WO2011151864A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2011151864A1
WO2011151864A1 PCT/JP2010/003718 JP2010003718W WO2011151864A1 WO 2011151864 A1 WO2011151864 A1 WO 2011151864A1 JP 2010003718 W JP2010003718 W JP 2010003718W WO 2011151864 A1 WO2011151864 A1 WO 2011151864A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
fuel cell
fuel
gas
valve
Prior art date
Application number
PCT/JP2010/003718
Other languages
English (en)
French (fr)
Inventor
片野剛司
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112010005623.4T priority Critical patent/DE112010005623B4/de
Priority to US13/701,693 priority patent/US9209466B2/en
Priority to CN201080066976.9A priority patent/CN102906921B/zh
Priority to JP2012518156A priority patent/JP5447661B2/ja
Priority to PCT/JP2010/003718 priority patent/WO2011151864A1/ja
Publication of WO2011151864A1 publication Critical patent/WO2011151864A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04179Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by purging or increasing flow or pressure of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the operation of a fuel cell.
  • the pressure of the fuel gas circulation system When the pressure of the fuel gas circulation system is set high, the amount of hydrogen gas that passes through the membrane electrode assembly (MEA) from the anode (hydrogen electrode, negative electrode) to the cathode (oxygen electrode, positive electrode) increases. Therefore, from the viewpoint of reducing cross leak, it is preferable that the pressure of the fuel gas circulation system is set low. When the pressure of the fuel gas circulation system is set low, the diameter of the exhaust / drain valve is set large. This is because an appropriate amount of gas can be discharged from the fuel gas circulation system to the outside within a predetermined time in a state where the pressure difference from the outside is small.
  • MEA membrane electrode assembly
  • the pressure in the fuel gas circulation system is dynamically controlled.
  • the pressure of the fuel gas circulation system is temporarily controlled to a low value for a predetermined purpose.
  • the drive device that drives the exhaust / drain valve needs to open / close the exhaust / drain valve so as to ensure an appropriate flow rate even when the pressure difference between the inside and outside of the system is small. For this reason, if the exhaust drain valve is set to a large diameter, the exhaust drain valve can be opened and closed properly even when there is a pressure difference between the inside and outside of the system that pushes the valve in the direction to close the valve.
  • the driving device to be driven must be a large object that can generate a large force. As a result, the fuel cell system itself must be enlarged. Such a problem is not limited to a vehicle equipped with a fuel cell, but widely exists for fuel cell systems that are desired to be reduced in size and weight.
  • the present invention has been made to deal with at least a part of the above-described problems, and aims to reduce the size of the fuel cell system while reducing cross leak in the fuel cell system.
  • the present invention can be realized as the following forms or application examples in order to deal with at least a part of the above-described problems.
  • a fuel cell system A fuel cell; A pressure controller provided in a fuel gas flow path through which fuel gas to be supplied to the fuel cell flows, and capable of controlling the pressure of the fuel gas to be supplied to the fuel cell; An exhaust valve that is provided in a fuel exhaust gas flow path through which fuel exhaust gas discharged from the fuel cell flows and is capable of discharging at least a part of the fuel exhaust gas outside the fuel exhaust gas flow path when opened; A control unit for controlling the fuel cell system, The controller is When the pressure of the fuel gas to be supplied to the fuel cell is the first pressure, the exhaust valve is opened, The pressure of the fuel gas to be supplied to the fuel cell is set to a second pressure higher than the first pressure for at least a predetermined time period after the exhaust valve is opened by controlling the pressure control unit.
  • a fuel cell system A fuel cell system.
  • the exhaust valve is opened when the first pressure is lower than the second pressure, so that the exhaust valve can be opened with a small force. For this reason, even if the pressure in the fuel gas flow path during steady operation is set low and the diameter of the exhaust valve is increased in order to reduce cross leakage, the exhaust valve can be provided small. That is, the fuel cell system can be reduced in size while reducing cross leak. And if it is the above aspects, it will take a shorter time from the exhaust valve to the fuel exhaust gas flow path than the aspect in which the pressure of the fuel gas to be supplied to the fuel cell is not increased after the exhaust valve is opened. Fuel exhaust gas can be discharged outside.
  • exhaust valve here includes not only the valve body but also a device for driving the valve body.
  • the time interval in which the pressure of the fuel gas to be supplied to the fuel cell is the second pressure may start immediately after the exhaust valve is opened, or after a predetermined time has elapsed after the exhaust valve is opened. You may start.
  • the time interval in which the pressure of the fuel gas is the second pressure may be ended before the exhaust valve is closed, or may be ended after the exhaust valve is closed.
  • a fuel cell system according to Application Example 1, The controller is When the fuel cell is generating power, the pressure control unit is feedback-controlled so that the pressure of the fuel gas to be supplied to the fuel cell becomes a predetermined pressure, Based on a change in at least one of a feedback signal in the feedback control and an operating state of the pressure control unit, the opening of the exhaust valve is detected, and the pressure of the fuel gas to be supplied to the fuel cell is determined.
  • a fuel cell system according to Application Example 1 A pressure sensor for detecting the pressure of at least one of the fuel gas to be supplied to the fuel cell and the fuel exhaust gas downstream of the pressure control unit;
  • the said control part is a fuel cell system which detects that the said exhaust valve opened based on the fall of the measured value obtained by the said pressure sensor.
  • a fuel cell system according to any one of Application Examples 1 to 3,
  • the control unit controls the pressure control unit to supply the fuel cell to the fuel cell when the exhaust valve is open after the pressure of the fuel gas to be supplied to the fuel cell is set to the second pressure.
  • the fuel cell system, wherein the pressure of the fuel gas to be adjusted is a third pressure higher than the second pressure.
  • Water discharged from the fuel cell may exist as a liquid in the fuel exhaust gas flow path.
  • the pressure in the fuel exhaust gas flow path is high and the pressure difference from the outside of the fuel exhaust gas flow path is large, cavitation occurs when liquid water is discharged from the exhaust valve, and the water efficiently flows. It may not be discharged.
  • the pressure of the fuel gas to be supplied to the fuel cell is set to a relatively low second pressure.
  • the pressure in the fuel exhaust gas flow path can be kept low. For this reason, water can be discharged efficiently while suppressing the occurrence of cavitation. Then, after discharging the water, the pressure of the fuel gas to be supplied to the fuel cell is set to a higher third pressure. As a result, the pressure in the fuel exhaust gas passage also increases. For this reason, gas can be discharged efficiently.
  • Application Example 5 The fuel cell system of Application Example 4 in which Application Example 1 or 2 is limited, and A pressure sensor for detecting the pressure of at least one of the fuel gas to be supplied to the fuel cell and the fuel exhaust gas downstream of the pressure control unit; The control unit changes the pressure of the fuel gas to be supplied to the fuel cell to the third pressure after the decrease width of the measurement value obtained by the pressure sensor in a predetermined time exceeds a predetermined threshold value.
  • a fuel cell system that performs the processing.
  • the pressure sensor with which the application example 3 is provided, and the pressure sensor with which the application example 5 is provided can also be made into one thing, and can also be made into a separate thing.
  • a fuel cell system according to Application Example 1 or 2, further comprising: A ring passage for returning a part of the exhaust gas flowing in the fuel exhaust gas passage to the fuel gas passage; A temperature sensor for determining the temperature of the fuel cell; An ammeter for determining the amount of current flowing from the fuel cell; A first pressure sensor for measuring the pressure of the fuel gas supplied from the fuel gas supply source to the pressure control unit; A second pressure sensor that measures the pressure of the fuel gas supplied to the fuel cell by the pressure control unit, The pressure control unit is provided between the fuel gas supply source and the fuel cell in the fuel gas flow path, and controls hydrogen gas as a fuel gas supplied from the fuel gas supply source at a controlled pressure.
  • An injector capable of supplying the fuel cell;
  • the controller is Supplying the fuel gas supplied from the fuel gas supply source to the fuel cell via the pressure control unit while discharging the gas from the exhaust valve when the valve is opened;
  • the pressure of the fuel gas supplied from the fuel gas supply source to the pressure controller, the pressure of the fuel gas supplied to the fuel cell by the pressure controller, the temperature of the fuel cell, and the current that the fuel cell flows
  • a fuel cell system that closes the exhaust valve when a parameter obtained based on the value falls below a predetermined value.
  • the gas discharged from the exhaust valve includes hydrogen gas as fuel gas and nitrogen and water vapor as impurities. These gases have molecular weights of 2, 14, and 18, respectively. Therefore, the average molecular weight of the gas discharged from the exhaust valve is 2-18. On the other hand, the molecular weight of hydrogen gas as a fuel gas is 2. For this reason, when the valve is opened, a gas containing a large amount of impurities is discharged from the system including the fuel exhaust gas flow path, the fuel cell, and the fuel exhaust gas flow path via the exhaust valve, and the fuel from the fuel gas supply source is supplied to the system. When the gas is supplied, the average molecular weight of the gas discharged through the exhaust valve gradually decreases.
  • the average molecular weight is smaller than a predetermined value, it can be determined that the impurities are sufficiently discharged from the system including the fuel exhaust gas flow channel, the fuel cell, and the fuel exhaust gas flow channel.
  • the square root of the average molecular weight of the gas discharged from the exhaust valve is proportional to the flow rate per unit time of the gas discharged from the exhaust valve.
  • nitrogen is mixed into the fuel exhaust gas flow channel mainly due to cross leak generated in the fuel cell. The amount of cross leak is correlated with the temperature of the fuel cell.
  • water vapor is mainly caused by water generated by power generation in the fuel cell.
  • the amount of water vapor correlates with the amount of current generated by the fuel cell and the temperature of the fuel cell. Further, the amount of hydrogen gas out of the gas discharged from the exhaust valve is obtained as a difference between hydrogen supplied to the fuel cell via the injector and hydrogen consumed by power generation in the fuel cell.
  • the amount of hydrogen supplied to the fuel cell via the injector can be determined from the pressure difference before and after the pressure control unit.
  • the pressure of the fuel gas supplied to the pressure control unit, the pressure of the fuel gas supplied from the pressure control unit to the fuel cell, the temperature of the fuel cell, the temperature of the fuel cell, and the current of the fuel cell The exhaust valve is closed when the parameter obtained based on the above falls below a predetermined value.
  • an exhaust valve can be closed in the state by which the impurity was fully discharged
  • the controller is By controlling the pressure control unit, before closing the exhaust valve, the pressure of the fuel gas to be supplied to the fuel cell is lowered than before, A fuel cell system, wherein the exhaust valve is closed in a state where the pressure of the fuel gas to be supplied to the fuel cell is lowered.
  • closing the exhaust valve can prevent a situation in which the pressure of the system including the fuel exhaust gas flow channel, the fuel cell, and the fuel exhaust gas flow channel becomes undesirably high.
  • a method for operating a fuel cell system comprising: The fuel cell system includes: A fuel cell; A pressure controller provided in a fuel gas flow path through which fuel gas to be supplied to the fuel cell flows, and capable of controlling the pressure of the fuel gas to be supplied to the fuel cell; An exhaust valve that is provided in a fuel exhaust gas flow path through which fuel exhaust gas discharged from the fuel cell flows and is capable of discharging at least a part of the fuel exhaust gas outside the fuel exhaust gas flow path when opened.
  • the method opening the exhaust valve when the pressure of the fuel gas to be supplied to the fuel cell is a first pressure; (B) controlling the pressure control unit to open the exhaust valve, and then setting the pressure of the fuel gas to be supplied to the fuel cell to a second pressure higher than the first pressure;
  • a method comprising:
  • the present invention can be realized in various forms other than the above, for example, in the form of a fuel cell mounting method, a fuel cell system, a vehicle equipped with a fuel cell, and the like.
  • FIG. 3 is an enlarged schematic view showing the vicinity of an on-off valve 50 of the gas-liquid separator 27.
  • FIG. 3 is an enlarged schematic view showing the vicinity of an on-off valve 50 of the gas-liquid separator 27.
  • FIG. It is a chart which shows the content of control of the injector 62 which the control part 70 performs. It is a graph which shows the discharge
  • FIG. It is a graph which shows modification of valve opening time.
  • 2nd Example it is a chart which shows the content of control of the injector 62 which the control part 70 performs.
  • 3 is a graph showing the contents of gas exhausted from the on-off valve 50 immediately after the on-off valve 50 is opened and the contents of gas exhausted from the on-off valve 50 just before the on-off valve 50 is closed.
  • It is a figure showing the map Mn regarding the quantity qn per unit time of the nitrogen gas discharged
  • FIG. It is a graph which shows quantity qL of the liquid water which should be drained from the liquid separator 27 when the cooling water temperature Tw is 50 degree
  • FIG. 1 is a block diagram showing an outline of a configuration of a fuel cell system 10 which is an embodiment of the present invention.
  • the fuel cell system 10 includes a fuel cell 22 that is a main body of power generation, a hydrogen tank 23 that stores hydrogen to be supplied to the fuel cell 22, and an air compressor 24 for supplying compressed air to the fuel cell 22.
  • a fuel cell 22 is a main body of power generation
  • a hydrogen tank 23 that stores hydrogen to be supplied to the fuel cell 22
  • an air compressor 24 for supplying compressed air to the fuel cell 22.
  • various types of fuel cells can be used as the fuel cell 22, in this embodiment, a polymer electrolyte fuel cell is used as the fuel cell 22.
  • the fuel cell 22 has a stack structure in which a plurality of single cells are stacked.
  • the hydrogen tank 23 can be, for example, a hydrogen cylinder that stores high-pressure hydrogen. Or it is good also as a tank which stores hydrogen by providing a hydrogen storage alloy inside and making it store in a hydrogen storage alloy.
  • the hydrogen gas stored in the hydrogen tank 23 is discharged to the hydrogen gas supply path 60, adjusted to a predetermined pressure by the injector 62, and supplied to the anode of the fuel cell 22.
  • the hydrogen gas supply passage 60 is provided with an FC inlet shut valve 61.
  • the injector 62 has two states, a state where the valve is open and a state where the valve is closed.
  • the injector 62 fixes the “time To when the valve is open” and the “time Tc when the valve is closed” to predetermined values, respectively, so that the valve is open and the valve is closed. It can be repeated at high speed. For this reason, by performing PWM control of the injector 62, hydrogen gas can be supplied to the anode of the fuel cell 22 at an arbitrary pressure.
  • the ratio obtained by dividing the “time To when the valve is open” by the sum of the “time To when the valve is open” and the “time Tc when the valve is closed” is In the present specification, this is referred to as “duty ratio Di”.
  • the injector 62 can supply hydrogen gas to the anode of the fuel cell 22 at an arbitrary pressure.
  • the duty ratio is described as “larger” as the ratio of the time during which the valve is open is larger.
  • the anode exhaust gas discharged from the anode of the fuel cell 22 is guided to the anode exhaust gas passages 63e, 63m, 63r and flows into the hydrogen gas supply passage 60 again.
  • a hydrogen pump 65 is provided in the middle of the anode exhaust gas passages 63e, 63m, 63r.
  • the pressure of the anode exhaust gas path 63e and the anode exhaust gas path 63m connected to the downstream side of the anode of the fuel cell 22 is equal to the pressure loss of the path in the fuel cell 22 and the amount of hydrogen gas consumed in the fuel cell 22.
  • the pressure of the hydrogen gas supply path 60 connected to the upstream side of the battery 22 is lower.
  • the anode exhaust gas discharged from the fuel cell 22 and flowing through the anode exhaust gas passages 63e and 63m is compressed by the hydrogen pump 65, the pressure is increased, and the anode exhaust gas passage 63r is supplied and flows into the hydrogen gas supply passage 60. In this way, the remaining hydrogen gas in the anode exhaust gas circulates in the flow path and is used again for the electrochemical reaction.
  • a gas-liquid separator 27 is provided between the anode exhaust gas passage 63e and the anode exhaust gas passage 63m. As the electrochemical reaction proceeds, water is produced at the cathode. Water generated at the cathode is also introduced into the gas on the anode side through the electrolyte membrane. In the fuel cell system 10 of this embodiment, in order to prevent flooding due to water, the water vapor accumulated in the anode exhaust gas is condensed in the anode exhaust gas passage 63 by the gas-liquid separator 27 and discharged out of the system.
