WO2010089931A1 - リチウムシリケート系化合物の製造方法 - Google Patents

リチウムシリケート系化合物の製造方法 Download PDF

Info

Publication number
WO2010089931A1
WO2010089931A1 PCT/JP2009/069694 JP2009069694W WO2010089931A1 WO 2010089931 A1 WO2010089931 A1 WO 2010089931A1 JP 2009069694 W JP2009069694 W JP 2009069694W WO 2010089931 A1 WO2010089931 A1 WO 2010089931A1
Authority
WO
WIPO (PCT)
Prior art keywords
degrees
peak
lithium
lithium silicate
diffraction angle
Prior art date
Application number
PCT/JP2009/069694
Other languages
English (en)
French (fr)
Inventor
敏勝 小島
哲男 境
琢寛 幸
妥絵 奥村
晶 小島
淳一 丹羽
仁俊 村瀬
Original Assignee
独立行政法人産業技術総合研究所
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 株式会社豊田自動織機 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2010549350A priority Critical patent/JP5298286B2/ja
Priority to US13/147,747 priority patent/US9269954B2/en
Priority to KR1020117017653A priority patent/KR101241810B1/ko
Priority to EP09839705A priority patent/EP2394956A1/en
Priority to CN200980156052.5A priority patent/CN102300811B/zh
Publication of WO2010089931A1 publication Critical patent/WO2010089931A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a lithium silicate compound useful as a positive electrode active material of a lithium ion battery and the like, and uses of the lithium silicate compound obtained by this method.
  • Lithium secondary batteries are small and have high energy density, and are widely used as power sources for portable electronic devices.
  • a layered compound such as LiCoO 2 is mainly used as the positive electrode active material.
  • these compounds have a problem that oxygen is easily desorbed at around 150 ° C. in a fully charged state, which easily causes an oxidative exothermic reaction of the non-aqueous electrolyte.
  • LiMPO 4 LiMnPO 4 , LiFePO 4 , LiCoPO 4 or the like
  • LiMPO 4 LiMnPO 4 , LiFePO 4 , LiCoPO 4 or the like
  • these compounds improve thermal stability by using a divalent / multivalent redox reaction instead of a trivalent / multivalent redox reaction in which an oxide such as LiCoO 2 is used as a positive electrode active material.
  • the positive electrode material composed of a phosphate olivine compound has its theoretical capacity limited to about 170 mAh / g because of the large molecular weight of the phosphate polyanion.
  • LiCoPO 4 and LiNiPO 4 have a problem that the operating voltage is too high and there is no electrolyte that can withstand the charging voltage.
  • Li 2 FeSiO 4 (theoretical capacity 331.3 mAh / g) is a cathode material that is inexpensive, has a large amount of resources, has a low environmental impact, has a high theoretical charge-discharge capacity of lithium ions, and does not release oxygen at high temperatures.
  • Lithium silicate-based materials such as Li 2 MnSiO 4 (theoretical capacity 333.2 mAh / g) have attracted attention. These silicate-based materials are expected as positive electrode materials for higher capacity lithium secondary batteries, and further, reflect that the electronegativity of Si, which is a heteroelement, is smaller than P, and their discharge voltage is phosphorus. It is about 0.6 V lower than acid system, and Co and Ni can be used as a doping element of silicate.
  • the material that shows the highest charge / discharge characteristics currently reported is Li 2 FeSiO 4 , which has a capacity of about 160 mAh / g, but the theoretical capacity of the current material LiFePO 4 169 The charge and discharge characteristics up to more than 9 mAh / g can not be obtained.
  • a hydrothermal synthesis method and a solid phase reaction method are known as a synthesis method of the above-mentioned silicate compound.
  • a hydrothermal synthesis method it is possible to obtain fine particles with a particle diameter of about 1 to 10 nm, but there is a problem that the doping element is difficult to form a solid solution and the impurity phase is easily mixed. .
  • JP 2008-218303 A JP 2007-335325 A JP, 2001-266882, A JP 2008-293661A
  • the present invention has been made in view of the above-mentioned prior art, and its main object is to improve cycle characteristics, capacity and the like of lithium silicate based materials useful as positive electrode materials for lithium ion secondary batteries etc. It is an object of the present invention to provide a method by which a material having excellent performance can be manufactured by a relatively simple means.
  • Li 2 SiO 3 was selected from the group consisting of iron and manganese in a mixed gas atmosphere of reducing gas and carbon dioxide
  • a lithium silicate compound containing iron or manganese can be obtained under relatively mild conditions.
  • the obtained lithium silicate compound becomes a fine silicate compound having a small amount of impurity phase and containing an excessive amount of lithium atoms, and when used as a positive electrode active material of a lithium ion secondary battery, the cycle characteristics are good and high. It has been found that the material has a capacity, and the present invention has been completed here.
  • the present invention provides the following method for producing a lithium silicate compound, and the lithium silicate compound obtained by this method and its use.
  • a mixed gas containing carbon dioxide and a reducing gas in a molten salt of a carbonate mixture comprising at least one alkali metal carbonate selected from the group consisting of potassium carbonate, sodium carbonate, rubicium carbonate and cesium carbonate and lithium carbonate
  • a lithium silicate compound represented by Li 2 SiO 3 is reacted at 400 to 650 ° C. with a substance containing at least one transition metal element selected from the group consisting of iron and manganese under an atmosphere.
  • a method of producing a lithium silicate compound is reacted at 400 to 650 ° C. 2.
  • the substance containing the transition metal element contains 50 to 100 mol% of at least one transition metal element selected from the group consisting of iron and manganese, with the total amount of transition metal elements being 100 mol%, Mg, Ca, Co, 2.
  • the method according to item 1 above which comprises 0 to 50 mol% of at least one transition metal element selected from the group consisting of Al, Ni, Nb, Ti, Cr, Cu, Zn, Zr, Mo and W. . 3.
  • the manufacturing method of a lithium silicate type compound including the process of removing the alkali metal carbonate used as a flux with a solvent, after manufacturing a lithium silicate type compound by the method of said claim
  • the lithium silicate compound to be formed is Composition formula: Li 2 + a-b A b M 1-x M 'x SiO 4 + c (Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, M is at least one element selected from the group consisting of Fe and Mn, M ′ Is at least one element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Ti, Cr, Cu, Zn, Zr, Mo, and W.
  • the subscripts are as follows: The compound according to any one of the above items 1 to 3, which is a compound represented by: 0 ⁇ x ⁇ 0.5, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.3). Of lithium silicate based compounds. 5. A carbon material and Li 2 CO 3 are added to the lithium silicate compound obtained by the method according to any one of items 1 to 4 above, mixed by a ball mill until it becomes amorphous, and then heat treatment is performed in a reducing atmosphere. A method for producing a lithium silicate compound having improved conductivity, which is characterized by the above. 6.
  • a carbon material and LiF are added to the lithium silicate compound obtained by the method according to any one of the above items 1 to 4 and mixed with a ball mill until it becomes amorphous, and then heat treatment is performed in a reducing atmosphere.
  • the subscripts are as follows: 0 ⁇ x ⁇ 0.5, 0
  • the manufacturing method of the fluorine-containing lithium silicate type compound represented by ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.3, 0 ⁇ y ⁇ 1). 7.
  • a positive electrode active material for a lithium ion secondary battery comprising the lithium silicate compound obtained by the method according to any one of items 1 to 6 above.
  • Composition formula Li 1 + a-b A b FeSiO 4 + c (Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, each subscript is as follows: 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2 , 0 ⁇ c ⁇ 0.3), and when X-ray diffraction measurement is performed using an X-ray having a wavelength of 0.7 ⁇ , the following diffraction angles in the range of a diffraction angle (2.theta.) Of 5 degrees to 40 degrees: Item 9.
  • the active material for a lithium ion secondary battery according to item 8 which is a compound having the first peak to the fifth peak in the vicinity of: positive electrode active material for lithium ion secondary battery: First peak: 10.10 degrees Second peak: 16.06 degrees Third peak: 9.8 degrees Fourth peak: 14.54 degrees Fifth peak: 15.50 degrees. 10.
  • compositional formula Li 1 + a-b A b MnSiO 4 + c (Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, each subscript is as follows: 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2 , 0 ⁇ c ⁇ 0.3), and when X-ray diffraction measurement is performed using an X-ray having a wavelength of 0.7 ⁇ , the following diffraction angles in the range of a diffraction angle (2.theta.) Of 5 degrees to 40 degrees: Item 9.
  • the active material for a lithium ion secondary battery according to item 8 which is a compound having the first peak to the fifth peak in the vicinity of: positive electrode active material for lithium ion secondary battery: First peak: Diffraction angle 8.15 degrees Second peak: Diffraction angle 11.60 degrees Third peak: Diffraction angle 17.17 degrees Fourth peak: Diffraction angle 11.04 degrees Fifth peak: Diffraction angle 19.87 degrees . 11. 7.
  • a lithium ion compound comprising a lithium silicate compound obtained by charging the lithium silicate compound obtained by the method according to any one of the above items 1 to 6 as a positive electrode active material for a lithium ion secondary battery, and discharging it. Positive electrode active material for secondary batteries. 12.
  • compositional formula Li 2 + a-b A b FeSiO 4 + c (Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, each subscript is as follows: 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2 , 0 ⁇ c ⁇ 0.3), and when X-ray diffraction measurement is performed using an X-ray having a wavelength of 0.7 ⁇ , the following diffraction angles in the range of a diffraction angle (2.theta.) Of 5 degrees to 40 degrees: 12.
  • compositional formula Li 2 + a-b A b MnSiO 4 + c (Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, each subscript is as follows: 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2 , 0 ⁇ c ⁇ 0.3), and when X-ray diffraction measurement is performed using an X-ray having a wavelength of 0.7 ⁇ , the following diffraction angles in the range of a diffraction angle (2.theta.) Of 5 degrees to 40 degrees: 12.
  • composition of Molten Salt In the method for producing a lithium silicate compound of the present invention, potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), rubidium carbonate (Rb 2 CO 3 ) and cesium carbonate (Cs 2 CO 3)
  • K 2 CO 3 potassium carbonate
  • Na 2 CO 3 sodium carbonate
  • Rb 2 CO 3 rubidium carbonate
  • Cs 2 CO 3 cesium carbonate
  • the molten salt of a carbonate mixture comprising at least one alkali metal carbonate selected from the group consisting of and lithium carbonate (Li 2 CO 3 )
  • it is necessary to carry out a synthesis reaction of a lithium silicate compound is there.
  • the melting temperature is around 700 ° C, but when it is a molten salt of a mixture of lithium carbonate and another alkali metal carbonate, it can be a melting temperature below 650 ° C, 400 ⁇ It is possible to synthesize the target lithium silicate compound at a relatively low reaction temperature of 650 ° C. As a result, grain growth is suppressed at the time of synthesis reaction of lithium silicate to form a fine lithium silicate compound.
  • the reaction is carried out under the above conditions in the molten salt of the carbonate mixture, the formation of the impurity phase is small, and lithium is contained in the carbonate mixture, so that lithium containing an excess of lithium atoms is obtained.
  • a silicate based compound is formed.
  • the lithium silicate compound thus obtained is a positive electrode material for a lithium ion battery having good cycle characteristics and high capacity.
  • the mixing ratio of lithium carbonate to at least one alkali metal carbonate selected from the group consisting of potassium carbonate, sodium carbonate, rubicium carbonate and cesium carbonate is such that the melting temperature of the molten salt to be formed is below 650.degree. C. It should be made to become.
  • the proportion of lithium carbonate in the carbonate mixture is not particularly limited, but usually 30 mol% or more, preferably 30 to 70 mol%, based on the total number of moles of the carbonate mixture. .
  • the carbonate mixture a mixture comprising 30 to 70 mol% of lithium carbonate, 0 to 60 mol% of sodium carbonate and 0 to 50 mol% of potassium carbonate can be mentioned.
  • Preferred examples of such a carbonate mixture include a mixture of 40 to 45 mol% of lithium carbonate, 30 to 35 mol% of sodium carbonate and 20 to 30 mol% of potassium carbonate, 50 to 55 mol% of lithium carbonate and 45 g of sodium carbonate.
  • Examples thereof include a mixture of 50 to 50 mol%, a mixture of 60 to 65 mol% of lithium carbonate and a mixture of 35 to 40 mol% of potassium carbonate, and the like.
  • Raw Material Compound in the present invention, as a raw material, a material containing a lithium silicate compound represented by Li 2 SiO 3 and at least one transition metal element selected from the group consisting of iron and manganese is used.
  • the substance containing iron and the substance containing manganese is not particularly limited, and iron in a metal state, manganese in a metal state, a compound containing iron having a valence up to divalent, and manganese having a valence up to divalent A compound etc. can be used.
  • iron in a metal state manganese in a metal state, a compound containing iron having a valence up to divalent, and manganese having a valence up to divalent A compound etc.
  • an oxalate such as iron oxalate or manganese oxalate so that the reaction can be easily maintained in the state of divalent iron or divalent manganese.
  • the iron-containing substance and the manganese-containing substance can be used alone or in combination.
  • a substance containing at least one transition metal element selected from the group consisting of iron and manganese described above is essential, but, if necessary, a substance containing another transition metal element may be used. it can.
  • the substance containing another transition metal element at least one transition metal selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Ti, Cr, Cu, Zn, Zr, V, Mo and W
  • the substance containing an element can be illustrated.
  • the substance containing these transition metal elements may be a transition metal element in a metal state, or a compound containing a transition metal element having a valence of up to 2 valences, for example, sulfates, carbonates, hydroxides, etc. It may be The substance containing a transition metal element may be a substance containing only one transition metal element, or may be a substance containing two or more transition metal elements simultaneously.
  • the substance containing a transition metal element can be used singly or in combination of two or more.
  • the amount of at least one transition metal element selected from the group consisting of iron and manganese is selected from the group consisting of iron and manganese, with the total amount of transition metal elements being 100 mol% It is necessary that the amount of at least one transition metal element be 50% by mole or more. That is, the amount of at least one transition metal element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Ti, Cr, Cu, Zn, Zr, Mo and W The total amount may be 100 mol%, and may be 0 to 50 mol%.
  • the mixing ratio of the lithium silicate compound represented by Li 2 SiO 3 to the substance containing the transition metal element is generally such that the total amount of transition metal elements is 0.9 to 1 with respect to 1 mol of the lithium silicate compound.
  • the amount is preferably 2 moles, and more preferably 0.95 to 1.1 moles.
  • a carbonate comprising at least one alkali metal carbonate selected from the group consisting of potassium carbonate, sodium carbonate, rubidium carbonate and cesium carbonate and lithium carbonate
  • the above-mentioned carbonate mixture, lithium silicate compound and substance containing transition metal element are mixed, uniformly mixed using a ball mill or the like, and then heated.
  • the carbonate mixture may be melted.
  • the reaction between the lithium silicate compound and the transition metal element proceeds, and the target lithium silicate compound can be obtained.
  • the mixing ratio of the raw material comprising the lithium silicate compound and the material containing the transition metal element to the carbonate mixture is not particularly limited, and an amount capable of uniformly dispersing the raw material in the molten salt of the carbonate mixture. It is preferable that the total amount of the lithium silicate compound and the substance containing the transition metal element is in the range of 100 to 300 parts by weight, for example, based on 100 parts by weight of the total amount of the carbonate mixture, More preferably, the amount is in the range of up to 250 parts by weight.
  • the reaction temperature of the lithium silicate compound and the substance containing a transition metal element in the molten salt of the carbonate mixture is preferably 400 to 650 ° C., and more preferably 450 to 600 ° C. Therefore, it is necessary to prepare the composition of the carbonate mixture so that the melting temperature of the carbonate mixture is below the desired reaction temperature.
  • the reaction described above is carried out under a mixed gas atmosphere containing carbon dioxide and a reducing gas, because the transition metal element is stably present as a divalent ion during the reaction. Under this atmosphere, it is possible to stably maintain the transition metal element in a divalent state.
  • the ratio of carbon dioxide to reducing gas may be, for example, 0.01 to 0.2 mol, preferably 0.03 to 0.1 mol, per mol of carbon dioxide.
  • As the reducing gas for example, hydrogen, carbon monoxide and the like can be used, and hydrogen is particularly preferable.
  • the pressure of the mixed gas of carbon dioxide and reducing gas is not particularly limited, and may be atmospheric pressure in general, but may be under pressure or under pressure.
  • the reaction time of the lithium silicate compound and the substance containing the transition metal element may be usually 0.1 to 30 hours, preferably 5 to 25 hours.
  • the target lithium silicate compound can be obtained by removing the alkali metal carbonate used as the flux.
  • the alkali metal carbonate may be dissolved and removed by washing the product using a solvent capable of dissolving the alkali metal carbonate.
  • a solvent capable of dissolving the alkali metal carbonate for example, it is possible to use water as the solvent, but in order to prevent the oxidation of the transition metal contained in the lithium silicate compound, it is preferable to use a non-aqueous solvent such as alcohol or acetone.
  • acetic anhydride and acetic acid in a weight ratio of 2: 1 to 1: 1.
  • This mixed solvent is excellent in dissolving and removing the alkali metal carbonate, and when acetic acid reacts with the alkali metal carbonate to generate water, acetic anhydride takes in water to generate acetic acid. Thus, the separation of water can be suppressed.
  • acetic anhydride and acetic acid first, acetic anhydride is mixed with a product, and after grinding using a mortar etc. and pulverizing particles, acetic acid is added in the state to which acetic anhydride is made to adapt to particles. Is preferred.
  • the water formed by the reaction of acetic acid and the alkali metal carbonate can be quickly reacted with acetic anhydride to reduce the chance of contact between the product and water, so the oxidation and decomposition of the target substance are effective. Can be suppressed.
  • Lithium Silicate-Based Compound The lithium silicate-based compound obtained by the method described above is Composition formula: Li 2 + a-b A b M 1-x M 'x SiO 4 + c (Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, M is at least one element selected from the group consisting of Fe and Mn, M ′ Is at least one element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Ti, Cr, Cu, Zn, Zr, Mo, and W.
  • the subscripts are as follows: It is a compound represented by 0: 0 ⁇ x ⁇ 0.5, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.3).
  • lithium ion in the molten salt intrudes into the lithium ion site of the lithium silicate compound by containing lithium carbonate in the molten salt, and the lithium ion is compared with the stoichiometric amount.
  • the compound contains an excess of Also, by performing the reaction at a relatively low temperature of 400 to 650 ° C. in the molten salt of the carbonate mixture, the growth of crystal grains is suppressed, and fine particles having an average particle diameter of 50 nm to 10 ⁇ m are obtained, and further impurities The amount of phase is greatly reduced. As a result, when it uses as a positive electrode active material of a lithium ion secondary battery, it becomes a material which has favorable cycling characteristics and high capacity
  • the lithium silicate-based compound obtained by the above-mentioned method has an average particle diameter in the range of 50 nm to 1 ⁇ m.
  • the average particle diameter is a value determined by a laser diffraction particle size distribution measuring apparatus (SALD 7100 manufactured by Shimadzu).
  • Carbon coating treatment Composition formula obtained by the above-mentioned method Li 2 + a ⁇ b A b M 1 ⁇ x M ′ x SiO 4 + c
  • the lithium silicate-based compound represented by the formula (1) is further coated with carbon to improve conductivity.
