WO2011155583A1 - 硬化性樹脂組成物およびその硬化物 - Google Patents

硬化性樹脂組成物およびその硬化物 Download PDF

Info

Publication number
WO2011155583A1
WO2011155583A1 PCT/JP2011/063312 JP2011063312W WO2011155583A1 WO 2011155583 A1 WO2011155583 A1 WO 2011155583A1 JP 2011063312 W JP2011063312 W JP 2011063312W WO 2011155583 A1 WO2011155583 A1 WO 2011155583A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
curable resin
acid
structural formula
Prior art date
Application number
PCT/JP2011/063312
Other languages
English (en)
French (fr)
Inventor
静 青木
義浩 川田
智江 佐々木
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201180028816.XA priority Critical patent/CN102939313B/zh
Priority to KR1020127031434A priority patent/KR101699773B1/ko
Priority to SG2012090551A priority patent/SG186252A1/en
Publication of WO2011155583A1 publication Critical patent/WO2011155583A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/3263Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a curable resin composition suitable for electrical and electronic materials, particularly for optical semiconductors, and a cured product.
  • an epoxy resin composition has been employed as a sealing material for optical semiconductor elements such as LED products in terms of a balance between performance and economy.
  • glycidyl ether type epoxy resin compositions typified by bisphenol A type epoxy resins having excellent balance of heat resistance, transparency and mechanical properties have been widely used.
  • the sealing material is colored on the LED chip under the influence of short wavelength light, and finally Has been pointed out that illuminance decreases as an LED product.
  • Patent Document 3 a resin in which a siloxane skeleton (specifically, a skeleton having Si—O bond) such as silicone resin or silicone-modified epoxy resin is introduced is used as a sealing material.
  • a resin having a siloxane skeleton introduced is known to be more stable to light than an epoxy resin, but it is still not sufficient, and further improvement is a problem.
  • Patent Document 4 a method of adding a light stabilizer is known (Patent Document 4).
  • the light resistance is improved by the addition of the light stabilizer, the resin deteriorates due to heat generated from the LED chip.
  • An object of the present invention is to provide a novel curable resin composition that gives a cured product excellent in light-coloring resistance, heat-resistant coloring property and corrosion gas resistance.
  • the present invention (1) Curable resin composition containing organopolysiloxane (A) and polyvalent carboxylic acid (B), organometallic salt and / or organometallic complex (C), and light stabilizer (D), provided that organopolysiloxane (A ), Polyvalent carboxylic acid (B), and light stabilizer (D) satisfy the following conditions.
  • Y represents a hydrogen atom, an alkyl group having 1 to 50 carbon atoms, an aryl group, or an alkoxy group.
  • the curable resin composition according to the above item (1) comprising a compound of the structural formula (1) wherein Y in the structural formula (2) is an alkoxy group having 1 to 20 carbon atoms; (3) Any one of (1) and (2) above, wherein the organometallic salt and / or organometallic complex (C) is a phosphoric ester, a zinc salt of phosphoric acid, and / or a zinc complex having these acids or esters as ligands.
  • Curable resin composition according to item, (5) The curable resin composition according to any one of (1) to (4) above, which contains an acid anhydride, (6) Any of (1) to (5) above, wherein the polyvalent carboxylic acid (B) is a compound obtained by reacting a bi- to hexafunctional polyhydric alcohol having 5 or more carbon atoms with a saturated aliphatic cyclic acid anhydride.
  • the curable resin composition of the present invention is excellent in corrosion gas resistance, heat-resistant colorability, and light-colorable property, among optical materials, particularly for optical semiconductors (LED products, etc.) used in a living environment such as lighting. It is extremely useful as an adhesive and sealing material.
  • the curable resin composition of the present invention contains an organopolysiloxane (A), a polyvalent carboxylic acid (B), an organometallic salt and / or an organometallic complex (C), and a light stabilizer (D).
  • an organopolysiloxane (A) an organopolysiloxane having a glycidyl group and / or an epoxycyclohexyl group in its molecule is used.
  • the organopolysiloxane is an organopolysiloxane having at least a glycidyl group and / or an epoxycyclohexyl group in the molecule, and is generally a sol-gel using a trialkoxysilane having a glycidyl group or an epoxycyclohexyl group as a raw material. Obtained by reaction.
  • a siloxane compound having a three-dimensional network structure described in JP-A-2008-174640 examples thereof include silsesquioxane type organopolysiloxane having a three-dimensional network structure described in JP-A-2008-174640.
  • the structure is not particularly limited. However, since a siloxane compound having a simple three-dimensional network structure is too hard, a structure that relaxes the hardness is desired.
  • a block structure having a chain-like silicone segment and the aforementioned silsesquioxane structure in one molecule is particularly preferable (hereinafter referred to as a block-type siloxane compound (E)).
  • the block-type siloxane compound (E) is not a compound having a repeating unit in a straight chain like a normal block copolymer, but has a network structure that spreads in three dimensions, and has a silsesquioxane structure as a core.
  • the chain-like silicone segment is elongated and connected to the next silsesquioxane structure. This structure is effective in the sense of giving a balance between hardness and flexibility to the cured product of the curable composition of the present invention.
  • the block type siloxane compound (E) can be produced using, for example, an alkoxysilane (a) represented by the following general formula (3) and a silicone oil (b) represented by the general formula (4) as raw materials,
  • the alkoxysilane (c) represented by the general formula (5) can be used as a raw material as necessary.
  • the chain-type silicone segment of the block-type siloxane compound (E) is formed from the silicone oil (b), and the three-dimensional network silsesquioxane segment is the alkoxysilane (a) (and the alkoxy added if necessary) Silane (c)).
  • each raw material will be described in detail.
  • the alkoxysilane (a) is represented by the following general formula (3).
  • X in the general formula (3) is not particularly limited as long as it is an organic group containing a glycidyl group and / or an epoxycyclohexyl group.
  • an alkyl group having 1 to 4 carbon atoms substituted with a glycidoxy group such as ⁇ -glycidoxyethyl, ⁇ -glycidoxypropyl, ⁇ -glycidoxybutyl, glycidyl group, ⁇ - (3,4-epoxy (Cyclohexyl) ethyl group, ⁇ - (3,4-epoxycyclohexyl) propyl group, ⁇ - (3,4-epoxycycloheptyl) ethyl group, ⁇ - (3,4-epoxycyclohexyl) propyl group, ⁇ - (3,4 Examples thereof include an alkyl group having 1 to 5 carbon atoms substituted with a cyclohexyl group having an oxirane group such as a 4-epoxycyclohexyl) butyl group and a ⁇ - (3,4-epoxycyclohexyl) pentyl group.
  • an alkyl group having 1 to 3 carbon atoms substituted with a glycidoxy group an alkyl group having 1 to 3 carbon atoms substituted with a cyclohexyl group having an epoxy group, such as ⁇ -glycidoxyethyl group, ⁇ -Glycidoxypropyl group and ⁇ - (3,4-epoxycyclohexyl) ethyl group are preferable, and ⁇ - (3,4-epoxycyclohexyl) ethyl group is particularly preferable.
  • a plurality of R 1 s in the general formula (3) may be the same as or different from each other, and represent a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
  • R 1 is preferably a methyl group or an ethyl group, particularly preferably a methyl group, from the viewpoint of reaction conditions such as compatibility and reactivity.
  • alkoxysilane (a) include ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxyethyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -glycidoxypropyltriethoxy.
  • These alkoxysilanes (a) may be used independently, may use 2 or more types, and can also be used together with the alkoxysilane (c) mentioned later.
  • Silicone oil (b) is represented by the following general formula (4)
  • a plurality of R 2 may be the same or different from each other, and may be an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, or 2 to 10 carbon atoms.
  • An alkenyl group of M represents the number of repeating units.
  • alkyl group having 1 to 10 carbon atoms examples include linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n-pentyl group, i-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, octyl group, 2-ethylhexyl group, nonyl Group, decyl group and the like.
  • a methyl group, an ethyl group, and a cyclohexyl group are preferable.
  • the aryl group having 6 to 14 carbon atoms include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, and a xylyl group.
  • the alkenyl group having 2 to 10 carbon atoms include alkenyl groups such as vinyl group, 1-methylvinyl group, allyl group, propenyl group, butenyl group, pentenyl group and hexenyl group.
  • R 2 is preferably a methyl group, a phenyl group, a cyclohexyl group or an n-propyl group from the viewpoint of light resistance and heat resistance, and particularly preferably a methyl group or a phenyl group.
  • the number m of repeating units of the compound of the general formula (4) shows an average value of 3 to 200, preferably 3 to 100, more preferably 3 to 50.
  • m is less than 3, the cured product becomes too hard and the low elastic modulus characteristics are deteriorated. If m exceeds 200, the mechanical properties of the cured product tend to deteriorate, which is not preferable.
  • the weight average molecular weight (Mw) of the silicone oil (b) is preferably in the range of 300 to 18,000 (measured by GPC (gel permeation chromatography)). Among these, those having a molecular weight of 300 to 10,000 are preferable in consideration of the elastic modulus at a low temperature, and those having a molecular weight of 300 to 5,000 are more preferable in consideration of compatibility at the time of forming the composition. 1,000 is preferred. If the weight average molecular weight is less than 300, the properties of the chain silicone portion of the characteristic segment are difficult to be obtained, and the properties as a block type may be impaired. If it exceeds 18,000, a severe layer separation structure will be formed. When used as a material, the permeability becomes poor, making it difficult to use.
  • the kinematic viscosity of the silicone oil (b) is preferably in the range of 10 to 200 cSt, more preferably 30 to 90 cSt.
  • the viscosity is less than 10 cSt, the viscosity of the block type siloxane compound (E) becomes too low and may not be suitable as an optical semiconductor sealing agent.
  • the viscosity exceeds 200 cSt, the viscosity of the block type siloxane compound (E) Is unfavorable because it tends to cause an adverse effect on workability.
  • preferable silicone oil (b) examples include the following product names.
  • PRX413 and BY16-873 are manufactured by Toray Dow Corning Silicone
  • X-21-5841 and KF-9701 are manufactured by Shin-Etsu Chemical
  • XC96-723, TSR160, YR3370 and YF3800 are manufactured by Momentive.
  • XF3905 YF3057, YF3807, YF3802, YF3897, YF3804, XF3905, manufactured by Gelest, DMS-S12, DMS-S14, DMS-S15, DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS -S33, DMS-S35, DMS-S42, DMS-S45, DMS-S51, PDS-0332, PDS-1615, PDS-9931 and the like.
  • the alkoxysilane (c) has a structure represented by the following general formula (5).
  • R 3 in the general formula (5) represents a methyl group or a phenyl group.
  • a plurality of R 4 in the general formula (5) represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, which may be the same or different.
  • R 4 is preferably a methyl group or an ethyl group from the viewpoint of reaction conditions such as compatibility and reactivity.
  • preferable alkoxysilane (c) include methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and phenyltriethoxysilane. Of these, methyltrimethoxysilane and phenyltrimethoxysilane are preferred.
  • the alkoxysilane (c) adjusts the molecular weight of the block-type siloxane compound (E), the compatibility with the composition, the heat resistance of the cured product, light resistance, low moisture permeability, low gas permeability, and the like. Therefore, it can be used in combination with alkoxysilane (a).
  • the alkoxysilane (c) is preferably used in the range of 5 to 70 mol% of the total of the alkoxysilane (a) and the alkoxysilane (c). 5 to 50 mol% is more preferable, and 10 to 40 mol% is particularly preferable. If it is larger than 70 mol%, the crosslink density of the cured product is lowered and the mechanical strength is lowered, which is not preferable.
  • the reaction ratio of alkoxysilane (a), silicone oil (b), and alkoxysilane (c) is based on 1 equivalent of silanol groups of silicone oil (b), with alkoxysilane (a) (optionally alkoxysilane ( When c) is used in combination, the reaction takes place between 1.5 to 200, preferably 2 to 200, particularly preferably 2 to 100, with the alkoxy group in alkoxysilane (a) and alkoxysilane (c)) as an equivalent value. It is preferable to carry out. When the equivalent value exceeds 200, the cured product using the block type siloxane compound (E) becomes too hard, and the desired low elastic modulus characteristic is lowered.
  • Production step (1) Step of dealcoholization condensation of silanol-terminated silicone oil and silicon compound having alkoxy group
  • Production step (2) Hydrolysis condensation between alkoxy groups of silicon compound having alkoxy group by adding water
  • the reaction may be performed in any order as long as it goes through each process.
  • ⁇ Manufacturing method (I)> First, as a production process (1), the silicone oil (b) having a silanol group at the terminal and the alkoxysilane (a) (alkoxysilane (c) added if necessary) which is a silicon compound having an alkoxy group are removed. A step of obtaining an alkoxysilane-modified product (d) by performing alkoxysilane modification on the terminal of the silicone oil by an alcohol condensation reaction is performed.
  • alkoxysilane (a) which is a silicon compound having an alkoxy group as production step (2) (alkoxysilane (c) added as necessary), and alkoxysilane of silicone oil obtained in production step (1)
  • a hydrolysis condensation reaction between alkoxy groups is performed by adding water of alkoxysilane (a) (alkoxysilane (c) added as necessary) which is a silicon compound having an alkoxy group.
  • a step of obtaining silsesquioxane (e) having an alkoxy group in the molecule is performed.
  • a reaction between the silanol group-containing silicone oil (b) and the silsesquioxane (e) causes a dealcoholization condensation reaction between the alkoxy group remaining in the silsesquioxane structure and the silanol group.
  • ⁇ Manufacturing method (c)> First, as a production process (1), the silicone oil (b) having a silanol group at the terminal and the alkoxysilane (a) (alkoxysilane (c) added if necessary) which is a silicon compound having an alkoxy group are removed. After the end of the silicone oil is modified with alkoxysilane by an alcohol condensation reaction to obtain an alkoxysilane-modified product (d), water is added to the system, and the remaining alkoxysilane (a) (alkoxysilane) is produced as a production step (2). (C)), and the method of manufacturing a block-type siloxane compound (E) by performing the hydrolysis-condensation reaction of the alkoxy groups of the alkoxysilane modified body (d) in one pot.
  • the production method (c) in which the reaction is sequentially carried out in one pot.
  • the production method (c) will be described more specifically.
  • the reverse of the manufacturing method (c) described above that is, when the manufacturing process (1) is performed after the manufacturing process (2) as shown in (b), it is formed in the manufacturing process (2).
  • the silsesquioxane oligomer having an alkoxy group and the silicone oil (b) are not compatible with each other, the dealcoholization condensation polymerization does not proceed in the subsequent production step (1), and an unreacted silicone oil remains. Is expensive.
  • the production process (1) in the one-pot is the first stage reaction and the production process (2) is the second stage reaction
  • the silicone oil (b) and the alkoxy The dealcohol condensation of silane (a) (alkoxysilane (c) added if necessary) is carried out, and the terminal of the silicone oil is alkoxysilyl-modified to obtain an alkoxysilane-modified product (d).
  • a modified alkoxysilane (D) is considered to exist in a structure represented by the following formula (6).
  • R 2 and m have the same meaning as described above, and R 5 represents X or R 3 .
  • R 6 represents R 1 when R 5 is X, and R 4 when R 5 is R 3 .
  • the alkoxy group In the first stage reaction, if the alkoxy group is reacted in an amount less than 1.0 equivalent with respect to 1 equivalent of the silanol group, the alkoxy group does not exist at the end of the first stage reaction. Further, when the alkoxy group is reacted in an amount of 1.0 to 1.5 equivalents, two or more alkoxy groups in the alkoxysilane (a) (alkoxysilane (c) added if necessary) are converted into silicone oil (b ), And becomes a polymer at the end of the first stage reaction, resulting in gelation. For this reason, it is necessary to make an alkoxy group react with 1.5 equivalent or more with respect to 1 equivalent of silanol groups. From the viewpoint of reaction control, 2.0 equivalents or more are preferable, and 3.0 equivalents or more are more preferable.
  • the second stage reaction (production process (2)) in which water is added as it is to carry out hydrolysis condensation between alkoxy groups is performed. Further, in the second stage reaction, the following reactions (I) to (III) occur.
  • the production of the block type siloxane compound (E) can be carried out without a catalyst, the reaction progress is slow with no catalyst, and it is preferably carried out in the presence of a catalyst from the viewpoint of shortening the reaction time.
  • a catalyst any compound that exhibits acidity or basicity can be used.
  • the acidic compound (acid catalyst) include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid.
  • basic compounds examples include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate
  • alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate
  • Inorganic bases such as alkali metal carbonates such as potassium hydrogen carbonate
  • organic bases such as ammonia, triethylamine, diethylenetriamine, n-butylamine, dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used.
  • an inorganic base is particularly preferable in terms of easy catalyst removal from the product, and sodium hydroxide and potassium hydroxide are particularly preferable.
  • the amount of the catalyst added is usually 0.001 to 7.5% by weight, preferably 0, based on the total weight of the alkoxysilane (a) (and the alkoxysilane (c) added if necessary) in the reaction system. 0.01 to 5% by weight.
  • a method for adding the catalyst it is added directly or used in a state dissolved in a soluble solvent or the like. Among them, it is preferable to add the catalyst in a state in which the catalyst is dissolved in advance in alcohols such as methanol, ethanol, propanol and butanol.
  • the production of the block type siloxane compound (E) can be carried out without a solvent or in a solvent. Moreover, a solvent can also be added in the middle of a manufacturing process. As a solvent in the case of using, especially if it is a solvent which melt
  • solvents examples include aprotic polar solvents such as dimethylformamide, dimethylacetamide, and tetrahydrofuran, ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone, ethyl acetate, butyl acetate, ethyl lactate, and butanoic acid.
  • aprotic polar solvents such as dimethylformamide, dimethylacetamide, and tetrahydrofuran
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone, ethyl acetate, butyl acetate, ethyl lactate, and butanoic acid.
  • esters such as isopropyl, alcohols such as methanol, ethanol, propanol and butanol, hydrocarbons such as hexane, cyclohexane, tolu
  • reaction in alcohols is preferable from the viewpoint of reaction control, and methanol and ethanol are more preferable.
  • the amount of solvent used is not particularly limited as long as the reaction proceeds smoothly, but alkoxysilane (a) (and alkoxysilane (c) added as necessary), a compound of silicone oil (b) Usually, about 0 to 900 parts by weight is used with respect to 100 parts by weight.
  • the reaction temperature is usually 20 to 160 ° C., preferably 40 to 140 ° C., particularly preferably 50 to 150 ° C., depending on the amount of catalyst.
  • the reaction time is usually 1 to 40 hours, preferably 5 to 30 hours, in each production step.
  • the catalyst is removed by quenching and / or washing with water as necessary.
  • a solvent that can be separated from water.
  • Preferred solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. Can be illustrated.
  • the catalyst may be removed only by washing with water, but the reaction is carried out under acidic or basic conditions. It is preferable to remove the adsorbent by filtration after adsorbing the catalyst using Any compound that is acidic or basic can be used for the neutralization reaction.
  • the compound exhibiting acidity include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid.
  • Examples of compounds showing basicity include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide and cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate.
  • Inorganic bases such as alkali metal carbonates, phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, phosphates such as polyphosphoric acid, sodium tripolyphosphate, ammonia, triethylamine, diethylenetriamine, n-butylamine, Organic bases such as dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used.
  • inorganic bases or inorganic acids are preferable because they can be easily removed from the product, and phosphates that can more easily adjust the pH to near neutral are more preferable.
  • adsorbent examples include activated clay, activated carbon, zeolite, inorganic / organic synthetic adsorbent, ion exchange resin, and the like, and specific examples include the following products.
  • activated clay for example, Toshin Kasei Co., Ltd., activated clay SA35, SA1, T, R-15, E, Nikkanite G-36, G-153, G-168 are manufactured by Mizusawa Chemical Co., Ltd. Galeon Earth, Mizuka Ace, etc. are listed.
  • activated carbon for example, CL-H, Y-10S, Y-10SF manufactured by Ajinomoto Fine Techno Co., Ltd., S, Y, FC, DP, SA1000, K, A, KA, M, CW130BR manufactured by Phutamura Chemical Co., Ltd. , CW130AR, GM130A, and the like.
  • zeolite include, for example, molecular sieves 3A, 4A, 5A, and 13X, manufactured by Union Showa.
  • a synthetic adsorbent for example, Kyoward 100, 200, 300, 400, 500, 600, 700, 1000, 2000 manufactured by Kyowa Chemical Co., Ltd., Amberlist 15JWET, 15DRY, manufactured by Rohm and Haas Co., Ltd. 16WET, 31WET, A21, Amberlite IRA400JCl, IRA403BLCl, IRA404JCl, Dow Chemical Co., Dowex 66, HCR-S, HCR-W2, MAC-3, and the like.
  • the adsorbent is added to the reaction solution, followed by treatment such as stirring and heating to adsorb the catalyst, and then the adsorbent is filtered and the residue is washed with water to remove the catalyst and adsorbent.
  • the reaction After completion of the reaction or after quenching, it can be purified by conventional separation and purification means other than water washing and filtration.
  • the purification means include column chromatography, vacuum concentration, distillation, extraction and the like. These purification means may be performed singly or in combination.
  • reaction solvent mixed with water is removed from the system by distillation or vacuum concentration after quenching, and then washed with a solvent that can be separated from water. It is preferable.
  • the block siloxane compound (E) can be obtained by removing the solvent by vacuum concentration or the like.
  • the appearance of the block-type siloxane compound (E) thus obtained is usually colorless and transparent and is a liquid having fluidity at 25 ° C.
  • the molecular weight is preferably 800 to 20,000, more preferably 1,000 to 10,000, and particularly preferably 1,500 to 6,000 as the weight average molecular weight measured by GPC. When the weight average molecular weight is less than 800, the heat resistance may be lowered. When the weight average molecular weight is more than 20,000, the viscosity is increased and the workability is adversely affected.
  • the weight average molecular weight is a polystyrene equivalent weight average molecular weight (Mw) measured using GPC (gel permeation chromatography) under the following conditions.
  • the epoxy equivalent (measured by the method described in JIS K-7236) of the block type siloxane compound (E) is preferably 300 to 1,600 g / eq, more preferably 400 to 1,000 g / eq. Particularly preferred is 450 to 900 g / eq.
  • the epoxy equivalent is less than 300 g / eq, the cured product is hard and the elastic modulus tends to be too high, and when it exceeds 1,600 g / eq, the mechanical properties of the cured product tend to deteriorate.
  • the viscosity of the block-type siloxane compound (E) is preferably 50 to 20,000 mPa ⁇ s, more preferably 500 to 10,000 mPa ⁇ s, particularly 800 to 5 1,000 mPa ⁇ s is preferred. If the viscosity is less than 50 mPa ⁇ s, the viscosity may be too low to be suitable for use as an optical semiconductor encapsulant, and if it exceeds 20,000 mPa ⁇ s, the viscosity may be too high and workability may be poor. is there.
  • the ratio of silicon atoms bonded to three oxygens derived from silsesquioxane in the block-type siloxane compound (E) to the total silicon atoms is preferably 5 to 50 mol%, more preferably 8 to 30 mol%, 10 to 20 mol% is particularly preferable.
  • the ratio of silicon atoms bonded to three oxygens derived from silsesquioxane to the total silicon atoms is less than 5 mol%, the cured product tends to be too soft as a characteristic of the chain silicone segment, and surface tack There are concerns about injury. On the other hand, if it exceeds 50 mol%, the cured product becomes too hard as a feature of the silsesquioxane segment, which is not preferable.
  • the proportion of silicon atoms present can be determined by 1 H NMR, 29 Si NMR, elemental analysis, etc. of the block type siloxane compound (E).
  • the polyvalent carboxylic acid (B) is a compound having at least two or more carboxyl groups and having an aliphatic hydrocarbon group as a main skeleton.
  • the polyvalent carboxylic acid is not only a polyvalent carboxylic acid compound having a single structure, but also a mixture of a plurality of compounds having different substituent positions or different substituents, that is, a polyvalent carboxylic acid composition. In the present invention, these are collectively referred to as polyvalent carboxylic acids.
  • a bi- to hexafunctional carboxylic acid is particularly preferable.
  • the dihydric polyhydric alcohol having 5 or more carbon atoms and an acid anhydride are used. It is preferable that it is the compound obtained by reaction. If the number of carbon atoms is 5 or more, good workability as a sealing material can be ensured.
  • the acid anhydride is preferably a polycarboxylic acid which is a saturated aliphatic cyclic acid anhydride.
  • the bifunctional to hexafunctional polyhydric alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1, 4-butanediol, 1,5-pentanediol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, Diols such as tricyclodecane dimethanol and norbornenediol, triols such as glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane, 2-hydroxymethyl-1,4-butanediol, pentaerythritol, ditrimethylo Tetraols such as propane, and
  • Particularly preferred alcohols are alcohols having 5 or more carbon atoms, particularly 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 2, Compounds such as 4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornene diol are preferable, and among them, heat resistance and light resistance are imparted and high From the standpoint of maintaining the illuminance retention rate, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, 2,4-diethylpentanediol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol Branched chain such as norbornenediol Alcohols having concrete or
  • acid anhydrides include methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane- 2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride and the like are preferable, Of these, methylhexahydrophthalic anhydride and cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride are preferred because of their high transparency.
  • one specific reaction condition is that the acid anhydride and polyhydric alcohol are reacted at 40 to 150 ° C. under non-catalytic and solvent-free conditions and heated. It is a technique of taking out as it is after completion. However, it is not limited to this reaction condition.
  • Q's represent at least one of a hydrogen atom, a methyl group and a carboxyl group.
  • P represents a chain, branched or cyclic fatty acid having 2 to 20 carbon atoms derived from the above-mentioned polyhydric alcohol.
  • M is the number of functional groups of the polyhydric alcohol, and is preferably an integer of 2 to 6.
  • the curable resin composition of the present invention preferably contains an acid anhydride.
  • an acid anhydride By containing an acid anhydride, the viscosity as a curing agent can be arbitrarily adjusted.
  • acid anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride Acid, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3- And acid anhydrides such as dicarboxylic acid anhydride and cyclohexane-1,2,4-tricarboxylic acid-1,2-
  • methyltetrahydrophthalic anhydride methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic acid
  • An acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride and the like are preferable.
  • the following formula (8) the following formula (8)
  • hexahydrophthalic anhydride methylhexahydrophthalic anhydride, cyclohexane-1,2,4- Tricarboxylic acid-1,2-anhydride is preferable.
  • methylhexahydrophthalic anhydride and cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride are preferable because of high transparency.
  • the polyvalent carboxylic acid (B) and the acid anhydride are preferably used in combination, and when used in combination, the use ratio is preferably in the following range.
  • W1 / (W1 + W2) 0.05 to 0.65
  • W1 shows the compounding weight part of polyhydric carboxylic acid (B)
  • W2 shows the compounding weight part of an acid anhydride.
  • the range of W1 / (W1 + W2) is preferably 0.05 to 0.65, more preferably 0.10 to 0.65, and particularly preferably 0.3 to 0.6. If it is less than 0.05, there is a strong tendency of acid volatilization to increase during curing, which is not preferable. If it exceeds 0.65, the viscosity becomes high and handling becomes difficult.
  • the acid anhydride When the acid anhydride is not contained (except when it remains in a small amount), there is no problem because the shape becomes a solid, a solid state or a crystal.
  • polyhydric carboxylic acid (B) and acid anhydride are used in combination, the polyhydric carboxylic acid (B) is produced in an excess of acid anhydride at the time of producing polyhydric carboxylic acid (B), and a mixture of polyvalent carboxylic acid (B) and acid anhydride
  • the method of making is also preferable from the viewpoint of simplicity of operation.
  • the curable resin composition of the present invention contains an organometallic salt and / or an organometallic complex (C).
  • organometallic salt and / or organometallic complex examples include aluminum, manganese, iron, cobalt, nickel, copper, zinc, zirconium, tin, lead, and the like.
  • organometallic salt and / or organometallic complex (C) examples include aluminum 2-ethylhexanoate, manganese 2-ethylhexanoate, iron 2-ethylhexanoate, cobalt 2-ethylhexanoate, 2-ethylhexane.
  • zinc salts and / or zinc complexes are preferred.
  • zinc 2-ethylhexanoate, zinc complexes of phosphoric acid (2-ethylhexyl) and / or salts thereof Zinc stearate, zinc undecylenate, zinc laurate, zinc pehenate, zinc 12-hydroxystearate, zinc montanate, zinc myristate, zinc palmitate, zinc naphthenate, zinc hexate and zinc octylate are preferred.
  • zinc 2-ethylhexanoate, zinc complex of phosphoric acid (2-ethylhexyl) and / or a salt thereof, zinc stearate, and zinc undecylenate are more preferable.
  • Zinc 2-ethylhexanoate, zinc complex of phosphoric acid (2-ethylhexyl) and / or a salt thereof are particularly preferred.
  • commercially available products include Zn-St, Zn-ST 602, Zn-St NZ, ZS-3, ZS-6, ZS-8, ZS-7, ZS-10, ZS-.
  • ZS-14, ZS-16 manufactured by Nitto Kasei Kogyo
  • XK-614 manufactured by King Industry
  • 18% octope Zn, 12% octope Zn, 8% octope Zn manufactured by Hope Pharmaceutical
  • examples of the zinc phosphate include LBT-2000B (manufactured by SC Organic Chemical) and XC-9206 (manufactured by King Industry).
  • the ratio of the organometallic salt and / or the organometallic complex (C) is 0.01 to 8% by weight, more preferably 0.05 to 5% by weight, more preferably 0.05% by weight, based on the organopolysiloxane (A). Is 0.1 to 4% by weight. Further, it is particularly preferably 0.1 to 2% by weight.
  • the curable resin composition of the present invention contains a light stabilizer (D).
  • the light stabilizer (D) is preferably a compound represented by the following general formula (1).
  • X 1 and X 2 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 50 carbon atoms, an aralkyl group, an aryl group, an aryl group having an alkyl group having 1 to 20 carbon atoms, an alkoxy group, or a structural formula (2)
  • X 1 and X 2 is the structural formula (2)
  • the structural formula (2) is bonded to the oxygen atom of the formula (1) at *.
  • Y represents a hydrogen atom, an alkyl group having 1 to 50 carbon atoms, an aryl group, or an alkoxy group.
  • Y methyl group Bis (1,2,2,6,6-pentamethylpiperidin-4-yl) carbonate having the structural formula (2) as X 1 and X 2
  • Y Bis (2,2,6,6-tetramethyl-propoxypiperidin-4-yl) carbonate having structural formula (2) which is a propoxy group as X 1 and X 2
  • structural formula (2) where Y undecyloxy group the bis and substituents X 1 and X 2 (1-undecane-2,2,6,6-tetramethylpiperidin-4-yl) carbonate
  • Y structural formula is a methyl group and (2) and X 1 1,2,2,6,6-, wherein the tert-pentyloxy group is X 2 Examples include pentamethylpiperidin-4-yl tert-pentylcarbonoperoperate.
  • the ratio of the light stabilizer (D) is 0.005 to 5% by weight, more preferably 0.01 to 4% by weight, and still more preferably 0.1 to 4% by weight with respect to the organopolysiloxane (A). 2% by weight.
  • the ratio of the light stabilizer (D) is less than 0.005% by weight based on the organopolysiloxane (A)
  • the effect of improving light resistance is insufficient.
  • the cured resin is colored, which causes a decrease in illuminance.
  • the light stabilizer (D) is used in combination with the organopolysiloxane (A), the polyvalent carboxylic acid (B), and the organometallic salt and / or organometallic complex (C). It can be significantly improved.
  • a zinc salt and / or zinc complex as the organometallic salt and / or organometallic complex (C), and bis (1-undecanoxy-2,2,6,6-tetramethylpiperidine as the light stabilizer (D) -4-yl) carbonate is preferred, and these are preferably used in combination. This is because when used in the combination, it is excellent in light resistance and heat resistance, hardly colored by light or heat, and excellent in corrosion gas resistance.
  • the light stabilizer (D) can be used in combination with other light stabilizers.
  • the curable resin composition of the present invention is used for an optical material, particularly an optical semiconductor encapsulant, it is preferable to contain a phosphorus compound as an antioxidant as a particularly preferable component.
  • the phosphorus compound is not particularly limited.
  • 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-di
  • the commercially available phosphorus compounds are not particularly limited. For example, as Adeka, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260 Adeka tab 522A, Adekas tab 1178, Adekas tab 1500, Adekas tab C, Adekas tab 135A, Adekas tab 3010, and Adekas tab TPP.
  • the ratio of the phosphorus compound is 0.005 to 5% by weight, more preferably 0.01 to 4% by weight, and 0.1 to 2% by weight with respect to the organopolysiloxane (A).
  • the curable resin composition of the present invention comprises an organopolysiloxane (A) as an epoxy resin, a polyvalent carboxylic acid (B) as a curing agent, an organometallic salt and / or organometallic complex (C) as an additive, and a light stabilizer ( D) is an essential component, and an acid anhydride as a curing agent and an antioxidant as a preferred optional component are included as optional components, but these can be used in combination with other epoxy resins, curing agents, and various additives.
  • A organopolysiloxane
  • B polyvalent carboxylic acid
  • C organometallic salt and / or organometallic complex
  • D light stabilizer
  • an acid anhydride as a curing agent and an antioxidant as a preferred optional component are included as optional components, but these can be used in combination with other epoxy resins, curing agents, and various additives.
  • the organopolysiloxane (A) can be used alone or in combination with other epoxy resins.
  • the proportion of the organopolysiloxane (A) in the total epoxy resin is preferably 60% by weight or more, particularly preferably 70% by weight or more.
  • Examples of other epoxy resins that can be used in combination with the organopolysiloxane (A) include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, and phenol aralkyl type epoxy resins.
  • bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetofu Non, o-hydroxy
  • the curable resin composition of the present invention is mainly intended for use in optical applications. When used for optical applications, combined use with an alicyclic epoxy resin is preferred.
  • an alicyclic epoxy resin a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexane structure is particularly preferable.
  • These alicyclic epoxy resins include esterification reaction of cyclohexene carboxylic acid with alcohols or esterification reaction of cyclohexene methanol with carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980) ), Or Tyschenco reaction of cyclohexene aldehyde (method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No. 2004-262871, etc.), and transesterification of cyclohexene carboxylic acid ester Examples thereof include an oxidized product of a compound that can be produced by a reaction (a method described in Japanese Patent Application Laid-Open No.
  • the alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane.
  • Diols Diols, glycerol, trimethylolethane, trimethylolpropane, trimethylolbutane, triols such as 2-hydroxymethyl-1,4-butanediol, tetraols such as pentaerythritol, ditrimethylolpropane, etc.
  • carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
  • epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Epolide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited thereto (Reference: Review Epoxy Resin Basic Edition I p76-85). These may be used alone or in combination of two or more.
  • the polycarboxylic acid (B) can be used alone or in combination with an acid anhydride, and further in combination with other curing agents.
  • the proportion of the total amount of the polyvalent carboxylic acid compound (B) and the acid anhydride in the total curing agent is preferably 30% by weight or more, particularly preferably 40% by weight or more.
  • the curing agent that can be used in combination include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds.
  • curing agents that can be used include amines and polyamide compounds (diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from ethylenediamine and dimer of linolenic acid, etc.) , Reaction product of acid anhydride and silicone alcohol (phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, anhydrous Nadic acid, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,2,
  • halogenated bisphenols such as tetrabromobisphenol A, condensates of terpenes and phenols), and others (imidazole, trifluoroborane-amine complexes, guanidine derivatives, etc.) But this It is not limited to that. These may be used alone or in combination of two or more.
  • the mixing ratio of the curing agent containing the organopolysiloxane (A) and the polyvalent carboxylic acid (B) as essential components is the epoxy group 1 of the organopolysiloxane (A). It is preferable to use a curing agent containing as an essential component a polyvalent carboxylic acid (B) having a functional group number of 0.7 to 1.2 equivalents, particularly preferably 0.75 to 1.10 equivalents based on equivalents. When less than 0.7 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
  • other curing catalysts can be used in combination.
  • Specific examples of the curing accelerator that can be used include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl-2-phenylimidazole.
  • the curing catalyst is usually used in the range of 0.001 to 15 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the curable resin composition of the present invention can be added with various additives and auxiliary materials as listed below.
  • organopolysiloxane (A) and polyvalent carboxylic acid are organopolysiloxane (A) and polyvalent carboxylic acid. It can be added to either or both of (B), and can also be added after mixing organopolysiloxane (A) and polyvalent carboxylic acid (B).
  • the curable resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant component.
  • the phosphorus-containing compound may be a reactive type or an additive type.
  • Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-pho
  • Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
  • a binder resin can be blended with the curable resin composition of the present invention as required.
  • the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins.
  • the blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 0.05 to 100 parts by weight of the curable resin component. Up to 20 parts by weight are used as needed.
  • An inorganic filler can be added to the curable resin composition of the present invention as necessary.
  • inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • the present invention is not limited to these.
  • These fillers may be used alone or in combination of two or more. The content of these inorganic fillers is used in an amount of 0 to 95% by weight in the curable resin composition of the present invention.
  • a silane coupling agent a release agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, various compounding agents such as pigments, and various thermosetting resins are added to the curable resin composition of the present invention. can do.
  • the particle size of the inorganic filler used is transparent by using a nano-order level filler. It is possible to supplement the mechanical strength and the like without hindering.
  • a fluorescent substance can be added as needed.
  • the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. After the phosphor is dispersed in advance in the curable resin composition, the optical semiconductor is sealed.
  • fluorescent substance A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated.
  • phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9: Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4) 3 Cl: Eu, (SrEu) such as O ⁇ A l2 O 3 is exemplified.
  • the particle size of the phosphor those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 ⁇ m, particularly preferably 2 to 50 ⁇ m. When these phosphors are used, the addition amount thereof is 1 to 80 parts by weight, preferably 5 to 60 parts by weight, based on 100 parts by weight of the resin component.
  • silica fine powder also called Aerosil or Aerosol
  • a thixotropic agent can be added.
  • silica fine powders examples include Aerosil® 50, Aerosil® 90, Aerosil® 130, Aerosil® 200, Aerosil® 300, Aerosil® 380, Aerosil® OX50, Aerosil® TT600, Aerosil® R972, Aerosil® R202, Aerosil® R202, Aerosil® R202, Aerosil® R202, Aerosil® R202, Aerosil® R805, RY200, RX200 (manufactured by Nippon Aerosil Co., Ltd.) and the like can be mentioned.
  • the curable resin composition of the present invention can contain a phenolic compound as an antioxidant.
  • the phenol compound is not particularly limited, and examples thereof include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate.
  • phenolic compound Commercially available products can also be used as the phenolic compound.
  • the commercially available phenolic compounds are not particularly limited. AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, ADK STAB AO-330, SUMITOMO CHEMICAL INDUSTRIES, SUMITIZER GA-80, SUMILIZER MDP-S, Sumili er BBM-S, Sumilizer GM, Sumilizer GS (F), and the like Sumilizer GP.
  • TINUVIN 328, TINUVIN 234, TINUVIN 326, TINUVIN 120, TINUVIN 477, TINUVIN 479, CHIMASSORB 2020FDL, CHIMASSORB 119FL, and the like are manufactured by Ciba Specialty Chemicals.
  • the amount of the compound is not particularly limited, but is in the range of 0.005 to 5.0% by weight with respect to the curable resin composition of the present invention.
  • the curable resin composition of the present invention can be obtained by uniformly mixing each component.
  • the curable resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method.
  • the resulting curable resin composition of the present invention is liquid, it is impregnated with potting, casting, or base material.
  • the curable resin composition is poured into a mold, cast, and cured by heating.
  • a method of molding by using a cast after casting or a transfer molding machine and further curing by heating can be mentioned.
  • the curing temperature and time are 80 to 200 ° C. and 2 to 10 hours.
  • a curing method it can be hardened at a high temperature at a stretch, but it is preferable to raise the temperature stepwise to advance the curing reaction.
  • initial curing is performed at 80 to 150 ° C.
  • post-curing is performed at 100 to 200 ° C.
  • the temperature is preferably increased in 2 to 8 stages, more preferably 2 to 4 stages.
  • the curable resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. to obtain a curable resin composition varnish, glass fiber,
  • a prepreg obtained by impregnating a base material such as carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and heat-dried is subjected to hot press molding to obtain a cured product of the curable resin composition of the present invention. can do.
  • the solvent is used in an amount usually accounting for 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition of the present invention and the solvent.
  • cured material which contains carbon fiber by a RTM system with a liquid composition can also be obtained.
  • the curable resin composition of this invention can also be used as a film type sealing composition.
  • a film-type resin composition first, the curable resin composition of the present invention is applied as a varnish on a release film, and after removing the solvent under heating, by performing B-stage, It is formed as a sheet-like adhesive.
  • This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like, and a batch film sealing of an optical semiconductor.
  • the curable resin composition of the present invention is used as an optical semiconductor sealing material or die bond material will be described in detail.
  • the curable resin composition of the present invention is used as a sealing material for an optical semiconductor such as a high-intensity white LED or a die bond material, an organopolysiloxane (A), a polyvalent carboxylic acid (B), an organic metal salt, and / Or thoroughly mix additives such as organometallic complex (C), light stabilizer (D), and other epoxy resins, curing agents, coupling agents, antioxidants, light stabilizers, etc. as necessary.
  • the curable resin composition is prepared by the method described above and used as a sealing material or for both a die bond material and a sealing material.
  • a mixing method a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill or the like is used to mix at room temperature or warm.
  • Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like.
  • Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material).
  • a wire such as a gold wire is connected to pass an electric current.
  • the semiconductor chip is sealed with a sealing material such as an epoxy resin in order to protect it from heat and moisture and play a role of a lens.
  • the curable resin composition of the present invention can be used as this sealing material or die bond material. From the viewpoint of the process, it is advantageous to use the curable resin composition of the present invention for both the die bond material and the sealing material.
  • the curable resin composition of the present invention is applied by dispenser, potting, or screen printing, and then heated by placing the semiconductor chip thereon. Curing can be performed to bond the semiconductor chip.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating condition is preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
  • a compression molding method or the like in which a semiconductor chip fixed on a substrate is immersed therein and heat-cured and then released from a mold is used.
  • the injection method include dispenser, transfer molding, injection molding and the like.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
  • the curable resin composition of the present invention can be used for general applications in which curable resins such as epoxy resins are used.
  • curable resins such as epoxy resins
  • molding materials sheets, films, FRPs, etc.
  • sealing materials sealing materials
  • cyanate resin compositions for substrates acrylic ester resins as resist curing agents, other resins, etc. And the like.
  • adhesives examples include civil engineering, architectural, automotive, general office and medical adhesives, as well as electronic material adhesives.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
  • sealing agents As sealing agents, potting, dipping, transfer mold sealing used for capacitors, transistors, diodes, light emitting diodes, ICs, LSIs, potting sealings used for COB, COF, TAB, etc. of ICs and LSIs, flip Examples include underfill used for chips and the like, and sealing (including reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.
  • the cured product obtained in the present invention can be used for various applications including optical component materials.
  • the optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to LED sealing materials such as lamp type and SMD type, the following may be mentioned. It is a peripheral material for liquid crystal display devices such as a substrate material, a light guide plate, a prism sheet, a deflection plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field.
  • color PDP plasma display
  • antireflection films antireflection films
  • optical correction films housing materials
  • front glass protective films front glass replacement materials
  • adhesives and LED displays that are expected as next-generation flat panel displays
  • LED molding materials LED sealing materials, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, deflection plates , Phase difference plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass substitute material, adhesive, and various in field emission display (FED) Film substrate
  • PLC plasma addressed liquid crystal
  • VD video disc
  • CD / CD-ROM CD-R / RW
  • DVD-R / DVD-RAM MO / MD
  • PD phase change disc
  • disc substrate materials for optical cards Pickup lenses, protective films, sealing materials, adhesives and the like.
  • optical equipment field they are still camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor parts. It is also a photographic lens and viewfinder for video cameras.
  • optical components they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems.
  • optical passive components and optical circuit components there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like.
  • OEIC optoelectronic integrated circuit
  • automotive lamp reflectors In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, and automotive defenses Rusted steel plate, interior panel, interior material, wire harness for protection / bundling, fuel hose, automobile lamp, glass substitute.
  • it is a multilayer glass for railway vehicles.
  • they are toughness imparting agents for aircraft structural materials, engine peripheral members, protective / bundling wire harnesses, and corrosion-resistant coatings.
  • it In the construction field, it is interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film.
  • optical / electronic functional organic materials include organic EL element peripheral materials, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical arithmetic elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.
  • Synthesis example 1 As the first stage reaction, 114 parts of ⁇ - (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 234 parts of silanol-terminated methylphenylsilicone oil having a weight average molecular weight of 1700 (GPC measured value) (measured using silanol equivalent 850, GPC) Was calculated as half the weight average molecular weight.), 18 parts of 0.5% potassium hydroxide (KOH) methanol solution (0.09 parts as KOH parts) was charged into the reaction vessel, and the bath temperature was set to 75 ° C. Then, the temperature was raised. After raising the temperature, the reaction was carried out under reflux for 8 hours.
  • KOH potassium hydroxide
  • Synthesis example 2 As the first stage reaction, 257 parts of ⁇ - (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 505 parts of silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1700 (GPC measurement value) (silanol equivalent: 850, measured using GPC) was calculated as half the weight average molecular weight.), 40 parts of a 0.5% potassium hydroxide (KOH) methanol solution (0.2 parts as the KOH part) was charged into the reaction vessel, and the bath temperature was set to 75 ° C. Then, the temperature was raised. After raising the temperature, the reaction was carried out under reflux for 8 hours.
  • KOH potassium hydroxide
  • Synthesis example 3 A flask equipped with a stirrer, a reflux condenser, and a stirrer is purged with nitrogen, 20 parts of tricyclodecane dimethanol, methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid MH or less, acid anhydride After adding 100 parts of the product (referred to as product H-1), the mixture was reacted at 40 ° C. for 3 hours and then heated and stirred at 70 ° C. for 1 hour (disappearance of tricyclodecane dimethanol (1 area% or less) was confirmed by GPC).
  • Synthesis example 4 To a flask equipped with a stirrer, reflux condenser and stirrer, 20 parts of 2,4-diethylpentanediol and 100 parts of acid anhydride (H-1) were added while purging with nitrogen, and reacted at 40 ° C. for 3 hours. By heating and stirring at 70 ° C. for 1 hour (disappearance of 2,4-diethylpentanediol (1 area% or less) was confirmed by GPC). Polycarboxylic acid (B-2) and acid anhydride (H— 120 parts of a curing agent composition (T-2) containing 1) was obtained.
  • the resulting colorless liquid resin had a GPC purity of 50 area% for polycarboxylic acid (B-2; the following formula (10)) and 50 area% for acid anhydride (H-1).
  • the functional group equivalent was 201 g / eq. Met.
  • Example 1 Comparative Examples 1 and 2 Organopolysiloxane compound (A-1) obtained in Synthesis Example 1 as an epoxy resin, and curing agent composition (T-1) obtained in Synthesis Example 3 (an organopolysiloxane (A) and a curing agent) as a curing agent
  • the ratio of the composition (B) is 1: 0.8 in terms of functional group equivalent, zinc salt (zinc complex) as organometallic complex (XC-9206 or less, C-1) manufactured by Enomoto Kasei, and bis (1 -Undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate (Adeka ADEKA STAB LA-81 or less D-1), bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (TINUVIN770DF manufactured by Ciba Japan, hereinafter referred to as D-2), bis (1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) (TIC manufactured by Ciba Japan
  • Example 2 Comparative Examples 3, 4 Organopolysiloxane compound (A-2) obtained in Synthesis Example 2 as an epoxy resin, and curing agent composition (T-2) obtained in Synthesis Example 4 (an organopolysiloxane (A) and a curing agent) as a curing agent
  • the ratio of the composition (B) is 1: 0.8 in terms of functional group equivalent, zinc salt (zinc complex) as an organometallic complex (18% octope Zn, hereinafter C-2), and bis ( 1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate (manufactured by ADEKA, Adekastab LA-81 or less D-1), bis (2,2,6,6-tetramethyl-4-piperidyl) Sebacate (TINUVIN770DF manufactured by Ciba Japan, hereinafter referred to as D-2), bis (1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) (Ciba Japan)
  • Thermal durability transmission test The obtained curable resin composition was gently poured into a test piece mold, and the cast was cured under conditions of 150 ° C. ⁇ 3 hours after pre-curing at 120 ° C. ⁇ 1 hour. A cured product was obtained. About the obtained hardened
  • LED lighting test Using the obtained curable resin composition, it was filled into a syringe and cast into a surface-mount type LED package having an outer diameter of 5 mm and mounted with a chip having a central emission wave of 465 nm using a precision discharge device. The cast product was put into a heating furnace and cured at 120 ° C. for 1 hour, further at 150 ° C. for 3 hours to produce an LED package. In the lighting test, a lighting test was performed at 60 mA which is twice the specified current of 30 mA (acceleration test). In the measurement, the illuminance retention before and after lighting for 1000 hours was measured using an integrating sphere, and the average value of three samples was recorded.
  • Corrosion gas Ammonium sulfide 20% aqueous solution (turns black when sulfur component reacts with silver)
  • Contact method A container of an ammonium sulfide aqueous solution and the LED package were mixed in a wide-mouth glass bottle, and the wide-mouth glass bottle was covered to bring the volatilized ammonium sulfide gas into contact with the LED package in a sealed state.
  • Judgment of corrosion The time when the lead frame inside the LED package was discolored black (referred to as blackening) was observed, and it was determined that the longer the discoloration time, the better the corrosion gas resistance. The observation was taken out after 10 hours for confirmation, and the evaluation was indicated as ⁇ for those with no discoloration and ⁇ for those that were blackened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 本発明の目的は、耐光着色性、耐熱着色性、耐腐食ガス性に優れた硬化物を与える新規な硬化性樹脂組成物を与えることにある。 本発明にかかる硬化性樹脂組成物は、オルガノポリシロキサン(A)と多価カルボン酸(B)、有機金属塩および/または有機金属錯体(C)、光安定剤(D)を含有する。ただし、オルガノポリシロキサン(A)と多価カルボン酸(B)、光安定剤(D)は以下の条件を満たす。 オルガノポリシロキサン(A):少なくとも、その分子中にグリシジル基および/またはエポキシシクロヘキシル基を有するオルガノポリシロキサン 多価カルボン酸(B):少なくとも2つのカルボキシル基を有し、脂肪族炭化水素基を主骨格とする 光安定剤(D):構造式(1)で示される化合物。

Description

硬化性樹脂組成物およびその硬化物
 本発明は電気電子材料用途、特に光半導体用途に好適な硬化性樹脂組成物、及び硬化物に関する。
 従来からLED製品などの光半導体素子の封止材料として、エポキシ樹脂組成物が性能と経済性のバランスの点で採用されてきた。特に耐熱性、透明性、機械特性のバランスに優れたビスフェノールA型エポキシ樹脂に代表されるグリシジルエーテルタイプのエポキシ樹脂組成物が広く使用されてきた。
 ところが、LED製品の発光波長の短波長化(主に青色発光をするLED製品で480nm以下)が進んだ結果、短波長の光の影響で前記封止材料がLEDチップ上で着色し最終的にはLED製品として、照度が低下してしまうという指摘がされている。
 そこで、3,4-エポキシシクロヘキシルメチル-3′,4′エポキシシクロヘキシルカルボキシレートに代表される脂環式エポキシ樹脂は、芳香環を有するグリシジルエーテルタイプのエポキシ樹脂組成物と比較し透明性の点で優れていることから、LED封止材として積極的に検討がなされてきた。(特許文献1、2)
 また、近年のLED製品は、照明やTVのバックライト等向けに一層高輝度化が進み、LED点灯時は多くの発熱を伴うようになってきたため、該脂環式エポキシ樹脂を使用した樹脂組成物でもLEDチップ上で着色を起こし、最終的にLED製品として照度が低下してしまい、耐久性の面でも課題を残している。(特許文献3)
 さらに、エポキシ樹脂の耐久性の問題から、シリコーン樹脂やシリコーン変性エポキシ樹脂などに代表されるようなシロキサン骨格(具体的にはSi-O結合を有した骨格)を導入した樹脂を封止材として使用する検討が行われている。(特許文献3)
 一般にシロキサン骨格を導入した樹脂はエポキシ樹脂よりも光に対して安定であることが知られているが、いまだ十分ではなく、さらなる改善が課題となっている。この課題を解決するための手段として、光安定剤を添加する方法が知られている(特許文献4)。しかし、光安定剤の添加により耐光性は改善するものの、LEDチップから発せられる熱などによって樹脂は劣化する。
日本国特開平9-213997号公報 日本国特許3618238号公報 国際公開第2005/100445号 日本国特開2009-275206号公報
 本発明は耐光着色性、耐熱着色性、耐腐食ガス性に優れた硬化物を与える新規な硬化性樹脂組成物を提供することを目的とする。
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。すなわち本発明は、
 (1)
 オルガノポリシロキサン(A)と多価カルボン酸(B)、有機金属塩および/または有機金属錯体(C)、光安定剤(D)を含有する硬化性樹脂組成物、ただし、オルガノポリシロキサン(A)と多価カルボン酸(B)、光安定剤(D)は以下の条件を満たす。
  オルガノポリシロキサン(A):少なくとも、その分子中にグリシジル基および/またはエポキシシクロヘキシル基を有するオルガノポリシロキサン
  多価カルボン酸(B):少なくとも2つのカルボキシル基を有し、脂肪族炭化水素基を主骨格とする
  光安定剤(D):構造式(1)で示される化合物
Figure JPOXMLDOC01-appb-C000003
 
(ただし、X1,X2は水素原子、炭素数1~50のアルキル基、アラルキル基、アリール基、炭素数1~20のアルキル基を有するアリール基、アルコキシ基または構造式(2)であり、X1,X2の少なくとも一方は構造式(2)である。
Figure JPOXMLDOC01-appb-C000004
 
(式(2)中、*印で構造式(2)は構造式(1)の酸素原子と結合する。また、Yは水素原子、炭素数1~50のアルキル基、アリール基、アルコキシ基を表す。))
(2)
 構造式(2)のYが炭素数1~20のアルコキシ基である構造式(1)の化合物を含む前項(1)に記載の硬化性樹脂組成物、
(3)
 有機金属塩および/または有機金属錯体(C)が燐酸エステル、燐酸の亜鉛塩、および/またはこれらの酸あるいはエステルを配位子として有する亜鉛錯体である前項(1)または(2)のいずれか一項に記載の硬化性樹脂組成物、
(4)
 構造式(1)のX1、X2がともに構造式(2)であり、かつ、構造式(2)のYが -OC1123 である前項(1)~(3)のいずれか一項に記載の硬化性樹脂組成物、
(5)
 酸無水物を含有する前項(1)~(4)のいずれか一項に記載の硬化性樹脂組成物、
(6)
 多価カルボン酸(B)が炭素数5以上の2~6官能の多価アルコールと飽和脂肪族環状酸無水物との反応により得られた化合物である前項(1)~(5)のいずれか一項に記載の硬化性樹脂組成物、
(7)
 酸化防止剤を含有する前項(1)~(6)のいずれか一項に記載の硬化性樹脂組成物、
(8)
 前項(1)~(7)のいずれか一項に記載の硬化性樹脂組成物を硬化してなる硬化物、
 に関する。
 本発明の硬化性樹脂組成物は耐腐食ガス性、耐熱着色性、耐光着色性に優れることから、光学材料のなかでも特に照明等の生活環境の中で使用する光半導体用(LED製品など)の接着材、封止材としてきわめて有用である。
 以下、本発明の硬化性樹脂組成物について記載する。
 本発明の硬化性樹脂組成物はオルガノポリシロキサン(A)と多価カルボン酸(B)、有機金属塩および/または有機金属錯体(C)、光安定剤(D)を含有する。
 オルガノポリシロキサン(A)は、その分子中にグリシジル基および/またはエポキシシクロヘキシル基を有するオルガノポリシロキサンを使用する。
 前記オルガノポリシロキサンは少なくとも、その分子中にグリシジル基および/またはエポキシシクロヘキシル基を有するオルガノポリシロキサンであることを特徴とし、一般にグリシジル基あるいはエポキシシクロヘキシル基を有するトリアルコキシシランを原料に用いるゾル-ゲル反応により得られる。
 具体的には日本国特開2004-256609号公報、日本国特開2004-346144号公報、国際公開第2004/072150号、日本国特開2006-8747号公報、国際公開第2006/003990号、日本国特開2006-104248号公報、国際公開第2007/135909号、日本国特開2004-10849号公報、日本国日本国特開2004-359933号公報、国際公開第2005/100445号、日本国特開2008-174640号公報などに記載の三次元に広がる網の目状の構造を有したシルセスキオキサンタイプのオルガノポリシロキサンが挙げられる。
 本発明において、構造については特に限定されないが、単純な三次元網目構造のシロキサン化合物では硬すぎるため、硬さを緩和する構造が望まれる。本発明においては特に鎖状のシリコーンセグメントと前述のシルセスキオキサン構造とを1分子中に有するブロック構造体が好ましい(以下、ブロック型シロキサン化合物(E)と称す)。
 ブロック型シロキサン化合物(E)は通常のブロック共重合体のような直鎖に繰り返し単位を有する化合物ではなく、三次元に広がる網の目状の構造を有し、シルセスキオキサン構造をコアとし、鎖状のシリコーンセグメントが伸び、次のシルセスキオキサン構造に繋がるといった構造となる。本構造が、本発明の硬化性組成物の硬化物に硬さと柔軟性のバランスを与える意味合いで有効である。
 ブロック型シロキサン化合物(E)は、例えば、下記一般式(3)で表されるアルコキシシラン(a)と一般式(4)で表されるシリコーンオイル(b)を原料として製造することができ、必要に応じて一般式(5)で表されるアルコキシシラン(c)を原料として用いることができる。ブロック型シロキサン化合物(E)の鎖状シリコーンセグメントはシリコーンオイル(b)から形成され、三次元の網の目状シルセスキオキサンセグメントはアルコキシシラン(a)(および必要に応じて添加されるアルコキシシラン(c))から形成される。以下、各原料について詳細に説明する。
 アルコキシシラン(a)は下記一般式(3)で表される。 
XSi(OR1 (3) 
 一般式(3)中のXとしては、グリシジル基および/またはエポキシシクロヘキシル基を含有する有機基であれば特に制限はない。例えば、β-グリシドキシエチル、γ-グリシドキシプロピル、γ-グリシドキシブチル等のグリシドオキシ基で置換された炭素数1~4のアルキル基、グリシジル基、β-(3,4-エポキシシクロヘキシル)エチル基、γ-(3,4-エポキシシクロヘキシル)プロピル基、β-(3,4-エポキシシクロヘプチル)エチル基、β-(3,4-エポキシシクロヘキシル)プロピル基、β-(3,4-エポキシシクロヘキシル)ブチル基、β-(3,4-エポキシシクロヘキシル)ペンチル基等のオキシラン基を持ったシクロヘキシル基で置換された炭素数1~5のアルキル基が挙げられる。これらの中で、グリシドオキシ基で置換された炭素数1~3のアルキル基、エポキシ基を有するシクロヘキシル基で置換された炭素数1~3のアルキル基、例えば、β-グリシドキシエチル基、γ-グリシドキシプロピル基、β-(3,4-エポキシシクロヘキシル)エチル基が好ましく、特にβ-(3,4-エポキシシクロヘキシル)エチル基が好ましい。
 一般式(3)中の複数存在するR1は、互いに同一であっても異なっていてもよく、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を示す。例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらR1は、相溶性、反応性等の反応条件の観点から、メチル基又はエチル基が好ましく、特にメチル基が好ましい。
 アルコキシシラン(a)として好ましい具体例としては、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等が挙げられ、特にβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランが好ましい。これらアルコキシシラン(a)は、単独で用いてもよく、2種以上を用いてもよく、後述するアルコキシシラン(c)と併用することもできる。
 シリコーンオイル(b)は下記一般式(4)
Figure JPOXMLDOC01-appb-C000005
 
で表される構造を有する末端がシラノール基を有する鎖状シリコーンオイルである。
 一般式(4)の式中、複数存在するR2は互いに同一であっても異なっていてもよく、炭素数1~10のアルキル基、炭素数6~14のアリール基、炭素数2~10のアルケニル基を示す。また、mは繰り返し単位数を示す。
 炭素数1~10のアルキル基としては、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基が挙げられ、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基等を挙げることができる。これらの中で、耐光性を考慮すると、メチル基、エチル基、シクロヘキシル基が好ましい。
 炭素数6~14のアリール基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、キシリル基等を挙げることができる。
 炭素数2~10のアルケニル基としては、ビニル基、1-メチルビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基等を挙げることができる。
 R2は耐光性、耐熱性の観点から、メチル基、フェニル基、シクロヘキシル基、n-プロピル基が好ましく、特にメチル基、フェニル基が好ましい。
 一般式(4)の化合物の繰り返し単位数mは平均値で3~200を示し、好ましくは3~100、より好ましくは3~50である。mが3を下回ると硬化物が硬くなりすぎ、低弾性率特性が低下する。mが200を上回ると硬化物の機械特性が悪化する傾向にあり好ましくない。
 シリコーンオイル(b)の重量平均分子量(Mw)は300~18,000(GPC(ゲルパーミエーションクロマトグラフィー)測定値)の範囲のものが好ましい。これらの中で、低温での弾性率を考慮すると分子量が300~10,000のものが好ましく、さらに組成物化時の相溶性を考慮すると300~5,000のものがより好ましく、特に500~3,000のものが好ましい。重量平均分子量が300を下回る場合、特性セグメントの鎖状シリコーン部分の特性が出にくく、ブロック型としての特性が損なわれる恐れがあり、18,000を超えると激しい層分離構造を持つ事となり、光学材料に使用するには透過性が悪くなり、使用することが困難となる。本発明においてシリコーンオイル(b)の分子量としては、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、下記条件下測定されたポリスチレン換算、重量平均分子量(Mw)を算出した。
 GPCの各種条件
  メーカー:島津製作所
  カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
  流速:1.0ml/min.
  カラム温度:40℃ 
  使用溶剤:THF(テトラヒドロフラン)
  検出器:RI(示差屈折検出器)
 シリコーンオイル(b)の動粘度は10~200cStの範囲のものが好ましく、より好ましくは30~90cStのものである。10cStを下回る場合にはブロック型シロキサン化合物(E)の粘度が低くなりすぎて、光半導体封止剤としては適さない場合があり、また200cStを上回る場合にはブロック型シロキサン化合物(E)の粘度が上昇し、作業性に弊害が生じる傾向にあり好ましくない。
 シリコーンオイル(b)として好ましい具体例としては、以下の製品名を挙げることができる。例えば、東レダウコーニングシリコーン社製としては、PRX413、BY16-873、信越化学工業社製としては、X-21-5841、KF-9701、モメンティブ社製としては、XC96-723、TSR160、YR3370、YF3800、XF3905、YF3057、YF3807、YF3802、YF3897,YF3804、XF3905、Gelest社製としては、DMS-S12、DMS-S14、DMS-S15、DMS-S21、DMS-S27、DMS-S31、DMS-S32、DMS-S33、DMS-S35、DMS-S42、DMS-S45、DMS-S51、PDS-0332、PDS-1615、PDS-9931などが挙げられる。上記の中でも、分子量、動粘度の観点からPRX413、BY16-873、X-21-5841、KF-9701、XC96-723,YF3800、YF3804、DMS-S12、DMS-S14、DMS-S15、DMS-S21、PDS-1615が好ましい。これらの中でもシリコーンセグメントの柔軟性の特徴を持たせるため、分子量の観点から、X-21-5841,XC96-723,YF3800,YF3804、DMS-S14、PDS-1615が特に好ましい。これらシリコーンオイル(b)は、単独で用いてもよく、2種以上を併用して用いてもよい。
 次にアルコキシシラン(c)ついて詳細に述べる。アルコキシシラン(c)は下記一般式(5)の構造を有する。 
3Si(OR4)3 (5)
 一般式(5)中のR3は、メチル基又はフェニル基を示す。
 一般式(5)中の複数存在するR4としては、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を示し、互いに同一であっても異なっていてもよい。例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらR4は、相溶性、反応性等の反応条件の観点から、メチル基又はエチル基であることが好ましい。
 アルコキシシラン(c)として好ましい具体例としては、メチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン等が挙げられる。上記の中でもメチルトリメトキシシラン、フェニルトリメトキシシランが好ましい。
 本発明において、アルコキシシラン(c)はブロック型シロキサン化合物(E)の分子量、組成物とした際の相溶性や硬化物の耐熱性、耐光性、低透湿性、低ガス透過性等を調節するために、アルコキシシラン(a)と併用して用いることができる。
 アルコキシシラン(c)をアルコキシシラン(a)と併用する場合、アルコキシシラン(c)は、アルコキシシラン(a)及びアルコキシシラン(c)の合計の5~70モル%の範囲で用いることが好ましく、5~50モル%が更に好ましく、10~40モル%が特に好ましい。70モル%より大きいと、硬化物の架橋密度が下がり機械強度が低下するため、好ましくない。
 アルコキシシラン(a)、シリコーンオイル(b)、アルコキシシラン(c)の反応比率としては、シリコーンオイル(b)のシラノール基1当量に対して、アルコキシシラン(a)(必要に応じてアルコキシシラン(c)を併用した場合は、アルコキシシラン(a)及びアルコキシシラン(c))中のアルコキシ基を当量値として1.5~200、好ましくは2~200、特に好ましくは2~100の間で反応を行うことが好ましい。
 当量値が200を超えるとブロック型シロキサン化合物(E)を用いた硬化物が硬くなりすぎて目的の低弾性率特性が低下する。
 以下、ブロック型シロキサン化合物(E)の好ましい製造方法について具体的に言及する。
 ブロック型シロキサン化合物(E)の製造方法としては以下の(1)、(2)で示される製造工程を経ることが好ましい。
 製造工程(1):シラノール末端シリコーンオイルとアルコキシ基を有するケイ素化合物の脱アルコール縮合を行なう工程
 製造工程(2):水を添加しアルコキシ基を有するケイ素化合物のアルコキシ基同士の加水分解縮合を行なう工程
 製造工程(1)(2)は各工程を経由すれば、どのような順に反応を行ってもかまわない。
 好ましい製造方法として、具体的には、以下の三種類の製造方法が挙げられる。
<製造方法(イ)>
 まず、製造工程(1)として末端にシラノール基を有するシリコーンオイル(b)とアルコキシ基を有するケイ素化合物であるアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))との脱アルコール縮合反応により、シリコーンオイル末端をアルコキシシラン変性することにより、アルコキシシラン変性体(d)を得る工程を行う。
 次いで製造工程(2)としてアルコキシ基を有するケイ素化合物であるアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))、および製造工程(1)で得られたシリコーンオイルのアルコキシシラン変性体(d)に水を添加してアルコキシ基同士の加水分解縮合反応を行う工程を経ることによりブロック型シロキサン化合物(E)を製造する方法。
<製造方法(ロ)>
 まず、製造工程(2)としてアルコキシ基を有するケイ素化合物であるアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))の水の添加によるアルコキシ基同士の加水分解縮合反応を行うことで分子内にアルコキシ基を有するシルセスキオキサン(e)を得る工程を行う。
 次いで製造工程(1)として末端にシラノール基を有するシリコーンオイル(b)とシルセスキオキサン(e)との反応により、シルセスキオキサン構造に残存するアルコキシ基とシラノール基の脱アルコール縮合反応させる工程を経ることにより、ブロック型シロキサン化合物(E)を製造する方法。
<製造方法(ハ)>
 まず、製造工程(1)として末端にシラノール基を有するシリコーンオイル(b)とアルコキシ基を有するケイ素化合物であるアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))との脱アルコール縮合反応により、シリコーンオイル末端をアルコキシシラン変性することによりアルコキシシラン変性体(d)とした後、系内に水を添加し、製造工程(2)として残存するアルコキシシラン(a)(アルコキシシラン(c))、およびアルコキシシラン変性体(d)のアルコキシ基同士の加水分解縮合反応をワンポットで行うことによりブロック型シロキサン化合物(E)を製造する方法。
 本発明においては製造工程の短縮の観点から逐次的にワンポットで反応させる前述の製造方法(ハ)を用いることが好ましい。
 以下、さらに具体的に製造方法(ハ)について述べる。
 ワンポットで反応させる場合、前述の製造方法(ハ)と逆の順番、すなわち、(ロ)の如く製造工程(2)の後に製造工程(1)を行なうと、製造工程(2)で形成されたアルコキシ基を有するシルセスキオキサンオリゴマーとシリコーンオイル(b)とが、相溶せず、後の製造工程(1)において脱アルコール縮合重合が進行せず、未反応のシリコーンオイルが残留する可能性が高い。一方で、製造方法(ハ)のように製造工程(1)の後にワンポットで製造工程(2)を行なう方法を用いれば、シリコーンオイル(b)とアルコキシシラン(a)やアルコキシシラン(c)との相溶性比較的高いため、前述のように相溶せずに反応が進行しない、という問題は回避できる。さらにはアルコキシシラン同士で縮合反応を起こしていない低分子アルコキシシランが、シラノール基に対して多量に存在することになるため、反応性の観点からも好ましい。ワンポットで行なう場合の製造工程(1)を第1段階反応、製造工程(2)を第2段階反応とすると、まず第1段階反応(製造工程(1))において、シリコーンオイル(b)とアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))の脱アルコール縮合を行ない、シリコーンオイルの末端をアルコキシシリル変性させ、アルコキシシラン変性体(d)を得る。第1段反応においては水を添加していないので、アルコキシ基同士の加水分解縮合は起こらず、シラノール基1当量に対して、アルコキシ基を3当量以上用いて反応させた場合、アルコキシシラン変性体(d)は下記式(6)で示されるような構造で存在していると考えられる。
Figure JPOXMLDOC01-appb-C000006
 
 式(6)中、R2、mは前記と同じ意味を示し、R5は前記X又はR3を示す。R6は、R5が前記Xの場合にはR1を、R5が前記R3の場合にはR4を示す。
 第1段階反応において、シラノール基1当量に対して、アルコキシ基を1.0当量より少ない量で反応させると、第1段階反応終了時にアルコキシ基が存在しないため、第2段階反応へ進めず、またアルコキシ基を1.0~1.5当量の間で反応させるとアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))中の2つ以上のアルコキシ基がシリコーンオイル(b)のシラノール基と反応することになり、第1段反応終了時に高分子になりすぎてゲル化がおきてしまう。このため、シラノール基1当量に対して、アルコキシ基を1.5当量以上で反応させる必要がある。反応制御の観点からは2.0当量以上が好ましく、3.0当量以上がより好ましい。
 第1段階反応終了後、そのまま水を添加しアルコキシ基同士の加水分解縮合を行なう第2段反応(製造工程(2))を行なう。さらに第2段階反応では、下記に示す(I)~(III)の反応が起きている。
 (I)系中に残存しているアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))のアルコキシ基同士の縮合反応。
 (II)第1段階反応で得られたアルコキシシラン変性体(d)とアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))のアルコキシ基同士の縮合反応。
 (III)第1段階反応で得られたアルコキシシラン変性体(d)と(I)で生成したアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))の部分縮合物のアルコキシ基同士の縮合反応。
 第2段階反応においては上記反応が複合して起こり、シルセスキオキサンセグメントの形成と、さらにシリコーンオイル由来の鎖状シリコーンセグメントとの縮合が同時に行なわれる。
 ブロック型シロキサン化合物(E)の製造は無触媒でも行なえるが、無触媒だと反応進行が遅く、反応時間短縮の観点から触媒存在下で行なうことが好ましい。用い得る触媒としては、酸性または塩基性を示す化合物であれば使用する事ができる。酸性を示す化合物(酸性触媒)の例としては、塩酸、硫酸、硝酸等の無機酸や蟻酸、酢酸、蓚酸等の有機酸が挙げられる。また、塩基性を示す化合物(塩基性触媒)の例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムのようなアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸塩等の無機塩基、アンモニア、トリエチルアミン、ジエチレントリアミン、n-ブチルアミン、ジメチルアミノエタノール、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド等の有機塩基を使用することができる。これらの中でも、特に生成物からの触媒除去が容易である点で無機塩基が好ましく、特に水酸化ナトリウム、水酸化カリウムが好ましい。触媒の添加量は、反応系中のアルコキシシラン(a)(および必要に応じて添加されるアルコキシシラン(c))の合計重量に対し、通常0.001~7.5重量%、好ましくは0.01~5重量%である。
 触媒の添加方法は、直接添加するか、可溶性の溶剤等に溶解させた状態で使用する。その中でもメタノール、エタノール、プロパノール、ブタノール等のアルコール類に触媒をあらかじめ溶解させた状態で添加するのが好ましい。この際に、水などを用いた水溶液として添加することは、前記したように、アルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))の縮合を一方的に進行させ、それにより生成したシルセスキオキサンオリゴマーと、シリコーンオイル(b)とが相溶せず白濁する可能性がある。
 ブロック型シロキサン化合物(E)の製造は、無溶剤または溶剤中で行うことができる。また、製造工程の途中で溶剤を追加することもできる。使用する場合の溶剤としては、アルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))、シリコーンオイル(b)、アルコキシシラン変性体(d)を溶解する溶剤であれば特に制限はない。このような溶剤としては、例えばジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフランのような非プロトン性極性溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類、メタノール、エタノール、プロパノール、ブタノールのようなアルコール類、ヘキサン、シクロヘキサン、トルエン、キシレンのような炭化水素等が例示できる。本発明においては反応制御の観点からアルコール類中での反応が好ましく、メタノール、エタノールがより好ましい。溶剤の使用量は、反応が円滑に進行する範囲であれば特に制限はないが、アルコキシシラン(a)(および必要に応じて添加されるアルコキシシラン(c))、シリコーンオイル(b)の化合物の合計重量100部に対して、通常0~900重量部程度使用する。反応温度は、触媒量にもよるが、通常20~160℃、好ましくは40~140℃、特に好ましくは50~150℃である。又、反応時間は各製造工程においてそれぞれ通常1~40時間、好ましくは5~30時間である。
 反応終了後、必要に応じてクエンチ、および/又は水洗によって触媒を除去する。水洗を行う場合、使用している溶剤の種類によっては水と分離可能な溶剤を加えることが好ましい。好ましい溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類、ヘキサン、シクロヘキサン、トルエン、キシレンのような炭化水素等が例示できる。
 本反応は水洗のみで触媒の除去を行っても構わないが、酸性、塩基性条件、いずれかの条件で反応を行うことから、中和反応によりクエンチを行った後に水洗を行なうか、吸着剤を用いて触媒を吸着した後にろ過により吸着剤を除くことが好ましい。
 中和反応には酸性または塩基性を示す化合物であれば使用する事ができる。酸性を示す化合物の例としては、塩酸、硫酸、硝酸等の無機酸や蟻酸、酢酸、蓚酸等の有機酸が挙げられる。また、塩基性を示す化合物の例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムのようなアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸塩、燐酸、燐酸二水素ナトリウム、燐酸水素二ナトリウム、燐酸トリナトリウム、ポリ燐酸、トリポリ燐酸ナトリウムのようなリン酸塩類等の無機塩基、アンモニア、トリエチルアミン、ジエチレントリアミン、n-ブチルアミン、ジメチルアミノエタノール、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド等の有機塩基を使用することができる。これらの中でも、特に生成物からの除去が容易である点で無機塩基もしくは無機酸が好ましく、さらに好ましくは中性付近へのpHの調整がより容易である燐酸塩類などである。
 吸着剤としては活性白土、活性炭、ゼオライト、無機・有機系の合成吸着剤、イオン交換樹脂等が例示でき、具体例としては下記の製品が挙げられる。
 活性白土としては、例えば、東新化成社製として、活性白土SA35、SA1、T、R-15、E、ニッカナイトG-36、G-153、G-168が、水沢化学工業社製として、ガレオンアース、ミズカエースなどが挙げられる。活性炭としては、例えば、味の素ファインテクノ社製として、CL-H、Y-10S、Y-10SFがフタムラ化学社製として、S、Y、FC、DP、SA1000、K、A、KA、M、CW130BR、CW130AR、GM130Aなどが挙げられる。ゼオライトとしては、例えば、ユニオン昭和社製として、モレキュラーシーブ3A、4A、5A、13Xなどが挙げられる。合成吸着剤としては、例えば、協和化学社製として、キョーワード100、200、300、400、500、600、700、1000、2000や、ローム・アンド・ハース社製として、アンバーリスト15JWET、15DRY、16WET、31WET、A21、アンバーライトIRA400JCl、IRA403BLCl、IRA404JClや、ダウケミカル社製、ダウエックス66、HCR-S、HCR-W2、MAC-3などが挙げられる。
 吸着剤を反応液に加え、攪拌、加熱等の処理を行い、触媒を吸着した後に、吸着剤をろ過、さらには残渣を水洗することによって、触媒、吸着剤を除くことができる。
 反応終了後またはクエンチ後は水洗、ろ過の他慣用の分離精製手段によって精製することができる。精製手段としては例えば、カラムクロマトグラフィー、減圧濃縮、蒸留、抽出等が挙げられる。これらの精製手段は単独で行なってもよいし、複数を組み合わせて行なってもかまわない。
 反応溶媒として水と混合する溶媒を用いて反応した場合には、クエンチ後に蒸留または減圧濃縮によって水と混合する反応溶媒を系中から除いた後に、水と分離可能な溶剤を用いて水洗を行なうことが好ましい。
 水洗後は減圧濃縮等により溶剤を除去することで、ブロック型シロキサン化合物(E)を得ることができる。
 このようにして得られるブロック型シロキサン化合物(E)の外観は、通常無色透明で25℃において流動性を有する液状である。また、その分子量はGPCで測定した重量平均分子量として800~20,000のものが好ましく、1,000~10,000のものがより好ましく、特に1,500~6,000のものが好ましい。重量平均分子量が800より下回る場合は耐熱性が低下する恐れがあり、20,000を上回る場合は粘度が上昇し作業性に弊害が生じる。
 重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて下記条件下測定されたポリスチレン換算の重量平均分子量(Mw)である。
 GPCの各種条件
  メーカー:島津製作所
  カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
  流速:1.0ml/min.
  カラム温度:40℃ 
  使用溶剤:THF(テトラヒドロフラン)
  検出器:RI(示差屈折検出器)
 また該ブロック型シロキサン化合物(E)のエポキシ当量(JIS K-7236に記載の方法で測定)は300~1,600g/eqのものが好ましく、400~1,000g/eqのものがより好ましく、特に450~900g/eqのものが好ましい。エポキシ当量が300g/eqを下回る場合はその硬化物が硬く、弾性率が高くなりすぎる傾向があり、1,600g/eqを上回る場合は硬化物の機械特性が悪化する傾向にあり好ましくない。
 ブロック型シロキサン化合物(E)の粘度(E型粘度計、25℃で測定)は50~20,000mPa・sのものが好ましく、500~10,000mPa・sのものがより好ましく、特に800~5,000mPa・sのものが好ましい。粘度が50mPa・sを下回る場合は、粘度が低すぎて光半導体封止材用途としては適さない恐れがあり、20,000mPa・sを上回る場合は、粘度が高すぎて作業性に劣る場合がある。
 ブロック型シロキサン化合物(E)中のシルセスキオキサン由来の、3つの酸素に結合しているケイ素原子の全ケイ素原子に対する割合は5~50モル%が好ましく、8~30モル%がより好ましく、特に10~20モル%が好ましい。シルセスキオキサン由来の、3つの酸素に結合しているケイ素原子の全ケイ素原子に対する割合が5モル%を下回ると、鎖状シリコーンセグメントの特徴として硬化物がやわらかくなりすぎる傾向にあり、表面タックや傷つきの懸念がある。また50モル%を上回るとシルセスキオキサンセグメントの特徴として硬化物が硬くなりすぎてしまうため、好ましくない。
 存在するケイ素原子の割合は、ブロック型シロキサン化合物(E)の1H NMR、29Si NMR、元素分析等によって求めることができる。
 多価カルボン酸(B)は少なくとも2つ以上のカルボキシル基を有し、脂肪族炭化水素基を主骨格とすることを特徴とする化合物である。本発明においては多価カルボン酸とは単一の構造を有する多価カルボン酸化合物だけでなく、置換基の位置が異なる、あるいは置換基の異なる複数の化合物の混合体、すなわち多価カルボン酸組成物も含包し、本発明においてはそれらをまとめて多価カルボン酸と称す。
 多価カルボン酸(B)としては、特に2~6官能のカルボン酸が好ましい。多価カルボン酸(B)は炭素数が少ないと固形化の影響が強く、封止材として作業性が低下するため、炭素数5以上の2~6官能の多価アルコールと酸無水物との反応により得られた化合物とであることが好ましい。炭素数が5以上であれば封止材として良好な作業性を確保することができる。さらに、耐久性の観点から耐熱性を向上させるためにも上記酸無水物は飽和脂肪族環状酸無水物であるポリカルボン酸が好ましい。
 2~6官能の多価アルコールとしてはアルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類、ジペンタエリスリトールなどのヘキサオール類などが挙げられる。
 特に好ましいアルコール類としては炭素数が5以上のアルコールであり、特に1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどの化合物が好ましく、中でも耐熱性、耐光性を付与し、高い照度保持率を維持させるという観点から、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、2,4-ジエチルペンタンジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ノルボルネンジオールなどの分岐鎖状構造や環状構造を有するアルコール類がより好ましい。
 酸無水物としては特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物などが好ましく、中でも透明性が高いためメチルヘキサヒドロ無水フタル酸、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物が好ましい。
 付加反応の条件としては特に指定はないが、具体的な反応条件の1つとしては酸無水物、多価アルコールを無触媒、無溶剤の条件下、40~150℃で反応させ加熱し、反応終了後、そのまま取り出すという手法である。ただし、本反応条件に限定されない。
 このようにして得られるポリカルボン酸として特に下記式(7)
Figure JPOXMLDOC01-appb-C000007
 
(式中、複数存在するQは、水素原子、メチル基、カルボキシル基の少なくとも1種以上を表す。Pは前述の多価アルコール由来の炭素数2~20の鎖状、分岐状、環状の脂肪族基である。mは、多価アルコールの官能基数であり、好ましくは2~6の整数である。)で表される化合物が好ましい。
 本発明の硬化性樹脂組成物は酸無水物を含有することが好ましい。酸無水物を含有することで硬化剤としての粘度を任意に調整することが可能となる。
 酸無水物としては具体的には無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、などの酸無水物が挙げられる。
 特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物などが好ましい。
 特に好ましくは下記式(8)
Figure JPOXMLDOC01-appb-C000008
 
(式中、存在するZは、水素原子、メチル基、カルボキシル基の少なくとも1種以上を表す。)で表されるヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物が好ましく、中でも透明性が高いためメチルヘキサヒドロ無水フタル酸、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物が好ましい。
 多価カルボン酸(B)と酸無水物は併用することが好ましく、併用する場合、その使用比率が下記範囲であることが好ましい。
 W1/(W1+W2)=0.05~0.65 
 ただし、W1は多価カルボン酸(B)の配合重量部、W2は酸無水物の配合重量部を示す。W1/(W1+W2)の範囲として、好ましくは、0.05~0.65、さらに好ましくは0.10~0.65、特に好ましくは0.3~0.6である。0.05を下回ると、硬化時に酸無水物の揮発が多くなる傾向が強く、好ましくない。0.65を超えると高い粘度となり、取り扱いが難しくなる。酸無水物を含有させない(少量残存する場合は除く)場合、その形状は固形もしくは固形に近い状態、もしくは結晶となるため、問題はない。
 多価カルボン酸(B)と酸無水物を併用する場合、多価カルボン酸(B)の製造時に過剰の酸無水物の中で製造し、多価カルボン酸(B)と酸無水物の混合物を作るという手法も操作の簡便性の面から好ましい。
 本発明の硬化性樹脂組成物は有機金属塩および/または有機金属錯体(C)を含有する。
 有機金属塩および/または有機金属錯体(C)の金属としてはアルミニウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ジルコニウム、スズ、鉛等がある。
 前記有機金属塩および/または有機金属錯体(C)としては、例えば、2-エチルヘキサン酸アルミニウム、2-エチルヘキサン酸マンガン、2-エチルヘキサン酸鉄、2-エチルヘキサン酸コバルト、2-エチルヘキサン酸ニッケル、2-エチルヘキサン酸銅、2-エチルヘキサン酸亜鉛、2-エチルヘキサン酸ジルコニウム、2-エチルヘキサン酸スズ、2-エチルヘキサン酸鉛、ナフテン酸アルミニウム、ナフテン酸マンガン、ナフテン酸鉄、ナフテン酸コバルト、ナフテン酸ニッケル、ナフテン酸銅、ナフテン酸亜鉛、ナフテン酸ジルコニウム、ナフテン酸スズ、ナフテン酸鉛、ステアリン酸アルミニウム、ステアリン酸マンガン、ステアリン酸鉄、ステアリン酸コバルト、ステアリン酸ニッケル、ステアリン酸銅、ステアリン酸亜鉛、ステアリン酸ジルコニウム、ステアリン酸スズ、ステアリン酸鉛、ウンデシレン酸亜鉛、ラウリン酸亜鉛、ペヘン酸亜鉛、12-ヒドロキシステアリン酸亜鉛、モンタン酸亜鉛、ミリスチン酸亜鉛、パルミチン酸亜鉛、ナフテン酸亜鉛、ヘキソエート亜鉛、オクチル酸亜鉛、アルミニウム-アセチルアセトン錯体、マンガン-アセチルアセトン錯体、鉄-アセチルアセトン錯体、コバルト-アセチルアセトン錯体、ニッケル-アセチルアセトン錯体、銅-アセチルアセトン錯体、亜鉛-アセチルアセトン錯体、リン酸(2-エチルヘキシル)の亜鉛錯体、ジルコニウム-アセチルアセトン錯体、スズ-アセチルアセトン錯体、鉛-アセチルアセトン錯体等が挙げられる。
 ここで、耐腐食ガス性を与える観点から、亜鉛塩および/または亜鉛錯体が好ましく、具体的には、2-エチルヘキサン酸亜鉛、リン酸(2-エチルヘキシル)の亜鉛錯体及び/またはその塩、ステアリン酸亜鉛、ウンデシレン酸亜鉛、ラウリン酸亜鉛、ペヘン酸亜鉛、12-ヒドロキシステアリン酸亜鉛、モンタン酸亜鉛、ミリスチン酸亜鉛、パルミチン酸亜鉛、ナフテン酸亜鉛、ヘキソエート亜鉛、オクチル酸亜鉛が好ましい。
 また、なかでも相溶性の観点から、2-エチルヘキサン酸亜鉛、リン酸(2-エチルヘキシル)の亜鉛錯体及び/またはその塩、ステアリン酸亜鉛、ウンデシレン酸亜鉛がより好ましく、透明性を考慮すると、2-エチルヘキサン酸亜鉛、リン酸(2-エチルヘキシル)の亜鉛錯体及び/またはその塩が特に好ましい。
 このようなカルボン酸亜鉛体として、市販品としては、Zn-St、Zn-ST 602、Zn-St NZ、ZS-3、ZS-6、ZS-8、ZS-7、ZS-10、ZS-5、ZS-14、ZS-16(日東化成工業製)、XK-614(キングインダストリー製)、18%オクトープZn、12%オクトープZn、8%オクトープZn(ホープ製薬製)、リン酸エステルおよび/またはリン酸亜鉛体として、LBT-2000B(SC有機化学製)、XC-9206(キングインダストリー製)が挙げられる。
 ここで、有機金属塩および/または有機金属錯体(C)の比率はオルガノポリシロキサン(A)に対し、重量比で0.01~8重量%、より好ましくは0.05~5重量%、さらには0.1~4重量%である。また、特に好ましくは0.1~2重量%である。
 本発明の硬化性樹脂組成物は光安定剤(D)を含有する。光安定剤(D)は、下記一般式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 
 ただし、X1,X2は同一もしくは異なり水素原子、炭素数1~50のアルキル基、アラルキル基、アリール基、炭素数1~20のアルキル基を有するアリール基、アルコキシ基または構造式(2)であり、X1,X2の少なくとも一方は構造式(2)である
Figure JPOXMLDOC01-appb-C000010
 
 前記式中、*印で構造式(2)は式(1)の酸素原子と結合する。また、Yは水素原子、炭素数1~50のアルキル基、アリール基、アルコキシ基を表す。
 一般式(1)で表される化合物の好適な具体例としては、Y=水素原子である構造式(2)をX1およびX2とするビス(2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、Y=メチル基である構造式(2)をX1およびX2とするビス(1,2,2,6,6-ペンタメチルピペリジン-4-イル)カーボネート、Y=プロポキシ基である構造式(2)をX1およびX2とするビス(2,2,6,6-テトラメチル-プロポキシピペリジン-4-イル)カーボネート、Y=ウンデシロキシ基である構造式(2)を置換基X1およびX2とするビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、Y=メチル基である構造式(2)をX1とし、tert-ペンチルオキシ基をX2とする1,2,2,6,6-ペンタメチルピペリジン-4-イルtert-ペンチルカルボノペルオキシアート等がある。特に好ましい化合物として、Y=ウンデシロキシ基である構造式(2)を置換基X1およびX2とするビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネートが挙げられる。
 ここで、光安定剤(D)の比率はオルガノポリシロキサン(A)に対し、重量比で0.005~5重量%、より好ましくは0.01~4重量%、さらに好ましくは0.1~2重量%である。
 光安定剤(D)の比率がオルガノポリシロキサン(A)に対して0.005重量%未満では、耐光性の改善効果が不十分である。一方、5重量%より多いと、樹脂硬化物が着色し、照度の低下を招くため好ましくない。
 光安定剤(D)は、オルガノポリシロキサン(A)、多価カルボン酸(B)、および有機金属塩および/または有機金属錯体(C)と組み合わせて使用することで、樹脂硬化物の特性を著しく向上させることができる。特に、有機金属塩および/または有機金属錯体(C)としては亜鉛塩および/または亜鉛錯体、光安定剤(D)としてはビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネートが好ましく、これらを組み合わせて使用することが好ましい。これは、当該組み合わせで使用した場合には、耐光性、耐熱性に優れ、光や熱による着色を起こしにくく、耐腐食ガス性にも優れるためである。
 光安定剤(D)は他の光安定剤を併用することもできる。使用できる光安定剤としては、例えば、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)=1,2,3,4-ブタンテトラカルボキシラート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)=1,2,3,4-ブタンテトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノール及び3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2,2,6,6,-テトラメチル-4-ピペリジルメタクリレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチル-4-ピペリジニル-メタアクリレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル,1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N′,N″,N″′-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N′-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、2,2,4,4-テトラメチル-20-(β-ラウリルオキシカルボニル)エチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、β-アラニン,N-(2,2,6,6-テトラメチル-4-ピペリジニル)-ドデシルエステル/テトラデシルエステル、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキサ-3,20-ジアザジシクロ-〔5,1,11,2〕-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4-メトキシフェニル)-メチレン〕-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル、2,2,6,6-テトラメチル-4-ピペリジノールの高級脂肪酸エステル、1,3-ベンゼンジカルボキシアミド,N,N′-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル〕ベンゾトリアゾール、2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール等のベンゾトリアゾール系化合物、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられる。
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤に使用する場合は、特に好ましい成分として、酸化防止材としてのリン系化合物を含有することは好ましい。
 前記リン系化合物としては特に限定されないが、例えば、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-tert-ブチルフェニル)ブタン、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-イソプロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2'-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4'-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3'-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3'-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4'-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3'-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3'-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4'-ビフェニレンジホスホナイト、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどが挙げられる。
 上記リン系化合物は、市販品を用いることもできる。市販されているリン系化合物としては特に限定されず、例えば、アデカ製として、アデカスタブPEP-4C、アデカスタブPEP-8、アデカスタブPEP-24G、アデカスタブPEP-36、アデカスタブHP-10、アデカスタブ2112、アデカスタブ260、アデカスタブ522A、アデカスタブ1178、アデカスタブ1500、アデカスタブC、アデカスタブ135A、アデカスタブ3010、アデカスタブTPPが挙げられる。
 ここで、リン化合物の比率はオルガノポリシロキサン(A)に対し、重量比で0.005~5重量%、より好ましくは0.01~4重量%、0.1~2重量%である。
 本発明の硬化性樹脂組成物はエポキシ樹脂としてオルガノポリシロキサン(A)、硬化剤として多価カルボン酸(B)、添加剤として有機金属塩および/または有機金属錯体(C)および光安定剤(D)を必須成分とし、硬化剤として酸無水物、添加剤として酸化防止剤を好ましい任意成分として含有するが、これらは他のエポキシ樹脂、硬化剤、各種添加剤とも併用することができる。
 エポキシ樹脂においてオルガノポリシロキサン(A)は単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、オルガノポリシロキサン(A)の全エポキシ樹脂中に占める割合は60重量%以上が好ましく、特に70重量%以上が好ましい。
 オルガノポリシロキサン(A)と併用し得る他のエポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、グリシジルアミン系エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル系エポキシ樹脂、シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。
 本発明の硬化性樹脂組成物は光学用途に用いることを主たる目的とする。光学用途に用いる場合、脂環式エポキシ樹脂との併用は好ましい。脂環式エポキシ樹脂の場合、骨格にエポキシシクロヘキサン構造を有する化合物が好ましく、シクロヘキサン構造を有する化合物の酸化反応により得られるエポキシ樹脂が特に好ましい。
 これら脂環式エポキシ樹脂としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)等に記載の手法)、あるいはシクロヘキセンアルデヒドのティシェンコ反応(日本国特開2003-170059号公報、日本国特開2004-262871号公報等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(日本国特開2006-052187号公報等に記載の手法)によって製造できる化合物を酸化した物などが挙げられる。
 アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれに限らない。
 さらには、シクロヘキセンアルデヒド誘導体と、アルコール体とのアセタール反応によるアセタール化合物が挙げられる。
 これらエポキシ樹脂の具体例としては、ERL-4221、UVR-6105、ERL-4299(全て商品名、いずれもダウ・ケミカル製)、セロキサイド2021P、エポリードGT401、EHPE3150、EHPE3150CE(全て商品名、いずれもダイセル化学工業製)及びジシクロペンタジエンジエポキシドなどが挙げられるがこれらに限定されるものではない(参考文献:総説エポキシ樹脂 基礎編I p76-85)。
 これらは単独で用いてもよく、2種以上併用してもよい。
 硬化剤としては多価カルボン酸(B)を単独でまたは酸無水物と併用で、さらには、他の硬化剤とも併用して使用することが出来る。併用する場合、多価カルボン酸化合物(B)と酸無水物の総量が、全硬化剤中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。
 併用しうる硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、アミン類やポリアミド化合物(ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂など)、酸無水物とシリコーン系のアルコール類との反応物(無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、などの酸無水物とカルビノール変性シリコーンなどのシリコーン系アルコール類との反応物など)、多価フェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物)、その他(イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体、など)などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 本発明の硬化性樹脂組成物において、前記オルガノポリシロキサン(A)と、前記多価カルボン酸(B)を必須成分とする硬化剤の配合比率は、オルガノポリシロキサン(A)が有するエポキシ基1当量に対して0.7~1.2当量、特に好ましくは0.75~1.10当量の官能基数の多価カルボン酸(B)を必須成分とする硬化剤を使用することが好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
 本発明の硬化性樹脂組成物においては、必須成分である有機金属塩および/または有機金属錯体(C)が、そのまま硬化触媒としての作用を示すため、硬化触媒を別途添加しなくても構わないが、他の硬化触媒を併用することもできる。用い得る硬化促進剤の具体例としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-ウンデシルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-エチル,4-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種イミダゾール類、及び、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラブチルアンモニュウムブロマイド、セチルトリメチルアンモニュウムブロマイド、トリオクチルメチルアンモニュウムブロマイド等のアンモニュウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ等の金属化合物等、及びこれら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤等が挙げられる。これら硬化促進剤のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。硬化触媒は、エポキシ樹脂100重量部に対し通常0.001~15重量部の範囲で使用される。
 本発明の硬化性樹脂組成物は以下に挙げるような種々の添加剤、補助材を添加する事ができ、たとえば、2液で提供する場合、いずれもオルガノポリシロキサン(A)、多価カルボン酸(B)のいずれか一方、もしくは両方に添加することができ、オルガノポリシロキサン(A)と多価カルボン酸(B)を混合した後に添加することも可能である。
 本発明の硬化性樹脂組成物には、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4'-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4'-ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/エポキシ樹脂=0.1~0.6(重量比)が好ましい。0.1未満では難燃性が不十分であり、0.6を超えると硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。
 さらに本発明の硬化性樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、硬化性樹脂成分100重量部に対して通常0.05~50重量部、好ましくは0.05~20重量部が必要に応じて用いられる。
 本発明の硬化性樹脂組成物には、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これら充填材は、単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物中において0~95重量%を占める量が用いられる。更に本発明の硬化性樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤に使用する場合には、前記使用する無機充填材の粒径として、ナノオーダーレベルの充填材を使用することで、透明性を阻害せずに機械強度などを補完することが可能である。ナノオーダーレベルとしての目安は、平均粒径が500nm以下、特に平均粒径が200nm以下の充填材を使用することが透明性の観点では好ましい。
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤に使用する場合、必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce、YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Al2などが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1~250μm、特に2~50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、その樹脂成分に対して100重量部に対して、1~80重量部、好ましくは、5~60重量部が好ましい。
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤に使用する場合、各種蛍光体の硬化時沈降を防止する目的で、シリカ微粉末(アエロジルまたはアエロゾルとも呼ばれる)をはじめとするチクソトロピック性付与剤を添加することができる。このようなシリカ微粉末としては、例えば、Aerosil 50、Aerosil 90、Aerosil 130、Aerosil 200、Aerosil 300、Aerosil 380、Aerosil OX50、Aerosil TT600、Aerosil R972、Aerosil R974、Aerosil R202、Aerosil R812、Aerosil R812S、Aerosil R805、RY200、RX200(日本アエロジル社製)等が挙げられる。
 本発明の硬化性樹脂組成物は酸化防止材としてフェノール系化合物を含有することができる。
 フェノール化合物としては特に限定はされず、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、2,4-ジ-tert-ブチル-6-メチルフェノール、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス-〔2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニルオキシ]-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、2,2'-ブチリデンビス(4,6-ジ-tert-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、4,4'-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2-tert-ブチル-4-メチルフェノール、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、4,4'-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、ビス-[3,3-ビス-(4'-ヒドロキシ-3'-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、ビス-[3,3-ビス-(4'-ヒドロキシ-3'-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル等が挙げられる。
 上記フェノール系化合物は、市販品を用いることもできる。市販されているフェノール系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製としてIRGANOX1010、IRGANOX1035、IRGANOX1076、IRGANOX1135、IRGANOX245、IRGANOX259、IRGANOX295、IRGANOX3114IRGANOX1098、IRGANOX1520L、アデカ製としては、アデカスタブAO-20、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-70、アデカスタブAO-80、アデカスタブAO-90、アデカスタブAO-330、住友化学工業製として、SumilizerGA-80、Sumilizer MDP-S、Sumilizer BBM-S、Sumilizer GM、Sumilizer GS(F)、Sumilizer GPなどが挙げられる。
 このほか、樹脂の着色防止剤として市販されている添加材を使用することができる。例えば、チバスペシャリティケミカルズ製として、TINUVIN328、TINUVIN234、TINUVIN326、TINUVIN120、TINUVIN477、TINUVIN479、CHIMASSORB2020FDL、CHIMASSORB119FLなどが挙げられる。
 上記フェノール系化合物を添加する場合、その配合量としては特に限定されないが、本発明の硬化性樹脂組成物に対して0.005~5.0重量%の範囲である。
 本発明の硬化性樹脂組成物は、各成分を均一に混合することにより得られる。本発明の硬化性樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば本発明の硬化性樹脂組成物、他のエポキシ樹脂と硬化剤並びに必要により硬化促進剤、リン含有化合物、バインダー樹脂、無機充填材及び配合剤とを必要に応じて押出機、ニーダー、ロール、プラネタリーミキサー等を用いて均一になるまで充分に混合して硬化性樹脂組成物を得、得られた本発明の硬化性樹脂組成物が液状である場合にはポッティングやキャスティング、基材に含浸、金型に硬化性樹脂組成物を流し込んで注型等をし、加熱により硬化させる。また得られた本発明の硬化性樹脂組成物が固形の場合には、溶融後注型、あるいはトランスファー成型機などを用いて成型し、さらに加熱により硬化するという手法が挙げられる。硬化温度、時間としては80~200℃で2~10時間である。硬化方法としては高温で一気に固めることもできるが、ステップワイズに昇温し硬化反応を進めることが好ましい。具体的には80~150℃の間で初期硬化を行い、100℃~200℃の間で後硬化を行う。硬化の段階としては2~8段階に分けて昇温するのが好ましく、より好ましくは2~4段階である。 
 また本発明の硬化性樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物と該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める量を用いる。また液状組成物のままRTM方式でカーボン繊維を含有する硬化性樹脂硬化物を得ることもできる。
 また本発明の硬化性樹脂組成物をフィルム型封止用組成物として使用することもできる。このようなフィルム型樹脂組成物を得る場合は、まず本発明の硬化性樹脂組成物を剥離フィルム上に前記ワニスとして塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことにより、シート状の接着剤として形成する。このシート状接着剤は、多層基板などにおける層間絶縁層、光半導体の一括フィルム封止として使用することが出来る。
 次に本発明の硬化性樹脂組成物を光半導体の封止材又はダイボンド材として用いる場合について詳細に説明する。
 本発明の硬化性樹脂組成物が高輝度白色LED等の光半導体の封止材、またはダイボンド材として用いる場合には、オルガノポリシロキサン(A)、多価カルボン酸(B)、有機金属塩および/または有機金属錯体(C)、光安定剤(D)、必要に応じて前記以外のエポキシ樹脂、硬化剤、カップリング材、酸化防止剤、光安定剤等の添加物を充分に混合することにより硬化性樹脂組成物を調製し、封止材として、またはダイボンド材と封止材の両方に使用される。混合方法としては、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて常温または加温して混合する。 
 高輝度白色LED等の光半導体素子は、一般的にサファイア、スピネル、SiC、Si、ZnO等の基板上に積層させたGaAs、GaP、GaAlAs,GaAsP、AlGa、InP、GaN、InN、AlN、InGaN等の半導体チップを、接着剤(ダイボンド材)を用いてリードフレームや放熱板、パッケージに接着させてなる。電流を流すために金ワイヤー等のワイヤーが接続されているタイプもある。その半導体チップを、熱や湿気から守り、かつレンズ機能の役割を果たすためにエポキシ樹脂等の封止材で封止されている。本発明の硬化性樹脂組成物はこの封止材やダイボンド材として用いる事ができる。工程上からは本発明の硬化性樹脂組成物をダイボンド材と封止材の両方に使用するのが好都合である。
 半導体チップを、本発明の硬化性樹脂組成物を用いて、基板に接着する方法としては、本発明の硬化性樹脂組成物をディスペンサー、ポッティング、スクリーン印刷により塗布した後、半導体チップをのせて加熱硬化を行い、半導体チップを接着させることができる。加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。
 加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
 封止材の成形方式としては上記のように半導体チップが固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された半導体チップを浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
 注入方法としては、ディスペンサー、トランスファー成形、射出成形等が挙げられる。
 加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。
 加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
 本発明の硬化性樹脂組成物は、エポキシ樹脂等の硬化性樹脂が使用される一般の用途に用いることができ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止材の他、封止材、基板用のシアネート樹脂組成物や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。
 接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
 封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなどに用いられるポッティング、ディッピング、トランスファーモールド封止、ICやLSI類のCOB、COF、TABなどに用いられるポッティング封止、フリップチップなどに用いられるアンダーフィル、QFP、BGAおよびCSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。
 本発明で得られる硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD-ROM、CD-R/RW、DVD-R/DVD-RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。
 光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーハーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーハーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光-光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。
 以下、本発明を合成例、実施例により更に詳細に説明する。尚、本発明はこれら合成例、実施例に限定されるものではない。なお、実施例中の各物性値は以下の方法で測定した。
 (1)分子量:ゲルパーミエーションクロマトグラフィー(GPC)法により、下記条件下測定されたポリスチレン換算、重量平均分子量を算出した。
 GPCの各種条件
  メーカー:島津製作所カラム:ガード
  カラム SHODEX GPC LF-G LF-804(3本)
  流速:1.0ml/min.
  カラム温度:40℃ 
  使用溶剤:THF(テトラヒドロフラン)
  検出器:RI(示差屈折検出器)
(2)エポキシ当量:JIS K-7236に記載の方法で測定。
(3)粘度:東機産業株式会社製E型粘度計(TV-20)を用いて25℃で測定。
 以下、合成例、実施例により本発明を更に詳細に説明する。なお、合成例、実施例において「部」は重量部を、「%」は重量%をそれぞれ意味する。
合成例1
 第1段階反応として、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン114部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル234部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液18部(KOH部数としては、0.09部)を反応容器に仕込み、バス温度を75℃に設定し、昇温した。昇温後、還流下にて8時間反応させた。
 第2段階反応として、メタノールを305部追加後、50%蒸留水メタノール溶液86.4部を60分かけて滴下し、還流下75℃にて8時間反応させた。反応終了後、5%リン酸2水素ナトリウム水溶液で中和後、80℃でメタノールの蒸留回収を行った。メチルイソブチルケトン(MIBK)380部を添加し、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することにより反応性官能基を有するオルガノポリシロキサン化合物(A-1)303部を得た。得られた化合物のエポキシ当量は677g/eq、重量平均分子量は2200、外観は無色透明であった。
合成例2
 第1段階反応として、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン257部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル505部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液40部(KOH部数としては、0.2部)を反応容器に仕込み、バス温度を75℃に設定し、昇温した。昇温後、還流下にて8時間反応させた。
 第2段階反応として、メタノールを510部追加後、50%蒸留水メタノール溶液130部を60分かけて滴下し、還流下75℃にて8時間反応させた。反応終了後、5%リン酸2水素ナトリウム水溶液で中和後、80℃でメタノールの蒸留回収を行った。メチルイソブチルケトン(MIBK)704部を添加し、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することにより反応性官能基を有するオルガノポリシロキサン化合物(A-2)663部を得た。得られた化合物のエポキシ当量は659g/eq、重量平均分子量は2370、外観は無色透明であった。
合成例3
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジメタノール20部、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH 以下、酸無水物H-1と称す)100部を加え、40℃で3時間反応後70℃で1時間加熱撹拌を行うことで(GPCによりトリシクロデカンジメタノールの消失(1面積%以下)を確認した。)多価カルボン酸(B-1)と酸無水物(H-1) を含有する硬化剤組成物(T-1)が120部得られた。得られた無色の液状樹脂であり、GPCによる純度は多価カルボン酸(B-1;下記式(9))を55面積%、メチルヘキサヒドロフタル酸無水物が45面積%であった。また、官能基当量は201g/eq.であった。
式(9)
Figure JPOXMLDOC01-appb-C000011
 
合成例4
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら2,4-ジエチルペンタンジオール20部、酸無水物(H-1)100部を加え、40℃で3時間反応後70℃で1時間加熱撹拌を行うことで(GPCにより2,4-ジエチルペンタンジオールの消失(1面積%以下)を確認した。)多価カルボン酸(B-2)と酸無水物(H-1)を含有する硬化剤組成物(T-2)が120部得られた。得られた無色の液状樹脂であり、GPCによる純度は多価カルボン酸(B-2;下記式(10))を50面積%、酸無水物(H-1)が50面積%であった。また、官能基当量は201g/eq.であった。
式(10)
Figure JPOXMLDOC01-appb-C000012
 
実施例1、比較例1、2
 エポキシ樹脂として合成例1で得られたオルガノポリシロキサン化合物(A-1)、硬化剤として、合成例3で得られた硬化剤組成物(T-1)(オルガノポリシロキサン(A)と硬化剤組成物(B)の比率は官能基当量で1:0.8)、有機金属錯体として亜鉛塩(亜鉛錯体)(楠本化成製 XC-9206 以下、C-1)、光安定剤としてビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート(ADEKA製 アデカスタブLA-81 以下 D-1)、ビス(2,2,6,6-テトラメチルー4-ピペリジル)セバケート(チバジャパン製 TINUVIN770DF 以下、D-2と称す。)、ビス(1-オクチルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)(チバジャパン製 TINUVIN123 以下、D-3)、酸化防止剤のリン系化合物として、4,4´-ブチリデンビス(3-メチル-6-tert-ブチルフェニル-ジ-トリデシルホスファイト)(ADEKA製 アデカスタブ260 以下 E-1)を使用し、下記表1に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明または比較用の硬化性樹脂組成物を得た。
実施例2、比較例3、4
 エポキシ樹脂として合成例2で得られたオルガノポリシロキサン化合物(A-2)、硬化剤として、合成例4で得られた硬化剤組成物(T-2)(オルガノポリシロキサン(A)と硬化剤組成物(B)の比率は官能基当量で1:0.8)、有機金属錯体として亜鉛塩(亜鉛錯体)(ホープ製薬製 18%オクトープZn 以下、C-2)、光安定剤としてビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート(ADEKA製 アデカスタブLA-81 以下 D-1)、ビス(2,2,6,6-テトラメチルー4-ピペリジル)セバケート(チバジャパン製 TINUVIN770DF 以下、D-2と称す。)、ビス(1-オクチルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)(チバジャパン製 TINUVIN123 以下、D-3)を使用し、下記表2に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明または比較用の硬化性樹脂組成物を得た。
(熱耐久性透過率試験)
 得られた硬化性樹脂組成物を試験片用金型に静かに注型し、その注型物を、120℃×1時間の予備硬化の後150℃×3時間の条件で硬化させ試験用の硬化物を得た。得られた硬化物について、以下に記載する条件で熱耐久性透過率試験を実施し、評価を行った(結果を下記表1および表2に示す。)。 
 測定条件試験条件:180℃オーブン中、72hr放置
 試験片サイズ:厚さ0.8mm
 評価条件:分光光度計により、400nmの透過率を測定。その変化率を算出。
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
 実施例1~2、比較例1~4により、本発明の硬化性樹脂組成物は耐熱着色性(耐熱透過率試験)に優れることがわかる。
(LED点灯試験)
 得られた硬化性樹脂組成物を用い、シリンジに充填し精密吐出装置を用いて、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージに注型した。その注型物を加熱炉に投入して、120℃、1時間、さらに150℃、3時間の硬化処理をしてLEDパッケージを作製した。点灯試験は、規定電流である30mAの倍の60mAでの点灯試験を行った(加速試験)。
 測定は、1000時間点灯前後の照度保持率を、積分球を使用して測定し、3サンプルの平均値を記録した。詳細な条件は下記に示した(結果を下記表3に示す。)。
 点灯詳細条件発光波長:465nm
 駆動方式:定電流方式、60mA(発光素子規定電流は30mA)
 駆動環境:85℃、85% 
Figure JPOXMLDOC01-appb-T000015
 
 実施例1、比較例1~2により、本発明の硬化性樹脂組成物は照度保持率に優れることがわかる。
比較例5、6
 エポキシ樹脂として合成例1、2で得られたオルガノポリシロキサン化合物(A-1)、(A-2)、硬化剤として、(T-1)、(T-2)、有機金属錯体として亜鉛塩(亜鉛錯体)(C-1)、(C-2)、4級ホスホニュウム塩(日本化学工業製 ヒシコーリンPX4MP 以下C-3と称す。)、光安定剤として(D-1)、酸化防止剤として(E-1)を使用し、下記表4に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明または比較用の硬化性樹脂組成物を得た。
(腐食ガス透過性試験)
 得られた硬化性樹脂組成物を用い、シリンジに充填し精密吐出装置を用いて、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージに注型した。その注型物を加熱炉に投入して、120℃、1時間、さらに150℃、3時間の硬化処理をしてLEDパッケージを作成した。下記条件でLEDパッケージを腐食性ガス中に放置し、封止内部の銀メッキされたリードフレーム部の色の変化を観察した(結果を下記表4に示す。)。 
 測定条件腐食ガス:硫化アンモニウム20%水溶液(硫黄成分が銀と反応した場合に黒く変色する)
 接触方法:広口ガラス瓶の中に、硫化アンモニウム水溶液の容器と前記LEDパッケージを混在させ、広口ガラス瓶の蓋をして密閉状況下、揮発した硫化アンモニウムガスとLEDパッケージを接触させた。
 腐食の判定:LEDパッケージ内部のリードフレームが黒く変色(黒化という)した時間を観察し、その変色時間が長い物ほど、耐腐食ガス性にすぐれていると判断した。
 観察は10時間後で取り出して確認をし、評価は変色無しの物を○、黒化した物を×と記した。 
Figure JPOXMLDOC01-appb-T000016
 
 実施例1~2、比較例5~6により、本発明の硬化性樹脂組成物は耐腐食ガス性に優れることがわかる。 
比較例7、8
 エポキシ樹脂として合成例1、2で得られたオルガノポリシロキサン化合物(A-1)、(A-2)、硬化剤として、(T-1)、(T-2)、有機金属錯体として亜鉛塩(亜鉛錯体)(C-1)、(C-2)、光安定剤として(D-1)、酸化防止剤として(E-1)を使用し、下記表5に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明または比較用の硬化性樹脂組成物を得た。
(光耐久性透過率試験)
 得られた硬化性樹脂組成物を用い、試験片用金型に静かに注型し、その注型物を、120℃×1時間の予備硬化の後150℃×3時間の条件で硬化させ試験用の硬化物を得た。得られた硬化物について、以下に記載する条件で光耐久性透過率試験を実施し、評価を行った(結果を下記表5に示す。)。 
 測定条件試験機: スーパーUVテスター(岩崎電気株式会社)
 試験条件:60mW/cm・nm、200hr
 試験片サイズ:厚さ0.8mm
 評価条件:分光光度計により、400nmの透過率を測定。その変化率を算出。 
Figure JPOXMLDOC01-appb-T000017
 
 実施例1~2、比較例7~8により、本発明の硬化性樹脂組成物は耐光着色性に優れることがわかる。 
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2010年6月11日付で出願された日本特許出願(特願2010-133745)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (8)

  1.  オルガノポリシロキサン(A)と多価カルボン酸(B)、有機金属塩および/または有機金属錯体(C)、光安定剤(D)を含有する硬化性樹脂組成物、ただし、オルガノポリシロキサン(A)と多価カルボン酸(B)、光安定剤(D)は以下の条件を満たす。
      オルガノポリシロキサン(A):少なくとも、その分子中にグリシジル基および/またはエポキシシクロヘキシル基を有するオルガノポリシロキサン
      多価カルボン酸(B):少なくとも2つのカルボキシル基を有し、脂肪族炭化水素基を主骨格とする
      光安定剤(D):構造式(1)で示される化合物
    Figure JPOXMLDOC01-appb-C000001
     
    (ただし、X1,X2は水素原子、炭素数1~50のアルキル基、アラルキル基、アリール基、炭素数1~20のアルキル基を有するアリール基、アルコキシ基または構造式(2)であり、X1,X2の少なくとも一方は構造式(2)である。
    Figure JPOXMLDOC01-appb-C000002
     
    (式(2)中、*印で構造式(2)は構造式(1)の酸素原子と結合する。また、Yは水素原子、炭素数1~50のアルキル基、アリール基、アルコキシ基を表す。))
  2.  構造式(2)のYが炭素数1~20のアルコキシ基である構造式(1)の化合物を含む請求項1に記載の硬化性樹脂組成物。
  3.  有機金属塩および/または有機金属錯体(C)が亜鉛塩および/または亜鉛錯体である請求項1または請求項2のいずれか一項に記載の硬化性樹脂組成物。
  4.  構造式(1)のX1、X2がともに構造式(2)であり、かつ、構造式(2)のYが -OC1123 である請求項1~請求項3のいずれか一項に記載の硬化性樹脂組成物。
  5.  酸無水物を含有する請求項1~請求項4のいずれか一項に記載の硬化性樹脂組成物。
  6.  多価カルボン酸(B)が炭素数5以上の2~6官能の多価アルコールと飽和脂肪族環状酸無水物との反応により得られた化合物である請求項1~請求項5のいずれか一項に記載の硬化性樹脂組成物。
  7.  酸化防止剤を含有する請求項1~請求項6のいずれか一項に記載の硬化性樹脂組成物。
  8.  請求項1~請求項7のいずれか一項に記載の硬化性樹脂組成物を硬化してなる硬化物。
PCT/JP2011/063312 2010-06-11 2011-06-10 硬化性樹脂組成物およびその硬化物 WO2011155583A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180028816.XA CN102939313B (zh) 2010-06-11 2011-06-10 可固化树脂组合物及其固化物
KR1020127031434A KR101699773B1 (ko) 2010-06-11 2011-06-10 경화성 수지 조성물 및 그 경화물
SG2012090551A SG186252A1 (en) 2010-06-11 2011-06-10 Curable resin composition and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010133745A JP5626856B2 (ja) 2010-06-11 2010-06-11 硬化性樹脂組成物およびその硬化物
JP2010-133745 2010-06-11

Publications (1)

Publication Number Publication Date
WO2011155583A1 true WO2011155583A1 (ja) 2011-12-15

Family

ID=45098186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063312 WO2011155583A1 (ja) 2010-06-11 2011-06-10 硬化性樹脂組成物およびその硬化物

Country Status (6)

Country Link
JP (1) JP5626856B2 (ja)
KR (1) KR101699773B1 (ja)
CN (1) CN102939313B (ja)
SG (1) SG186252A1 (ja)
TW (1) TWI494376B (ja)
WO (1) WO2011155583A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510023A (ja) * 2012-03-16 2015-04-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 難燃剤としてのnor−hals化合物
JP2018188626A (ja) * 2017-05-11 2018-11-29 信越化学工業株式会社 シリコーン変性ポリイミド樹脂組成物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472924B2 (ja) * 2010-10-21 2014-04-16 日本化薬株式会社 硬化性樹脂組成物およびその硬化物
JP6006725B2 (ja) * 2011-09-09 2016-10-12 日本化薬株式会社 光半導体素子封止用硬化性樹脂組成物およびその硬化物
JP6064606B2 (ja) 2012-01-31 2017-01-25 日亜化学工業株式会社 発光装置
DE102013201363A1 (de) 2012-01-31 2013-08-01 Nichia Corp. Lichtemittierendes Bauelement
JP6143359B2 (ja) * 2013-11-19 2017-06-07 日本化薬株式会社 シリコーン変性エポキシ樹脂およびその組成物
KR102616534B1 (ko) * 2015-06-17 2023-12-26 주식회사 다이셀 경화성 조성물, 접착 시트, 경화물, 적층물, 접착 시트의 제조 방법, 및 장치
CN116162325A (zh) 2017-12-27 2023-05-26 3M创新有限公司 适用于电子器件外罩的固化环氧树脂组合物、制品和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082852A1 (ja) * 2004-03-02 2005-09-09 Adeka Corporation カーボネート骨格を有する低塩基性ヒンダードアミン化合物、合成樹脂組成物及び塗料組成物
WO2005100445A1 (ja) * 2004-04-16 2005-10-27 Jsr Corporation 光半導体封止用組成物、光半導体封止材および光半導体封止用組成物の製造方法
WO2006083025A1 (ja) * 2005-02-04 2006-08-10 Jsr Corporation 光半導体、その封止材および封止用組成物
JP2007169427A (ja) * 2005-12-21 2007-07-05 Jsr Corp 光半導体封止用組成物、その製造法および光半導体封止材
WO2009113389A1 (ja) * 2008-03-10 2009-09-17 株式会社Adeka 合成樹脂組成物およびそれを用いた自動車内外装材

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213997A (ja) 1996-01-30 1997-08-15 Matsushita Electron Corp 発光ダイオード
JP3618238B2 (ja) 1998-12-25 2005-02-09 日亜化学工業株式会社 発光ダイオード
US20080154735A1 (en) * 2006-12-26 2008-06-26 Mark Carlson Mobile vending purchasing
TWI433875B (zh) 2008-01-28 2014-04-11 Shinetsu Chemical Co 二縮水甘油基異氰尿酸基改性有機聚矽氧烷以及含有該有機聚矽氧烷的組成物
US20120145241A1 (en) * 2009-08-18 2012-06-14 Basf Se Photovoltaic module with stabilized polymeric encapsulant
KR20120085256A (ko) * 2009-10-06 2012-07-31 닛뽄 가야쿠 가부시키가이샤 다가 카르복실산 조성물과 그 제조 방법, 및 그 다가 카르복실산 조성물을 함유하여 이루어지는 경화성 수지 조성물
WO2011065044A1 (ja) * 2009-11-30 2011-06-03 日本化薬株式会社 硬化性樹脂組成物およびその硬化物
WO2011108588A1 (ja) * 2010-03-02 2011-09-09 日本化薬株式会社 硬化性樹脂組成物、及びその硬化物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082852A1 (ja) * 2004-03-02 2005-09-09 Adeka Corporation カーボネート骨格を有する低塩基性ヒンダードアミン化合物、合成樹脂組成物及び塗料組成物
WO2005100445A1 (ja) * 2004-04-16 2005-10-27 Jsr Corporation 光半導体封止用組成物、光半導体封止材および光半導体封止用組成物の製造方法
WO2006083025A1 (ja) * 2005-02-04 2006-08-10 Jsr Corporation 光半導体、その封止材および封止用組成物
JP2007169427A (ja) * 2005-12-21 2007-07-05 Jsr Corp 光半導体封止用組成物、その製造法および光半導体封止材
WO2009113389A1 (ja) * 2008-03-10 2009-09-17 株式会社Adeka 合成樹脂組成物およびそれを用いた自動車内外装材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JETI, vol. 55, no. 5, 15 May 2007 (2007-05-15), pages 79 - 81 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510023A (ja) * 2012-03-16 2015-04-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 難燃剤としてのnor−hals化合物
JP2017190467A (ja) * 2012-03-16 2017-10-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 難燃剤としてのnor−hals化合物
JP2018188626A (ja) * 2017-05-11 2018-11-29 信越化学工業株式会社 シリコーン変性ポリイミド樹脂組成物

Also Published As

Publication number Publication date
JP5626856B2 (ja) 2014-11-19
CN102939313A (zh) 2013-02-20
KR20130112694A (ko) 2013-10-14
TWI494376B (zh) 2015-08-01
CN102939313B (zh) 2016-03-16
TW201207043A (en) 2012-02-16
KR101699773B1 (ko) 2017-01-25
SG186252A1 (en) 2013-01-30
JP2011256326A (ja) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5878862B2 (ja) 硬化性樹脂組成物、及びその硬化物
JP5730852B2 (ja) オルガノポリシロキサンの製造方法、該製造方法により得られるオルガノポリシロキサン、該オルガノポリシロキサンを含有する組成物
JP5626856B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5348764B2 (ja) 光半導体封止用硬化性樹脂組成物、及びその硬化物
JP5433705B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5768047B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5698453B2 (ja) エポキシ樹脂組成物
JP6143359B2 (ja) シリコーン変性エポキシ樹脂およびその組成物
JP5561778B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5300148B2 (ja) エポキシ樹脂組成物、硬化性樹脂組成物
JP5472924B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5700618B2 (ja) エポキシ樹脂組成物、硬化性樹脂組成物
JP5995238B2 (ja) エポキシ樹脂、およびエポキシ樹脂組成物
JP2014237861A (ja) エポキシ樹脂組成物、硬化性樹脂組成物
WO2011078322A1 (ja) エポキシ樹脂組成物、硬化性樹脂組成物、およびその硬化物
JP5519685B2 (ja) 硬化性樹脂組成物、及びその硬化物
KR20110135917A (ko) 디올레핀 화합물, 에폭시 수지 및 그 조성물
JP5832601B2 (ja) 硬化性樹脂組成物およびその硬化物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028816.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127031434

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792540

Country of ref document: EP

Kind code of ref document: A1