  • system refers to the fuel gas supply path 60 that supplies the fuel gas to the fuel cell, the fuel gas flow path in the fuel cell 22, and the anode exhaust gas discharged from the fuel cell 22 as fuel.
  • a gas flow path comprising anode exhaust gas paths 63e, 63m, 63r supplied to the gas supply path 60.
  • the gas-liquid separator 27 is provided with an on-off valve 50, and further, a gas-liquid discharge path 64 is connected through the on-off valve 50.
  • the gas-liquid discharge path 64 is connected to the diluter 26.
  • FIG. 2 and FIG. 3 are schematic diagrams showing an enlarged view of the vicinity of the on-off valve 50 of the gas-liquid separator 27.
  • FIG. 2 shows a state where the on-off valve 50 is closed.
  • FIG. 3 shows a state where the on-off valve 50 is open.
  • the on-off valve 50 includes an outer shell 51 that also serves as an outer shell of the gas-liquid separator 27, a valve body 52, a packing 53, and a solenoid 54.
  • the outer shell 51 separates the inside and the outside of the on-off valve 50 and includes a hole 51h.
  • the inside of the on-off valve 50 can communicate with the gas-liquid discharge path 64 through the hole 51h.
  • the packing 53 is provided with an elastically deformable material, and surrounds the hole 51 h inside the outer shell 51.
  • the on-off valve 50 can take two states: a state where the valve is open and a state where the valve is closed.
  • the controller 70 controls the solenoid 54 of the opening / closing valve 50 to open / close the opening / closing valve 50.
  • the on-off valve 50 is provided at the bottom of the gas-liquid separator 27. For this reason, when the on-off valve 50 is opened (see FIG. 3), all the water condensed in the gas-liquid separator 27 is discharged to the diluter 26. Then, after the water is discharged, a part of the anode exhaust gas is discharged to the diluter 26 (see arrow Af in FIG. 3).
  • the fuel cell system 10 of the present embodiment has a configuration in which the anode exhaust gas path 63 is connected to the hydrogen gas supply path 60 and the anode exhaust gas is again subjected to an electrochemical reaction.
  • nitrogen permeates through the electrolyte membrane from the cathode side to the anode side.
  • the nitrogen concentration on the anode side increases with the passage of time. Therefore, in the fuel cell system 10, a part of the anode exhaust gas is discharged out of the flow path through the on-off valve 50 at predetermined time intervals. By doing so, the concentration of impurities in the anode exhaust gas passage 63 is reduced, and the concentration of impurities such as nitrogen in the gas supplied to the anode is prevented from increasing.
  • the air compressor 24 shown in FIG. 1 supplies pressurized air as an oxidizing gas to the cathode of the fuel cell 22 via the oxidizing gas supply path 67.
  • the air compressor 24 compresses air, it takes in air from the outside through a mass flow meter 28 provided with a filter.
  • the cathode exhaust gas discharged from the cathode is guided to the cathode exhaust gas path 68 and discharged to the outside.
  • the above-described diluter 26 is provided in the cathode exhaust gas path 68.
  • the diluter 26 is a container having a larger cross-sectional area than the gas-liquid discharge path 64, and one end thereof is open to the atmosphere.
  • the anode exhaust gas flows into the diluter 26 through the on-off valve 50 connected to the gas-liquid separator 27 and the gas-liquid discharge path 64.
  • the anode exhaust gas flowing into the diluter 26 is diluted by being mixed with the cathode exhaust gas in the diluter 26. Thereafter, the mixed anode exhaust gas and cathode exhaust gas are discharged from the cathode exhaust gas passage 68 into the atmosphere.
  • each device of the fuel cell system 10 such as the air compressor 24 is controlled so that the concentration of hydrogen gas in the discharged gas is equal to or lower than a predetermined concentration.
  • the fuel cell system 10 further includes a cooling unit 40 for cooling the fuel cell 22 so that the operating temperature of the fuel cell 22 becomes a predetermined temperature.
  • the cooling unit 40 includes a cooling water channel 41, a cooling pump 42, and a radiator 29.
  • the cooling water channel 41 is a channel that guides the cooling water so that the cooling water circulates between the inside of the fuel cell 22 and the radiator 29.
  • the cooling pump 42 circulates the cooling water in the cooling water channel 41.
  • the radiator 29 includes a cooling fan, and cools the cooling water whose temperature has risen via the inside of the fuel cell 22.
  • the devices that operate in accordance with the power generation of the fuel cell 22 such as the air compressor 24, the cooling pump 42, the radiator fan, and the valve provided in the flow path described above are hereinafter referred to as a fuel cell auxiliary device.
  • These fuel cell auxiliaries operate with power supplied from the fuel cell 22.
  • the fuel cell 22 is connected to a load device 30 which is a power consuming device to which power is supplied from the fuel cell 22.
  • the load device 30 includes, for example, an electric motor that operates with power supplied from the fuel cell 22.
  • the load device 30 is represented as a load independent of the fuel cell system 10, but the load device 30 includes the fuel cell auxiliary device described above. That is, in FIG. 1, a device supplied with electric power from the fuel cell 22 including a fuel cell auxiliary device such as the air compressor 24 is represented as a load device 30.
  • the fuel cell system 10 further includes a control unit 70 that controls the movement of each unit of the fuel cell system 10.
  • the control unit 70 is configured as a logic circuit centered on a microcomputer. More specifically, the control unit 70 includes a CPU that executes predetermined calculations in accordance with a preset control program, and a ROM that stores in advance control programs, control data, and the like necessary for executing various calculation processes by the CPU. Similarly, a RAM in which various data necessary for performing various arithmetic processes in the CPU are temporarily read and written, an input / output port for inputting / outputting various signals, and the like are provided.
  • the control unit 70 includes detection signals from sensors such as an ammeter 35, a voltmeter 36, an impedance meter 37, a temperature sensor 43, and pressure sensors 66 a and 66 b provided in each unit of the fuel cell system 10, and a load device 30. Get information about load requests.
  • the control unit 70 outputs a drive signal to each unit related to power generation of the fuel cell 22 such as a pump provided in the fuel cell system 10, a valve provided in a flow path, a radiator fan, or the like.
  • the control unit 70 is illustrated outside the fuel cell system 10 in order to represent a state in which signals are exchanged between the components of the fuel cell system 10 and the control unit 70. *
  • the fuel cell system 10 includes an ammeter 35 in a circuit connecting the fuel cell 22 and the load device 30 (see FIG. 1).
  • the fuel cell system 10 includes a temperature sensor 43 in the cooling water channel 41 for detecting the temperature of the cooling water sent from the fuel cell 22 and flowing into the radiator 29.
  • the fuel cell system 10 includes a pressure sensor 66 a at a position in the hydrogen gas supply path 60 that is downstream from the hydrogen tank 23 and upstream from the injector 62.
  • the fuel cell system 10 includes a pressure sensor 66b at a position in the hydrogen gas supply path 60 that is downstream of the injector 62 and upstream of the fuel cell 22.
  • the control unit 70 refers to a map stored in the control unit 70 in advance, and the current amount detected by the ammeter 35, the cooling water temperature detected by the temperature sensor 43, and the pressure sensors 66a and 66b. Control of the opening / closing operation of the on-off valve 50 and the operation of the injector 62 are performed based on the pressure of the hydrogen gas. For example, based on the integrated value of the power generation amount of the fuel cell 22, a valve map Mv that defines a valve opening time interval (valve closing time) and a valve opening time is created in advance and controlled. Stored in the unit 70.
  • the valve map Mv has a plurality of sets of data corresponding to the classification of the cooling water temperature.
  • On-off valve and injector control As described above, the control unit 70 opens and closes the opening / closing valve 50 based on the integrated value of the power generation amount of the fuel cell 22 with reference to the valve map Mv. And the control part 70 controls the driving
  • FIG. 1 On-off valve and injector control: As described above, the control unit 70 opens and closes the opening / closing valve 50 based on the integrated value of the power generation amount of the fuel cell 22 with reference to the valve map Mv. And the control part 70 controls the driving
  • FIG. 4 is a chart showing the contents of the control of the injector 62 performed by the control unit 70.
  • Vs shown in the lower part of FIG. 4 indicates the open / close state of the on-off valve 50.
  • Vs being high indicates that the on-off valve 50 is open.
  • Vs being low indicates that the on-off valve 50 is closed.
  • Di shown in the middle of FIG. 4 is the duty ratio Di of the injector 62.
  • the duty ratio Di of the injector 62 can take various values according to the control of the control unit 70.
  • Po shown in the upper part of FIG. 4 is the pressure of the hydrogen gas downstream of the injector 62 measured by the pressure sensor 66b (see FIG. 1).
  • the control unit 70 determines that the on-off valve 50 should be opened at the predetermined time t3 according to the valve map Mv, the control unit 70 reduces the pressure of the hydrogen gas downstream of the injector 62 prior to the time t3. Specifically, first, at time t1, the duty ratio Di of the injector 62 is decreased from the previous duty ratio D0 to D1 (D1 ⁇ D0), and then at time t2, the duty ratio Di of the injector 62 is It is assumed that D2 (D1 ⁇ D2 ⁇ D0).
  • the hydrogen gas pressure Po on the downstream side of the injector 62 decreases from P0 to P2 (P2 ⁇ P0). Then, in the time interval Tp2 between times t2 and t3, the pressure Po of the hydrogen gas on the downstream side of the injector 62 is maintained at P2. Note that P0, P1, and P2 are all higher than the pressure Pd in the gas-liquid discharge path 64 and the diluter 26.
  • the control unit 70 opens the on-off valve 50.
  • the pressure Po of the hydrogen gas on the downstream side of the injector 62 is lowered (see time intervals Tp1 and Tp2 in FIG. 4).
  • the pressure Pe in the anode exhaust gas passage 63e and the gas-liquid separator 27 when the on-off valve 50 is opened is lowered. That is, the difference between the pressure Pe in the gas-liquid separator 27 and the pressure Pd in the gas-liquid discharge path 64 and the diluter 26 is reduced.
  • valve body 52 can be moved toward the inside of the on-off valve 50 with a small force (see FIGS. 2 and 3). Further, for the convenience of operation of the fuel cell system, the valve body 52 can be moved toward the inside of the on-off valve 50 with a small force even when the pressure Po downstream of the injector 62 is large. Therefore, it is not necessary to equip the solenoid 54 with a large solenoid that can generate a strong force.
  • the control unit 70 When detecting that Po has decreased to a predetermined pressure P3 (P3 ⁇ P2), the control unit 70 increases the duty ratio Di of the injector 62 from D2 to D3 (D2 ⁇ D0 ⁇ D3). As a result, the pressure Po of the hydrogen gas on the downstream side of the injector 62 increases from P3 to P5 in the time interval Tp4 (P5> P0).
  • control unit 70 maintains the duty ratio Di of the injector 62 at D4 (D0 ⁇ D4 ⁇ D3).
  • the pressure Po of the hydrogen gas downstream of the injector 62 is maintained at P5 (P2 ⁇ P0 ⁇ P5) in the time interval Tp5.
  • the pressure Po of the hydrogen gas on the downstream side of the injector 62 is made higher than before opening (see time intervals Tp0 and Tp5 in FIG. 4). For this reason, the pressure in the on-off valve 50 included in the exhaust gas circulation system can be increased. As a result, water and gas can be efficiently discharged from the on-off valve 50 even when the power generation amount of the fuel cell is low and the pressure P0 is low.
  • the hydrogen gas pressure Po downstream of the injector 62 is lower than P5. For this reason, the valve body 52 can be moved toward the inside of the on-off valve 50 with a small force.
  • the steady-state pressure P0 before opening the on-off valve 50 is determined without considering water and gas discharge from the system, the steady-state pressure P0 is set to a pressure at which cross-leakage is unlikely to occur. be able to.
  • the opening of the on-off valve 50 is detected based on the pressure change, and the pressure Po of the hydrogen gas downstream of the injector 62 is increased. For this reason, it is possible to avoid a situation in which the pressure Po of the hydrogen gas is increased before the opening / closing valve 50 is opened, thereby hindering the valve opening.
  • the opening / closing valve 50 After the opening / closing valve 50 is opened at time t3, water is discharged from the opening / closing valve 50 until time t6. For this reason, gas or liquid is not rapidly discharged from the fuel gas circulation system, and the internal pressure does not drop rapidly. This is because the speed at which water is discharged from the on-off valve 50 is slower than the speed at which gas is discharged from the on-off valve 50.
  • the duty ratio D4 of the injector 62 for keeping the pressure Po of the hydrogen gas downstream of the injector 62 constant assumes that water is discharged from the on-off valve 50 and no gas is discharged. Is the set value.
  • the control unit 70 changes the duty ratio Di of the injector 62 from D4 to D5 (D3 ⁇ D4 ⁇ D5).
  • the pressure Po of the hydrogen gas downstream of the injector 62 increases from P6 to P7 in the time interval Tp7 (P6 ⁇ p5 ⁇ P7).
  • the control unit 70 maintains the duty ratio Di of the injector 62 at D6 (D4 ⁇ D6 ⁇ D5).
  • the pressure Po of the hydrogen gas on the downstream side of the injector 62 is maintained at P7 (P7> P5) in the time interval Tp8.
  • the discharge of water is completed and the start of gas discharge from the on-off valve 50 is detected based on the rate of decrease in pressure, and the pressure of the system is further increased (time in FIG. 4). (See section Tp6 to Tp8). For this reason, gas can be efficiently discharged from the on-off valve 50.
  • the control unit 70 reduces the pressure of the hydrogen gas downstream of the injector 62 prior to time t10 when the on-off valve 50 should be closed according to the valve map Mv. Specifically, at time t9 (t9 ⁇ t10), the duty ratio Di of the injector 62 is reduced from the previous duty ratio D6 to D0. As a result, in the time interval Tp9, the pressure Po of the hydrogen gas downstream of the injector 62 decreases from P7 to P0 (P0 ⁇ P7). Then, in the time section Tp10 after time t9, the hydrogen gas pressure Po downstream of the injector 62 is maintained at P0. In the example of FIG. 4, it is assumed that the power generation state of the fuel cell 22 has not changed consistently.
  • the control unit 70 closes the on-off valve 50.
  • the duty ratio Di of the injector 62 is lowered, and the pressure Po of the hydrogen gas downstream of the injector 62 is lowered (time interval Tp9, FIG. 4). (See Tp10). For this reason, it is possible to prevent the pressure Pe in the anode exhaust gas passage 63e and the gas-liquid separator 27 from increasing immediately after the on-off valve 50 is closed.
  • FIG. 5 is a graph showing the amount of gas and water discharged per unit time when the pressure Pe in the on-off valve 50 is a certain value.
  • the vertical axis represents the amount of gas and water discharged per unit time.
  • the horizontal axis represents time.
  • the graph Qg represents a change in the amount of gas discharged per unit time when only the gas is discharged from the on-off valve 50.
  • the graph Qw represents a change in the amount of gas and discharge per unit time when water and gas are discharged from the on-off valve 50.
  • the duty ratio D4 of the injector 62 in the time interval Tp5 in FIG. 4 is set so that the pressure Pe in the on-off valve 50 is lower than a value at which cavitation is likely to occur. More specifically, the duty ratio D4 of the injector 62 is determined as follows.
  • Pressure loss downstream of the injector 62 that is, the pressure Po of the hydrogen gas upstream of the fuel cell 22 at a certain value, downstream from the injector 62 and to the gas-liquid separator 27 (mainly pressure by the fuel cell 22) Loss) can be measured in advance. For this reason, considering the pressure loss of the fuel cell 22 and the like so that the pressure Pe in the on-off valve 50 of the gas-liquid separator 27 is less than the value at which cavitation occurs, the downstream side of the injector 62 (of the fuel cell 22 A target pressure Pot of hydrogen gas on the upstream side is determined. Then, the duty ratio D4 of the injector 62 is determined so that the pressure of the hydrogen gas downstream of the injector 62 becomes Pot.
  • the duty ratio D6 of the injector 62 when only gas is discharged from the on-off valve 50 is not limited with respect to the occurrence of cavitation (see time interval Tp8 in FIG. 4). Therefore, the duty ratio D6 is set so that the pressure Po of the hydrogen gas downstream of the injector 62 is higher than the duty ratio D4 (P7> P5, D6> D4).
  • the duty ratios D4 and D6 of the injector 62 in this way, when water and gas are being discharged from the on-off valve 50, water and gas can be efficiently discharged without causing cavitation. it can.
  • the gas can be discharged efficiently at a higher pressure.
  • the duty ratio D6 is set under the following restrictions based on the performance of the diluter 26, the air compressor 24 that supplies compressed air to the fuel cell 22, and the like. That is, in FIG. 4, the duty ratio D6 is shown as a constant value for easy understanding of the technology. However, in practice, the control unit 70 controls the duty ratio D6 so that the hydrogen concentration of the exhaust gas discharged from the diluter 26 is less than a predetermined value (for example, 3.9%).
  • FIG. 6 is a graph showing the hydrogen concentration Dh in the exhaust gas discharged from the diluter 26.
  • the vertical axis represents the hydrogen concentration Dh.
  • the horizontal axis represents time.
  • emitted from the diluter 26 will fall once (refer time interval Tp63 of FIG. 6). After that, the hydrogen concentration Dh of the exhaust gas discharged from the diluter 26 is kept below a predetermined value (see time interval Tp64 in FIG. 6).
  • the hydrogen concentration of the exhaust gas discharged from the diluter 26 is proportional to the amount of gas discharged from the on-off valve 50 per unit time.
  • the amount of gas discharged from the on-off valve 50 per unit time is proportional to the pressure difference between the inside and outside of the on-off valve 50.
  • the pressure outside the on-off valve 50 that is, the pressure Pe in the gas-liquid discharge path 64 and the diluter 26 can be known based on the operating conditions of the fuel cell system.
  • the pressure in the on-off valve 50 can also be known based on the hydrogen gas pressure Po on the downstream side of the injector 62, that is, on the upstream side of the fuel cell 22, as described above. Therefore, the controller 70 controls the injector so that the difference between the pressure in the on-off valve 50 and the pressure Pe in the gas-liquid discharge path 64 is less than a predetermined value corresponding to the hydrogen concentration of the exhaust gas after dilution 3.9%. 62 duty ratio D6 is controlled.
  • FIG. 7 is a graph showing the modification of the valve opening time.
  • the vertical axis represents the amount of gas discharged from the on-off valve 50 per unit time.
  • the horizontal axis represents time.
  • the time Tvo for opening the on-off valve 50 is determined based on the valve map Mv. For example, it is assumed that the valve opening control content is determined based on the valve map Mv so that the on-off valve 50 is opened only for the time Tvo.
  • the hydrogen concentration of the exhaust gas after dilution is maintained at less than 3.9%, and impurities are sufficiently contained in the system.
  • the amount of hydrogen gas discharged per unit time needs to be Qo.
  • the hydrogen concentration of the exhaust gas after dilution May exceed 3.9%.
  • the control unit 70 opens the on-off valve 50 while controlling the duty ratio D6 of the injector 62 so that the hydrogen concentration of the exhaust gas after dilution can be made less than 3.9%.
  • the time is extended from a time Tvo determined based on the valve map Mv.
  • each part is controlled so that the discharge amount is Qor (Qor ⁇ Qo) per unit time, and the on-off valve 50 is opened for the time Tvor (Tvor> Tvo).
  • the concentration of hydrogen gas supplied to the fuel cell is set to a certain value or more by discharging impurities from the fuel gas circulation system while keeping the hydrogen concentration of the exhaust gas after dilution below a predetermined value. be able to.
  • Second embodiment In the fuel cell system of the second embodiment, the content of feedback control of the injector 62 for maintaining the target pressure, the method of detecting that the on-off valve 50 is open (see time t4 in FIG. 4), and the on-off valve 50 Is different from the fuel cell system 10 of the first embodiment.
  • the other points of the fuel cell system of the second embodiment including the hardware configuration are the same as those of the fuel cell system 10 of the first embodiment.
  • FIG. 8 is a chart showing the contents of control of the injector 62 performed by the control unit 70 in the second embodiment. 8, the same reference numerals as those in FIG. 4 represent the same objects as those in FIG. In FIG. 8, the hydrogen gas pressure Po and the duty ratio Di on the downstream side of the injector 62 in the first embodiment are indicated by broken lines for reference.
  • the feedback control of the injector 62 is performed with a faster response speed than in the first embodiment.
  • the feedback control of the injector 62 is performed by using a signal representing the difference between the hydrogen gas pressure Po measured by the pressure sensor 66b downstream of the injector 62 and the target pressure as a feedback signal. Done.
  • the control unit 70 determines the duty ratio. Set Di to a higher value. Then, the control unit 70 sets the duty ratio Di so that the pressure Po of the hydrogen gas downstream of the injector 62 maintains the target pressure P2. As a result, the pressure Po of the hydrogen gas downstream of the injector 62 hardly decreases, and the duty ratio Di of the injector 62 changes from D2 to D2f (D2f> D2) (see time interval Tp3 in FIG. 8).
  • the control unit 70 When detecting that the duty ratio Di of the injector 62 has reached a value higher than the predetermined threshold Thd by feedback control, the control unit 70 increases the duty ratio Di of the injector 62 to D3a (D2f ⁇ D3a ⁇ D3). ) (Time t4 in FIG. 8).
  • the threshold value Thd is set to a value that is larger than the duty ratio D2 before the on-off valve 50 is opened and smaller than the duty ratio D2f that is assumed in an initial stage after the on-off valve 50 is opened. .
  • the duty ratio Di of the injector 62 is set to D3a, the pressure Po of the hydrogen gas on the downstream side of the injector 62 increases from P2 to P5 in the time interval Tp4 (P5> P0).
  • the on-off valve 50 is opened based on the control state (more specifically, the duty ratio) of the injector 62 without using the measurement value of the pressure sensor 66b as in the first embodiment. This can be detected (see time interval Tp3), and the pressure Po of the hydrogen gas on the downstream side of the injector 62 can be made higher than before opening the valve (see time interval Tp4).
  • valve closing In the second embodiment, when the conditions described below are satisfied, the control unit 70 opens and closes even if the time from the valve opening does not reach the time Tvo determined according to the valve map Mv. The valve 50 is closed.
  • (I) Average molecular weight of gas discharged from on-off valve The gas in the on-off valve 50 includes hydrogen gas as fuel gas, nitrogen gas and water vapor as impurities.
  • the molecular weight of hydrogen gas is 2.
  • the molecular weight of nitrogen gas is 14.
  • the molecular weight of water vapor (water) is 18.
  • the average molecular weight of the gas discharged from the exhaust valve is 2-18.
  • the molecular weight of hydrogen gas as fuel gas is 2.
  • FIG. 9 is a graph showing the contents of gas discharged from the on-off valve 50 immediately after the on-off valve 50 is opened and the contents of gas discharged from the on-off valve 50 just before the on-off valve 50 is closed.
  • the vertical axis in FIG. 9 represents the gas flow rate per unit time.
  • the graph on the right represents the contents of gas discharged from the on-off valve 50 immediately after the on-off valve 50 is opened.
  • the graph on the left represents the content of gas discharged from the on-off valve 50 immediately before the on-off valve 50 is closed.
  • the average molecular weight m of the gas discharged through the on-off valve 50 gradually approaches the molecular weight 2 of hydrogen. That is, the average molecular weight m gradually decreases.
  • the average molecular weight m becomes smaller than a predetermined value, it can be determined that impurities are sufficiently discharged from the fuel gas circulation system.
  • the square root of the average molecular weight m of the gas discharged from the on-off valve 50 is proportional to the flow rate Q per unit time of the gas discharged from the on-off valve 50 .
  • a method for determining the flow rate Q per unit time of the gas discharged from the on-off valve 50 will be described separately for nitrogen gas, water vapor, and hydrogen gas.
  • FIG. 10 is a diagram illustrating a map Mn regarding the amount qn of nitrogen gas discharged from the on-off valve 50 per unit time, which the control unit 70 has.
  • the vertical axis in FIG. 10 represents the amount qn of nitrogen gas discharged from the on-off valve 50 per unit time.
  • the horizontal axis of FIG. 10 represents the temperature Tw of the cooling water of the fuel cell 22.
  • nitrogen is mixed into the fuel gas circulation system mainly due to cross leak occurring in the fuel cell 22.
  • the amount of nitrogen cross leak is correlated with the temperature of the fuel cell 22.
  • the temperature of the fuel cell 22 can be determined based on the cooling water temperature Tw detected by the temperature sensor 43 provided in the cooling water channel 41.
  • a map Mn (see FIG. 10) is determined that determines the amount qn of nitrogen gas discharged from the on-off valve 50 per unit time from the temperature Tw of the cooling water of the fuel cell 22. can do.
  • the control unit 70 holds a map Mn for nitrogen gas provided in advance as described above.
  • FIG. 11 is a diagram illustrating maps Mw1, Mw2, and Mw3 related to the amount of water vapor qw discharged from the on-off valve 50 per unit time that the control unit 70 has.
  • the vertical axis in FIG. 11 represents the amount qw of water discharged from the on-off valve 50 per unit time.
  • the horizontal axis of FIG. 11 represents the power generation amount Pg of the fuel cell 22 per unit time.
  • water vapor is mainly caused by water generated by power generation in the fuel cell 22.
  • the amount of water vapor correlates with the power generation amount Pg in the fuel cell 22 and the temperature of the fuel cell 22.
  • the amount of power generated in the fuel cell 22 can be determined based on the amount obtained by integrating the amount of current detected by the ammeter 35 over time for a unit time .
  • the temperature of the fuel cell 22 can be determined based on the cooling water temperature Tw detected by the temperature sensor 43.
  • the amount qw of water vapor per unit time discharged from the on-off valve 50 is calculated from the power generation amount (current amount) of the fuel cell 22 and the temperature Tw of the cooling water of the fuel cell 22.
  • Maps Mw1, Mw2, and Mw3 (see FIG. 11) to be determined can be created.
  • Maps Mw1, Mw2, and Mw3 representing the relationship between the power generation amount Pg and the water vapor amount respectively correspond to mutually different cooling water temperatures Tw1, Tw2, and Tw3 (Tw1 ⁇ Tw2 ⁇ Tw3).
  • Tw1 ⁇ Tw2 ⁇ Tw3 cooling water temperatures
  • a map representing the relationship between the power generation amount Pg and the water vapor amount is collectively referred to as a water vapor map Mw.
  • the controller 70 holds a water vapor map Mw provided in advance.
  • (Iv) Amount of hydrogen gas discharged from the on-off valve per unit time Of the gas discharged from the on-off valve 50, the amount of hydrogen gas is obtained as the difference between the hydrogen supplied to the fuel cell 22 via the injector 62 and the hydrogen consumed by the power generation in the fuel cell 22.
  • the amount of hydrogen supplied to the fuel cell 22 via the injector 62 can be determined based on the amount obtained by integrating the pressure difference before and after the injector 62 by unit time .
  • the pressure on the upstream side of the injector 62 can be obtained by the pressure sensor 66a.
  • the pressure on the downstream side of the injector 62 can be obtained by the pressure sensor 66b.
  • the amount of hydrogen consumed by power generation in the fuel cell 22 can be determined based on the power generation amount in the fuel cell 22.
  • the power generation amount in the fuel cell 22 can be determined based on the amount obtained by integrating the current amount detected by the ammeter 35 with time .
  • the fuel cell 22 is discharged from the on-off valve 50 from the power generation amount (current amount), the cooling water temperature Tw, and the upstream and downstream pressures of the injector 62.
  • a map Mh that determines the amount qh of hydrogen gas per unit time can be created.
  • the control unit 70 holds a map Mh for hydrogen gas provided in advance as described above.
  • valve closing As described above, the control unit 70 refers to the maps Mn, Mw, and Mh, the temperature of the cooling water detected by the temperature sensor 43, the amount of current detected by the ammeter 35, and the pressure detected by the pressure sensors 66a and 66b. Therefore, the flow rate Q per unit time of the gas discharged from the on-off valve 50 can be obtained.
  • the control unit 70 sets the parameter Pvc based on the temperature of the cooling water detected by the temperature sensor 43, the amount of current detected by the ammeter 35, and the pressure detected by the pressure sensors 66a and 66b. Calculate This parameter Pvc represents the flow rate Q per unit time of the gas discharged from the on-off valve 50. Therefore, the parameter Pvc is proportional to the square root of the average molecular weight m of the gas discharged from the on-off valve 50.
  • the control unit 70 opens and closes when the parameter Pvc falls below a predetermined threshold value Thc even if the time from the valve opening has not reached the time Tvo determined according to the valve map Mv.
  • the valve 50 is closed (see time t10b in FIG. 8).
  • Modification 1 In the above embodiment, after the valve is opened, it is detected that the decrease per unit time of the pressure Po downstream of the injector 62 has become larger than the predetermined threshold value Tr6, and the discharge of the liquid water is completed. This is detected and the duty Di is increased (see Tp6 in FIGS. 4 and 8). However, the time when the duty Di is increased after the valve is opened can be determined in advance.
  • FIG. 12 is a graph showing the amount of liquid water qL to be drained from the liquid separator 27 when the cooling water temperature Tw is 50 degrees.
  • the liquid water to be drained from the liquid separator 27 is also mainly caused by the water generated by the power generation in the fuel cell 22.
  • the amount of liquid water qL to be discharged is also correlated with the amount of power generated in the fuel cell 22 and the temperature of the fuel cell 22. For example, assuming that the power generation amount (current amount) and the temperature of the fuel cell 22 (cooling water temperature) are constant, as shown in FIG. 12, the amount qL of water to be drained increases with the passage of time.
  • the amount of current can be detected by the ammeter 35.
  • the temperature of the fuel cell 22 can be determined based on the cooling water temperature Tw detected by the temperature sensor 43.
  • ML3 (see FIG. 12) can be created.
  • TL1 ⁇ TL2 ⁇ TL3 TL1 ⁇ TL2 ⁇ TL3
  • Maps representing the relationship between the elapsed time and the amount of water vapor are collectively referred to as a water vapor map ML.
  • the control unit 70 can also hold a water vapor map ML provided in advance, and based on the map, can determine a time (see t4 in FIGS. 4 and 8) at which the duty Di should be increased.
  • Modification 2 In the above embodiment, the fuel gas 22 whose pressure is adjusted is supplied to the fuel cell 22 by the injector 62 capable of PWM control.
  • the configuration in which the fuel gas whose pressure is adjusted is supplied to the fuel cell 22 may be a pressure adjusting valve according to another method.
  • the opening / closing valve 50 is detected based on the duty Di of the injector 62 (see time interval Tp3 in FIG. 8).
  • the detection of opening of the on-off valve 50 can be performed by other methods. For example, it is detected that the difference between the hydrogen gas pressure Po measured by the pressure sensor 66b on the downstream side of the injector 62 and the target pressure is larger than a predetermined value, and the on-off valve 50 is opened. Can also be detected. More specifically, such control can be performed by monitoring the feedback signal of the injector 62.
  • the on-off valve 50 is opened without using the measurement value of the pressure sensor 66b as in the first embodiment, and the pressure Po of the hydrogen gas downstream of the injector 62 is detected. , Can be higher than before opening the valve.
  • Modification 4 In the first embodiment, the change of the pressure between the injector 62 and the fuel cell 22 is detected by the pressure sensor 66b to detect that the on-off valve 50 is opened (time interval in FIG. 4). (See Tp3).
  • a pressure sensor for detecting that the on-off valve 50 is opened can be provided for other parts such as the downstream side of the fuel cell 22. That is, it can be a sensor that measures the pressure of the fuel gas to be supplied to the fuel cell, and can also be a sensor that measures the pressure of the fuel exhaust gas discharged from the fuel cell.
  • the pressure sensor for detecting that the on-off valve 50 is opened can be provided on the downstream side of the injector 62 as a pressure control unit.
  • the pressure sensor is preferably provided on the upstream side of the fuel cell 22. With such an aspect, it is possible to prevent the pressure sensor from malfunctioning due to freezing of water contained in the anode gas circulation system.
  • Modification 5 In the first embodiment, when it is detected that the decrease width per unit time of the pressure Po on the downstream side of the injector 62 has become larger than the predetermined threshold value Tr6, the control unit 70 determines the duty ratio of the injector 62. Di is increased from D4 to D5 (see time intervals Tp6 and Tp7 in FIG. 4). However, the timing of increasing the duty ratio Di of the injector 62 after draining can be detected by other methods.
  • the pressure control unit it is possible to detect that the pressure in the fuel gas circulation system has decreased below a predetermined value and cause the pressure control unit to increase the pressure. Further, when the response speed of the feedback control of the pressure control unit is sufficiently high, drainage is performed based on the state (duty Di) of the pressure control unit and the feedback signal as in the detection of valve opening in the second embodiment. It can also be detected. Moreover, it can be estimated that drainage is completed when a predetermined time has elapsed after the valve is opened, and the next control can be performed.
  • the temperature of the fuel cell 22 is determined based on the temperature Tw of the cooling water.
  • the temperature of the fuel cell 22 can be determined by other methods. Then, the temperature of the fuel cell 22 is determined based on the temperature of another configuration (for example, cooling water, cooling water piping, or other structure attached to the fuel cell 22) having a correlation with the temperature of the fuel cell 22. be able to.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池システムであって、燃料電池22と、圧力制御部62と、排気弁50と、を備える。圧力制御部62は、燃料電池22に供給すべき燃料ガスが流れる燃料ガス流路60に設けられ、燃料電池22に供給すべき燃料ガスの圧力を制御することができる。排気弁50は、燃料電池22から排出される燃料排ガスが流れる燃料排ガス流路63e,63m,63rに設けられ、開弁したときに、燃料排ガスの少なくとも一部を燃料排ガス流路の外に排出できる。圧力制御部62を制御して、排気弁50を開く前に、燃料電池22に供給すべき燃料ガスの圧力をそれまでよりも低下させる。そして、燃料電池22に供給すべき燃料ガスの圧力が低下された第1の圧力であるときに排気弁50を開く。

Description

燃料電池システム
 本発明は、燃料電池の運転に関するものである。
 従来、燃料電池システムにおいては、燃料ガスとしての水素ガスを循環させ、燃料ガス内の不純物が増加すると、排ガスの一部を循環系の外部に排出する、いわゆる「パージ動作」を実行するシステムが存在する。そして、たとえば、特許文献1の技術においては、パージ動作が実行されたと判定した場合には、排気排水弁の開放(ON)時点より後に、インジェクタから燃料電池への水素ガスの噴射を停止させるとともに、水素ポンプを停止させて循環流路から水素供給流路への水素ガスの循環を停止させる。一方、パージ動作が実行されていないものと判定した場合には、インジェクタの通常制御を続行する。すなわち、インジェクタのガス噴射時間及びガス噴射時期を制御して、燃料電池に供給される水素ガスの流量及び圧力を調整する。
 しかし、上記の従来技術においては、アノード(水素極、負極)からカソード(酸素極、正極)へ、膜電極接合体(MEA)を透過して水素ガスが透過する、いわゆる「クロスリーク」については考慮されていない。また、燃料ガス循環系から不純物を多く含む燃料ガスを排出するための排気排水弁の開閉力と、燃料ガスの循環系の圧力の関係についても考慮されていない。
 燃料ガスの循環系の圧力が高く設定されると、アノード(水素極、負極)からカソード(酸素極、正極)へ、膜電極接合体(MEA)を透過する水素ガスの量が多くなる。よって、クロスリーク低減の観点からは、燃料ガス循環系の圧力は、低く設定されることが好ましい。燃料ガス循環系の圧力が低く設定される場合には、排気排水弁の径は大きく設定される。外部との圧力差が小さい状態において、定められた時間内に適切な量のガスを、燃料ガス循環系から外部に排出できるようにするためである。
 一方、燃料ガス循環系の圧力は、動的に制御されている。そして、所定の目的のために、燃料ガス循環系の圧力が一時的に低い値に制御されることがある。排気排水弁を駆動する駆動装置は、そのような、系の内外の圧力差が小さいときでも、適切な流量を確保できるように排気排水弁を開閉する必要がある。このため、排気排水弁の径を大きく設定すると、弁を閉じる向きに弁を押圧するような圧力差が系の内外で生じているときにも弁を適切に開閉できるように、排気排水弁を駆動する駆動装置も、大きな力を発生させることができる大きな物とならざるを得ない。その結果、燃料電池システム自体も大型化せざるを得ない。このような問題は、燃料電池を搭載した車両に限らず、小型化、軽量化が望まれる燃料電池システムについて、広く存在する。
 本発明は、上述の課題の少なくとも一部を取り扱うためになされたものであり、燃料電池システムにおいて、クロスリークを低減しつつ、燃料電池システムを小型化することを目的とする。
 本発明は、上述の課題の少なくとも一部を取り扱うために以下の形態または適用例として実現することが可能である。
 [適用例1]
 燃料電池システムであって、
 燃料電池と、
 前記燃料電池に供給すべき燃料ガスが流れる燃料ガス流路に設けられ、前記燃料電池に供給すべき燃料ガスの圧力を制御することができる圧力制御部と、
 前記燃料電池から排出される燃料排ガスが流れる燃料排ガス流路に設けられ、開弁したときに、前記燃料排ガスの少なくとも一部を前記燃料排ガス流路の外に排出できる排気弁と、
 前記燃料電池システムの制御を行う制御部と、を備え、
 前記制御部は、
   前記燃料電池に供給すべき燃料ガスの圧力が第1の圧力であるときに前記排気弁を開き、
   前記圧力制御部を制御して、少なくとも前記排気弁を開いた後の所定の時間区間について、前記燃料電池に供給すべき燃料ガスの圧力を、前記第1の圧力よりも高い第2の圧力とする、燃料電池システム。
 このような態様とすれば、第2の圧力に比べて低い第1の圧力にあるときに排気弁を開くため、小さな力で排気弁を開くことができる。このため、クロスリーク低減のために定常運転時の燃料ガス流路内の圧力を低く設定し、排気弁の径を大きくしても、排気弁を小さく設けることができる。すなわち、クロスリークを低減しつつ、燃料電池システムを小型化することができる。そして、上記のような態様とすれば、排気弁を開いた後に燃料電池に供給すべき燃料ガスの圧力を上げることがない態様に比べて、より短い時間で、排気弁から燃料排ガス流路の外に燃料排ガスを排出することができる。
 なお、ここでいう「排気弁」は、弁体のほか、弁体を駆動する装置をも含む。また、燃料電池に供給すべき燃料ガスの圧力を第2の圧力とする時間区間は、排気弁を開いた直後に開始してもよいし、排気弁を開いた後、所定時間を経過した後に開始してもよい。そして、燃料ガスの圧力を第2の圧力とする時間区間は、排気弁を閉じる前に終了してもよいし、排気弁を閉じた後に終了してもよい。
 [適用例2]
 適用例1の燃料電池システムであって、
 前記制御部は、
   前記燃料電池に発電を行わせている際に、前記燃料電池に供給すべき燃料ガスの圧力が所定の圧力となるように、前記圧力制御部をフィードバック制御し、
   前記フィードバック制御におけるフィードバック信号と、前記圧力制御部の運転状態と、の少なくとも一方の変化に基づいて、前記排気弁が開いたことを検知して、前記燃料電池に供給すべき燃料ガスの圧力を前記第2の圧力にする、燃料電池システム。
 このような態様とすれば、実際に排気弁が開いたことによるフィードバック信号または圧力制御部の運転状態の変化を検知して、燃料電池に供給すべき燃料ガスの圧力を上げる制御を行うことができる。よって、圧力を上げる制御によって、排気弁の開弁を阻害することがない。
 [適用例3]
 適用例1の燃料電池システムであって、さらに、
 前記圧力制御部の下流において、前記燃料電池に供給すべき燃料ガスと前記燃料排ガスとの少なくとも一方の圧力を検知するための圧力センサを備えており、
 前記制御部は、前記圧力センサによって得られる測定値の低下に基づいて、前記排気弁が開いたことを検知する、燃料電池システム。
 このような態様とすれば、実際に排気弁が開いたことによる圧力の低下を検知して、燃料電池に供給すべき燃料ガスの圧力を上げる制御を行うことができる。よって、圧力を上げる制御によって、排気弁の開弁を阻害することがない。
 [適用例4]
 適用例1ないし3のいずれかの燃料電池システムであって、
 前記制御部は、前記燃料電池に供給すべき燃料ガスの圧力を前記第2の圧力にした後、前記圧力制御部を制御して、前記排気弁が開いた状態において、前記燃料電池に供給すべき燃料ガスの圧力を、前記第2の圧力よりも高い第3の圧力にする、燃料電池システム。
 燃料排ガス流路には、燃料電池から排出された水が液体として存在することがある。そして、排気弁から液体の水とガスとを排出する際には、排気弁が開弁した後、まず、燃料排ガス流路の外に液体の水が排出され、その後、不純物と未反応の燃料ガスとを含むガスが排出される。一方、燃料排ガス流路内の圧力が高く、燃料排ガス流路の外部との圧力差が大きい場合には、排気弁から液体の水が排出される際に、キャビテーションが生じ、効率的に水が排出されないことがある。
 上記の態様においては、はじめに排気弁から液体の水を排出する際には、燃料電池に供給すべき燃料ガスの圧力を比較的低い第2の圧力とする。その結果、燃料排ガス流路の圧力も低く抑えられる。このため、キャビテーションの発生をおさえつつ、効率的に水を排出することができる。そして、水を排出した後には、燃料電池に供給すべき燃料ガスの圧力をより高い第3の圧力とする。その結果、燃料排ガス流路の圧力も高くなる。このため、効率的にガスを排出することができる。
 [適用例5]
 適用例1または2を限定した適用例4の燃料電池システムであって、さらに、
 前記圧力制御部の下流において、前記燃料電池に供給すべき燃料ガスと前記燃料排ガスとの少なくとも一方の圧力を検知するための圧力センサを備えており、
 前記制御部は、前記圧力センサによって得られる測定値の所定時間における低下幅が、所定のしきい値を超えた後に、前記燃料電池に供給すべき燃料ガスの圧力を前記第3の圧力にする前記処理を行う、燃料電池システム。
 排気弁から水が排出されている際には、燃料ガス流路、燃料電池内、および燃料排ガス流路の圧力は、急激に低下することはなく、少しずつ低下する。一方、排気弁から水が排出された後、すなわちガスが排出される際には、燃料ガス流路、燃料電池内、および燃料排ガス流路の圧力は、急激に低下する。このため、上記のような態様とすれば、実際にガスの排出が開始された後に、燃料電池に供給すべき燃料ガスの圧力、ひいては、燃料排ガス流路の圧力を高くすることができる。
**
 なお、適用例3が備える圧力センサと、適用例5が備える圧力センサとは、一つのものとすることもでき、別個のものとすることもできる。
 なお、開弁後、所定時間が経過した後に、燃料電池に供給すべき燃料ガスの圧力を第3の圧力にする制御を行う態様とすることもできる。このような態様とすれば、簡易な制御で、効率的に水とガスとを排気弁からそれぞれ排出することができる。
 [適用例6]
 適用例1または2の燃料電池システムであって、さらに、
 前記燃料排ガス流路内を流れる前記排ガスの一部を前記燃料ガス流路に戻す環流路と、
 前記燃料電池の温度を決定するための温度センサと、
 前記燃料電池から流れる電流の量を決定するための電流計と、
 前記燃料ガス供給源から前記圧力制御部に供給される燃料ガスの圧力を測定する第1の圧力センサと、
 前記圧力制御部が前記燃料電池に供給する燃料ガスの圧力を測定する第2の圧力センサと、を備え、
 前記圧力制御部は、前記燃料ガス流路において前記燃料ガス供給源と前記燃料電池との間に設けられ、前記燃料ガス供給源から供給される燃料ガスとしての水素ガスを、制御された圧力で前記燃料電池に供給することができるインジェクタであり、
 前記制御部は、
   前記開弁時に、前記排気弁からガスを排出しつつ、前記圧力制御部を介して前記燃料ガス供給源から供給される燃料ガスを前記燃料電池に供給し、
   前記燃料ガス供給源から前記圧力制御部に供給された燃料ガスの圧力と、前記圧力制御部が前記燃料電池に供給した燃料ガスの圧力と、前記燃料電池の温度と、前記燃料電池が流す電流と、に基づいて得られるパラメータが所定の値を下回ったときに、前記排気弁を閉じる、燃料電池システム。
 排気弁から排出されるガスは、燃料ガスとしての水素ガスと、不純物としての窒素および水蒸気と、を含む。これらのガスの分子量はそれぞれ2、14、18である。よって、排気弁から排出されるガスの平均分子量は、2~18である。一方、燃料ガスとしての水素ガスの分子量は2である。このため、開弁時に、燃料排ガス流路、燃料電池、および燃料排ガス流路を含む系から、不純物を多く含むガスが排気弁を介して排出され、その系に、燃料ガス供給源からの燃料ガスが供給されると、排気弁を介して排出されるガスの平均分子量は、徐々に小さくなる。この平均分子量が所定値よりも小さくなったときには、燃料排ガス流路、燃料電池、および燃料排ガス流路を含む系から不純物は十分に排出されたと判断することができる。
 一方、排気弁から排出されるガスの平均分子量の平方根は、排気弁から排出されるガスの単位時間当たりの流量に比例する。
 そして、排気弁から排出されるガスのうち、窒素は、主として燃料電池において生じるクロスリークにより、燃料排ガス流路に混入する。クロスリークの量は、燃料電池の温度と相関がある。
 また、排気弁から排出されるガスのうち、水蒸気は、主として燃料電池における発電によって生じる水に起因する。この水蒸気の量は、燃料電池における発電の電流量および燃料電池の温度と相関がある。
 さらに、排気弁から排出されるガスのうち、水素ガスの量は、インジェクタを介して燃料電池に供給された水素と、燃料電池における発電によって消費された水素との差として得られる。そして、インジェクタを介して燃料電池に供給された水素の量は、圧力制御部の前後における圧力差から決定しうる。
 上記の態様においては、圧力制御部に供給された燃料ガスの圧力と、圧力制御部から燃料電池に供給され燃料ガスの圧力と、燃料電池の温度と、燃料電池の温度と、燃料電池の電流と、に基づいて得られるパラメータが所定の値を下回ったときに、排気弁を閉じる。そのような態様とすることで、系を循環するガスから不純物が十分に排出された状態で、排気弁を閉じることができる。
 [適用例7]
 適用例1ないし6のいずれかの燃料電池システムであって、
 前記制御部は、
   前記圧力制御部を制御して、前記排気弁を閉じる前に、前記燃料電池に供給すべき燃料ガスの圧力をそれまでよりも低下させ、
   前記燃料電池に供給すべき燃料ガスの圧力が前記低下された状態において前記排気弁を閉じる、燃料電池システム。
 このような態様とすれば、排気弁を閉じることにより、燃料排ガス流路、燃料電池、および燃料排ガス流路を含む系の圧力が、好ましくない程度に高くなってしまう事態を防止することができる。
 [適用例8]
 燃料電池システムの運転方法であって、
 前記燃料電池システムは、
   燃料電池と、
   前記燃料電池に供給すべき燃料ガスが流れる燃料ガス流路に設けられ、前記燃料電池に供給すべき燃料ガスの圧力を制御することができる圧力制御部と、
   前記燃料電池から排出される燃料排ガスが流れる燃料排ガス流路に設けられ、開弁したときに、前記燃料排ガスの少なくとも一部を前記燃料排ガス流路の外に排出できる排気弁と、を備え、
 前記方法は、
(a)前記燃料電池に供給すべき燃料ガスの圧力が第1の圧力であるときに前記排気弁を開く工程と、
(b)前記圧力制御部を制御して、前記排気弁を開いた後、前記燃料電池に供給すべき燃料ガスの圧力を、前記第1の圧力よりも高い第2の圧力にする工程と、を備える方法。
 本発明は、上記以外の種々の形態で実現可能であり、例えば、燃料電池の搭載方法、燃料電池システム、燃料電池を搭載した車両などの形態で実現することが可能である。
 以下では、図面を参照して、本願発明の好ましい実施例の詳細が説明され、本願発明の上述の目的およびその他の目的、構成、効果が明らかにされる。
本発明の実施例である燃料電池システム10の構成の概略を表すブロック図である。 気液分離器27の開閉弁50周辺を拡大して示す模式図である。 気液分離器27の開閉弁50周辺を拡大して示す模式図である。 制御部70が行うインジェクタ62の制御の内容を示すチャートである。 開閉弁50内の圧力Peがある値であるときの、単位時間当たりのガスおよび水の排出量を示すグラフである。 希釈器26から排出される排ガス中の水素濃度Dhを表すグラフである。 開弁時間の改変を示すグラフである。 第2実施例において、制御部70が行うインジェクタ62の制御の内容を示すチャートである。 開閉弁50が開かれた直後に開閉弁50から排出されるガスの内容と、開閉弁50が閉じられる直前に開閉弁50内から排出されるガスの内容とを表すグラフである。 制御部70が有する、開閉弁50から排出される窒素ガスの単位時間当たりの量qnに関するマップMnを表す図である。 制御部70が有する、開閉弁50から排出される単位時間当たりの水蒸気の量qwに関するマップMw1,Mw2,Mw3を表す図である。 冷却水温Twが50度のときの、液分離器27から排水すべき液体の水の量qLを示すグラフである。
 以下、本発明の実施の形態について、実施例に基づき説明する。
A.第1実施例:
A1.装置の全体構成:
 図1は、本発明の実施例である燃料電池システム10の構成の概略を表すブロック図である。燃料電池システム10は、発電の本体である燃料電池22と、燃料電池22に供給する水素を貯蔵する水素タンク23と、燃料電池22に圧縮空気を供給するためのエアコンプレッサ24と、を備えている。燃料電池22としては種々の種類の燃料電池を用いることが可能であるが、本実施例では、燃料電池22として固体高分子型燃料電池を用いている。この燃料電池22は、複数の単セルを積層したスタック構造を有している。
 水素タンク23は、例えば、高圧水素を貯蔵する水素ボンベとすることができる。あるいは、水素吸蔵合金を内部に備え、水素吸蔵合金に吸蔵させることによって水素を貯蔵するタンクとしても良い。水素タンク23に貯蔵された水素ガスは、水素ガス供給路60に放出された後、インジェクタ62によって所定の圧力に調整されて、燃料電池22のアノードに供給される。なお、水素ガス供給路60には、FC入口シャットバルブ61が設けられている。
 インジェクタ62は、弁が開いた状態と弁が閉じた状態の二つの状態を有する。インジェクタ62は、「弁が開いた状態にある時間To」と「弁が閉じた状態にある時間Tc」とをそれぞれ所定の値に固定して、弁が開いた状態と弁が閉じた状態を高速に繰り返すことができる。このため、インジェクタ62をPWM制御することにより、任意の圧力で燃料電池22のアノードに水素ガスを供給することができる。
 インジェクタ62において、「弁が開いた状態にある時間To」を、「弁が開いた状態にある時間To」と「弁が閉じた状態にある時間Tc」との和で割って得られる比を、本明細書において「デューティ比Di」と呼ぶ。このデューティ比Diを調整することにより、インジェクタ62は、任意の圧力で燃料電池22のアノードに水素ガスを供給することができる。本明細書においては、弁が開いた状態にある時間の割合が大きいほど、デューティ比が「大きい」と記述する。
 燃料電池22のアノードから排出されるアノード排ガスは、図1に示すように、アノード排ガス路63e,63m,63rに導かれて再び水素ガス供給路60に流入する。アノード排ガス路63e,63m,63rの途中には、水素ポンプ65が設けられている。燃料電池22のアノードの下流側に接続されているアノード排ガス路63e、およびアノード排ガス路63mの圧力は、燃料電池22内の経路の圧損および燃料電池22で消費された水素ガスの分だけ、燃料電池22の上流側に接続されている水素ガス供給路60の圧力よりも低い。燃料電池22から排出されアノード排ガス路63e,63mを流通するアノード排ガスは、水素ポンプ65によって圧縮され、圧力を高められて、アノード排ガス路63rに供給され、水素ガス供給路60に流入する。このように、アノード排ガス中の残余の水素ガスは流路内を循環して再度電気化学反応に供される。
 また、アノード排ガス路63eとアノード排ガス路63mの間には、気液分離器27が設けられている。電気化学反応の進行に伴ってカソードでは水が生じる。カソードで生じた水は、電解質膜を介してアノード側のガス内にも導入される。本実施例の燃料電池システム10では、この水によるフラッディングを防止するため、アノード排ガス中に溜まった水蒸気を、気液分離器27によってアノード排ガス路63中において凝縮させ、系外に排出する。なお、ここでいう「系」とは、燃料電池に燃料ガスを供給する燃料ガス供給路60と、燃料電池22内の燃料ガスの流路と、燃料電池22から排出されるアノード排ガスを再び燃料ガス供給路60に供給するアノード排ガス路63e,63m,63rと、から構成されるガス流路をいう。
 気液分離器27には、開閉弁50が設けられており、さらに開閉弁50を介して気液排出路64が接続されている。そして、気液排出路64は、希釈器26に接続されている。開閉弁50を開状態とすることで、気液分離器27内で凝縮された水、およびアノード排ガス路63を流通するアノード排ガスの一部が、希釈器26を通じて大気中に排出される。
 図2および図3は、気液分離器27の開閉弁50周辺を拡大して示す模式図である。図2は、開閉弁50が閉じている状態を示す。図3は、開閉弁50が開いている状態を示す。開閉弁50は、気液分離器27の外殻を兼ねる外殻51と、弁体52と、パッキン53と、ソレノイド54とを備えている。外殻51は、開閉弁50の内部と外部を区切っており、穴51hを備えている。開閉弁50の内部は、穴51hを介して気液排出路64と連通し得る。パッキン53は、弾性変形可能な素材で設けられており、外殻51の内側において、穴51hの周りを囲んでいる。
 弁体52は、パッキン53に押しつけられると穴51hを閉じる。弁体52がパッキン53から離れると、開閉弁50の内部は、穴51hを介して気液排出路64と連通する。ソレノイド54は、開閉弁50の内部に設けられており、弁体52を動かす。ソレノイド54は、弁体52を外殻51に向かって押しつけて、パッキン53と密着させ、または弁体52をパッキン53から引き離す。その結果、開閉弁50は、弁が開いた状態と弁が閉じた状態の二つの状態を取ることができる。制御部70は、開閉弁50のソレノイド54を制御して、開閉弁50を開閉させる。
 開閉弁50は、気液分離器27の底部に設けられている。このため、開閉弁50が開状態となると(図3参照)、気液分離器27内で凝集された水はすべて希釈器26に排出される。そして、その水が排出された後で、アノード排ガスの一部が希釈器26に排出される(図3の矢印Af参照)。
 本実施例の燃料電池システム10は、アノード排ガス路63を水素ガス供給路60に接続して、アノード排ガスを再び電気化学反応に供する構成となっている。燃料電池22においては、カソード側からアノード側に電解質膜を通じて窒素が浸透する。このため、燃料電池22とアノード排ガス路63との間で水素ガスを循環させると、時間の経過とともに、アノード側の窒素濃度が上昇する。そこで、燃料電池システム10では、所定の時間間隔で開閉弁50を介して、アノード排ガスの一部を流路外に排出している。こうすることによって、アノード排ガス路63内の不純物濃度の低下を図り、アノードに供給するガス中の窒素等の不純物濃度の上昇を防止している。
 図1に示すエアコンプレッサ24は、加圧した空気を酸化ガスとして酸化ガス供給路67を介して燃料電池22のカソードに供給する。エアコンプレッサ24が空気を圧縮する際には、フィルタを備えたマスフロメータ28を介して、外部から空気を取り込む。カソードから排出されるカソード排ガスは、カソード排ガス路68に導かれて外部に排出される。
 カソード排ガス路68には、前述の希釈器26が設けられている。希釈器26は、気液排出路64よりも断面積が大きい容器であり、一端が大気に解放されている。希釈器26には、気液分離器27に接続された開閉弁50、ならびに気液排出路64を介してアノード排ガスが流入する。希釈器26に流入したアノード排ガスは、希釈器26においてカソード排ガスと混合されることによって希釈される。その後、混合されたアノード排ガスとカソード排ガスとは、カソード排ガス路68から大気中に排出される。その際、排出されるガス中の水素ガスの濃度が所定濃度以下となるように、エアコンプレッサ24等の燃料電池システム10の各機器が制御される。
 燃料電池システム10は、さらに、燃料電池22の運転温度が所定温度となるように燃料電池22を冷却するための冷却部40を備えている。冷却部40は、冷却水路41と、冷却ポンプ42と、ラジエータ29とを備えている。冷却水路41は、燃料電池22の内部とラジエータ29との間で冷却水が循環するように、冷却水を導く流路である。冷却ポンプ42は、冷却水路41内で冷却水を循環させる。ラジエータ29は、冷却ファンを備えており、燃料電池22内を経由して昇温した冷却水を冷却する。
 なお、既述したエアコンプレッサ24や冷却ポンプ42、あるいはラジエータファンや流路に設けた弁など、燃料電池22の発電に伴って動作する装置を、以後、燃料電池補機と呼ぶ。これらの燃料電池補機は、燃料電池22から電力を供給されて動作する。
 燃料電池22には、燃料電池22から電力を供給される電力消費装置である負荷装置30が接続されている。負荷装置30には、たとえば、燃料電池22から電力を供給されて動作する電動機が含まれる。なお、図1では、負荷装置30は、燃料電池システム10から独立した負荷として表わしているが、この負荷装置30には、既述した燃料電池補機も含まれる。すなわち、図1では、エアコンプレッサ24等の燃料電池補機を含めて、燃料電池22から電力を供給される装置を負荷装置30として表す。
 燃料電池システム10は、さらに、燃料電池システム10の各部の動きを制御する制御部70を備えている。制御部70は、マイクロコンピュータを中心とした論理回路として構成される。より詳しくは、制御部70は、予め設定された制御プログラムに従って所定の演算などを実行するCPUと、CPUで各種演算処理を実行するのに必要な制御プログラムや制御データ等が予め格納されたROMと、同じくCPUで各種演算処理をするのに必要な各種データが一時的に読み書きされるRAMと、各種の信号を入出力する入出力ポート等を備える。
 この制御部70は、燃料電池システム10の各部に設けられた電流計35、電圧計36、インピーダンス計37、温度センサ43、圧力センサ66a,66bなどの各センサの検出信号や、負荷装置30における負荷要求に関する情報を取得する。また、制御部70は、燃料電池システム10が備えるポンプや流路に設けられた弁やラジエータファンなど、燃料電池22の発電に関わる各部に駆動信号を出力する。なお、図1では、燃料電池システム10の構成要素と制御部70との間で信号のやり取りがなされる様子を表すために、制御部70を燃料電池システム10の外部に記載している。 
 燃料電池システム10は、燃料電池22と負荷装置30とを接続する回路において電流計35を備えている(図1参照)。また、燃料電池システム10は、冷却水路41に、燃料電池22から送出されラジエータ29に流入する冷却水温度を検出するための温度センサ43を備えている。さらに、燃料電池システム10は、水素ガス供給路60であって水素タンク23より下流でインジェクタ62よりも上流の位置に、圧力センサ66aを備えている。そして、燃料電池システム10は、水素ガス供給路60であってインジェクタ62より下流で燃料電池22よりも上流の位置に、圧力センサ66bを備えている。
 制御部70は、予め制御部70内に記憶されているマップを参照して、電流計35によって検出される電流量、温度センサ43によって検出される冷却水温、および圧力センサ66a,66bによって検出される水素ガスの圧力などに基づいて、開閉弁50の開閉動作の制御、ならびにインジェクタ62の動作の制御を行う。たとえば、燃料電池22の発電量の積算値に基づいて、弁を開く時間間隔(弁を閉じている時間)と、弁を開いている時間とを定めた弁用マップMvが予め作成され、制御部70内に格納されている。なお、弁用マップMvは、冷却水温の区分に応じた複数組のデータを有している。
A2.開閉弁およびインジェクタの制御:
 前述のように、制御部70は、弁用マップMvを参照し、燃料電池22の発電量の積算値に基づいて、開閉弁50を開閉する。そして、制御部70は、開閉弁50を開閉に応じて、インジェクタ62の運転状態を制御する。
 図4は、制御部70が行うインジェクタ62の制御の内容を示すチャートである。図4の下段に示すVsは、開閉弁50の開閉状態を示す。Vsがハイであることが、開閉弁50が開いていることを示す。Vsがロウであることが、開閉弁50が閉じていることを示す。図4の中段に示すDiは、インジェクタ62のデューティ比Diである。インジェクタ62のデューティ比Diは、制御部70の制御にしたがって様々な値を取りうる。図4の上段に示すPoは、圧力センサ66bによって測定されるインジェクタ62の下流側の水素ガスの圧力である(図1参照)。
 制御部70は、弁用マップMvにしたがって、所定の時刻t3で開閉弁50を開くべきであると判断すると、時刻t3に先だって、インジェクタ62の下流側の水素ガスの圧力を低下させる。具体的には、まず、時刻t1で、インジェクタ62のデューティ比Diを、それまでのデューティ比D0からD1(D1<D0)に低下させ、その後、時刻t2で、インジェクタ62のデューティ比Diを、D2(D1<D2<D0)とする。
 その結果、時刻t1とt2の間の時間区間Tp1において、インジェクタ62の下流側の水素ガスの圧力Poは、P0からP2(P2<P0)に低下する。そして、時刻t2とt3の間の時間区間Tp2において、インジェクタ62の下流側の水素ガスの圧力Poは、P2に保たれる。なお、P0,P1,P2は、いずれも気液排出路64および希釈器26内の圧力Pdよりも高い。
 その後、時刻t3において、制御部70は開閉弁50を開く。このように、本実施例では、開閉弁50を開くのに先立って、インジェクタ62の下流側の水素ガスの圧力Poを低くする(図4の時間区間Tp1,Tp2参照)。このため、開閉弁50を開くときのアノード排ガス路63eおよび気液分離器27内の圧力Peが低くなる。すなわち、気液分離器27内の圧力Peと、気液排出路64および希釈器26内の圧力Pdとの差が小さくなる。このため、弁体52の径が大きい場合にも、小さな力で弁体52を開閉弁50内部に向かって動かすことができる(図2および図3参照)。また、燃料電池システムの運転の都合のために、インジェクタ62の下流側の圧力Poが大きいときにも、小さな力で弁体52を開閉弁50内部に向かって動かすことができる。よって、ソレノイド54として、強い力を発生させることができる大型のソレノイドを装備する必要がない。
 時刻t3において開閉弁50が開くと、開閉弁50から液体の水およびガスが希釈器26に排出される(図1および図3参照)。その結果、アノード排ガス路63e,63m,63rと、燃料電池22内の燃料ガスの流路と、燃料ガス供給路60と、を含む系(以下、「燃料ガス循環系」と呼ぶ)の圧力が低下する。このため、圧力センサ66bによって測定されるインジェクタ62の下流側の水素ガスの圧力Poも低下する(図4の時間区間Tp3参照)。Poが所定の圧力P3(P3<P2)にまで低下したことを検知すると、制御部70は、インジェクタ62のデューティ比Diを、D2からD3(D2<D0<D3)に上昇させる。その結果、インジェクタ62の下流側の水素ガスの圧力Poが、時間区間Tp4において、P3からP5まで上昇する(P5>P0)。
 その後、制御部70は、インジェクタ62のデューティ比Diを、D4(D0<D4<D3)に保つ。その結果、インジェクタ62の下流側の水素ガスの圧力Poは、時間区間Tp5において、P5(P2<P0<P5)に保たれる。
 このように、本実施例では、開閉弁50を開いた後に、インジェクタ62の下流側の水素ガスの圧力Poを、開弁前より高くする(図4の時間区間Tp0,Tp5参照)。このため、排ガス循環系に含まれる開閉弁50内の圧力を高くすることができる。その結果、燃料電池の発電量が低く、圧力P0が低い場合にも、開閉弁50から効率的に水およびガスを排出することができる。また、開閉弁50を開く際には、インジェクタ62の下流側の水素ガスの圧力Poは、P5よりも低い値である。このため、小さな力で弁体52を開閉弁50内部に向かって動かすことができる。よって、ソレノイド54として、強い力を発生させることができる大型のソレノイドを装備する必要がない。そして、開閉弁50を開く前の定常時の圧力P0を、水およびガスの系からの排出を考慮せずに定められるため、定常運転時の圧力P0を、クロスリークが生じにくい圧力に設定することができる。
 また、本実施例においては、開閉弁50の開弁を圧力変化に基づいて検知して、インジェクタ62の下流側の水素ガスの圧力Poを高くしている。このため、開閉弁50の開弁前に水素ガスの圧力Poを高くしてしまい、開弁を阻害する事態を避けることができる。
 時刻t3において開閉弁50が開かれた後、時刻t6までは、開閉弁50から水が排出されている。このため、燃料ガス循環系から急速に気体や液体が排出されて、内部の圧力が急激に低下するということはない。水が開閉弁50から排出される速度は、ガスが開閉弁50から排出される速度に比べて、遅いためである。時間区間Tp5において、インジェクタ62の下流側の水素ガスの圧力Poを一定に保つためのインジェクタ62のデューティ比D4は、開閉弁50から水が排出されており、ガスが排出されていないことを想定した設定値である。
 その後、時刻t6において、開閉弁50からの水の排出が完了し、開閉弁50からガスが排出され始める。その結果、燃料ガス循環系の圧力は、急激に低下する。そのため、インジェクタ62の下流側の水素ガスの圧力Poも急激に低下する(図4の時間区間Tp6参照)。
 インジェクタ62の下流側の圧力Poの単位時間当たりの低下幅が、所定のしきい値Tr6より大きくなったことを検知すると、制御部70は、インジェクタ62のデューティ比Diを、D4からD5(D3<D4<D5)に上昇させる。その結果、インジェクタ62の下流側の水素ガスの圧力Poが、時間区間Tp7において、P6からP7まで上昇する(P6<p5<P7)。その後、制御部70は、インジェクタ62のデューティ比Diを、D6(D4<D6<D5)に保つ。その結果、インジェクタ62の下流側の水素ガスの圧力Poは、時間区間Tp8において、P7(P7>P5)に保たれる。
 このように、本実施例では、水の排出が完了し開閉弁50からガスが排出され始めたことを圧力の低下率に基づいて検知して、さらに系の圧力を高くする(図4の時間区間Tp6~Tp8参照)。このため、開閉弁50から効率的にガスを排出することができる。
 その後、制御部70は、弁用マップMvにしたがって開閉弁50を閉じるべき時刻t10に先だって、インジェクタ62の下流側の水素ガスの圧力を低下させる。具体的には、時刻t9(t9<t10)で、インジェクタ62のデューティ比Diを、それまでのデューティ比D6からD0に低下させる。その結果、時間区間Tp9において、インジェクタ62の下流側の水素ガスの圧力Poは、P7からP0(P0<P7)に低下する。そして、時刻t9以降の時間区間Tp10において、インジェクタ62の下流側の水素ガスの圧力Poは、P0に保たれる。なお、図4の例においては、燃料電池22の発電状態は、一貫して変わっていないものとする。
 その後、時刻t10において、制御部70は、開閉弁50を閉じる。このように、本実施例では、開閉弁50を閉じるのに先立って、インジェクタ62のデューティ比Diを下げ、インジェクタ62の下流側の水素ガスの圧力Poを低くする(図4の時間区間Tp9,Tp10参照)。このため、開閉弁50を閉じた直後にアノード排ガス路63eおよび気液分離器27内の圧力Peが高くなる事態を防止できる。
 図5は、開閉弁50内の圧力Peがある値であるときの、単位時間当たりのガスおよび水の排出量を示すグラフである。縦軸が、単位時間当たりのガスおよび水の排出量を表す。横軸が時間を表す。グラフQgは、開閉弁50からガスのみが排出されているときの、単位時間当たりのガスの排出量の変化を表す。グラフQwは、開閉弁50から水とガスが排出されているときの、単位時間当たりのガスおよびの排出量の変化を表す。
 グラフQgより、開閉弁50からガスのみが排出されているときの、単位時間当たりのガスの排出量は、時間とともに増大することが分かる。これに対して、グラフQwより、開閉弁50から水とガスが排出されているときの、単位時間当たりのガスの排出量は、所定量に達した後はほとんど増大しないことが分かる。これは、排出される水の中でキャビテーションが生じて、開閉弁50からの水およびガスの排出を阻害するためである。キャビテーションは、開閉弁50の内外での圧力差が所定値より大きいと発生しやすくなる。なお、キャビテーションが生じると、騒音も増大し、開閉弁50を構成する各部材の腐食も進行しやすくなる。
 このため、図4の時間区間Tp5におけるインジェクタ62のデューティ比D4は、開閉弁50内の圧力Peが、キャビテーションが生じやすくなる値より低くなるように、設定される。より具体的には、インジェクタ62のデューティ比D4は、以下のように定められる。
 インジェクタ62の下流側、すなわち燃料電池22の上流側の水素ガスの圧力Poがある値であるときの、インジェクタ62より下流で、かつ気液分離器27までの圧力損失(主として燃料電池22による圧力損失)は、あらかじめ測定することができる。このため、気液分離器27の開閉弁50内の圧力Peが、キャビテーションが生じる値未満となるように、燃料電池22などの圧力損失を考慮して、インジェクタ62の下流側(燃料電池22の上流側)の水素ガスの目標圧力Potが定められる。そして、インジェクタ62の下流側の水素ガスの圧力がPotとなるように、インジェクタ62のデューティ比D4が、定められる。
 これに対して、開閉弁50からガスのみ排出されるときのインジェクタ62のデューティ比D6には、キャビテーションの発生に関する制限はない(図4の時間区間Tp8参照)。よって、デューティ比D6は、デューティ比D4よりも、インジェクタ62の下流側の水素ガスの圧力Poを高くするように設定される(P7>P5,D6>D4)。このようにインジェクタ62のデューティ比D4,D6を設定することで、開閉弁50から水とガスが排出されているときには、キャテーションを生じさせることなく、効率的に水とガスを排出することができる。そして、開閉弁50からガスのみが排出されているときには、さらに高い圧力で、効率的にガスを排出することができる。
 一方、デューティ比D6は、希釈器26、および燃料電池22に圧縮空気を供給するエアコンプレッサ24等の性能に基づいて、以下のような制限下で設定される。すなわち、図4においては、デューティ比D6は、技術の理解を容易にするため一定値として示した。しかし、実際には、制御部70は、希釈器26から排出される排ガスの水素濃度が、所定値(たとえば、3.9%)未満となるように、デューティ比D6を制御する。
 図6は、希釈器26から排出される排ガス中の水素濃度Dhを表すグラフである。縦軸が水素濃度Dhを表す。横軸が時間を表す。図4の時刻t3で開閉弁50が開かれると、開閉弁50からは、最初はほとんど水のみが排出される。その時間区間は、図6の時間区間Tp61に相当する。その後、開閉弁50からガスが排出され始めると、希釈器26から排出される排ガスの水素濃度Dhは、急激に上昇する(図6の時間区間Tp62参照)。そして、制御部70の水素濃度に関する制御が介入すると、希釈器26から排出される排ガスの水素濃度Dhは、一端低下する(図6の時間区間Tp63参照)。そして、その後、希釈器26から排出される排ガスの水素濃度Dhは、所定値未満に保たれる(図6の時間区間Tp64参照)。
 カソード排ガスの単位時間当たりの供給量が一定であるとすると、希釈器26から排出される排ガスの水素濃度は、開閉弁50から排出されるガスの単位時間当たりの量に比例する。そして、開閉弁50から排出されるガスの単位時間当たりの量は、開閉弁50内外の圧力差に比例する。開閉弁50外部の圧力、すなわち、気液排出路64および希釈器26内の圧力Peは、燃料電池システムの運転条件に基づいて知ることができる。一方、開閉弁50内の圧力も、前述のように、インジェクタ62の下流側、すなわち燃料電池22の上流側の水素ガスの圧力Poに基づいて、知ることができる。よって、制御部70は、開閉弁50内の圧力と気液排出路64の圧力Peとの差が、希釈後の排ガスの水素濃度3.9%に相当する所定値未満となるように、インジェクタ62のデューティ比D6を制御する。
 図7は、開弁時間の改変を示すグラフである。縦軸は開閉弁50から排出されるガスの単位時間当たりの量を表す。横軸は時間を表す。前述のように、開閉弁50を開く時間Tvoは、弁用マップMvに基づいて定められる。たとえば、時間Tvoだけ開閉弁50を開くように、弁用マップMvに基づいて、開弁の制御の内容が定められたとする。
 しかし、その後の燃料電池22の運転状態によっては、弁用マップMvに基づいて定められた時間Tvoでは、希釈後の排ガスの水素濃度を3.9%未満に維持しつつ、不純物を十分に系外に排出できない場合が生じうる。より具体的には、時間Tvoで不純物を十分に系外に排出するには、単位時間当たりの水素ガスの排出量がQoである必要があり、その場合には、希釈後の排ガスの水素濃度が3.9%を超えてしまう場合がある。そのような場合には、制御部70は、前述のように、希釈後の排ガスの水素濃度を3.9%未満にできるようにインジェクタ62のデューティ比D6を制御しつつ、開閉弁50を開く時間を、弁用マップMvに基づいて定められた時間Tvoから延長する。その結果、単位時間当たりQor(Qor<Qo)だけの排出量となるように各部が制御され、時間Tvor(Tvor>Tvo)だけ開閉弁50が開かれる。
 このような制御を行うことで、希釈後の排ガスの水素濃度を所定値未満に保ちつつ、燃料ガス循環系から不純物を排出して、燃料電池に供給する水素ガスの濃度を一定値以上にすることができる。
B.第2実施例:
 第2実施例の燃料電池システムにおいては、目標圧力を維持するためのインジェクタ62のフィードバック制御の内容、開閉弁50が開いたことを検知する方法(図4の時刻t4参照)、ならびに開閉弁50を閉じるタイミングの決定方法が、第1実施例の燃料電池システム10とは異なる。ハードウェア構成を含む第2実施例の燃料電池システムの他の点は、第1実施例の燃料電池システム10と同じである。
B1.目標圧力を維持するためのインジェクタの制御と開弁の検知:
 図8は、第2実施例において、制御部70が行うインジェクタ62の制御の内容を示すチャートである。図8において、図4と同じ符号は、図4と同じ対象を表す。なお、図8において、第1実施例におけるインジェクタ62の下流側の水素ガスの圧力Poと、デューティ比Diとを、参考のために破線で示す。
 第2実施例においては、インジェクタ62の下流側の水素ガスの圧力Poを目標圧力に制御するためのインジェクタ62の制御において、第1実施例よりも応答速度が速いフィードバック制御が行われる。なお、第2実施例においては、インジェクタ62のフィードバック制御は、インジェクタ62の下流側の圧力センサ66bが測定した水素ガスの圧力Poと、目標圧力と、の差を表す信号を、フィードバック信号として、行われる。
 第2実施例においては、時刻t3で開閉弁50が開かれて、水やガスが排出され始め、インジェクタ62の下流側の水素ガスの圧力Poがわずかに低下すると、制御部70は、デューティ比Diをより高い値にする。そして、インジェクタ62の下流側の水素ガスの圧力Poが、目標圧力であるP2を維持するように、制御部70は、デューティ比Diを設定する。その結果、インジェクタ62の下流側の水素ガスの圧力Poは、ほとんど低下せず、インジェクタ62のデューティ比Diは、D2からD2f(D2f>D2)に変化する(図8の時間区間Tp3参照)。
 インジェクタ62のデューティ比Diがフィードバック制御によって所定のしきい値Thdよりも高い値に達したことを検知すると、制御部70は、インジェクタ62のデューティ比Diを、さらに高いD3a(D2f<D3a<D3)に上昇させる(図8の時刻t4)。なお、しきい値Thdとしては、開閉弁50を開く前のデューティ比D2よりも大きく、開閉弁50を開いた後の初期の段階で想定されるデューティ比D2fよりも小さい値が、設定される。インジェクタ62のデューティ比DiがD3aとされると、インジェクタ62の下流側の水素ガスの圧力Poが、時間区間Tp4において、P2からP5まで上昇する(P5>P0)。
 このような態様とすれば、第1実施例のように圧力センサ66bの測定値を使用することなく、インジェクタ62の制御状態(より具体的にはデューティ比)に基づいて開閉弁50を開いたことを検知し(時間区間Tp3参照)、インジェクタ62の下流側の水素ガスの圧力Poを、開弁前より高くすることができる(時間区間Tp4参照)。
B2.閉弁の決定:
 第2実施例においては、制御部70は、以下で説明する条件が満たされた場合は、開弁からの時間が、弁用マップMvにしたがって定められた時間Tvoに達していなくても、開閉弁50を閉じる。
(i)開閉弁から排出されるガスの平均分子量:
 開閉弁50内のガスは、燃料ガスとしての水素ガスと、不純物としての窒素ガスおよび水蒸気と、を含む。水素ガスの分子量は2である。窒素ガスの分子量は14である。水蒸気(水)の分子量は18である。このため、排気弁から排出されるガスの平均分子量は、2~18である。一方で、燃料ガスとしての水素ガスの分子量は2である。
 図9は、開閉弁50が開かれた直後に開閉弁50から排出されるガスの内容と、開閉弁50が閉じられる直前に開閉弁50内から排出されるガスの内容とを表すグラフである。図9の縦軸は、単位時間当たりのガスの流量である。右側のグラフが、開閉弁50が開かれた直後に開閉弁50から排出されるガスの内容を表す。左側のグラフが、開閉弁50が閉じられる直前に開閉弁50内から排出されるガスの内容を表す。
 開閉弁50の開弁時に、燃料ガス循環系から、不純物を多く含むガスが排気弁を介して排出され、その系に、水素タンク23からの高圧の燃料ガスが供給されると(図8の時間区間Tp5,Tp8参照)、系内において、窒素ガスの量が減少し、水素ガスの量が増加する(図9参照)。なお、燃料電池22における発電量が変わらないとすると、単位時間当たりの水の生成量は変わらない。このため、図9のグラフにおいて水の量は変わっていない。
 上記のような燃料ガス循環系におけるガスの入れ替えが進むと、開閉弁50を介して排出されるガスの平均分子量mは、徐々に水素の分子量2に近づく。すなわち、平均分子量mは、徐々に小さくなる。この平均分子量mが所定値よりも小さくなったときには、燃料ガス循環系から不純物は十分に排出されたと判断することができる。
 一方、開閉弁50から排出されるガスの平均分子量mの平方根は、開閉弁50から排出されるガスの単位時間当たりの流量Qに比例する。以下で、開閉弁50から排出されるガスの単位時間当たりの流量Qの決定方法について、窒素ガス、水蒸気、水素ガスに分けて説明する。
(ii)開閉弁から排出される窒素ガスの単位時間当たりの量:
 図10は、制御部70が有する、開閉弁50から排出される窒素ガスの単位時間当たりの量qnに関するマップMnを表す図である。図10の縦軸は、開閉弁50から排出される窒素ガスの単位時間当たりの量qnを表す。図10の横軸は、燃料電池22の冷却水の温度Twを表す。開閉弁50から排出されるガスのうち、窒素は、主として燃料電池22において生じるクロスリークにより、燃料ガス循環系に混入する。窒素のクロスリークの量は、燃料電池22の温度と相関がある。そして、燃料電池22の温度は、冷却水路41に設けられた温度センサ43が検出する冷却水の温度Twに基づいて決定することができる。
 よって、燃料電池システムの構成が決まれば、燃料電池22の冷却水の温度Twから、開閉弁50から排出される窒素ガスの単位時間当たりの量qnを決定するマップMn(図10参照)を作成することができる。制御部70は、あらかじめそのようにして設けられた窒素ガス用のマップMnを保持している。
(iii)開閉弁から排出される水蒸気の単位時間当たりの量:
 図11は、制御部70が有する、開閉弁50から排出される単位時間当たりの水蒸気の量qwに関するマップMw1,Mw2,Mw3を表す図である。図11の縦軸は、開閉弁50から排出される水の単位時間当たりの量qwを表す。図11の横軸は、燃料電池22の単位時間当たりの発電量Pgを表す。開閉弁50から排出されるガスのうち、水蒸気は、主として燃料電池22における発電によって生成される水に起因する。この水蒸気の量は、燃料電池22における発電量Pgおよび燃料電池22の温度と相関がある。燃料電池22における発電量は、電流計35が検出する電流量を単位時間だけ時間で積分して得られる量に基づいて、決定することができる。燃料電池22の温度は、温度センサ43が検出する冷却水の温度Twに基づいて決定することができる。
 よって、燃料電池システムの構成が決まれば、燃料電池22の発電量(電流量)と、燃料電池22の冷却水の温度Twから、開閉弁50から排出される単位時間当たりの水蒸気の量qwを決定するマップMw1,Mw2,Mw3(図11参照)を作成することができる。それぞれ発電量Pgと水蒸気量の関係を表すマップMw1,Mw2,Mw3は、互いに異なる冷却水温度Tw1,Tw2,Tw3に対応する(Tw1<Tw2<Tw3)。ここでは、技術の理解を容易にするために、発電量Pgと水蒸気量の関係を表すマップを3個のみ示した。しかし、実際には、より多くのマップが生成される。それら発電量Pgと水蒸気量の関係を表すマップを水蒸気用のマップMwと総称する。制御部70は、あらかじめ設けられた水蒸気用のマップMwを保持している。
(iv)開閉弁から排出される水素ガスの単位時間当たりの量:
 開閉弁50から排出されるガスのうち、水素ガスの量は、インジェクタ62を介して燃料電池22に供給された水素と、燃料電池22における発電によって消費された水素との差として得られる。そして、インジェクタ62を介して燃料電池22に供給された水素の量は、インジェクタ62の前後における圧力差を単位時間だけ時間で積分して得られる量に基づいて、決定することができる。ここで、インジェクタ62の上流側の圧力は、圧力センサ66aで得ることができる。インジェクタ62の下流側の圧力は、圧力センサ66bで得ることができる。また、燃料電池22における発電によって消費された水素の量は、燃料電池22における発電量に基づいて決定することができる。そして、燃料電池22における発電量は、電流計35が検出する電流量を時間で積分して得られる量に基づいて、決定することができる
 よって、燃料電池システムの構成が決まれば、燃料電池22の発電量(電流量)と、冷却水の温度Twと、インジェクタ62の上流側と下流側の圧力とから、開閉弁50から排出される水素ガスの単位時間当たりの量qhを決定するマップMhを作成することができる。制御部70は、あらかじめそのようにして設けられた水素ガス用のマップMhを保持している。
(v)閉弁の決定:
 以上より、制御部70は、マップMn,Mw,Mhを参照しつつ、温度センサ43が検出する冷却水の温度と、電流計35が検出する電流量と、圧力センサ66a,66bが検出する圧力と、から、開閉弁50から排出されるガスの単位時間当たりの流量Qを得ることができる。
 第2実施例においては、制御部70は、温度センサ43が検出する冷却水の温度と、電流計35が検出する電流量と、圧力センサ66a,66bが検出する圧力と、に基づいてパラメータPvcを計算する。このパラメータPvcは、開閉弁50から排出されるガスの単位時間当たりの流量Qを表す。よって、パラメータPvcは、開閉弁50から排出されるガスの平均分子量mの平方根に比例する。
 制御部70は、制御部70は、開弁からの時間が、弁用マップMvにしたがって定められた時間Tvoに達していなくても、パラメータPvcが所定のしきい値Thcを下回ったときに開閉弁50を閉じる(図8の時刻t10b参照)。このような態様とすることで、開閉弁50から排出されるガスの平均分子量mが所定値よりも小さくなり、燃料ガス循環系を循環するガスから不純物が十分に排出されたときに、開閉弁50を閉じることができる。このため、燃料ガスとしての水素ガスが、燃料ガス循環系から過剰に排出されることを防止することができる。また、燃料ガス循環系から高濃度の水素ガスが排出されることを防止することができる。
**
 なお、第2実施例において、開閉弁50を閉じるべき時刻t10bに先だって、インジェクタ62のデューティ比Diを、デューティ比D6からD0に低下させ、インジェクタ62の下流側の水素ガスの圧力を低下させる点は、第1実施例と同様である(図8の時刻t9b参照)。図8に示された時刻または時間区間のうち、図4に示された時刻または時間区間に相当するものについては、末尾に「b」を付けて示す。
C.変形例:
 なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
C1.変形例1:
 上記実施例では、開弁後、インジェクタ62の下流側の圧力Poの単位時間当たりの低下幅が、所定のしきい値Tr6より大きくなったことを検知して、液体の水の排出が完了したことを検知し、デューティDiを上げている(図4および図8のTp6参照)。しかし、開弁後、デューティDiを上げる時刻は、あらかじめ定めることもできる。
 図12は、冷却水温Twが50度のときの、液分離器27から排水すべき液体の水の量qLを示すグラフである。液分離器27から排水すべき液体の水も、主として燃料電池22における発電によって生成される水に起因する。この排出すべき液体の水の量qLも、燃料電池22における発電量および燃料電池22の温度と相関がある。たとえば、発電量(電流量)および燃料電池22の温度(冷却水温)が一定であるとすると、図12に示すように、排水すべき水の量qLは、時間の経過とともに増大する。電流量は、電流計35で検出することができる。燃料電池22の温度は、温度センサ43が検出する冷却水の温度Twに基づいて決定することができる。
 よって、燃料電池システムの構成が決まれば、燃料電池22の発電量(電流量)と、燃料電池22の冷却水の温度Twから、排水すべき液体の水の量qLを決定するマップML1,ML2,ML3(図12参照)を作成することができる。それぞれ経過時間と水の量qLの関係を表すマップML1,ML2,ML3は、互いに異なる電流値TL1,TL2,TL3に対応する(TL1<TL2<TL3)。ここでは、技術の理解を容易にするために、経過時間と水の量qLの関係を表すマップを3個のみ示した。しかし、実際には、より多くのマップが生成される。それら経過時間と水蒸気量の関係を表すマップを水蒸気用のマップMLと総称する。制御部70は、あらかじめ設けられた水蒸気用のマップMLを保持し、それに基づいて、デューティDiを高めるべき時刻(図4および図8のt4参照)を決定することもできる。
C2.変形例2:
 上記実施例では、燃料電池22に圧力を調整した燃料ガスを供給するのは、PWM制御が可能なインジェクタ62である。しかし、燃料電池22に圧力を調整した燃料ガスを供給する構成は、他の方式による圧力調整弁とすることもできる。
C3.変形例3:
 上記第2実施例では、インジェクタ62のデューティDiに基づいて、開閉弁50が開いたことを検知している(図8の時間区間Tp3参照)。しかし、開閉弁50が開いたことの検知は、他の方法で行うこともできる。たとえば、インジェクタ62の下流側の圧力センサ66bが測定した水素ガスの圧力Poと、その目標圧力と、の差が、所定値よりも大きくなったことを検知して、開閉弁50が開いたことを検知することもできる。より具体的には、インジェクタ62のフィードバック信号をモニタすることにより、そのような制御を行うことができる。
 このような態様としても、第1実施例のように圧力センサ66bの測定値を使用することなく、開閉弁50を開いたことを検知して、インジェクタ62の下流側の水素ガスの圧力Poを、開弁前より高くすることができる。
C4.変形例4:
 上記第1実施例においては、インジェクタ62と燃料電池22との間の圧力の変化を、圧力センサ66bによって検知することで、開閉弁50が開いたことを検知している(図4の時間区間Tp3参照)。しかし、開閉弁50が開いたことを検知するための圧力センサは、燃料電池22の下流側など、他の部位について設けることもできる。すなわち、燃料電池に供給すべき燃料ガスの圧力を測定するセンサとすることもでき、燃料電池から排出される燃料排ガスの圧力を測定するセンサとすることもできる。
 開閉弁50が開いたことを検知するための圧力センサは、圧力制御部としてのインジェクタ62の下流側に設けることができる。ただし、圧力センサは、燃料電池22の上流側に設けることが好ましい。そのような態様とすれば、アノードガス循環系に含まれる水が凍結することにより、圧力センサが誤動作する事態を防止することができる。
C5.変形例5:
 上記第1実施例においては、インジェクタ62の下流側の圧力Poの単位時間当たりの低下幅が、所定のしきい値Tr6より大きくなったことを検知すると、制御部70は、インジェクタ62のデューティ比Diを、D4からD5に上昇させる(図4の時間区間Tp6,Tp7参照)。しかし、排水後、インジェクタ62のデューティ比Diを上げるタイミングは、他の方法で検知することもできる。
 たとえば、燃料ガス循環系の圧力が所定値よりも低下したことを検知して、圧力制御部に圧力を上げさせる態様とすることもできる。また、圧力制御部のフィードバック制御の応答速度が十分に速い場合には、第2実施例の開弁の検知のように、圧力制御部の状態(デューティDi)やフィードバック信号に基づいて、排水を検知することもできる。また、開弁後、所定の時間が経過したことによって、排水が完了したと推定し、次の制御を行うこともできる。
 なお、実施例および変形例で説明した開弁の検知(図4および図8の時間区間Tp3参照)の方法と、排水の検知(図4および図8の時間区間Tp6参照)の方法については、それぞれの目的のために他方の方法を適用することもできる。
C6.変形例6:
 上記実施例においては、燃料電池22の温度は、冷却水の温度Twに基づいて決定されている。しかし、燃料電池22の温度は、他の方法で決定されることもできる。そして、燃料電池22の温度は、その温度が燃料電池22の温度と相関を有する他の構成(たとえば、冷却水や冷却水配管、その他燃料電池22に取りつけられる構造)の温度に基づいて決定することができる。
C7.変形例7:
 以上では、本願発明をその好ましい例示的な実施例を参照して詳細に説明した。しかし、本願発明は、以上で説明した実施例や構成に限定されるものではない。そして、本願発明は、様々な変形や均等な構成を含むものである。さらに、開示された発明の様々な要素は、様々な組み合わせおよび構成で開示されたが、それらは例示的な物であり、各要素はより多くてもよく、また少なくてもよい。そして、要素は一つであってもよい。それらの態様は本願発明の範囲に含まれるものである。

Claims (8)

  1.  燃料電池システムであって、
     燃料電池と、
     前記燃料電池に供給すべき燃料ガスが流れる燃料ガス流路に設けられ、前記燃料電池に供給すべき燃料ガスの圧力を制御することができる圧力制御部と、
     前記燃料電池から排出される燃料排ガスが流れる燃料排ガス流路に設けられ、開弁したときに、前記燃料排ガスの少なくとも一部を前記燃料排ガス流路の外に排出できる排気弁と、
     前記燃料電池システムの制御を行う制御部と、を備え、
     前記制御部は、
       前記燃料電池に供給すべき燃料ガスの圧力が第1の圧力であるときに前記排気弁を開き、
       前記圧力制御部を制御して、少なくとも前記排気弁を開いた後の所定の時間区間について、前記燃料電池に供給すべき燃料ガスの圧力を、前記第1の圧力よりも高い第2の圧力とする、燃料電池システム。
  2.  請求項1記載の燃料電池システムであって、
     前記制御部は、
       前記燃料電池に発電を行わせている際に、前記燃料電池に供給すべき燃料ガスの圧力が所定の圧力となるように、前記圧力制御部をフィードバック制御し、
       前記フィードバック制御におけるフィードバック信号と、前記圧力制御部の運転状態と、の少なくとも一方の変化に基づいて、前記排気弁が開いたことを検知して、前記燃料電池に供給すべき燃料ガスの圧力を前記第2の圧力にする、燃料電池システム。
  3.  請求項1記載の燃料電池システムであって、さらに、
     前記圧力制御部の下流において、前記燃料電池に供給すべき燃料ガスと前記燃料排ガスとの少なくとも一方の圧力を検知するための圧力センサを備えており、
     前記制御部は、前記圧力センサによって得られる測定値の低下に基づいて、前記排気弁が開いたことを検知する、燃料電池システム。
  4.  請求項1ないし3記載のいずれかに燃料電池システムであって、
     前記制御部は、前記燃料電池に供給すべき燃料ガスの圧力を前記第2の圧力にした後、前記圧力制御部を制御して、前記排気弁が開いた状態において、前記燃料電池に供給すべき燃料ガスの圧力を、前記第2の圧力よりも高い第3の圧力にする、燃料電池システム。
  5.  請求項1または2に従属する請求項4記載の燃料電池システムであって、さらに、
     前記圧力制御部の下流において、前記燃料電池に供給すべき燃料ガスと前記燃料排ガスとの少なくとも一方の圧力を検知するための圧力センサを備えており、
     前記制御部は、前記圧力センサによって得られる測定値の所定時間における低下幅が、所定のしきい値を超えた後に、前記燃料電池に供給すべき燃料ガスの圧力を前記第3の圧力にする前記処理を行う、燃料電池システム。
  6.  請求項1または2記載の燃料電池システムであって、さらに、
     前記燃料排ガス流路内を流れる前記排ガスの一部を前記燃料ガス流路に戻す環流路と、
     前記燃料電池の温度を決定するための温度センサと、
     前記燃料電池から流れる電流の量を決定するための電流計と、
     前記燃料ガス供給源から前記圧力制御部に供給される燃料ガスの圧力を測定する第1の圧力センサと、
     前記圧力制御部が前記燃料電池に供給する燃料ガスの圧力を測定する第2の圧力センサと、を備え、
     前記圧力制御部は、前記燃料ガス流路において前記燃料ガス供給源と前記燃料電池との間に設けられ、前記燃料ガス供給源から供給される燃料ガスとしての水素ガスを、制御された圧力で前記燃料電池に供給することができるインジェクタであり、
     前記制御部は、
       前記開弁時に、前記排気弁からガスを排出しつつ、前記圧力制御部を介して前記燃料ガス供給源から供給される燃料ガスを前記燃料電池に供給し、
       前記燃料ガス供給源から前記圧力制御部に供給された燃料ガスの圧力と、前記圧力制御部が前記燃料電池に供給した燃料ガスの圧力と、前記燃料電池の温度と、前記燃料電池が流す電流と、に基づいて得られるパラメータが所定の値を下回ったときに、前記排気弁を閉じる、燃料電池システム。
  7.  請求項1ないし6のいずれかに記載の燃料電池システムであって、
     前記制御部は、
       前記圧力制御部を制御して、前記排気弁を閉じる前に、前記燃料電池に供給すべき燃料ガスの圧力をそれまでよりも低下させ、
       前記燃料電池に供給すべき燃料ガスの圧力が前記低下された状態において前記排気弁を閉じる、燃料電池システム。
  8.  燃料電池システムの運転方法であって、
     前記燃料電池システムは、
       燃料電池と、
       前記燃料電池に供給すべき燃料ガスが流れる燃料ガス流路に設けられ、前記燃料電池に供給すべき燃料ガスの圧力を制御することができる圧力制御部と、
       前記燃料電池から排出される燃料排ガスが流れる燃料排ガス流路に設けられ、開弁したときに、前記燃料排ガスの少なくとも一部を前記燃料排ガス流路の外に排出できる排気弁と、を備え、
     前記方法は、
    (a)前記燃料電池に供給すべき燃料ガスの圧力が第1の圧力であるときに前記排気弁を開く工程と、
    (b)前記圧力制御部を制御して、前記排気弁を開いた後、前記燃料電池に供給すべき燃料ガスの圧力を、前記第1の圧力よりも高い第2の圧力にする工程と、を備える方法。
PCT/JP2010/003718 2010-06-03 2010-06-03 燃料電池システム WO2011151864A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112010005623.4T DE112010005623B4 (de) 2010-06-03 2010-06-03 Betriebsverfahren eines Brennstoffzellensystems sowie Brennstoffzellensystem
US13/701,693 US9209466B2 (en) 2010-06-03 2010-06-03 Fuel cell system
CN201080066976.9A CN102906921B (zh) 2010-06-03 2010-06-03 燃料电池系统
JP2012518156A JP5447661B2 (ja) 2010-06-03 2010-06-03 燃料電池システム
PCT/JP2010/003718 WO2011151864A1 (ja) 2010-06-03 2010-06-03 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003718 WO2011151864A1 (ja) 2010-06-03 2010-06-03 燃料電池システム

Publications (1)

Publication Number Publication Date
WO2011151864A1 true WO2011151864A1 (ja) 2011-12-08

Family

ID=45066267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003718 WO2011151864A1 (ja) 2010-06-03 2010-06-03 燃料電池システム

Country Status (5)

Country Link
US (1) US9209466B2 (ja)
JP (1) JP5447661B2 (ja)
CN (1) CN102906921B (ja)
DE (1) DE112010005623B4 (ja)
WO (1) WO2011151864A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048675A (ja) * 2014-08-25 2016-04-07 本田技研工業株式会社 燃料電池システム及び燃料電池システムの制御方法
JP2016103464A (ja) * 2014-11-12 2016-06-02 トヨタ自動車株式会社 燃料電池システム
JP2016103466A (ja) * 2014-11-12 2016-06-02 トヨタ自動車株式会社 燃料電池システム
JP2016103465A (ja) * 2014-11-14 2016-06-02 トヨタ自動車株式会社 燃料電池システム

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207477B2 (ja) * 2014-07-03 2017-10-04 愛三工業株式会社 燃料供給ユニット
WO2016013321A1 (ja) * 2014-07-24 2016-01-28 日産自動車株式会社 燃料電池のアノードシステム
JP6137124B2 (ja) * 2014-11-12 2017-05-31 トヨタ自動車株式会社 燃料電池システムおよび燃料電池搭載車両
US10038208B2 (en) 2014-11-12 2018-07-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US9991531B2 (en) 2014-11-14 2018-06-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP6168032B2 (ja) * 2014-11-14 2017-07-26 トヨタ自動車株式会社 燃料電池システム
JP6809404B2 (ja) * 2017-07-27 2021-01-06 トヨタ自動車株式会社 燃料電池システム
DE102017219045A1 (de) * 2017-10-25 2019-04-25 Robert Bosch Gmbh Verfahren zur Entfernung von Produktwasser aus einer Brennstoffzelle
US20210063493A1 (en) * 2019-09-04 2021-03-04 GM Global Technology Operations LLC Method and apparatus for monitoring a fuel cell
JP7420650B2 (ja) * 2020-06-04 2024-01-23 本田技研工業株式会社 ガス供給システム
JP7501396B2 (ja) * 2021-02-03 2024-06-18 トヨタ自動車株式会社 燃料電池システム
JP7400757B2 (ja) * 2021-03-05 2023-12-19 トヨタ自動車株式会社 燃料電池システム
CN115241496B (zh) * 2022-09-22 2022-11-29 北京英博新能源有限公司 燃料电池的气水分离系统、控制方法及燃料电池系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296350A (ja) * 2003-03-27 2004-10-21 Nissan Motor Co Ltd 燃料電池システム
JP2005044533A (ja) * 2003-07-22 2005-02-17 Daihatsu Motor Co Ltd 燃料電池システムの発電制御方法
JP2005116220A (ja) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2005268178A (ja) * 2004-03-22 2005-09-29 Nissan Motor Co Ltd 燃料電池システム
JP2006324058A (ja) * 2005-05-17 2006-11-30 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムのパージ制御方法
JP2007250555A (ja) * 2007-05-17 2007-09-27 Equos Research Co Ltd 燃料電池装置の制御方法
JP2007280801A (ja) * 2006-04-07 2007-10-25 Toyota Motor Corp 燃料電池システムとオフガスパージ方法
JP2008192373A (ja) * 2007-02-01 2008-08-21 Honda Motor Co Ltd 燃料電池システムおよびその掃気方法
JP2009059556A (ja) * 2007-08-31 2009-03-19 Toyota Motor Corp 燃料電池システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814528A3 (en) * 1996-06-20 2004-05-19 Osaka Gas Company Limited Solid electrolyte fuel cell stack
US6602628B2 (en) * 2000-03-24 2003-08-05 Honda Giken Kogyo Kabushiki Kaisha Control system for fuel cell
JP5057203B2 (ja) 2006-05-16 2012-10-24 トヨタ自動車株式会社 燃料電池システム及び移動体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296350A (ja) * 2003-03-27 2004-10-21 Nissan Motor Co Ltd 燃料電池システム
JP2005044533A (ja) * 2003-07-22 2005-02-17 Daihatsu Motor Co Ltd 燃料電池システムの発電制御方法
JP2005116220A (ja) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2005268178A (ja) * 2004-03-22 2005-09-29 Nissan Motor Co Ltd 燃料電池システム
JP2006324058A (ja) * 2005-05-17 2006-11-30 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムのパージ制御方法
JP2007280801A (ja) * 2006-04-07 2007-10-25 Toyota Motor Corp 燃料電池システムとオフガスパージ方法
JP2008192373A (ja) * 2007-02-01 2008-08-21 Honda Motor Co Ltd 燃料電池システムおよびその掃気方法
JP2007250555A (ja) * 2007-05-17 2007-09-27 Equos Research Co Ltd 燃料電池装置の制御方法
JP2009059556A (ja) * 2007-08-31 2009-03-19 Toyota Motor Corp 燃料電池システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048675A (ja) * 2014-08-25 2016-04-07 本田技研工業株式会社 燃料電池システム及び燃料電池システムの制御方法
JP2016103464A (ja) * 2014-11-12 2016-06-02 トヨタ自動車株式会社 燃料電池システム
JP2016103466A (ja) * 2014-11-12 2016-06-02 トヨタ自動車株式会社 燃料電池システム
JP2016103465A (ja) * 2014-11-14 2016-06-02 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
DE112010005623T5 (de) 2013-03-28
US20130071767A1 (en) 2013-03-21
CN102906921A (zh) 2013-01-30
CN102906921B (zh) 2015-04-15
JP5447661B2 (ja) 2014-03-19
JPWO2011151864A1 (ja) 2013-07-25
DE112010005623T8 (de) 2013-05-29
DE112010005623B4 (de) 2019-03-07
US9209466B2 (en) 2015-12-08

Similar Documents

Publication Publication Date Title
JP5447661B2 (ja) 燃料電池システム
JP4254213B2 (ja) 燃料電池システム
JP5347719B2 (ja) 燃料電池装置
WO2007018132A1 (ja) 燃料電池システム、および燃料電池システムにおける燃料ガス漏れ判定方法
WO2006109756A1 (ja) 燃料電池システム
WO2004102718A1 (ja) 燃料電池システムの運転制御
JP2007257956A (ja) 燃料電池システム
US20210226237A1 (en) Fuel cell system
JP2009037870A (ja) 燃料電池システム
CN108140857B (zh) 燃料电池系统及其控制方法
JP2006086117A (ja) 燃料電池システム
JP5136415B2 (ja) 燃料電池システム
JP2005310653A (ja) 燃料電池システム
JP6972941B2 (ja) 燃料電池システム及びその制御方法
US11152630B2 (en) Fuel cell system
JP4887632B2 (ja) 燃料電池システムにおけるフラッディングの解消
JP2006331966A (ja) 燃料電池システム
US9960440B2 (en) Fuel cell system and control method for fuel cell system
JP4529387B2 (ja) 燃料電池システム
JP4561048B2 (ja) 燃料電池システム
CN116742069A (zh) 燃料电池系统以及燃料电池系统的阀控制方法
JP2009158268A (ja) 燃料電池システム
JP2005071751A (ja) 燃料電池システム
JP7247958B2 (ja) 燃料電池システム
JP2009076261A (ja) 燃料電池システム及びその起動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066976.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518156

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13701693

Country of ref document: US

Ref document number: 112010005623

Country of ref document: DE

Ref document number: 1120100056234

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852478

Country of ref document: EP

Kind code of ref document: A1