  • the specific method of the carbon coating treatment is not particularly limited, and a thermal decomposition method can also be applied by carbonizing the organic matter by heat treatment after uniformly mixing the organic matter serving as the carbon source and the lithium silicate compound.
  • a thermal decomposition method can also be applied by carbonizing the organic matter by heat treatment after uniformly mixing the organic matter serving as the carbon source and the lithium silicate compound.
  • the lithium silicate compound which is the positive electrode active material is amorphized by ball milling, uniformly mixed with carbon to increase adhesion, and heat treatment is performed to recrystallize the lithium silicate compound.
  • the half value width of the diffraction peak derived from the (011) plane of the sample having crystallinity before ball milling is B (011) Crystal
  • the half width of the peak of the sample obtained by ball milling is in the range of about 0.1-0.5 Just do it.
  • acetylene black (AB), ketjen black (KB), graphite or the like can be used as the carbon material.
  • the mixing ratio of the lithium silicate compound, the carbon material and the Li 2 CO 3 is 20 to 40 parts by weight of the carbon material and 20 to 40 parts by weight of the Li 2 CO 3 with respect to 100 parts by weight of the lithium silicate compound. do it.
  • heat treatment is performed.
  • the heat treatment is performed under a reducing atmosphere in order to keep the transition metal ions contained in the lithium silicate compound at a divalent value.
  • carbon dioxide is used to prevent reduction of the divalent transition metal ion to the metallic state, as in the synthesis reaction of the lithium silicate compound in the molten salt of the carbonate mixture. It is preferable to be in the mixed gas atmosphere of and reducing gas.
  • the mixing ratio of carbon dioxide and reducing gas may be the same as in the synthesis reaction of the lithium silicate compound.
  • the heat treatment temperature is preferably 500 to 800.degree. If the heat treatment temperature is too low, it is difficult to deposit carbon uniformly around the lithium silicate compound, while if the heat treatment temperature is too high, decomposition of the lithium silicate compound and lithium defects may occur, It is not preferable because the discharge capacity is reduced.
  • the heat treatment time may be usually 1 to 10 hours.
  • a carbon material and LiF are added to the above lithium silicate compound, and uniformly mixed until the lithium silicate compound is amorphized by a ball mill in the same manner as the above method, followed by heat treatment You may In this case, carbon is uniformly deposited around the lithium silicate compound at the same time as the recrystallization of the lithium silicate compound, as described above, and the conductivity is improved.
  • Composition formula Li 2 + a-b A b M 1-x M 'x SiO 4 + c-y F 2y (Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, M is Fe or Mn, and M ′ is Mg, Ca, Co, Al, Ni At least one element selected from the group consisting of Nb, Ti, Cr, Cu, Zn, Zr, Mo, and W.
  • Lithium silicate-based compound obtained by synthesizing a lithium ion secondary battery positive electrode described above was in the molten salt, lithium silicate-based compound was carbon coating treatment, and fluorine added lithium silicate-based compounds are all rechargeable lithium It can be effectively used as a battery positive electrode active material.
  • the positive electrode using these lithium silicate type compounds can be made into the structure similar to the normal positive electrode for lithium ion secondary batteries.
  • a conductive aid such as acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (VGCF), polyvinylidene fluoride (PolyVinylidine DiFluoride: PVdF)
  • a binder such as polytetrafluoroethylene (PTFE) or styrene-butadiene rubber (SBR) or a solvent such as N-methyl-2-pyrrolidone (NMP) to form a paste and apply it to the current collector Can produce a positive electrode.
  • the amount of the conductive aid used is not particularly limited, but can be, for example, 5 to 20 parts by weight with respect to 100 parts by weight of the lithium silicate compound.
  • the amount of the binder used is not particularly limited, but may be, for example, 5 to 20 parts by weight with respect to 100 parts by weight of the lithium silicate compound.
  • a mixture of a lithium silicate compound, the above-mentioned conductive aid and a binder is kneaded using a mortar or a press to form a film, which is crimped to a current collector with a press.
  • the positive electrode can also be produced by the following method.
  • the current collector is not particularly limited, and materials conventionally used as a positive electrode for lithium ion secondary batteries, such as aluminum foil, aluminum mesh, stainless steel mesh and the like can be used. Furthermore, carbon non-woven fabric, carbon woven fabric and the like can also be used as the current collector.
  • the positive electrode for a lithium ion secondary battery according to the present invention is not particularly limited in its shape, thickness and the like, but for example, the thickness is 10 to 200 ⁇ m, more preferably by filling the active material and compressing it. Is preferably 20 to 100 ⁇ m. Therefore, the loading amount of the active material may be appropriately determined according to the type, structure, and the like of the current collector to be used so as to obtain the above-mentioned thickness after compression.
  • Lithium silicate compound in charged or discharged state Lithium silicate compound obtained by reacting raw material compound in molten salt of carbonate mixture by the method described above, lithium silicate compound subjected to carbon coating treatment, and fluorine added
  • the lithium silicate-based compound is used as a positive electrode active material for a lithium ion secondary battery to produce a lithium ion secondary battery, and charge and discharge are performed to change its crystal structure.
  • the lithium silicate compound synthesized in the molten salt has an unstable structure and a small charge capacity, but a stable charge / discharge capacity can be obtained by changing the structure and stabilizing it by charge and discharge. It will be. Once charge and discharge are performed to change the crystal structure of the lithium silicate compound, different crystal structures are obtained in the charged state and the discharged state, but high stability can be maintained.
  • Stabilization of this structure is carried out in the lithium silicate compound by the alkali metal ions (Na, K) not involved in charge and discharge replacing part of the Li site when synthesizing the lithium silicate compound by the molten salt method. It is considered that the crystal structure is stabilized by the introduction thereof, and the crystal structure is maintained even if Li is charged and discharged. Furthermore, since the ionic radius of Na (about 0.99 ⁇ ) and the ionic radius of K (about 1.37 ⁇ ) are larger than the ionic radius of Li (about 0.590 ⁇ ), migration of Li is facilitated and insertion of Li -It is thought that the amount of desorption increases and as a result leads to the improvement of charge and discharge capacity.
  • Na alkali metal ions
  • constant current charging and discharging may be performed using a current value of 0.1 C with respect to the battery capacity.
  • the voltage at the time of charge and discharge may be determined in accordance with the constituent elements of the lithium ion secondary battery, but normally, it can be about 4.5 V to 1.0 V and about 4.2 V to 1.5 V. It is preferable to do.
  • a lithium silicate compound in a charged state obtained by performing constant current charging to 4.2 V for a lithium ion secondary battery using the iron-containing lithium silicate compound as a positive electrode active material and lithium metal as a negative electrode material Is represented by a composition formula: Li 1 + ab A b FeSiO 4 + c (wherein, A, a, b and c are the same as above).
  • the compound is subjected to X-ray diffraction measurement using an X-ray having a wavelength of 0.7 ⁇ , the relative intensities of the five diffraction peaks having the highest relative intensity in the range of 5 ° to 40 ° of the diffraction angle (2 ⁇ )
  • the diffraction angle and the half width have the following values, respectively.
  • the diffraction angle and the half width are within the range of about ⁇ 0.03 degrees of the following values.
  • First peak relative intensity 100%, diffraction angle 10.10 degrees, half width 0.11 degree
  • Second peak relative intensity 81%, diffraction angle 16.06 degrees, half width 0.10 degree
  • Third peak relative intensity 76%, diffraction angle 9.88 °, half width 0.14 °
  • Fourth peak relative intensity 58%, diffraction angle 14.54 °, half width 0.16 °
  • Fifth peak relative intensity 47%, diffraction angle 15.50 degrees, half width 0.12 degrees
  • the above-described diffraction peak is different from the diffraction peak of the iron-containing lithium silicate compound synthesized in the molten salt, and it can be confirmed that the crystal structure is changed by charging.
  • the above-mentioned diffraction peak can be measured, for example, by the following method.
  • the charged electrode is washed with a chain carbonate solvent several times to remove impurities attached to the electrode surface. Thereafter, vacuum drying is performed, and the electrode layer (not including the current collector) is peeled off from the obtained electrode, filled in a glass capillary, and sealed using an epoxy resin adhesive. Thereafter, the lithium silicate compound in a charged state can be confirmed by measuring an X-ray diffraction pattern using an X-ray having a wavelength of 0.7 ⁇ . At this time, for example, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) or the like can be used as the chain carbonate solvent.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the lithium silicate-based compound in the obtained discharge state has a composition formula: Li 2 + a-b A b FeSiO 4 + c (wherein, A, a, b and c are as defined above).
  • the compound is subjected to X-ray diffraction measurement using an X-ray having a wavelength of 0.7 ⁇ , the relative intensities of the five diffraction peaks having the highest relative intensity in the range of 5 ° to 40 ° of the diffraction angle (2 ⁇ )
  • the diffraction angle and the half width have the following values, respectively.
  • the diffraction angle and the half width are within the range of about ⁇ 0.03 degrees of the following values.
  • First peak relative intensity 100%, diffraction angle 16.07 degrees, half width 0.08 degree
  • Second peak relative intensity 71%, diffraction angle 14.92 degrees, half width 0.17 degrees
  • Third peak relative intensity 44%, diffraction angle 10.30 °, half width 0.08 °
  • Fourth peak relative intensity 29%, diffraction angle 9.82 °, half width 0.11 ° 5th peak: relative intensity 26%, diffraction angle 21.98 °, half width 0.14 °
  • the above-mentioned diffraction peak is different from the diffraction peak of the iron-containing lithium silicate compound synthesized in the molten salt and the diffraction peak of the iron-containing lithium silicate compound after charging, and the crystal structure is also changed by the discharge. It can be confirmed.
  • the lithium silicate-based compound in a charged state obtained by performing constant current charging up to 4.2 V for a lithium ion secondary battery using the lithium silicate-based compound as a positive electrode active material and lithium metal as a negative electrode material is It will be represented by a composition formula: Li 1 + a ⁇ b A b MnSiO 4 + c (wherein, A, a, b and c are the same as above).
  • the compound is subjected to X-ray diffraction measurement using an X-ray having a wavelength of 0.7 ⁇ , the relative intensities of the five diffraction peaks having the highest relative intensity in the range of the diffraction angle (2 ⁇ ) of 5 to 40 degrees
  • the diffraction angle and the half width have the following values, respectively.
  • the diffraction angle and the half width are within the range of about ⁇ 0.03 degrees of the following values.
  • First peak relative intensity 100%, diffraction angle 8.15 degrees, half width 0.18 degrees
  • Second peak relative intensity 64%, diffraction angle 11.60 degrees, half width 0.46 degrees
  • Third peak relative intensity 41%, diffraction angle 17.17 degrees, half width 0.18 degrees
  • Fourth peak relative intensity 37%, diffraction angle 11.04 °, half width 0.31 °
  • Fifth peak relative intensity 34%, diffraction angle 19.87 °, half width 0.29 °
  • the above-described diffraction peak is different from the manganese-containing lithium silicate compound synthesized in the molten salt, and it can be confirmed that the crystal structure is changed by charging.
  • the manganese-containing lithium silicate-based compound charged to 4.2 V by the above-described method is subjected to constant current discharge to 1.5 V, and the obtained manganese-containing lithium silicate-based compound in a discharged state has a composition formula: Li 2 + a ⁇ b A b MnSiO 4 + c (wherein, A, a, b and c are as defined above).
  • the compound is subjected to X-ray diffraction measurement using an X-ray having a wavelength of 0.7 ⁇
  • the diffraction angle and the half width have the following values, respectively.
  • the diffraction angle and the half width are within the range of about ⁇ 0.03 degrees of the following values.
  • First peak relative intensity 100%, diffraction angle 8.16 degrees, half width 0.22 degrees
  • Second peak relative intensity 71%, diffraction angle 11.53 degrees, half width 0.40 degrees
  • Third peak relative intensity 67%, diffraction angle 11.66, half width 0.53
  • Fourth peak relative intensity 61%, diffraction angle 11.03 degrees, half width 0.065 degrees
  • Fifth peak relative intensity 52%, diffraction angle 11.35 degrees, half width 0.70 degrees
  • the above-mentioned diffraction peak is different from the diffraction peak of the manganese-containing lithium silicate compound synthesized in the molten salt and the diffraction peak of the manganese-containing lithium silicate compound after charging, and the crystal structure is also changed by the discharge. It can be confirmed.
  • the substitution amount of the element A that is, the value of b is preferably about 0.0001 to 0.05, 0. More preferably, it is about 0005 to 0.02.
  • a lithium ion secondary battery using the above-described positive electrode for lithium ion secondary battery can be manufactured by a known method. That is, as the positive electrode material, the above-described positive electrode is used, and as the negative electrode material, known metal lithium, carbon based material such as graphite, silicon based material such as silicon thin film, alloy based material such as copper-tin or cobalt-tin, An oxide material such as lithium titanate is used, and as an electrolytic solution, lithium perchlorate, LiPF 6 , LiBF 4 , LiCF 3 SO 3 can be used as a non-aqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate etc.
  • the lithium ion secondary battery is prepared according to a conventional method using a solution in which the lithium salt such as is dissolved at a concentration of 0.5 mol / L to 1.7 mol / L and further using other known battery components. It should be assembled.
  • the lithium silicate-based compound obtained by the method of the present invention is obtained by using a raw material that is inexpensive, has a large amount of resources, and has low environmental impact, and is used as a positive electrode active material of a lithium ion secondary battery. It is a material that can suppress the release of oxygen.
  • lithium silicate compound as a positive electrode active material for a lithium ion secondary battery, charge and discharge are performed to change and stabilize the crystal structure of the lithium silicate compound, thereby achieving stable charge and discharge capacity. It becomes the positive electrode active material which it has.
  • FIG. 1 shows the X-ray diffraction pattern of the product of Example 1.
  • the product of Example 1, acetylene black and Li 2 CO 3 were added and mixed, the drawings showing an X-ray diffraction pattern of the product after heat treatment.
  • BRIEF DESCRIPTION OF THE DRAWINGS The drawing which shows the XRD pattern obtained by emission light measurement about the iron containing lithium silicate type-compound obtained in Example 1, this compound of a charge condition, and this compound of a discharge condition.
  • Example 1 Synthesis of lithium excess silicate type compound and charge / discharge characteristics of battery using the same ⁇ iron-containing lithium silicate compound>
  • iron oxalate FeC 2 O 4 ⁇ 2 H 2 O Sigma Aldrich, purity 99.99%) 0.03 mol and lithium silicate Li 2 SiO 3 (Kishida Chemical, purity 99.5%)
  • It is a carbonate mixture lithium carbonate (Kishida Chemical, purity 99.9%), sodium carbonate (Kishida Chemical, purity 99.5%), and potassium carbonate (Kishida Chemical, purity) using 0.03 mol. 99.5%) were mixed with a molar ratio of 0.435: 0.315: 0.25).
  • the mixing ratio was such that the total amount of iron oxalate and lithium silicate was 225 parts by weight with respect to 100 parts by weight of the carbonate mixture.
  • the temperature was lowered, and when the temperature reached 500 ° C., the entire reactor core as a reaction system was removed from the electric furnace as the heater and quenched to room temperature while passing the gas.
  • acetic anhydride (20 ml) was added to the product and the mixture was triturated in a mortar, acetic acid (10 ml) was added, a carbonate salt and the like were reacted and removed, and filtered to obtain a powder of an iron-containing lithium silicate compound.
  • the obtained product was subjected to X-ray diffraction measurement using a CuK ⁇ ray by a powder X-ray diffractometer.
  • the XDR pattern is shown in FIG.
  • the XDR pattern was almost consistent with a reported of space group P2 1 monoclinic Li 2 FeSiO 4 patterns.
  • FIG. 2 a scanning electron microscope (SEM) photograph of the product is shown in FIG. From FIG. 2, it can be confirmed that the product is a powder composed of crystal grains of about 200 nm or less.
  • the composition formula is Li 1.970 Na 0.017 K 0.024 Fe 1.066 SiO 4.156 It could be confirmed that the Li 2 FeSiO 4 -based lithium silicate based compound was in excess of lithium.
  • AB acetylene black
  • Li 2 CO 3 Li 2 CO 3
  • the XDR pattern of the product after heat treatment is shown in FIG.
  • the XDR pattern shown in FIG. 3 is in good agreement with the XDR pattern of the sample before heat treatment, and the lithium excess silicate compound after heat treatment maintains the crystal structure without being decomposed by the above heat treatment It could be confirmed.
  • the iron-containing lithium silicate-based compound obtained by synthesis in the molten salt has different crystal structures corresponding to the charged state and the discharged state, respectively, by performing charging and discharging. I understand that.
  • Example 2 Manganese-Containing Lithium Silicate Compounds
  • iron oxalate used in Example 1
  • manganese oxalate was used, and a powder of a manganese-containing lithium silicate-based compound was obtained under the same synthesis conditions as in Example 1.
  • the obtained product was subjected to X-ray diffraction measurement using a CuK ⁇ ray by a powder X-ray diffractometer.
  • XDR pattern of this product was nearly consistent with the space group Pmn2 1 orthorhombic of XDR pattern.
  • the product is a powder consisting of crystal grains of about 200 nm or less.
  • the composition formula is Li 1.980 Na 0.016 K 0.025 Mn 1.062 SiO 4.151 , It could be confirmed that the lithium-rich Li 2 MnSiO 4 -based lithium silicate compound was used.
  • the manganese-containing lithium silicate-based compound obtained by synthesis in the molten salt has different crystal structures corresponding to the charged state and the discharged state, respectively, by performing charging and discharging. It turns out that it becomes.
  • Example 3 Composition formula: Li 2+ in the same manner as in Example 1 except that instead of iron oxalate used in the method of Example 1, a transition metal component according to the target composition shown in Tables 9 and 10 below is used.
  • a-b a b M 1- x M 'x SiO 4 + c
  • M is, Fe and Mn
  • M ′ is selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Ti, Cr, Cu, Zn, Zr, V, Mo and W.
  • the subscripts are as follows: 0 ⁇ x ⁇ 0.5, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.3)
  • the lithium-rich silicate-based compound was synthesized.
  • iron oxalate FeC 2 O 4 .2H 2 O product of Sigma Aldrich, purity 99.99%
  • lithium silicate Li 2 SiO 3 product of Kishida Chemical, purity 99.5%
  • manganese oxalate Cobalt oxalate
  • magnesium sulfate nickel oxide, niobium oxide, calcium oxide, aluminum oxide, lithium molybdenum oxide, and lithium tungsten oxide
  • the same metal component as the target metal component ratio The number of moles of each raw material was adjusted to be the ratio.
  • about compounds other than lithium silicate it was used so that the total mole number of a metallic element may be set to 0.03 mol.
  • Example 4 fluorinated 50 parts by weight of acetylene black (hereinafter referred to as AB) and 20 parts by weight of LiF are added to 100 parts by weight of a product (lithium silicate compound) after removing a water-soluble substance such as carbonate in Example 3. Milling is performed for 5 hours at 450 rpm using a planetary ball mill (5 mm zirconia balls), and at 700 ° C.
  • a product lithium silicate compound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、炭酸カリウム、炭酸ナトリウム、炭酸ルビシウム及び炭酸セシウムからなる群から選ばれた少なくとも一種のアルカリ金属炭酸塩と炭酸リチウムとからなる炭酸塩混合物の溶融塩中で、二酸化炭素及び還元性ガスを含む混合ガス雰囲気下において、LiSiOで表される珪酸リチウム化合物と、鉄及びマンガンからなる群から選ばれた少なくとも一種の遷移金属元素を含む物質とを400~650℃で反応させることを特徴とする、リチウムシリケート系化合物の製造方法、及び該方法で得られたリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質を提供するものである。 本発明によれば、リチウムイオン二次電池用正極材料等として有用なリチウムシリケート系材料を比較的簡単な手段によって製造することが可能となる。

Description

リチウムシリケート系化合物の製造方法
 本発明は、リチウムイオン電池の正極活物質等として有用なリチウムシリケート系化合物の製造方法、及びこの方法で得られるリチウムシリケート系化合物の用途に関する。
 リチウム二次電池は、小型でエネルギー密度が高く、ポータブル電子機器の電源として広く用いられている。その正極活物質としては、主としてLiCoO2などの層状化合物が使われている。しかしながら、これらの化合物は満充電状態において、150℃前後で酸素が脱離しやすく、これが非水電解液の酸化発熱反応を引き起こしやすいという問題点がある。
 近年、正極活物質としては、リン酸オリビン系化合物LiMPO(LiMnPO、LiFePO、LiCoPOなど)が提案されている。これらの化合物は、LiCoOのような酸化物を正極活物質とする3価/4価の酸化還元反応の代わりに、2価/3価の酸化還元反応を用いることにより熱安定性を向上させ、さらに中心金属の周りに電気陰性度の大きいヘテロ元素のポリアニオンを配置することにより高放電電圧の得られる化合物として注目されている。
 しかしながら、リン酸オリビン系化合物からなる正極材料は、リン酸ポリアニオンの大きな分子量のため、その理論容量が170mAh/g程度に制限される。さらに、LiCoPOやLiNiPOは、動作電圧が高すぎて、その充電電圧に耐え得る電解液が無いという問題がある。
 そこで、安価で、資源量が多く、環境負荷が低く、高いリチウムイオンの理論充放電容量を有し、且つ高温時に酸素を放出しないカソード材料として、LiFeSiO(理論容量331.3mAh/g)、LiMnSiO(理論容量333.2mAh/g)等のリチウムシリケート系材料が注目されている。これらのシリケート系材料は、より高容量のリチウム二次電池の正極材料として期待されており、更に、ヘテロ元素であるSiの電気陰性度がPより小さいことを反映して、その放電電圧がリン酸系より約0.6V程度低く、シリケートのドープ元素としてCoやNiが使える可能性がある。
 これらのシリケート材料のうちで、現在報告されている最も高い充放電特性を示す材料は、LiFeSiOであり、160 mAh/g程度の容量を示すが、現行材料のLiFePOの理論容量169.9mAh/gを超えるまでの充放電特性を得るに至っていない。
 上記したシリケート系化合物の合成法としては、水熱合成法と固相反応法が知られている。これらの方法の内で、水熱合成法によれば、粒径1~10nm程度の微粒子を得ることが可能であるが、ドープ元素が固溶し難く、不純物相が混在し易いという問題がある。
 一方、固相反応法では、1000℃以上という高温で長時間反応させることが必要であり、ドープ元素を固溶させることは可能であるが、結晶粒が10μm以上と大きくなり、イオンの拡散が遅いという問題につながる。しかも、高温で反応させるため、冷却過程において固溶しきれないドープ元素が析出して不純物が生成し、抵抗が高くなるという問題がある。更に、高温まで加熱するために、リチウム欠損や酸素欠損のシリケート系化合物ができ、容量の増加やサイクル特性の向上が難しいという問題もある (下記特許文献1~4等参考)。
特開2008-218303号公報 特開2007-335325号公報 特開2001-266882号公報 特開2008-293661号公報
 本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、リチウムイオン二次電池用正極材料等として有用なリチウムシリケート系材料について、サイクル特性、容量等が改善された、優れた性能を有する材料を比較的簡単な手段によって製造できる方法を提供することである。
 本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、炭酸リチウムとその他のアルカリ金属炭酸塩との混合物の溶融塩中で、還元性ガスと二酸化炭素の混合ガス雰囲気下において、LiSiOと、鉄及びマンガンからなる群から選ばれた少なくとも一種の遷移金属元素を含む物質とを反応させる方法によれば、比較的穏和な条件下において、鉄又はマンガンを含むリチウムシリケート系化合物を得ることができることを見出した。そして、得られたリチウムシリケート系化合物は、微細で不純物相が少なく、リチウム原子を過剰に含むシリケート系化合物となり、リチウムイオン二次電池の正極活物質として用いる場合に、サイクル特性が良好で、高容量を有する材料となることを見出し、ここに本発明を完成するに至った。
 即ち、本発明は、下記のリチウムシリケート系化合物の製造方法、及びこの方法で得られたリチウムシリケート系化合物とその用途を提供するものである。
1. 炭酸カリウム、炭酸ナトリウム、炭酸ルビシウム及び炭酸セシウムからなる群から選ばれた少なくとも一種のアルカリ金属炭酸塩と炭酸リチウムとからなる炭酸塩混合物の溶融塩中で、二酸化炭素及び還元性ガスを含む混合ガス雰囲気下において、LiSiOで表される珪酸リチウム化合物と、鉄及びマンガンからなる群から選ばれた少なくとも一種の遷移金属元素を含む物質とを400~650℃で反応させることを特徴とする、リチウムシリケート系化合物の製造方法。
2. 遷移金属元素を含む物質が、遷移金属元素の合計量を100モル%として、鉄及びマンガンからなる群から選ばれた少なくとも一種の遷移金属元素を50~100モル%と、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、Mo及びWからなる群から選ばれた少なくとも一種の遷移金属元素を0~50モル%含むものである上記項1に記載の製造方法。
3. 上記項1又は2の方法でリチウムシリケート系化合物を製造した後、フラックスとして用いたアルカリ金属炭酸塩を溶媒により除去する工程を含む、リチウムシリケート系化合物の製造方法。
4. 形成されるリチウムシリケート系化合物が、
   組成式:Li2+a-b 1-xM’SiO4+c
(式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、Mは、Fe及びMnからなる群から選ばれた少なくとも一種の元素であり、M’は、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、Mo及びWからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3)で表される化合物である、上記項1~3のいずれかに記載のリチウムシリケート系化合物の製造方法。
5. 上記項1~4のいずれかの方法で得られたリチウムシリケート系化合物に、カーボン材料とLiCOを加え、ボールミルによってアモルファス化するまで混合した後、還元性雰囲気下において熱処理を行うことを特徴とする、導電性の向上したリチウムシリケート系化合物の製造方法。
6. 上記項1~4のいずれかの方法で得られたリチウムシリケート系化合物に、カーボン材料、及びLiFを加え、ボールミルによってアモルファス化するまで混合した後、還元性雰囲気下において熱処理を行うことを特徴とする、
 組成式:Li2+a-b 1-xM’SiO4+c-y2y
(式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、Mは、Fe又はMnであり、M’は、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、Mo及びWからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3、0<y<1)で表されるフッ素含有リチウムシリケート系化合物の製造方法。
7. 上記項1~6のいずれかの方法によって得られたリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質。
8. 上記項1~6のいずれかの方法によって得られたリチウムシリケート系化合物をリチウムイオン二次電池用正極活物質として用いて、充電を行って得られるリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質。
9. 充電を行って得られるリチウムシリケート系化合物が、リチウム金属を負極として4.2Vまで充電した状態において、
    組成式:Li1+a-b FeSiO4+c
(式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0<a<1、0≦b<0.2、0<c<0.3)で表され、波長0.7ÅのX線を用いてX線回折測定した場合に、回折角(2θ)が5度から40度の範囲において、下記の回折角の近傍に第1ピーク~第5ピークを有する化合物である、上記項8に記載のリチウムイオン二次電池用活物質リチウムイオン二次電池用正極活物質:
 第1ピーク:10.10度
 第2ピーク:16.06度
 第3ピーク:9.8度
 第4ピーク:14.54度
 第5ピーク:15.50度。
10. 充電を行って得られるリチウムシリケート系化合物が、リチウム金属を負極として4.2Vまで充電した状態において、
 組成式:Li1+a-b AMnSiO4+c
 (式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0<a<1、0≦b<0.2、0<c<0.3)で表され、波長0.7ÅのX線を用いてX線回折測定した場合に、回折角(2θ)が5度から40度の範囲において、下記の回折角の近傍に第1ピーク~第5ピークを有する化合物である、上記項8に記載のリチウムイオン二次電池用活物質リチウムイオン二次電池用正極活物質:
 第1ピーク:回折角8.15度
 第2ピーク:回折角11.60度
 第3ピーク:回折角17.17度
 第4ピーク:回折角11.04度
 第5ピーク:回折角19.87度。
11. 上記項1~6のいずれかの方法によって得られたリチウムシリケート系化合物をリチウムイオン二次電池用正極活物質として用いて、充電した後、放電して得られるリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質。
12. 放電して得られるリチウムシリケート系化合物が、リチウム金属を負極として1.5Vまで放電した状態において、
     組成式:Li2+a-b FeSiO4+c
(式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0<a<1、0≦b<0.2、0<c<0.3)で表され、波長0.7ÅのX線を用いてX線回折測定した場合に、回折角(2θ)が5度から40度の範囲において、下記の回折角の近傍に第1ピーク~第5ピークを有する化合物である、上記項11に記載のリチウムイオン二次電池用正極活物質:
 第1ピーク:回折角16.07度
 第2ピーク:回折角14.92度
 第3ピーク:回折角10.30度
 第4ピーク:回折角9.82度
 第5ピーク:回折角21.98度。
13. 放電して得られるリチウムシリケート系化合物が、リチウム金属を負極として1.5Vまで放電した状態において、
     組成式:Li2+a-b MnSiO4+c
 (式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0<a<1、0≦b<0.2、0<c<0.3)で表され、波長0.7ÅのX線を用いてX線回折測定した場合に、回折角(2θ)が5度から40度の範囲において、下記の回折角の近傍に第1ピーク~第5ピークを有する化合物である、上記項11に記載のリチウムイオン二次電池用正極活物質:
 第1ピーク:回折角8.16度
 第2ピーク:回折角11.53度
 第3ピーク:回折角11.66度
 第4ピーク:回折角11.03度
 第5ピーク:回折角11.35度。
14. 上記項1~6のいずれかの方法によって得られたリチウムシリケート系化合物を活物質として含むリチウム二次電池用正極。
15. 上記項14に記載の正極を構成要素として含むリチウム二次電池。
 以下、本発明のリチウムシリケート系化合物の製造方法について具体的に説明する。
 溶融塩の組成
 本発明のリチウムシリケート系化合物の製造方法では、炭酸カリウム(KCO)、炭酸ナトリウム(NaCO)、炭酸ルビシウム(RbCO)及び炭酸セシウム(CsCO)からなる群から選ばれた少なくとも一種のアルカリ金属炭酸塩と、炭酸リチウム(LiCO)とからなる炭酸塩混合物の溶融塩中において、リチウムシリケート系化合物の合成反応を行うことが必要である。炭酸リチウム単独では、溶融温度は700℃程度であるが、炭酸リチウムとその他のアルカリ金属炭酸塩との混合物の溶融塩とする場合には、650℃を下回る溶融温度とすることができ、400~650℃という比較的低い反応温度において、目的とするリチウムシリケート系化合物を合成することが可能となる。その結果、リチウムシリケートの合成反応時に粒成長が抑制されて微細なリチウムシリケート系化合物が形成される。また、炭酸塩混合物の溶融塩中において上記した条件で反応させる場合には、不純物相の形成が少なく、しかも炭酸塩混合物中に炭酸リチウムが含まれていることによって、リチウム原子を過剰に含むリチウムシリケート系化合物が形成される。この様にして得られるリチウムシリケート化合物は、良好なサイクル特性と高い容量を有するリチウムイオン電池用正極材料となる。
 炭酸カリウム、炭酸ナトリウム、炭酸ルビシウム及び炭酸セシウムからなる群から選ばれた少なくとも一種のアルカリ金属炭酸塩と、炭酸リチウムとの混合割合は、形成される溶融塩の溶融温度が650℃を下回る温度となるようにすればよい。該炭酸塩混合物中における炭酸リチウムの比率については、特に限定的ではないが、通常、該炭酸塩混合物の全モル数を基準として、30モル%以上、特に30~70モル%であることが好ましい。
 該炭酸塩混合物の一例としては、炭酸リチウム30~70モル%、炭酸ナトリウム0~60モル%及び炭酸カリウム0~50モル%からなる混合物を挙げることができる。このような炭酸塩混合物の好ましい例としては、炭酸リチウム40~45モル%、炭酸ナトリウム30~35モル%及び炭酸カリウム20~30モル%からなる混合物、炭酸リチウム50~55モル%及び炭酸ナトリウ45~50モル%からなる混合物、炭酸リチウム60~65モル%及び炭酸カリウム35~40モル%からなる混合物等を挙げることができる。
 原料化合物
 本発明では、原料としては、LiSiOで表される珪酸リチウム化合物と、鉄及びマンガンからなる群から選ばれた少なくとも一種の遷移金属元素を含む物質を用いる。
 鉄を含む物質とマンガンを含む物質については、特に限定的ではなく、金属状態の鉄、金属状態のマンガン、2価までの価数の鉄を含む化合物、2価までの価数のマンガンを含む化合物等を用いることができる。特に、反応時に2価の鉄又は2価のマンガンの状態に維持されやすいように、シュウ酸鉄、シュウ酸マンガンなどのシュウ酸塩を用いることが好ましい。鉄を含む物質とマンガンを含む物質は、いずれか一方又は両方を混合して用いることができる。
 本発明では、上記した鉄及びマンガンからなる群から選ばれた少なくとも一種の遷移金属元素を含む物質が必須であるが、更に、必要に応じて、その他の遷移金属元素を含む物質を用いることができる。その他の遷移金属元素を含む物質としては、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、Mo及びWからなる群から選ばれた少なくとも一種の遷移金属元素を含む物質を例示できる。これらの遷移金属元素を含む物質は、金属状態の遷移金属元素であってもよく、或いは、2価までの価数の遷移金属元素を含む化合物、例えば、硫酸塩、炭酸塩、水酸化物などであってもよい。遷移金属元素を含む物質は、遷移金属元素を一種のみ含む物質であってもよく、或いは、二種以上の遷移金属元素を同時に含む物質であってもよい。遷移金属元素を含む物質は、一種単独又は二種以上混合して用いることができる。
 遷移金属元素を含む物質において、鉄及びマンガンからなる群から選ばれた少なくとも一種の遷移金属元素の量は、遷移金属元素の合計量を100モル%として、鉄及びマンガンからなる群から選ばれた少なくとも一種の遷移金属元素が50モル%以上であることが必要である。即ち、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、Mo及びWからなる群から選ばれた少なくとも一種の遷移金属元素の量は、遷移金属元素の合計量を100モル%として、0~50モル%とすることができる。
 LiSiOで表される珪酸リチウム化合物と、遷移金属元素を含む物質との混合割合については、通常、珪酸リチウム化合物1モルに対して、遷移金属元素の合計量が0.9~1.2モルとなる量とすることが好ましく、0.95~1.1モルとなる量とすることがより好ましい。
 リチウムシリケート化合物の製造方法
 本発明のリチウムシリケート化合物の製造方法では、炭酸カリウム、炭酸ナトリウム、炭酸ルビシウム及び炭酸セシウムからなる群から選ばれた少なくとも一種のアルカリ金属炭酸塩と炭酸リチウムとからなる炭酸塩混合物の溶融塩中で、二酸化炭素及び還元性ガスを含む混合ガス雰囲気下において、LiSiOで表される珪酸リチウム化合物と、鉄及びマンガンからなる群から選ばれた少なくとも一種の遷移金属元素を含む物質とを400~650℃で反応させることが必要である。
 具体的な反応方法については特に限定的ではないが、通常は、上記した炭酸塩混合物、珪酸リチウム化合物及び遷移金属元素を含む物質を混合し、ボールミル等を用いて均一に混合した後、加熱して炭酸塩混合物を溶融させればよい。これにより、溶融した炭酸塩中において、珪酸リチウム化合物と遷移金属元素との反応が進行して、目的とするリチウムシリケート系化合物を得ることができる。
 この際、珪酸リチウム化合物と遷移金属元素を含む物質からなる原料と、炭酸塩混合物との混合割合については特に限定的ではなく、炭酸塩混合物の溶融塩中において、原料を均一に分散できる量であればよく、例えば、炭酸塩混合物の合計量100重量部に対して、珪酸リチウム化合物と遷移金属元素を含む物質の合計量が100~300重量部の範囲となる量であることが好ましく、175~250重量部の範囲となる量であることがより好ましい。
 炭酸塩混合物の溶融塩中における珪酸リチウム化合物と遷移金属元素を含む物質との反応温度は、400~650℃とすることが好ましく、450~600℃とすることがより好ましい。従って、炭酸塩混合物の溶融温度が目的とする反応温度を下回るように、炭酸塩混合物の組成を調製することが必要である。
 上記した反応は、反応時において、遷移金属元素が2価イオンとして安定に存在するために、二酸化炭素及び還元性ガスを含む混合ガス雰囲気下で行う。この雰囲気下では、遷移金属元素を2価の状態で安定に維持することが可能となる。二酸化炭素と還元性ガスの比率については、例えば、二酸化炭素1モルに対して還元性ガスを0.01~0.2モルとすればよく、0.03~0.1モルとすることが好ましい。還元性ガスとしては、例えば、水素、一酸化炭素などを用いることができ、水素が特に好ましい。
 二酸化炭素と還元性ガスの混合ガスの圧力については、特に限定はなく、通常、大気圧とすればよいが、加圧下、或いは減圧下のいずれであっても良い。
 珪酸リチウム化合物と遷移金属元素を含む物質との反応時間は、通常、0.1~30時間とすればよく、好ましくは5~25時間とすればよい。
 上記した反応を行った後、フラックスとして用いたアルカリ金属炭酸塩を除去することによって、目的とするリチウムシリケート系化合物を得ることができる。
 アルカリ金属炭酸塩を除去する方法としては、アルカリ金属炭酸塩を溶解できる溶媒を用いて、生成物を洗浄することによって、アルカリ金属炭酸塩を溶解除去すればよい。例えば、溶媒として、水を用いることも可能であるが、リチウムシリケート系化合物に含まれる遷移金属の酸化を防止するために、アルコール、アセトンなどの非水溶媒等を用いることが好ましい。特に、無水酢酸と酢酸とを重量比で2:1~1:1の割合で用いることが好ましい。この混合溶媒は、アルカリ金属炭酸塩を溶解除去する作用に優れていることに加えて、酢酸がアルカリ金属炭酸塩と反応して水が生成した場合に、無水酢酸が水を取り込んで酢酸を生じることによって、水が分離することを抑制できる。尚、無水酢酸と酢酸を用いる場合には、まず、無水酢酸を生成物に混合して、乳鉢等を用いてすりつぶして粒子を細かくした後、無水酢酸を粒子になじませた状態で酢酸を加えることが好ましい。この方法によれば、酢酸とアルカリ金属炭酸塩とが反応して生成した水が速やかに無水酢酸と反応して、生成物と水が触れ合う機会を低減できるので、目的物の酸化と分解を効果的に抑制することができる。
 リチウムシリケート系化合物
 上記した方法によって得られるリチウムシリケート系化合物は、
   組成式:Li2+a-b A1-xM’SiO4+c
(式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、Mは、Fe及びMnからなる群から選ばれた少なくとも一種の元素であり、M’は、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、Mo及びWからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3)で表される化合物である。
 該化合物は、溶融塩中にリチウム炭酸塩が含まれていることにより、溶融塩中のリチウムイオンが、リチウムシリケート化合物のLiイオンサイトに浸入して、化学量論量と比較して、Liイオンを過剰に含む化合物となる。また、炭酸塩混合物の溶融塩中において、400~650℃という比較的低温で反応を行うことによって、結晶粒の成長が抑制され、平均粒径が50nm~10μmという微細な粒子となり、更に、不純物相の量が大きく減少する。その結果、リチウムイオン二次電池の正極活物質として用いる場合に、良好なサイクル特性と高容量を有する材料となる。上記した方法で得られるリチウムシリケート系化合物は、特に、平均粒径が50nm~1μmの範囲内にあるものが好ましい。尚、本明細書では、平均粒径は、レーザー回折粒度分布測定装置(島津製 SALD 7100)によって求めた値である。
 カーボン被覆処理
 上記した方法で得られる組成式:Li2+a-b A1-xM’SiO4+c
で表されるリチウムシリケート系化合物は、更に、カーボンによる被覆処理を行って導電性を向上させることが好ましい。
 カーボン被覆処理の具体的な方法については、特に限定的ではなく、炭素源となる有機物とリチウムシリケート系化合物とを均一に混合した後、熱処理によって有機物を炭化させることによる熱分解法も適用可能であるが、特に、上記リチウムシリケート化合物に、カーボン材料とLiCOを加え、ボールミルによってリチウムシリケート系化合物がアモルファス化するまで均一に混合した後、熱処理を行うボールミリング法を適用することが好ましい。この方法によれば、ボールミリングによって正極活物質であるリチウムシリケート系化合物がアモルファス化され、カーボンと均一に混合されて密着性が増加し、更に熱処理により、該リチウムシリケート系化合物の再結晶化と同時にカーボンが該リチウムシリケート系化合物の周りに均一に析出して被覆することができる。この際、LiCOが存在することにより、リチウム過剰シリケート系化合物がリチウム欠損になることはなく、高い充放電容量を示すものとなる。
 アモルファス化の程度については、CuのKα線を光源とするX線回折測定において、ボールミリング前の結晶性を有する試料についての(011)面由来の回折ピークの半値幅をB(011)Crystal、ボールミリングにより得られた試料の同ピークの半値幅をB(011)millとした場合に、B(011)Crystal/B(011)millの比が0.1~0.5程度の範囲であればよい。
 この方法では、カーボン材料としては、 アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛等を用いることができる。
 リチウムシリケート系化合物、カーボン材料及びLiCOの混合割合については、リチウムシリケート系化合物100重量部に対して、カーボン系材料を20~40重量部、LiCOを20~40重量部とすればよい。
 リチウムシリケート化合物がアモルファス化するまでボールミリング処理を行った後、熱処理を行う。熱処理は、リチウムシリケート化合物に含まれる遷移金属イオンを2価に保持するために、還元性雰囲気下で行う。この場合の還元性雰囲気としては、炭酸塩混合物の溶融塩中でのリチウムシリケート系化合物の合成反応と同様に、2価の遷移金属イオンが金属状態まで還元されることを抑制するめに、二酸化炭素と還元性ガスの混合ガス雰囲気中であることが好ましい。二酸化炭素と還元性ガスの混合割合は、リチウムシリケート化合物の合成反応時と同様とすればよい。
 熱処理温度は、500~800℃とすることが好ましい。熱処理温度が低すぎる場合には、リチウムシリケート化合物の周りにカーボンを均一に析出させることが難しく、一方、熱処理温度が高すぎると、リチウムシリケート系化合物の分解やリチウム欠損が生じることがあり、充放電容量が低下するので好ましくない。
 熱処理時間は、通常、1~10時間とすればよい。
 また、その他のカーボン被覆処理方法として、上記リチウムシリケート系化合物に、カーボン材料とLiFを加え、上記した方法と同様にして、ボールミルによってリチウムシリケート系化合物がアモルファス化するまで均一に混合した後、熱処理を行っても良い。この場合には、上記した場合と同様に、リチウムシリケート系化合物の再結晶化と同時にカーボンが該リチウムシリケート系化合物の周りに均一に析出して被覆して、導電性が向上し、更に、リチウムシリケート系化合物の酸素原子の一部がフッ素原子と置換して、
 組成式:Li2+a-b A1-xM’SiO4+c-y2y
(式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、Mは、Fe又はMnであり、M’は、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、Mo及びWからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3、0<y<1)で表されるフッ素含有リチウムシリケート系化合物が形成される。
 この化合物は、Fが添加されたことにより、正極として用いた場合に、平均電圧が2.6Vから2.8Vに上昇して、より優れた性能を有する正極材料となる。この際、LiFが存在することにより、リチウム過剰シリケート系化合物がリチウム欠損になることはなく、高い充放電容量を示すものとなる。
 この方法では、リチウムシリケート系化合物、カーボン材料及びLiFの混合割合については、リチウムシリケート系化合物100重量部に対して、カーボン系材料を20~40重量部、LiFを10~40重量部とすればよい。更に、必要に応じて、LiCOが含まれていても良い。ボールミリング及び熱処理の条件については、上記した場合と同様とすればよい。
 リチウムイオン二次電池用正極
 上記した溶融塩中で合成して得られるリチウムシリケート系化合物、カーボン被覆処理を行ったリチウムシリケート系化合物、及びフッ素添加されたリチウムシリケート系化合物は、いずれもリチウム二次電池正極用活物質として有効に使用できる。これらのリチウムシリケート系化合物を用いる正極は、通常のリチウムイオン二次電池用正極と同様の構造とすることができる。
 例えば、上記リチウムシリケート系化合物に、アセチレンブラック(AB)、ケッチェンブラック(KB)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)等の導電助剤、ポリフッ化ビニリデン(PolyVinylidine DiFluoride:PVdF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)等のバインダー、N-メチル-2-ピロリドン(NMP)等の溶媒を加えてペースト状として、これを集電体に塗布することによって正極を作製することができる。導電助剤の使用量については、特に限定的ではないが、例えば、リチウムシリケート系化合物100重量部に対して、5~20重量部とすることができる。また、バインダーの使用量についても、特に限定的ではないが、例えば、リチウムシリケート系化合物100重量部に対して、5~20重量部とすることができる。また、その他の方法として、リチウムシリケート系化合物と、上記の導電助剤およびバインダーを混合したものを、乳鉢やプレス機を用いて混練してフィルム状とし、これを集電体へプレス機で圧着する方法によっても正極を製造することが出来る。
 集電体としては、特に限定はなく、従来からリチウムイオン二次電池用正極として使用されている材料、例えば、アルミ箔、アルミメッシュ、ステンレスメッシュなどを用いることができる。更に、カーボン不織布、カーボン織布なども集電体として使用できる。
 本発明のリチウムイオン二次電池用正極は、その形状、厚さなどについては特に限定的ではないが、例えば、活物質を充填した後、圧縮することによって、厚さを10~200μm、より好ましくは20~100μmとすることが好ましい。従って、使用する集電体の種類、構造等に応じて、圧縮後に上記した厚さとなるように、活物質の充填量を適宜決めればよい。
 充電状態又は放電状態のリチウムシリケート系化合物
 上記した方法によって炭酸塩混合物の溶融塩中で原料化合物を反応させて得られるリチウムシリケート系化合物、カーボン被覆処理を行ったリチウムシリケート系化合物、及びフッ素添加されたリチウムシリケート系化合物は、これをリチウムイオン二次電池用正極活物質として用いてリチウムイオン二次電池を作製し、充電及び放電を行うことによって、その結晶構造が変化する。溶融塩中で合成して得たリチウムシリケート系化合物は、構造が不安定であり、充電容量も少ないが、充放電により構造が変化して安定化することによって、安定した充放電容量が得られるようになる。一旦、充放電を行ってリチウムシリケート系化合物の結晶構造を変化させた後は、充電状態と放電状態でそれぞれ異なる結晶構造となるが、高い安定性を維持することができる。
 この構造の安定化は、溶融塩法によってリチウムシリケート系化合物を合成する際に、充放電に関与しないアルカリ金属イオン(Na、K)がLiサイトの一部を置換することによってリチウムシリケート化合物中に導入され、これにより結晶構造が安定化され、Liが充放電しても結晶構造が維持されることによるものと考えられる。更に、Naのイオン半径(約0.99Å)とKのイオン半径(約1.37Å)は、Liのイオン半径(約0.590Å)より大きいため、Liの移動がしやすくなり、Liの挿入・脱離量が増加し、結果的に充放電容量の向上につながると考えられる。この場合の充電方法及び放電方法は特に限定されないが、例えば、電池容量に対して0.1Cの電流値を用いて定電流充電・放電させれば良い。充電及び放電時の電圧は、リチウムイオン二次電池の構成要素に応じて決めればよいが、通常は、4.5V~1.0V程度とすることができ、4.2V~1.5V程度とすることが好ましい。
 以下、充電状態および放電状態のそれぞれのリチウムシリケート系化合物の結晶構造について、具体例を挙げて説明する。
 (i)鉄含有リチウムシリケート系化合物
 まず、溶融塩中で合成して得られた組成式:Li2+a-b AFeSiO4+c(式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0<a<1、0≦b<0.2、0<c<0.3)で表される鉄含有リチウムシリケート系化合物について説明する。
 該鉄含有リチウムシリケート系化合物を正極活物質として用い、負極材料としてリチウム金属を用いたリチウムイオン二次電池について、4.2Vまで定電流充電を行うことによって、得られる充電状態のリチウムシリケート系化合物は、組成式:Li1+a-b AFeSiO4+c(式中、A、a、b、及びcは上記に同じ)で表されるものとなる。該化合物について、波長0.7ÅのX線を用いてX線回折測定を行うと、回折角(2θ)が5度から40度の範囲において、相対強度が最も高い5本の回折ピークの相対強度、回折角、及び半値幅はそれぞれ下記の値となる。なお、回折角及び半値幅は、下記の値の±0.03度程度の範囲内となる。
 第1ピーク:相対強度100%、回折角10.10度、半値幅0.11度
 第2ピーク:相対強度81%、回折角16.06度、半値幅0.10度 
 第3ピーク:相対強度76%、回折角 9.88度、半値幅0.14度 
 第4ピーク:相対強度58%、回折角14.54度、半値幅0.16度 
 第5ピーク:相対強度47%、回折角15.50度、半値幅0.12度 
 上記した回折ピークは、溶融塩中で合成した鉄含有リチウムシリケート系化合物の回折ピークとは異なっており、充電によって結晶構造が変化することを確認できる。尚、上記した回折ピークについては、例えば、次の方法で測定することができる。
 まず、充電した電極を鎖状炭酸エステル系溶媒で数回洗浄して、電極表面に付着した不純物を取り除く。その後真空乾燥し、得られた電極から電極層(集電体含まない)を剥がし、ガラスキャピラリーに充填し、エポキシ樹脂接着剤を用いて封入する。その後、波長0.7ÅのX線を用い、X線回折パターン測定することによって、充電状態のリチウムシリケート系化合物を確認することができる。この際、鎖状炭酸エステル系溶媒としては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネネート(EMC)等を用いることができる。
 また、上記した方法で4.2Vまで充電した鉄含有リチウムシリケート系化合物について、1.5Vまで定電流放電すると、得られる放電状態のリチウムシリケート系化合物は、組成式:Li2+a-b AFeSiO4+c(式中、A、a、b、及びcは上記に同じ)で表されるものとなる。該化合物について、波長0.7ÅのX線を用いてX線回折測定を行うと、回折角(2θ)が5度から40度の範囲において、相対強度が最も高い5本の回折ピークの相対強度、回折角、及び半値幅はそれぞれ下記の値となる。なお、回折角及び半値幅は、下記の値の±0.03度程度の範囲内となる。
 第1ピーク:相対強度100%、回折角16.07度、半値幅0.08度
 第2ピーク:相対強度71%、回折角14.92度、半値幅0.17度 
 第3ピーク:相対強度44%、回折角10.30度、半値幅0.08度 
 第4ピーク:相対強度29%、回折角9.82度、半値幅0.11度 
 第5ピーク:相対強度26%、回折角21.98度、半値幅0.14度 
 上記した回折ピークは、溶融塩中で合成した鉄含有リチウムシリケート系化合物の回折ピーク、及び充電後の鉄含有リチウムシリケート系化合物の回折ピークとはいずれも異なっており、放電によっても結晶構造が変化することが確認できる。
 (ii)マンガン含有リチウムシリケート系化合物
 次に、溶融塩中で合成して得られた組成式:Li2+a-b AMnSiO4+c(式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、0<a<1、0≦b<0.2、0<c<0.3)で表されるマンガン含有リチウムシリケート系化合物について説明する。
 該リチウムシリケート系化合物を正極活物質として用い、負極材料としてリチウム金属を用いたリチウムイオン二次電池について、4.2Vまで定電流充電を行うことによって、得られる充電状態のリチウムシリケート系化合物は、組成式:Li1+a-b AMnSiO4+c(式中、A、a、b、及びcは上記に同じ)で表されるものとなる。該化合物について、波長0.7ÅのX線を用いてX線回折測定を行うと、回折角(2θ)が5度から40度の範囲において、相対強度が最も高い5本の回折ピークの相対強度、回折角、及び半値幅はそれぞれ下記の値となる。なお、回折角及び半値幅は、下記の値の±0.03度程度の範囲内となる。
 第1ピーク:相対強度100%、回折角8.15度、半値幅0.18度 
 第2ピーク:相対強度64%、回折角11.60度、半値幅0.46度 
 第3ピーク:相対強度41%、回折角17.17度、半値幅0.18度 
 第4ピーク:相対強度37%、回折角11.04度、半値幅0.31度 
 第5ピーク:相対強度34%、回折角19.87度、半値幅0.29度 
 上記した回折ピークは、溶融塩中で合成したマンガン含有リチウムシリケート系化合物とは異なっており、充電によって結晶構造が変化することが確認できる。
 また、上記した方法で4.2Vまで充電したマンガン含有リチウムシリケート系化合物について、1.5Vまで定電流放電すると、得られる放電状態のマンガン含有リチウムシリケート系化合物は、組成式:Li2+a-b AMnSiO4+c(式中、A、a、b、及びcは上記に同じ)で表されるものとなる。該化合物について、波長0.7ÅのX線を用いてX線回折測定を行うと、回折角(2θ)が5度から40度の範囲において、相対強度が最も高い5本の回折ピークの相対強度、回折角、及び半値幅はそれぞれ下記の値となる。なお、回折角及び半値幅は、下記の値の±0.03度程度の範囲内となる。
 第1ピーク:相対強度100%、回折角8.16度、半値幅0.22度 
 第2ピーク:相対強度71%、回折角11.53度、半値幅0.40度 
 第3ピーク:相対強度67%、回折角11.66度、半値幅0.53度 
 第4ピーク:相対強度61%、回折角11.03度、半値幅0.065度
 第5ピーク:相対強度52%、回折角11.35度、半値幅0.70度 
 上記した回折ピークは、溶融塩中で合成したマンガン含有リチウムシリケート系化合物の回折ピーク、及び充電後のマンガン含有リチウムシリケート系化合物の回折ピークとはいずれも異なっており、放電によっても結晶構造が変化することが確認できる。
 尚、上記した鉄含有リチウムシリケート系化合物及びマンガン含有リチウムシリケート系化合物のそれぞれにおいて、元素Aの置換量、即ち、bの値は、0.0001~0.05程度であることが好ましく、0.0005~0.02程度であることがより好ましい。
 リチウムイオン二次電池
 上記したリチウムイオン二次電池用正極を用いるリチウムイオン二次電池は、公知の手法により製造することができる。すなわち、正極材料として、上記した正極を使用し、負極材料として、公知の金属リチウム、黒鉛などの炭素系材料、シリコン薄膜などのシリコン系材料、銅-錫やコバルト-錫などの合金系材料、チタン酸リチウムなどの酸化物材料を使用し、電解液として、公知のエチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの非水系溶媒に過塩素酸リチウム、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/Lから1.7mol/Lの濃度で溶解させた溶液を使用し、さらにその他の公知の電池構成要素を使用して、常法に従って、リチウムイオン二次電池を組立てればよい。
 本発明方法によって得られるリチウムシリケート系化合物は、安価で、資源量が多く、且つ環境負荷が低い原料を用いて得られるものであり、リチウムイオン二次電池の正極活物質として用いた場合に、酸素の脱離を抑えることができる材料である。
 特に、本発明によれば、溶融塩中における反応という比較的簡便な手段によって、高容量を有し、サイクル特性にも優れた、リチウムイオン二次電池の正極活物質として有用なリチウムシリケート化合物を得ることができる。
 また、上記したリチウムシリケート系化合物をリチウムイオン二次電池用正極活物質として用いて、充電及び放電を行うことによって、リチウムシリケート系化合物の結晶構造が変化して安定化し、安定した充放電容量を有する正極活物質となる。
実施例1の生成物のX線回折パターンを示す図面。 実施例1の生成物の走査型電子顕微鏡(SEM)写真。 実施例1の生成物に、アセチレンブラックとLiCOを添加混合し、熱処理した後の生成物のX線回折パターンを示す図面。 実施例1で得られた鉄含有リチウムシリケート系化合物、充電状態の該化合物、及び放電状態の該化合物について、放射光測定により得られたXRDパターンを示す図面。 実施例2で得られたマンガン含有リチウムシリケート系化合物、充電状態の該化合物、及び放電状態の該化合物について、放射光測定により得られたXRDパターンを示す図面。
 以下、実施例を挙げて本発明を更に詳細に説明する。
 実施例1
 リチウム過剰シリケート系化合物の合成と、これを用いた電池の充放電特性
 <鉄含有リチウムシリケート化合物>
 原料として、シュウ酸鉄FeC・2HO(シグマアルドリッチ製、純度99.99%)0.03モルとリチウムシリケートLiSiO(キシダ化学製、純度99.5%) 0.03モルを用い、これを炭酸塩混合物(炭酸リチウム(キシダ化学製、純度99.9%)、炭酸ナトリウム(キシダ化学製、純度99.5%)、及び炭酸カリウム(キシダ化学製、純度99.5%)をモル比0.435:0.315:0.25で混合したもの)と混合した。混合割合は、炭酸塩混合物100重量部に対して、シュウ酸鉄とリチウムシリケートの合計量を225重量部の割合とした。これにアセトン20mlを加えてジルコニア製ボールミルにて500rpmで60分混合し、乾燥した。その後、得られた粉体を金坩堝中で加熱して、二酸化炭素(流量:100mlmin-1)と水素(流量:3 mlmin-1)の混合ガス雰囲気下で、550℃に加熱して、炭酸塩混合物を溶融させた状態で21時間反応させた。
 反応後、温度を下げ、500℃になった時点で反応系である炉心全体を、加熱器である電気炉から取り出して、ガスを通じたまま室温まで急冷した。
 次いで、生成物に無水酢酸(20ml)を加えて乳鉢ですりつぶし、酢酸(10ml)を加えて炭酸塩等を反応させて取り除き、ろ過して鉄含有リチウムシリケート系化合物の粉体を得た。
 得られた生成物について、粉末X線回折装置により、CuKα線を用いてX線回折測定を行った。XDRパターンを図1に示す。このXDRパターンは、報告されている空間群P21 の単斜晶LiFeSiOのパターンとほぼ一致した。
 また、該生成物の走査型電子顕微鏡(SEM)写真を図2に示す。図2から、生成物は、約200nm以下の結晶粒からなる粉体であることが確認できる。
 更に、該生成物について、誘導結合プラズマ(Inductively Coupled Plasma:ICP)法によって元素分析した結果、組成式は、Li1.970Na0.0170.024Fe1.066SiO4.156
であり、リチウム過剰のLiFeSiO系リチウムシリケート系化合物であることが確認できた。
 次いで、上記した方法で得た粉体100重量部に、アセチレンブラック(以下ABと表記)50重量部と、LiCO3 10重量部を添加し、遊星ボールミル(5mmのジルコニアボール)を用いて450rpmで5時間ミリング処理し、二酸化炭素と水素の混合ガス(CO2:H(モル比)=100:3)の雰囲気下において、700℃で2時間熱処理した。
 熱処理後の生成物のXDRパターンを図3に示す。図3に示すXDRパターンは、熱処理前の試料のXDRパターンとよく一致しており、熱処理後のリチウム過剰シリケート系化合物は、上記した熱処理により分解されることなく結晶構造を維持していることが確認できた。
 得られた粉末100重量部に対して、アセチレンブラックとPTFEの混合物(AB:PTFE(重量比)=2:1の混合物)25重量部を添加し、シート法により電極を作成し、140℃で3時間真空乾燥した。その後、エチレンカーボネート(EC):ジエチレンカーボネート(DEC)=1:1にLiPFを溶解して1mol/Lとした溶液を電解液として用い、セパレータとしてポリプロピレン膜(セルガード製、Celgard2400)、負極としてリチウム金属箔を用いたコイン電池を試作した。
 このコイン電池について、60℃、0.01mA、電圧4.2~1.5Vの範囲で充放電試験を行った結果、5サイクル後の放電容量は250 mAhg-1であった。また、同様の条件でサイクル特性を測定したところ、50サイクル後における平均電圧は2.60Vであり、良好なサイクル特性を示した。これらの結果を下記表1に示す。
 また、炭酸リチウムLiCO、シュウ酸鉄FeC・2HO、及び酸化シリコンSiOをボールミリングした後、800℃で6時間熱処理する方法(固相反応法)で合成した材料について、同様の方法で測定した電池特性を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の結果から明らかな様に、炭酸塩混合物の溶融塩中で原料化合物を反応させる方法によれば、サイクル特性が良好で高容量の鉄含有リチウムシリケート系材料が得られることが判る。
 <充電状態及び放電状態の構造>
上記のコイン電池について、60℃、0.01mAで電圧4.2Vまで充電した後、鎖状炭酸エステル系溶媒を用いて充電した電極を洗浄し、電極表面に付着した不純物を取り除いた。その後、真空乾燥し、得られた電極から電極層を剥離してガラスキャピラリーに充填し、エポキシ樹脂接着剤を用いて封入した。その後、放射光(Spring8 ビームラインBL19B2、波長=0.7Å)を用いて、充電状態の鉄含有リチウムシリケート系化合物のX線回折測定を行った。得られたX線回折パターンを図4に示す。また、溶融塩中で合成した直後の鉄含有リチウムシリケート系化合物についても、同様の方法で、放射光(Spring8 ビームラインBL19B2、波長=0.7Å)を用いてX線回折パターン測定した。得られたX線回折パターンを図4中に示す。
 また、溶融塩中で合成後の鉄含有リチウムシリケート系化合物と、充電後の鉄含有リチウムシリケート系化合物について、X線回折結果から求めたピーク位置と相対強度をそれぞれ表2と表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
また、上記した方法で4.2Vまで充電した後、電圧1.5Vまで放電させた電極を用いて、上記した方法と同様にして、放電状態の鉄含有リチウムシリケート系化合物のX線回折測定を行った。得られたX線回折パターンを図4中に示し、ピーク位置と相対強度を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
 以上の結果から明らかなように、溶融塩中で合成して得られた鉄含有リチウムシリケート系化合物は、充電及び放電を行うことによって、それぞれ、充電状態と放電状態に対応する異なる結晶構造となることが判る。
 実施例2
<マンガン含有リチウムシリケート系化合物>
 実施例1で用いたシュウ酸鉄に代えて、シュウ酸マンガンを用い、実施例1と同様の合成条件でマンガン含有リチウムシリケート系化合物の粉体を得た。
 得られた生成物について、粉末X線回折装置により、CuKα線を用いてX線回折測定を行った。この生成物のXDRパターンは、空間群Pmn2の斜方晶のXDRパターンとほぼ一致した。
 また、該生成物の走査型電子顕微鏡(SEM)観察より、この生成物は、約200nm以下の結晶粒からなる粉体であることが確認できた。更に、該生成物について、誘導結合プラズマ(Inductively Coupled Plasma:ICP)法によって元素分析した結果、組成式は、Li1.980Na0.0160.025Mn1.062SiO4.151となり、リチウム過剰のLiMnSiO系リチウムシリケート系化合物であることが確認できた。
 次いで、実施例1と同様の処理を経てコイン電池を作製した。このコイン電池について、60℃、0.01mA、電圧4.2~1.5Vの範囲で充放電試験を行った結果、5サイクル後の放電容量は220 mAhg-1であった。また、同様の条件でサイクル特性を測定したところ、50サイクル後における平均電圧は2.75Vであり、良好なサイクル特性を示した。これらの結果を下記表5に示す。
 また、炭酸リチウムLiCO、シュウ酸マンガンMnC・2HO、及び酸化シリコンSiOをボールミリングした後、800℃で6時間熱処理する方法(固相反応法)で合成した材料について、同様の方法で測定した電池特性も下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
 以上の結果から明らかな様に、炭酸塩混合物の溶融塩中で原料化合物を反応させる方法によれば、サイクル特性が良好で高容量のマンガン含有リチウムシリケート系材料が得られることが判る。
 <充電状態及び放電状態の構造>
上記のコイン電池について、60℃、0.01mAで電圧4.2Vまで充電した後、実施例1と同様の処理を行い、電極層を剥離して、放射光(Spring8 ビームラインBL19B2、波長=0.7Å)を用いて充電状態のマンガン含有リチウムシリケート系化合物のX線回折測定を行った。得られたX線回折パターンを図5に示す。また、溶融塩中で合成した直後のマンガン含有リチウムシリケート系化合物についても、同様の方法で、放射光(Spring8 ビームラインBL19B2、波長=0.7Å)を用いてX線回折パターン測定した。得られたX線回折パターンも図5中に示す。
 また、溶融塩中で合成後のマンガン含有リチウムシリケート系化合物と、充電後のマンガン含有リチウムシリケート系化合物について、X線回折結果から求めたピーク位置と相対強度をそれぞれ表6と表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
また、上記した方法で4.2Vまで充電した後、電圧1.5Vまで放電させた電極を用いて、上記した方法と同様にして、放電状態のマンガン含有リチウムシリケート系化合物のX線回折測定を行った。得られたX線回折パターンを図5中に示し、放電後のマンガン含有リチウムシリケート系化合物についてのピーク位置と相対強度を下記表8に示す。
Figure JPOXMLDOC01-appb-T000008
 以上の結果から明らかなように、溶融塩中で合成して得られたマンガン含有リチウムシリケート系化合物は、充電及び放電を行うことによって、それぞれ、充電状態と放電状態に対応して異なる結晶構造となることが判る。
 実施例3
 実施例1の方法で用いたシュウ酸鉄に代えて、下記表9及び10に示す目的組成に応じた遷移金属成分を用いること以外は、実施例1と同様にして、組成式:Li2+a-b A1-xM’SiO4+c(式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、Mは、Fe及びMnからなる群から選ばれた少なくとも一種の元素であり、M’は、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、Mo及びWからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3)で表されるリチウム過剰シリケート系化合物を合成した。
 尚、原料としては、シュウ酸鉄FeC・2HO(シグマアルドリッチ製、純度99.99%)、リチウムシリケートLiSiO(キシダ化学製、純度99.5%)、シュウ酸マンガン、シュウ酸コバルト、硫酸マグネシウム、酸化ニッケル、酸化二オブ、酸化カルシウム、酸化アルミニウム、リチウム酸化モリブデン、及びリチウム酸化タングステンを用い、目的とする化合物に応じて、目的物の金属成分比と同じ金属成分比となるように各原料のモル数を調整した。また、リチウムシリケート以外の化合物については、金属元素の総モル数が0.03モルとなるように用いた。
 炭酸塩等の水溶性物質を取り除いた後の生成物について、ICP法によって求めた元素分析結果(元素モル比)を下記表9及び表10に示す。これらの表から明らかなように、生成物は、いずれもリチウム過剰のリチウムシリケート系化合物であることが確認できた。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 次いで、上記した方法で得られた各リチウムシリケート系化合物について、実施例1と同様にして、アセチレンブラックと、LiCOを加えてミリング処理と熱処理を行った。熱処理後の生成物のXRDパターンは、熱処理処理前の試料のXRDパターンとよく一致しており、リチウム過剰シリケート系化合物は分解されることなく、結晶構造を維持していることが確認できた。
 その後、実施例1と同様にして、コイン電池を作成して、各電池の充放電特性を測定した。結果を下記表11及び表12に示す。この結果から、下記表11及び表12に示す各化合物は、良好なサイクル特性と高容量を有することが明らかである。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 実施例4(フッ素付与)
 実施例3において炭酸塩等の水溶性物質を取り除いた後の生成物(リチウムシリケート系化合物)100重量部に、アセチレンブラック(以下ABと表記)50重量部と、LiF 20重量部を添加し、遊星ボールミル(5mmのジルコニアボール)を用いて450rpmで5時間ミリング処理を行い、二酸化炭素と水素の混合ガス((CO:H(モル比)=100:3)の雰囲気下において、700℃で2時間熱処理した。熱処理後の生成物のXRDパターンは、熱処理処理前の試料のXRDパターンとよく一致しており、リチウム過剰シリケート系化合物は分解されることなく、結晶構造を維持していることが確認できた。また、ICP法によって求めた元素分析結果(元素モル比)を下記表13及び表14に示す。これらの表から明らかなように、生成物は、いずれもリチウム過剰のフッ素含有リチウムシリケート系化合物であることが確認できた。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 その後、実施例1と同様にして、コイン電池を作成して、各電池の充放電特性を測定した。結果を下記表15及び表16に示す。この結果から、各化合物は、良好なサイクル特性と高容量を有するものであり、特に、フッ素が添加されていることにより、平均電圧が上昇したことが確認できた。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016

Claims (29)

  1. 炭酸カリウム、炭酸ナトリウム、炭酸ルビシウム及び炭酸セシウムからなる群から選ばれた少なくとも一種のアルカリ金属炭酸塩と炭酸リチウムとからなる炭酸塩混合物の溶融塩中で、二酸化炭素及び還元性ガスを含む混合ガス雰囲気下において、LiSiOで表される珪酸リチウム化合物と、鉄及びマンガンからなる群から選ばれた少なくとも一種の遷移金属元素を含む物質とを400~650℃で反応させることを特徴とする、リチウムシリケート系化合物の製造方法。
  2. 遷移金属元素を含む物質が、遷移金属元素の合計量を100モル%として、鉄及びマンガンからなる群から選ばれた少なくとも一種の遷移金属元素を50~100モル%と、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、Mo及びWからなる群から選ばれた少なくとも一種の遷移金属元素を0~50モル%含むものである請求項1に記載の製造方法。
  3. 請求項1の方法でリチウムシリケート系化合物を製造した後、フラックスとして用いたアルカリ金属炭酸塩を溶媒により除去する工程を含む、リチウムシリケート系化合物の製造方法。
  4. 形成されるリチウムシリケート系化合物が、
       組成式:Li2+a-b 1-xM’SiO4+c
    (式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、Mは、Fe及びMnからなる群から選ばれた少なくとも一種の元素であり、M’は、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、Mo及びWからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3)で表される化合物である、請求項1に記載のリチウムシリケート系化合物の製造方法。
  5. 請求項1の方法で得られたリチウムシリケート系化合物に、カーボン材料とLiCOを加え、ボールミルによってアモルファス化するまで混合した後、還元性雰囲気下において熱処理を行うことを特徴とする、導電性の向上したリチウムシリケート系化合物の製造方法。
  6. 請求項1の方法で得られたリチウムシリケート系化合物に、カーボン材料、及びLiFを加え、ボールミルによってアモルファス化するまで混合した後、還元性雰囲気下において熱処理を行うことを特徴とする、
     組成式:Li2+a-b 1-xM’SiO4+c-y2y
    (式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、Mは、Fe又はMnであり、M’は、Mg、Ca、Co、Al、Ni、Nb、Ti、Cr、Cu、Zn、Zr、V、Mo及びWからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3、0<y<1)で表されるフッ素含有リチウムシリケート系化合物の製造方法。
  7. 請求項1の方法によって得られたリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質。
  8. 請求項5の方法によって得られたリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質。
  9. 請求項6の方法によって得られたリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質。
  10. 請求項1の方法によって得られたリチウムシリケート系化合物をリチウムイオン二次電池用正極活物質として用いて、充電を行って得られるリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質。
  11. 充電を行って得られるリチウムシリケート系化合物が、リチウム金属を負極として4.2Vまで充電した状態において、
        組成式:Li1+a-b FeSiO4+c
    (式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0<a<1、0≦b<0.2、0<c<0.3)で表され、波長0.7ÅのX線を用いてX線回折測定した場合に、回折角(2θ)が5度から40度の範囲において、下記の回折角の近傍に第1ピーク~第5ピークを有する化合物である、請求項10に記載のリチウムイオン二次電池用活物質リチウムイオン二次電池用正極活物質:
     第1ピーク:10.10度
     第2ピーク:16.06度
     第3ピーク:9.8度
     第4ピーク:14.54度
     第5ピーク:15.50度。
  12. 充電を行って得られるリチウムシリケート系化合物が、リチウム金属を負極として4.2Vまで充電した状態において、
     組成式:Li1+a-b AMnSiO4+c
     (式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0<a<1、0≦b<0.2、0<c<0.3)で表され、波長0.7ÅのX線を用いてX線回折測定した場合に、回折角(2θ)が5度から40度の範囲において、下記の回折角の近傍に第1ピーク~第5ピークを有する化合物である、請求項10に記載のリチウムイオン二次電池用活物質リチウムイオン二次電池用正極活物質:
     第1ピーク:回折角8.15度
     第2ピーク:回折角11.60度
     第3ピーク:回折角17.17度
     第4ピーク:回折角11.04度
     第5ピーク:回折角19.87度。
  13. 請求項1の方法によって得られたリチウムシリケート系化合物をリチウムイオン二次電池用正極活物質として用いて、充電した後、放電して得られるリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質。
  14. 放電して得られるリチウムシリケート系化合物が、リチウム金属を負極として1.5Vまで放電した状態において、
         組成式:Li2+a-b FeSiO4+c
    (式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0<a<1、0≦b<0.2、0<c<0.3)で表され、波長0.7ÅのX線を用いてX線回折測定した場合に、回折角(2θ)が5度から40度の範囲において、下記の回折角の近傍に第1ピーク~第5ピークを有する化合物である、請求項13に記載のリチウムイオン二次電池用正極活物質:
     第1ピーク:回折角16.07度
     第2ピーク:回折角14.92度
     第3ピーク:回折角10.30度
     第4ピーク:回折角9.82度
     第5ピーク:回折角21.98度。
  15. 放電して得られるリチウムシリケート系化合物が、リチウム金属を負極として1.5Vまで放電した状態において、
         組成式:Li2+a-b MnSiO4+c
     (式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0<a<1、0≦b<0.2、0<c<0.3)で表され、波長0.7ÅのX線を用いてX線回折測定した場合に、回折角(2θ)が5度から40度の範囲において、下記の回折角の近傍に第1ピーク~第5ピークを有する化合物である、請求項13に記載のリチウムイオン二次電池用正極活物質:
     第1ピーク:回折角8.16度
     第2ピーク:回折角11.53度
     第3ピーク:回折角11.66度
     第4ピーク:回折角11.03度
     第5ピーク:回折角11.35度。
  16. 請求項5の方法によって得られたリチウムシリケート系化合物をリチウムイオン二次電池用正極活物質として用いて、充電を行って得られるリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質。
  17. 充電を行って得られるリチウムシリケート系化合物が、リチウム金属を負極として4.2Vまで充電した状態において、
        組成式:Li1+a-b FeSiO4+c
    (式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0<a<1、0≦b<0.2、0<c<0.3)で表され、波長0.7ÅのX線を用いてX線回折測定した場合に、回折角(2θ)が5度から40度の範囲において、下記の回折角の近傍に第1ピーク~第5ピークを有する化合物である、請求項16に記載のリチウムイオン二次電池用活物質リチウムイオン二次電池用正極活物質:
     第1ピーク:10.10度
     第2ピーク:16.06度
     第3ピーク:9.8度
     第4ピーク:14.54度
     第5ピーク:15.50度。
  18. 充電を行って得られるリチウムシリケート系化合物が、リチウム金属を負極として4.2Vまで充電した状態において、
     組成式:Li1+a-b AMnSiO4+c
     (式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0<a<1、0≦b<0.2、0<c<0.3)で表され、波長0.7ÅのX線を用いてX線回折測定した場合に、回折角(2θ)が5度から40度の範囲において、下記の回折角の近傍に第1ピーク~第5ピークを有する化合物である、請求項16に記載のリチウムイオン二次電池用活物質リチウムイオン二次電池用正極活物質:
     第1ピーク:回折角8.15度
     第2ピーク:回折角11.60度
     第3ピーク:回折角17.17度
     第4ピーク:回折角11.04度
     第5ピーク:回折角19.87度。
  19. 請求項5の方法によって得られたリチウムシリケート系化合物をリチウムイオン二次電池用正極活物質として用いて、充電した後、放電して得られるリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質。
  20. 放電して得られるリチウムシリケート系化合物が、リチウム金属を負極として、1.5Vまで放電した状態において、
         組成式:Li2+a-b FeSiO4+c
    (式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0<a<1、0≦b<0.2、0<c<0.3)で表され、波長0.7ÅのX線を用いてX線回折測定した場合に、回折角(2θ)が5度から40度の範囲において、下記の回折角の近傍に第1ピーク~第5ピークを有する化合物である、請求項19に記載のリチウムイオン二次電池用正極活物質:
     第1ピーク:回折角16.07度
     第2ピーク:回折角14.92度
     第3ピーク:回折角10.30度
     第4ピーク:回折角9.82度
     第5ピーク:回折角21.98度。
  21. 放電して得られるリチウムシリケート系化合物が、リチウム金属を負極として、1.5Vまで放電した状態において、
         組成式:Li2+a-b MnSiO4+c
    (式中、Aは、Na、K、Rb及びCsからなる群から選ばれた少なくとも一種の元素であり、各添字は次の通りである:0<a<1、0≦b<0.2、0<c<0.3)で表され、波長0.7ÅのX線を用いてX線回折測定した場合に、回折角(2θ)が5度から40度の範囲において、下記の回折角の近傍に第1ピーク~第5ピークを有する化合物である、請求項19に記載のリチウムイオン二次電池用正極活物質:
     第1ピーク:回折角8.16度
     第2ピーク:回折角11.53度
     第3ピーク:回折角11.66度
     第4ピーク:回折角11.03度
     第5ピーク:回折角11.35度。
  22. 請求項6の方法によって得られたリチウムシリケート系化合物をリチウムイオン二次電池用正極活物質として用いて、充電を行って得られるリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質。
  23. 請求項6の方法によって得られたリチウムシリケート系化合物をリチウムイオン二次電池用正極活物質として用いて、充電した後、放電して得られるリチウムシリケート系化合物からなるリチウムイオン二次電池用正極活物質。
  24. 請求項1の方法によって得られたリチウムシリケート系化合物を活物質として含むリチウム二次電池用正極。
  25. 請求項5の方法によって得られたリチウムシリケート系化合物を活物質として含むリチウム二次電池用正極。
  26. 請求項6の方法によって得られたリチウムシリケート系化合物を活物質として含むリチウム二次電池用正極。
  27. 請求項24に記載の正極を構成要素として含むリチウム二次電池。
  28. 請求項25に記載の正極を構成要素として含むリチウム二次電池。
  29. 請求項26に記載の正極を構成要素として含むリチウム二次電池。
PCT/JP2009/069694 2009-02-04 2009-11-20 リチウムシリケート系化合物の製造方法 WO2010089931A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010549350A JP5298286B2 (ja) 2009-02-04 2009-11-20 リチウムシリケート系化合物の製造方法
US13/147,747 US9269954B2 (en) 2009-02-04 2009-11-20 Production process for lithium-silicate-system compound
KR1020117017653A KR101241810B1 (ko) 2009-02-04 2009-11-20 리튬실리케이트계 화합물의 제조 방법, 이 제조 방법에 의해 얻어진 리튬실리케이트계 화합물로 이루어진 리튬 이온 이차 전지용 정극 활물질, 상기 화합물을 포함하는 리튬 이차 전지용 정극 및 리튬 이차 전지
EP09839705A EP2394956A1 (en) 2009-02-04 2009-11-20 Method for producing lithium silicate compound
CN200980156052.5A CN102300811B (zh) 2009-02-04 2009-11-20 硅酸锂系化合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-023570 2009-02-04
JP2009023570 2009-02-04

Publications (1)

Publication Number Publication Date
WO2010089931A1 true WO2010089931A1 (ja) 2010-08-12

Family

ID=42541844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069694 WO2010089931A1 (ja) 2009-02-04 2009-11-20 リチウムシリケート系化合物の製造方法

Country Status (6)

Country Link
US (1) US9269954B2 (ja)
EP (1) EP2394956A1 (ja)
JP (1) JP5298286B2 (ja)
KR (1) KR101241810B1 (ja)
CN (1) CN102300811B (ja)
WO (1) WO2010089931A1 (ja)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076793A (ja) * 2009-09-29 2011-04-14 Furukawa Battery Co Ltd:The オリビン型ケイ酸mリチウムの合成方法およびリチウムイオン二次電池
WO2011108464A1 (ja) * 2010-03-01 2011-09-09 古河電気工業株式会社 正極活物質材料、正極、2次電池及びこれらの製造方法
WO2011108465A1 (ja) * 2010-03-01 2011-09-09 古河電気工業株式会社 微粒子混合物、活物質凝集体、正極活物質材料、正極、2次電池及びこれらの製造方法
JP2011187173A (ja) * 2010-03-04 2011-09-22 Toyota Central R&D Labs Inc 非水系二次電池用活物質及び非水系二次電池
WO2011162348A1 (ja) * 2010-06-25 2011-12-29 旭硝子株式会社 ケイ酸化合物、二次電池用正極、および二次電池の製造方法
WO2012001904A1 (ja) * 2010-06-28 2012-01-05 株式会社豊田自動織機 リチウムシリケート系化合物の製造方法
JP2012033479A (ja) * 2010-07-01 2012-02-16 Semiconductor Energy Lab Co Ltd 蓄電装置用正極活物質、蓄電装置用正極、蓄電装置、及び蓄電装置用正極活物質の作製方法
JP2012033473A (ja) * 2010-06-30 2012-02-16 Semiconductor Energy Lab Co Ltd 電極用材料の作製方法
JP2012074357A (ja) * 2010-09-02 2012-04-12 Sumitomo Chemical Co Ltd 正極活物質
WO2012057341A1 (ja) * 2010-10-29 2012-05-03 旭硝子株式会社 ケイ酸化合物、二次電池用正極、二次電池、およびそれらの製造方法
WO2012057340A1 (ja) * 2010-10-29 2012-05-03 旭硝子株式会社 ケイ酸-リン酸化合物、二次電池用正極、二次電池、およびそれらの製造方法
WO2012060085A1 (ja) * 2010-11-05 2012-05-10 株式会社豊田自動織機 リチウムシリケート系化合物およびその製造方法
WO2012067249A1 (ja) * 2010-11-19 2012-05-24 旭硝子株式会社 ケイ酸化合物、二次電池用正極、二次電池、およびそれらの製造方法
WO2012067250A1 (ja) * 2010-11-19 2012-05-24 旭硝子株式会社 ケイ酸化合物、二次電池用正極、二次電池、およびそれらの製造方法
CN102557054A (zh) * 2010-10-15 2012-07-11 株式会社半导体能源研究所 蓄电装置用正极活性物质的制造方法
JP2012171825A (ja) * 2011-02-21 2012-09-10 Toyota Industries Corp リチウムフリーシリケート系化合物とその製造方法及びリチウムイオン二次電池用正極とリチウムイオン二次電池
US20120227252A1 (en) * 2011-03-08 2012-09-13 GM Global Technology Operations LLC Silicate cathode for use in lithium ion batteries
JP2012193088A (ja) * 2011-03-17 2012-10-11 Taiheiyo Cement Corp リチウムイオン電池用正極活物質の製造法
WO2012137703A1 (ja) * 2011-04-07 2012-10-11 古河電気工業株式会社 正極活物質材料、非水電解質2次電池及び正極活物質材料の製造方法
WO2012160738A1 (ja) * 2011-05-26 2012-11-29 株式会社豊田自動織機 非水電解質二次電池用正極活物質、非水電解質二次電池、車両、および非水電解質二次電池用正極活物質の製造方法
JP2012238554A (ja) * 2011-05-13 2012-12-06 Toyota Industries Corp リチウムマンガンシリケート複合体、非水電解質二次電池用正極および非水電解質二次電池
JP2013008483A (ja) * 2011-06-23 2013-01-10 Taiheiyo Cement Corp リチウムイオン電池用正極活物質の製造法
JP2013032252A (ja) * 2011-08-03 2013-02-14 Taiheiyo Cement Corp リチウムイオン電池用正極活物質及びその製造法
JP2013047161A (ja) * 2011-08-29 2013-03-07 Asahi Glass Co Ltd ケイ酸化合物、二次電池用正極および二次電池の製造方法
WO2013035633A1 (ja) * 2011-09-05 2013-03-14 昭栄化学工業株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池
WO2013035632A1 (ja) * 2011-09-05 2013-03-14 昭栄化学工業株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、リチウムイオン二次電池、及びリチウムイオン二次電池用正極材料の製造方法
WO2013047233A1 (ja) * 2011-09-28 2013-04-04 昭栄化学工業株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池
CN103094576A (zh) * 2011-10-31 2013-05-08 北京有色金属研究总院 一种镍基正极材料及其制备方法和电池
JP2013086979A (ja) * 2011-10-13 2013-05-13 Taiheiyo Cement Corp リチウムイオン電池用正極活物質及びその製造法
JP2013086980A (ja) * 2011-10-13 2013-05-13 Taiheiyo Cement Corp リチウムイオン電池用正極活物質及びその製造法
WO2013084396A1 (ja) * 2011-12-07 2013-06-13 株式会社豊田自動織機 リチウムシリケート系化合物及びその製造方法、二次電池用の正極活物質及び正極、並びに二次電池
WO2013084862A1 (ja) * 2011-12-07 2013-06-13 国立大学法人東京大学 正極用活物質、その製造方法及びリチウムイオン二次電池
JP2013119493A (ja) * 2011-12-07 2013-06-17 Toyota Industries Corp 水素含有リチウムシリケート系化合物及びその製造方法、並びに非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池及び車両
JP2013178885A (ja) * 2012-02-28 2013-09-09 Toyota Industries Corp 正極活物質、正極活物質の製造方法、非水電解質二次電池およびそれを搭載した車両
JP2014051418A (ja) * 2012-09-10 2014-03-20 Toyota Industries Corp 複合材料及びその製造方法、正極活物質、正極、並びに非水電解質二次電池
EP2487746A3 (de) * 2011-02-14 2014-04-16 Basf Se Elektrodenmaterialien und Verfahren zu ihrer Herstellung
JP2014118321A (ja) * 2012-12-17 2014-06-30 Taiheiyo Cement Corp 二次電池正極活物質の製造方法
WO2014155408A1 (ja) * 2013-03-25 2014-10-02 株式会社豊田自動織機 水素含有リチウムシリケート系化合物及びその製造方法、並びに非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
CN104209053A (zh) * 2013-05-29 2014-12-17 核工业西南物理研究院 一种硅酸锂微球的熔融雾化成型制备方法
US9281515B2 (en) 2011-03-08 2016-03-08 Gholam-Abbas Nazri Lithium battery with silicon-based anode and silicate-based cathode
US9287554B2 (en) 2010-09-02 2016-03-15 Sumitomo Chemical Company, Limited Positive electrode active material
JP2017066028A (ja) * 2011-09-01 2017-04-06 株式会社半導体エネルギー研究所 アルカリ金属ケイ酸塩の合成方法
US11066307B2 (en) 2011-07-26 2021-07-20 Toyota Motor Engineering & Manufacturing North America, Inc. Polyanion active materials and method of forming the same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419271B2 (en) 2010-07-02 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for forming electrode material
KR101260685B1 (ko) * 2011-06-24 2013-05-10 한국과학기술연구원 리튬이온 이차전지용 전극 활물질 제조 방법 및 이를 이용한 리튬이온 이차전지
DE102012006897A1 (de) * 2012-04-05 2013-10-10 Basf Se Lithiumsilikate
KR101429009B1 (ko) * 2012-04-26 2014-08-12 강윤규 이차전지 음극재 및 그 제조방법
KR20140017159A (ko) 2012-07-31 2014-02-11 고등기술연구원연구조합 리튬 이차 전지용 양극 재료의 제조 방법
KR101610995B1 (ko) 2012-11-30 2016-04-08 주식회사 엘지화학 규소계 복합체 및 이의 제조방법
JP5636526B2 (ja) 2013-02-25 2014-12-10 株式会社豊田自動織機 リチウムイオン二次電池及びその製造方法
CN103972501B (zh) * 2014-03-03 2016-06-15 南昌大学 一种高纯硅酸锂材料的制备方法
WO2015146423A1 (ja) * 2014-03-27 2015-10-01 古河電気工業株式会社 正極活物質、二次電池用正極、二次電池、および正極活物質の製造方法
CN104103836B (zh) * 2014-07-02 2016-01-20 三峡大学 一种钠和锰共掺杂改性硅酸铁锂正极材料及其制备方法
KR20180085066A (ko) * 2014-07-18 2018-07-25 토소가부시키가이샤 시티나카이트 구조를 가진 실리코티타네이트를 포함하는 조성물 및 그의 제조 방법
CN104300116A (zh) * 2014-10-14 2015-01-21 上海电力学院 一种锂离子电池正极材料及其制备方法
CN105047924B (zh) * 2015-08-17 2018-05-15 合肥国轩高科动力能源有限公司 一种硅酸锰锂类锂离子电池正极材料及其制备方法
CN106252640A (zh) * 2016-10-24 2016-12-21 上海电力学院 一种混合聚阴离子型硅酸锰锂正极材料及其制备方法
US11152613B2 (en) * 2018-01-19 2021-10-19 Amprius, Inc. Stabilized, prelithiated silicon oxide particles for lithium ion battery anodes
US20210057727A1 (en) * 2018-01-30 2021-02-25 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active substance for secondary battery, and secondary battery
CN110474111A (zh) * 2019-06-20 2019-11-19 宋君 3.5v水系锂离子电池
US11502298B2 (en) * 2019-07-19 2022-11-15 Toyota Jidosha Kabushiki Kaisha Active material
CN110697725B (zh) * 2019-11-14 2021-04-06 西安邮电大学 一种二硅酸锂晶须的制备方法
CN110993923B (zh) * 2019-12-26 2021-11-23 湖北亿纬动力有限公司 一种碳包覆辅助的钠钛双掺杂硅酸铁锂正极材料及其制备方法和用途
KR102679255B1 (ko) * 2020-11-30 2024-06-28 한국원자력연구원 실리콘 혼합물의 제조 방법 및 이에 의해 제조된 실리콘 혼합물
CN113078308B (zh) * 2021-06-04 2021-08-24 蜂巢能源科技有限公司 一种无钴无镍正极材料、其制备方法以及电池
KR102537059B1 (ko) * 2022-06-23 2023-05-30 에스케이온 주식회사 리튬 이차전지용 음극 및 이의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185811A (ja) * 1987-01-26 1988-08-01 Agency Of Ind Science & Technol 合成多孔体およびその製造方法
JP2001192210A (ja) * 1999-11-02 2001-07-17 Seimi Chem Co Ltd 非水リチウム二次電池用リチウム−マンガン複合酸化物の製造法
JP2001266882A (ja) 1999-05-10 2001-09-28 Hydro Quebec オルトシリケート誘導体に基づく新規なリチウム挿入電極材料
JP2007335325A (ja) 2006-06-16 2007-12-27 Kyushu Univ 非水電解質二次電池用正極活物質及び電池
JP2008218303A (ja) 2007-03-07 2008-09-18 Kyushu Univ 二次電池用正極活物質の製造方法
JP2008293661A (ja) 2007-05-22 2008-12-04 Nec Tokin Corp リチウム二次電池用正極及びそれを用いたリチウム二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154510A (ja) 1996-11-21 1998-06-09 Toshiba Battery Co Ltd リチウム二次電池
US20070141468A1 (en) * 2003-04-03 2007-06-21 Jeremy Barker Electrodes Comprising Mixed Active Particles
US7041239B2 (en) * 2003-04-03 2006-05-09 Valence Technology, Inc. Electrodes comprising mixed active particles
CN100438155C (zh) 2006-01-13 2008-11-26 厦门大学 可充锂电池用硅酸锰铁锂/碳复合正极材料及其制备方法
US20080081258A1 (en) 2006-09-28 2008-04-03 Korea Electro Technology Research Institute Carbon-coated composite material, manufacturing method thereof, positive electrode active material, and lithium secondary battery comprising the same
JPWO2008123311A1 (ja) * 2007-03-27 2010-07-15 国立大学法人東京工業大学 二次電池用正極材料の製造方法
US20120205595A1 (en) * 2011-02-14 2012-08-16 Basf Se Electrode materials and process for producing them
JP5765780B2 (ja) * 2011-10-14 2015-08-19 株式会社豊田自動織機 リチウムシリケート系化合物とリチウムイオン二次電池用正極活物質及びこれを用いたリチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185811A (ja) * 1987-01-26 1988-08-01 Agency Of Ind Science & Technol 合成多孔体およびその製造方法
JP2001266882A (ja) 1999-05-10 2001-09-28 Hydro Quebec オルトシリケート誘導体に基づく新規なリチウム挿入電極材料
JP2001192210A (ja) * 1999-11-02 2001-07-17 Seimi Chem Co Ltd 非水リチウム二次電池用リチウム−マンガン複合酸化物の製造法
JP2007335325A (ja) 2006-06-16 2007-12-27 Kyushu Univ 非水電解質二次電池用正極活物質及び電池
JP2008218303A (ja) 2007-03-07 2008-09-18 Kyushu Univ 二次電池用正極活物質の製造方法
JP2008293661A (ja) 2007-05-22 2008-12-04 Nec Tokin Corp リチウム二次電池用正極及びそれを用いたリチウム二次電池

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076793A (ja) * 2009-09-29 2011-04-14 Furukawa Battery Co Ltd:The オリビン型ケイ酸mリチウムの合成方法およびリチウムイオン二次電池
US8696949B2 (en) 2010-03-01 2014-04-15 Furukawa Electric Co., Ltd. Particulate mixture, active material aggregate, cathode active material, cathode, secondary battery and methods for producing the same
WO2011108464A1 (ja) * 2010-03-01 2011-09-09 古河電気工業株式会社 正極活物質材料、正極、2次電池及びこれらの製造方法
WO2011108465A1 (ja) * 2010-03-01 2011-09-09 古河電気工業株式会社 微粒子混合物、活物質凝集体、正極活物質材料、正極、2次電池及びこれらの製造方法
JP2011178601A (ja) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The 微粒子混合物、活物質凝集体、正極活物質材料、正極、2次電池及びこれらの製造方法
US9136535B2 (en) 2010-03-01 2015-09-15 Furukawa Electric Co., Ltd. Cathode active material, cathode, secondary battery and manufacturing methods for the same
JP2011187173A (ja) * 2010-03-04 2011-09-22 Toyota Central R&D Labs Inc 非水系二次電池用活物質及び非水系二次電池
JPWO2011162348A1 (ja) * 2010-06-25 2013-08-22 旭硝子株式会社 ケイ酸化合物、二次電池用正極、および二次電池の製造方法
WO2011162348A1 (ja) * 2010-06-25 2011-12-29 旭硝子株式会社 ケイ酸化合物、二次電池用正極、および二次電池の製造方法
US9315390B2 (en) 2010-06-28 2016-04-19 Kabushiki Kaisha Toyota Jidoshokki Production process for lithium-silicate-based compound
WO2012001904A1 (ja) * 2010-06-28 2012-01-05 株式会社豊田自動織機 リチウムシリケート系化合物の製造方法
JP2012033473A (ja) * 2010-06-30 2012-02-16 Semiconductor Energy Lab Co Ltd 電極用材料の作製方法
JP2012033479A (ja) * 2010-07-01 2012-02-16 Semiconductor Energy Lab Co Ltd 蓄電装置用正極活物質、蓄電装置用正極、蓄電装置、及び蓄電装置用正極活物質の作製方法
JP2012074357A (ja) * 2010-09-02 2012-04-12 Sumitomo Chemical Co Ltd 正極活物質
US9287554B2 (en) 2010-09-02 2016-03-15 Sumitomo Chemical Company, Limited Positive electrode active material
US10272594B2 (en) 2010-10-15 2019-04-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material for power storage device
CN107572541A (zh) * 2010-10-15 2018-01-12 株式会社半导体能源研究所 蓄电装置用正极活性物质的制造方法
CN102557054A (zh) * 2010-10-15 2012-07-11 株式会社半导体能源研究所 蓄电装置用正极活性物质的制造方法
WO2012057341A1 (ja) * 2010-10-29 2012-05-03 旭硝子株式会社 ケイ酸化合物、二次電池用正極、二次電池、およびそれらの製造方法
WO2012057340A1 (ja) * 2010-10-29 2012-05-03 旭硝子株式会社 ケイ酸-リン酸化合物、二次電池用正極、二次電池、およびそれらの製造方法
DE112011103672T5 (de) 2010-11-05 2013-08-08 Kabushiki Kaisha Toyota Jidoshokki Verbindung auf Grundlage von Lithiumsilicat und Herstellungsverfahren dafür
JP2012101949A (ja) * 2010-11-05 2012-05-31 Toyota Industries Corp リチウムシリケート系化合物およびその製造方法
WO2012060085A1 (ja) * 2010-11-05 2012-05-10 株式会社豊田自動織機 リチウムシリケート系化合物およびその製造方法
WO2012067250A1 (ja) * 2010-11-19 2012-05-24 旭硝子株式会社 ケイ酸化合物、二次電池用正極、二次電池、およびそれらの製造方法
WO2012067249A1 (ja) * 2010-11-19 2012-05-24 旭硝子株式会社 ケイ酸化合物、二次電池用正極、二次電池、およびそれらの製造方法
EP2487746A3 (de) * 2011-02-14 2014-04-16 Basf Se Elektrodenmaterialien und Verfahren zu ihrer Herstellung
JP2012171825A (ja) * 2011-02-21 2012-09-10 Toyota Industries Corp リチウムフリーシリケート系化合物とその製造方法及びリチウムイオン二次電池用正極とリチウムイオン二次電池
US9281515B2 (en) 2011-03-08 2016-03-08 Gholam-Abbas Nazri Lithium battery with silicon-based anode and silicate-based cathode
US20120227252A1 (en) * 2011-03-08 2012-09-13 GM Global Technology Operations LLC Silicate cathode for use in lithium ion batteries
US9362560B2 (en) * 2011-03-08 2016-06-07 GM Global Technology Operations LLC Silicate cathode for use in lithium ion batteries
JP2012193088A (ja) * 2011-03-17 2012-10-11 Taiheiyo Cement Corp リチウムイオン電池用正極活物質の製造法
JP5950823B2 (ja) * 2011-04-07 2016-07-13 古河電気工業株式会社 正極活物質材料、非水電解質2次電池及び正極活物質材料の製造方法
CN103493264A (zh) * 2011-04-07 2014-01-01 古河电气工业株式会社 正极活性物质材料、非水电解质二次电池及正极活性物质材料的制造方法
WO2012137703A1 (ja) * 2011-04-07 2012-10-11 古河電気工業株式会社 正極活物質材料、非水電解質2次電池及び正極活物質材料の製造方法
JP2012238554A (ja) * 2011-05-13 2012-12-06 Toyota Industries Corp リチウムマンガンシリケート複合体、非水電解質二次電池用正極および非水電解質二次電池
JP5733805B2 (ja) * 2011-05-26 2015-06-10 株式会社豊田自動織機 非水電解質二次電池用正極活物質、および非水電解質二次電池用正極活物質の製造方法
WO2012160738A1 (ja) * 2011-05-26 2012-11-29 株式会社豊田自動織機 非水電解質二次電池用正極活物質、非水電解質二次電池、車両、および非水電解質二次電池用正極活物質の製造方法
JP2013008483A (ja) * 2011-06-23 2013-01-10 Taiheiyo Cement Corp リチウムイオン電池用正極活物質の製造法
US11066307B2 (en) 2011-07-26 2021-07-20 Toyota Motor Engineering & Manufacturing North America, Inc. Polyanion active materials and method of forming the same
JP2013032252A (ja) * 2011-08-03 2013-02-14 Taiheiyo Cement Corp リチウムイオン電池用正極活物質及びその製造法
JP2013047161A (ja) * 2011-08-29 2013-03-07 Asahi Glass Co Ltd ケイ酸化合物、二次電池用正極および二次電池の製造方法
JP2017066028A (ja) * 2011-09-01 2017-04-06 株式会社半導体エネルギー研究所 アルカリ金属ケイ酸塩の合成方法
WO2013035633A1 (ja) * 2011-09-05 2013-03-14 昭栄化学工業株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池
WO2013035632A1 (ja) * 2011-09-05 2013-03-14 昭栄化学工業株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、リチウムイオン二次電池、及びリチウムイオン二次電池用正極材料の製造方法
US9209460B2 (en) 2011-09-05 2015-12-08 Shoei Chemical Inc. Cathode material for lithium ion secondary batteries, cathode member for lithium ion secondary batteries, and lithium ion secondary battery
JP2013054927A (ja) * 2011-09-05 2013-03-21 Shoei Chem Ind Co リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、リチウムイオン二次電池、及びリチウムイオン二次電池用正極材料の製造方法
US9379379B2 (en) 2011-09-05 2016-06-28 Shoei Chemical Inc. Cathode material for lithium ion secondary batteries, cathode member for lithium ion secondary batteries, lithium ion secondary battery, and method for producing cathode material for lithium ion secondary batteries
JPWO2013047233A1 (ja) * 2011-09-28 2015-03-26 昭栄化学工業株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池
TWI556497B (zh) * 2011-09-28 2016-11-01 Shoei Chemical Ind Co 鋰離子二次電池用正極材料、鋰離子二次電池用正極構件、及鋰離子二次電池
WO2013047233A1 (ja) * 2011-09-28 2013-04-04 昭栄化学工業株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池
US9246172B2 (en) 2011-09-28 2016-01-26 Shoei Chemical Inc. Cathode material for lithium ion secondary batteries, cathode member for lithium ion secondary batteries, and lithium ion secondary battery
JP2013086979A (ja) * 2011-10-13 2013-05-13 Taiheiyo Cement Corp リチウムイオン電池用正極活物質及びその製造法
JP2013086980A (ja) * 2011-10-13 2013-05-13 Taiheiyo Cement Corp リチウムイオン電池用正極活物質及びその製造法
CN103094576A (zh) * 2011-10-31 2013-05-08 北京有色金属研究总院 一种镍基正极材料及其制备方法和电池
CN103094576B (zh) * 2011-10-31 2015-09-30 北京有色金属研究总院 一种镍基正极材料及其制备方法和电池
WO2013084396A1 (ja) * 2011-12-07 2013-06-13 株式会社豊田自動織機 リチウムシリケート系化合物及びその製造方法、二次電池用の正極活物質及び正極、並びに二次電池
JP2013119493A (ja) * 2011-12-07 2013-06-17 Toyota Industries Corp 水素含有リチウムシリケート系化合物及びその製造方法、並びに非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池及び車両
JP2013119492A (ja) * 2011-12-07 2013-06-17 Toyota Industries Corp リチウムシリケート系化合物及びその製造方法
WO2013084862A1 (ja) * 2011-12-07 2013-06-13 国立大学法人東京大学 正極用活物質、その製造方法及びリチウムイオン二次電池
JPWO2013084862A1 (ja) * 2011-12-07 2015-04-27 国立大学法人 東京大学 正極用活物質、その製造方法及びリチウムイオン二次電池
US9082525B2 (en) 2011-12-07 2015-07-14 Kabushiki Kaisha Toyota Jidoshokki Lithium silicate-based compound and production process for the same, positive-electrode active material and positive electrode for use in lithium-ion secondary battery as well as secondary battery
JP2013178885A (ja) * 2012-02-28 2013-09-09 Toyota Industries Corp 正極活物質、正極活物質の製造方法、非水電解質二次電池およびそれを搭載した車両
JP2014051418A (ja) * 2012-09-10 2014-03-20 Toyota Industries Corp 複合材料及びその製造方法、正極活物質、正極、並びに非水電解質二次電池
JP2014118321A (ja) * 2012-12-17 2014-06-30 Taiheiyo Cement Corp 二次電池正極活物質の製造方法
WO2014155408A1 (ja) * 2013-03-25 2014-10-02 株式会社豊田自動織機 水素含有リチウムシリケート系化合物及びその製造方法、並びに非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
CN104209053A (zh) * 2013-05-29 2014-12-17 核工业西南物理研究院 一种硅酸锂微球的熔融雾化成型制备方法

Also Published As

Publication number Publication date
KR20110111433A (ko) 2011-10-11
US9269954B2 (en) 2016-02-23
CN102300811B (zh) 2014-03-05
KR101241810B1 (ko) 2013-04-01
US20110291055A1 (en) 2011-12-01
CN102300811A (zh) 2011-12-28
JP5298286B2 (ja) 2013-09-25
EP2394956A1 (en) 2011-12-14
JPWO2010089931A1 (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5298286B2 (ja) リチウムシリケート系化合物の製造方法
JP5013622B2 (ja) リチウムボレート系化合物の製造方法
JP5116177B2 (ja) リチウムシリケート系化合物の製造方法
JP5110565B2 (ja) リチウム二次電池、正極活物質被覆用粒子の製造方法およびリチウム二次電池の製造方法
JP5164287B2 (ja) リチウムシリケート系化合物およびその製造方法
JP5252064B2 (ja) リチウムシリケート系化合物及びその製造方法
JP5950389B2 (ja) リチウムシリケート系化合物、正極活物質、正極活物質の製造方法、非水電解質二次電池およびそれを搭載した車両
WO2014129096A1 (ja) リチウムイオン二次電池及びその製造方法
WO2016042728A1 (ja) MSix(Mは第3~9族元素から選択される少なくとも一元素。ただし、1/3≦x≦3)含有シリコン材料およびその製造方法
JP2022523183A (ja) 正極活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
JP5505868B2 (ja) リチウム二次電池用正極活物質の前駆体とその製造方法
WO2013054457A1 (ja) リチウムシリケート系化合物とリチウムイオン二次電池用正極活物質及びこれを用いたリチウムイオン二次電池
WO2012060084A1 (ja) リチウムボレート系化合物およびその製造方法
KR101186686B1 (ko) 리튬 이차 전지용 양극 활물질의 제조 방법
JP7144785B2 (ja) リン酸バナジウムリチウムの製造方法
JP5608856B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法及びリチウムイオン二次電池用正極とリチウムイオン二次電池
JP6635292B2 (ja) M含有シリコン材料(MはSn、Pb、Sb、Bi、In、Zn又はAuから選択される少なくとも一元素)およびその製造方法
WO2014155408A1 (ja) 水素含有リチウムシリケート系化合物及びその製造方法、並びに非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
JP5686378B2 (ja) 水素含有リチウムシリケート系化合物及びその製造方法、並びに非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池及び車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156052.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010549350

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117017653

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13147747

Country of ref document: US

Ref document number: 2009839705

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE