CN116162325A - 适用于电子器件外罩的固化环氧树脂组合物、制品和方法 - Google Patents

适用于电子器件外罩的固化环氧树脂组合物、制品和方法 Download PDF

Info

Publication number
CN116162325A
CN116162325A CN202310037555.2A CN202310037555A CN116162325A CN 116162325 A CN116162325 A CN 116162325A CN 202310037555 A CN202310037555 A CN 202310037555A CN 116162325 A CN116162325 A CN 116162325A
Authority
CN
China
Prior art keywords
epoxy resin
electronic device
resin composition
cured epoxy
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310037555.2A
Other languages
English (en)
Inventor
布雷特·A·贝尔曼
约翰·C·克拉克
埃里克·G·拉森
杰里米·M·希金森
奥德蕾·S·弗提科
杰伊·R·洛美达
韦恩·S·马奥尼
斯科特·B·查尔斯
蒂莫西·D·弗莱彻
温迪·L·汤普森
凯尔·R·施瓦茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN116162325A publication Critical patent/CN116162325A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • C08K7/20Glass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0091Housing specially adapted for small components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/009Additives being defined by their hardness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

本发明涉及适用于电子器件外罩的固化环氧树脂组合物、制品和方法。具体地,本发明描述了一种电子器件,该电子器件包括外罩,其中外罩包含固化环氧树脂组合物,该固化环氧树脂组合物包含至少50体积%的非导电的导热无机颗粒,其中无机颗粒选自氧化铝、氮化硼、碳化硅、三水合氧化铝以及它们的混合物。外罩可以是电话、膝上型电脑或鼠标的外壳。另选地,外罩可以是用于电子器件的壳体。还描述了环氧树脂组合物和制造用于电子器件的外罩的方法。

