JP4905613B2 - 封止材、太陽電池モジュール及び発光ダイオード - Google Patents

封止材、太陽電池モジュール及び発光ダイオード Download PDF

Info

Publication number
JP4905613B2
JP4905613B2 JP2011545579A JP2011545579A JP4905613B2 JP 4905613 B2 JP4905613 B2 JP 4905613B2 JP 2011545579 A JP2011545579 A JP 2011545579A JP 2011545579 A JP2011545579 A JP 2011545579A JP 4905613 B2 JP4905613 B2 JP 4905613B2
Authority
JP
Japan
Prior art keywords
group
sealing material
meth
resin
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011545579A
Other languages
English (en)
Other versions
JPWO2011155322A1 (ja
Inventor
孝之 兼松
直人 矢木
尚志 谷本
朋子 宍倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2011545579A priority Critical patent/JP4905613B2/ja
Application granted granted Critical
Publication of JP4905613B2 publication Critical patent/JP4905613B2/ja
Publication of JPWO2011155322A1 publication Critical patent/JPWO2011155322A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1018Macromolecular compounds having one or more carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Silicon Polymers (AREA)
  • Sealing Material Composition (AREA)
  • Photovoltaic Devices (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、各種デバイス用封止材、特に、常に光に暴露されるような用途で使用される発光ダイオード用封止材や、太陽電池用封止材に関する。
近年、各種デバイスを保護する目的で、光を透過する透明樹脂が封止材として利用されている。例えば表示板、画像読み取り用光源、交通信号、大型ディスプレイ用ユニット、携帯電話のバックライト等に実用化されている発光ダイオード(LED)は、GaN(窒化ガリウム)系発光ダイオードのような青色から紫外光までの発光をする発光ダイオードに蛍光体を組み合わせたものや、赤・青・黄の3種の発光ダイオードを組み合わせたものなどがあり、これらは通常、化合物半導体チップと電極とが保護のために透明樹脂で封止されている。この透明樹脂としては、エポキシ樹脂、具体的には芳香族エポキシ樹脂に硬化剤として脂環式酸無水物を用いたものが一般的である。
しかしながらこの樹脂系は酸無水物が酸で変色しやすいことや、硬化に長時間を要することが知られている。また、硬化した封止樹脂が屋外に放置される場合や、紫外線を発生する光源に曝される場合に、封止樹脂の脆化や封止樹脂が黄変するという欠点を有している。
すなわち、発光ダイオードが紫外光を発光したり屋外で使用される場合、封止材であるエポキシ樹脂は、その骨格の一部が切断されたり、芳香環による黄変が生じ、発光ダイオードチップの周囲から次第に黄変する着色現象が発生し、発光装置の寿命が限定されるという欠点を有している。
一方、太陽光を直接電気エネルギーに変換する太陽電池用の封止材も、光を透過する透明樹脂が使用されている。
太陽電池は、一般に、受光面側透明保護部材と裏面側保護部材との間に、EVA(エチレン−酢酸ビニル共重合体であり、通常有機過酸化物との混合物である)フィルムの封止材でシリコン発電素子等の太陽電池用セルを封止した構成となっており、受光側透明保護部材、表面側に配置したシート状の封止材、太陽電池用セル、裏面側に配置したシート状の封止材、および裏面側保護部材をこの順で積層し、加熱加圧して、EVAを架橋硬化させて接着一体化することにより製造される。
太陽電池モジュールも屋外で使用されるため、使用する部材には高い耐久性、耐候性が要求される。特に太陽電池用封止材においては、長期使用時の封止材脆化、及び黄変を防止するために、通常紫外線吸収剤を封止材全体に均一に配合して使用しているが、封止材は厚膜であり紫外線吸収剤の効果を得るためには相当量の添加を必要とし、コスト増大の一因になっていた。
これらの封止材用樹脂として、シロキサン系樹脂を使用する例が知られている。例えば発光ダイオード用封止材としては、シルセスキオキサン誘導体を使用した例等が知られている(例えば特許文献1参照)。また太陽電池用封止材としては、メチル基およびフェニル基で修飾されたシロキサン重合体からなる主剤と有機金属化合物のうち少なくとも1種類以上を硬化剤とし混合した樹脂組成物をプラスチック基板および金属電極からなる被着体表面に塗布し、加熱硬化させる例が知られている(例えば特許文献2参照)。
特開2009−167390号公報 特開2009−215345号公報
本発明が解決しようとする課題は、屋外等の紫外線による長期暴露においても黄変が生じにくく、クラックも生じにくい、高い耐候性を有する各種デバイス用封止材を提供することにある。また、該封止材を使用した太陽電池モジュール、及び発光ダイオードを提供することにある。
本発明者らは、鋭意検討の結果、シラノール基及び/又は加水分解性シリル基、並びに重合性二重結合を有するポリシロキサンセグメントと、該ポリシロキサン以外の重合体セグメントとを有する複合樹脂に、ポリイソシアネートを特定の範囲で添加した硬化性樹脂組成物が、屋外における長期耐候性、具体的には耐クラック性と耐光性を有することを見出し、上記課題を解決した。
硬化性樹脂組成物中のポリシロキサンセグメントを特定の範囲内とすることで、高温加熱せずに紫外線などの活性エネルギー線で硬化せしめて得られた硬化物であっても、優れた耐久性の発現、及び温度変化に伴い発生する応力の緩和が可能となる。
すなわち本発明は、一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)とが、一般式(3)で表される結合により結合された複合樹脂(A)、及びポリイソシアネート(B)を含有し、前記ポリシロキサンセグメント(a1)の含有率が硬化性樹脂組成物の全固形分量に対して10〜50重量%であり、且つ、前記ポリイソシアネート(B)の含有率が硬化性樹脂組成物の全固形分量に対して5〜50重量%である封止材を提供する。
Figure 0004905613
(1)
Figure 0004905613

(2)
(一般式(1)及び(2)中、R、R及びRは、それぞれ独立して、−R−CH=CH、−R−C(CH)=CH、−R−O−CO−C(CH)=CH、及び−R−O−CO−CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1〜6のアルキレン基を表す。)、炭素原子数が1〜6のアルキル基、炭素原子数が3〜8のシクロアルキル基、アリール基、または炭素原子数が7〜12のアラルキル基を表し、R、R及びRの少なくとも1つは前記重合性二重結合を有する基である)
Figure 0004905613

(3)
(一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする)
また本発明は、前記封止材を使用する太陽電池モジュールを提供する。
また本発明は、前記封止材を使用する発光ダイオードを提供する。
本発明の封止材は、屋外等の紫外線による長期暴露においても黄変が生じにくく、クラックも生じにくい、高い耐候性を有する。また、本発明の封止材を使用した太陽電池モジュールは、高い耐光性・耐クラック性といった長期耐候性を有する。また、本発明の封止材を使用した発光ダイオードは、長期耐候性だけでなく、耐熱性及び耐湿熱性を有する。
:スーパーストレート型太陽電池モジュールの一例である。 :封止材を注入する容器を図示したものである。 :実施例で作成した発光ダイオードを図示したものである。
(複合樹脂(A))
本発明で使用する複合樹脂(A)は、前記一般式(1)および/または前記一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)(以下単にポリシロキサンセグメント(a1)と称す)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)(以下単にビニル系重合体セグメント(a2)と称す)とが、前記一般式(3)で表される結合により結合された複合樹脂(A)である。前記一般式(3)で表される結合は、得られる封止材の耐酸性及び耐アルカリ性に特に優れ好ましい。
Figure 0004905613

(3)
後述のポリシロキサンセグメント(a1)が有するシラノール基および/または加水分解性シリル基と、後述のビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基とが脱水縮合反応して、前記一般式(3)で表される結合が生じる。従って前記一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする。
複合樹脂(A)の形態は、例えば、前記ポリシロキサンセグメント(a1)が前記重合体セグメント(a2)の側鎖として化学的に結合したグラフト構造を有する複合樹脂や、前記重合体セグメント(a2)と前記ポリシロキサンセグメント(a1)とが化学的に結合したブロック構造を有する複合樹脂等が挙げられる。
(ポリシロキサンセグメント(a1))
本発明におけるポリシロキサンセグメント(a1)は、一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有すセグメントである。一般式(1)および/または一般式(2)で表される構造単位中には重合性二重結合を有する基が含まれている。
(一般式(1)および/または一般式(2)で表される構造単位)
前記一般式(1)および/または前記一般式(2)で表される構造単位は、重合性二重結合を有する基を必須成分として有している。
具体的には、前記一般式(1)及び(2)におけるR、R及びRは、それぞれ独立して、−R−CH=CH、−R−C(CH)=CH、−R−O−CO−C(CH)=CH、及び−R−O−CO−CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1〜6のアルキレン基を表す)、炭素原子数が1〜6のアルキル基、炭素原子数が3〜8のシクロアルキル基、アリール基または炭素原子数が7〜12のアラルキル基を表し、R、R及びRの少なくとも1つは前記重合性二重結合を有する基である。また前記Rにおける前記炭素原子数が1〜6のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、sec−ブチレン基、tert−ブチレン基、ペンチレン基、イソペンチレン基、ネオペンチレン基、tert−ペンチレン基、1−メチルブチレン基、2−メチルブチレン基、1,2−ジメチルプロピレン基、1−エチルプロピレン基、ヘキシレン基、イソヘシレン基、1−メチルペンチレン基、2−メチルペンチレン基、3−メチルペンチレン基、1,1−ジメチルブチレン基、1,2−ジメチルブチレン基、2,2−ジメチルブチレン基、1−エチルブチレン基、1,1,2−トリメチルプロピレン基、1,2,2−トリメチルプロピレン基、1−エチル−2−メチルプロピレン基、1−エチル−1−メチルプロピレン基等が挙げられる。中でもRは、原料の入手の容易さから単結合または炭素原子数が2〜4のアルキレン基が好ましい。
また、前記炭素原子数が1〜6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、1−メチルブチル基、2−メチルブチル基、1,2−ジメチルプロピル基、1−エチルプロピル基、ヘキシル基、イソヘシル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、2,2−ジメチルブチル基、1−エチルブチル基、1,1,2−トリメチルプロピル基、1,2,2−トリメチルプロピル基、1−エチル−2−メチルプロピル基、1−エチル−1−メチルプロピル基等が挙げられる。
また、前記炭素原子数が3〜8のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。また、前記アリール基としては、例えば、フェニル基、ナフチル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、4−ビニルフェニル基、3−イソプロピルフェニル基等が挙げられる。
また、前記炭素原子数が7〜12のアラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
また、R、R及びRの少なくとも1つは前記重合性二重結合を有する基であるとは、具体的には、ポリシロキサンセグメント(a1)が一般式(1)で表される構造単位のみを有する場合にはRが前記重合性二重結合を有する基であり、ポリシロキサンセグメント(a1)が一般式(2)で表される構造単位のみを有する場合にはR及び/又はRが前記重合性二重結合を有する基であり、ポリシロキサンセグメント(a1)が一般式(1)と一般式(2)で表される構造単位の両方を有する場合には、R、R及びRの少なくとも1つが重合性二重結合を有する基であることを示す。
前記一般式(1)および/または前記一般式(2)で表される構造単位は、ケイ素の結合手のうち2または3つが架橋に関与した、三次元網目状のポリシロキサン構造単位である。三次元網目構造を形成しながらも密な網目構造を形成しないので、製造時にゲル化等を生じることもなく、得られる複合樹脂の長期保存安定性も良好となる。
(シラノール基および/または加水分解性シリル基)
本発明においてシラノール基とは、珪素原子に直接結合した水酸基を有する珪素含有基である。該シラノール基は具体的には、前記一般式(1)および/または前記一般式(2)で表される構造単位の、結合手を有する酸素原子が水素原子と結合して生じたシラノール基であることが好ましい。
また本発明において加水分解性シリル基とは、珪素原子に直接結合した加水分解性基を有する珪素含有基であり、具体的には、例えば、一般式(4)で表される基が挙げられる。
Figure 0004905613

(4)
(一般式(4)中、Rはアルキル基、アリール基又はアラルキル基等の1価の有機基を、Rはハロゲン原子、アルコキシ基、アシロキシ基、フェノキシ基、アリールオキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基及びアルケニルオキシ基からなる群から選ばれる加水分解性基である。またbは0〜2の整数である。)
前記Rにおいて、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、1−メチルブチル基、2−メチルブチル基、1,2−ジメチルプロピル基、1−エチルプロピル基、ヘキシル基、イソヘシル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、2,2−ジメチルブチル基、1−エチルブチル基、1,1,2−トリメチルプロピル基、1,2,2−トリメチルプロピル基、1−エチル−2−メチルプロピル基、1−エチル−1−メチルプロピル基等が挙げられる。
またアリール基としては、例えば、フェニル基、ナフチル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、4−ビニルフェニル基、3−イソプロピルフェニル基等が挙げられる。
またアラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
前記Rにおいて、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、第二ブトキシ基、第三ブトキシ基等が挙げられる。
またアシロキシ基としては、例えば、ホルミルオキシ、アセトキシ、プロパノイルオキシ、ブタノイルオキシ、ピバロイルオキシ、ペンタノイルオキシ、フェニルアセトキシ、アセトアセトキシ、ベンゾイルオキシ、ナフトイルオキシ等が挙げられる。
またアリールオキシ基としては、例えば、フェニルオキシ、ナフチルオキシ等が挙げられる。
アルケニルオキシ基としては、例えば、ビニルオキシ基、アリルオキシ基、1−プロペニルオキシ基、イソプロペニルオキシ基、2−ブテニルオキシ基、3−ブテニルオキシ基、2−ペテニルオキシ基、3−メチル−3−ブテニルオキシ基、2−ヘキセニルオキシ基等が挙げられる。
前記Rで表される加水分解性基が加水分解されることにより、一般式(4)で表される加水分解性シリル基はシラノール基となる。加水分解性に優れることから、中でも、メトキシ基およびエトキシ基が好ましい。
また前記加水分解性シリル基は具体的には、前記一般式(1)および/または前記一般式(2)で表される構造単位の、結合手を有する酸素原子が前記加水分解性基と結合もしくは置換されている加水分解性シリル基であることが好ましい。
前記シラノール基や前記加水分解性シリル基は、活性エネルギー線や熱硬化による硬化物形成の際に、該硬化反応と平行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行するので、得られる硬化物のポリシロキサン構造の架橋密度が高まり、耐溶剤性などに優れる。
また、前記シラノール基や前記加水分解性シリル基を含むポリシロキサンセグメント(a1)と後述のアルコール性水酸基を有するビニル系重合体セグメント(a2)とを、前記一般式(3)で表される結合を介して結合させる際に使用する。
ポリシロキサンセグメント(a1)は、前記一般式(1)および/または前記一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有する以外は特に限定はなく、他の基を含んでいてもよい。例えば、
前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(1)におけるRがメチル等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、
前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(1)におけるRがメチル基等のアルキル基である構造単位と、前記一般式(2)におけるR及びRがメチル基等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、
前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(2)におけるR及びRがメチル基等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、特に限定はない。
具体的には、ポリシロキサンセグメント(a1)としては、例えば以下の構造を有するもの等が挙げられる。
Figure 0004905613
Figure 0004905613
Figure 0004905613
Figure 0004905613
Figure 0004905613

Figure 0004905613
Figure 0004905613
Figure 0004905613
Figure 0004905613
本発明においては、前記ポリシロキサンセグメント(a1)を硬化性樹脂組成物の全固形分量に対して10〜50重量%含むことが特徴であり、耐候性と優れたデバイス保護性能の性質を両立させることが可能となる。なお好ましくは、15〜40重量%である。
(アルコール性水酸基を有するビニル系重合体セグメント(a2))
本発明におけるビニル系重合体セグメント(a2)は、アルコール性水酸基を有するアクリル重合体、フルオロオレフィン重合体、ビニルエステル重合体、芳香族系ビニル重合体及びポリオレフィン重合体等のビニル重合体セグメントであり、中でもアルコール水酸基を有する(メタ)アクリルモノマーを共重合させたアクリル系重合体セグメントが、得られる樹脂硬化物の透明性や光沢に優れることから好ましい。
アルコール水酸基を有する(メタ)アクリルモノマーとしては、具体的には、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、ジ−2−ヒドロキシエチルフマレート、モノ−2−ヒドロキシエチルモノブチルフマレート、ポリエチレングルコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、「プラクセルFMもしくはプラクセルFA」〔ダイセル化学(株)製のカプロラクトン付加モノマー〕等の各種α、β−エチレン性不飽和カルボン酸のヒドロキシアルキルエステル類、またはこれらとε−カプロラクトンとの付加物、等が挙げられる。
中でも2−ヒドロキシエチル(メタ)アクリレートが、反応が容易であり好ましい。
前記アルコール性水酸基量は、後述のポリイソシアネート(B)の含有率が硬化性樹脂組成物の全固形分量に対して5〜50重量%の範囲であることから、実際のポリイソシアネート(B)の添加量から算出して適宜決定するのが好ましい。
また、後述の通り本発明においてはアルコール性水酸基を有する活性エネルギー線硬化性モノマーを併用してもより好ましい。従ってアルコール性水酸基を有するビニル系重合体セグメント(a2)中のアルコール性水酸基量は、併用するアルコール性水酸基を有する活性エネルギー線硬化性モノマーの量まで加味して決定することができる。実質的にはビニル系重合体セグメント(a2)の水酸基価に換算して30〜300の範囲となるように含有することが好ましい。
共重合可能な他の(メタ)アクリルモノマーとしては特に限定はなく、公知のモノマーを使用することが可能である。またビニルモノマーも共重合可能である。例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の炭素原子数が1〜22のアルキル基を有するアルキル(メタ)アクリレート類;ベンジル(メタ)アクリレート、2−フェニルエチル(メタ)アクリレート等のアラルキル(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類;2−メトキシエチル(メタ)アクリレート、4−メトキシブチル(メタ)アクリレート等のω−アルコキシアルキル(メタ)アクリレート類;スチレン、p−tert−ブチルスチレン、α−メチルスチレン、ビニルトルエン等の芳香族ビニル系モノマー類;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル等のカルボン酸ビニルエステル類;クロトン酸メチル、クロトン酸エチル等のクロトン酸のアルキルエステル類;ジメチルマレート、ジ−n−ブチルマレート、ジメチルフマレート、ジメチルイタコネート等の不飽和二塩基酸のジアルキルエステル類;エチレン、プロピレン等のα−オレフィン類;フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のフルオロオレフィン類;エチルビニルエーテル、n−ブチルビニルエーテル等のアルキルビニルエーテル類;シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル類;N,N−ジメチル(メタ)アクリルアミド、N−(メタ)アクリロイルモルホリン、N−(メタ)アクリロイルピロリジン、N−ビニルピロリドン等の3級アミド基含有モノマー類等が挙げられる。
前記モノマーを共重合させる際の重合方法、溶剤、あるいは重合開始剤にも特に限定はなく、公知の方法によりビニル系重合体セグメント(a2)を得ることができる。例えば、塊状ラジカル重合法、溶液ラジカル重合法、非水分散ラジカル重合法等の種々の重合法により、2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、tert−ブチルパーオキシピバレート、tert−ブチルパーオキシベンゾエート、tert−ブチルパーオキシ−2−エチルヘキサノエート、ジ−tert−ブチルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルパーオキシカーボネート等の重合開始剤を使用してビニル系重合体セグメント(a2)を得ることができる。
前記ビニル系重合体セグメント(a2)の数平均分子量としては、数平均分子量(以下Mnと略す)に換算して500〜200,000の範囲であることが好ましく、前記複合樹脂(A)を製造する際の増粘やゲル化を防止でき、且つ耐久性に優れる。Mnは中でも700〜100,000の範囲がより好ましく、1,000〜50,000の範囲がなお好ましい。
また前記ビニル系重合体セグメント(a2)は、前記ポリシロキサンセグメント(a1)と一般式(3)で表される結合により結合された複合樹脂(A)とするために、ビニル系重合体セグメント(a2)中の炭素結合に直接結合したシラノール基および/または加水分解性シリル基を有する。これらのシラノール基および/または加水分解性シリル基は、後述の複合樹脂(A)の製造において一般式(3)で表される結合となってしまうために、最終生成物である複合樹脂(A)中のビニル系重合体セグメント(a2)には殆ど存在しない。しかしながらビニル系重合体セグメント(a2)にシラノール基および/または加水分解性シリル基が残存していても何ら問題はなく、活性エネルギー線硬化による樹脂硬化物形成の際に、活性エネルギー線硬化反応と平行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行するので、ポリシロキサン構造の架橋密度が高まり、耐溶剤性などに優れた樹脂硬化物を形成することができる。
炭素結合に直接結合したシラノール基および/または加水分解性シリル基を有するビニル系重合体セグメント(a2)は、具体的には、前記アルコール水酸基を有する(メタ)アクリルモノマー、前記汎用モノマー、及び、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとを共重合させて得る。
炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとしては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルトリ(2−メトキシエトキシ)シラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、2−トリメトキシシリルエチルビニルエーテル、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリクロロシラン等が挙げられる。中でも、加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去することができることからビニルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。
(複合樹脂(A)の製造方法)
本発明で用いる複合樹脂(A)は、具体的には下記(方法1)〜(方法3)に示す方法で製造する。
(方法1)前記アルコール水酸基を有する(メタ)アクリルモノマー、前記汎用の(メタ)アクリルモノマー等、及び、前記炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとを共重合させて炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。これに、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる。
該方法においては、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物のシラノール基あるいは加水分解性シリル基と、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基とが加水分解縮合反応し、前記ポリシロキサンセグメント(a1)が形成されると共に、前記ポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)とが前記一般式(3)で表される結合により複合化された複合樹脂(A)が得られる。
(方法2)方法1と同様にして、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。
一方、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物を加水分解縮合反応させ、ポリシロキサンセグメント(a1)を得る。そして、ビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基と、とポリシロキサンセグメント(a1)とが有するシラノール基および/または加水分解性シリル基とを加水分解縮合反応をさせる。
(方法3)方法1と同様に、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。一方、方法2と同様にして、ポリシロキサンセグメント(a1)を得る。更に、重合性二重結合を併有するシラン化合物を含有するシラン化合物と、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる。
前記(方法1)〜(方法3)で使用する、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物としては、具体的には、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルトリ(2−メトキシエトキシ)シラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、2−トリメトキシシリルエチルビニルエーテル、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリクロロシラン等が挙げられる。中でも、加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去することができることからビニルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。
また、前記(方法1)〜(方法3)で使用する、汎用のシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−ブトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン、iso−ブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等の各種のオルガノトリアルコキシシラン類;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ−n−ブトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルシクロヘキシルジメトキシシランもしくはメチルフェニルジメトキシシラン等の、各種のジオルガノジアルコキシシラン類;メチルトリクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、ビニルトリクロロシラン、ジメチルジクロロシラン、ジエチルジクロロシランもしくはジフェニルジクロロシラン等のクロロシラン類が挙げられる。中でも、加水分解反応が容易に進行し、また反応後の副生成物を容易に除去することが可能なオルガノトリアルコキシシランやジオルガノジアルコキシシランが好ましい。
また、テトラメトキシシラン、テトラエトキシシランもしくはテトラn−プロポキシシランなどの4官能アルコキシシラン化合物や該4官能アルコキシシラン化合物の部分加水分解縮合物を、本発明の効果を損なわない範囲で併用することもできる。前記4官能アルコキシシラン化合物又はその部分加水分解縮合物を併用する場合には、前記ポリシロキサンセグメント(a1)を構成する全珪素原子に対して、該4官能アルコキシシラン化合物の有する珪素原子が、20モル%を超えない範囲となるように併用することが好ましい。
また、前記シラン化合物には、ホウ素、チタン、ジルコニウムあるいはアルミニウムなどの珪素原子以外の金属アルコキシド化合物を、本発明の効果を損なわない範囲で併用することもできる。例えば、ポリシロキサンセグメント(a1)を構成する全珪素原子に対して、上述の金属アルコキシド化合物の有する金属原子が、25モル%を超えない範囲で、併用することが好ましい。
前記(方法1)〜(方法3)における加水分解縮合反応は、前記加水分解性基の一部が水などの影響で加水分解され水酸基を形成し、次いで該水酸基同士、あるいは該水酸基と加水分解性基との間で進行する進行する縮合反応をいう。該加水分解縮合反応は、公知の方法で反応を進行させることができるが、前記製造工程で水と触媒とを供給することで反応を進行させる方法が簡便で好ましい。
使用する触媒としては、例えば、塩酸、硫酸、燐酸等の無機酸類;p−トルエンスルホン酸、燐酸モノイソプロピル、酢酸等の有機酸類;水酸化ナトリウム又は水酸化カリウム等の無機塩基類;テトライソプロピルチタネート、テトラブチルチタネート等のチタン酸エステル類;1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)、1,5−ジアザビシクロ[4.3.0]ノネン−5(DBN)、1,4−ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ−n−ブチルアミン、ジメチルベンジルアミン、モノエタノールアミン、イミダゾール、1−メチルイミダゾール等の各種の塩基性窒素原子を含有する化合物類;テトラメチルアンモニウム塩、テトラブチルアンモニウム塩、ジラウリルジメチルアンモニウム塩等の各種の4級アンモニウム塩類であって、対アニオンとして、クロライド、ブロマイド、カルボキシレートもしくはハイドロオキサイドなどを有する4級アンモニウム塩類;ジブチル錫ジアセテート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫ジアセチルアセトナート、オクチル酸錫又はステアリン酸錫など錫カルボン酸塩等が挙げられる。触媒は単独で使用しても良いし、2種以上併用しても良い。
前記触媒の添加量に特に限定はないが、一般的には前記シラノール基または加水分解性シリル基を有する各々の化合物全量に対して、0.0001〜10重量%の範囲で使用することが好ましく、0.0005〜3重量%の範囲で使用することがより好ましく、0.001〜1重量%の範囲で使用することが特に好ましい。
また、供給する水の量は、前記シラノール基または加水分解性シリル基を有する各々の化合物が有するシラノール基または加水分解性シリル基1モルに対して0.05モル以上が好ましく、0.1モル以上がより好ましく、特に好ましくは、0.5モル以上である。
これらの触媒及び水は、一括供給でも逐次供給であってもよく、触媒と水とを予め混合したものを供給しても良い。
前記(方法1)〜(方法3)における加水分解縮合反応を行う際の反応温度は、0℃〜150℃の範囲が適切であり、好ましくは、20℃〜100℃の範囲内である。また、反応の圧力としては、常圧、加圧下又は減圧下の、いずれの条件においても行うことができる。また、前記加水分解縮合反応において生成しうる副生成物であるアルコールや水は、必要に応じ蒸留などの方法により除去してもよい。
前記(方法1)〜(方法3)における各々の化合物の仕込み比率は、所望とする本発明で使用する複合樹脂(A)の構造により適宜選択される。中でも、得られる塗膜の耐久性が優れることから、ポリシロキサンゼグメント(a1)の含有率が30〜80重量%となるよう複合樹脂(A)を得るのが好ましく、30〜75重量%が更に好ましい。
前記(方法1)〜(方法3)において、ポリシロキサンセグメントとビニル系重合体セグメントをブロック状に複合化する具体的な方法としては、ポリマー鎖の片末端あるいは両末端のみに前記したシラノール基および/または加水分解性シリル基を有するような構造のビニル系重合体セグメントを中間体として使用し、例えば、(方法1)であれば、当該ビニル系重合体セグメントに、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる方法が挙げられる。
一方、前記(方法1)〜(方法3)において、ビニル系重合体セグメントに対してポリシロキサンセグメントをグラフト状に複合化させる具体的な方法としては、ビニル系重合体セグメントの主鎖に対し、前記したシラノール基および/または加水分解性シリル基をランダムに分布させた構造を有するビニル系重合体セグメントを中間体として使用し、例えば、(方法2)であれば、当該ビニル系重合体セグメントが有するシラノール基および/または加水分解性シリル基と、前記したポリシロキサンセグメントが有するシラノール基および/または加水分解性シリル基とを加水分解縮合反応をさせる方法を挙げることができる。
(ポリイソシアネート(B))
本発明の封止材は、ポリイソシアネート(B)を、硬化性樹脂組成物の全固形分量に対して5〜50重量%含有する。
ポリイソシアネートを該範囲含有させることで、屋外における長期耐候性、特に耐クラック性に優れる。また、デバイスの冷熱サイクル試験、もしくは実使用上の冷熱サイクル環境下においての、熱膨張、収縮に伴う寸法変化するような応力が働いても形状の保持が可能になる。
これは、ポリイソシアネートと系中の水酸基(これは、前記ビニル系重合体セグメント(a2)中の水酸基や後述のアルコール性水酸基を有する活性エネルギー線硬化性モノマー中の水酸基である)とが反応して、ソフトセグメントであるウレタン結合が形成され、重合性二重結合由来の硬化による応力の集中を緩和させる働きをするのではと推定している。
ポリイソシアネート(B)の含有量が、硬化性樹脂組成物の全固形分量に対して5重量%未満の場合、当該組成物から得られる樹脂硬化物に、屋外での長期曝露においてクラックが発生するという問題点が発生する。一方、ポリイソシアネート(B)の含有率が、硬化性樹脂組成物の全固形分量に対して50重量%を超えて高い場合、硬化物の硬化性が低下し、なおも悪い場合には表面に粘着性が残留する恐れがある。
使用するポリイソシアネート(B)としては特に限定はなく公知のものを使用することができるが、トリレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート等の芳香族ジイソシアネート類や、メタ−キシリレンジイソシアネート、α,α,α’,α’−テトラメチル−メタ−キシリレンジイソシアネート等のアラルキルジイソシアネート類を主原料とするポリイソシアネートは、長期屋外曝露での封止材が黄変するという耐光性に問題点が生じるため使用量を最小限にすることが好ましい。
屋外での長期使用という観点から、本発明で用いるポリイソシアネートとしては、脂肪族ジイソシアネートを主原料とする脂肪族ポリイソシアネートが好適である。脂肪族ジイソシアネートとしては、例えば、テトラメチレンジイソシアネート、1,5−ペンタメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート(以下「HDI」と略す)、2,2,4−(又は、2,4,4−トリメチル−1,6−ヘキサメチレンジイソイシアネート、リジンイソシアネート、イソホロンジイソシアネート、水添キシレンジイソシアネート、水添ジフェニルメタンジイソシアネート、1,4−ジイソシアネートシクロヘキサン、1,3−ビス(ジイソシアネートメチル)シクロヘキサン、4,4’−ジシクロヘキシルメタンジイソシアネート等が挙げられる。中でも、耐クラック性とコストの観点からHDIが特に好適である。
脂肪族ジイソシアネートから得られる脂肪族ポリイソシアネートとしては、アロファネート型ポリイソシアネート、ビウレット型ポリイソシアネート、アダクト型ポリイソシアネート及びイソシアヌレート型ポリイソシアネートが挙げられるが、いずれも好適に使用することができる。
なお、前記したポリイソシアネートとしては、種々のブロック剤でブロック化された、いわゆるブロックポリイソシアネート化合物を使用することもできる。ブロック剤としては、例えばメタノール、エタノール、乳酸エステル等のアルコール類;フェノール、サリチル酸エステル等のフェノール性水酸基含有化合物類;ε−カプロラクタム、2−ピロリドン等のアマイド類;アセトンオキシム、メチルエチルケトオキシム等のオキシム類;アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等の活性メチレン化合物類等を使用することができる。
前記ポリイソシアネート(B)中のイソシアネート基は、ポリイソシアネートの全固形分量に対し3〜30重量%であることが、樹脂硬化物の耐クラック性と耐候性の点から好ましい。(B)中のイソシアネート基が3%より少ないと、ポリイソシアネートの反応性が低く、また30%を超えて多い場合、ポリイソシアネートの分子量が小さくなり、いずれの場合においても応力緩和が発現しなくなるので、注意が必要である。
ポリイソシアネートと系中の水酸基(これは、前記ビニル系重合体セグメント(a2)中の水酸基や後述のアルコール性水酸基を有する活性エネルギー線硬化性モノマー中の水酸基である)との反応は、特に加熱等は必要なく、例えば硬化形態がUVである場合には、塗装、UV照射後室温に放置することで徐徐に反応していく。また必要に応じて、UV照射後、80℃で数分間〜数時間(20分〜4時間)加熱して、アルコール性水酸基とイソシアネートの反応を促進してもよい。その場合は、必要に応じて公知のウレタン化触媒を使用してもよい。ウレタン化触媒は、所望する反応温度に応じて適宜選択する。
(封止材)
本発明の封止材は、前述の通り重合性二重結合を有するので、紫外線等の活性エネルギー線もしくは熱により硬化可能である。また両方を含むことも可能である。以下本発明の具体的態様として紫外線硬化及び熱硬化させる場合の例について述べる。
本発明の封止材を紫外線硬化させる場合には、光重合開始剤を使用することが好ましい。光重合開始剤としては公知のものを使用すればよく、例えば、アセトフェノン類、ベンジルケタール類、ベンゾフェノン類からなる群から選ばれる一種以上を好ましく用いることができる。前記アセトフェノン類としては、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン等が挙げられる。前記ベンジルケタール類としては、例えば、1−ヒドロキシシクロヘキシル−フェニルケトン、ベンジルジメチルケタール等が挙げられる。前記ベンゾフェノン類としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル等が挙げられる。前記ベンゾイン類等としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。光重合開始剤(B)は単独で使用しても良いし、2種以上を併用してもよい。
前記光重合開始剤(B)の使用量は、前記複合樹脂(A)100重量%に対して、1〜15重量%が好ましく、2〜10重量%がより好ましい。
また、紫外線硬化させる場合は、必要に応じて多官能(メタ)アクリレートを含有するのが好ましい。多官能(メタ)アクリレートは、前述の通り、ポリイソシアネート(B)と反応させることからアルコール性水酸基を有するものが好ましい。例えば、1,2−エタンジオールジアクリレート、1,2−プロパンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、ジプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリス(2−アクリロイルオキシ)イソシアヌレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジ(トリメチロールプロパン)テトラアクリレート、ジ(ペンタエリスリトール)ペンタアクリレート、ジ(ペンタエリスリトール)ヘキサアクリレート等の1分子中に2個以上の重合性2重結合を有する多官能(メタ)アクリレート等が挙げられる。また、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート等も多官能アクリレートとして例示することができる。これらは単独で使用しても良いし、2種以上併用しても良い。
特に、樹脂硬化物の硬度の観点と、ポリイソシアネートとの反応による応力緩和の観点から、ペンタエリスリトールトリアクリレート及びジペンタエリスリトールペンタアクリレートが好ましい。
また、前記多官能(メタ)アクリレートに併用して、単官能(メタ)アクリレートを併用することもできる。例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性ヒドロキシ(メタ)アクリレート(例えばダイセル化学工業(株)製商品名「プラクセル」)、フタル酸とプロピレングリコールとから得られるポリエステルジオールのモノ(メタ)アクリレート、コハク酸とプロピレングリコールとから得られるポリエステルジオールのモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2−ヒドロキシ−3−(メタ)アクリロイルオキシプロピル(メタ)アクリレート、各種エポキシエステルの(メタ)アクリル酸付加物、等の水酸基含有(メタ)アクリル酸エステル;(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、などのカルボキシル基含有ビニル単量体;ビニルスルホン酸、スチレンスルホン酸、スルホエチル(メタ)アクリレートなどのスルホン酸基含有ビニル単量体;2−(メタ)アクリロイルオキシエチルアシッドホスフェート、2−(メタ)アクリロイルオキシプロピルアシッドホスフェート、2−(メタ)アクリロイルオキシ−3−クロロ−プロピルアシッドホスフェート、2−メタクリロイルオキシエチルフェニルりん酸などの酸性りん酸エステル系ビニル単量体;N−メチロール(メタ)アクリルアミドなどのメチロール基を有するビニル単量体等を挙げることができる。これらは1種又は2種以上を用いることができる。多官能イソシアネート(b)のイソシアネート基との反応性を考慮すると、単量体(c)としては、水酸基を有する(メタ)アクリル酸エステルが特に好ましい。
前記多官能(メタ)アクリレート(C)を用いる場合の使用量としては、本発明の封止材の全固形分量に対して1〜85重量%が好ましく、5〜80重量%がより好ましい。前記多官能アクリレートを前記範囲内で使用することによって、得られる樹脂硬化物の硬度等を改善することができる。
(活性エネルギー線)
本発明の封止材を活性エネルギー線硬化させる際に使用する活性エネルギー線としては、電子線、紫外線、赤外線等が挙げられるが、紫外線が簡便であり好ましい。紫外線硬化させる際に使用する光は、例えば、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、キセノンランプ、アルゴンレーザー、ヘリウム・カドミウムレーザー等を使用することができる。これらを用いて、約180〜400nmの波長の紫外線を、硬化性樹脂組成物に照射することによって、硬化させることが可能である。紫外線の照射量としては、使用される光重合開始剤の種類及び量によって適宜選択される。
紫外線硬化させる際に使用する光は、例えば、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、キセノンランプ、アルゴンレーザー、ヘリウム・カドミウムレーザー等を使用することができる。これらを用いて、約180〜400nmの波長の紫外線を、紫外線硬化性樹脂組成物の塗布面に照射することによって、硬化させることが可能である。紫外線の照射量としては、使用される光重合開始剤の種類及び量によって適宜選択される。
一方、本発明の封止材を熱硬化させる場合には、組成物中の重合性二重結合反応と、アルコール性水酸基とイソシアネートとのウレタン化反応との反応温度、反応時間等を考慮して、各々の触媒を選択することが好ましい。
また、熱硬化性樹脂を併用することも可能である。熱硬化性樹脂としては、ビニル系樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、エポキシエステル樹脂、アクリル樹脂、フェノール樹脂、石油樹脂、ケトン樹脂、シリコン樹脂あるいはこれらの変性樹脂等が挙げられる。
その他、本発明の封止材には、透明性を確保できる範囲内において、必要に応じて無機顔料、有機顔料、体質顔料、粘土鉱物、ワックス、界面活性剤、安定剤、流動調整剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、又は可塑剤等の種々の添加剤等を使用することもできる。
本発明の封止材は、含有する複合樹脂(A)がポリシロキサンセグメント(a1)とビニル系重合体セグメント(a2)の両方を有する為アクリル系の樹脂や活性エネルギー線硬化性モノマーも比較的相溶しやすい。そのため相溶性のよい組成物を得ることができる。
(発光ダイオード用封止材)
本発明の封止材を発光ダイオード封止材として使用する場合は、蛍光体を配合しても良い。これにより、発光素子から放出される光を吸収し、波長変換を行い、発光素子の色調と異なる色調を有する発光ダイオードを提供することができる。発光ダイオードに使用される蛍光体は、主に、青色に発光する蛍光体、緑色に発光する蛍光体、黄色に発光する蛍光体、赤色に発光する蛍光体の少なくともいずれか1以上の蛍光体を使用することができる。これらの蛍光体は、本発明に係る発光ダイオード封止材中に投入し、ほぼ均一になるまで混合する。この混合物を、発光素子の周辺部に載置する。この蛍光体は、発光素子から放出される光を吸収し、波長変換を行い、発光素子の光と異なる波長の光を放出する。これにより、発光素子から放出される光の一部と、蛍光体から放出される光の一部とが混合して、白色を含む多色系の発光ダイオードを作製することができる。
また、組成物を硬化させる際の硬化収縮率を低減させ、クラックや部品の精密な形状、寸法を設計通りに再現させたり、耐熱性や熱伝導率の向上を発現させる目的で、ガラス、アルミナ、水酸化アルミニウム、溶融シリカ、結晶性シリカ、超微粉無定型シリカや疎水性超微粉シリカ、タルク、クレー、硫酸バリウム等の無機微粒子を配合してもよい。
本発明の封止材は、特に低波長の光に対する耐光性に優れているので、赤色、緑色および青色など多種の発光ダイオードの封止材として使用することができる。中でも、短波長領域の光に対する耐光性をより必要とする白色発光ダイオードの封止材として優れた機能を発揮する。
また、本発明の封止材は、耐光性だけでなく、耐熱性及び耐湿熱性にも優れるため、温度や湿度の変化が激しい屋外用途でも、好適に使用することができる。
本発明の封止材を使用して発光ダイオードを製造する場合は、公知の方法で行えばよい。例えば、本発明の発光ダイオード封止材によって発光素子を被覆することによって発光ダイオードを得ることができる。
前記発光素子としては特に限定されず、発光ダイオードに用いられ得る発光素子を用いることができる。例えば、サファイヤ基板上に窒化物系化合物半導体等の半導体材料を積層して作製したものが挙げられる。
前記発光素子の発光波長は紫外域から赤外域まで特に限定されないが、主発光ピーク波長が550nm 以下のものを用いた場合に本発明の効果が特に顕著である。前記発光素子は一種類を用いて単色発光させてもよいし、複数を用いて単色又は多色発光させてもよい。
前記被覆とは、前記発光素子を直接封止するものに限らず、間接的に被覆する場合も含む。具体的には、前記発光素子を本発明の封止材で直接、従来用いられる種々の方法で封止してもよいし、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂等の封止樹脂やガラスで発光素子を封止した後に、その上あるいは周囲を本発明の封止材で被覆してもよい。また、前記発光素子を本発明の封止材で封止した後、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂等でモールディング(封止ともいう)してもよい。これらの方法によって、屈折率や比重の差を利用してレンズ効果等の種々の効果を持たせることも可能である。
封止の方法としても各種方法を適用することができる。例えば、底部に発光素子を配置させたカップ、キャビティ、パッケージ凹部等に液状の封止材をディスペンサーその他の方法にて注入して加熱等により硬化させてもよいし、固体状あるいは高粘度液状の封止材を加熱する等して流動させ同様にパッケージ凹部等に注入してさらに加熱する等して硬化させてもよい。前記パッケージは種々の材料を用いて作成することができ、例えば、ポリカーボネート樹脂、ポリフェニレンスルフィド樹脂、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、ABS樹脂、ポリブチレンテレフタレート樹脂、ポリフタルアミド樹脂等を挙げることができる。また、モールド型枠中に封止材をあらかじめ注入し、そこに発光素子が固定されたリードフレーム等を浸漬した後硬化させる方法も適用することができるし、発光素子を挿入した型枠中にディスペンサーによる注入、トランスファー成形、射出成形等により封止材による封止層を成形、硬化させてもよい。単に液状または流動状態とした封止材を発光素子状に滴下あるいはコーティングして硬化させてもよい。発光素子上に孔版印刷、スクリーン印刷、あるいはマスクを介して塗布すること等により封止材を成形させて硬化させることもできる。あらかじめ板状、あるいはレンズ形状等に部分硬化あるいは硬化させた封止材を発光素子上に固定する方法によってもよい。さらには、発光素子をリード端子やパッケージに固定するダイボンド剤として用いることもできるし、発光素子上のパッシベーション膜として用いることもできる。また、パッケージ基板として用いることもできる。
さらに、適用する発光ダイオードの形状は、特には限定されず、用途に合わせて適宜選択することができる。具体的には、照明器具などで採用されている砲弾型や表面実装型などが挙げられる。
(太陽電池用封止材)
本発明の封止材を太陽電池用封止材として使用する場合は、特に制限はないが、液状の封止材を、単結晶、多結晶のシリコンセル(結晶系シリコンセル)、アモルファスシリコン、化合物半導体(薄膜系セル)等の太陽電池上に塗布して使用する方法や、予めシート化したものを封止材として前記太陽電池を挟み込み、ガラスやバックシートでさらに外部を被覆して熱処理を施すことによりシート化した封止材を溶融し、全体を一体化封止(モジュール化)する方法等が上げられる。中でも、予めシート化した封止材(以下封止シートと称す)が、モジュール化工程が簡便で安定に太陽電池モジュールを供給できることから好ましい。
本発明の封止材をシート化する方法としては、公知の方法が挙げられるが、例えば樹脂を押出機で溶融し、ダイより溶融樹脂を押出し、急冷固化して原反を得る方法が一般的である。押出機としては、Tダイ、環状ダイ等が用いられる。樹脂封止シートが多層構造である場合には、環状ダイが好ましい。
原反の表面には、最終的に目的とする樹脂封止シートの形態に応じてエンボス加工処理を施してもよい。例えば、両面にエンボス加工処理を行う場合には、2本の加熱エンボスロール間に、片面エンボス加工処理を行う場合には、片方のみ加熱されたエンボスロール間に、前記原反を通過させることによりエンボス加工処理を施すことができる。
また、多層構造としたい場合は、多層Tダイ法、多層サーキュラーダイ法等を選択できる。その他公知のラミネート方法によって多層構造を形成してもよい。
前記封止シートは、アルコール性水酸基とイソシアネートとのウレタン化反応とを予め一部反応させ、ゲル状としておくことが好ましい。具体的には、ウレタン化反応が進む40℃〜100℃位の雰囲気下で数時間養生させることが好ましい。
また、必要に応じて任意の後処理を行ってもよい。後処理としては、例えば、寸法安定化を図るヒートセット、コロナ処理、プラズマ処理や、他の樹脂封止シート等とのラミネーション等が挙げられる。
(太陽電池モジュール)
前記方法で得た太陽電池用封止シートを使用する場合の、太陽電池モジュールの具体的態様の一例を図1に示す。なお本発明はここでは記載していない様々な実施形態等を含むことは勿論である。
図1において示される太陽電池モジュールは、太陽電池用受光面側保護シート1、第1封止材2、電池群3、第2封止材4、太陽電池用保護シート5が順次積層されることによって構成される。
第1封止材2及び第2封止材4は、太陽電池用受光面側保護シート1と電池用保護シート5との間で、太陽電池群3を封止する。
従って、第1封止材2及び第2封止材4は所定の架橋温度以上に加熱されることにより、軟化された後、架橋が開始される。
封止して太陽電池モジュールを作製する方法としては特に制限はないが、具体的には真空ラミネータを使用して、封止材及び太陽電池セルなどの材料を型の中に積層し、その後真空プレスを行うことにより、太陽電池を作製することができる。
太陽電池群3は、前述の通り、複数の、単結晶、多結晶のシリコンセル(結晶系シリコンセル)、アモルファスシリコン、化合物半導体(薄膜系セル)等からなる太陽電池と配線材とを有する。複数の太陽電池は配線材により互いに電気的に接続される。
その後、ラミネート装置でラミネートした第1封止材2と第2封止材4を加熱により本硬化させることで、太陽電池モジュールを得ることができる。
次に、本発明を、実施例及び比較例により具体的に説明をする。例中断りのない限り、「部」「%」は重量基準である。
(合成例1〔ポリシロキサン(a1−1)の調整例〕)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、メチルトリメトキシシラン(MTMS) 415部、3−メタクリロイルオキシプロピルトリメトキシシラン(MPTS)756部を仕込んで、窒素ガスの通気下、攪拌しながら、60℃まで昇温した。次いで、「A−3」〔堺化学(株)製のiso−プロピルアシッドホスフェート〕 0.1部と脱イオン水 121部からなる混合物を5分間で滴下した。滴下終了後、反応容器中を80℃まで昇温し、4時間攪拌することにより加水分解縮合反応を行い、反応生成物を得た。
得られた反応生成物中に含まれるメタノールおよび水を、1〜30キロパスカル(kPa)の減圧下、40〜60℃の条件で除去することにより、数平均分子量が1000で、有効成分が75.0%であるポリシロキサン(a1−1) 1000部を得た。
尚、「有効成分」とは、使用したシランモノマーのメトキシ基が全て加水分解縮合反応した場合の理論収量(重量部)を、加水分解縮合反応後の実収量(重量部)で除した値、即ち、〔シランモノマーのメトキシ基が全て加水分解縮合反応した場合の理論収量(重量部)/加水分解縮合反応後の実収量(重量部)〕の式により算出したものである。
(合成例2〔ビニル系重合体(a2−1)の調製例〕)
合成例1と同様の反応容器に、フェニルトリメトキシシラン(PTMS) 20.1部、ジメチルジメトキシシラン(DMDMS) 24.4部、イソプロパノール 44.7部を仕込んで、窒素ガスの通気下、攪拌しながら、80℃まで昇温した。次いで、n−ブチルメタクリレート(BMA) 67.0部、2−エチルヘキシルメタクリレート(EHMA) 97.5部、ブチルアクリレート 83部、アクリル酸(AA) 3.8部、MPTS 11.25部、2−ヒドロキシエチルメタクリレート(HEMA) 112.5部、tert−ブチルパーオキシ−2−エチルヘキサノエート(TBPEH) 56.3部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「A−3」 0.05部と脱イオン水 12.8部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、1H−NMRで分析したところ、前記反応容器中のシランモノマーが有するトリメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物であるビニル系重合体(a2−1)が得られた。
(合成例3〔複合樹脂(A−1)の調製例〕)
前記合成例2で得たビニル系重合体(a2−1)345.7部に、BMA 148.2部、合成例1で得られたポリシロキサン(a1−1) 162.5部を添加して、5分間攪拌したのち、脱イオン水 27.5部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。さらに得られた反応生成物を、10〜300kPaの減圧下で、40〜60℃の条件で2時間蒸留を行い、生成したメタノール及び水を除去することにより、不揮発分が72%である、ポリシロキサンセグメント(a1−1)とビニル系重合体セグメント(a2−1)とを有する複合樹脂(A−1) 600部を得た。
(合成例4[複合樹脂A−2の調製例])
前記合成例2で得たビニル系重合体(a2−1)307部に、BMA 148.2部、合成例1で得られたポリシロキサン(a1−1) 562.5部を添加して、5分間攪拌したのち、脱イオン水 27.5部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。さらに得られた反応生成物を、10〜300kPaの減圧下で、40〜60℃の条件で2時間蒸留を行い、生成したメタノール及び水を除去することにより、不揮発分が72%である、ポリシロキサンセグメント(a1−1)とビニル系重合体セグメント(a2−1)とを有する複合樹脂(A−2) 857部を得た。
(実施例1−13)
実施例として、以下記述する操作を行い、表1〜表8に配合と結果を示した。
(熱硬化による発光ダイオード封止材用硬化物の作製)
前述合成例で得られた複合樹脂を使用し、表1及び表2の「組成物の配合」に従って各種原料を配合することにより、発光ダイオード封止材用樹脂組成物を作製した。なお熱硬化用の発光ダイオード封止材は、実施例1〜6が該当する。
続いて以下の方法にて、封止材を注入する容器(図2参照)を作製した。
まず、シリコンモールドのスペーサー7(縦5cm、横5cm、高さ2mm)をガラス8、ガラス9(ガラス8、ガラス9の大きさはそれぞれ、縦10cm、横10cm、厚さ4mm)と、PETフィルム10、PETフィルム11とで挟持させた。ガラス8とスペーサー7の間にPETフィルム10を、ガラス9とスペーサー7の間にPETフィルム11をそれぞれ配置した。
次に、スペーサー7の内部に、作製した発光ダイオード封止材用樹脂組成物を流し込み、ガラス8、ガラス9をジグ(図示せず。)で固定した(得られた型を型13とする)。続いて型13を150℃のオーブンに投入し、5分間加熱することにより、流し込んだ発光ダイオード封止材用樹脂組成物を硬化させた。その後硬化物12を型から外し、厚さ2mmの硬化物(C−1)〜(C−6)、(HC−1)〜(HC−4)を得た。
(紫外線硬化による発光ダイオード封止材用硬化物の作製)
前述合成例で得られた複合樹脂を使用し、表1及び表2の「組成物の配合」に従って各種原料を配合することにより、発光ダイオード封止材用樹脂組成物を作製した。なお紫外線硬化用の発光ダイオード封止材は、実施例7が該当する。
前述の、熱硬化による発光ダイオード封止材用硬化物の作製で使用した封止材を注入する容器(図2参照)と同じ容器へ、発光ダイオード封止材用樹脂組成物を注入し、その容器ごとFUSION製UV照射装置F−6100Vにて1000mJ/cmの条件で組成物を硬化させた。その後硬化物を型から外し、厚さ2mmの硬化物(C−7)を作製した。
(太陽電池封止材用シート状樹脂組成物の作製)
前述合成例で得られた複合樹脂を使用し、表1及び表2の「組成物の配合」に従って各種原料を配合することにより、太陽電池封止材用樹脂組成物を作製した。なお太陽電池封止材用樹脂組成物は、実施例1〜6が該当する。
角型ステンレス容器中に太陽電池封止材用樹脂組成物を入れ、80℃のオーブンの中に1時間投入することにより、ゲル状とした。その後該ゲル状の太陽電池封止材用樹脂組成物を70℃でカレンダ成形し、放冷して太陽電池封止材用シート状樹脂組成物(PC−1)〜(PC−6)、及び(HPC−1)〜(HPC−4)(厚さ0.6mm)を作製した。
(太陽電池モジュールの作製)
ラミネート装置(日清紡メカトロニクス製)の熱板を150℃に調整し、その熱板の上に、白板強化ガラス、前記太陽電池封止材用シート状樹脂組成物、多結晶シリコン型太陽電池セル、前記太陽電池封止材用シート状樹脂組成物、バックシートとして厚み500μmのPFAフィルムを、その順に重ね合わせ、ラミネート装置の蓋を閉じた状態で、脱気3分、プレス8分を順に行い、その後10分間保持してから取り出し、スーパーストレート型太陽電池モジュール(SM−1)〜(SM−6)、及び(HSM−1)〜(HSM−4)とした。
(発光ダイオードの作成・熱硬化型封止材)
InGaN系発光素子を搭載した図3に示すような発光ダイオードを作成した。
図の1が樹脂ケース、2がリード電極、3が発光素子、4が封止材、5が金線である。
前述合成例で得られた複合樹脂を使用し、表1及び表2の「組成物の配合」実施例2,3、比較例2,3に従って、各種原料を配合することにより、熱硬化用の発光ダイオード用封止材樹脂組成物を作成した。これを硬化物の厚みが0.5〜1.0mmになるよう樹脂ケース(PPA:ポリフタルアミド製)に流し込み、150℃のオーブンで、5分間加熱し硬化させ、発光ダイオード(M−1)〜(M−2)、(HM−1)〜(HM−2)を作製した。
(発光ダイオードの作成・紫外線硬化型封止材)
InGaN系発光素子を搭載した図3に示すような発光ダイオードを作成した。実施例7に従って作製したUV硬化用の発光ダイオード用封止材樹脂組成物を、硬化物の厚みが0.5〜1.0mmになるよう樹脂ケース(PPA:ポリフタルアミド製)に流し込み、Fusion製UV照射装置F−6100Vにて1000mJ/cmで硬化させ、発光ダイオード(M−3)を作製した。
(評価方法)
(硬化性の評価)
前述で得られた硬化物(C−1)〜(C−7)、(HC−1)〜(HC−4)の表面に10cm×1cm×厚み2mmのPP板を押し付け、その後板を持ち上げたときのPP板と硬化物との密着性を評価した。硬化性が良好で密着しない状態を○、硬化性が悪くPP板に付着し浮き上がる様子が観察されたものを×とした。
(耐光性:促進耐光試験後の黄変度評価)
前述の方法により作製された硬化物(C−1)〜(C−7)、(HC−1)〜(HC−4を、紫外線劣化促進試験機(アイスーパーUVテスター SUV−W131:岩崎電気(株)製)を用いて、UV照射強度100mW/cmとして促進耐光試験を行った。促進試験200時間実施前後での、硬化物の黄変度の評価を、グレタグマクベス社製の色彩色差計を用いてLab表示色の黄色味を示すb値を測定した。試験前後でのb値の差分Δbが0−0.5の時を◎、0.5−1の時を○、1−5の時を△、5以上の値を示すときを×として、黄変度の評価を行った。
結果を表3〜表4に示す。
(耐クラック性:熱衝撃試験)
上記の硬化物(C−1)〜(C−7)、(HC−1)〜(HC−4)をエスペック社小型冷熱衝撃装置TSE−11に入れ、−40℃×15分−120℃×15分の1サイクルを10サイクル行い、発生したクラックの様子を目視により評価した。評価結果を表3に示す。クラック発生が見られなかったものを○、クラック発生が見られたものを×、割れが見られたものを××とした。
(評価方法 太陽電池モジュールの発電効率評価)
上記で得られた太陽電池モジュール(SM−1)〜(SM−6)、及び(HSM−1)〜(HSM−4)、の各々を、ワコム電創製ソーラーシミュレータを使用して、モジュール温度25℃、放射強度1kW/m、分光分布AM1.5Gの条件にて、発電効率を測定した。
結果を表5〜表6に示す。
(発光ダイオードの耐光性:促進耐光試験後の外観評価)
前述の方法により作製した発光ダイオード(M−1)〜(M−3)、(HM−1)〜(HM−2)を紫外線劣化促進試験機(アイスーパーUVテスター SUV−W131:岩崎電気(株)製)を用いて、UV照射強度100mW/cmで促進耐光試験を行った。促進試験200時間実施後、封止材部分に、われ、クラックがなく、樹脂ケースから剥がれていないものを○、われ、クラックが1〜2本あるものを△、われ、クラックが多数あるかまたは樹脂ケースから剥がれたものを×とした。結果を表7〜表8に示す。
(発光ダイオードの耐熱性評価)
前述の方法により作製した発光ダイオード(M−1)〜(M−3)、(HM−1)〜(HM−2)を120℃常湿度下(FineOven DHS72:ヤマト科学株式会社)にて500h保存後、外観、黄変について評価した。評価方法は、外観については、封止材部分に、われ、クラックがなく、樹脂ケースから剥がれていないものを○、われ、クラックが1〜2本あるものを△、われ、クラックが多数あるかまたは樹脂ケースから剥がれたものを×とした。また黄変については目視にて判断し黄変が確認できる時を×、黄変が確認できない時を○として評価した。結果を表7〜表8に示す。
(発光ダイオードの耐湿熱性評価)
前述の方法により作製した発光ダイオード(M−1)〜(M−3)、(HM−1)〜(HM−2)を恒温恒湿槽(LH20−11M:ナガノ科学機械製作所)で85℃85%RH 240h保存後、外観、黄変/白濁を評価した。評価方法は、外観については、封止材部分にわれ、クラックがなく、樹脂ケースから剥がれていないものを○、われ、クラックが1〜2本あるものを△、われ、クラックが多数あるかまたは樹脂ケースから剥がれたものを×とした。また黄変/白濁については目視にて判断し黄変/白濁が確認できる時×、黄変/白濁が確認できない時○として評価した。結果を表7〜表8に示す。
Figure 0004905613
Figure 0004905613
表1及び表2中の各種原料については、下記のとおりである。
希釈モノマー1;1,6−ヘキサンジオールジアクリレート
希釈モノマー2;メチルメタクリレート
熱重合開始剤;t−ブチルパーオキシベンゾエート
光重合開始剤;ジフェニル(2,4,6‐トリメトキシベンゾイル)ホスフィンオキシド
重合禁止剤;2,6−ビス(1,1−ジメチルエチル)−4−メチルフェノール
添加剤;3−メタクリロキシプロピルトリメトキシシラン
ポリイソシアネート;DIC(株)製 バーノックDN−902S
Figure 0004905613
Figure 0004905613
Figure 0004905613
Figure 0004905613
Figure 0004905613
Figure 0004905613
1:太陽電池用保護シート
2:第1封止材
3:太陽電池群
4:第2封止材
5:裏面側保護材
7:スペーサー
8:ガラス
9:ガラス
10:PETフィルム、
11:PETフィルム
12:硬化物
13:型
14:樹脂ケース
15:リード電極
16:発光素子
17:封止材
18:金線

Claims (5)

  1. 一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)とが、一般式(3)で表される結合により結合された複合樹脂(A)、及びポリイソシアネート(B)を含有し、前記ポリシロキサンセグメント(a1)の含有率が硬化性樹脂組成物の全固形分量に対して10〜50重量%であり、且つ、前記ポリイソシアネート(B)の含有率が硬化性樹脂組成物の全固形分量に対して5〜50重量%であることを特徴とする封止材。
    Figure 0004905613
    (1)
    Figure 0004905613
    (2)
    (一般式(1)及び(2)中、R、R及びRは、それぞれ独立して、−R−CH=CH、−R−C(CH)=CH、−R−O−CO−C(CH)=CH、及び−R−O−CO−CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1〜6のアルキレン基を表す。)、炭素原子数が1〜6のアルキル基、炭素原子数が3〜8のシクロアルキル基、アリール基、または炭素原子数が7〜12のアラルキル基を表し、R、R及びRの少なくとも1つは前記重合性二重結合を有する基である)
    Figure 0004905613
    (3)
    (一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする)
  2. 太陽電池用である請求項1に記載の封止材。
  3. 発光ダイオード用である請求項1に記載の封止材。
  4. 請求項1または2に記載の封止材を使用することを特徴とする太陽電池モジュール。
  5. 請求項1または3に記載の封止材を使用することを特徴とする、発光ダイオード。
JP2011545579A 2010-06-08 2011-05-24 封止材、太陽電池モジュール及び発光ダイオード Expired - Fee Related JP4905613B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011545579A JP4905613B2 (ja) 2010-06-08 2011-05-24 封止材、太陽電池モジュール及び発光ダイオード

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010130930 2010-06-08
JP2010130930 2010-06-08
PCT/JP2011/061841 WO2011155322A1 (ja) 2010-06-08 2011-05-24 封止材、太陽電池モジュール及び発光ダイオード
JP2011545579A JP4905613B2 (ja) 2010-06-08 2011-05-24 封止材、太陽電池モジュール及び発光ダイオード

Publications (2)

Publication Number Publication Date
JP4905613B2 true JP4905613B2 (ja) 2012-03-28
JPWO2011155322A1 JPWO2011155322A1 (ja) 2013-08-01

Family

ID=45097930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011545579A Expired - Fee Related JP4905613B2 (ja) 2010-06-08 2011-05-24 封止材、太陽電池モジュール及び発光ダイオード

Country Status (7)

Country Link
US (1) US20130068304A1 (ja)
JP (1) JP4905613B2 (ja)
KR (1) KR101342034B1 (ja)
CN (1) CN102933678B (ja)
DE (1) DE112011101961T5 (ja)
TW (1) TWI498383B (ja)
WO (1) WO2011155322A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521486B1 (ko) * 2010-06-08 2015-05-20 디아이씨 가부시끼가이샤 표면에 미세한 요철을 갖는 성형체 및 그 제조 방법
TW201343583A (zh) * 2012-02-21 2013-11-01 Dainippon Ink & Chemicals 玻璃基材、多層玻璃基材、玻璃積層物、多層玻璃積層物以及玻璃用黏接劑
KR102074601B1 (ko) * 2012-02-29 2020-02-06 소니 주식회사 화상 처리 장치 및 방법, 및 기록 매체
TW201418333A (zh) * 2012-10-15 2014-05-16 Dainippon Ink & Chemicals 耐熱材料及耐熱構件
WO2014099699A1 (en) * 2012-12-21 2014-06-26 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
ITBO20130645A1 (it) * 2013-11-25 2015-05-26 Carlo Dallari Modulo fotovoltaico per la produzione di energia elettrica da energia solare
EP2924085B1 (en) 2014-03-28 2019-05-08 Samsung SDI Co., Ltd. Composition for encapsulation of organic light emitting diode and organic light emitting diode display manufactured using the same
JP6655785B2 (ja) * 2014-04-17 2020-02-26 パナソニックIpマネジメント株式会社 樹脂組成物およびその製造方法並びに半導体装置
KR20160082310A (ko) 2014-12-30 2016-07-08 코오롱인더스트리 주식회사 발광 다이오드 소자용 봉지재 조성물
KR101731495B1 (ko) * 2015-01-08 2017-04-28 한국과학기술연구원 폴리오르가노―실세스퀴옥산 및 파장변환제를 포함하는 코팅 조성물, 및 이를 이용한 파장변환 시트
US9617373B2 (en) * 2015-02-13 2017-04-11 LCY Chemical Corp. Curable resin composition, article, and method for fabricating the same
EP3506372B1 (en) * 2015-12-23 2020-12-02 Agfa-Gevaert Nv A backsheet for a solar cell module
CN105514202A (zh) * 2016-01-28 2016-04-20 苏州佳亿达电器有限公司 太阳能光电板装配用的耐候型封装胶
WO2018099570A1 (en) * 2016-12-02 2018-06-07 Symrise Ag Cosmetic blends

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329175A (ja) * 2000-05-22 2001-11-27 Dainippon Ink & Chem Inc 水性硬化性樹脂組成物、水性塗料、塗装方法および塗装物
JP2003026927A (ja) * 2001-07-11 2003-01-29 Dainippon Ink & Chem Inc 水性樹脂組成物、水性樹脂組成物の製造方法、水性塗料、塗膜形成方法及び塗装物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840806A (en) * 1995-05-09 1998-11-24 Dainippon Ink And Chemicals, Inc. Curable resin compositions
JPH11279408A (ja) * 1997-06-02 1999-10-12 Dainippon Ink & Chem Inc 水性樹脂の製造法、水性硬化性樹脂組成物および水性塗料
JP4311099B2 (ja) 2003-06-30 2009-08-12 カシオ計算機株式会社 シーケンス制御データ生成装置及びプログラム
US20060035092A1 (en) * 2004-08-10 2006-02-16 Shin-Etsu Chemical Co., Ltd. Resin composition for sealing LED elements and cured product generated by curing the composition
WO2006095686A1 (ja) * 2005-03-08 2006-09-14 Dainippon Ink And Chemicals, Inc. 紫外線硬化性樹脂組成物及び紫外線硬化性塗料及び塗装物
JP5013127B2 (ja) 2007-12-19 2012-08-29 Jnc株式会社 熱硬化性樹脂組成物およびその用途
JP2009215345A (ja) 2008-03-07 2009-09-24 Central Glass Co Ltd 熱硬化性有機無機ハイブリッド透明封止材
CN101821318B (zh) * 2008-05-22 2012-12-12 Dic株式会社 水性复合树脂组合物、含有其的涂布剂、以及使用其的层压体
WO2010067742A1 (ja) * 2008-12-11 2010-06-17 Dic株式会社 硬化性樹脂組成物および塗料、それを積層してなるプラスチック成形体
JP4655251B2 (ja) * 2009-05-11 2011-03-23 Dic株式会社 光触媒担持シート及び光触媒担持シート用プライマー
JP4656264B2 (ja) * 2009-05-29 2011-03-23 Dic株式会社 表面処理された基材、それを使用した太陽電池用受光面側保護シート、及び太陽電池モジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329175A (ja) * 2000-05-22 2001-11-27 Dainippon Ink & Chem Inc 水性硬化性樹脂組成物、水性塗料、塗装方法および塗装物
JP2003026927A (ja) * 2001-07-11 2003-01-29 Dainippon Ink & Chem Inc 水性樹脂組成物、水性樹脂組成物の製造方法、水性塗料、塗膜形成方法及び塗装物

Also Published As

Publication number Publication date
CN102933678A (zh) 2013-02-13
TWI498383B (zh) 2015-09-01
KR20120086356A (ko) 2012-08-02
WO2011155322A1 (ja) 2011-12-15
US20130068304A1 (en) 2013-03-21
TW201204787A (en) 2012-02-01
DE112011101961T5 (de) 2013-03-21
KR101342034B1 (ko) 2013-12-16
CN102933678B (zh) 2014-12-31
JPWO2011155322A1 (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP4905613B2 (ja) 封止材、太陽電池モジュール及び発光ダイオード
KR101521486B1 (ko) 표면에 미세한 요철을 갖는 성형체 및 그 제조 방법
EP2289998B1 (en) White heat-curable silicone/epoxy hybrid resin composition for optoelectronic use, making method, premolded package, and LED device
TWI466912B (zh) Thermosetting resin composition
KR101244349B1 (ko) 광촉매 담지 시트 및 광촉매 담지 시트용 프라이머
TWI487747B (zh) 透明密封材組合物及光半導體元件
KR101590638B1 (ko) 열경화성 실리콘 수지-에폭시 수지 조성물 및 상기 수지로 성형한 프리몰드 패키지
JP5464051B2 (ja) 硬化性樹脂組成物、太陽電池用保護シート及び太陽電池モジュール
US20120103398A1 (en) Surface-treated substrate, light-receiving-side protective sheet for solar cell using the same, and solar cell module
US10096754B2 (en) Silicone resin film, curable silicone resin composition, optical semiconductor device, and packaging method for optical semiconductor device
KR20120062680A (ko) 이오노머성 실리콘 열가소성 엘라스토머의 전자 장치에서의 용도
JP7456938B2 (ja) ホットメルト性を有する硬化性シリコーンシートの製造方法
JP5500355B2 (ja) 熱成形用加飾シート及び加飾成形品
KR101591146B1 (ko) 경화성 조성물
JPWO2014061630A1 (ja) 耐熱材料及び耐熱部材
JP2015172173A (ja) 光反射材用樹脂組成物、光反射材、光半導体部品用リフレクタ、及び光半導体部品

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees