WO2011161982A1 - 省燃費型エンジン油組成物 - Google Patents

省燃費型エンジン油組成物 Download PDF

Info

Publication number
WO2011161982A1
WO2011161982A1 PCT/JP2011/053733 JP2011053733W WO2011161982A1 WO 2011161982 A1 WO2011161982 A1 WO 2011161982A1 JP 2011053733 W JP2011053733 W JP 2011053733W WO 2011161982 A1 WO2011161982 A1 WO 2011161982A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
engine oil
fuel
oil
molybdenum
Prior art date
Application number
PCT/JP2011/053733
Other languages
English (en)
French (fr)
Inventor
悟 吉田
正希 丸山
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to CN2011800301728A priority Critical patent/CN102959065A/zh
Priority to KR1020137001894A priority patent/KR20130100964A/ko
Priority to JP2012521342A priority patent/JP5767215B2/ja
Publication of WO2011161982A1 publication Critical patent/WO2011161982A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/042Epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/011Cloud point
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines

Definitions

  • the present invention relates to a fuel-saving engine oil excellent in corrosion and wear prevention performance.
  • Fuel-saving engine oils include low viscosity of 5W-30 and 0W-30 in the viscosity classification prescribed by SAE (American Automotive Engineers) J300, and additives that reduce friction (friction modifiers, hereinafter referred to as FM) It is known that it is effective to mix organic molybdenum FM such as molybdenum dithiocarbamate (MoDTC).
  • SAE American Automotive Engineers
  • FM friction modifiers
  • a lubricating oil composition for internal combustion engines with improved corrosion prevention and wear reduction lubricating base oil, sulfurized oxymolybdenum dithiocarbamate, acid amide compound, fatty acid partial ester compound and / or aliphatic amine compound, and benzotriazole
  • guide_body lubricating oil composition
  • this lubricating oil composition is not yet sufficient for preventing corrosion and reducing wear.
  • Patent Document 2 a lubricating oil containing a specific epoxidized ester compound with improved corrosion resistance to lead and copper has been proposed (Patent Document 2), and in Patent Document 2, various epoxidized ester compounds containing a cycloalkyl group are listed.
  • the problem to be solved by the present invention is to provide an engine oil excellent in corrosion, wear prevention performance and fuel efficiency.
  • the present inventor has conducted extensive research on various lubricating oil base materials and lubricating oil additives constituting engine oil. As a result, the present inventors have found that alicyclic epoxy compounds and organic molybdenum as lubricating oil additives. The present inventors have found that an engine oil blended with a specific amount of a compound exhibits excellent corrosion and wear prevention performance while being excellent in fuel efficiency.
  • the organic molybdenum compound is molybdenum dithiocarbamate (MoDTC)
  • the alicyclic epoxy compound is an ester having an ester bond and two epoxidized cycloalkanes.
  • the lubricating base oil one having a kinematic viscosity at 100 ° C. of 4.5 mm 2 / s or less is used.
  • the fuel-saving engine oil composition of the present invention is excellent in fuel efficiency especially in a high temperature region because it has little corrosion and wear of engine members even after long-term use and is excellent in low friction characteristics. .
  • any of mineral oil, synthetic oil, and mixtures thereof can be used.
  • mineral oil a high viscosity index lubricating base oil having a viscosity index of 120 or more is preferable.
  • a high viscosity index lubricating base oil having a viscosity index of 120 or more can be obtained by solvent dewaxing or hydrodewaxing a product oil obtained by hydroisomerization of wax or hydrocracking of heavy oil. .
  • wax having a boiling range of 300 to 600 ° C. and a carbon number of 20 to 70 such as slack wax obtained in a solvent dewaxing process of mineral oil-based lubricating oil, hydrocarbon gas, etc.
  • hydroisomerization catalyst for example, alumina, silica, alumina, etc.
  • a lubricating base oil having a high viscosity index using hydrocracking of heavy oil can be obtained as follows. If necessary, hydrodesulfurization and denitrogenation, normal pressure distillate, vacuum distillate or bright stock having a boiling point in the range of 300 to 600 ° C., nickel, cobalt on a hydrocracking catalyst such as a silica-alumina support.
  • a catalyst supporting one or more group 8 metals such as molybdenum and tungsten and a catalyst having a hydrogen partial pressure of 7 to 14 MPa in the presence of hydrogen at a temperature of 350 to 450 ° C., 0.1 It can be carried out by contact at LHSV (liquid space velocity) of ⁇ 2h ⁇ 1 so that the decomposition rate (decreased mass% of the fraction of 360 ° C. or more in the product) is 40 to 90%. Is preferred.
  • Lubricating oil fraction can be obtained by distilling off the light fraction from the hydroisomerized product oil or hydrocracked product oil obtained by the above method, but this fraction generally has a high pour point and viscosity. and the viscosity index is not high enough, perform dewaxing treatment, to remove the wax fraction, n-d-M ring analysis% C P is 80 or more, a pour point viscosity index at -10 ° C. or less More than 120 lubricating base oils can be obtained.
  • the light fraction is distilled off using a precision distillation apparatus, and the fraction having a boiling point of 371 ° C. or higher and lower than 491 ° C. by gas chromatography distillation is previously used. Is preferably 70% by mass or more in order to perform the solvent dewaxing process more efficiently.
  • methyl ethyl ketone / toluene volume ratio 1/1
  • the solvent / oil ratio is in the range of 2/1 to 4/1 at a temperature of ⁇ 15 to ⁇ 40 ° C. It is good to do.
  • distilling the light fractions should not hinder hydrodewaxing, and after hydrodewaxing, they are separated by distillation using a precision distillation apparatus. It is efficient and preferable that the fraction having a boiling point of 371 ° C. or higher and lower than 491 ° C. is 70% by mass or higher by gas chromatography distillation.