Description

适用于电子器件外罩的固化环氧树脂组合物、制品和方法
本发明专利申请是国际申请号为PCT/US2018/067091,国际申请日为2018年12月21日,进入中国国家阶段的申请号为201880083735.1,发明名称为“适用于电子器件外罩的固化环氧树脂组合物、制品和方法”的发明专利申请的分案申请。
技术领域
本发明涉及适用于电子器件外罩的固化环氧树脂组合物、制品和方法。
发明内容
在一个实施方案中,描述了一种电子器件,该电子器件包括外罩,其中外罩包含固化环氧树脂组合物,该固化环氧树脂组合物包含至少50体积%的非导电的导热无机颗粒。外罩可以是电话、膝上型电脑或鼠标的外壳。另选地,外罩可以是用于电子器件的壳体。
在另一个实施方案中,描述了一种环氧树脂组合物,该环氧树脂组合物包含有机组分,该有机组分包含第一部分和第二部分,该第一部分包含环氧树脂,该第二部分包含2重量%至20重量%的玻璃化转变温度小于0℃的环氧反应性低聚部分或聚合部分;和至少50体积%的非导电的导热无机颗粒。
在另一个实施方案中,描述了一种环氧树脂组合物,该环氧树脂组合物包含有机组分,该有机组分包含第一部分和第二部分,该第一部分包含环氧树脂,该第二部分包含玻璃化转变温度小于0℃的环氧反应性低聚部分或聚合部分;和至少50体积%的非导电的导热无机颗粒;其中环氧树脂材料在固化之后具有小于100℃的玻璃化转变温度。
在另一个实施方案中,描述了一种制造用于电子器件的外罩的方法,该方法包括提供如本文所述的环氧树脂组合物以及将组合物形成为外壳或壳体。在一个实施方案中,该形成步骤包括在模具中提供环氧树脂组合物以及固化环氧树脂组合物。
附图说明
图1为用于电子器件的壳体的示意透视图。
图2为电子器件的外壳的透视图。
图3-图5为各种具体体现的固化环氧树脂组合物的tanδ作为温度的函数的曲线图。
具体实施方式
本发明描述了用于电子器件的外罩(例如,外壳或壳体),该外罩包含固化环氧树脂组合物。还描述了可固化环氧树脂组合物。
参考图1,一种具体体现的例示性壳体100,壳体100是三维的,一般包括平行于外部主表面(未示出)的内侧主表面110以及侧壁115。壳体的形状和尺寸被设定成接收并配合电子器件120。壳体100通常包括开口101。电子器件120的相机镜头和闪光灯通常通过开口101暴露。另选地,开口101还可包括足够透明的膜,使得壳体100和盖120形成用于电子器件120的防水外罩。外壳100可任选地包括盖120,该盖包括足够透明的膜125,以便可通过膜125观察电子器件120的显示器130。在一些实施方案中,整个壳体100包含本文所述的固化环氧树脂组合物。盖120的框架121还可包含本文所述的固化环氧树脂组合物。在一些实施方案中,壳体的仅一部分包含本文所述的固化环氧树脂组合物。在一些实施方案中,壳体或其部分与电池电连通,使得电池可通过壳体充电。
参考图1和图2,具体体现的例示性壳体200和220,壳体200和220是三维的,一般包括平行于外部主表面(未示出)的内侧主表面210以及侧壁215。外壳200和220通常形成电子器件的背面。外壳220附接到电子器件120的前面(例如,显示表面)130。电子部件(未示出)(例如,电池、电路、计算机芯片等)设置在电子器件120的前面(例如,显示表面)130和外壳220之间。外壳200和220通常包括集成在外壳内的相机镜头205和闪光灯206。在一些实施方案中,整个外壳200包含本文所述的固化环氧树脂组合物。在其它实施方案中,外壳的仅一部分包含本文所述的固化环氧树脂组合物。在一些实施方案中,外壳或其部分与电池电连通,使得电池可通过壳体充电。
本文所述的环氧树脂组合物适合用作用于各种电子器件的外罩(例如,壳体和/或外壳)。例示性电子器件包括蜂窝电话、台式计算机、膝上型计算机和电池驱动的附件,诸如远程鼠标。
环氧树脂组合物一般包含含有至少两个环氧基团的至少一种环氧树脂。环氧基团是具有三个环原子的环醚,有时也被称为缩水甘油基或环氧乙烷基团。环氧树脂通常为在环境温度下为液体的低分子量单体。
环氧树脂组合物一般包含含有至少一个环状部分的至少一种环氧树脂。环状部分可以是芳族的或脂环族的。
在一些实施方案中,环氧树脂组合物包含双酚环氧树脂。双酚环氧树脂由以下方式形成:使表氯醇与双酚A反应以形成双酚A的二缩水甘油醚。
可商购获得的双酚环氧树脂的示例包括双酚A的二缩水甘油醚(例如,以商品名EPON 828、EPON 1001、EPON 1004、EPON 2004、EPON 1510和EPON 1310购自迈图专用化学公司(Momentive Specialty Chemicals,Inc.)的那些,以及以商品名D.E.R.331、D.E.R.332、D.E.R.334和D.E.N.439购自陶氏化学公司(Dow Chemical Co.)的那些);双酚F的二缩水甘油醚(例如,以商品名ARALDITE GY 281购自亨斯迈公司(Huntsman Corporation))或双酚A和F树脂的共混物,诸如来自迈图专用化学公司(Momentive Specialty Chemicals,Inc.)的EPIKOTE232;阻燃剂环氧树脂(例如,以商品名DER 560获得,以及诸如购自陶氏化学公司(Dow Chemical Company)的一种溴化的双酚型环氧树脂)。
芳族环氧树脂也可通过诸如联苯基二醇以及三苯基二醇和三苯基三醇的芳族醇与表氯醇的反应来制备。此类芳族联苯基和三苯基环氧树脂不是双酚环氧树脂。一种代表性化合物为以商品名TactixTM 742购自瑞士巴塞尔的亨斯迈公司(Huntsman Corporation,Basel,Switzerland)的基于三-(羟基苯基)甲烷的环氧树脂。
酚醛清漆环氧树脂通过酚与甲醛的反应形成,并且随后与表氯醇的糖基化产生环氧化酚醛清漆,诸如环氧酚酚醛清漆(EPN)和环氧甲酚酚醛清漆(ECN)。这些对于典型平均环氧化物官能团为约2至6的固体树脂而言是高度粘稠的。代表性可商购获得的酚醛清漆环氧树脂为可以商品名“D.E.N.431”从陶氏公司(Dow)商购获得的半固体环氧酚醛清漆树脂。此类酚醛清漆环氧树脂可与在25℃下为液体的环氧树脂组合使用。
优选的环氧树脂为每个分子含有多于一个1,2环氧基团的脂环族环氧树脂。这些优选的环氧树脂一般是通过使用过氧化氢或诸如过乙酸和过苯甲酸的过酸来使诸如环烯烃的不饱和芳族烃化合物环氧化制备的,如本领域已知的。
此类脂环族环氧树脂具有饱和(即,非芳族)环结构,其中环氧基团为环的一部分或附接到环结构。这些环氧树脂通常在环氧基团之间含有一个或多个酯键。亚烷基(C1-C4)键通常也存在于环氧基团和酯键之间或存在于酯键之间。
一种优选的脂环族环氧树脂为3,4-环氧环己基甲基-3,4-环氧环己烷羧酸酯,描绘如下:
Figure BDA0004047322400000051
另一种优选的例示性脂环族环氧树脂为双(3,4-环氧环己基甲基)己二酸酯,描绘如下:
Figure BDA0004047322400000052
另一种合适的脂环族环氧树脂包含含有两个环氧基团的乙烯基环己烷二氧化物,其中一个环氧基团为环结构的一部分;3,4-环氧-6-甲基环己基甲基-3,4-环氧环己烷羧酸酯和二环戊二烯二氧化物。
包含缩水甘油醚的其它合适的脂环族环氧树脂包括1,2-双(2,3-环氧环戊氧基)-乙烷;2,3-环氧环戊基缩水甘油醚;二缩水甘油基环己烷-1,2-二羧酸酯;3,4-环氧环己基缩水甘油醚;双-(2,3-环氧环戊基)醚;双-(3,4-环氧环己基)醚;5(6)-缩水甘油基-2-(1,2-环氧基乙基)双环[2.2.1]庚烷;环己-1,3-二烯二氧化物;3,4-环氧-6-甲基环己基甲基3',4'-环氧-6'-甲基环己烷羧酸酯。
其中1,2-环氧基团附接到各种杂原子或官能团的环氧树脂也是合适的;此类化合物包括例如4-氨基苯酚的N,N,O-三缩水甘油基衍生物、3-氨基苯酚的N,N,O-三缩水甘油基衍生物、水杨酸的缩水甘油醚/缩水甘油酯、N-缩水甘油基-N'-(2-缩水甘油基氧基丙基)-5,5-二甲基乙内酰脲或2-缩水甘油基氧基-1,3-双-(5,5-二甲基-1-缩水甘油基乙内酰脲-3-基)丙烷。
环氧树脂通常具有每个环氧基团50克至250克、300克、350克、400克、450克或500克的环氧当量。环氧树脂在25℃下通常具有小于约1000cps的粘度。在一些实施方案中,粘度为至少50厘泊、100厘泊、150厘泊、200厘泊、250厘泊或300厘泊。在一些实施方案中,粘度不大于900厘泊、800厘泊、700厘泊、600厘泊或500厘泊。可利用单个环氧树脂或环氧树脂的组合。环氧树脂组合物通常包含基于环氧树脂组合物的总重量计至少5重量%、6重量%、7重量%、8重量%、9重量%或10重量%的一种或多种环氧树脂。由于导热无机颗粒的高浓度,一种或多种环氧树脂的量通常不大于20重量%,并且在一些实施方案中不大于19重量%、18重量%、17重量%、16重量%或15重量%。
在一些实施方案中,环氧树脂组合物还包含低聚组分或聚合组分。低聚组分或聚合组分可向固化环氧树脂组合物赋予柔韧性、抗热震性、抗裂性和抗冲击性。除非另外指明,否则玻璃化转变温度(Tg)是指如根据实施例中所述的测试方法确定的玻璃化转变温度。低聚组分或聚合组分一般具有小于0℃的玻璃化转变温度(Tg)。在一些实施方案中,低聚组分的玻璃化转变温度小于-20℃、-30℃、-40℃、-50℃、-60℃。低聚组分的玻璃化转变温度通常为至少-80℃或-70℃。各种均聚物的玻璃化转变温度在文献中报告。各种共聚物的玻璃化转变温度也在文献中报告,或可使用Fox公式粗略估计。
在一些实施方案中,低聚组分或聚合组分为增韧剂、环氧反应性低聚组分或聚合组分或者它们的组合。环氧树脂组合物可包含至少一种增韧剂和至少一种环氧反应性低聚组分或聚合组分、两种或更多种增韧剂、或者两种或更多种环氧反应性低聚组分和/或聚合组分。
在不存在低聚组分或聚合组分的情况下,环氧树脂的玻璃化转变温度大于100℃。在一些实施方案中,在不存在低聚组分或聚合组分的情况下,环氧树脂的玻璃化转变温度为至少110℃、120℃、130℃、140℃或150℃。在不存在低聚组分或聚合组分的情况下,环氧树脂的玻璃化转变温度通常不大于300℃、275℃、250℃、225℃、200℃或175℃。
当低聚组分或聚合组分为增韧剂时,含有增韧剂的环氧树脂组合物的玻璃化转变可与单独的环氧树脂落入相同范围内。在一些实施方案中,相对于单独的环氧树脂,包含增韧剂可使环氧树脂组合物的Tg减小10℃、20℃、30℃、40℃或50℃或更大。在一些实施方案中,诸如当利用环氧反应性低聚组分和/或聚合组分时,固化环氧树脂组合物具有小于140℃、135℃或130℃的Tg。在一些实施方案中,固化环氧树脂组合物具有小于125℃、120℃、115℃、110℃、105℃或100℃的Tg。在一些实施方案中,固化环氧树脂组合物具有小于100℃的Tg。在一些实施方案中,固化环氧树脂组合物具有至少50℃、55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃或100℃的Tg。
在一些实施方案中,固化环氧树脂组合物具有单个玻璃化转变温度,诸如图3中所描绘。例如,在一个实施方案中,当环氧树脂组合物包含低聚部分或聚合部分(例如,聚己内酯)并且分散剂包含可与低聚部分或聚合部分混溶的(例如,聚己内酯)部分时,固化环氧树脂可具有单个Tg。当固化环氧树脂组合物具有单个Tg时,tanδ峰值通常是相对窄的。例如,半高tanδ峰宽为50℃或更小。
在其它实施方案中,固化环氧树脂组合物具有至少两个玻璃化转变温度,诸如图4中所描绘。
在另一个实施方案中,固化环氧树脂组合物可表现出单个或多个Tg与相对宽的tanδ峰值的组合,诸如图5中所描绘。在该实施方案中,半高tanδ峰宽大于50℃。例如,在一些实施方案中,半高tanδ峰宽为至少55℃、60℃、65℃、70℃、75℃、80℃、85℃或90℃。半高tanδ峰宽通常不大于125℃、120℃、115℃或110℃。
环氧树脂组合物通常包含基于环氧树脂组合物的总重量计至少1重量%、1.5重量%、2重量%或2.5重量%的一种或多种低聚组分和/或聚合组分。一种或多种低聚组分和/或聚合组分的量通常不大于20重量%、19重量%、18重量%、17重量%、16重量%或15重量%。在一些实施方案中,一种或多种低聚组分和/或聚合组分的量不大于14重量%、13重量%、12重量%、11重量%或10重量%。
环氧树脂与一种或多种低聚组分和/或聚合组分的重量比可以是变化的。通常,环氧树脂的量按重量计等于或大于一种或多种低聚组分和/或聚合组分的量。环氧树脂与一种或多种低聚组分和/或聚合组分的重量比可在1:1至10:1的范围内。在一些实施方案中,环氧树脂与一种或多种低聚组分和/或聚合组分的重量比为至少1.1:1;1.2:1;1.3:1;1.4:1;或1.5:1。在一些实施方案中,环氧树脂与一种或多种低聚组分和/或聚合组分的重量比不大于7:1、或6:1、或5:1、或4:1、或3:1。
在一些实施方案中,低聚组分或聚合组分可被表征为增韧剂。增韧剂通常为在固化环氧树脂中实现相分离的有机聚合物添加剂。增韧剂可被表征为非反应性低聚组分或聚合组分。增韧剂包括例如嵌段共聚物、两亲性嵌段共聚物、丙烯酸类嵌段共聚物、羧基封端的丁二烯丙烯腈橡胶(CTBN)、核壳橡胶(CSR)、线性聚丁二烯-聚丙烯腈共聚物、低聚聚硅氧烷、有机硅聚醚、有机聚硅氧烷树脂或它们的混合物。
其它环氧反应性聚合物增韧剂包括羧基封端的聚丁二烯、基于聚硫化物的增韧剂、胺封端的丁二烯腈橡胶、聚硫醚或它们的混合物。
两亲性聚醚嵌段共聚物增韧剂包括一种或多种聚醚嵌段共聚物,该一种或多种聚醚嵌段共聚物包含衍生自诸如氧化乙烯(EO)的环氧烷的至少一个环氧可混溶的聚醚嵌段链段以及衍生自诸如例如通常称为氧化丁烯(BO)的1,2-环氧丁烷的环氧烷的至少一个环氧不可混溶的聚醚嵌段链段。不可混溶的嵌段链段还可由C3或更高碳类似物单体的混合物构成,这些更高碳类似物单体共聚在一起以提供不可混溶的嵌段链段。
环氧树脂可混溶的聚醚嵌段链段的示例包括聚氧化乙烯嵌段、氧化丙烯嵌段、聚(氧化乙烯-共-氧化丙烯)嵌段、聚(氧化乙烯-无规-氧化丙烯)嵌段或它们的混合物。优选地,可用于本发明中的环氧树脂可混溶的聚醚嵌段链段可以是聚氧化乙烯嵌段。
环氧树脂不可混溶的聚醚嵌段链段的示例包括聚氧化丁烯嵌段、衍生自1,2-环氧己烷的聚氧化己烯嵌段、衍生自1,2-环氧十二烷的聚氧化十二烯嵌段或它们的混合物。优选地,可用于本发明中的环氧树脂不可混溶的聚醚嵌段链段可以是聚氧化丁烯嵌段。
两亲性聚醚嵌段共聚物增韧剂包括例如但不限于二嵌段共聚物、线性三嵌段、线性四嵌段、其它多嵌段结构、支链嵌段结构或星形嵌段结构。
两亲性聚醚二嵌段共聚物增韧剂的示例包括聚(氧化乙烯)-b-聚(氧化丁烯)(PEO-PBO)或两亲性聚醚三嵌段共聚物,诸如例如聚(氧化乙烯)-b-聚(氧化丁烯)-b-聚(氧化乙烯)(PEO-PBO-PEO)。
在另一个实施方案中,环氧树脂组合物包含环氧反应性低聚组分,该环氧反应性低聚组分与典型的聚合物相比包含相对较小数量的重复单元。环氧反应性低聚组分的重均分子量通常为至少150g/mol、200g/mol、150g/mol、300g/mol、350g/mol、400g/mol、450g/mol或500g/mol。在一些实施方案中,低聚组分的重均分子量不大于10,000g/mol;9,000g/mol;8,000g/mol;7,000g/mol;或6,000g/mol,并且在一些实施方案中不大于5,000g/mol、4,500g/mol;4,000g/mol、3,500g/mol;3,000g/mol;2,500g/mol;2,000g/mol;1,500g/mol或1,000g/mol。低聚增韧剂还可具有在该范围内的分子量。在其它实施方案中,聚合物增韧剂可具有更高的分子量,范围多至1,000,000g/mol或2,000,000g/mol或更大。例如,当聚合物增韧剂是交联热固性的时,分子量可能过高而无法使用常规技术来测量。在一些实施方案中,聚合物增韧剂具有不大于500,000g/mol;400,000g/mol;300,000g/mol;或200,000g/mol的重均分子量。
在一些实施方案中,环氧反应性低聚组分具有不大于30℃或25℃的熔点。熔点通常为至少约0℃、5℃或10℃。
在一些实施方案中,环氧反应性低聚组分为衍生自己内酯的线性或支链聚酯二醇。聚己内酯(PCL)均聚物为具有约60℃的低熔点和约-60℃的玻璃化转变温度的可生物降解的聚酯。PCL可使用诸如辛酸亚锡的催化剂通过ε-己内酯的开环聚合来制备,如本领域已知的。
衍生自己内酯的一种合适的线性聚酯二醇为CapaTM 2054,据报告具有200mg KOH/g-215mg KOH/g的羟基数和18℃-23℃的熔点。
另一种合适的三官能多元醇是陶氏(Dow)TONETM 301多元醇,据报告具有561的羟基数和0℃-24℃的熔点。
在一些实施方案中,低聚组分可被表征为半结晶组分。
所谓“结晶”意指当通过差示扫描量热法(DSC)在组合物中进行测量时,材料展现出在20℃或以上温度的结晶熔点。所观察到的吸热的峰值温度作为结晶熔点。结晶相包括多重晶格,材料在该多重晶格中呈现这样的构象,其中在构成材料的相邻化学部分中存在高度有序的记录。在晶格内的堆积布置(短顺序取向)在其化学方面和几何形状方面均是高度规则的。
半结晶组分通常包含在20℃或以上温度以无定形态和结晶态或相两者出现的聚合物链的长链段。无定形相被认为是聚合物链的无规缠结的团。无定形聚合物的X射线衍射图为漫射晕,这指示聚合物结构没有有序性。无定形聚合物在玻璃化转变温度下示出软化行为,但不示出真实熔融或一级转变。处于半结晶态的材料示出特征熔点,在此特征熔点以上时晶格变化到无序并且迅速失去其特性。此类“半结晶”材料的X射线衍射图一般通过同心环或对称的点排列识别出来,这指示结晶有序的性质。
其它环氧反应性低聚组分的示例包括例如脂肪酸;脂肪酸酐,诸如聚壬二酸酐和十二烯基琥珀酸酐;二醇,诸如乙二醇、多元醇;聚醚二醇,诸如乙二醇、聚乙二醇和聚丙二醇、脂肪醇的聚合物;以及具有羟基基团、羧基环氧基和/或羧酸酐官能团的其它材料。其它合适的低聚组分包含三羟基羧基封端和二羟基羧基封端、羧酸酐封端、缩水甘油基封端和羟基封端的聚乙二醇、聚丙二醇或聚丁二醇。
在一些实施方案中,环氧树脂组合物包含含有增韧主链的双酚环氧树脂。一种代表性结构如下:
Figure BDA0004047322400000111
其中较大的中心嵌段表示低聚链段,并且较小的嵌段表示任选的极性链段。一种代表性的包含增韧主链的双酚环氧树脂可以商品名“EPICLON EXA 4850-150”从日本的DEC公司(DEC Corporation)商购获得。在该实施方案中,低聚组分可被表征为已与环氧树脂预反应的环氧反应性组分。
在一些实施方案中,包含增韧主链的双酚环氧树脂的粘度在25℃下小于50,000cps;45,000cps、40,000cps;35,000cps;30,000cps;或25,000cps。在25℃下的粘度通常为至少5,000cps。在一些实施方案中,包含增韧主链的双酚环氧树脂的分子量为至少200g/mol、250g/mol或350g/mol。在其它实施方案中,包含增韧主链的双酚环氧树脂的分子量为至少400g/mol、500g/mol、600g/mol或700g/mol。在其它实施方案中,包含增韧主链的双酚环氧树脂的分子量为至少750g/mol、800g/mol或900g/mol。分子量通常不大于2000g/mol或1500g/mol。
其它合适的环氧反应性低聚组分包含具有以下通式的改性的羟基封端的有机硅
Figure BDA0004047322400000121
其中n为10至300的整数。
其它合适的环氧反应性低聚组分包括基于丁二烯以及极性烯键式不饱和共聚单体的羧基封端、羟基封端、巯基封端或缩水甘油醚封端的共聚物。一种合适的平均分子量为约1200至1300的环氧化丁二烯预聚物可以商品名Poly Bd 605从埃尔夫阿托化学北美公司(Elf Atochem North America Inc)商购获得。
环氧树脂组合物任选地包含固化剂。用于环氧树脂的固化剂的常见类别包括胺、酰胺、脲、咪唑和硫醇。固化剂通常在环境温度下与环氧基团高度反应。
在一些实施方案中,固化剂包含反应性–NH基团或反应性-NR1R2基团,其中R1和R2独立地为H或C1至C4烷基,并且最通常为H或甲基。
固化剂的一种类别为伯聚胺、仲聚胺和叔聚胺。聚胺固化剂可以是直链的、支链的或环状的。在一些有利的实施方案中,聚胺交联剂是脂族的。另选地,可利用芳族聚胺。
可用的聚胺具有通式R5-(NR1R2)x,其中R1和R2独立地为H或烷基,R5为多价亚烷基或亚芳基,并且x为至少二。R1和R2的烷基基团通常为C1至C18烷基,更通常为C1至C4烷基,并且最通常为甲基。R1和R2可合在一起以形成环胺。在一些实施方案中,x为二(即,二胺)。在其它实施方案中,x为3(即,三胺)。在其它实施方案中,x为4。
可用的二胺可由以下通式表示:
Figure BDA0004047322400000131
其中R1、R2、R3和R4独立地为H或烷基,并且R5为二价亚烷基或亚芳基。在一些实施方案中,R1、R2、R3和R4各自为H,并且二胺为伯胺。在其它实施方案中,R1和R4各自为H,并且R2和R4各自独立地为烷基;并且二胺为仲胺。在其它实施方案中,R1、R2、R3和R4独立地为烷基,并且二胺为叔胺。
在一些实施方案中,伯胺是优选的。示例包括六亚甲基二胺;1,10-二氨基癸烷;1,12-二氨基十二烷;2-(4-氨基苯基)乙胺;异佛乐酮二胺;降冰片烷二胺4,4'-二氨基二环己基甲烷;和1,3-双(氨基甲基)环己烷。例示性六元环二胺包括例如哌嗪和1,4-二氮杂二环[2.2.2]辛烷(“DABCO”)。
其它可用的聚胺包括具有至少三个氨基基团的聚胺,其中三个氨基基团为伯氨基基团、仲氨基基团或它们的组合。示例包括3,3’-二氨基联苯胺和六亚甲基三胺。
用于固化脂环族环氧树脂的常见固化剂包括衍生自具有至少一个酸酐基团的羧酸的酸酐。此类酸酐固化剂在US 6,194,024中描述;该专利以引用方式并入本文。
在一些实施方案中,诸如当利用增韧剂而非环氧反应性低聚组分时,固化剂可以基于当量计构成环氧树脂的约20%至约120%,优选地约80%至110%,并且优选地约75%至约100%环氧化物当量的量被采用。
然而,当利用环氧反应性低聚组分时,(例如,羟基官能的)环氧反应性组分可充当固化剂。在该实施方案中,环氧树脂组合物可含有小于20%、15%、10%、5%环氧化物当量的量的固化剂。
在一些实施方案中,环氧树脂组合物还包含催化剂。用于环氧树脂的合适的催化剂包括例如叔胺和酸性催化剂(诸如辛酸亚锡和六氟化锑)以及咪唑。其它合适的催化剂为完全取代的化合物,包括:季铵氢氧化物和卤化物;季鏻卤化物;砷化氢、氧化胺;氨基酚;氧化膦;膦;卤化鏻;胺;磷酰胺;膦胺;和叔氨基酚。催化剂的混合物也是合适的。
一种或多种催化剂的浓度基于环氧树脂组合物的总重量计通常小于约3重量%、2.5重量%、2重量%、1.5重量%或1重量%。在一些实施方案中,催化剂的量为至少0.005重量%、0.01重量%、0.025重量%、0.05重量%或0.1重量%。
环氧树脂组合物包含导热无机颗粒。一般来讲,选择无机颗粒的类型和装填量以提供期望的热导率。在一些实施方案中,固化环氧树脂组合物的热导率(如通过实施例中所述的测试方法来确定)为至少0.90W/m*K、0.95W/m*K或1.0W/m*K。在一些实施方案中,固化环氧树脂组合物的热导率为至少1.10W/m*K、1.15W/m*K或1.20W/m*K。在一些实施方案中,固化环氧树脂组合物的热导率不大于3.0W/m*K、2.9W/m*K、2.8W/m*K、2.7W/m*K、2.6W/m*K、2.5W/m*K、2.4W/m*K、2.3W/m*K、2.3W/m*K、2.1W/m*K或2.0W/m*K。
在一些实施方案中,固化环氧树脂组合物是足够导电的,使得包括电池的电子器件可通过包含此类固化环氧树脂组合物的外罩(例如,外壳和/或壳体)充电。包含导热无机颗粒还导致固化环氧树脂组合物触摸起来是凉爽的并且类似于陶瓷而非塑性材料。
环氧树脂组合物包含基于环氧树脂组合物的总体积计大于45体积%的量的导热颗粒。在一些实施方案中,导热无机填料的量为至少46体积%、47体积%、48体积%、49体积%或50体积%。导热无机填料的量基于环氧树脂组合物的总体积计通常不大于75体积%、74体积%、73体积%、72体积%、71体积%、70体积%、69体积%、68体积%、67体积%、66体积%、65体积%、64体积%、63体积%、62体积%、61体积%或60体积%。
由于导热颗粒的相对高浓度,固化环氧树脂组合物可具有较高密度。例如,如通过下面的比较例1和2所证实的,不含导热颗粒的组合物可具有在约1.1g/cc至约1.3g/cc范围内的密度。含有45体积%导热颗粒的比较例3具有2.29g/cc的密度。然而,例证的组合物具有大于2.29g/cc的密度。在一些实施方案中,固化环氧树脂组合物具有至少2.30g/cc、2.31g/cc、2.32g/cc、2.33g/cc、2.34g/cc、2.35g/cc、2.36g/cc、2.37g/cc、2.38g/cc、2.39g/cc或2.40g/cc的密度。在一些实施方案中,固化环氧树脂组合物具有至少2.41g/cc、2.42g/cc、2.43g/cc、2.44g/cc、2.45g/cc、2.46g/cc、2.47g/cc、2.48g/cc、2.49g/cc或2.50g/cc的密度。在一些实施方案中,固化环氧树脂组合物具有不大于2.65g/cc、2.64g/cc、2.63g/cc、2.62g/cc、2.61g/cc或2.60g/cc的密度。
导热无机颗粒优选地为非导电材料。合适的非导电的导热材料包括陶瓷,诸如金属氧化物、氢氧化物、羟基氧化物、硅酸盐、硼化物、碳化物和氮化物。合适的陶瓷填料包括例如氧化硅、氧化铝、氢氧化铝(ATH)、氮化硼、碳化硅和氧化铍。此类材料不是导电的,即,具有大于0eV并且在一些实施方案中至少1eV、2eV、3eV、4eV或5eV的电子带隙。在一些实施方案中,此类材料具有不大于15eV或20eV的电子带隙。环氧树脂组合物还可任选地包含电子带隙小于0eV或大于20eV的低浓度导热颗粒。
在有利的实施方案中,导热颗粒包含堆积热导率>10W/m*K的材料。一些代表性无机材料的热导率在下表中陈述。
热导率
Figure BDA0004047322400000161
在一些实施方案中,导热颗粒包含堆积热导率为至少15W/m*K或20W/m*K的一种或多种材料。在其它实施方案中,导热颗粒包含堆积热导率为至少25W/m*K或30W/m*K的一种或多种材料。在其它实施方案中,导热颗粒包含堆积热导率为至少50W/m*K、75W/m*K或100W/m*K的一种或多种材料。在其它实施方案中,导热颗粒包含堆积热导率为至少150W/m*K的一种或多种材料。在典型的实施方案中,导热颗粒包含堆积热导率不大于约350W/m*K或300W/m*K的一种或多种材料。
导热颗粒可以多种形状获得,例如球形、不规则形、板状和针状。导热颗粒一般具有小于100:1、75:1或50:1的纵横比。在一些实施方案中,导热颗粒具有小于3:1、2.5:1、2:1或1.5:1的纵横比。在一些实施方案中,可采用大致对称的(例如,球形或半球形的)颗粒。
在一些实施方案中,导热颗粒的中值粒度d(0.50)不大于100微米、90微米、80微米、70微米、60微米、50微米。在一些实施方案中,导热颗粒的粒度d(0.50)不大于40微米、35微米、30微米、25微米、20微米、15微米。在一些实施方案中,导热颗粒的粒度d(0.50)小于10微米、5微米或1微米。在一些实施方案中,导热颗粒的粒度d(0.50)为至少10纳米、15纳米、20纳米或25纳米。在一些实施方案中,导热颗粒的粒度d(0.50)为至少50纳米、75纳米、100纳米、125纳米、150纳米或200纳米。在一些实施方案中,导热颗粒的粒度d(0.50)为至少500nm、750nm、1微米、2微米或3微米。粒度常常由导热颗粒的制造商报告。固化环氧树脂可经受热解,并且粒度可利用ASTM B822–17,“通过光散射针对金属粉末和相关化合物的粒度分布的标准测试方法(Standard Test Method for Particle Size Distribution ofMetal Powders and Related Compound by Light Scattering)”来确定。
在典型的实施方案中,粒度是指“初级粒度”,意指单个(非聚集体、非团聚体)颗粒的中值直径。初级颗粒可形成“团聚体”,即,初级颗粒之间的弱缔合,这些初级颗粒可通过电荷或极性保持在一起并且可被分解成较小实体。这些弱结合的团聚体通常会在高能混合过程期间分解。
在一些实施方案中,环氧树脂组合物包含不同大小的导热颗粒和/或包含不同的材料。
在一些实施方案中,环氧树脂组合物包含一种或多种分散剂。一般来讲,分散剂可起到稳定组合物中的无机填料颗粒的作用,在没有分散剂的情况下,颗粒可能会聚集。合适的分散剂可取决于导热颗粒的具体特性和表面化学性质。在一些实施方案中,根据本公开的合适的分散剂可以至少包含结合基团和相容链段。结合基团可以离子地键合到颗粒表面。氧化铝颗粒的结合基团的示例包括磷酸、膦酸、磺酸、羧酸和胺。可以选择相容链段,以与可固化基质混溶。对于环氧树脂,可用的相容剂可包括聚环氧烷(例如,聚氧化丙烯、聚氧化乙烯),以及聚己内酯,以及它们的组合。可商购获得的示例包括BYK W-9010(毕克化学助剂和仪器事业部(BYK Additives and Instruments))、BYK W-9012(毕克化学助剂和仪器事业部(BYK Additives and Instruments))、Disberbyk 180(毕克化学助剂和仪器事业部(BYK Additives and Instruments))和Solplus D510(路博润公司(LubrizolCorporation))。
在一些实施方案中,一种或多种分散剂可以基于环氧树脂组合物的总重量计至少0.1重量%、0.2重量%、0.3重量%或0.4重量%范围多至10重量%的量存在于环氧树脂组合物中。在一些实施方案中,一种或多种分散剂的量不大于9重量%、8重量%、7重量%、6重量%、5重量%、4重量%、3重量%或2重量%。
在一些实施方案中,分散剂可在掺入(例如,环氧树脂和/或环氧反应性)有机组分中之前与导热颗粒预混合。此类预混合可便于未固化环氧树脂组合物表现得像牛顿流体或能够实现剪切稀化效应行为。
环氧树脂组合物还可任选地包含各种添加剂,诸如抗氧化剂/稳定剂、着色剂、磨料颗粒料、热降解稳定剂、光稳定剂、导电颗粒、增粘剂、流平剂、基础剂、消光剂、非导电填料、粘结剂、发泡剂、杀真菌剂、杀菌剂、表面活性剂、增塑剂和本领域技术人员已知的其它添加剂。如果这些添加剂存在的话,则按有效用于其预期用途的量添加。此类添加剂的总量一般不大于总环氧树脂组合物的10重量%、9重量%、8重量%、7重量%、6重量%、4重量%、3重量%、2重量%、1.5重量%、1重量%或0.5重量%。
在一些实施方案中,可固化组合物可作为两部分组合物提供(例如,包装),其中第一部分包含环氧树脂,并且第二部分包含一种或多种环氧反应性低聚组分和其它环氧反应性组分,诸如固化剂。当低聚组分为增韧剂时,增韧剂通常与环氧树脂组合。
可固化组合物的其它组分(例如,导热颗粒、一种或多种分散剂、催化剂、添加剂诸如抗氧化剂等)可包含在第一部分和第二部分中的一者或两者中。在一些实施方案中,可固化组合物设置在包括第一室和第二室的分配器中。第一室包括第一(例如,环氧树脂)部分,并且第二室包括第二(例如,环氧反应性组分)部分。
包含相对高浓度的导热颗粒可能会影响机械特性。选择一种或多种环氧树脂和一种或多种低聚组分以使得固化环氧树脂组合物特别可用作电子器件的外罩(例如,外壳或壳体)。
在一些实施方案中,固化环氧树脂组合物具有如根据ASTM D638(如实施例中更详细地描述)测量的至少1%、2%、3%、4%、5%、6%或7%的断裂应变。断裂应变通常小于不含导热颗粒的相同环氧树脂组合物(例如,20%)。在一些实施方案中,固化环氧树脂组合物具有不大于15%或10%的断裂应变。
在一些实施方案中,固化环氧树脂组合物具有如根据ASTM D638(如实施例中更详细地描述)测量的至少2GPa、3GPa、4GPa、5GPa、6GPa或7GPa的弹性模量。在一些实施方案中,固化环氧树脂组合物具有不大于50GPa、45GPa、40GPa、35GPa、30GPa、25GPa、20GPa或15GPa的弹性模量。
在一些实施方案中,固化环氧树脂组合物是射频透明的,使得固化环氧树脂对于在104赫兹至1010赫兹范围内的频率具有<0.03的损耗角正切。
在一些实施方案中,固化环氧树脂组合物具有如根据实施例中所述的测试方法测量的至少70、75、80或85的光泽度值。光泽度值通常不大于95或90。
可使用适用于环氧树脂组合物的任何已知的模制方法将可固化环氧树脂组合物形成为外罩。在一个实施方案中,可固化环氧树脂组合物可作为两部分组合物提供。一般来讲,两部分组合物的两种组分可在形成为外罩之前诸如通过将环氧树脂组合物分配到模具中而混合。
在一个实施方案中,在提供环氧树脂组合物之前,在模具中提供包括剥离衬垫的转移膜、设置在剥离衬垫上的转移聚合物层以及嵌入转移聚合物层中的多个微球体。该方法还包括在固化环氧树脂之后移除剥离衬垫和转移聚合物层。关于转移膜和制造成型成品的进一步细节描述于美国专利申请序列号62/552465中;该专利以引用方式并入本文。
微球体包含玻璃、玻璃陶瓷、陶瓷、聚合物金属以及它们的组合。玻璃是无定形材料,而陶瓷是指结晶或部分结晶的材料。玻璃陶瓷具有无定形相和一个或多个结晶相。这些材料在本领域中是已知的。
在一些实施方案中,微球体为玻璃珠。玻璃珠为大致球形形状的。玻璃珠通常通过碾磨普通碱石灰玻璃或硼硅酸盐玻璃(通常得自可再循环的来源,诸如得自窗用玻璃和/或玻璃器具)来制成。常见工业玻璃根据其组成可具有不同折射率。碱石灰硅酸盐和硼硅酸盐为常见类型的玻璃中的一些。硼硅酸盐玻璃通常含有氧化硼和二氧化硅以及其它元素氧化物,诸如碱金属氧化物、氧化铝等。含有氧化硼和二氧化硅等其它氧化物的工业上所用的一些玻璃包括E玻璃,以及以商品名“NEXTERION GLASS D”购自密苏里州堪萨斯的肖特工业公司(Schott Industries,Kansas City,Missouri)的玻璃,以及以商品名“PYREX”购自纽约州纽约的康宁公司(Corning Incorporated,New York,New York)的玻璃。
在一些实施方案中,微球体是基本上球形的,例如具有至少80%、85%或甚至90%的球形度,其中球形度被定义为球体的表面积(具有与给定颗粒相同的体积)除以颗粒的表面积,其报告为百分比。
微球体可以是透明的、半透明的或不透明的。在一个实施方案中,微球体具有至少1.4、1.6、1.8、2.0或甚至2.2的折射率。折射率可通过标准Becke线法测定。
在一些实施方案中,平均微球体直径的可用范围为至少5μm(微米)、10μm、20μm、25μm、40μm、50μm、75μm、100μm或甚至150μm;至多200μm、400μm、500μm、600μm、800μm、900μm或甚至1000μm。微球体根据应用可具有单峰或多峰(例如,双峰)粒度分布。
包含部分地嵌入固化环氧树脂中的微球体可增加铅笔硬度。在一个实施方案中,铅笔硬度为至少6K、7H、8H、9H或10H。铅笔硬度通常不大于10H。
通过以下实施例进一步示出了本公开的优点和实施方案,但这些实施例中所表述的具体材料及其量以及其它条件和细节不应当被解释为对本发明的不当限制。除非另外指明,否则在这些实施例中,所有百分比、比例和比率均按重量计。
实施例
除非另有说明,否则实施例及本说明书其余部分中的所有份数、百分比、比率等均以重量计。除非另外说明,否则所有其它试剂均获自或购自精细化学品供应商诸如密苏里州圣路易斯的西格玛-奥德里奇公司(Sigma-Aldrich Company,St.Louis,Missouri),或者可通过已知的方法合成。
实施例中使用的材料缩写在下表1中列出。
表1:材料
Figure BDA0004047322400000221
/>
Figure BDA0004047322400000231
测试方法
机械测试—弹性模量和断裂应变
所有实施例均通过在玻璃模具中热固化树脂来制备。用模具剥离剂FREKOTE 55NC(德国杜塞尔多夫的汉高公司(Henkel,Dusseldorft,Germany))来预处理玻璃模具,并且在浇注树脂之前干燥三次。玻璃板由具有适当厚度的橡胶垫圈材料隔开。1/8英寸(3.18毫米(mm))厚度用于拉伸和DMA样本。饰板在该厚度下固化有大约6英寸x 8英寸(15.24厘米(cm)x 20.32cm)的尺寸。将6个拉伸样本从该饰板切割成4.5英寸x 0.75英寸(11.43cm×1.91cm),并且使用槽刨机修剪成0.25英寸(6.35mm)口径部分,以制造符合ASTM D638 IV型几何形状的样本。在配备有伸长仪和负荷传感器的MTS Insight(明尼苏达州伊登普雷里(Eden Prairie,MN))负荷框架中以5mm/分钟的位移速率在拉伸下测试这些样品,以获得负荷位移并最终获得表4中报告的弹性模量和平均断裂应变。
通过测量样品在空气中的质量以及测量相同样品浸没于庚烷中的质量来确定固化树脂密度。然后基于阿基米徳原理来计算密度。
热导率
通过在12.7mm直径的小瓶中固化树脂来制备直径为大约12.7mm并且厚度为大约2mm的固化树脂盘。小瓶已用模具剥离剂(FREKOTE55NC)进行了处理。在固化之后,从小瓶中移除树脂,并且切成2mm厚的盘以用于激光闪光分析(LFA),如下所述。
直接热扩散率测量使用根据ASTM E1461(2013)的闪光分析方法,使用闪光热物理特性分析仪(获自马萨诸塞州波士顿的耐驰器械北美有限公司(Netzsch InstrumentsNorth America LLC,Boston,MA)的“HYPERFLASH LFA 467”)进行。每个样品组包括充当扩散率测量的方法对照的参考样品(以商品名“PYROCERAM 9606”获自耐驰器械北美公司(Netzsch Instruments North America))。样品在光入射侧和检测侧上均涂覆有3微米-5微米的喷涂石墨层(以商品名“DGF123DRY GRAPHITE FILM SPRAY”获自俄亥俄州克利夫兰的奇迹动力产品公司(Miracle Power Products Corporation,Cleveland,OH)),以标准化所有样品的表面扩散率和吸收率。在称为“发射”的单次测量中,将短持续时间脉冲的光(氙闪光灯,230V,15微秒持续时间)照射到样品的一侧上,并在样品的另一侧上记录热谱曲线(测量的温度的时间轨迹),如通过InSb IR检测器上的电压测量。根据热谱曲线与贯通平面的Cowan加脉冲校正模型的拟合来计算扩散率。贯通平面扩散率使用Cowan方法以及对有限的脉冲宽度进行附加校正来计算,而平面内扩散率借助软件(以商品名“Proteus”获自德国泽尔布的耐驰公司(Netzsch,Selb,Germany))使用各向同性模型来计算。在25℃下获得每个样品的五次发射。测量的密度(2.54cm(1英寸)盘的几何形状)、比热容(通过差示扫描量热法)和扩散率的乘积给出热导率。即,
k(W/m/K)=ρ(g/cm3)×cP(J/K/g)×α(mm2/s)。
动态力学分析(DMA)
根据如通过DMA测量的弹性模量的tan(δ)峰值来确定玻璃化转变温度。制备尺寸为1.7mm×12.7mm×30mm的样品,并将其加载到跨度为大约20mm的单个悬臂夹具中。在频率为10Hz、挠度为20μm的单个悬臂模式下测试样品,并且测量储能模量(E′)和损耗模量(E”)。计算tan(δ)值:
tan(δ)=E″/E′。
当温度以3℃/min从0℃上升至175℃时进行测量。报告的玻璃化转变温度Tg为tan(δ)最大值处的温度。
当固化环氧树脂组合物具有至少两个玻璃化转变温度时,固化Tg被定义为最高强度的最终Tg或tanδ转变,该转变可以是或可以不是最高温度转变。
光泽度测量
从饰板上切割3英寸x 3英寸x 1/8英寸(7.62cm×7.62cm×3.18mm)的样本,并且将其用于测量作为粒度的函数的光泽度。使用BYK Spectro Guide光泽计(产品编号6834,德国威塞尔的毕克化学助剂和仪器事业部(BYK Additives and Instruments,Wesel,Germany))对模制样品进行光泽度测量(表5)。光泽计给出60°的角度下的测量值。高光泽度材料被定义为具有70光泽度单位(GU)以上的值。
铅笔硬度
根据ASTM D3363-5 05(2011)e2来评估部分的铅笔硬度。将磨料砂纸(粒度No.400)用双面胶带粘附至平坦且光滑的工作台。使用来自伊利诺斯州橡树溪的纽威尔乐柏美办公用品公司的子公司三福专业美术用品公司(Prismacolor Professional ArtSupplies,a subsidiary of Newell Rubbermaid Office Products,Oak Brook,IL)的铅笔芯(Turquoise Premium铅笔芯(10H至6B硬度))。将机械芯保持器(TOTIENS 21099,来自奥地利Hirm的卡塔(Cretacolor,Hirm,Austria))中的铅笔芯保持与砂纸成90°的角度并研磨直到得到平坦、光滑、圆形的横截面,在芯的边缘上没有碎片或裂纹。铅笔的尖端上的力固定为7.5牛顿(N),或在一些情况下更小。对每个测试使用刚刚准备的铅笔芯,将芯使用Elcometer 3086机动化铅笔硬度测试仪(密歇根州罗切斯特希尔斯的易高公司(ElcometerIncorporated,Rochester 15Hills,MI))以45°角并在期望负荷下抵靠部分牢牢地按压,并且在“向前”方向上拉过横穿测试面板至少1/4英寸(6.4mm)的距离。对每个级别的芯硬度制造三个铅笔痕迹。在检查之前,使用以异丙醇润湿的湿纸巾将碎裂芯从测试区域移除。用眼睛检查测试面板的缺陷,并且在光学显微镜(50X-1000X放大率)下检查每个铅笔痕迹的前1/8英寸至1/4英寸(3.2mm至6.4mm)。从较硬芯至较软芯,沿硬度尺度向下重复该过程,直到发现铅笔不划伤膜,或者使膜破裂,或者使任何微球体分离或部分地分离。要求每种芯硬度下三个轨迹中的至少两个满足这些准则以视为合格。合格的最硬水平的芯报告为测试面板的铅笔硬度。在5牛顿的力下3H或更硬的值为期望的。
RF透明度的介电常数和损耗角正切测量
术语“介电常数”、“介电损耗”、“损耗角正切”以其通常理解的定义使用。介电常数(在任何频率下)是每个电场振荡循环所存储的能量的量,并且被确定为针对麦克斯韦公式定义的复电容率的实部。介电损耗(在任何频率下)是每个电场振荡循环所耗散的能量的量,并且被确定为针对麦克斯韦公式定义的复电容率的虚部。损耗角正切(在任何频率下)是介电损耗与介电常数的比率。
多至1MHz的介电特性测量用来自德国蒙塔鲍尔的Novocontrol技术公司(Novocontrol Technologies Gmbh(Montabaur,Germany))的Alpha-A高温宽带介电谱仪模块化测量系统执行。所有测试均根据ASTM D150测试标准执行。膜中的一些涂有含铜涂料,并且一些膜被直接层压在没有任何含铜涂料的黄铜电极上,这取决于样品能够与电极表面适应的程度。一旦将每个样品置于两个光学抛光的黄铜盘(直径40.0mm并且厚度2.00mm)之间,就实施Novocontrol ZGS Alpha活性样品单元。
分别在2.5GHz、5.6GHz和9.5GHz下用三个单独的分离后介电谐振器执行1MHz以上的介电特性测量。1MHz以上的所有测量均根据标准IEC 61189-2-721来执行。
折射率测量(贝克线法)
将一组经认证的折射率测试液体(购自新泽西州雪松林的Cargille公司(Cargille,Cedar Grove,New Jersey))用于使用下文所述的工序来确定透明微球体的折射率。
将透明微球体的样品置于显微镜载片上,并且使测试液体的液滴接触该样品并用盖玻片来覆盖。对显微镜进行调整以聚焦于小珠上。在焦点处,显微镜的载物台使用焦点来降低,并且随着该焦点改变观察到微球体的轮廓处的亮线。如果亮线随着载物台降低而向外行进至液体中,则该液体具有比小珠更高的折射率。另一方面,如果亮线行进至小珠中,则微球体具有更高的折射率。通过测试具有不同折射率的一系列液体,识别了微球体的近似折射率。如果两种液体处于微球体的折射率的任一侧上,则得出真实数值的插值。
实施例和比较例
除非另外指明,否则表1中的材料按原样使用。组分的重量百分比在表2(无机内容物和分散剂)和表3(可固化有机树脂)中描述。导热颗粒的体积%(vol.%)基于输入材料的质量来计算,并且假设氧化铝颗粒密度为3.9g/立方厘米(g/cc),三水合铝(ATH)颗粒密度为2.2g/cc,并且树脂密度为1.15g/cc。
表2:无机浓度和分散剂浓度
Figure BDA0004047322400000281
表3:实施例的树脂含量
Figure BDA0004047322400000282
Figure BDA0004047322400000291
比较例(CE)1和2是代表性的未填充的环氧树脂。在不掺入低聚二醇的情况下,比较例1极其易碎并且不能加工成拉伸样品。在代表性比较例1中,将90克(g)的脂环族酯(L190)、60g的C2054和3.75g的CXC-1612在300g容量高速混合杯(南卡罗来纳州兰德拉姆的弗莱克泰克公司(FlackTek Inc.,Landrum,SC))中组合。将组分在大气条件下在DAC600VAC混合器(弗莱克泰克公司(FlackTek Inc.))中以2200转/分钟(rpm)高速混合30秒,之后进行真空脱气,同时以800rpm高速混合3分钟。真空下达到的最终压力为大约10毫巴(mbar)。使用与表3一致的树脂量以相同的方式将比较例2混合并脱气。
比较例1、实施例1和用CXC-1612固化的任何实施例的固化循环为在80℃下30分钟,之后在120℃下60分钟。比较例2和用NBDA固化的任何材料的固化循环为在80℃下1小时。在固化之后,将树脂饰板冷却至室温并脱模,然后切割成如在“机械测试—弹性模量和断裂应变部分”中所述的适当几何形状。
实施例3至实施例9全部以类似方式处理,其中组分的重量比例与表2和3一致。在代表性实施例3中,将240g的AX1M氧化铝颗粒与1.2g的B9012在FlackTek高速混合杯中组合,并且在DAC600.2 VAC混合器(弗莱克泰克公司(FlackTek Inc.))中以1500rpm高速混合30秒。然后将1.5g的CXC-1612、33.2g的L190和24.1g的C2054添加到高速混合杯中,之后在大气条件下以2200rpm高速混合30秒,并且真空脱气,同时以800rpm高速混合3分钟。真空下达到的压力为大约10mbar。在混合之后,树脂是可流动的但不是完全解聚的,因此树脂贯穿具有陶瓷辊的三辊研磨机(艾卡特技术公司(Exakt Technologies Inc.),型号50I)以解聚。在逐渐降低至10磅/平方英寸(psi)或0.069兆帕(MPa)的真空压力下以800rpm施加最终混合和脱气步骤。将混合并脱气的树脂倾注到经脱模处理的玻璃模具中并且在80℃下固化30分钟,之后在120℃下固化1小时。在固化之后,将树脂饰板冷却至室温并脱模,然后切割成如下所述的适当几何形状。实施例3至实施例9使用相同的工序和固化循环。
比较例3和实施例2由比较例2所述的填充有导热填料的环氧树脂组成。将氧化铝颗粒单独混合到环氧树脂和固化剂(NBDA)组分中。环氧树脂和固化剂两者含有氧化铝颗粒,其重量百分比等于表3中的总重量百分比。在代表性实施例2中,将209g的AX1M氧化铝颗粒与1.04g的B9012在300g容量高速混合杯中以1500rpm高速混合30秒。向该杯中添加28g的bis-A环氧树脂和24g的扩链环氧树脂E4850,并且使该混合物高速混合并如上贯穿三辊研磨机。在单独的200g容量高速混合杯中,将31g的AX1M氧化铝颗粒与0.15g的B9012组合,并且以2200rpm高速混合30秒。然后添加7.9克的NBDA(固化剂)并且以2200rpm高速混合30秒。将氧化铝填充的环氧树脂和氧化铝填充的固化剂组合到单个300g高速混合杯中,并且以800rpm真空脱气3分钟,直到达到10mbar的真空压力。将混合的树脂倾注到用脱模剂处理过的玻璃模具中,并且在80℃下固化1小时。使用表2和3中所述的量,经由与实施例3至实施例9相同的工序来制备比较例3。实施例10是来自实施例4的环氧树脂组合物,该环氧树脂组合物具有用于改善硬度和耐刮擦性的具有硼硅酸盐玻璃珠的表面。
通过使硼硅酸盐玻璃粉末以3克/分钟的速率穿过氢气/氧气火焰,将硼硅酸盐玻璃粉末通过火焰处理器两次以形成微球体,将微球体收集于不锈钢容器中,金属杂质在该不锈钢容器中使用磁体除去。将所得玻璃微球体以下述方式用600ppm的A1100进行处理。将硅烷溶解于水中,然后添加至微球体并混合,空气干燥过夜,之后在110℃下干燥20分钟。然后筛选干燥的经硅烷处理的微球体以除去任何团聚体,并且提供大小为75微米或更小且自由流动的微球体。将所得透明的经硅烷处理的微球体使用机械筛级联涂覆到转移载体膜上以形成珠载体,该转移载体膜包括涂覆在97微米(0.0038英寸)聚酯剥离衬垫(其已预热至约140℃(284℉))上的25微米(0.0010英寸)低密度聚乙烯,该珠载体具有透明微球体的均匀层,该透明微球体嵌入低密度聚乙烯层中至对应于其直径的约30%-40%的深度,如通过放大成像系统所确定。
将具有嵌入的硼硅酸盐珠的转移膜的200mm×200mm(7.9英寸x7.9英寸)部分粘附到玻璃模具(具有200mm×250mm×3mm腔)的一个内面,其中具有珠的一侧面向内,使得当模具填充有环氧树脂组合物时,硼硅酸盐珠接触环氧树脂组合物并且部分地嵌入环氧树脂组合物中。用实施例4所述的树脂来填充模具。将环氧树脂、具有珠的表面和模具在90℃的烘箱中加热1小时以便使环氧树脂胶凝。拆卸模具,并且将聚酯剥离衬垫连同低密度聚乙烯一起从硅酸盐珠除去,从而在环氧树脂上留下具有珠的硼硅酸盐表面。将其在120℃下固化1小时。如上所述在拉伸下机械测试实施例10,并且对于铅笔硬度,结果分别包括在表4和表6中。
表4:实施例的热特性和机械特性
Figure BDA0004047322400000311
Figure BDA0004047322400000321
NM—未测量*Tg,通过tan(δ)峰值得到,单位℃
表5:光泽度特性
Figure BDA0004047322400000322
表6:铅笔硬度
实施例编号 铅笔硬度
比较例2 <6B
实施例3 3B
实施例5 B
实施例10 10H
表7:射频介电特性(介电常数和Tanδ)
Figure BDA0004047322400000323
Figure BDA0004047322400000324
实施例11
在FlackTek高速混合杯中,将150.3g的AX1M氧化铝颗粒与48.77g的Syna环氧树脂21、19.11g的C2054和4.81g的C3031组合,并且在DAC 600.2VAC混合器(弗莱克泰克公司(FlackTek Inc.))中以2000rpm高速混合30秒。然后添加0.76g的BYK 9010,并且以2000rpm使制剂高速混合30秒。然后添加剩余的150.33g的AX1M氧化铝颗粒以及1.84g的CXC 1612,并且以2000rpm高速混合30秒。在混合之后,树脂是可流动的但不是完全解聚的,因此树脂贯穿具有陶瓷辊的三辊研磨机(艾卡特技术公司(Exakt Technologies Inc.),型号50I)以解聚。施加使用DAC 600.2的最终混合和脱气步骤,这使真空压力在200秒内降至10磅/平方英寸(psi)。将混合并脱气的树脂倾注到经脱模处理的模具中并固化。在固化之后,将树脂饰板冷却至室温并脱模,然后切割成如下所述的适当几何形状。
实施例12
在FlackTek高速混合杯中,将50.3g的AX1M氧化铝颗粒与16.735g的Syna环氧树脂21、7.178g的C2054组合,并且在DAC 600.2VAC混合器(弗莱克泰克公司(FlackTek Inc.))中以2000rpm高速混合30秒。然后添加0.498g的BYK 9010,并且以2000rpm使制剂高速混合30秒。然后添加剩余的50.2g的AX1M氧化铝颗粒以及0.6009g的CXC 1612,并且以2000rpm高速混合30秒。在混合之后,树脂是可流动的但不是完全解聚的,因此树脂贯穿具有陶瓷辊的三辊研磨机(艾卡特技术公司(Exakt Technologies Inc.),型号50I)以解聚。施加使用DAC600.2的最终混合和脱气步骤,这使真空压力在200秒内降至10磅/平方英寸(psi)。将混合并脱气的树脂倾注到经脱模处理的模具中并固化。在固化之后,将树脂饰板冷却至室温并脱模,然后切割成如下所述的适当几何形状。
实施例13
在FlackTek高速混合杯中,将50.2g的AX1M氧化铝颗粒与17.925g的Syna环氧树脂21、5.958g的C2054组合,并且在DAC 600.2VAC混合器(弗莱克泰克公司(FlackTek Inc.))中以2000rpm高速混合30秒。然后添加0.4968g的BYK 9010,并且以2000rpm使制剂高速混合30秒。然后添加剩余的49.95g的AX1M氧化铝颗粒以及0.5974g的CXC 1612,并且以2000rpm高速混合30秒。在混合之后,树脂是可流动的但不是完全解聚的,因此树脂贯穿具有陶瓷辊的三辊研磨机(艾卡特技术公司(Exakt Technologies Inc.),型号50I)以解聚。施加使用DAC 600.2的最终混合和脱气步骤,这使真空压力在200秒内降至10磅/平方英寸(psi)。将混合并脱气的树脂倾注到经脱模处理的模具中并固化。在固化之后,将树脂饰板冷却至室温并脱模,然后切割成如下所述的适当几何形状。
实施例14
在FlackTek高速混合杯中,将49.98g的AX1M氧化铝颗粒与18.082g的Syna环氧树脂21、6.041g的C2054组合,并且在DAC 600.2VAC混合器(弗莱克泰克公司(FlackTekInc.))中以2000rpm高速混合30秒。然后添加0.2516g的BYK 9012,并且以2000rpm使制剂高速混合30秒。然后添加剩余的50.2g的AX1M氧化铝颗粒以及0.6033g的CXC 1612,并且以2000rpm高速混合30秒。在混合之后,树脂是可流动的但不是完全解聚的,因此树脂贯穿具有陶瓷辊的三辊研磨机(艾卡特技术公司(Exakt Technologies Inc.),型号50I)以解聚。施加使用DAC 600.2的最终混合和脱气步骤,这使真空压力在200秒内降至10磅/平方英寸(psi)。将混合并脱气的树脂倾注到经脱模处理的模具中并固化。在固化之后,将树脂饰板冷却至室温并脱模,然后切割成如下所述的适当几何形状。
实施例15
在FlackTek高速混合杯中,将62.26g的AX1M氧化铝颗粒与18.5228g的Syna环氧树脂-21、11.365g的C2054组合,并且在DAC600.2VAC混合器(弗莱克泰克公司(FlackTekInc.))中以2000rpm高速混合30秒。然后添加0.6224g的BYK 9012,并且以2000rpm使制剂高速混合30秒。然后添加剩余的62.25g的AX1M氧化铝颗粒以及0.7473g的CXC 1612,并且以2000rpm高速混合30秒。在混合之后,树脂是可流动的但不是完全解聚的,因此树脂贯穿具有陶瓷辊的三辊研磨机(艾卡特技术公司(Exakt Technologies Inc.),型号50I)以解聚。施加使用DAC 600.2的最终混合和脱气步骤,这使真空压力在200秒内降至10磅/平方英寸(psi)。将混合并脱气的树脂倾注到经脱模处理的模具中并固化。在固化之后,将树脂饰板冷却至室温并脱模,然后切割成如下所述的适当几何形状。
实施例16
在FlackTek高速混合杯中,将50.05g的AX1M氧化铝颗粒与16.039g的Syna环氧树脂-21、7.89g的C2054组合,并且在DAC 600.2VAC混合器(弗莱克泰克公司(FlackTekInc.))中以2000rpm高速混合30秒。然后添加0.4991g的BYK 9012,并且以2000rpm使制剂高速混合30秒。然后添加剩余的50.15g的AX1M氧化铝颗粒以及0.5952g的CXC 1612,并且以2000rpm高速混合30秒。在混合之后,树脂是可流动的但不是完全解聚的,因此树脂贯穿具有陶瓷辊的三辊研磨机(艾卡特技术公司(Exakt Technologies Inc.),型号50I)以解聚。施加使用DAC 600.2的最终混合和脱气步骤,这使真空压力在200秒内降至10磅/平方英寸(psi)。将混合并脱气的树脂倾注到经脱模处理的模具中并固化。在固化之后,将树脂饰板冷却至室温并脱模,然后切割成如下所述的适当几何形状。
Figure BDA0004047322400000351
/>

Claims (38)

1.一种电子器件,所述电子器件包括外罩,其中所述外罩包含固化环氧树脂组合物,所述固化环氧树脂组合物包含至少50体积%的非导电的导热无机颗粒。
2.根据权利要求1所述的电子器件,其中所述外罩是外壳或壳体。
3.根据权利要求1-2所述的电子器件,其中所述电子器件选自电话、平板电脑、膝上型电脑或鼠标。
4.根据权利要求1-3所述的电子器件,其中所述电子器件包括能够通过所述外罩充电的电池。
5.根据权利要求1-3所述的电子器件,其中所述固化环氧树脂包含部分地嵌入所述固化环氧树脂中的多个微球体。
6.根据权利要求5所述的电子器件,其中包含部分地嵌入所述固化环氧树脂中的所述多个微球体的所述固化环氧树脂具有大于6H的铅笔硬度。
7.根据权利要求1-6所述的电子器件,其中所述固化环氧树脂具有至少1W/m*K的热导率。
8.根据权利要求1-7所述的电子器件,其中所述非导电的导热颗粒包含电子带隙>0eV的材料。
9.根据权利要求1-8所述的电子器件,其中所述固化环氧树脂是射频透明的,使得所述固化环氧树脂具有在104Hz至1010Hz范围内的<0.03的介电损耗角正切。
10.根据权利要求1-9所述的电子器件,其中所述非导电的导热颗粒包含堆积热导率>10W/m*K的材料。
11.根据权利要求1-10所述的电子器件,其中所述非导电的导热颗粒选自氧化铝、氮化硼、碳化硅、三水合氧化铝以及它们的混合物。
12.根据权利要求1-11所述的电子器件,其中所述非导电的导热颗粒具有小于20微米、10微米、5微米或1微米的中值粒度。
13.根据权利要求1-12所述的电子器件,其中所述固化环氧树脂组合物包含环状部分。
14.根据权利要求13所述的电子器件,其中所述固化环氧树脂组合物包含脂环族部分。
15.根据权利要求1-14所述的电子器件,其中所述固化环氧树脂组合物包含2重量%至20重量%的玻璃化转变温度小于0℃的低聚部分或聚合部分。
16.根据权利要求1-15所述的电子器件,其中所述低聚部分或聚合部分共价键合到所述固化环氧树脂。
17.根据权利要求1-16所述的电子器件,其中所述固化环氧树脂组合物具有在1%至10%范围内的断裂拉伸应变。
18.根据权利要求1-17所述的电子器件,其中所述固化环氧树脂组合物具有在5GPa至50GPa范围内的弹性模量。
19.根据权利要求1-18所述的电子器件,其中所述低聚部分或聚合部分衍生自重均分子量在100g/mol-3000g/mol范围内的环氧反应性低聚物。
20.根据权利要求1-19所述的电子器件,其中所述环氧反应性低聚物是羟基封端的。
21.根据权利要求15-20所述的电子器件,其中所述低聚部分或聚合部分包含聚己内酯。
22.根据权利要求1-21所述的电子器件,其中所述固化环氧树脂组合物还包含分散剂。
23.根据权利要求1-22所述的电子器件,其中所述固化环氧树脂组合物具有小于150℃、125℃或100℃的玻璃化转变温度。
24.根据权利要求1-23所述的电子器件,其中所述固化环氧树脂组合物具有单个玻璃化转变温度。
25.根据权利要求1-24所述的电子器件,其中所述固化环氧树脂组合物具有小于50℃的半高tanδ峰宽。
26.根据权利要求1-23所述的电子器件,其中所述固化环氧树脂组合物具有至少两个玻璃化转变温度。
27.根据权利要求1-24和26所述的电子器件,其中所述固化环氧树脂组合物具有50℃或更大的半高tanδ峰宽。
28.根据权利要求1-22所述的电子器件,其中所述固化环氧树脂组合物在固化之后具有>70的光泽度。
29.一种电子器件,所述电子器件包含根据权利要求1-28所述的固化环氧树脂组合物。
30.一种环氧树脂组合物,所述环氧树脂组合物包含:
有机组分,所述有机组分包含:
第一部分,所述第一部分包含环氧树脂;
第二部分,所述第二部分包含2重量%至20重量%的玻璃化转变温度小于0℃的环氧反应性低聚部分或聚合部分;和
至少50体积%的非导电的导热无机颗粒。
31.一种环氧树脂组合物,所述环氧树脂组合物包含:
有机组分,所述有机组分包含:
第一部分,所述第一部分包含环氧树脂;
第二部分,所述第二部分包含玻璃化转变温度小于0℃的环氧反应性低聚部分或聚合部分;和
至少50体积%的非导电的导热无机颗粒;
其中环氧树脂材料在固化之后具有小于100℃的玻璃化转变温度。
32.根据权利要求30-31所述的环氧树脂组合物,其中所述环氧树脂组合物由权利要求5-28中的任一项或组合来进一步表征。
33.一种环氧树脂组合物,所述环氧树脂组合物包含:
有机组分,所述有机组分包含:
第一部分,所述第一部分包含环氧树脂;
第二部分,所述第二部分包含环氧反应性低聚部分或聚合部分;和
至少50体积%的非导电的导热无机颗粒;
其中环氧树脂材料具有至少两个玻璃化转变温度或者具有55℃或更大的半高tanδ峰宽。
34.根据权利要求33所述的环氧树脂组合物,其中所述环氧树脂组合物由权利要求5-23中的任一项或组合来进一步表征。
35.一种制造用于电子器件的外罩的方法,所述方法包括提供根据权利要求30-34所述的环氧树脂组合物以及将所述组合物形成为外壳或壳体。
36.根据权利要求35所述的方法,其中所述形成步骤包括在模具中提供所述环氧树脂组合物以及固化所述环氧树脂组合物。
37.根据权利要求36所述的方法,其中在提供所述环氧树脂组合物之前,在所述模具中提供包括转移聚合物层和嵌入所述转移聚合物层中的多个微球体的转移膜。
38.根据权利要求37所述的方法,所述方法还包括在固化所述环氧树脂之后除去所述转移聚合物层。
CN202310037555.2A 2017-12-27 2018-12-21 适用于电子器件外罩的固化环氧树脂组合物、制品和方法 Pending CN116162325A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762610639P 2017-12-27 2017-12-27
US62/610,639 2017-12-27
CN201880083735.1A CN111557128A (zh) 2017-12-27 2018-12-21 适用于电子器件外罩的固化环氧树脂组合物、制品和方法
PCT/US2018/067091 WO2019133482A1 (en) 2017-12-27 2018-12-21 Cured epoxy resin composition suitable for electronic device enclosure, articles, and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201880083735.1A Division CN111557128A (zh) 2017-12-27 2018-12-21 适用于电子器件外罩的固化环氧树脂组合物、制品和方法

Publications (1)

Publication Number Publication Date
CN116162325A true CN116162325A (zh) 2023-05-26

Family

ID=67068107

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310037555.2A Pending CN116162325A (zh) 2017-12-27 2018-12-21 适用于电子器件外罩的固化环氧树脂组合物、制品和方法
CN201880083735.1A Pending CN111557128A (zh) 2017-12-27 2018-12-21 适用于电子器件外罩的固化环氧树脂组合物、制品和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201880083735.1A Pending CN111557128A (zh) 2017-12-27 2018-12-21 适用于电子器件外罩的固化环氧树脂组合物、制品和方法

Country Status (5)

Country Link
US (2) US11773254B2 (zh)
EP (1) EP3732940A4 (zh)
JP (2) JP2021509539A (zh)
CN (2) CN116162325A (zh)
WO (1) WO2019133482A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11789548B2 (en) 2020-07-17 2023-10-17 Hewlett-Packard Development Company, L.P. Input mouse temperature control system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658750A (en) 1969-02-13 1972-04-25 Hitachi Ltd Thermosetting resin composition and electrical appliances using the same
TW197458B (zh) * 1991-02-14 1993-01-01 Ciba Geigy Ag
US6194024B1 (en) 1994-11-16 2001-02-27 International Business Machines Corporation Via fill compositions for direct attach of devices and methods for applying same
US6265471B1 (en) 1997-03-03 2001-07-24 Diemat, Inc. High thermally conductive polymeric adhesive
DE19751109A1 (de) * 1997-11-18 1999-05-20 Siemens Ag Kunststoffverbundkörper sowie Verfahren und Werkstoff zum Herstellen eines Kunststoffverbundkörpers
CZ20031466A3 (cs) * 2000-11-29 2003-08-13 Vantico Ag Systém plněné epoxidové pryskyřice mající vysoké hodnoty mechanické pevnosti
US7192997B2 (en) 2001-02-07 2007-03-20 International Business Machines Corporation Encapsulant composition and electronic package utilizing same
US7072145B2 (en) 2002-09-26 2006-07-04 Matsushita Electric Industrial Co., Ltd. Flying head slider with air bearing step face arrangement
US7550097B2 (en) 2003-09-03 2009-06-23 Momentive Performance Materials, Inc. Thermal conductive material utilizing electrically conductive nanoparticles
TW200833752A (en) 2006-10-23 2008-08-16 Lord Corp Highly filled polymer materials
US7906373B1 (en) 2008-03-26 2011-03-15 Pawel Czubarow Thermally enhanced electrically insulative adhesive paste
JP5314911B2 (ja) * 2008-03-31 2013-10-16 新日鉄住金化学株式会社 エポキシ樹脂組成物および成形物
JP5227915B2 (ja) * 2009-08-05 2013-07-03 日東電工株式会社 電子部品装置集合体およびその製造方法
JP5626856B2 (ja) * 2010-06-11 2014-11-19 日本化薬株式会社 硬化性樹脂組成物およびその硬化物
EP2660263B1 (en) 2010-12-27 2018-04-11 Dow Corning Toray Co., Ltd. Curable epoxy resin composition
JP2013127034A (ja) * 2011-12-19 2013-06-27 Nitto Denko Corp シート状電子部品封止用エポキシ樹脂組成物およびそれを用いた電子部品装置
KR101976890B1 (ko) 2011-12-20 2019-05-09 다우 글로벌 테크놀로지스 엘엘씨 경화된 에폭시 수지 복합체의 제조 방법
JP2014148579A (ja) 2013-01-31 2014-08-21 Nitto Denko Corp エポキシ組成物、及び、エポキシ樹脂成形体
TW201434949A (zh) 2013-01-31 2014-09-16 Nitto Denko Corp 環氧組合物及環氧樹脂成形體
JP6116354B2 (ja) * 2013-05-15 2017-04-19 日東電工株式会社 エポキシ組成物、及び、エポキシ樹脂成形体
CN104201251A (zh) * 2014-09-19 2014-12-10 厦门惟华光能有限公司 一种太阳能电池的封装方法
WO2019046407A1 (en) 2017-08-31 2019-03-07 3M Innovative Properties Company SHAPED TRANSFER ARTICLE COMPRISING PARTIALLY INCORPORATED MICROSPHERES, FINISHED ARTICLES SHAPED THEREFROM, AND METHODS OF THEIR MANUFACTURE

Also Published As

Publication number Publication date
JP2024012330A (ja) 2024-01-30
JP2021509539A (ja) 2021-03-25
US20200283619A1 (en) 2020-09-10
CN111557128A (zh) 2020-08-18
EP3732940A4 (en) 2021-10-20
EP3732940A1 (en) 2020-11-04
US20230383114A1 (en) 2023-11-30
US11773254B2 (en) 2023-10-03
WO2019133482A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
TW593617B (en) Curable compositions for display devices
CN110214394A (zh) 氮丙啶基官能聚醚导热间隙填料
JP2024012330A (ja) 電子デバイスエンクロージャ、物品、及び方法に好適な硬化エポキシ樹脂組成物
JP6854505B2 (ja) 樹脂組成物、それを用いた熱硬化性フィルム
JP2010287884A (ja) 半導体チップの製造方法
KR20120042643A (ko) 반도체 웨이퍼 보호막 형성용 시트
JPWO2018221682A1 (ja) 圧縮成型用液状樹脂組成物及び電子部品装置
WO2021124075A1 (en) Polymeric material including a uretdione-containing material and inorganic filler, two-part compositions, products, and methods
JP7166245B2 (ja) 樹脂組成物、電子部品用接着剤、半導体装置、および電子部品
CN107709400B (zh) 固化性组合物
WO2020116596A1 (ja) フィルム形成用硬化性オルガノポリシロキサン組成物およびオルガノポリシロキサン硬化物フィルムの製造方法
JPWO2020017480A1 (ja) オルガノポリシロキサン硬化物フィルム、その用途および製造方法
EP4180483A1 (en) Resin composition, film, and cured product
JP2012207205A (ja) 熱伝導性絶縁樹脂組成物および熱伝導性接着シ−ト
TW202317706A (zh) 樹脂組成物及其硬化物以及使用其的積層體、靜電吸盤及電漿處理裝置
JP5621343B2 (ja) 湿気硬化型樹脂組成物
JPH1180695A (ja) 樹脂組成物およびそれを用いた導電性接着剤
CN112724596A (zh) 固化性组合物以及固化物
JP7193031B1 (ja) 電子部品搭載基板、及び電子部品保護シート
KR20190133610A (ko) 활성 에너지선 경화성 조성물
CN113195614B (zh) 防静电硅橡胶组合物
KR102584191B1 (ko) 방현성 플렉서블 하드코트용 경화성 조성물
KR20240023459A (ko) 윈도우 및 그 윈도우를 포함하는 표시 장치
KR20220113254A (ko) 경화성 조성물
KR20230155458A (ko) 경화성 퍼플루오로폴리에테르 점착제 조성물, 그의 경화물을 이용한 점착제 그리고 점착테이프

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination