塩中で合成した鉄含有リチウムシリケート系化合物の回折ピークおよび充電後の鉄含有リチウムシリケート系化合物の回折ピークとはいずれも異なっており、放電によっても結晶構造が変化することが確認できる。
(ii)マンガン含有リチウムシリケート系化合物
 次に、溶融塩中で合成して得られた組成式:Li2+a-bMnSiO4+c(式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、0≦a<1、0≦b<0.2、0<c<0.3)で表されるマンガン含有リチウムシリケート系化合物について説明する。
 該リチウムシリケート系化合物を正極活物質として用い、負極材料としてリチウム金属を用いたリチウム二次電池について、4.2Vまで定電流充電を行うことによって、得られる充電状態のリチウムシリケート系化合物は、組成式:Li1+a-bMnSiO4+c(式中、A、a、bおよびcは上記に同じ)で表されるものとなる。
 該化合物について、波長0.7ÅのX線を用いてX線回折測定を行うと、回折角(2θ)が5度から40度の範囲において、相対強度が最も高い5本の回折ピークの相対強度、回折角、および半値幅はそれぞれ下記の値となる。なお、回折角および半値幅は、下記の値の±0.03度程度の範囲内となる。
 第1ピーク:相対強度100%、回折角 8.15度、半値幅0.18度
 第2ピーク:相対強度 64%、回折角11.60度、半値幅0.46度
 第3ピーク:相対強度 41%、回折角17.17度、半値幅0.18度
 第4ピーク:相対強度 37%、回折角11.04度、半値幅0.31度
 第5ピーク:相対強度 34%、回折角19.87度、半値幅0.29度
 上記した回折ピークは、溶融塩中で合成したマンガン含有リチウムシリケート系化合物とは異なっており、充電によって結晶構造が変化することが確認できる。
 また、上記した方法で4.2Vまで充電したマンガン含有リチウムシリケート系化合物について、1.5Vまで定電流放電すると、得られる放電状態のマンガン含有リチウムシリケート系化合物は、組成式:Li2+a-bMnSiO4+c(式中、A、a、bおよびcは上記に同じ)で表されるものとなる。該化合物について、波長0.7ÅのX線を用いてX線回折測定を行うと、回折角(2θ)が5度から40度の範囲において、相対強度が最も高い5本の回折ピークの相対強度、回折角、および半値幅はそれぞれ下記の値となる。なお、回折角および半値幅は、下記の値の±0.03度程度の範囲内となる。
 第1ピーク:相対強度100%、回折角 8.16度、半値幅0.22度
 第2ピーク:相対強度 71%、回折角11.53度、半値幅0.40度
 第3ピーク:相対強度 67%、回折角11.66度、半値幅0.53度
 第4ピーク:相対強度 61%、回折角11.03度、半値幅0.065度
 第5ピーク:相対強度 52%、回折角11.35度、半値幅0.70度
 上記した回折ピークは、溶融塩中で合成したマンガン含有リチウムシリケート系化合物の回折ピーク、および充電後のマンガン含有リチウムシリケート系化合物の回折ピークとはいずれも異なっており、放電によっても結晶構造が変化することが確認できる。
 なお、上記した鉄含有リチウムシリケート系化合物およびマンガン含有リチウムシリケート系化合物のそれぞれにおいて、元素Aの置換量、すなわちbの値は、0.0001~0.05程度であることが好ましく、0.0005~0.02程度であることがより好ましい。
<リチウムイオン二次電池>
 上記した正極を用いるリチウムイオン二次電池(またはリチウム二次電池)は、公知の手法により製造することができる。すなわち、正極材料として、上記した正極を使用し、負極材料として、公知の金属リチウム、黒鉛などの炭素系材料、シリコン薄膜などのシリコン系材料、銅-錫やコバルト-錫などの合金系材料、チタン酸リチウムなどの酸化物材料を使用し、電解液として、公知のエチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの非水系溶媒に過塩素酸リチウム、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/Lから1.7mol/Lの濃度で溶解させた溶液を使用し、さらにその他の公知の電池構成要素を使用して、常法に従って、リチウムイオン二次電池を組立てればよい。
 以下、実施例を挙げて本発明をさらに詳細に説明する。
<実施例1>
 <鉄含有リチウムシリケート化合物の合成>
 鉄(高純度化学株式会社製、純度99.9%)0.03モルと、リチウムシリケートLiSiO(キシダ化学株式会社製、純度99.5%)0.03モルと、の混合物にアセトン20mlを加えてジルコニア製ボールミルにて500rpmで60分混合し、乾燥した。これを硝酸塩混合物とともに乳鉢で混合した。硝酸塩混合物は、硝酸リチウム(キシダ化学製、純度99%)および硝酸カリウム(キシダ化学製、純度99%)を硝酸リチウム:硝酸カリウムで41:59(モル比)に混合したものを用いた。また、鉄とリチウムシリケートとの合計量を100質量部に対して、硝酸塩混合物120質量部の割合とした。
 得られた粉体を、電気炉を用いて金坩堝中で加熱して、二酸化炭素(流量:100mL/分)と水素(流量:3mL/分)の混合ガス雰囲気下で、500℃に加熱して、硝酸塩混合物を溶融させた状態で13時間反応させた。
 反応後、反応系である炉心全体(金坩堝含む)を電気炉から取り出して、混合ガスを通じたまま室温まで急冷した。
 次いで、固化した反応物に水(20ml)を加えて乳鉢ですりつぶし、塩等を取り除くために水に溶解させてからろ過して、鉄含有リチウムシリケート系化合物の粉体を得た。
 得られた生成物について、粉末X線回折装置により、CuKα線を用いてX線回折測定を行った。XDRパターンを図1に示した。このXDRパターンは、報告されている空間群P2の単斜晶LiFeSiOのパターンとほぼ一致した。
 また、透過型電子顕微鏡(TEM)を用いて得られた生成物を観察したところ、粒径が50nm~15μm程度の粒子が観察された。前述の方法により平均粒径を算出したところ、500nmであった。
<実施例2>
 <マンガン含有リチウムシリケート化合物の合成>
 実施例1で用いた鉄に代えて、酸化マンガン(II)(高純度化学株式会社製、純度99.9%)を0.03モル用い、実施例1と同様の合成条件でマンガン含有リチウムシリケート系化合物の粉体を得た。
 得られた生成物について、粉末X線回折装置により、CuKα線を用いてX線回折測定を行った。XDRパターンを図2に示した。この生成物のXDRパターンは、空間群Pmn2の斜方晶LiMnSiOのXDRパターンとほぼ一致した。
 また、透過型電子顕微鏡(TEM)を用いて得られた生成物を観察したところ、粒径が50nm~15μm程度の粒子が観察された。平均粒径を算出したところ、300nmであった。
<実施例3>
 <鉄含有リチウムシリケート化合物の合成>
 上記の硝酸リチウムおよび硝酸カリウムを硝酸リチウム:硝酸カリウムで41:59(モル比)に混合した硝酸塩混合物、ならびに、炭酸リチウム(キシダ化学製、純度99.5%):炭酸ナトリウム(キシダ化学製、純度99.5%):炭酸カリウム(キシダ化学製、純度99.5%)で43.5:31.5:25(モル比)に混合した炭酸塩混合物、を硝酸塩:炭酸塩=1:1(質量比)となるように乳鉢により混合し、硝酸塩炭酸塩混合物を得た。
 上記の鉄0.03モル、リチウムシリケート0.03モル、およびアセトン20mlをジルコニア製ボールミルにて500rpmで60分混合し、乾燥した。これを硝酸塩炭酸塩混合物とともに乳鉢で混合した。混合割合は、鉄とリチウムシリケートとの合計量を100質量部に対して、硝酸塩炭酸塩混合物の合計で120質量部の割合とした。
 得られた混合粉体を、電気炉を用いて水素雰囲気(流量:100mL/分)のもとで加熱し、400℃で3時間保持後、さらに二酸化炭素(流量:70mL/分)および水素(流量:30mL/分)の混合ガス雰囲気下で65時間保持した。つまり、硝酸塩炭酸塩混合物を溶融させた状態で、400℃で68時間反応させた。
 反応後、反応系である炉心全体を電気炉から取り出して、混合ガスを通じたまま室温まで急冷した。
 次いで、固化した反応物に水(20ml)を加えて乳鉢ですりつぶし、塩等を取り除くために水に溶解させてからろ過して、鉄含有リチウムシリケート系化合物の粉体を得た。
 得られた生成物について、粉末X線回折装置により、CuKα線を用いてX線回折測定を行った。このXDRパターンは、報告されている空間群P2の単斜晶LiFeSiOのパターンとほぼ一致した。つまり、反応温度を400℃にしても、500℃で反応させた実施例1と同等の生成物が得られた。
 また、透過型電子顕微鏡(TEM)を用いて得られた生成物を観察したところ、粒径が40nm~10μm程度の粒子が観察された。平均粒径を算出したところ、550nmであった。
<実施例4>
 <マンガン含有リチウムシリケート化合物の合成>
 実施例3で用いた鉄に代えて、上記の酸化マンガンを0.03モル用い、実施例3と同様の合成条件でマンガン含有リチウムシリケート系化合物の粉体を得た。
 得られた生成物について、粉末X線回折装置により、CuKα線を用いてX線回折測定を行った。この生成物のXDRパターンは、空間群Pmn2の斜方晶LiMnSiOのXDRパターンとほぼ一致した。つまり、反応温度を400℃にしても、500℃で反応させた実施例2と同等の生成物が得られた。
 また、透過型電子顕微鏡(TEM)を用いて得られた生成物を観察したところ、粒径が40nm~10μm程度の粒子が観察された。平均粒径を算出したところ、330nmであった。
<比較例1>
 <鉄含有リチウムシリケート化合物の合成>
 炭酸リチウムLiCO、シュウ酸鉄FeC・2HO(シグマアルドリッチ製、純度99.99%)、および酸化シリコンSiOをボールミリングした後、800℃で6時間熱処理する方法(固相反応法)で、鉄含有リチウムシリケート化合物を合成した。
<比較例2>
 <マンガン含有リチウムシリケート化合物の合成>
 炭酸リチウムLiCO、シュウ酸マンガンMnC・2HO(シグマアルドリッチ製、純度99.99%)、および酸化シリコンSiOをボールミリングした後、800℃で6時間熱処理する方法(固相反応法)で、マンガン含有リチウムシリケート化合物を合成した。
<参考例1>
 <鉄含有リチウムシリケート化合物の合成>
 硝酸塩を用いず、炭酸塩混合物を溶融塩として用いて、鉄含有リチウムシリケート化合物を合成した。以下、炭酸塩混合物を用いた場合の合成プロセスを示す。
 上記のシュウ酸鉄FeC・2HO0.03モルおよびリチウムシリケートLiSiO(キシダ化学製、純度99.5%)0.03モルの混合物と、炭酸塩混合物(炭酸リチウム(キシダ化学製、純度99.9%)、炭酸ナトリウム(キシダ化学製、純度99.5%)および炭酸カリウム(キシダ化学製、純度99.5%)をモル比で43.5:31.5:25に混合したもの)と、を混合した。混合割合は、炭酸塩混合物100質量部に対して、シュウ酸鉄とリチウムシリケートの合計量を225質量部の割合とした。これにアセトン20mlを加えてジルコニア製ボールミルにて500rpmで60分混合し、乾燥した。その後、得られた粉体を金坩堝中で加熱して、二酸化炭素(流量:100mL/分)と水素(流量:3mL/分)の混合ガス雰囲気下で、550℃に加熱して、炭酸塩混合物を溶融させた状態で21時間反応させた。
 反応後、反応系である炉心全体を電気炉から取り出して、混合ガスを通じたまま室温まで急冷した。
 次いで、生成物に無水酢酸(20ml)を加えて乳鉢ですりつぶし、酢酸(10ml)を加えて炭酸塩等を反応させて取り除き、ろ過して鉄含有リチウムシリケート系化合物の粉体を得た。得られた生成物について、粉末X線回折装置により、CuKα線を用いてX線回折測定を行った。このXDRパターンは、報告されている空間群P2の単斜晶LiFeSiOのパターンとほぼ一致した。
<参考例2>
 <マンガン含有リチウムシリケート化合物の合成>
 参考例1で用いたシュウ酸鉄に代えて、シュウ酸マンガンを0.03モル用い、参考例1と同様の合成条件でマンガン含有リチウムシリケート系化合物の粉体を得た。
 <リチウム二次電池の作製>
 実施例および比較例の方法により得られたリチウムシリケート系化合物のうちのいずれかを正極活物質として用い、リチウム二次電池を作製した。
 リチウムシリケート系化合物100質量部に対して、アセチレンブラックとPTFEの混合物(AB:PTFE(質量比)=2:1の混合物)25質量部を添加し、シート法により電極を作製し、140℃で3時間真空乾燥した。その後、エチレンカーボネート(EC):ジエチレンカーボネート(DEC)=1:1にLiPFを溶解して1mol/Lとした溶液を電解液として用い、セパレータとしてポリプロピレン膜(セルガード製、Celgard2400)、負極としてリチウム金属箔を用いたコイン電池を試作した。得られたコイン電池は、表1に示すように、#E1~#E4、#01、#02、#C1および#C2とした。
 これらのコイン電池について60℃にて充放電試験を行った。試験条件は、〔1〕0.1Cにて電圧4.2~1.5Vまたは〔2〕0.5Cにて電圧4.2~1.5V、とした。5サイクル後の放電容量、5サイクル後における平均電圧、および放電容量を90%維持できるサイクル数、を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 鉄含有リチウムシリケート化合物を用いた二次電池の性能を比較すると、#E1、#E3および#01の電池は、条件〔1〕では、放電容量が250mAh/g程度で、平均電圧が2.6V程度で、高かった。特に、#E1および#E3の電池は、70サイクルまで初期容量の9割以上を維持した。電池#01は、いずれの電池特性においても、電池#C1よりも優れた。
 放電容量および平均電圧について電池#E3と電池#01とを比較すると、条件〔1〕による試験結果に大差はなかった。しかし、それぞれの電池について条件〔1〕と条件〔2〕の結果を比較すると、0.1Cから0.5Cに変更したことによる電池#01の電池特性の低下は、電池#E3よりも顕著であった。
 つまり、硝酸塩を含む混合物の溶融塩を用いる実施例1および実施例3の方法によれば、正極活物質として用いた場合にサイクル特性およびレート特性に優れ、高容量のリチウムシリケート系化合物が得られることがわかった。これは、実施例1および実施例3では、500℃以下の低温において、鉄含有リチウムシリケート化合物が合成されたからであると推測される。なお、硝酸塩を使用した実施例1または実施例3の方法において溶融塩の温度を550℃にすれば、硝酸塩を使用しなかった参考例1と同程度の反応が行われることが推測される。
 また、マンガン含有リチウムシリケート化合物についても、以上説明した鉄含有リチウムシリケート化合物と同様の傾向であった。
 つまり、硝酸塩を含む混合物の溶融塩中で原料化合物を反応させる方法によれば、正極活物質として用いた場合に電池特性に優れたリチウムシリケート系化合物が得られることがわかった。
 

Claims (12)

  1.  アルカリ金属硝酸塩ならびにアルカリ金属水酸化物からなる群から選ばれた少なくとも一種を含む溶融塩中で、二酸化炭素および還元性ガスを含む混合ガス雰囲気下において、LiSiOで表される珪酸リチウム化合物と、鉄およびマンガンからなる群から選ばれた少なくとも一種を含む遷移金属元素含有物質と、を550℃以下で反応させることを特徴とするリチウムシリケート系化合物の製造方法。
  2.  前記溶融塩は、硝酸リチウムを少なくとも含む請求項1記載のリチウムシリケート系化合物の製造方法。
  3.  前記溶融塩は、アルカリ金属硝酸塩ならびにアルカリ金属水酸化物からなる群から選ばれた二種以上を含む混合溶融塩である請求項1に記載のリチウムシリケート系化合物の製造方法。
  4.  前記珪酸リチウム化合物と前記遷移金属元素含有物質とを150~550℃で反応させる請求項1に記載のリチウムシリケート系化合物の製造方法。
  5.  前記遷移金属元素含有物質は、該遷移金属元素含有物質に含まれる金属元素の合計量を100モル%として、鉄およびマンガンからなる群から選ばれた少なくとも一種の遷移金属元素を50~100モル%と、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、MoおよびWからなる群から選ばれた少なくとも一種の金属元素を0~50モル%含む請求項1に記載のリチウムシリケート系化合物の製造方法。
  6.  前記遷移金属元素含有物質は、鉄および/または酸化マンガンを必須とし、必要に応じて酸化コバルト、酸化マグネシウム、炭酸カルシウム、酸化アルミニウム、酸化ニッケル、酸化ニオブ、チタン酸リチウム、酸化クロム(III)、酢酸銅(II)、酸化亜鉛、酸化ジルコニウム、炭化バナジウム、モリブデン酸リチウム、およびタングステン酸リチウムのうちの一種または二種以上を含む請求項5記載のリチウムシリケート系化合物の製造方法。
  7.  請求項1に記載の方法でリチウムシリケート系化合物を製造した後、前記アルカリ金属硝酸塩および/または前記アルカリ金属水酸化物を溶媒により除去する工程を含む、リチウムシリケート系化合物の製造方法。
  8.  形成されるリチウムシリケート系化合物が、組成式:Li2+a-b1-xM’SiO4+c(式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、Mは、FeおよびMnからなる群から選ばれた少なくとも一種の元素であり、M’は、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、MoおよびWからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0≦a<1、0≦b<0.2、0<c<0.3)で表される化合物である、請求項1に記載のリチウムシリケート系化合物の製造方法。
  9.  請求項1に記載の方法によって得られたリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質。
  10.  請求項9に記載のリチウムイオン二次電池用正極活物質を含むリチウムイオン二次電池用正極。
  11.  請求項10に記載のリチウムイオン二次電池用正極を備えるリチウムイオン二次電池。
  12.  請求項10に記載のリチウムイオン二次電池用正極および金属リチウムからなる負極を備えるリチウム二次電池。
     
     
PCT/JP2011/003488 2010-06-28 2011-06-17 リチウムシリケート系化合物の製造方法 WO2012001904A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/701,746 US9315390B2 (en) 2010-06-28 2011-06-17 Production process for lithium-silicate-based compound
DE112011102161T DE112011102161T5 (de) 2010-06-28 2011-06-17 Herstellungsverfahren für eine Verbindung auf Grundlage von Lithiumsilicat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010146577A JP5116177B2 (ja) 2010-06-28 2010-06-28 リチウムシリケート系化合物の製造方法
JP2010-146577 2010-06-28

Publications (1)

Publication Number Publication Date
WO2012001904A1 true WO2012001904A1 (ja) 2012-01-05

Family

ID=45401649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003488 WO2012001904A1 (ja) 2010-06-28 2011-06-17 リチウムシリケート系化合物の製造方法

Country Status (5)

Country Link
US (1) US9315390B2 (ja)
JP (1) JP5116177B2 (ja)
DE (1) DE112011102161T5 (ja)
TW (1) TWI445666B (ja)
WO (1) WO2012001904A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047924B (zh) * 2015-08-17 2018-05-15 合肥国轩高科动力能源有限公司 一种硅酸锰锂类锂离子电池正极材料及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917027B2 (ja) * 2010-06-30 2016-05-11 株式会社半導体エネルギー研究所 電極用材料の作製方法
US8669009B2 (en) * 2010-07-01 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, positive electrode of power storage device, power storage device, manufacturing method of positive electrode active material of power storage device
JP5164287B2 (ja) * 2010-11-05 2013-03-21 株式会社豊田自動織機 リチウムシリケート系化合物およびその製造方法
JP5950389B2 (ja) * 2012-02-28 2016-07-13 株式会社豊田自動織機 リチウムシリケート系化合物、正極活物質、正極活物質の製造方法、非水電解質二次電池およびそれを搭載した車両
WO2014155408A1 (ja) * 2013-03-25 2014-10-02 株式会社豊田自動織機 水素含有リチウムシリケート系化合物及びその製造方法、並びに非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
ITMI20132059A1 (it) * 2013-12-10 2015-06-11 Mapei Spa Additivo accelerante per composizioni cementizie
JP6322012B2 (ja) * 2014-03-19 2018-05-09 旭化成株式会社 リチウム含有複合酸化物及びその製造方法、並びに該複合酸化物を含む正極活物質及び非水系リチウムイオン二次電池
RU2615697C1 (ru) * 2015-12-22 2017-04-06 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ получения катодного материала на основе системы Li2FeSiO4
CN111217592B (zh) * 2020-01-13 2022-04-29 西安理工大学 一种基于熔盐法的高锂含量氚增殖陶瓷小球制备方法
DE102020001776A1 (de) 2020-03-17 2021-09-23 Hagen Schray Erzeugnis mit Lithiumsilikat und Verfahren mit einem Quenchingschritt
CN112310368B (zh) * 2020-10-16 2023-09-12 欣旺达电动汽车电池有限公司 负极活性材料及其制备方法、应用和锂离子电池
CN113716622B (zh) * 2021-08-25 2023-04-07 雅迪科技集团有限公司 一种铁基层状氧化物正极活性材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192210A (ja) * 1999-11-02 2001-07-17 Seimi Chem Co Ltd 非水リチウム二次電池用リチウム−マンガン複合酸化物の製造法
JP2008218303A (ja) * 2007-03-07 2008-09-18 Kyushu Univ 二次電池用正極活物質の製造方法
WO2010089931A1 (ja) * 2009-02-04 2010-08-12 独立行政法人産業技術総合研究所 リチウムシリケート系化合物の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2271354C (en) 1999-05-10 2013-07-16 Hydro-Quebec Lithium insertion electrode materials based on orthosilicate derivatives
CA2320661A1 (fr) 2000-09-26 2002-03-26 Hydro-Quebec Nouveau procede de synthese de materiaux limpo4 a structure olivine
JP5235282B2 (ja) 2006-06-16 2013-07-10 国立大学法人九州大学 非水電解質二次電池用正極活物質及び電池
JP4907391B2 (ja) * 2007-03-07 2012-03-28 Jx日鉱日石エネルギー株式会社 炭化水素系燃料の脱硫方法
WO2008123311A1 (ja) 2007-03-27 2008-10-16 Tokyo Institute Of Technology 二次電池用正極材料の製造方法
JP5115697B2 (ja) 2007-05-22 2013-01-09 Necエナジーデバイス株式会社 リチウム二次電池用正極及びそれを用いたリチウム二次電池
CN101339992B (zh) 2008-08-04 2010-06-16 清华大学 锂离子电池正极材料硅酸钒锂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192210A (ja) * 1999-11-02 2001-07-17 Seimi Chem Co Ltd 非水リチウム二次電池用リチウム−マンガン複合酸化物の製造法
JP2008218303A (ja) * 2007-03-07 2008-09-18 Kyushu Univ 二次電池用正極活物質の製造方法
WO2010089931A1 (ja) * 2009-02-04 2010-08-12 独立行政法人産業技術総合研究所 リチウムシリケート系化合物の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TOSHIKATSU KOJIMA ET AL.: "Yoyu Tansan'en o Mochiita Li2MSi04(M=Fe Oyobi Mn) no gosei", DAI 50 KAI ABSTRACTS, BATTERY SYMPOSIUM IN JAPAN, 30 November 2009 (2009-11-30), pages 114 *
TOSHIKATSU KOJIMA ET AL.: "Yoyuen o Mochiita Lithium Ion Niji Denchi Seikyoku Zairyo no Gosei", DAI 51 KAI ABSTRACTS, BATTERY SYMPOSIUM IN JAPAN, 8 November 2010 (2010-11-08), pages 192 *
WENGANG LIU ET AL.: "Synthesis, characterization and electrochemical performance of Li2MnSi04/C cathode material by solid-state reaction", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 480, no. 2, 2009, pages L1 - L4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047924B (zh) * 2015-08-17 2018-05-15 合肥国轩高科动力能源有限公司 一种硅酸锰锂类锂离子电池正极材料及其制备方法

Also Published As

Publication number Publication date
US20130078519A1 (en) 2013-03-28
TW201204633A (en) 2012-02-01
US9315390B2 (en) 2016-04-19
JP2012006810A (ja) 2012-01-12
TWI445666B (zh) 2014-07-21
JP5116177B2 (ja) 2013-01-09
DE112011102161T5 (de) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5298286B2 (ja) リチウムシリケート系化合物の製造方法
JP5116177B2 (ja) リチウムシリケート系化合物の製造方法
JP5013622B2 (ja) リチウムボレート系化合物の製造方法
JPWO2017082268A1 (ja) リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池
JP5164287B2 (ja) リチウムシリケート系化合物およびその製造方法
JP7402566B2 (ja) 正極活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
JP5252064B2 (ja) リチウムシリケート系化合物及びその製造方法
JP5950389B2 (ja) リチウムシリケート系化合物、正極活物質、正極活物質の製造方法、非水電解質二次電池およびそれを搭載した車両
JP5928302B2 (ja) リチウム二次電池用正極活物質の製造方法
JP5765780B2 (ja) リチウムシリケート系化合物とリチウムイオン二次電池用正極活物質及びこれを用いたリチウムイオン二次電池
JP5505868B2 (ja) リチウム二次電池用正極活物質の前駆体とその製造方法
JP5110664B2 (ja) リチウムボレート系化合物の製造方法
KR101186686B1 (ko) 리튬 이차 전지용 양극 활물질의 제조 방법
JP5608856B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法及びリチウムイオン二次電池用正極とリチウムイオン二次電池
WO2014155408A1 (ja) 水素含有リチウムシリケート系化合物及びその製造方法、並びに非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
JP5686378B2 (ja) 水素含有リチウムシリケート系化合物及びその製造方法、並びに非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池及び車両
US9825295B2 (en) Positive electrode active material and lithium-ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13701746

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011102161

Country of ref document: DE

Ref document number: 1120111021615

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800377

Country of ref document: EP

Kind code of ref document: A1