  • This hydrodewaxing is performed by contacting the zeolite catalyst with LHSV (liquid space velocity) of 0.2 to 4 h ⁇ 1 at a temperature of 320 to 430 ° C. in the presence of hydrogen at a hydrogen partial pressure of 3 to 15 MPa.
  • LHSV liquid space velocity
  • the pour point in the lubricating base oil should be ⁇ 10 ° C. or lower.
  • a lubricating base oil having a viscosity index of 120 or more can be obtained by the method as described above, but further solvent purification or hydrogenation purification can be performed as desired.
  • Synthetic oils include ⁇ -olefin oligomers, diesters synthesized from dibasic acids such as adipic acid and monohydric alcohols, polyhydric alcohols such as neopentyl glycol, trimethylolpropane, pentaerythritol, and monobasic acids. Polyol esters synthesized from the above, and mixtures thereof.
  • a mixed oil combining an appropriate mineral oil and a synthetic oil can also be used as the base oil of the engine oil. Even if it is a mineral oil, a synthetic oil or a mixed oil thereof, when used in the fuel-saving engine oil composition of the present invention, the kinematic viscosity at 100 ° C. by the method specified in JIS K2283 is 4.5 mm 2 / s or less and the viscosity is Although indices are preferred those 120 or more, further, the kinematic viscosity at 100 ° C.
  • n-d-M ring analysis% C P of the method prescribed in ASTM d 2140 is 80 or more
  • JIS JIS It is more preferable that the pour point by the method specified in K2269 is ⁇ 10 ° C. or lower.
  • the fuel-saving engine oil composition of the present invention contains 0.02% by mass or more of an organomolybdenum compound as the amount of molybdenum (Mo) based on the total amount of the engine oil composition. If the amount is less than 0.02% by mass, sufficient fuel saving cannot be obtained.
  • This organomolybdenum compound is preferably contained in an amount of 0.03 to 0.20% by mass as molybdenum (Mo).
  • Specific examples of the organic molybdenum compound include molybdenum dithiocarbamate (MoDTC), molybdenum dithiophosphate (MoDTP), and Mo amine complex. Of these, MoDTC is most preferred, and MoDTP is less preferred because phosphorus poisons the exhaust gas purification three-way catalyst.
  • MoDTC those represented by the following general formula (1) can be preferably used.
  • R 1 to R 4 represent a linear and / or branched alkyl group and / or alkenyl group having 4 to 18 carbon atoms
  • X represents an oxygen atom or a sulfur atom
  • the oxygen atom and sulfur The ratio to atoms is 1/3 to 3/1.
  • R 1 to R 4 are preferably alkyl groups, particularly preferably branched alkyl groups having 8 to 14 carbon atoms, and specific examples include a butyl group, a 2-ethylhexyl group, an isotridecyl group, and a stearyl group. It is done.
  • the four R 1 to R 4 present in one molecule may be the same or different. Also, two or more kinds of MoDTCs having different R 1 to R 4 can be mixed and used.
  • examples of the alicyclic epoxy compound include epoxidized cycloalkane and derivatives thereof.
  • the epoxidized cycloalkane preferably has 3 to 12 carbon atoms.
  • Specific examples of epoxidized cycloalkanes include epoxidized cyclopropane, epoxidized cyclobutane, epoxidized cyclopentane, epoxidized dicyclopentane, epoxidized cyclohexane, epoxidized cycloheptane, epoxidized cyclooctane, epoxidized cyclononane, and epoxidized.
  • Examples thereof include cyclodecane, epoxidized cyclododecane, and epoxidized norbornane.
  • Epoxidized cycloalkane derivatives include alkylated or alkenylated epoxycycloalkanes in which one or more alkyl groups or alkenyl groups are introduced into the alicyclic moiety, and one or more aliphatic or aromatic alkoxy groups introduced in the alicyclic moiety.
  • Ether compounds, imide compounds and bisimide compounds in which one or more imide groups are introduced into the alicyclic portion, amide compounds in which one or more amide groups are introduced into the alicyclic portion, and the like, more preferably the alicyclic portion And an ester compound in which one or more carboxyl groups are introduced.
  • those having two epoxidized cycloalkanes are preferable, particularly 3,4-epoxycycloalkyl-3,4-epoxycycloalkylcarboxylate (wherein each alkyl group has 3 to 12 carbon atoms),
  • 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate is most preferable.
  • These alicyclic epoxy compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the alicyclic epoxy compound may be contained in an effective amount, and may be appropriately selected within the range of 0.05 to 2% by mass based on the total amount of the engine oil composition.
  • the fuel-saving engine oil composition of the present invention can be blended with various additives other than those described above in order to ensure a good balance as a lubricating oil.
  • various additives other than those described above in order to ensure a good balance as a lubricating oil.
  • alkaline earth metal detergent it is preferable to use at least one alkaline earth metal detergent selected from alkaline earth metal sulfonate, alkaline earth metal phenate and alkaline earth metal salicylate.
  • the alkaline earth metal sulfonate is an alkaline earth metal salt of an alkyl aromatic sulfonic acid having a molecular weight of 300 to 1,500, particularly preferably 400 to 700, particularly a magnesium salt and / or a calcium salt, and a calcium salt is preferably used. It is done.
  • Alkaline earth metal phenates include alkylphenols having 4 to 30 carbon atoms, preferably 6 to 18 linear or branched alkyl groups, alkylphenol sulfides, alkaline earth metal salts of Mannich reactants of alkylphenols, especially magnesium salts. And / or calcium salts are preferably used.
  • alkaline earth metal salicylate an alkaline earth metal salt of alkylsalicylic acid having a linear or branched alkyl group having 1 to 30, preferably 6 to 18 carbon atoms, particularly preferably a magnesium salt and / or a calcium salt Is preferably used.
  • the content of the metal detergent is arbitrary, but is 0.05 to 0.22% by mass, preferably 0.1 to 0.2% by mass, based on the total mass of the fuel-saving engine oil composition. % Content is desirable.
  • examples of the ashless dispersant include alkenyl succinimides, alkyl succinimides and derivatives thereof derived from polyolefins.
  • Typical succinimides are polyalkylene polyamines containing succinic anhydride substituted with high molecular weight alkenyl or alkyl groups and an average of 4 to 10, more preferably 5 to 7 nitrogen atoms per molecule. It can obtain by reaction with.
  • polybutenyl succinimide having a high molecular weight alkenyl group or alkyl group having polyisobutene having a number average molecular weight of 700 to 5000, particularly polyisobutene having a number average molecular weight of 900 to 3000 is more preferable.
  • This polybutenyl succinimide is obtained from polybutene obtained by polymerizing high-purity isobutene or a mixture of 1-butene and isobutene with a boron fluoride catalyst or an aluminum chloride catalyst, and has a vinylidene structure at the polybutene terminal. In general, 5 to 100 mol% is contained.
  • the polyalkylene polyamine chain preferably contains 2 to 5, particularly 3 to 4 nitrogen atoms from the viewpoint of obtaining an excellent sludge inhibiting effect.
  • boron compound such as boric acid and oxygen-containing organic compounds such as alcohol, aldehyde, ketone, alkylphenol, cyclic carbonate, organic acid, etc. are added to the above polybutenyl succinimide. It can be used as a so-called modified succinimide in which a part or all of the remaining amino group and / or imino group is neutralized or amidated by acting.
  • a boron-containing alkenyl (or alkyl) succinimide obtained by a reaction with a boron compound such as boric acid is excellent in terms of thermal and oxidation stability.
  • the content of the ashless dispersant is arbitrary, but it is preferably 0.5 to 15% by mass based on the total mass of the fuel-saving engine oil composition.
  • the fuel-saving engine oil composition of the present invention contains zinc dithiophosphate (ZnDTP) as an antiwear agent in an amount of 0.01 to 0.10 mass% as phosphorus (P) based on the total mass of the engine oil composition. It is preferably 0.05 to 0.08% by mass.
  • ZnDTP zinc dithiophosphate
  • P phosphorus
  • ZnDTP includes a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkenyl group having 3 to 24 carbon atoms, or a linear or branched alkylcycloalkyl group.
  • a compound having an aryl group having 6 to 18 carbon atoms or a linear or branched alkylaryl group is preferable.
  • the alkyl group or alkenyl group may be any of primary, secondary, and tertiary.
  • zinc dithiophosphate examples include zinc dipropyldithiophosphate, zinc dibutyldithiophosphate, zinc dipentyldithiophosphate, zinc dihexyldithiophosphate, zinc diisopentyldithiophosphate, zinc diethylhexyldithiophosphate, zinc dioctyldithiophosphate, dinonyl Zinc dithiophosphate, zinc didecyl dithiophosphate, zinc didodecyl dithiophosphate, zinc dipropylphenyl dithiophosphate, zinc dipentylphenyl dithiophosphate, zinc dipropylmethylphenyl dithiophosphate, zinc dinonylphenyl dithiophosphate, zinc didodecylphenyl dithiophosphate And zinc didodecylphenyldithiophosphate.
  • the content of ZnDTP is preferably 0.01 to 0.10% by mass, and more preferably 0.03 to 0.08% by mass, based on the total weight of the engine oil, in terms of the phosphorus (P) metal element contained in ZnDTP. .
  • additives such as ashless antioxidants, viscosity index improvers, pour point depressants, metal deactivators, rust inhibitors and antifoaming agents are added to the engine oil of the present invention. be able to.
  • a mineral oil base oil (kinematic viscosity: 17.7 mm 2 / s (40 ° C.)) obtained by hydrodewaxing the product oil obtained by hydrocracking of heavy oil, 4. 1 mm 2 / s (100 ° C.), viscosity index: 134,% C P : 85, pour point: ⁇ 20 ° C.).
  • MoDTC is a compound represented by the general formula (1), in which R 1 to R 4 are a mixture of 2-ethylhexyl group and isotridecyl group, and the ratio of oxygen atom to sulfur atom is 1/1. did.
  • R 1 to R 4 are a mixture of 2-ethylhexyl group and isotridecyl group, and the ratio of oxygen atom to sulfur atom is 1/1. did.
  • benzotriazole derivative N, N-bis [(2-ethylhexyl) aminomethyl] -1H-benzotriazole (manufactured by Ciba Specialty, Irgamet 39) was used.
  • epoxy compound 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, which is an alicyclic epoxy compound, and 2-ethylhexyl glycidyl ether, which is a non-alicyclic epoxy compound (for comparison) ( Epoxy compound 1) and neodecanoic acid glycidyl ester (epoxy compound 2) were used.
  • Epoxy compound 1 and neodecanoic acid glycidyl ester epoxy compound 2
  • a viscosity index improver a polymethacrylate compound was used.
  • Each of the engine oils of the examples and comparative examples in Table 1 was subjected to a corrosion oxidation stability test, and the oil after the test was subjected to elemental analysis by inductively coupled plasma-atomic emission spectroscopy (ICP-AES).
  • the corrosion oxidation stability test was conducted in accordance with JISK2503, but the test conditions were changed to 135 ° C. and the test piece was changed to copper (Cu), lead (Pb), and tin (Sn).
  • the fuel economy of the engine oil under test is evaluated by SRV friction test (test conditions: load 400N, amplitude 1.5mm, frequency 50Hz, temperature 100 ° C). It was.
  • Comparative Examples 3 and 4 using a benzotriazole derivative together with MoDTC the dissolution of Cu is large when the blending amount of the benzotriazole derivative is small, or the dissolution of Pb is large when the blending amount of the benzotriazole derivative is large. It can be seen that the corrosion oxidation stability is inferior although it is excellent. Further, in Comparative Examples 5 and 6 using a non-alicyclic epoxy compound together with MoDTC, it can be seen that there is much elution of Cu, and in particular, esters of fatty acid and epoxy have extremely low anticorrosion properties.
  • the present invention is excellent in corrosion, wear prevention performance, and fuel efficiency, and can be used as engine oil for internal combustion engines such as gasoline engines, diesel engines, and gas engines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

 腐食、摩耗防止性能に、さらには省燃費型に優れたエンジン油を提供する。 潤滑油基油に、有機モリブデン化合物をモリブデン(Mo)量として0.02質量%以上と脂環式エポキシ化合物を含有し、好ましくは、前記有機モリブデン化合物として、モリブデンジチオカーバメイト(MoDTC)を、前記脂環式エポキシ化合物として、エステル結合と2個のエポキシ化シクロアルカンを有するものを、潤滑油基油として、100℃における動粘度が4.5mm/s以下のものを用いる省燃費型エンジン油組成物。

Description

省燃費型エンジン油組成物
 本発明は、腐食、摩耗防止性能に優れた省燃費型エンジン油に関する。
 近年、地球温暖化防止のために自動車の燃費を向上させ、COの排出を抑制する要求が非常に高まっている。自動車の燃費を向上させるにはエンジンの効率化が重要である一方、エンジンの摩擦を低減することも燃費向上に貢献できることから、摺動部品への低摩擦材料の使用や省燃費型エンジン油の採用が図られている。
 省燃費型エンジン油としては、SAE(米国自動車技術会)J300に規定されている粘度分類で5W-30や0W-30という低粘度化や、摩擦を低下させる添加剤(摩擦調整剤、以下FMと称することもある)としてモリブデンジチオカーバメイト(MoDTC)などの有機モリブデン系FMを配合することが有効であることが知られている。
 しかしながら、燃料やエンジ油中の硫黄分から硫酸が生成され、生成した硫酸の一部分がエンジン油に含まれることとなり、エンジン部材を腐食し、摩耗させることが知られている。したがって、MoDTCなどを配合しても腐食防止性に優れたエンジン油が強く求められている。
 この腐食防止、摩耗低減を向上させた内燃機関用潤滑油組成物として、潤滑油基油に、硫化オキシモリブデンジチオカーバメート、酸アミド化合物、脂肪酸部分エステル化合物及び/または脂肪族アミン化合物、及びベンゾトリアゾール誘導体を含むものが提案されている(特許文献1)。しかしながら、この潤滑油組成物では、腐食防止効果や摩耗低減効果が、いまだ十分ではない。
 また、鉛及び銅に対する耐食性を改善した特定のエポキシ化エステル化合物を含む潤滑油が提案され(特許文献2)、この特許文献2にはシクロアルキル基を含む各種のエポキシ化エステル化合物が列記されているが、具体的な化合物としては、エポキシ化トロール油脂肪酸2‐エチルヘキシルのみしか開示されておらず、また摩擦調整剤として有機モリブデン化合物を添加できるという通り一遍の記載はあるものの、その効果、特にエポキシ化合物と有機モリブデン化合物との相乗効果については何ら開示されていない。
特開2008-106199号公報 特開2008-518080号公報
 本発明が解決しようとする課題は、腐食、摩耗防止性能、さらに省燃費性に優れたエンジン油を提供することである。
 本発明者は、上記課題を解決すべく、エンジン油を構成するさまざまな潤滑油基材、潤滑油添加剤に関して鋭意研究を進めた結果、潤滑油添加剤として脂環式エポキシ化合物と、有機モリブデン化合物の特定量を組み合わせて配合したエンジン油が省燃費性に優れつつ、優れた腐食、摩耗防止性能を示すことを見出し、本発明に想到した。
 すなわち、上記課題を解決するための本発明の省燃費型エンジン油組成物は、潤滑油基油に、有機モリブデン化合物をモリブデン(Mo)量として0.02質量%以上と脂環式エポキシ化合物を含有するものである。
 また、本発明において、好ましくは、上記有機モリブデン化合物として、モリブデンジチオカーバメイト(MoDTC)を用い、上記脂環式エポキシ化合物として、エステル結合及び2個のエポキシ化シクロアルカンを有するものを用い、さらに上記潤滑油基油として、100℃における動粘度が4.5mm/s以下のものを用いるものである。
 本発明の省燃費型エンジン油組成物は、長い期間使用してもエンジン部材の腐食、摩耗が少なく、さらに、低摩擦特性に優れているため、特に高温領域での省燃費性に優れている。
 本発明の省燃費型エンジン油組成物に用いる潤滑油基油としては、鉱油、合成油、及びその混合物のいずれも使用できる。鉱油では粘度指数が120以上の高粘度指数潤滑油基油が好ましい。粘度指数が120以上の高粘度指数潤滑油基油は、ワックスの水素異性化或いは重質油の水素化分解で得られた生成油を溶剤脱ロウ又は水素化脱ロウすることにより得ることができる。
 ワックスの水素異性化は、沸点範囲が300~600℃、炭素数として20~70の範囲にあるワックス、例えば、鉱油系潤滑油の溶剤脱ロウ工程で得られるスラックワックスや、炭化水素ガス等を一酸化炭素と水素に転化して液体燃料を合成するフィッシャー・トロプシュ合成で得られたワックス等を原料として、水素異性化触媒、例えばアルミナ、或いはシリカ-アルミナ担体上にニッケル、コバルト等の8族金属、及びモリブデン、タングステン等の6A族金属の1種以上を担持した触媒や、ゼオライト触媒、もしくはゼオライト含有担体に白金等を担持した触媒と、水素分圧5~14MPaの水素存在下、300~450℃の温度、0.1~2h-1のLHSV(液空間速度)で接触させることによって行うことができる。このとき、直鎖状のパラフィンの転化率が80%以上、軽質留分への転化率が40%以下となるようにすることが好ましい。
 一方、重質油の水素化分解を用いる高粘度指数の潤滑油基油は、次のようにして得ることができる。必要により水素化脱硫及び脱窒素を行った沸点が300~600℃の範囲の常圧留出油、減圧留出油又はブライトストックを、水素化分解触媒、例えばシリカ-アルミナ担体上にニッケル、コバルト等の8族金属の1種以上、及びモリブデン、タングステン等の6A族金属の1種以上を担持した触媒と、水素分圧7~14MPaの水素存在下、350~450℃の温度、0.1~2h-1のLHSV(液空間速度)で接触させて行うことができ、分解率(生成物に占める360℃以上の留分の減少した質量%)が40~90%となるようにすることが好ましい。
 上記方法で得られる水素異性化生成油又は水素化分解生成油から軽質留分を留去して潤滑油留分を得ることができるが、この留分は、このままでは一般に流動点や粘度が高く、また粘度指数が十分に高くないため、脱ロウ処理を行い、ワックス分を除去して、n‐d‐M環分析による%CPが80以上、流動点が-10℃以下で粘度指数が120以上の潤滑油基油を得ることができる。
 このワックス分の除去を溶剤脱ロウ処理で行う場合、上記の軽質留分の留去に際して精密蒸留装置を用いて蒸留分離し、あらかじめガスクロマトグラフィー蒸留法による沸点371℃以上491℃未満の留分が70質量%以上になるようにカットすることが、溶剤脱ロウ処理をより効率的に行うために好ましい。この溶剤脱ロウ処理は、脱ロウ溶剤として例えばメチルエチルケトン/トルエン(容量比1/1)を用い、溶剤/油比2/1~4/1の範囲で、-15~-40℃の温度下に行うとよい。
 一方、ワックス分の除去を水素化脱ロウ法で行う場合は、軽質留分の留去は水素化脱ロウに支障とならない程度とし、水素化脱ロウ後に、精密蒸留装置を用いて蒸留分離してガスクロマトグラフィー蒸留法による沸点371℃以上491℃未満の留分が70質量%以上になるようにカットすることが、効率的で好ましい。この水素化脱ロウは、ゼオライト触媒と、水素分圧3~15MPaの水素存在下、320~430℃の温度、0.2~4h-1のLHSV(液空間速度)で接触させ、最終的な潤滑油基油における流動点が-10℃以下となるようにするとよい。
 以上のような方法で、粘度指数120以上の潤滑油基油を得ることができるが、所望により、さらに溶剤精製或いは水素化精製を行うことができる。
 また、合成油としては、α‐オレフィンのオリゴマー、アジピン酸等の二塩基酸と一価アルコールから合成されるジエステルやネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等の多価アルコールと一塩基酸とから合成されるポリオールエステル、及びこれらの混合物等が挙げられる。
 さらに、適宜の鉱油と合成油を組み合わせた混合油も、本エンジン油の基油として用いることができる。
 鉱油、合成油又はこれらの混合油にしても、本発明の省燃費型エンジン油組成物に用いる場合、JIS K2283に規定する方法による100℃における動粘度が4.5mm/s以下でかつ粘度指数が120以上のものが好ましいが、さらには、100℃における動粘度が1.0mm/s以上、ASTM D2140に規定する方法のn‐d‐M環分析による%CPが80以上、JIS K2269に規定する方法による流動点が-10℃以下のものが、より好ましい。
 本発明の省燃費型エンジン油組成物は、エンジン油組成物全量基準で、有機モリブデン化合物をモリブデン(Mo)量として0.02質量%以上含有する。0.02質量%未満では、十分な省燃費持続性を得ることができない。この有機モリブデン化合物は、モリブデン(Mo)量として、0.03~0.20質量%含有させることが好ましい。
 有機モリブデン化合物として、具体的には、モリブデンジチオカーバメイト(MoDTC)、モリブデンジチオホスフェート(MoDTP)、Moアミンコンプレックスなどが挙げられる。この中で、MoDTCが最も好ましく、MoDTPはリンが排ガス浄化の三元触媒を被毒するため、あまり好ましくない。
 本発明において、MoDTCとしては、下記一般式(1)で表されるものを好ましく使用できる。
Figure JPOXMLDOC01-appb-C000001
 式中、R~Rは、炭素数4~18個を有する直鎖及び/又は分岐のアルキル基及び/又はアルケニル基を表し、Xは酸素原子又は硫黄原子を表し、その酸素原子と硫黄原子との比は1/3~3/1である。R~Rは、好ましくはアルキル基であり、特に好ましくは炭素数8~14の分岐のアルキル基であり、具体的にはブチル基、2‐エチルヘキシル基、イソトリデシル基、ステアリル基等が挙げられる。1分子中に存在する4個のR~Rは、同一であってもよく、異なっていてもよい。また、R~Rの異なるMoDTCを2種以上混合して用いることもできる。
 本発明において、脂環式エポキシ化合物としては、エポキシ化シクロアルカン及びその誘導体が挙げられる。エポキシ化シクロアルカンとしては、炭素数3~12が好ましい。エポキシ化シクロアルカンの具体例としては、エポキシ化シクロプロパン、エポキシ化シクロブタン、エポキシ化シクロペンタン、エポキシ化ジシクロペンタン、エポキシ化シクロヘキサン、エポキシ化シクロヘプタン、エポキシ化シクロオクタン、エポキシ化シクロノナン、エポキシ化シクロデカン、エポキシ化シクロドデカン、エポキシ化ノルボルナン等が挙げられる。
 エポキシ化シクロアルカン誘導体としては、脂環部分にアルキル基又はアルケニル基が1個以上導入されたアルキル化又はアルケニル化エポキシシクロアルカン、脂環部分に脂肪族若しくは芳香族のアルコキシ基が1個以上導入されたエーテル化合物、脂環部分にイミド基が1個以上導入されたイミド化合物及びビスイミド化合物、脂環部分にアミド基が1個以上導入されたアミド化合物等が挙げられ、より好ましくは脂環部分にカルボキシル基が1個以上導入されたエステル化合物が挙げられる。さらに好ましくは、エポキシ化シクロアルカンを2個有するものが好ましく、特には3,4‐エポキシシクロアルキル‐3,4‐エポキシシクロアルキルカルボキシレート(各アルキル基の炭素数は3~12)が好ましく、具体的な化合物として、3,4‐エポキシシクロヘキシルメチル‐3,4‐エポキシシクロヘキサンカルボキシレートがもっとも好ましい。これら脂環式エポキシ化合物は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 この脂環式エポキシ化合物の含有量は有効量含有させればよく、エンジン油組成物全量基準で0.05~2質量%の範囲で適宜選定すればよい。
 本発明の省燃費型エンジン油組成物は、潤滑油としての性能をバランスよく確保するために上記以外の各種の添加剤を配合することができる。特には優れた清浄性及びスラッジ分散性、摩耗防止性能を確保するために、金属系清浄剤や無灰分散剤、摩耗防止剤を含有することが好ましい。
 金属系清浄剤としては、アルカリ土類金属スルホネート、アルカリ土類金属フェネート及びアルカリ土類金属サリシレートから選ばれる少なくとも1種のアルカリ土類金属清浄剤を用いることが好ましい。
 アルカリ土類金属スルホネートとしては、分子量300~1,500、特に好ましくは400~700のアルキル芳香族スルホン酸のアルカリ土類金属塩、特にマグネシウム塩及び/又はカルシウム塩であり、カルシウム塩が好ましく用いられる。
 アルカリ土類金属フェネートとしては、炭素数4~30、好ましくは6~18の直鎖又は分枝のアルキル基を有するアルキルフェノール、アルキルフェノールサルファイド、アルキルフェノールのマンニッヒ反応物のアルカリ土類金属塩、特にマグネシウム塩及び/又はカルシウム塩が好ましく用いられる。
 アルカリ土類金属サリシレートとしては、炭素数1~30、好ましくは6~18の直鎖又は分枝のアルキル基を有するアルキルサリチル酸のアルカリ土類金属塩、特に好ましくは、マグネシウム塩及び/又はカルシウム塩が好ましく用いられる。
 上記金属系清浄剤の含有量は任意であるが、省燃費型エンジン油組成物全質量に対して、金属量で0.05~0.22質量%、好ましくは0.1~0.2質量%含有させることが望ましい。
 また、無灰分散剤としては、ポリオレフィンから誘導されるアルケニルコハク酸イミド、アルキルコハク酸イミド及びそれらの誘導体が挙げられる。代表的なコハク酸イミドは、高分子量のアルケニル基もしくはアルキル基で置換されたコハク酸無水物と、1分子当たり平均4~10個、より好ましくは5~7個の窒素原子を含むポリアルキレンポリアミンとの反応により得ることができる。特には、高分子量のアルケニル基もしくはアルキル基として、数平均分子量が700~5000のポリイソブテン、特に数平均分子量が900~3000のポリイソブテンを有するポリブテニルコハク酸イミドがより好ましい。
 このポリブテニルコハク酸イミドは、高純度イソブテンあるいは1‐ブテンとイソブテンの混合物をフッ化ホウ素系触媒あるいは塩化アルミニウム系触媒で重合させて得られるポリブテンから得られるものであり、ポリブテン末端にビニリデン構造を有するものが通常5~100mol%含有される。なお、ポリアルキレンポリアミン鎖には優れたスラッジ抑制効果を得る観点から2~5個、特には3~4個の窒素原子を含むものが好ましい。
 また、ポリブテニルコハク酸イミドの誘導体としては、上記ポリブテニルコハク酸イミドに、ホウ酸等のホウ素化合物や、アルコール、アルデヒド、ケトン、アルキルフェノール、環状カーボネート、有機酸等の含酸素有機化合物を作用させて、残存するアミノ基及び/又はイミノ基の一部又は全部を中和又はアミド化した、いわゆる変性コハク酸イミドとして用いることができる。特に、ホウ酸等のホウ素化合物との反応で得られるホウ素含有アルケニル(もしくはアルキル)コハク酸イミドは、熱・酸化安定性の面で優れている。
 この無灰分散剤の含有量は任意であるが、省燃費型エンジン油組成物全質量に対して、0.5~15質量%含有することが好ましい。
 本発明の省燃費型エンジン油組成物は、摩耗防止剤としてジチオリン酸亜鉛(ZnDTP)を、エンジン油組成物全質量基準で、リン(P)量として0.01~0.10質量%含有させることが好ましく、0.05~0.08質量%がより好ましい。エンジン油全質量に対するZnDTPに含まれるリン金属元素質量が0.01質量%未満では十分な摩耗防止性能を得ることができず、0.10質量%より大きい場合では自動車の排ガス浄化触媒に与える被毒の影響が大きくなる。
 ZnDTPとしては、炭素数1~24の直鎖状又は分枝状のアルキル基、炭素数3~24の直鎖状又は分枝状のアルケニル基又は直鎖状若しくは分枝状のアルキルシクロアルキル基、炭素数6~18のアリール基又は直鎖状若しくは分枝状のアルキルアリール基を有する化合物が好ましい。なお、このアルキル基やアルケニル基は、第1級、第2級及び第3級のいずれであってもよい。
 ジチオリン酸亜鉛の具体例としては、ジプロピルジチオリン酸亜鉛、ジブチルジチオリン酸亜鉛、ジペンチルジチオリン酸亜鉛、ジヘキシルジチオリン酸亜鉛、ジイソペンチルジチオリン酸亜鉛、ジエチルヘキシルジチオリン酸亜鉛、ジオクチルジチオリン酸亜鉛、ジノニルジチオリン酸亜鉛、ジデシルジチオリン酸亜鉛、ジドデシルジチオリン酸亜鉛、ジプロピルフェニルジチオリン酸亜鉛、ジペンチルフェニルジチオリン酸亜鉛、ジプロピルメチルフェニルジチオリン酸亜鉛、ジノニルフェニルジチオリン酸亜鉛、ジドデシルフェニルジチオリン酸亜鉛、ジドデシルフェニルジチオリン酸亜鉛等が挙げられる。
 ZnDTPの含有量は、エンジン油全重量に対して、ZnDTPに含まれるリン(P)金属元素重量で0.01~0.10質量%が好ましく、0.03~0.08質量%がより好ましい。
 本発明のエンジン油には、所望により、さらに無灰系の酸化防止剤、粘度指数向上剤、流動点降下剤、金属不活性化剤、防錆剤や消泡剤等の添加剤を添加することができる。
 次に、実施例により本発明を具体的に説明する。
 基油としては、重質油の水素化分解で得られた生成油を水素化脱ロウすることで得られた鉱油系基油(動粘度:17.7mm/s(40℃)、4.1mm/s(100℃)、粘度指数:134、%CP:85、流動点:-20℃)を用いた。
 上記基油に、添加剤として下記に説明するMoDTC、防食剤として潤滑油に対して広く添加されているベンゾトリアゾール誘導体(BTA)、エポキシ化合物、粘度指数向上剤(VI)及びその他添加剤を表1に示す割合で配合して実施例1~2及び比較例1~6のエンジン油を調製した。なお、その他の添加剤は、アルキルジチオリン酸亜鉛(ZnDTP)、Caスルホネート、アルケニルコハク酸イミド、流動点降下剤及び消泡剤からなる添加剤混合物であり、実施例及び比較例全部に共通して同じ添加量で添加した。粘度指数向上剤は、実施例及び比較例全部について組成物の100℃における動粘度が9.3~9.5mm/s(SAEエンジン油粘度分類の30に相当)になるよう添加した。
 MoDTCとしては、一般式(1)で表される化合物で、R~Rが2‐エチルヘキシル基とイソトリデシル基との混合物で、酸素原子と硫黄原子との比が1/1のものを使用した。
 ベンゾトリアゾール誘導体としては、N,N-ビス[(2‐エチルヘキシル)アミノメチル]‐1H‐ベンゾトリアゾール(チバスペシャリティ社製、Irgamet39)を使用した。
 エポキシ化合物としては、脂環式エポキシ化合物である3,4‐エポキシシクロヘキシルメチル‐3,4‐エポキシシクロヘキサンカルボキシレートを、また比較のために、非脂環式エポキシ化合物である2‐エチルヘキシルグリシジルエーテル(エポキシ化合物1)及びネオデカン酸グリシジルエステル(エポキシ化合物2)を使用した。
 粘度指数向上剤としては、ポリメタクリレート系化合物を用いた。
Figure JPOXMLDOC01-appb-T000002
 表1の実施例及び比較例のエンジン油それぞれについて、腐食酸化安定性試験を実施して、試験後のオイルを誘導結合プラズマ‐原子発光分光法(ICP‐AES)で元素分析を行った。腐食酸化安定性試験はJISK2503に準拠して行ったが、試験条件は試験温度を135℃、試験片を銅(Cu)、鉛(Pb)、錫(Sn)に変更した。
 また、供試エンジン油の省燃費性をSRV摩擦試験(試験条件:荷重400N、振幅1.5mm、 振動数50Hz、温度100℃)で評価し、良好な場合を○とし、不良な場合を×とした。
 これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2に示すとおり、実施例1~2のエンジン油組成物は、良好な省燃費性を示すと共に、腐食酸化安定性試験でのCuやPb、Snの溶出が少ないことが分かる。したがって、腐食摩耗防止性に優れつつ、高い省燃費性を発揮できる。
 一方、MoDTCも脂環式エポキシも用いない比較例1では、腐食酸化安定性試験でのCuやPbの溶出は少ないものの、省燃費性が劣る。MoDTCを配合し、脂環式エポキシ化合物を配合しなかった比較例2では、省燃費性に優れるものの、腐食酸化安定性試験でのCuの著しい腐食が生じた。
 また、MoDTCと共にベンゾトリアゾール誘導体を用いた比較例3、4ではベンゾトリアゾール誘導体の配合量が少ないとCuの溶出が多く、又はベンゾトリアゾール誘導体の配合量が多いとPbの溶出が多く、省燃費性に優れるものの腐食酸化安定性に劣ることが分かる。また、MoDTCと共に非脂環式エポキシ化合物を用いた比較例5、6ではCuの溶出が多く、特に脂肪酸とエポキシのエステルは、防食性が極めて低いことが分かる。
 本発明は、腐食、摩耗防止性能、さらは省燃費性に優れており、ガソリンエンジン、ディーゼルエンジン、ガスエンジンなどの内燃機関用のエンジン油として利用することができる。

Claims (5)

  1.  潤滑油基油に、有機モリブデン化合物をモリブデン(Mo)量として0.02質量%以上と脂環式エポキシ化合物を含有することを特徴とする省燃費型エンジン油組成物。
  2.  脂環式エポキシ化合物がエステル結合を有することを特徴とする請求項1に記載の省燃費型エンジン油組成物。
  3.  脂環式エポキシ化合物が2個のエポキシ化シクロアルカンを有することを特徴とする請求項1又は2に記載の省燃費型エンジン油組成物。
  4.  有機モリブデン化合物がモリブデンジチオカーバメイト(MoDTC)である請求項1~3のいずれかの項に記載の省燃費型エンジン油組成物。
  5.  潤滑油基油は100℃における動粘度が4.5mm/s以下である請求項1~4のいずれかの項に記載の省燃費型エンジン油組成物。
PCT/JP2011/053733 2010-06-25 2011-02-21 省燃費型エンジン油組成物 WO2011161982A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800301728A CN102959065A (zh) 2010-06-25 2011-02-21 省燃耗型机油组合物
KR1020137001894A KR20130100964A (ko) 2010-06-25 2011-02-21 연비 절약형 엔진 오일 조성물
JP2012521342A JP5767215B2 (ja) 2010-06-25 2011-02-21 省燃費型エンジン油組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-144929 2010-06-25
JP2010144929 2010-06-25

Publications (1)

Publication Number Publication Date
WO2011161982A1 true WO2011161982A1 (ja) 2011-12-29

Family

ID=45371186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053733 WO2011161982A1 (ja) 2010-06-25 2011-02-21 省燃費型エンジン油組成物

Country Status (4)

Country Link
JP (1) JP5767215B2 (ja)
KR (1) KR20130100964A (ja)
CN (1) CN102959065A (ja)
WO (1) WO2011161982A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014078712A1 (en) * 2012-11-16 2014-05-22 Basf Se Lubricant compositions comprising epoxide compounds to improve fluoropolymer seal compatibility
US20150291906A1 (en) * 2014-04-09 2015-10-15 Basf Se Lubricating Oil Compositions Containing Seal Compatibility Additives And Sterically Hindered Amines
JP2017178984A (ja) * 2016-03-28 2017-10-05 出光興産株式会社 潤滑油組成物
KR20190022750A (ko) 2016-06-29 2019-03-06 가부시키가이샤 아데카 내연 기관용 윤활유 조성물
EP3546549A1 (en) * 2018-03-27 2019-10-02 Infineum International Limited Lubricating oil composition
WO2023048075A1 (ja) * 2021-09-21 2023-03-30 Eneos株式会社 内燃機関用潤滑油組成物
US11697756B2 (en) 2019-07-29 2023-07-11 Ecolab Usa Inc. Oil soluble molybdenum complexes as high temperature fouling inhibitors
US11767596B2 (en) 2019-07-29 2023-09-26 Ecolab Usa Inc. Oil soluble molybdenum complexes for inhibiting high temperature corrosion and related applications in petroleum refineries
US11999915B2 (en) 2021-07-27 2024-06-04 Ecolab Usa Inc. Phosphorous-free oil soluble molybdenum complexes as high temperature fouling inhibitors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105524681B (zh) * 2014-10-23 2019-10-29 中国石油化工股份有限公司 一种汽油机油摩擦改进剂及其应用
JP7216563B2 (ja) 2019-02-12 2023-02-01 花王株式会社 グリース基油、および該グリース基油を含有するグリース組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335688A (ja) * 1998-05-26 1999-12-07 New Japan Chem Co Ltd 潤滑油組成物
JP2000063864A (ja) * 1998-07-17 2000-02-29 Lubrizol Corp:The 改良した密封性能、スラッジおよび堆積物性能のためのジチオカルバメ―トおよびアルデヒド/エポキシドを含有するエンジン油

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3945024B2 (ja) * 1998-06-23 2007-07-18 新日本理化株式会社 2サイクルエンジン油組成物
US20060090393A1 (en) * 2004-10-29 2006-05-04 Rowland Robert G Epoxidized ester additives for reducing lead corrosion in lubricants and fuels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335688A (ja) * 1998-05-26 1999-12-07 New Japan Chem Co Ltd 潤滑油組成物
JP2000063864A (ja) * 1998-07-17 2000-02-29 Lubrizol Corp:The 改良した密封性能、スラッジおよび堆積物性能のためのジチオカルバメ―トおよびアルデヒド/エポキシドを含有するエンジン油

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140142011A1 (en) * 2012-11-16 2014-05-22 Basf Se Lubricant Compositions Comprising Epoxide Compounds
WO2014078712A1 (en) * 2012-11-16 2014-05-22 Basf Se Lubricant compositions comprising epoxide compounds to improve fluoropolymer seal compatibility
WO2014078691A1 (en) * 2012-11-16 2014-05-22 Basf Se Lubricant compositions comprising epoxide compounds
WO2014078702A1 (en) * 2012-11-16 2014-05-22 Basf Se Lubricant compositions comprising epoxide compounds to improve fluoropolymer seal compatibility
US20140142010A1 (en) * 2012-11-16 2014-05-22 Basf Se Lubricant Compositions Comprising Epoxide Compounds
US20140142008A1 (en) * 2012-11-16 2014-05-22 Basf Se Lubricant Compositions Comprising Epoxide Compounds
US20140142009A1 (en) * 2012-11-16 2014-05-22 Basf Se Lubricant Compositions Comprising Epoxide Compounds
CN104870622A (zh) * 2012-11-16 2015-08-26 巴斯夫欧洲公司 包括环氧化物化合物的润滑剂组合物
US9410105B2 (en) * 2012-11-16 2016-08-09 Basf Se Lubricant compositions comprising epoxide compounds
CN104955926A (zh) * 2012-11-16 2015-09-30 巴斯夫欧洲公司 用于改进氟聚合物密封剂相容性的包括环氧化物化合物的润滑剂组合物
CN104884592A (zh) * 2012-11-16 2015-09-02 巴斯夫欧洲公司 用于改进氟聚合物密封剂相容性的包括环氧化物化合物的润滑剂组合物
JP2016501283A (ja) * 2012-11-16 2016-01-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se フルオロポリマーシール適合性向上のためのエポキシ化合物含有潤滑油組成物
US20150291906A1 (en) * 2014-04-09 2015-10-15 Basf Se Lubricating Oil Compositions Containing Seal Compatibility Additives And Sterically Hindered Amines
US9677023B2 (en) * 2014-04-09 2017-06-13 Basf Se Lubricating oil compositions containing seal compatibility additives and sterically hindered amines
JP2017178984A (ja) * 2016-03-28 2017-10-05 出光興産株式会社 潤滑油組成物
WO2017170401A1 (ja) * 2016-03-28 2017-10-05 出光興産株式会社 潤滑油組成物
CN108884410A (zh) * 2016-03-28 2018-11-23 出光兴产株式会社 润滑油组合物
DE112017001595T5 (de) 2016-03-28 2018-12-13 Idemitsu Kosan Co., Ltd. Schmiermittelölzusammensetzung
US20190112544A1 (en) * 2016-03-28 2019-04-18 Idemitsu Kosan Co., Ltd. Lubricating oil composition
KR20190022750A (ko) 2016-06-29 2019-03-06 가부시키가이샤 아데카 내연 기관용 윤활유 조성물
US10913917B2 (en) 2016-06-29 2021-02-09 Adeka Corporation Internal combustion engine lubricating oil composition
JP2019173000A (ja) * 2018-03-27 2019-10-10 インフィニューム インターナショナル リミテッド 潤滑油組成物
EP3546549A1 (en) * 2018-03-27 2019-10-02 Infineum International Limited Lubricating oil composition
JP7149887B2 (ja) 2018-03-27 2022-10-07 インフィニューム インターナショナル リミテッド 潤滑油組成物
US11697756B2 (en) 2019-07-29 2023-07-11 Ecolab Usa Inc. Oil soluble molybdenum complexes as high temperature fouling inhibitors
US11767596B2 (en) 2019-07-29 2023-09-26 Ecolab Usa Inc. Oil soluble molybdenum complexes for inhibiting high temperature corrosion and related applications in petroleum refineries
US11999915B2 (en) 2021-07-27 2024-06-04 Ecolab Usa Inc. Phosphorous-free oil soluble molybdenum complexes as high temperature fouling inhibitors
US12006483B2 (en) 2021-07-27 2024-06-11 Ecolab Usa Inc. Phosphorous-free oil soluble molybdenum complexes for high temperature naphthenic acid corrosion inhibition
WO2023048075A1 (ja) * 2021-09-21 2023-03-30 Eneos株式会社 内燃機関用潤滑油組成物

Also Published As

Publication number Publication date
KR20130100964A (ko) 2013-09-12
CN102959065A (zh) 2013-03-06
JPWO2011161982A1 (ja) 2013-08-19
JP5767215B2 (ja) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5767215B2 (ja) 省燃費型エンジン油組成物
JP2693698B2 (ja) 省燃費型潤滑油
JP5727701B2 (ja) 内燃機関用潤滑油組成物
EP3310885B1 (en) Multifunctional molybdenum containing compounds, method of making and using, and lubricating oil compositions containing same
WO2014010462A1 (ja) 内燃機関用潤滑油組成物
JP2015042757A (ja) 潤滑油組成物
JP5271566B2 (ja) 省燃費型エンジン油組成物
JP5214173B2 (ja) 内燃機関用潤滑油組成物
JP5600677B2 (ja) 省燃費型エンジン油組成物
JP2005171186A (ja) 耐熱性省燃費型エンジン油
JP2011201962A (ja) 省燃費型エンジン油組成物
JP5170637B2 (ja) 長寿命省燃費型エンジン油組成物
JP5470221B2 (ja) エンジン油組成物
JP5362228B2 (ja) 低デポジット省燃費型エンジン油組成物
JP5078116B2 (ja) 長寿命省燃費型エンジン油組成物
JP4613265B2 (ja) ローラーフォロワ型動弁系エンジン用潤滑油組成物
JP5198719B2 (ja) 潤滑油組成物
JP5030502B2 (ja) エンジン油組成物
JP6196304B2 (ja) 後処理されたモリブデンイミド潤滑油添加剤
JP2912286B2 (ja) 省燃費型潤滑油
KR20190018185A (ko) 친환경 신물질 윤활유 종합 첨가제 및 친환경 신물질 윤활유 종합 첨가제의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030172.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797870

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521342

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2532/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1201005761

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137001894

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11797870

Country of ref document: EP

Kind code of ref document: A1