WO2011155322A1 - 封止材、太陽電池モジュール及び発光ダイオード - Google Patents

封止材、太陽電池モジュール及び発光ダイオード Download PDF

Info

Publication number
WO2011155322A1
WO2011155322A1 PCT/JP2011/061841 JP2011061841W WO2011155322A1 WO 2011155322 A1 WO2011155322 A1 WO 2011155322A1 JP 2011061841 W JP2011061841 W JP 2011061841W WO 2011155322 A1 WO2011155322 A1 WO 2011155322A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sealing material
general formula
segment
resin
Prior art date
Application number
PCT/JP2011/061841
Other languages
English (en)
French (fr)
Inventor
孝之 兼松
直人 矢木
谷本 尚志
朋子 宍倉
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020127015963A priority Critical patent/KR101342034B1/ko
Priority to DE112011101961T priority patent/DE112011101961T5/de
Priority to CN201180028632.3A priority patent/CN102933678B/zh
Priority to US13/577,690 priority patent/US20130068304A1/en
Priority to JP2011545579A priority patent/JP4905613B2/ja
Publication of WO2011155322A1 publication Critical patent/WO2011155322A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1018Macromolecular compounds having one or more carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a sealing material for various devices, in particular, a sealing material for a light emitting diode and a sealing material for a solar cell that are used in applications that are always exposed to light.
  • a transparent resin that transmits light has been used as a sealing material for the purpose of protecting various devices.
  • light emitting diodes LEDs
  • LEDs light emitting diodes
  • GaN gallium nitride
  • the transparent resin is generally an epoxy resin, specifically, an aromatic epoxy resin using an alicyclic acid anhydride as a curing agent.
  • a transparent resin that transmits light is also used as a sealing material for solar cells that directly converts sunlight into electrical energy.
  • a solar cell is an EVA (ethylene-vinyl acetate copolymer, usually a mixture of organic peroxide) film sealing material between a light-receiving side transparent protective member and a back-side protective member.
  • EVA ethylene-vinyl acetate copolymer, usually a mixture of organic peroxide
  • the structure which sealed the cell for solar cells such as a silicon power generation element, and is the sheet-like sealing material arranged on the light-receiving side transparent protective member, the surface side, the cell for solar cells, and the sheet shape arranged on the back side
  • the sealing material and the back surface side protective member are laminated in this order, heated and pressurized, and EVA is crosslinked and cured to be bonded and integrated. Since solar cell modules are also used outdoors, the members used are required to have high durability and weather resistance.
  • a UV absorber is usually blended uniformly throughout the encapsulant, Since the sealing material is a thick film, a considerable amount of addition is required to obtain the effect of the ultraviolet absorber, which has been a cause of an increase in cost.
  • Examples of using a siloxane-based resin as these sealing material resins are known.
  • a sealing material for a light emitting diode an example using a silsesquioxane derivative is known (see, for example, Patent Document 1).
  • a resin composition obtained by mixing at least one of a main agent composed of a siloxane polymer modified with a methyl group and a phenyl group and an organometallic compound as a curing agent is used as a plastic substrate and a metal electrode.
  • An example of applying to a surface of an adherend made of and heat curing is known (see, for example, Patent Document 2).
  • the problem to be solved by the present invention is to provide a sealing material for various devices having high weather resistance, which is less prone to yellowing and cracking even under long-term exposure to ultraviolet rays such as outdoors. Moreover, it is providing the solar cell module and light emitting diode which use this sealing material.
  • the present inventors have made a composite resin having a silanol group and / or a hydrolyzable silyl group, a polysiloxane segment having a polymerizable double bond, and a polymer segment other than the polysiloxane,
  • the present inventors have found that a curable resin composition to which polyisocyanate is added in a specific range has long-term weather resistance outdoors, specifically crack resistance and light resistance, and has solved the above problems.
  • the present invention relates to a polysiloxane segment (a1) having a structural unit represented by the general formula (1) and / or the general formula (2), a silanol group and / or a hydrolyzable silyl group, and an alcoholic hydroxyl group.
  • a composite polymer (A) bonded by a bond represented by the general formula (3) and a polyisocyanate (B), and the polysiloxane segment (a1) Is 10 to 50% by weight based on the total solid content of the curable resin composition, and the polyisocyanate (B) content is 5 to 5% based on the total solid content of the curable resin composition.
  • An encapsulant that is 50% by weight is provided.
  • R 1 , R 2 and R 3 each independently represent —R 4 —CH ⁇ CH 2 , —R 4 —C (CH 3 ) ⁇ CH 2 , — A group having one polymerizable double bond selected from the group consisting of R 4 —O—CO—C (CH 3 ) ⁇ CH 2 and —R 4 —O—CO—CH ⁇ CH 2 (where R 4 is A single bond or an alkylene group having 1 to 6 carbon atoms), an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group, or 7 to 7 carbon atoms. 12 represents an aralkyl group, and at least one of R 1 , R 2 and R 3 is a group having the polymerizable double bond)
  • the present invention also provides a solar cell module using the sealing material.
  • the present invention also provides a light emitting diode using the sealing material.
  • the sealing material of the present invention has high weather resistance that hardly causes yellowing and cracks even under long-term exposure to ultraviolet rays such as outdoors. Moreover, the solar cell module using the sealing material of the present invention has long-term weather resistance such as high light resistance and crack resistance. Moreover, the light emitting diode using the sealing material of this invention has not only long-term weather resistance but heat resistance and heat-and-moisture resistance.
  • An example of a super straight type solar cell module Shows a container into which a sealing material is injected. : The light-emitting diode prepared in the example is illustrated.
  • the composite resin (A) used in the present invention is a polysiloxane having a structural unit represented by the general formula (1) and / or the general formula (2), and a silanol group and / or a hydrolyzable silyl group.
  • Segment (a1) hereinafter simply referred to as polysiloxane segment (a1)
  • vinyl polymer segment (a2) having alcoholic hydroxyl group
  • This is a composite resin (A) bonded by a bond represented by formula (3).
  • the bond represented by the general formula (3) is particularly excellent in acid resistance and alkali resistance of the obtained sealing material, and is preferable.
  • the bond represented by the general formula (3) is generated. Accordingly, in the general formula (3), carbon atoms constitute a part of the vinyl polymer segment (a2), and silicon atoms bonded only to oxygen atoms constitute a part of the polysiloxane segment (a1).
  • the form of the composite resin (A) is, for example, a composite resin having a graft structure in which the polysiloxane segment (a1) is chemically bonded as a side chain of the polymer segment (a2), or the polymer segment (a2). And a composite resin having a block structure in which the polysiloxane segment (a1) is chemically bonded.
  • the polysiloxane segment (a1) in the present invention is a segment having a structural unit represented by the general formula (1) and / or the general formula (2), a silanol group and / or a hydrolyzable silyl group.
  • the structural unit represented by the general formula (1) and / or the general formula (2) includes a group having a polymerizable double bond.
  • the structural unit represented by the general formula (1) and / or the general formula (2) has a group having a polymerizable double bond as an essential component.
  • R 1 , R 2 and R 3 is a group having the polymerizable double bond.
  • alkylene group having 1 to 6 carbon atoms in R 4 include methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, sec-butylene group, tert-butylene group, Pentylene group, isopentylene group, neopentylene group, tert-pentylene group, 1-methylbutylene group, 2-methylbutylene group, 1,2-dimethylpropylene group, 1-ethylpropylene group, hexylene group, isohesylene group, 1-methylpentylene Len group, 2-methylpentylene group, 3-methylpentylene group, 1,1-dimethylbutylene group, 1,2-dimethylbutylene group, 2,2-dimethylbutylene group, 1-ethylbutylene group, 1,1
  • alkyl group having 1 to 6 carbon atoms examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, and isopentyl.
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • Examples of the aryl group include a phenyl group, a naphthyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 4-vinylphenyl group, and a 3-isopropylphenyl group.
  • Examples of the aralkyl group having 7 to 12 carbon atoms include a benzyl group, a diphenylmethyl group, and a naphthylmethyl group.
  • R 1 , R 2 and R 3 are a group having a polymerizable double bond
  • the polysiloxane segment (a1) is represented by the general formula (1).
  • R 1 is a group having the polymerizable double bond
  • R 2 and R 3 is a group having the polymerizable double bond and the polysiloxane segment (a1) has both of the structural units represented by the general formula (1) and the general formula (2)
  • R It shows that at least one of 1 , R 2 and R 3 is a group having a polymerizable double bond.
  • the structural unit represented by the general formula (1) and / or the general formula (2) is a three-dimensional network-like polysiloxane structural unit in which two or three of the silicon bonds are involved in crosslinking. Since a dense network structure is not formed while a three-dimensional network structure is formed, gelation or the like does not occur during production, and the long-term storage stability of the resulting composite resin is improved.
  • the silanol group is a silicon-containing group having a hydroxyl group directly bonded to a silicon atom.
  • the silanol group is a silanol group formed by combining an oxygen atom having a bond with a hydrogen atom in the structural unit represented by the general formula (1) and / or the general formula (2). Preferably there is.
  • the hydrolyzable silyl group is a silicon-containing group having a hydrolyzable group directly bonded to a silicon atom, and specifically includes, for example, a group represented by the general formula (4). .
  • R 5 is a monovalent organic group such as an alkyl group, an aryl group or an aralkyl group
  • R 6 is a halogen atom, an alkoxy group, an acyloxy group, a phenoxy group, an aryloxy group, a mercapto group
  • a hydrolyzable group selected from the group consisting of an amino group, an amide group, an aminooxy group, an iminooxy group, and an alkenyloxy group
  • b is an integer of 0 to 2.
  • Examples of the alkyl group in R 5 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, a neopentyl group, and a tert group.
  • -Pentyl group 1-methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl Group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group 1-ethyl-2-methylpropyl group, 1-ethyl-1-methylpropyl group and the like.
  • Examples of the aryl group include a phenyl group, a naphthyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 4-vinylphenyl group, and a 3-isopropylphenyl group.
  • Examples of the aralkyl group include a benzyl group, a diphenylmethyl group, and a naphthylmethyl group.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a second butoxy group, and a third butoxy group.
  • examples of the acyloxy group include formyloxy, acetoxy, propanoyloxy, butanoyloxy, pivaloyloxy, pentanoyloxy, phenylacetoxy, acetoacetoxy, benzoyloxy, naphthoyloxy and the like.
  • Examples of the aryloxy group include phenyloxy and naphthyloxy.
  • Examples of the alkenyloxy group include a vinyloxy group, allyloxy group, 1-propenyloxy group, isopropenyloxy group, 2-butenyloxy group, 3-butenyloxy group, 2-petenyloxy group, 3-methyl-3-butenyloxy group, 2 -Hexenyloxy group and the like.
  • the hydrolyzable silyl group represented by the general formula (4) becomes a silanol group.
  • a methoxy group and an ethoxy group are preferable because of excellent hydrolyzability.
  • the hydrolyzable silyl group specifically includes an oxygen atom having a bond in the structural unit represented by the general formula (1) and / or the general formula (2) bonded to the hydrolyzable group. Or it is preferable that it is the hydrolyzable silyl group substituted.
  • the hydrolysis in the hydroxyl group in the silanol group or the hydrolyzable silyl group is performed in parallel with the curing reaction. Since the hydrolysis condensation reaction proceeds between the functional groups, the crosslink density of the polysiloxane structure of the obtained cured product is increased, and the solvent resistance and the like are excellent.
  • the polysiloxane segment (a1) containing the silanol group or the hydrolyzable silyl group and the vinyl polymer segment (a2) having an alcoholic hydroxyl group described later are represented by the general formula (3). Used when connecting via
  • the polysiloxane segment (a1) is not particularly limited except that it has a structural unit represented by the general formula (1) and / or the general formula (2), and a silanol group and / or a hydrolyzable silyl group. Other groups may be included.
  • Polysiloxanes R 1 in the general formula (1) is a structural unit is a group having a polymerizable double bond, R 1 in the general formula (1) coexist and the structural unit is an alkyl group such as methyl It may be segment (a1) A structural unit R 1 is an alkyl group such as a methyl group and structural units R 1 is a group having a polymerizable double bond in the formula (1), the formula in (1), the general formula It may be a polysiloxane segment (a1) in which R 2 and R 3 in (2) coexist with a structural unit that is an alkyl group such as a methyl group, A structural unit in which R 1 in the general formula (1) is a group having the polymerizable double bond, and a structural unit in which R 2 and R 3 in the general formula (2) are alkyl groups such as a methyl group.
  • the polysiloxane segment (a1) which coexists may be used, and there is no particular limitation. Specifically, examples of the polysiloxane segment (
  • the present invention is characterized in that the polysiloxane segment (a1) is contained in an amount of 10 to 50% by weight based on the total solid content of the curable resin composition, and achieves both weather resistance and excellent device protection performance. It becomes possible. It is preferably 15 to 40% by weight.
  • the vinyl polymer segment (a2) in the present invention is a vinyl polymer segment such as an acrylic polymer having an alcoholic hydroxyl group, a fluoroolefin polymer, a vinyl ester polymer, an aromatic vinyl polymer, and a polyolefin polymer.
  • an acrylic polymer segment obtained by copolymerizing a (meth) acrylic monomer having an alcohol hydroxyl group is preferable because the obtained cured resin is excellent in transparency and gloss.
  • the (meth) acrylic monomer having an alcohol hydroxyl group examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) ) Acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl fumarate, mono-2-hydroxyethyl mono Various ⁇ such as butyl fumarate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, “Placcel FM or Plaxel FA” [Caprolactone addition monomer manufactured by Daicel Chemical Industries, Ltd.] Hydroxyalkyl esters of ⁇ - ethylenically unsaturated carboxylic acid or an adduct thereof with ⁇ - caprolactone, and the like.
  • the content of the polyisocyanate (B) described later is in the range of 5 to 50% by weight with respect to the total solid content of the curable resin composition. It is preferable to calculate from the amount added and to determine appropriately. Further, as described later, in the present invention, it is more preferable to use an active energy ray-curable monomer having an alcoholic hydroxyl group in combination. Accordingly, the amount of alcoholic hydroxyl group in the vinyl polymer segment (a2) having an alcoholic hydroxyl group can be determined in consideration of the amount of the active energy ray-curable monomer having an alcoholic hydroxyl group to be used in combination. It is preferably contained so as to be substantially in the range of 30 to 300 in terms of the hydroxyl value of the vinyl polymer segment (a2).
  • copolymerizable (meth) acrylic monomers are not particularly limited, and known monomers can be used. Vinyl monomers can also be copolymerized. For example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) Alkyl (meth) acrylates having an alkyl group having 1 to 22 carbon atoms such as acrylate and lauryl (meth) acrylate; aralkyl (meth) acrylates such as benzyl (meth) acrylate and 2-phenylethyl (meth) acrylate Cycloalkyl (meth) acrylates such as cyclohexyl (meth) acrylate and isobornyl (meth) acryl
  • the polymerization method the solvent, or the polymerization initiator for copolymerizing the monomers
  • the vinyl polymer segment (a2) can be obtained by a known method.
  • 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-) can be obtained by various polymerization methods such as bulk radical polymerization, solution radical polymerization, and non-aqueous dispersion radical polymerization.
  • the vinyl polymer segment (a2) can be obtained by using a polymerization initiator such as tert-butyl peroxide, cumene hydroperoxide, diisopropyl peroxycarbonate or the like.
  • the number average molecular weight of the vinyl polymer segment (a2) is preferably in the range of 500 to 200,000 in terms of number average molecular weight (hereinafter abbreviated as Mn), and the composite resin (A) is produced. It is possible to prevent thickening and gelation during the process and to have excellent durability. Mn is more preferably in the range of 700 to 100,000, still more preferably in the range of 1,000 to 50,000.
  • the vinyl polymer segment (a2) is a vinyl polymer segment (A) in order to form a composite resin (A) bonded by the bond represented by the general formula (3) with the polysiloxane segment (a1). It has a silanol group and / or a hydrolyzable silyl group directly bonded to the carbon bond in a2). Since these silanol groups and / or hydrolyzable silyl groups become bonds represented by the general formula (3) in the production of the composite resin (A) described later, the composite resin (A ) In the vinyl polymer segment (a2).
  • the vinyl polymer segment (a2) having a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon bond is a (meth) acryl monomer having the alcohol hydroxyl group, the general-purpose monomer, and It is obtained by copolymerizing a vinyl monomer containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon bond.
  • vinyl monomers containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon bond include vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, and vinyltri (2-methoxyethoxy) silane.
  • the composite resin (A) used in the present invention is produced by the methods shown in the following (Method 1) to (Method 3).
  • Method 1 (Meth) acrylic monomer having alcohol hydroxyl group, general-purpose (meth) acrylic monomer, etc., and vinyl monomer containing silanol group and / or hydrolyzable silyl group directly bonded to carbon bond
  • vinyl polymer segment (a2) containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon bond.
  • a silane compound having both a silanol group and / or a hydrolyzable silyl group and a polymerizable double bond, and, if necessary, a general-purpose silane compound are mixed and subjected to a hydrolysis condensation reaction.
  • a silanol group and / or hydrolyzable silyl group and a silanol group or hydrolyzable silyl group of a silane compound having both a polymerizable double bond and a silanol group and / or hydrolyzed directly bonded to a carbon bond The silanol group and / or hydrolyzable silyl group of the vinyl polymer segment (a2) containing a functional silyl group undergoes a hydrolytic condensation reaction to form the polysiloxane segment (a1), and the polysiloxane
  • the composite resin (A) in which the segment (a1) and the vinyl polymer segment (a2) having an alcoholic hydroxyl group are combined by the bond represented by the general formula (3) is obtained.
  • Method 2 In the same manner as in Method 1, a vinyl polymer segment (a2) containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon bond is obtained.
  • a polysiloxane segment (a1) is obtained by subjecting a silane compound having both a silanol group and / or a hydrolyzable silyl group and a polymerizable double bond and, if necessary, a general-purpose silane compound to a hydrolysis condensation reaction.
  • silanol group and / or hydrolyzable silyl group of the vinyl polymer segment (a2) and the silanol group and / or hydrolyzable silyl group of the polysiloxane segment (a1) are hydrolyzed and condensed.
  • Method 3 In the same manner as in Method 1, a vinyl polymer segment (a2) containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon bond is obtained.
  • the polysiloxane segment (a1) is obtained in the same manner as in Method 2.
  • a silane compound containing a silane compound having a polymerizable double bond and a general-purpose silane compound as necessary are mixed and subjected to a hydrolysis condensation reaction.
  • silane compound having both a silanol group and / or a hydrolyzable silyl group and a polymerizable double bond used in the (Method 1) to (Method 3) include, for example, vinyltrimethoxysilane, Vinyltriethoxysilane, vinylmethyldimethoxysilane, vinyltri (2-methoxyethoxy) silane, vinyltriacetoxysilane, vinyltrichlorosilane, 2-trimethoxysilylethyl vinyl ether, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (Meth) acryloyloxypropyltriethoxysilane, 3- (meth) acryloyloxypropylmethyldimethoxysilane, 3- (meth) acryloyloxypropyltrichlorosilane and the like.
  • Examples of general-purpose silane compounds used in the (Method 1) to (Method 3) include, for example, methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-butoxysilane, ethyltrimethoxysilane, and n-propyl.
  • organotrialkoxysilanes such as trimethoxysilane, iso-butyltrimethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane; dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-butoxysilane
  • diorganodialkoxysilanes such as diethyldimethoxysilane, diphenyldimethoxysilane, methylcyclohexyldimethoxysilane, and methylphenyldimethoxysilane; methyltrichlorosilane Ethyl trichlorosilane, phenyl trichlorosilane, vinyl trichlorosilane, dimethyl dichlorosilane, chlorosilane such as diethyl dichlorosilane or diphenyl dichlorosilane
  • a tetrafunctional alkoxysilane compound such as tetramethoxysilane, tetraethoxysilane or tetra n-propoxysilane or a partial hydrolysis condensate of the tetrafunctional alkoxysilane compound may be used in combination as long as the effects of the present invention are not impaired. it can.
  • the tetrafunctional alkoxysilane compound or a partially hydrolyzed condensate thereof is used in combination, the silicon atoms of the tetrafunctional alkoxysilane compound are 20 with respect to the total silicon atoms constituting the polysiloxane segment (a1). It is preferable to use together so that it may become the range which does not exceed mol%.
  • a metal alkoxide compound other than a silicon atom such as boron, titanium, zirconium or aluminum can be used in combination with the silane compound as long as the effects of the present invention are not impaired.
  • a metal alkoxide compound in combination in a range not exceeding 25 mol% with respect to all silicon atoms constituting the polysiloxane segment (a1).
  • hydrolysis condensation reaction in the (Method 1) to (Method 3), a part of the hydrolyzable group is hydrolyzed under the influence of water or the like to form a hydroxyl group, and then the hydroxyl groups or the hydroxyl group and the hydrolysis group are hydrolyzed.
  • This refers to a proceeding condensation reaction that proceeds with a functional group.
  • the hydrolysis-condensation reaction can be performed by a known method, but a method in which the reaction is advanced by supplying water and a catalyst in the production process is simple and preferable.
  • the catalyst used examples include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as p-toluenesulfonic acid, monoisopropyl phosphate and acetic acid; inorganic bases such as sodium hydroxide and potassium hydroxide; tetraisopropyl titanate , Titanic acid esters such as tetrabutyl titanate; 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1 Compounds containing various basic nitrogen atoms such as 1,4-diazabicyclo [2.2.2] octane (DABCO), tri-n-butylamine, dimethylbenzylamine, monoethanolamine, imidazole, 1-methylimidazole; Tetramethylammonium salt, tetrabutylammonium salt, dilauryldimethylammonium Various quatern
  • the amount of the catalyst added is not particularly limited, but generally it is preferably used in the range of 0.0001 to 10% by weight based on the total amount of each compound having the silanol group or hydrolyzable silyl group. , More preferably in the range of 0.0005 to 3% by weight, and particularly preferably in the range of 0.001 to 1% by weight.
  • the amount of water to be supplied is preferably 0.05 mol or more with respect to 1 mol of the silanol group or hydrolyzable silyl group of each compound having the silanol group or hydrolyzable silyl group, The above is more preferable, and particularly preferably 0.5 mol or more.
  • These catalyst and water may be supplied collectively or sequentially, or may be supplied by previously mixing the catalyst and water.
  • the reaction temperature when carrying out the hydrolysis condensation reaction in the above (Method 1) to (Method 3) is suitably in the range of 0 ° C. to 150 ° C., and preferably in the range of 20 ° C. to 100 ° C.
  • the reaction can be carried out under any conditions of normal pressure, increased pressure, or reduced pressure. Moreover, you may remove the alcohol and water which are the by-products which can be produced
  • the charging ratio of each compound in the above (Method 1) to (Method 3) is appropriately selected depending on the desired structure of the composite resin (A) used in the present invention. Among them, since the durability of the obtained coating film is excellent, it is preferable to obtain the composite resin (A) such that the content of the polysiloxane segment (a1) is 30 to 80% by weight, and 30 to 75% by weight is preferable. Further preferred.
  • the silanol group and the above-described silanol group may be added to only one or both ends of the polymer chain.
  • a vinyl polymer segment having a structure having a hydrolyzable silyl group as an intermediate for example, in the case of (Method 1), a silanol group and / or hydrolysis is added to the vinyl polymer segment.
  • the main chain of the vinyl polymer segment is The vinyl polymer segment having a structure in which silanol groups and / or hydrolyzable silyl groups are randomly distributed is used as an intermediate.
  • the vinyl polymer segment is Examples thereof include a method in which a hydrocondensation reaction is carried out between the silanol group and / or hydrolyzable silyl group possessed and the silanol group and / or hydrolyzable silyl group possessed by the polysiloxane segment.
  • the sealing material of the present invention contains 5 to 50% by weight of polyisocyanate (B) based on the total solid content of the curable resin composition.
  • polyisocyanate (B) By containing the polyisocyanate in this range, it is excellent in outdoor long-term weather resistance, particularly crack resistance. Further, the shape can be maintained even when a stress that varies in size due to thermal expansion or contraction is applied in a thermal cycle test of the device or in an actual thermal cycle environment. This is because the polyisocyanate reacts with a hydroxyl group in the system (this is a hydroxyl group in the active energy ray-curable monomer having a hydroxyl group in the vinyl polymer segment (a2) or an alcoholic hydroxyl group described later). Thus, it is estimated that a urethane bond, which is a soft segment, is formed and functions to relieve stress concentration due to curing derived from a polymerizable double bond.
  • the polyisocyanate (B) to be used is not particularly limited and known ones can be used, but aromatic diisocyanates such as tolylene diisocyanate and diphenylmethane-4,4′-diisocyanate, meta-xylylene diisocyanate, Polyisocyanates mainly composed of aralkyl diisocyanates such as ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl-meta-xylylene diisocyanate have a problem in light resistance that the sealing material will turn yellow after long-term outdoor exposure Therefore, it is preferable to minimize the amount used.
  • the polyisocyanate used in the present invention is preferably an aliphatic polyisocyanate containing an aliphatic diisocyanate as a main raw material.
  • the aliphatic diisocyanate include tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate (hereinafter abbreviated as “HDI”), 2,2,4- (or 2,4,4 Trimethyl-1,6-hexamethylene diisocyanate, lysine isocyanate, isophorone diisocyanate, hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,4-diisocyanate cyclohexane, 1,3-bis (diisocyanate methyl) cyclohexane, 4,4 '-Dicyclohexylmethane diisocyanate, etc.
  • HDI 1,6-hexamethylene diiso
  • Examples of the aliphatic polyisocyanate obtained from the aliphatic diisocyanate include allophanate type polyisocyanate, biuret type polyisocyanate, adduct type polyisocyanate, and isocyanurate type polyisocyanate, and any of them can be suitably used.
  • block polyisocyanate compounds blocked with various blocking agents can also be used.
  • the blocking agent include alcohols such as methanol, ethanol and lactic acid ester; phenolic hydroxyl group-containing compounds such as phenol and salicylic acid ester; amides such as ⁇ -caprolactam and 2-pyrrolidone; oximes such as acetone oxime and methyl ethyl ketoxime Active methylene compounds such as methyl acetoacetate, ethyl acetoacetate and acetylacetone can be used.
  • the isocyanate group in the polyisocyanate (B) is preferably 3 to 30% by weight based on the total solid content of the polyisocyanate, from the viewpoint of crack resistance and weather resistance of the cured resin.
  • the isocyanate group in (B) is less than 3%, the reactivity of the polyisocyanate is low, and when it exceeds 30%, the molecular weight of the polyisocyanate becomes small, and stress relaxation does not appear in any case. So be careful.
  • the reaction between the polyisocyanate and the hydroxyl group in the system is particularly heated.
  • the cured form when the cured form is UV, it reacts gradually by being left at room temperature after coating and UV irradiation. If necessary, the reaction between the alcoholic hydroxyl group and the isocyanate may be promoted by heating at 80 ° C. for several minutes to several hours (20 minutes to 4 hours) after UV irradiation. In that case, you may use a well-known urethanation catalyst as needed.
  • the urethanization catalyst is appropriately selected according to the desired reaction temperature.
  • the sealing material of the present invention Since the sealing material of the present invention has a polymerizable double bond as described above, it can be cured by active energy rays such as ultraviolet rays or heat. It is also possible to include both.
  • active energy rays such as ultraviolet rays or heat.
  • a photopolymerization initiator When the sealing material of the present invention is UV-cured, it is preferable to use a photopolymerization initiator.
  • Known photopolymerization initiators may be used, and for example, one or more selected from the group consisting of acetophenones, benzyl ketals, and benzophenones can be preferably used.
  • the acetophenones include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4 -(2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone and the like.
  • Examples of the benzyl ketals include 1-hydroxycyclohexyl-phenyl ketone and benzyl dimethyl ketal.
  • Examples of the benzophenones include benzophenone and methyl o-benzoylbenzoate.
  • Examples of the benzoins include benzoin, benzoin methyl ether, and benzoin isopropyl ether.
  • a photoinitiator (B) may be used independently and may use 2 or more types together. The amount of the photopolymerization initiator (B) used is preferably 1 to 15% by weight and more preferably 2 to 10% by weight with respect to 100% by weight of the composite resin (A).
  • the polyfunctional (meth) acrylate is preferably one having an alcoholic hydroxyl group because it is reacted with the polyisocyanate (B).
  • polymerizable double bonds in one molecule That polyfunctional (meth) acrylate.
  • urethane acrylate, polyester acrylate, epoxy acrylate, etc. can be illustrated as polyfunctional acrylate. These may be used alone or in combination of two or more.
  • pentaerythritol triacrylate and dipentaerythritol pentaacrylate are preferred from the viewpoint of the hardness of the cured resin and from the viewpoint of stress relaxation by reaction with polyisocyanate.
  • a monofunctional (meth) acrylate may be used in combination with the polyfunctional (meth) acrylate.
  • hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, caprolactone-modified hydroxy (meth) acrylate for example, “Plexel” manufactured by Daicel Chemical Industries
  • phthalic acid and propylene Mono (meth) acrylate of polyester diol obtained from glycol mono (meth) acrylate of polyester diol obtained from succinic acid and propylene glycol, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, pentaerythritol Tri (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, (meth) acrylate of various epoxy esters Hydroxyl group-containing (meth) acrylic acid esters,
  • the monomer (c) is particularly preferably a (meth) acrylic acid ester having a hydroxyl group.
  • the amount of the polyfunctional (meth) acrylate (C) used is preferably 1 to 85% by weight, more preferably 5 to 80% by weight, based on the total solid content of the sealing material of the present invention.
  • active energy rays examples include electron beams, ultraviolet rays, and infrared rays.
  • Ultraviolet rays are simple and preferable.
  • a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, an argon laser, or a helium / cadmium laser can be used as the light used for ultraviolet curing.
  • ultraviolet rays having a wavelength of about 180 to 400 nm.
  • the irradiation amount of ultraviolet rays is appropriately selected depending on the type and amount of the photopolymerization initiator used.
  • UV curing for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, an argon laser, a helium / cadmium laser, or the like can be used. Using these, it is possible to cure by irradiating the application surface of the ultraviolet curable resin composition with ultraviolet rays having a wavelength of about 180 to 400 nm. The irradiation amount of ultraviolet rays is appropriately selected depending on the type and amount of the photopolymerization initiator used.
  • thermosetting the sealing material of the present invention when thermosetting the sealing material of the present invention, the reaction temperature, reaction time, etc. of the polymerizable double bond reaction in the composition and the urethanization reaction between the alcoholic hydroxyl group and the isocyanate are taken into consideration. It is preferable to select each catalyst. Moreover, it is also possible to use a thermosetting resin together.
  • the thermosetting resin include vinyl resins, unsaturated polyester resins, polyurethane resins, epoxy resins, epoxy ester resins, acrylic resins, phenol resins, petroleum resins, ketone resins, silicon resins, and modified resins thereof.
  • the sealing material of the present invention includes inorganic pigments, organic pigments, extender pigments, clay minerals, waxes, surfactants, stabilizers, flow regulators, and dyes as needed, as long as transparency can be secured.
  • various additives such as a leveling agent, a rheology control agent, an ultraviolet absorber, an antioxidant, or a plasticizer can be used.
  • the composite resin (A) contained has both the polysiloxane segment (a1) and the vinyl polymer segment (a2), the acrylic resin and the active energy ray curable monomer are relatively Easy to be compatible. Therefore, a composition having good compatibility can be obtained.
  • the sealing material of this invention When using the sealing material of this invention as a light emitting diode sealing material, you may mix
  • the phosphor used in the light emitting diode is mainly composed of at least one of phosphors emitting blue light, phosphors emitting green light, phosphors emitting yellow light, and phosphors emitting light red. Can be used. These phosphors are put into the light emitting diode sealing material according to the present invention and mixed until they are almost uniform.
  • This mixture is placed on the periphery of the light emitting element.
  • the phosphor absorbs light emitted from the light emitting element, performs wavelength conversion, and emits light having a wavelength different from that of the light emitting element. Thereby, a part of the light emitted from the light emitting element and a part of the light emitted from the phosphor can be mixed to manufacture a multicolor light emitting diode including white.
  • glass, alumina is used for the purpose of reducing the cure shrinkage when curing the composition, reproducing the exact shape and dimensions of cracks and parts as designed, and improving heat resistance and thermal conductivity.
  • Inorganic fine particles such as aluminum hydroxide, fused silica, crystalline silica, ultrafine powder amorphous silica, hydrophobic ultrafine silica, talc, clay and barium sulfate may be blended.
  • the sealing material of the present invention is particularly excellent in light resistance to light of a low wavelength, it can be used as a sealing material for various light emitting diodes such as red, green and blue. In particular, it exhibits an excellent function as a sealing material for white light emitting diodes that require light resistance to light in the short wavelength region.
  • the sealing material of the present invention is excellent not only in light resistance but also in heat resistance and moist heat resistance, it can be suitably used even in outdoor applications where temperature and humidity change drastically.
  • a light emitting diode When a light emitting diode is manufactured using the sealing material of the present invention, it may be performed by a known method. For example, a light emitting diode can be obtained by covering a light emitting element with the light emitting diode sealing material of the present invention.
  • the light-emitting element is not particularly limited, and a light-emitting element that can be used for a light-emitting diode can be used.
  • the emission wavelength of the light-emitting element is not particularly limited from the ultraviolet region to the infrared region, but the effect of the present invention is particularly remarkable when the main emission peak wavelength is 550 nm or less.
  • One type of the light emitting element may be used for monochromatic light emission, or a plurality of the light emitting elements may be used for single color or multicolor light emission.
  • the coating is not limited to directly sealing the light emitting element, but includes the case of indirectly coating.
  • the light-emitting element may be directly sealed with the sealing material of the present invention by various conventionally used methods, or an epoxy resin, silicone resin, acrylic resin, urea resin, imide resin, or the like may be sealed.
  • the top or the periphery thereof may be covered with the sealing material of the present invention.
  • the light emitting element is sealed with the sealing material of the present invention, it may be molded (also referred to as sealing) with an epoxy resin, a silicone resin, an acrylic resin, a urea resin, an imide resin, or the like.
  • a liquid sealing material may be injected by a dispenser or other method into a cup, cavity, package recess, or the like in which a light emitting element is arranged at the bottom, and cured by heating or the like, or a solid or highly viscous liquid
  • the sealing material may be heated and flowed to be similarly injected into the package recess or the like and further heated to be cured.
  • the package can be made using various materials, such as polycarbonate resin, polyphenylene sulfide resin, epoxy resin, acrylic resin, silicone resin, ABS resin, polybutylene terephthalate resin, polyphthalamide resin, and the like. it can.
  • a method of pre-injecting a sealing material into a mold mold, dipping a lead frame or the like on which the light emitting element is fixed, and curing it can also be applied.
  • the sealing layer made of the sealing material may be molded and cured by injection with a dispenser, transfer molding, injection molding, or the like.
  • a sealing material simply in a liquid or fluid state may be dropped or coated on the light emitting element to be cured.
  • a sealing material can be formed and cured by stencil printing, screen printing, or application through a mask on the light emitting element.
  • a sealing material partially cured or cured in advance in a plate shape or a lens shape may be fixed on the light emitting element.
  • it can also be used as a die bond agent for fixing the light emitting element to a lead terminal or a package, or can be used as a passivation film on the light emitting element. It can also be used as a package substrate.
  • the shape of the light emitting diode to be applied is not particularly limited, and can be appropriately selected according to the application. Specifically, a shell type and a surface mount type used in lighting equipment and the like can be mentioned. *
  • liquid sealing material can be a single crystal, a polycrystalline silicon cell (crystalline silicon cell), amorphous silicon,
  • a method of applying on a solar cell such as a compound semiconductor (thin film cell), or using a sheet formed in advance as a sealing material, sandwiching the solar cell, and further covering the outside with glass or a back sheet to perform heat treatment
  • a method of melting the sealing material formed into a sheet by applying it and sealing the whole integrally (modularization) can be raised.
  • a sealing material formed into a sheet in advance hereinafter referred to as a sealing sheet
  • a sealing sheet is preferable because the modularization process is simple and the solar cell module can be supplied stably.
  • a method for forming the sealing material of the present invention into a sheet a known method may be mentioned.
  • a method is generally used in which a resin is melted with an extruder, a molten resin is extruded from a die, and rapidly cooled and solidified to obtain an original fabric It is.
  • the extruder a T die, an annular die or the like is used.
  • an annular die is preferable.
  • the surface of the original fabric may be embossed according to the final form of the resin sealing sheet.
  • embossing treatment is performed on both sides, between the two heated embossing rolls, when performing single-sided embossing processing, the original fabric is passed between embossing rolls heated only on one side. Embossing treatment can be performed. *
  • a multilayer T die method a multilayer circular die method, or the like can be selected.
  • a multilayer structure may be formed by a known laminating method.
  • the encapsulating sheet is in the form of a gel by partially reacting a urethanization reaction between an alcoholic hydroxyl group and an isocyanate in advance. Specifically, it is preferable to cure for several hours in an atmosphere of about 40 ° C. to 100 ° C. where the urethanization reaction proceeds.
  • post-treatment examples include heat setting for dimensional stabilization, corona treatment, plasma treatment, and lamination with other resin-encapsulated sheets.
  • FIG. 1 An example of a specific embodiment of the solar cell module in the case of using the solar cell encapsulating sheet obtained by the above method is shown in FIG. Needless to say, the present invention includes various embodiments not described herein.
  • a solar cell light-receiving surface side protective sheet 1 a first sealing material 2, a battery group 3, a second sealing material 4, and a solar cell protective sheet 5 are sequentially laminated. Consists of.
  • the first sealing material 2 and the second sealing material 4 seal the solar cell group 3 between the solar cell light-receiving surface side protective sheet 1 and the battery protective sheet 5. Accordingly, the first sealing material 2 and the second sealing material 4 are heated to a predetermined crosslinking temperature or higher to be softened and then crosslinked.
  • the method for producing a solar cell module by sealing is not particularly limited. Specifically, a vacuum laminator is used to stack materials such as a sealing material and solar cells in a mold, and then vacuum is applied. A solar cell can be produced by pressing.
  • the solar cell group 3 includes a plurality of solar cells made of single crystal or polycrystalline silicon cells (crystalline silicon cells), amorphous silicon, compound semiconductors (thin film cells), and wiring materials.
  • the plurality of solar cells are electrically connected to each other by a wiring material.
  • first sealing material 2 and the second sealing material 4 laminated by the laminating apparatus are fully cured by heating, whereby a solar cell module can be obtained.
  • the "active ingredient” is a value obtained by dividing the theoretical yield (parts by weight) when all the methoxy groups of the silane monomer used undergo hydrolysis condensation reaction by the actual yield (parts by weight) after hydrolysis condensation reaction, That is, it is calculated by the formula [theoretical yield when all methoxy groups of the silane monomer undergo hydrolysis condensation reaction (parts by weight) / actual yield after hydrolysis condensation reaction (parts by weight)].
  • HEMA ethyl methacrylate
  • TPEH tert-butylperoxy-2-ethylhexanoate
  • Example 1-13 As examples, the following operations were performed, and Tables 1 to 8 show the formulations and results.
  • the container (refer FIG. 2) which inject
  • silicon mold spacers 7 (5 cm long, 5 cm wide, 2 mm high) are made of glass 8 and glass 9 (the sizes of glass 8 and glass 9 are 10 cm long, 10 cm wide and 4 mm thick, respectively) and a PET film. 10 and sandwiched with PET film 11. A PET film 10 was disposed between the glass 8 and the spacer 7, and a PET film 11 was disposed between the glass 9 and the spacer 7.
  • the produced resin composition for a light-emitting diode encapsulating material was poured into the spacer 7, and the glass 8 and glass 9 were fixed with a jig (not shown) (the obtained mold is referred to as a mold 13).
  • the mold 13 was put into an oven at 150 ° C. and heated for 5 minutes to cure the poured resin composition for a light-emitting diode sealing material.
  • the cured product 12 was removed from the mold to obtain cured products (C-1) to (C-6) and (HC-1) to (HC-4) having a thickness of 2 mm.
  • Example 7 corresponds to the light-emitting diode sealing material for ultraviolet curing. Injecting the resin composition for light-emitting diode encapsulant into the same container as the container for injecting the encapsulant used for producing the cured product for light-emitting diode encapsulant by thermosetting (see FIG.
  • the gel-like resin composition for solar cell encapsulant is calendered at 70 ° C., allowed to cool, and sheet resin compositions (PC-1) to (PC-6) for solar cell encapsulant, and (HPC-1) to (HPC-4) (thickness 0.6 mm) were produced.
  • a hot plate of a laminating apparatus (manufactured by Nisshinbo Mechatronics Co., Ltd.) is adjusted to 150 ° C., and on the hot plate, white plate tempered glass, the sheet-shaped resin composition for solar cell sealing material, polycrystalline silicon solar cell, A sheet-shaped resin composition for a solar cell encapsulant and a PFA film having a thickness of 500 ⁇ m as a back sheet are stacked in that order, and in a state where the lid of the laminating apparatus is closed, deaeration 3 minutes and press 8 minutes are performed in that order. After being held for 10 minutes, it was taken out and used as super straight type solar cell modules (SM-1) to (SM-6) and (HSM-1) to (HSM-4).
  • thermosetting resin A light emitting diode as shown in FIG. 3 equipped with an InGaN-based light emitting element was produced.
  • 1 is a resin case
  • 2 is a lead electrode
  • 3 is a light emitting element
  • 4 is a sealing material
  • 5 is a gold wire.
  • a light emitting diode as shown in FIG. 3 equipped with an InGaN-based light emitting element was produced.
  • the UV curing light-emitting diode encapsulant resin composition prepared according to Example 7 was poured into a resin case (PPA: polyphthalamide) so that the thickness of the cured product was 0.5 to 1.0 mm, and Fusion A light emitting diode (M-3) was produced by curing at 1000 mJ / cm 2 with a UV irradiation apparatus F-6100V.
  • the b value indicating the yellowish color of the Lab display color was measured using, when the difference ⁇ b between the b values before and after the test was 0-0.5, ⁇ , when it was 0.5-1, ⁇ , 1-5
  • the yellowing degree was evaluated as ⁇ , when the value of 5 or more was indicated as x.
  • Tables 3-4 The results are shown in Tables 3-4.
  • Light resistance of light emitting diode Appearance evaluation after accelerated light resistance test
  • Light-emitting diodes (M-1) to (M-3) and (HM-1) to (HM-2) produced by the above-described method were used for ultraviolet deterioration promotion tester (Isuper UV tester SUV-W131: Iwasaki Electric Co., Ltd.). )
  • An accelerated light resistance test was conducted at a UV irradiation intensity of 100 mW / cm 2 . After carrying out the accelerated test for 200 hours, the encapsulant part has no cracks and cracks and is not peeled off from the resin case, the cracks and one or two cracks are ⁇ , and there are many cracks or What peeled from the resin case was set as x.
  • Tables 7 to 8 The results are shown in Tables 7 to 8.
  • Tables 1 and 2 Various raw materials in Tables 1 and 2 are as follows. Dilution monomer 1; 1,6-hexanediol diacrylate dilution monomer 2; methyl methacrylate thermal polymerization initiator; t-butyl peroxybenzoate photopolymerization initiator; diphenyl (2,4,6-trimethoxybenzoyl) phosphine oxide polymerization prohibited Agent; 2,6-bis (1,1-dimethylethyl) -4-methylphenol additive; 3-methacryloxypropyltrimethoxysilane polyisocyanate; DIC Corporation Vernock DN-902S
  • protective sheet for solar cell 2 first sealing material 3: solar cell group 4: second sealing material 5: back surface side protective material 7: spacer 8: glass 9: glass 10: PET film, 11: PET film 12: Cured product 13: Mold 14: Resin case 15: Lead electrode 16: Light emitting element 17: Sealing material 18: Gold wire

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Silicon Polymers (AREA)
  • Sealing Material Composition (AREA)
  • Photovoltaic Devices (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

 一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)とが、一般式(3)で表される結合により結合された複合樹脂(A)、ポリイソシアネート(B)を含有し、前記ポリシロキサンセグメント(a1)の含有率が硬化性樹脂組成物の全固形分量に対して10~50重量%であり、且つ、ポリイソシアネート(B)の含有率が硬化性樹脂組成物の全固形分量に対して5~50重量%である封止材と、前記封止材を使用する太陽電池モジュール及び発光ダイオードを提供する。

Description

封止材、太陽電池モジュール及び発光ダイオード
 本発明は、各種デバイス用封止材、特に、常に光に暴露されるような用途で使用される発光ダイオード用封止材や、太陽電池用封止材に関する。
 近年、各種デバイスを保護する目的で、光を透過する透明樹脂が封止材として利用されている。例えば表示板、画像読み取り用光源、交通信号、大型ディスプレイ用ユニット、携帯電話のバックライト等に実用化されている発光ダイオード(LED)は、GaN(窒化ガリウム)系発光ダイオードのような青色から紫外光までの発光をする発光ダイオードに蛍光体を組み合わせたものや、赤・青・黄の3種の発光ダイオードを組み合わせたものなどがあり、これらは通常、化合物半導体チップと電極とが保護のために透明樹脂で封止されている。この透明樹脂としては、エポキシ樹脂、具体的には芳香族エポキシ樹脂に硬化剤として脂環式酸無水物を用いたものが一般的である。
しかしながらこの樹脂系は酸無水物が酸で変色しやすいことや、硬化に長時間を要することが知られている。また、硬化した封止樹脂が屋外に放置される場合や、紫外線を発生する光源に曝される場合に、封止樹脂の脆化や封止樹脂が黄変するという欠点を有している。
 すなわち、発光ダイオードが紫外光を発光したり屋外で使用される場合、封止材であるエポキシ樹脂は、その骨格の一部が切断されたり、芳香環による黄変が生じ、発光ダイオードチップの周囲から次第に黄変する着色現象が発生し、発光装置の寿命が限定されるという欠点を有している。
 一方、太陽光を直接電気エネルギーに変換する太陽電池用の封止材も、光を透過する透明樹脂が使用されている。
 太陽電池は、一般に、受光面側透明保護部材と裏面側保護部材との間に、EVA(エチレン-酢酸ビニル共重合体であり、通常有機過酸化物との混合物である)フィルムの封止材でシリコン発電素子等の太陽電池用セルを封止した構成となっており、受光側透明保護部材、表面側に配置したシート状の封止材、太陽電池用セル、裏面側に配置したシート状の封止材、および裏面側保護部材をこの順で積層し、加熱加圧して、EVAを架橋硬化させて接着一体化することにより製造される。
 太陽電池モジュールも屋外で使用されるため、使用する部材には高い耐久性、耐候性が要求される。特に太陽電池用封止材においては、長期使用時の封止材脆化、及び黄変を防止するために、通常紫外線吸収剤を封止材全体に均一に配合して使用しているが、封止材は厚膜であり紫外線吸収剤の効果を得るためには相当量の添加を必要とし、コスト増大の一因になっていた。
 これらの封止材用樹脂として、シロキサン系樹脂を使用する例が知られている。例えば発光ダイオード用封止材としては、シルセスキオキサン誘導体を使用した例等が知られている(例えば特許文献1参照)。また太陽電池用封止材としては、メチル基およびフェニル基で修飾されたシロキサン重合体からなる主剤と有機金属化合物のうち少なくとも1種類以上を硬化剤とし混合した樹脂組成物をプラスチック基板および金属電極からなる被着体表面に塗布し、加熱硬化させる例が知られている(例えば特許文献2参照)。
特開2009-167390号公報 特開2009-215345号公報
 本発明が解決しようとする課題は、屋外等の紫外線による長期暴露においても黄変が生じにくく、クラックも生じにくい、高い耐候性を有する各種デバイス用封止材を提供することにある。また、該封止材を使用した太陽電池モジュール、及び発光ダイオードを提供することにある。
 本発明者らは、鋭意検討の結果、シラノール基及び/又は加水分解性シリル基、並びに重合性二重結合を有するポリシロキサンセグメントと、該ポリシロキサン以外の重合体セグメントとを有する複合樹脂に、ポリイソシアネートを特定の範囲で添加した硬化性樹脂組成物が、屋外における長期耐候性、具体的には耐クラック性と耐光性を有することを見出し、上記課題を解決した。
 硬化性樹脂組成物中のポリシロキサンセグメントを特定の範囲内とすることで、高温加熱せずに紫外線などの活性エネルギー線で硬化せしめて得られた硬化物であっても、優れた耐久性の発現、及び温度変化に伴い発生する応力の緩和が可能となる。
 すなわち本発明は、一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)とが、一般式(3)で表される結合により結合された複合樹脂(A)、及びポリイソシアネート(B)を含有し、前記ポリシロキサンセグメント(a1)の含有率が硬化性樹脂組成物の全固形分量に対して10~50重量%であり、且つ、前記ポリイソシアネート(B)の含有率が硬化性樹脂組成物の全固形分量に対して5~50重量%である封止材を提供する。
Figure JPOXMLDOC01-appb-C000004
       (1)
Figure JPOXMLDOC01-appb-C000005

       (2)
(一般式(1)及び(2)中、R、R及びRは、それぞれ独立して、-R-CH=CH、-R-C(CH)=CH、-R-O-CO-C(CH)=CH、及び-R-O-CO-CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1~6のアルキレン基を表す。)、炭素原子数が1~6のアルキル基、炭素原子数が3~8のシクロアルキル基、アリール基、または炭素原子数が7~12のアラルキル基を表し、R、R及びRの少なくとも1つは前記重合性二重結合を有する基である)
Figure JPOXMLDOC01-appb-C000006

         (3)
(一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする)
 また本発明は、前記封止材を使用する太陽電池モジュールを提供する。
 また本発明は、前記封止材を使用する発光ダイオードを提供する。
  本発明の封止材は、屋外等の紫外線による長期暴露においても黄変が生じにくく、クラックも生じにくい、高い耐候性を有する。また、本発明の封止材を使用した太陽電池モジュールは、高い耐光性・耐クラック性といった長期耐候性を有する。また、本発明の封止材を使用した発光ダイオードは、長期耐候性だけでなく、耐熱性及び耐湿熱性を有する。
:スーパーストレート型太陽電池モジュールの一例である。 :封止材を注入する容器を図示したものである。 :実施例で作成した発光ダイオードを図示したものである。
(複合樹脂(A))
  本発明で使用する複合樹脂(A)は、前記一般式(1)および/または前記一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)(以下単にポリシロキサンセグメント(a1)と称す)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)(以下単にビニル系重合体セグメント(a2)と称す)とが、前記一般式(3)で表される結合により結合された複合樹脂(A)である。前記一般式(3)で表される結合は、得られる封止材の耐酸性及び耐アルカリ性に特に優れ好ましい。
Figure JPOXMLDOC01-appb-C000007

        (3)
 後述のポリシロキサンセグメント(a1)が有するシラノール基および/または加水分解性シリル基と、後述のビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基とが脱水縮合反応して、前記一般式(3)で表される結合が生じる。従って前記一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする。
 複合樹脂(A)の形態は、例えば、前記ポリシロキサンセグメント(a1)が前記重合体セグメント(a2)の側鎖として化学的に結合したグラフト構造を有する複合樹脂や、前記重合体セグメント(a2)と前記ポリシロキサンセグメント(a1)とが化学的に結合したブロック構造を有する複合樹脂等が挙げられる。
(ポリシロキサンセグメント(a1))
 本発明におけるポリシロキサンセグメント(a1)は、一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有すセグメントである。一般式(1)および/または一般式(2)で表される構造単位中には重合性二重結合を有する基が含まれている。
(一般式(1)および/または一般式(2)で表される構造単位)
 前記一般式(1)および/または前記一般式(2)で表される構造単位は、重合性二重結合を有する基を必須成分として有している。
 具体的には、前記一般式(1)及び(2)におけるR、R及びRは、それぞれ独立して、-R-CH=CH、-R-C(CH)=CH、-R-O-CO-C(CH)=CH、及び-R-O-CO-CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1~6のアルキレン基を表す)、炭素原子数が1~6のアルキル基、炭素原子数が3~8のシクロアルキル基、アリール基または炭素原子数が7~12のアラルキル基を表し、R、R及びRの少なくとも1つは前記重合性二重結合を有する基である。また前記Rにおける前記炭素原子数が1~6のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、ペンチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基、1-メチルブチレン基、2-メチルブチレン基、1,2-ジメチルプロピレン基、1-エチルプロピレン基、ヘキシレン基、イソヘシレン基、1-メチルペンチレン基、2-メチルペンチレン基、3-メチルペンチレン基、1,1-ジメチルブチレン基、1,2-ジメチルブチレン基、2,2-ジメチルブチレン基、1-エチルブチレン基、1,1,2-トリメチルプロピレン基、1,2,2-トリメチルプロピレン基、1-エチル-2-メチルプロピレン基、1-エチル-1-メチルプロピレン基等が挙げられる。中でもRは、原料の入手の容易さから単結合または炭素原子数が2~4のアルキレン基が好ましい。
 また、前記炭素原子数が1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。
 また、前記炭素原子数が3~8のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。また、前記アリール基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。
また、前記炭素原子数が7~12のアラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
 また、R、R及びRの少なくとも1つは前記重合性二重結合を有する基であるとは、具体的には、ポリシロキサンセグメント(a1)が一般式(1)で表される構造単位のみを有する場合にはRが前記重合性二重結合を有する基であり、ポリシロキサンセグメント(a1)が一般式(2)で表される構造単位のみを有する場合にはR及び/又はRが前記重合性二重結合を有する基であり、ポリシロキサンセグメント(a1)が一般式(1)と一般式(2)で表される構造単位の両方を有する場合には、R、R及びRの少なくとも1つが重合性二重結合を有する基であることを示す。
 前記一般式(1)および/または前記一般式(2)で表される構造単位は、ケイ素の結合手のうち2または3つが架橋に関与した、三次元網目状のポリシロキサン構造単位である。三次元網目構造を形成しながらも密な網目構造を形成しないので、製造時にゲル化等を生じることもなく、得られる複合樹脂の長期保存安定性も良好となる。
(シラノール基および/または加水分解性シリル基)
 本発明においてシラノール基とは、珪素原子に直接結合した水酸基を有する珪素含有基である。該シラノール基は具体的には、前記一般式(1)および/または前記一般式(2)で表される構造単位の、結合手を有する酸素原子が水素原子と結合して生じたシラノール基であることが好ましい。
 また本発明において加水分解性シリル基とは、珪素原子に直接結合した加水分解性基を有する珪素含有基であり、具体的には、例えば、一般式(4)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000008

       (4)
(一般式(4)中、Rはアルキル基、アリール基又はアラルキル基等の1価の有機基を、Rはハロゲン原子、アルコキシ基、アシロキシ基、フェノキシ基、アリールオキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基及びアルケニルオキシ基からなる群から選ばれる加水分解性基である。またbは0~2の整数である。)
  前記Rにおいて、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。
 またアリール基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。
 またアラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
 前記Rにおいて、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、第二ブトキシ基、第三ブトキシ基等が挙げられる。
またアシロキシ基としては、例えば、ホルミルオキシ、アセトキシ、プロパノイルオキシ、ブタノイルオキシ、ピバロイルオキシ、ペンタノイルオキシ、フェニルアセトキシ、アセトアセトキシ、ベンゾイルオキシ、ナフトイルオキシ等が挙げられる。
またアリールオキシ基としては、例えば、フェニルオキシ、ナフチルオキシ等が挙げられる。
 アルケニルオキシ基としては、例えば、ビニルオキシ基、アリルオキシ基、1-プロペニルオキシ基、イソプロペニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、2-ペテニルオキシ基、3-メチル-3-ブテニルオキシ基、2-ヘキセニルオキシ基等が挙げられる。
 前記Rで表される加水分解性基が加水分解されることにより、一般式(4)で表される加水分解性シリル基はシラノール基となる。加水分解性に優れることから、中でも、メトキシ基およびエトキシ基が好ましい。
 また前記加水分解性シリル基は具体的には、前記一般式(1)および/または前記一般式(2)で表される構造単位の、結合手を有する酸素原子が前記加水分解性基と結合もしくは置換されている加水分解性シリル基であることが好ましい。
 前記シラノール基や前記加水分解性シリル基は、活性エネルギー線や熱硬化による硬化物形成の際に、該硬化反応と平行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行するので、得られる硬化物のポリシロキサン構造の架橋密度が高まり、耐溶剤性などに優れる。
 また、前記シラノール基や前記加水分解性シリル基を含むポリシロキサンセグメント(a1)と後述のアルコール性水酸基を有するビニル系重合体セグメント(a2)とを、前記一般式(3)で表される結合を介して結合させる際に使用する。
 ポリシロキサンセグメント(a1)は、前記一般式(1)および/または前記一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有する以外は特に限定はなく、他の基を含んでいてもよい。例えば、
 前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(1)におけるRがメチル等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、
前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(1)におけるRがメチル基等のアルキル基である構造単位と、前記一般式(2)におけるR及びRがメチル基等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、
前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(2)におけるR及びRがメチル基等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、特に限定はない。
 具体的には、ポリシロキサンセグメント(a1)としては、例えば以下の構造を有するもの等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 本発明においては、前記ポリシロキサンセグメント(a1)を硬化性樹脂組成物の全固形分量に対して10~50重量%含むことが特徴であり、耐候性と優れたデバイス保護性能の性質を両立させることが可能となる。なお好ましくは、15~40重量%である。
(アルコール性水酸基を有するビニル系重合体セグメント(a2))
 本発明におけるビニル系重合体セグメント(a2)は、アルコール性水酸基を有するアクリル重合体、フルオロオレフィン重合体、ビニルエステル重合体、芳香族系ビニル重合体及びポリオレフィン重合体等のビニル重合体セグメントであり、中でもアルコール水酸基を有する(メタ)アクリルモノマーを共重合させたアクリル系重合体セグメントが、得られる樹脂硬化物の透明性や光沢に優れることから好ましい。
 アルコール水酸基を有する(メタ)アクリルモノマーとしては、具体的には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、ジ-2-ヒドロキシエチルフマレート、モノ-2-ヒドロキシエチルモノブチルフマレート、ポリエチレングルコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、「プラクセルFMもしくはプラクセルFA」〔ダイセル化学(株)製のカプロラクトン付加モノマー〕等の各種α、β-エチレン性不飽和カルボン酸のヒドロキシアルキルエステル類、またはこれらとε-カプロラクトンとの付加物、等が挙げられる。
中でも2-ヒドロキシエチル(メタ)アクリレートが、反応が容易であり好ましい。
 前記アルコール性水酸基量は、後述のポリイソシアネート(B)の含有率が硬化性樹脂組成物の全固形分量に対して5~50重量%の範囲であることから、実際のポリイソシアネート(B)の添加量から算出して適宜決定するのが好ましい。
 また、後述の通り本発明においてはアルコール性水酸基を有する活性エネルギー線硬化性モノマーを併用してもより好ましい。従ってアルコール性水酸基を有するビニル系重合体セグメント(a2)中のアルコール性水酸基量は、併用するアルコール性水酸基を有する活性エネルギー線硬化性モノマーの量まで加味して決定することができる。実質的にはビニル系重合体セグメント(a2)の水酸基価に換算して30~300の範囲となるように含有することが好ましい。
 共重合可能な他の(メタ)アクリルモノマーとしては特に限定はなく、公知のモノマーを使用することが可能である。またビニルモノマーも共重合可能である。例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の炭素原子数が1~22のアルキル基を有するアルキル(メタ)アクリレート類;ベンジル(メタ)アクリレート、2-フェニルエチル(メタ)アクリレート等のアラルキル(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類;2-メトキシエチル(メタ)アクリレート、4-メトキシブチル(メタ)アクリレート等のω-アルコキシアルキル(メタ)アクリレート類;スチレン、p-tert-ブチルスチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル系モノマー類;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル等のカルボン酸ビニルエステル類;クロトン酸メチル、クロトン酸エチル等のクロトン酸のアルキルエステル類;ジメチルマレート、ジ-n-ブチルマレート、ジメチルフマレート、ジメチルイタコネート等の不飽和二塩基酸のジアルキルエステル類;エチレン、プロピレン等のα-オレフィン類;フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のフルオロオレフィン類;エチルビニルエーテル、n-ブチルビニルエーテル等のアルキルビニルエーテル類;シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル類;N,N-ジメチル(メタ)アクリルアミド、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルピロリジン、N-ビニルピロリドン等の3級アミド基含有モノマー類等が挙げられる。
 前記モノマーを共重合させる際の重合方法、溶剤、あるいは重合開始剤にも特に限定はなく、公知の方法によりビニル系重合体セグメント(a2)を得ることができる。例えば、塊状ラジカル重合法、溶液ラジカル重合法、非水分散ラジカル重合法等の種々の重合法により、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルパーオキシカーボネート等の重合開始剤を使用してビニル系重合体セグメント(a2)を得ることができる。
  前記ビニル系重合体セグメント(a2)の数平均分子量としては、数平均分子量(以下Mnと略す)に換算して500~200,000の範囲であることが好ましく、前記複合樹脂(A)を製造する際の増粘やゲル化を防止でき、且つ耐久性に優れる。Mnは中でも700~100,000の範囲がより好ましく、1,000~50,000の範囲がなお好ましい。
 また前記ビニル系重合体セグメント(a2)は、前記ポリシロキサンセグメント(a1)と一般式(3)で表される結合により結合された複合樹脂(A)とするために、ビニル系重合体セグメント(a2)中の炭素結合に直接結合したシラノール基および/または加水分解性シリル基を有する。これらのシラノール基および/または加水分解性シリル基は、後述の複合樹脂(A)の製造において一般式(3)で表される結合となってしまうために、最終生成物である複合樹脂(A)中のビニル系重合体セグメント(a2)には殆ど存在しない。しかしながらビニル系重合体セグメント(a2)にシラノール基および/または加水分解性シリル基が残存していても何ら問題はなく、活性エネルギー線硬化による樹脂硬化物形成の際に、活性エネルギー線硬化反応と平行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行するので、ポリシロキサン構造の架橋密度が高まり、耐溶剤性などに優れた樹脂硬化物を形成することができる。
 炭素結合に直接結合したシラノール基および/または加水分解性シリル基を有するビニル系重合体セグメント(a2)は、具体的には、前記アルコール水酸基を有する(メタ)アクリルモノマー、前記汎用モノマー、及び、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとを共重合させて得る。
炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとしては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルトリ(2-メトキシエトキシ)シラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、2-トリメトキシシリルエチルビニルエーテル、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリクロロシラン等が挙げられる。中でも、加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去することができることからビニルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。
(複合樹脂(A)の製造方法)
  本発明で用いる複合樹脂(A)は、具体的には下記(方法1)~(方法3)に示す方法で製造する。
 (方法1)前記アルコール水酸基を有する(メタ)アクリルモノマー、前記汎用の(メタ)アクリルモノマー等、及び、前記炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとを共重合させて炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。これに、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる。
 該方法においては、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物のシラノール基あるいは加水分解性シリル基と、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基とが加水分解縮合反応し、前記ポリシロキサンセグメント(a1)が形成されると共に、前記ポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)とが前記一般式(3)で表される結合により複合化された複合樹脂(A)が得られる。
 (方法2)方法1と同様にして、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。
一方、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物を加水分解縮合反応させ、ポリシロキサンセグメント(a1)を得る。そして、ビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基と、とポリシロキサンセグメント(a1)とが有するシラノール基および/または加水分解性シリル基とを加水分解縮合反応をさせる。
 (方法3)方法1と同様に、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。一方、方法2と同様にして、ポリシロキサンセグメント(a1)を得る。更に、重合性二重結合を併有するシラン化合物を含有するシラン化合物と、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる。
 前記(方法1)~(方法3)で使用する、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物としては、具体的には、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルトリ(2-メトキシエトキシ)シラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、2-トリメトキシシリルエチルビニルエーテル、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリクロロシラン等が挙げられる。中でも、加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去することができることからビニルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。
 また、前記(方法1)~(方法3)で使用する、汎用のシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-ブトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、iso-ブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等の各種のオルガノトリアルコキシシラン類;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ-n-ブトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルシクロヘキシルジメトキシシランもしくはメチルフェニルジメトキシシラン等の、各種のジオルガノジアルコキシシラン類;メチルトリクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、ビニルトリクロロシラン、ジメチルジクロロシラン、ジエチルジクロロシランもしくはジフェニルジクロロシラン等のクロロシラン類が挙げられる。中でも、加水分解反応が容易に進行し、また反応後の副生成物を容易に除去することが可能なオルガノトリアルコキシシランやジオルガノジアルコキシシランが好ましい。
  また、テトラメトキシシラン、テトラエトキシシランもしくはテトラn-プロポキシシランなどの4官能アルコキシシラン化合物や該4官能アルコキシシラン化合物の部分加水分解縮合物を、本発明の効果を損なわない範囲で併用することもできる。前記4官能アルコキシシラン化合物又はその部分加水分解縮合物を併用する場合には、前記ポリシロキサンセグメント(a1)を構成する全珪素原子に対して、該4官能アルコキシシラン化合物の有する珪素原子が、20モル%を超えない範囲となるように併用することが好ましい。
  また、前記シラン化合物には、ホウ素、チタン、ジルコニウムあるいはアルミニウムなどの珪素原子以外の金属アルコキシド化合物を、本発明の効果を損なわない範囲で併用することもできる。例えば、ポリシロキサンセグメント(a1)を構成する全珪素原子に対して、上述の金属アルコキシド化合物の有する金属原子が、25モル%を超えない範囲で、併用することが好ましい。
  前記(方法1)~(方法3)における加水分解縮合反応は、前記加水分解性基の一部が水などの影響で加水分解され水酸基を形成し、次いで該水酸基同士、あるいは該水酸基と加水分解性基との間で進行する進行する縮合反応をいう。該加水分解縮合反応は、公知の方法で反応を進行させることができるが、前記製造工程で水と触媒とを供給することで反応を進行させる方法が簡便で好ましい。
 使用する触媒としては、例えば、塩酸、硫酸、燐酸等の無機酸類;p-トルエンスルホン酸、燐酸モノイソプロピル、酢酸等の有機酸類;水酸化ナトリウム又は水酸化カリウム等の無機塩基類;テトライソプロピルチタネート、テトラブチルチタネート等のチタン酸エステル類;1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ-n-ブチルアミン、ジメチルベンジルアミン、モノエタノールアミン、イミダゾール、1-メチルイミダゾール等の各種の塩基性窒素原子を含有する化合物類;テトラメチルアンモニウム塩、テトラブチルアンモニウム塩、ジラウリルジメチルアンモニウム塩等の各種の4級アンモニウム塩類であって、対アニオンとして、クロライド、ブロマイド、カルボキシレートもしくはハイドロオキサイドなどを有する4級アンモニウム塩類;ジブチル錫ジアセテート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫ジアセチルアセトナート、オクチル酸錫又はステアリン酸錫など錫カルボン酸塩等が挙げられる。触媒は単独で使用しても良いし、2種以上併用しても良い。
  前記触媒の添加量に特に限定はないが、一般的には前記シラノール基または加水分解性シリル基を有する各々の化合物全量に対して、0.0001~10重量%の範囲で使用することが好ましく、0.0005~3重量%の範囲で使用することがより好ましく、0.001~1重量%の範囲で使用することが特に好ましい。
 また、供給する水の量は、前記シラノール基または加水分解性シリル基を有する各々の化合物が有するシラノール基または加水分解性シリル基1モルに対して0.05モル以上が好ましく、0.1モル以上がより好ましく、特に好ましくは、0.5モル以上である。
これらの触媒及び水は、一括供給でも逐次供給であってもよく、触媒と水とを予め混合したものを供給しても良い。
  前記(方法1)~(方法3)における加水分解縮合反応を行う際の反応温度は、0℃~150℃の範囲が適切であり、好ましくは、20℃~100℃の範囲内である。また、反応の圧力としては、常圧、加圧下又は減圧下の、いずれの条件においても行うことができる。また、前記加水分解縮合反応において生成しうる副生成物であるアルコールや水は、必要に応じ蒸留などの方法により除去してもよい。
 前記(方法1)~(方法3)における各々の化合物の仕込み比率は、所望とする本発明で使用する複合樹脂(A)の構造により適宜選択される。中でも、得られる塗膜の耐久性が優れることから、ポリシロキサンゼグメント(a1)の含有率が30~80重量%となるよう複合樹脂(A)を得るのが好ましく、30~75重量%が更に好ましい。
 前記(方法1)~(方法3)において、ポリシロキサンセグメントとビニル系重合体セグメントをブロック状に複合化する具体的な方法としては、ポリマー鎖の片末端あるいは両末端のみに前記したシラノール基および/または加水分解性シリル基を有するような構造のビニル系重合体セグメントを中間体として使用し、例えば、(方法1)であれば、当該ビニル系重合体セグメントに、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる方法が挙げられる。
 一方、前記(方法1)~(方法3)において、ビニル系重合体セグメントに対してポリシロキサンセグメントをグラフト状に複合化させる具体的な方法としては、ビニル系重合体セグメントの主鎖に対し、前記したシラノール基および/または加水分解性シリル基をランダムに分布させた構造を有するビニル系重合体セグメントを中間体として使用し、例えば、(方法2)であれば、当該ビニル系重合体セグメントが有するシラノール基および/または加水分解性シリル基と、前記したポリシロキサンセグメントが有するシラノール基および/または加水分解性シリル基とを加水分解縮合反応をさせる方法を挙げることができる。
(ポリイソシアネート(B))
本発明の封止材は、ポリイソシアネート(B)を、硬化性樹脂組成物の全固形分量に対して5~50重量%含有する。
 ポリイソシアネートを該範囲含有させることで、屋外における長期耐候性、特に耐クラック性に優れる。また、デバイスの冷熱サイクル試験、もしくは実使用上の冷熱サイクル環境下においての、熱膨張、収縮に伴う寸法変化するような応力が働いても形状の保持が可能になる。
これは、ポリイソシアネートと系中の水酸基(これは、前記ビニル系重合体セグメント(a2)中の水酸基や後述のアルコール性水酸基を有する活性エネルギー線硬化性モノマー中の水酸基である)とが反応して、ソフトセグメントであるウレタン結合が形成され、重合性二重結合由来の硬化による応力の集中を緩和させる働きをするのではと推定している。
 ポリイソシアネート(B)の含有量が、硬化性樹脂組成物の全固形分量に対して5重量%未満の場合、当該組成物から得られる樹脂硬化物に、屋外での長期曝露においてクラックが発生するという問題点が発生する。一方、ポリイソシアネート(B)の含有率が、硬化性樹脂組成物の全固形分量に対して50重量%を超えて高い場合、硬化物の硬化性が低下し、なおも悪い場合には表面に粘着性が残留する恐れがある。
 使用するポリイソシアネート(B)としては特に限定はなく公知のものを使用することができるが、トリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート等の芳香族ジイソシアネート類や、メタ-キシリレンジイソシアネート、α,α,α’,α’-テトラメチル-メタ-キシリレンジイソシアネート等のアラルキルジイソシアネート類を主原料とするポリイソシアネートは、長期屋外曝露での封止材が黄変するという耐光性に問題点が生じるため使用量を最小限にすることが好ましい。
 屋外での長期使用という観点から、本発明で用いるポリイソシアネートとしては、脂肪族ジイソシアネートを主原料とする脂肪族ポリイソシアネートが好適である。脂肪族ジイソシアネートとしては、例えば、テトラメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート(以下「HDI」と略す)、2,2,4-(又は、2,4,4-トリメチル-1,6-ヘキサメチレンジイソイシアネート、リジンイソシアネート、イソホロンジイソシアネート、水添キシレンジイソシアネート、水添ジフェニルメタンジイソシアネート、1,4-ジイソシアネートシクロヘキサン、1,3-ビス(ジイソシアネートメチル)シクロヘキサン、4,4’-ジシクロヘキシルメタンジイソシアネート等が挙げられる。中でも、耐クラック性とコストの観点からHDIが特に好適である。
 脂肪族ジイソシアネートから得られる脂肪族ポリイソシアネートとしては、アロファネート型ポリイソシアネート、ビウレット型ポリイソシアネート、アダクト型ポリイソシアネート及びイソシアヌレート型ポリイソシアネートが挙げられるが、いずれも好適に使用することができる。
  なお、前記したポリイソシアネートとしては、種々のブロック剤でブロック化された、いわゆるブロックポリイソシアネート化合物を使用することもできる。ブロック剤としては、例えばメタノール、エタノール、乳酸エステル等のアルコール類;フェノール、サリチル酸エステル等のフェノール性水酸基含有化合物類;ε-カプロラクタム、2-ピロリドン等のアマイド類;アセトンオキシム、メチルエチルケトオキシム等のオキシム類;アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等の活性メチレン化合物類等を使用することができる。
 前記ポリイソシアネート(B)中のイソシアネート基は、ポリイソシアネートの全固形分量に対し3~30重量%であることが、樹脂硬化物の耐クラック性と耐候性の点から好ましい。(B)中のイソシアネート基が3%より少ないと、ポリイソシアネートの反応性が低く、また30%を超えて多い場合、ポリイソシアネートの分子量が小さくなり、いずれの場合においても応力緩和が発現しなくなるので、注意が必要である。
ポリイソシアネートと系中の水酸基(これは、前記ビニル系重合体セグメント(a2)中の水酸基や後述のアルコール性水酸基を有する活性エネルギー線硬化性モノマー中の水酸基である)との反応は、特に加熱等は必要なく、例えば硬化形態がUVである場合には、塗装、UV照射後室温に放置することで徐徐に反応していく。また必要に応じて、UV照射後、80℃で数分間~数時間(20分~4時間)加熱して、アルコール性水酸基とイソシアネートの反応を促進してもよい。その場合は、必要に応じて公知のウレタン化触媒を使用してもよい。ウレタン化触媒は、所望する反応温度に応じて適宜選択する。
(封止材)
 本発明の封止材は、前述の通り重合性二重結合を有するので、紫外線等の活性エネルギー線もしくは熱により硬化可能である。また両方を含むことも可能である。以下本発明の具体的態様として紫外線硬化及び熱硬化させる場合の例について述べる。
 本発明の封止材を紫外線硬化させる場合には、光重合開始剤を使用することが好ましい。光重合開始剤としては公知のものを使用すればよく、例えば、アセトフェノン類、ベンジルケタール類、ベンゾフェノン類からなる群から選ばれる一種以上を好ましく用いることができる。前記アセトフェノン類としては、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン等が挙げられる。前記ベンジルケタール類としては、例えば、1-ヒドロキシシクロヘキシル-フェニルケトン、ベンジルジメチルケタール等が挙げられる。前記ベンゾフェノン類としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル等が挙げられる。前記ベンゾイン類等としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。光重合開始剤(B)は単独で使用しても良いし、2種以上を併用してもよい。
  前記光重合開始剤(B)の使用量は、前記複合樹脂(A)100重量%に対して、1~15重量%が好ましく、2~10重量%がより好ましい。
 また、紫外線硬化させる場合は、必要に応じて多官能(メタ)アクリレートを含有するのが好ましい。多官能(メタ)アクリレートは、前述の通り、ポリイソシアネート(B)と反応させることからアルコール性水酸基を有するものが好ましい。例えば、1,2-エタンジオールジアクリレート、1,2-プロパンジオールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、ジプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリス(2-アクリロイルオキシ)イソシアヌレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジ(トリメチロールプロパン)テトラアクリレート、ジ(ペンタエリスリトール)ペンタアクリレート、ジ(ペンタエリスリトール)ヘキサアクリレート等の1分子中に2個以上の重合性2重結合を有する多官能(メタ)アクリレート等が挙げられる。また、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート等も多官能アクリレートとして例示することができる。これらは単独で使用しても良いし、2種以上併用しても良い。
 特に、樹脂硬化物の硬度の観点と、ポリイソシアネートとの反応による応力緩和の観点から、ペンタエリスリトールトリアクリレート及びジペンタエリスリトールペンタアクリレートが好ましい。
 また、前記多官能(メタ)アクリレートに併用して、単官能(メタ)アクリレートを併用することもできる。例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性ヒドロキシ(メタ)アクリレート(例えばダイセル化学工業(株)製商品名「プラクセル」)、フタル酸とプロピレングリコールとから得られるポリエステルジオールのモノ(メタ)アクリレート、コハク酸とプロピレングリコールとから得られるポリエステルジオールのモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、各種エポキシエステルの(メタ)アクリル酸付加物、等の水酸基含有(メタ)アクリル酸エステル;(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、などのカルボキシル基含有ビニル単量体;ビニルスルホン酸、スチレンスルホン酸、スルホエチル(メタ)アクリレートなどのスルホン酸基含有ビニル単量体;2-(メタ)アクリロイルオキシエチルアシッドホスフェート、2-(メタ)アクリロイルオキシプロピルアシッドホスフェート、2-(メタ)アクリロイルオキシ-3-クロロ-プロピルアシッドホスフェート、2-メタクリロイルオキシエチルフェニルりん酸などの酸性りん酸エステル系ビニル単量体;N-メチロール(メタ)アクリルアミドなどのメチロール基を有するビニル単量体等を挙げることができる。これらは1種又は2種以上を用いることができる。多官能イソシアネート(b)のイソシアネート基との反応性を考慮すると、単量体(c)としては、水酸基を有する(メタ)アクリル酸エステルが特に好ましい。
  前記多官能(メタ)アクリレート(C)を用いる場合の使用量としては、本発明の封止材の全固形分量に対して1~85重量%が好ましく、5~80重量%がより好ましい。前記多官能アクリレートを前記範囲内で使用することによって、得られる樹脂硬化物の硬度等を改善することができる。
(活性エネルギー線)
 本発明の封止材を活性エネルギー線硬化させる際に使用する活性エネルギー線としては、電子線、紫外線、赤外線等が挙げられるが、紫外線が簡便であり好ましい。紫外線硬化させる際に使用する光は、例えば、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、キセノンランプ、アルゴンレーザー、ヘリウム・カドミウムレーザー等を使用することができる。これらを用いて、約180~400nmの波長の紫外線を、硬化性樹脂組成物に照射することによって、硬化させることが可能である。紫外線の照射量としては、使用される光重合開始剤の種類及び量によって適宜選択される。
 紫外線硬化させる際に使用する光は、例えば、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、キセノンランプ、アルゴンレーザー、ヘリウム・カドミウムレーザー等を使用することができる。これらを用いて、約180~400nmの波長の紫外線を、紫外線硬化性樹脂組成物の塗布面に照射することによって、硬化させることが可能である。紫外線の照射量としては、使用される光重合開始剤の種類及び量によって適宜選択される。
 一方、本発明の封止材を熱硬化させる場合には、組成物中の重合性二重結合反応と、アルコール性水酸基とイソシアネートとのウレタン化反応との反応温度、反応時間等を考慮して、各々の触媒を選択することが好ましい。
また、熱硬化性樹脂を併用することも可能である。熱硬化性樹脂としては、ビニル系樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、エポキシエステル樹脂、アクリル樹脂、フェノール樹脂、石油樹脂、ケトン樹脂、シリコン樹脂あるいはこれらの変性樹脂等が挙げられる。
 その他、本発明の封止材には、透明性を確保できる範囲内において、必要に応じて無機顔料、有機顔料、体質顔料、粘土鉱物、ワックス、界面活性剤、安定剤、流動調整剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、又は可塑剤等の種々の添加剤等を使用することもできる。
 本発明の封止材は、含有する複合樹脂(A)がポリシロキサンセグメント(a1)とビニル系重合体セグメント(a2)の両方を有する為アクリル系の樹脂や活性エネルギー線硬化性モノマーも比較的相溶しやすい。そのため相溶性のよい組成物を得ることができる。
(発光ダイオード用封止材)
 本発明の封止材を発光ダイオード封止材として使用する場合は、蛍光体を配合しても良い。これにより、発光素子から放出される光を吸収し、波長変換を行い、発光素子の色調と異なる色調を有する発光ダイオードを提供することができる。発光ダイオードに使用される蛍光体は、主に、青色に発光する蛍光体、緑色に発光する蛍光体、黄色に発光する蛍光体、赤色に発光する蛍光体の少なくともいずれか1以上の蛍光体を使用することができる。これらの蛍光体は、本発明に係る発光ダイオード封止材中に投入し、ほぼ均一になるまで混合する。この混合物を、発光素子の周辺部に載置する。この蛍光体は、発光素子から放出される光を吸収し、波長変換を行い、発光素子の光と異なる波長の光を放出する。これにより、発光素子から放出される光の一部と、蛍光体から放出される光の一部とが混合して、白色を含む多色系の発光ダイオードを作製することができる。
 また、組成物を硬化させる際の硬化収縮率を低減させ、クラックや部品の精密な形状、寸法を設計通りに再現させたり、耐熱性や熱伝導率の向上を発現させる目的で、ガラス、アルミナ、水酸化アルミニウム、溶融シリカ、結晶性シリカ、超微粉無定型シリカや疎水性超微粉シリカ、タルク、クレー、硫酸バリウム等の無機微粒子を配合してもよい。
 本発明の封止材は、特に低波長の光に対する耐光性に優れているので、赤色、緑色および青色など多種の発光ダイオードの封止材として使用することができる。中でも、短波長領域の光に対する耐光性をより必要とする白色発光ダイオードの封止材として優れた機能を発揮する。
 また、本発明の封止材は、耐光性だけでなく、耐熱性及び耐湿熱性にも優れるため、温度や湿度の変化が激しい屋外用途でも、好適に使用することができる。
 本発明の封止材を使用して発光ダイオードを製造する場合は、公知の方法で行えばよい。例えば、本発明の発光ダイオード封止材によって発光素子を被覆することによって発光ダイオードを得ることができる。 
 前記発光素子としては特に限定されず、発光ダイオードに用いられ得る発光素子を用いることができる。例えば、サファイヤ基板上に窒化物系化合物半導体等の半導体材料を積層して作製したものが挙げられる。   
 前記発光素子の発光波長は紫外域から赤外域まで特に限定されないが、主発光ピーク波長が550nm 以下のものを用いた場合に本発明の効果が特に顕著である。前記発光素子は一種類を用いて単色発光させてもよいし、複数を用いて単色又は多色発光させてもよい。   
 前記被覆とは、前記発光素子を直接封止するものに限らず、間接的に被覆する場合も含む。具体的には、前記発光素子を本発明の封止材で直接、従来用いられる種々の方法で封止してもよいし、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂等の封止樹脂やガラスで発光素子を封止した後に、その上あるいは周囲を本発明の封止材で被覆してもよい。また、前記発光素子を本発明の封止材で封止した後、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂等でモールディング(封止ともいう)してもよい。これらの方法によって、屈折率や比重の差を利用してレンズ効果等の種々の効果を持たせることも可能である。   
 封止の方法としても各種方法を適用することができる。例えば、底部に発光素子を配置させたカップ、キャビティ、パッケージ凹部等に液状の封止材をディスペンサーその他の方法にて注入して加熱等により硬化させてもよいし、固体状あるいは高粘度液状の封止材を加熱する等して流動させ同様にパッケージ凹部等に注入してさらに加熱する等して硬化させてもよい。前記パッケージは種々の材料を用いて作成することができ、例えば、ポリカーボネート樹脂、ポリフェニレンスルフィド樹脂、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、ABS樹脂、ポリブチレンテレフタレート樹脂、ポリフタルアミド樹脂等を挙げることができる。また、モールド型枠中に封止材をあらかじめ注入し、そこに発光素子が固定されたリードフレーム等を浸漬した後硬化させる方法も適用することができるし、発光素子を挿入した型枠中にディスペンサーによる注入、トランスファー成形、射出成形等により封止材による封止層を成形、硬化させてもよい。単に液状または流動状態とした封止材を発光素子状に滴下あるいはコーティングして硬化させてもよい。発光素子上に孔版印刷、スクリーン印刷、あるいはマスクを介して塗布すること等により封止材を成形させて硬化させることもできる。あらかじめ板状、あるいはレンズ形状等に部分硬化あるいは硬化させた封止材を発光素子上に固定する方法によってもよい。さらには、発光素子をリード端子やパッケージに固定するダイボンド剤として用いることもできるし、発光素子上のパッシベーション膜として用いることもできる。また、パッケージ基板として用いることもできる。   
 さらに、適用する発光ダイオードの形状は、特には限定されず、用途に合わせて適宜選択することができる。具体的には、照明器具などで採用されている砲弾型や表面実装型などが挙げられる。  
(太陽電池用封止材)
 本発明の封止材を太陽電池用封止材として使用する場合は、特に制限はないが、液状の封止材を、単結晶、多結晶のシリコンセル(結晶系シリコンセル)、アモルファスシリコン、化合物半導体(薄膜系セル)等の太陽電池上に塗布して使用する方法や、予めシート化したものを封止材として前記太陽電池を挟み込み、ガラスやバックシートでさらに外部を被覆して熱処理を施すことによりシート化した封止材を溶融し、全体を一体化封止(モジュール化)する方法等が上げられる。中でも、予めシート化した封止材(以下封止シートと称す)が、モジュール化工程が簡便で安定に太陽電池モジュールを供給できることから好ましい。
 本発明の封止材をシート化する方法としては、公知の方法が挙げられるが、例えば樹脂を押出機で溶融し、ダイより溶融樹脂を押出し、急冷固化して原反を得る方法が一般的である。押出機としては、Tダイ、環状ダイ等が用いられる。樹脂封止シートが多層構造である場合には、環状ダイが好ましい。   
 原反の表面には、最終的に目的とする樹脂封止シートの形態に応じてエンボス加工処理を施してもよい。例えば、両面にエンボス加工処理を行う場合には、2本の加熱エンボスロール間に、片面エンボス加工処理を行う場合には、片方のみ加熱されたエンボスロール間に、前記原反を通過させることによりエンボス加工処理を施すことができる。   
 また、多層構造としたい場合は、多層Tダイ法、多層サーキュラーダイ法等を選択できる。その他公知のラミネート方法によって多層構造を形成してもよい。   
 前記封止シートは、アルコール性水酸基とイソシアネートとのウレタン化反応とを予め一部反応させ、ゲル状としておくことが好ましい。具体的には、ウレタン化反応が進む40℃~100℃位の雰囲気下で数時間養生させることが好ましい。
 また、必要に応じて任意の後処理を行ってもよい。後処理としては、例えば、寸法安定化を図るヒートセット、コロナ処理、プラズマ処理や、他の樹脂封止シート等とのラミネーション等が挙げられる。 
(太陽電池モジュール)
 前記方法で得た太陽電池用封止シートを使用する場合の、太陽電池モジュールの具体的態様の一例を図1に示す。なお本発明はここでは記載していない様々な実施形態等を含むことは勿論である。
 図1において示される太陽電池モジュールは、太陽電池用受光面側保護シート1、第1封止材2、電池群3、第2封止材4、太陽電池用保護シート5が順次積層されることによって構成される。
 第1封止材2及び第2封止材4は、太陽電池用受光面側保護シート1と電池用保護シート5との間で、太陽電池群3を封止する。
 従って、第1封止材2及び第2封止材4は所定の架橋温度以上に加熱されることにより、軟化された後、架橋が開始される。
 封止して太陽電池モジュールを作製する方法としては特に制限はないが、具体的には真空ラミネータを使用して、封止材及び太陽電池セルなどの材料を型の中に積層し、その後真空プレスを行うことにより、太陽電池を作製することができる。
 太陽電池群3は、前述の通り、複数の、単結晶、多結晶のシリコンセル(結晶系シリコンセル)、アモルファスシリコン、化合物半導体(薄膜系セル)等からなる太陽電池と配線材とを有する。複数の太陽電池は配線材により互いに電気的に接続される。
 その後、ラミネート装置でラミネートした第1封止材2と第2封止材4を加熱により本硬化させることで、太陽電池モジュールを得ることができる。
 次に、本発明を、実施例及び比較例により具体的に説明をする。例中断りのない限り、「部」「%」は重量基準である。
 (合成例1〔ポリシロキサン(a1-1)の調整例〕)
 攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、メチルトリメトキシシラン(MTMS) 415部、3-メタクリロイルオキシプロピルトリメトキシシラン(MPTS)756部を仕込んで、窒素ガスの通気下、攪拌しながら、60℃まで昇温した。次いで、「A-3」〔堺化学(株)製のiso-プロピルアシッドホスフェート〕 0.1部と脱イオン水 121部からなる混合物を5分間で滴下した。滴下終了後、反応容器中を80℃まで昇温し、4時間攪拌することにより加水分解縮合反応を行い、反応生成物を得た。
 得られた反応生成物中に含まれるメタノールおよび水を、1~30キロパスカル(kPa)の減圧下、40~60℃の条件で除去することにより、数平均分子量が1000で、有効成分が75.0%であるポリシロキサン(a1-1) 1000部を得た。
尚、「有効成分」とは、使用したシランモノマーのメトキシ基が全て加水分解縮合反応した場合の理論収量(重量部)を、加水分解縮合反応後の実収量(重量部)で除した値、即ち、〔シランモノマーのメトキシ基が全て加水分解縮合反応した場合の理論収量(重量部)/加水分解縮合反応後の実収量(重量部)〕の式により算出したものである。
 (合成例2〔ビニル系重合体(a2-1)の調製例〕)
 合成例1と同様の反応容器に、フェニルトリメトキシシラン(PTMS) 20.1部、ジメチルジメトキシシラン(DMDMS) 24.4部、イソプロパノール 44.7部を仕込んで、窒素ガスの通気下、攪拌しながら、80℃まで昇温した。次いで、n-ブチルメタクリレート(BMA) 67.0部、2-エチルヘキシルメタクリレート(EHMA) 97.5部、ブチルアクリレート 83部、アクリル酸(AA) 3.8部、MPTS 11.25部、2-ヒドロキシエチルメタクリレート(HEMA) 112.5部、tert-ブチルパーオキシ-2-エチルヘキサノエート(TBPEH) 56.3部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「A-3」 0.05部と脱イオン水 12.8部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、1H-NMRで分析したところ、前記反応容器中のシランモノマーが有するトリメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物であるビニル系重合体(a2-1)が得られた。
 (合成例3〔複合樹脂(A-1)の調製例〕)
 前記合成例2で得たビニル系重合体(a2-1)345.7部に、BMA 148.2部、合成例1で得られたポリシロキサン(a1-1) 162.5部を添加して、5分間攪拌したのち、脱イオン水 27.5部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。さらに得られた反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留を行い、生成したメタノール及び水を除去することにより、不揮発分が72%である、ポリシロキサンセグメント(a1-1)とビニル系重合体セグメント(a2-1)とを有する複合樹脂(A-1) 600部を得た。
 (合成例4[複合樹脂A-2の調製例])
 前記合成例2で得たビニル系重合体(a2-1)307部に、BMA 148.2部、合成例1で得られたポリシロキサン(a1-1) 562.5部を添加して、5分間攪拌したのち、脱イオン水 27.5部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。さらに得られた反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留を行い、生成したメタノール及び水を除去することにより、不揮発分が72%である、ポリシロキサンセグメント(a1-1)とビニル系重合体セグメント(a2-1)とを有する複合樹脂(A-2) 857部を得た。
(実施例1-13)
 実施例として、以下記述する操作を行い、表1~表8に配合と結果を示した。
(熱硬化による発光ダイオード封止材用硬化物の作製)
 前述合成例で得られた複合樹脂を使用し、表1及び表2の「組成物の配合」に従って各種原料を配合することにより、発光ダイオード封止材用樹脂組成物を作製した。なお熱硬化用の発光ダイオード封止材は、実施例1~6が該当する。
 続いて以下の方法にて、封止材を注入する容器(図2参照)を作製した。
 まず、シリコンモールドのスペーサー7(縦5cm、横5cm、高さ2mm)をガラス8、ガラス9(ガラス8、ガラス9の大きさはそれぞれ、縦10cm、横10cm、厚さ4mm)と、PETフィルム10、PETフィルム11とで挟持させた。ガラス8とスペーサー7の間にPETフィルム10を、ガラス9とスペーサー7の間にPETフィルム11をそれぞれ配置した。
 次に、スペーサー7の内部に、作製した発光ダイオード封止材用樹脂組成物を流し込み、ガラス8、ガラス9をジグ(図示せず。)で固定した(得られた型を型13とする)。続いて型13を150℃のオーブンに投入し、5分間加熱することにより、流し込んだ発光ダイオード封止材用樹脂組成物を硬化させた。その後硬化物12を型から外し、厚さ2mmの硬化物(C-1)~(C-6)、(HC-1)~(HC-4)を得た。
(紫外線硬化による発光ダイオード封止材用硬化物の作製)
 前述合成例で得られた複合樹脂を使用し、表1及び表2の「組成物の配合」に従って各種原料を配合することにより、発光ダイオード封止材用樹脂組成物を作製した。なお紫外線硬化用の発光ダイオード封止材は、実施例7が該当する。
前述の、熱硬化による発光ダイオード封止材用硬化物の作製で使用した封止材を注入する容器(図2参照)と同じ容器へ、発光ダイオード封止材用樹脂組成物を注入し、その容器ごとFUSION製UV照射装置F-6100Vにて1000mJ/cmの条件で組成物を硬化させた。その後硬化物を型から外し、厚さ2mmの硬化物(C-7)を作製した。
(太陽電池封止材用シート状樹脂組成物の作製)
 前述合成例で得られた複合樹脂を使用し、表1及び表2の「組成物の配合」に従って各種原料を配合することにより、太陽電池封止材用樹脂組成物を作製した。なお太陽電池封止材用樹脂組成物は、実施例1~6が該当する。
角型ステンレス容器中に太陽電池封止材用樹脂組成物を入れ、80℃のオーブンの中に1時間投入することにより、ゲル状とした。その後該ゲル状の太陽電池封止材用樹脂組成物を70℃でカレンダ成形し、放冷して太陽電池封止材用シート状樹脂組成物(PC-1)~(PC-6)、及び(HPC-1)~(HPC-4)(厚さ0.6mm)を作製した。
(太陽電池モジュールの作製)
 ラミネート装置(日清紡メカトロニクス製)の熱板を150℃に調整し、その熱板の上に、白板強化ガラス、前記太陽電池封止材用シート状樹脂組成物、多結晶シリコン型太陽電池セル、前記太陽電池封止材用シート状樹脂組成物、バックシートとして厚み500μmのPFAフィルムを、その順に重ね合わせ、ラミネート装置の蓋を閉じた状態で、脱気3分、プレス8分を順に行い、その後10分間保持してから取り出し、スーパーストレート型太陽電池モジュール(SM-1)~(SM-6)、及び(HSM-1)~(HSM-4)とした。
(発光ダイオードの作成・熱硬化型封止材)
 InGaN系発光素子を搭載した図3に示すような発光ダイオードを作成した。
 図の1が樹脂ケース、2がリード電極、3が発光素子、4が封止材、5が金線である。
 前述合成例で得られた複合樹脂を使用し、表1及び表2の「組成物の配合」実施例2,3、比較例2,3に従って、各種原料を配合することにより、熱硬化用の発光ダイオード用封止材樹脂組成物を作成した。これを硬化物の厚みが0.5~1.0mmになるよう樹脂ケース(PPA:ポリフタルアミド製)に流し込み、150℃のオーブンで、5分間加熱し硬化させ、発光ダイオード(M-1)~(M-2)、(HM-1)~(HM-2)を作製した。
(発光ダイオードの作成・紫外線硬化型封止材)
 InGaN系発光素子を搭載した図3に示すような発光ダイオードを作成した。実施例7に従って作製したUV硬化用の発光ダイオード用封止材樹脂組成物を、硬化物の厚みが0.5~1.0mmになるよう樹脂ケース(PPA:ポリフタルアミド製)に流し込み、Fusion製UV照射装置F-6100Vにて1000mJ/cmで硬化させ、発光ダイオード(M-3)を作製した。
(評価方法)
(硬化性の評価)
 前述で得られた硬化物(C-1)~(C-7)、(HC-1)~(HC-4)の表面に10cm×1cm×厚み2mmのPP板を押し付け、その後板を持ち上げたときのPP板と硬化物との密着性を評価した。硬化性が良好で密着しない状態を○、硬化性が悪くPP板に付着し浮き上がる様子が観察されたものを×とした。
(耐光性:促進耐光試験後の黄変度評価)
 前述の方法により作製された硬化物(C-1)~(C-7)、(HC-1)~(HC-4を、紫外線劣化促進試験機(アイスーパーUVテスター SUV-W131:岩崎電気(株)製)を用いて、UV照射強度100mW/cmとして促進耐光試験を行った。促進試験200時間実施前後での、硬化物の黄変度の評価を、グレタグマクベス社製の色彩色差計を用いてLab表示色の黄色味を示すb値を測定した。試験前後でのb値の差分Δbが0-0.5の時を◎、0.5-1の時を○、1-5の時を△、5以上の値を示すときを×として、黄変度の評価を行った。
結果を表3~表4に示す。
(耐クラック性:熱衝撃試験)
 上記の硬化物(C-1)~(C-7)、(HC-1)~(HC-4)をエスペック社小型冷熱衝撃装置TSE-11に入れ、-40℃×15分-120℃×15分の1サイクルを10サイクル行い、発生したクラックの様子を目視により評価した。評価結果を表3に示す。クラック発生が見られなかったものを○、クラック発生が見られたものを×、割れが見られたものを××とした。
(評価方法 太陽電池モジュールの発電効率評価)
上記で得られた太陽電池モジュール(SM-1)~(SM-6)、及び(HSM-1)~(HSM-4)、の各々を、ワコム電創製ソーラーシミュレータを使用して、モジュール温度25℃、放射強度1kW/m、分光分布AM1.5Gの条件にて、発電効率を測定した。
結果を表5~表6に示す。
(発光ダイオードの耐光性:促進耐光試験後の外観評価)
 前述の方法により作製した発光ダイオード(M-1)~(M-3)、(HM-1)~(HM-2)を紫外線劣化促進試験機(アイスーパーUVテスター SUV-W131:岩崎電気(株)製)を用いて、UV照射強度100mW/cmで促進耐光試験を行った。促進試験200時間実施後、封止材部分に、われ、クラックがなく、樹脂ケースから剥がれていないものを○、われ、クラックが1~2本あるものを△、われ、クラックが多数あるかまたは樹脂ケースから剥がれたものを×とした。結果を表7~表8に示す。
(発光ダイオードの耐熱性評価)
 前述の方法により作製した発光ダイオード(M-1)~(M-3)、(HM-1)~(HM-2)を120℃常湿度下(FineOven DHS72:ヤマト科学株式会社)にて500h保存後、外観、黄変について評価した。評価方法は、外観については、封止材部分に、われ、クラックがなく、樹脂ケースから剥がれていないものを○、われ、クラックが1~2本あるものを△、われ、クラックが多数あるかまたは樹脂ケースから剥がれたものを×とした。また黄変については目視にて判断し黄変が確認できる時を×、黄変が確認できない時を○として評価した。結果を表7~表8に示す。
(発光ダイオードの耐湿熱性評価)
 前述の方法により作製した発光ダイオード(M-1)~(M-3)、(HM-1)~(HM-2)を恒温恒湿槽(LH20-11M:ナガノ科学機械製作所)で85℃85%RH 240h保存後、外観、黄変/白濁を評価した。評価方法は、外観については、封止材部分にわれ、クラックがなく、樹脂ケースから剥がれていないものを○、われ、クラックが1~2本あるものを△、われ、クラックが多数あるかまたは樹脂ケースから剥がれたものを×とした。また黄変/白濁については目視にて判断し黄変/白濁が確認できる時×、黄変/白濁が確認できない時○として評価した。結果を表7~表8に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
表1及び表2中の各種原料については、下記のとおりである。
希釈モノマー1;1,6-ヘキサンジオールジアクリレート
希釈モノマー2;メチルメタクリレート
熱重合開始剤;t-ブチルパーオキシベンゾエート
光重合開始剤;ジフェニル(2,4,6‐トリメトキシベンゾイル)ホスフィンオキシド
重合禁止剤;2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール
添加剤;3-メタクリロキシプロピルトリメトキシシラン
ポリイソシアネート;DIC(株)製 バーノックDN-902S
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
1:太陽電池用保護シート
2:第1封止材
3:太陽電池群
4:第2封止材
5:裏面側保護材
7:スペーサー
8:ガラス
9:ガラス
10:PETフィルム、
11:PETフィルム
12:硬化物
13:型
14:樹脂ケース
15:リード電極
16:発光素子
17:封止材
18:金線

Claims (5)

  1. 一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)とが、一般式(3)で表される結合により結合された複合樹脂(A)、及びポリイソシアネート(B)を含有し、前記ポリシロキサンセグメント(a1)の含有率が硬化性樹脂組成物の全固形分量に対して10~50重量%であり、且つ、前記ポリイソシアネート(B)の含有率が硬化性樹脂組成物の全固形分量に対して5~50重量%であることを特徴とする封止材。
    Figure JPOXMLDOC01-appb-C000001
           (1)
    Figure JPOXMLDOC01-appb-C000002

           (2)
    (一般式(1)及び(2)中、R、R及びRは、それぞれ独立して、-R-CH=CH、-R-C(CH)=CH、-R-O-CO-C(CH)=CH、及び-R-O-CO-CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1~6のアルキレン基を表す。)、炭素原子数が1~6のアルキル基、炭素原子数が3~8のシクロアルキル基、アリール基、または炭素原子数が7~12のアラルキル基を表し、R、R及びRの少なくとも1つは前記重合性二重結合を有する基である)
    Figure JPOXMLDOC01-appb-C000003

             (3)
    (一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする)
  2. 太陽電池用である請求項1に記載の封止材。
  3. 発光ダイオード用である請求項1に記載の封止材。
  4. 請求項1または2に記載の封止材を使用することを特徴とする太陽電池モジュール。
  5. 請求項1または3に記載の封止材を使用することを特徴とする、発光ダイオード。
PCT/JP2011/061841 2010-06-08 2011-05-24 封止材、太陽電池モジュール及び発光ダイオード WO2011155322A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127015963A KR101342034B1 (ko) 2010-06-08 2011-05-24 봉지재, 태양 전지 모듈 및 발광 다이오드
DE112011101961T DE112011101961T5 (de) 2010-06-08 2011-05-24 Dichtungsmaterial, Solarzellenmodul und Leuchtdiode
CN201180028632.3A CN102933678B (zh) 2010-06-08 2011-05-24 封装材料、太阳能电池组件及发光二极管
US13/577,690 US20130068304A1 (en) 2010-06-08 2011-05-24 Sealing material, solar cell module, and light-emitting diode
JP2011545579A JP4905613B2 (ja) 2010-06-08 2011-05-24 封止材、太陽電池モジュール及び発光ダイオード

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010130930 2010-06-08
JP2010-130930 2010-06-08

Publications (1)

Publication Number Publication Date
WO2011155322A1 true WO2011155322A1 (ja) 2011-12-15

Family

ID=45097930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061841 WO2011155322A1 (ja) 2010-06-08 2011-05-24 封止材、太陽電池モジュール及び発光ダイオード

Country Status (7)

Country Link
US (1) US20130068304A1 (ja)
JP (1) JP4905613B2 (ja)
KR (1) KR101342034B1 (ja)
CN (1) CN102933678B (ja)
DE (1) DE112011101961T5 (ja)
TW (1) TWI498383B (ja)
WO (1) WO2011155322A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125574A1 (ja) * 2012-02-21 2013-08-29 Dic株式会社 ガラス基材、及びガラス積層物
WO2014061630A1 (ja) * 2012-10-15 2014-04-24 Dic株式会社 耐熱材料及び耐熱部材
JP2015212360A (ja) * 2014-04-17 2015-11-26 パナソニックIpマネジメント株式会社 樹脂組成物およびその製造方法並びに半導体装置
JP2016507613A (ja) * 2012-12-21 2016-03-10 スリーエム イノベイティブ プロパティズ カンパニー 硬化性シルセスキオキサンポリマー、組成物、物品、及び方法
CN113286155A (zh) * 2012-02-29 2021-08-20 索尼公司 图像处理装置和方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521486B1 (ko) * 2010-06-08 2015-05-20 디아이씨 가부시끼가이샤 표면에 미세한 요철을 갖는 성형체 및 그 제조 방법
ITBO20130645A1 (it) * 2013-11-25 2015-05-26 Carlo Dallari Modulo fotovoltaico per la produzione di energia elettrica da energia solare
EP2924085B1 (en) 2014-03-28 2019-05-08 Samsung SDI Co., Ltd. Composition for encapsulation of organic light emitting diode and organic light emitting diode display manufactured using the same
KR20160082310A (ko) 2014-12-30 2016-07-08 코오롱인더스트리 주식회사 발광 다이오드 소자용 봉지재 조성물
KR101731495B1 (ko) * 2015-01-08 2017-04-28 한국과학기술연구원 폴리오르가노―실세스퀴옥산 및 파장변환제를 포함하는 코팅 조성물, 및 이를 이용한 파장변환 시트
US9617373B2 (en) * 2015-02-13 2017-04-11 LCY Chemical Corp. Curable resin composition, article, and method for fabricating the same
EP3185310B1 (en) * 2015-12-23 2019-02-20 Agfa-Gevaert A backsheet for a solar cell module
CN105514202A (zh) * 2016-01-28 2016-04-20 苏州佳亿达电器有限公司 太阳能光电板装配用的耐候型封装胶
US11123272B2 (en) * 2016-12-02 2021-09-21 Symrise Ag Cosmetic blends

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329175A (ja) * 2000-05-22 2001-11-27 Dainippon Ink & Chem Inc 水性硬化性樹脂組成物、水性塗料、塗装方法および塗装物
JP2003026927A (ja) * 2001-07-11 2003-01-29 Dainippon Ink & Chem Inc 水性樹脂組成物、水性樹脂組成物の製造方法、水性塗料、塗膜形成方法及び塗装物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840806A (en) * 1995-05-09 1998-11-24 Dainippon Ink And Chemicals, Inc. Curable resin compositions
JPH11279408A (ja) * 1997-06-02 1999-10-12 Dainippon Ink & Chem Inc 水性樹脂の製造法、水性硬化性樹脂組成物および水性塗料
JP4311099B2 (ja) 2003-06-30 2009-08-12 カシオ計算機株式会社 シーケンス制御データ生成装置及びプログラム
US20060035092A1 (en) * 2004-08-10 2006-02-16 Shin-Etsu Chemical Co., Ltd. Resin composition for sealing LED elements and cured product generated by curing the composition
WO2006095686A1 (ja) * 2005-03-08 2006-09-14 Dainippon Ink And Chemicals, Inc. 紫外線硬化性樹脂組成物及び紫外線硬化性塗料及び塗装物
JP5013127B2 (ja) 2007-12-19 2012-08-29 Jnc株式会社 熱硬化性樹脂組成物およびその用途
JP2009215345A (ja) 2008-03-07 2009-09-24 Central Glass Co Ltd 熱硬化性有機無機ハイブリッド透明封止材
EP2213697B1 (en) * 2008-05-22 2013-09-04 DIC Corporation Aqueous hybrid resin composition, coating preparation containing the same, and laminate therewith
EP2357208B1 (en) * 2008-12-11 2014-05-07 DIC Corporation Curable resin compositions, coatings, and laminated plastics including the same
CN102171037A (zh) * 2009-05-11 2011-08-31 Dic株式会社 光催化剂负载片材和光催化剂负载片材用底漆
CN102171279B (zh) * 2009-05-29 2013-06-05 Dic株式会社 经表面处理的基材、使用其的太阳能电池用受光面侧保护片、和太阳能电池组件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329175A (ja) * 2000-05-22 2001-11-27 Dainippon Ink & Chem Inc 水性硬化性樹脂組成物、水性塗料、塗装方法および塗装物
JP2003026927A (ja) * 2001-07-11 2003-01-29 Dainippon Ink & Chem Inc 水性樹脂組成物、水性樹脂組成物の製造方法、水性塗料、塗膜形成方法及び塗装物

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125574A1 (ja) * 2012-02-21 2013-08-29 Dic株式会社 ガラス基材、及びガラス積層物
CN113286155A (zh) * 2012-02-29 2021-08-20 索尼公司 图像处理装置和方法
CN113286155B (zh) * 2012-02-29 2022-12-13 索尼公司 图像处理装置和方法
WO2014061630A1 (ja) * 2012-10-15 2014-04-24 Dic株式会社 耐熱材料及び耐熱部材
JPWO2014061630A1 (ja) * 2012-10-15 2016-09-05 Dic株式会社 耐熱材料及び耐熱部材
JP2016507613A (ja) * 2012-12-21 2016-03-10 スリーエム イノベイティブ プロパティズ カンパニー 硬化性シルセスキオキサンポリマー、組成物、物品、及び方法
JP2015212360A (ja) * 2014-04-17 2015-11-26 パナソニックIpマネジメント株式会社 樹脂組成物およびその製造方法並びに半導体装置

Also Published As

Publication number Publication date
CN102933678B (zh) 2014-12-31
US20130068304A1 (en) 2013-03-21
TW201204787A (en) 2012-02-01
CN102933678A (zh) 2013-02-13
KR20120086356A (ko) 2012-08-02
TWI498383B (zh) 2015-09-01
JP4905613B2 (ja) 2012-03-28
DE112011101961T5 (de) 2013-03-21
JPWO2011155322A1 (ja) 2013-08-01
KR101342034B1 (ko) 2013-12-16

Similar Documents

Publication Publication Date Title
JP4905613B2 (ja) 封止材、太陽電池モジュール及び発光ダイオード
JP4985879B2 (ja) 表面に微細な凹凸を有する成形体及びその製造方法
KR101244349B1 (ko) 광촉매 담지 시트 및 광촉매 담지 시트용 프라이머
EP2289998B1 (en) White heat-curable silicone/epoxy hybrid resin composition for optoelectronic use, making method, premolded package, and LED device
JP5464051B2 (ja) 硬化性樹脂組成物、太陽電池用保護シート及び太陽電池モジュール
US20120103398A1 (en) Surface-treated substrate, light-receiving-side protective sheet for solar cell using the same, and solar cell module
TWI487747B (zh) 透明密封材組合物及光半導體元件
JP7456938B2 (ja) ホットメルト性を有する硬化性シリコーンシートの製造方法
JP2011236386A (ja) 接着剤、太陽電池用保護シート及び太陽電池モジュール
JP2021108319A (ja) 電子装置用基板の封止方法及び封止された電子装置用基板
KR101574249B1 (ko) 유-무기 하이브리드 공중합체, 그 제조 방법, 이를 제조하기 위한 조성물 및 이의 응용
JP5500355B2 (ja) 熱成形用加飾シート及び加飾成形品
WO2014061630A1 (ja) 耐熱材料及び耐熱部材
KR20160055155A (ko) 유기 규소 화합물 함유 열경화성 조성물 및 그의 경화물
JP2012007147A (ja) 表面処理された樹脂組成物による硬化物層を表面に有する基材、それを使用した太陽電池用受光面側保護シート、及び太陽電池モジュール
JP7495016B2 (ja) 活性エネルギー線硬化性樹脂組成物、硬化塗膜及び物品
JP2014047285A (ja) フッ素樹脂成形体用硬化性塗料組成物、及び積層硬化物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028632.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011545579

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127015963

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13577690

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011101961

Country of ref document: DE

Ref document number: 1120111019610

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792279

Country of ref document: EP

Kind code of ref document: A1