JP2016103464A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2016103464A
JP2016103464A JP2015174965A JP2015174965A JP2016103464A JP 2016103464 A JP2016103464 A JP 2016103464A JP 2015174965 A JP2015174965 A JP 2015174965A JP 2015174965 A JP2015174965 A JP 2015174965A JP 2016103464 A JP2016103464 A JP 2016103464A
Authority
JP
Japan
Prior art keywords
gas
fuel gas
fuel cell
fuel
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015174965A
Other languages
English (en)
Other versions
JP6222191B2 (ja
Inventor
山本 和男
Kazuo Yamamoto
和男 山本
今西 啓之
Hiroyuki Imanishi
啓之 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US14/935,590 priority Critical patent/US10038208B2/en
Priority to KR1020150156583A priority patent/KR101846628B1/ko
Priority to CN201510760662.3A priority patent/CN105591129B/zh
Priority to CA2911847A priority patent/CA2911847C/en
Priority to DE102015119422.8A priority patent/DE102015119422A1/de
Publication of JP2016103464A publication Critical patent/JP2016103464A/ja
Application granted granted Critical
Publication of JP6222191B2 publication Critical patent/JP6222191B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】燃料電池の広い負荷領域において燃料ガスの排気量の推定精度の低下が抑制された燃料電池システムを提供することを課題とする。【解決手段】燃料電池システムの制御部は、負荷電流値が基準値以下の場合には、圧力の低下率から算出した燃料ガスの消失量と前記負荷電流値から算出した燃料電池の発電による前記燃料ガスの消費量とに基づいて前記燃料ガスの排気量を推定し、前記負荷電流値が前記基準値を超えている場合には、差圧に基づいて前記燃料ガスの排気量を推定する。【選択図】図5

Description

本発明は、燃料電池システムに関する。
燃料電池から排出される燃料ガスから水分を分離して貯留する気液分離器と、気液分離器に接続され気液分離器内の貯留水とともに燃料ガスを外部に排出する排出弁と、を備えた燃料電池システムが知られている。例えば特許文献1では、排出弁の開弁による燃料ガスの排気量を推定する技術が開示されている。
特開2005−302708号公報
燃料ガスの排気量を推定するために、例えば排出弁が開弁している期間で排出弁の上流側と下流側との差圧に基づいて推定することが考えられる。しかしながら本発明者らは、上記方法により燃料ガスの排気量を推定した場合、燃料電池の負荷状態によっては、推定された排気量と実際の排気量との誤差が大きくなる場合があることを発見した。
そこで、燃料電池の広い負荷領域において燃料ガスの排気量の推定精度の低下が抑制された燃料電池システムを提供することを目的とする。
上記目的は、燃料電池と、前記燃料電池へ燃料ガスを供給する燃料供給源と、前記燃料供給源から供給された前記燃料ガスを前記燃料電池に流す供給流路と、前記燃料電池から排出された前記燃料ガスを前記供給流路に流す循環流路と、前記循環流路上に配置され前記燃料ガスから水分を分離して貯留する気液分離器と、前記気液分離器に接続され前記気液分離器内の貯留水及び前記燃料ガスを外部に排出する排出流路と、前記排出流路に設けられた排出弁と、前記燃料電池の負荷電流値を検出する電流検出部と、前記供給流路内の圧力を検出する圧力検出部と、前記供給流路、前記循環流路、前記気液分離器、又は前記排出弁よりも上流側の前記排出流路内の圧力と、前記排出弁よりも下流側の圧力との差圧を検出する差圧検出部と、前記排出弁の開弁により排出される前記燃料ガスの排気量を推定する制御部と、を備え、前記制御部は、前記負荷電流値が基準値以下の場合には、前記排出弁の開弁期間での前記供給流路内の圧力の低下率から算出した前記燃料ガスの消失量と前記開弁期間での前記負荷電流値から算出した前記燃料電池の発電による前記燃料ガスの消費量とに基づいて前記燃料ガスの排気量を推定し、前記負荷電流値が前記基準値を超えている場合には、前記開弁期間での前記差圧に基づいて前記燃料ガスの排気量を推定する、燃料電池システムによって達成できる。
前記制御部は、前記負荷電流値が前記基準値以下の場合には、前記燃料ガスの消失量から前記燃料ガスの消費量を減算した値に基づいて前記燃料ガスの排気量を推定する、構成であってもよい。
上記目的は、燃料電池と、前記燃料電池へ燃料ガスを供給する燃料供給源と、前記燃料供給源から供給された前記燃料ガスを前記燃料電池に流す供給流路と、前記燃料電池から排出された前記燃料ガスを前記供給流路に流す循環流路と、前記循環流路上に配置され前記燃料ガスから水分を分離して貯留する気液分離器と、前記気液分離器に接続され前記気液分離器内の貯留水及び前記燃料ガスを外部に排出する排出流路と、前記排出流路に設けられた排出弁と、前記燃料電池の負荷電流値を検出する電流検出部と、前記循環流路内及び前記気液分離器内の何れかの圧力を検出する圧力検出部と、前記供給流路、前記循環流路、前記気液分離器、又は前記排出流路内の前記排出弁よりも上流側の圧力と、前記排出弁よりも下流側の圧力との差圧を検出する差圧検出部と、前記排出弁の開弁により排出される前記燃料ガスの排気量を推定する制御部と、を備え、前記制御部は、前記負荷電流値が基準値以下の場合には、前記排出弁の開弁期間での前記循環流路内及び前記気液分離器内の何れかの圧力の低下率から算出した前記燃料ガスの消失量と前記開弁期間での前記負荷電流値から算出した前記燃料電池の発電による前記燃料ガスの消費量とに基づいて前記燃料ガスの排気量を推定し、前記負荷電流値が前記基準値を超えている場合には、前記開弁期間での前記差圧に基づいて前記燃料ガスの排気量を推定する、燃料電池システムによっても達成できる。
上記目的は、燃料電池と、前記燃料電池へ燃料ガスを供給する燃料供給源と、前記燃料供給源から供給された前記燃料ガスを前記燃料電池に流す供給流路と、前記燃料電池から排出された前記燃料ガスから水分を分離して貯留する気液分離器と、前記燃料電池から排出された前記燃料ガスを前記気液分離器に供給する第1の排出流路と、前記気液分離器に接続され前記気液分離器内の貯留水及び前記燃料ガスを外部に排出する第2の排出流路と、前記第2の排出流路に設けられた排出弁と、前記燃料電池の負荷電流値を検出する電流検出部と、前記供給流路内、前記第1の排出流路内、及び前記気液分離器内の何れかの圧力を検出する圧力検出部と、前記供給流路、前記第1の排出流路、前記気液分離器、又は前記第2の排出流路内の前記排出弁よりも上流側の圧力と、前記排出弁よりも下流側の圧力との差圧を検出する差圧検出部と、前記排出弁の開弁により排出される前記燃料ガスの排気量を推定する制御部と、を備え、前記燃料電池から排出された前記燃料ガスを前記供給流路に戻さないアノード非循環型の燃料電池システムであって、前記制御部は、前記負荷電流値が基準値以下の場合には、前記排出弁の開弁期間での前記供給流路内、前記第1の排出流路内、及び前記気液分離器内の何れかの圧力の低下率から算出した前記燃料ガスの消失量と前記開弁期間での前記負荷電流値から算出した前記燃料電池の発電による前記燃料ガスの消費量とに基づいて前記燃料ガスの排気量を推定し、前記負荷電流値が前記基準値を超えている場合には、前記開弁期間での前記差圧に基づいて前記燃料ガスの排気量を推定する、燃料電池システムによっても達成できる。
燃料電池の広い負荷領域において燃料ガスの排気量の推定精度の低下が抑制された燃料電池システムを提供できる。
燃料電池システムの概略構成図である。 排出弁の作動と、供給流路内の圧力の変化と、循環流路内の圧力と排出弁よりも下流側の排出流路内の圧力との差圧の変化とを示したタイミングチャートである。 ECUにより実行される排出弁の開閉制御のフローチャートである。 推定方法A、Bのそれぞれにより推定された排気量が目標排気量に一致するように制御した場合での、実際の排気量を示した実験結果のグラフである。 推定方法Aによる排気量推定制御のフローチャートである。 圧力低下率と単位時間当たりの燃料ガス消失量との関係を規定したマップである。 負荷電流値と単位時間当たりでの燃料ガス消費量との関係を規定したマップである。 積算燃料ガス消失量Q1と、積算燃料ガス消費量Q2と、燃料ガスの推定排気量Qとの関係を示した図である。 推定方法Bによる排気量推定制御のフローチャートである。 差圧ΔPbと排水流量との関係を規定したマップである。 差圧ΔPbと排気流量との関係を規定したマップである。 第1変形例に係る燃料電池システムの概略構成図である。 第2変形例に係る燃料電池システムの概略構成図である。
以下、図面を参照して本実施例の燃料電池システム1(以下、システムと称する)について説明する。システム1は、例えば車両に搭載される車両用のシステムに適用することができる。ただし、他の用途のシステムへ適用してもよい。図1は、システム1の概略構成図である。システム1は、電力供給手段として燃料電池2を備えている。燃料電池2は、固体高分子電解質膜等の電解質膜が触媒電極であるアノードとカソードで挟まれて構成され(図中では、電解質膜、アノード、カソードの図示は省略している)、アノードへの水素を含む燃料ガスの供給とカソードへの空気などの酸素を含む酸化ガスの供給を受けて発電する。
タンク3は、燃料電池2へ燃料ガスを供給する燃料供給源である。供給流路4は、燃料電池2のアノード入口に接続され、タンク3から供給された燃料ガスを燃料電池2に流す。供給流路4には調圧バルブ6が配置されており、タンク3から供給される燃料ガスは調圧バルブ6で減圧され所望の圧力に調整されてから燃料電池2に供給される。また、供給流路4における調圧バルブ6の下流側にはインジェクタ10が配置されている。インジェクタ10は、弁体を電磁駆動力で直接的に所定の駆動周期で駆動して弁座から離隔させることによりガス流量やガス圧を調整することが可能な電磁駆動式の開閉弁である。インジェクタ10や調圧バルブ6は、ECU(Electronic Control Unit)20によって制御される。
燃料電池2のアノード出口には燃料電池2から排出された燃料ガス(燃料オフガス)を供給流路4に流す循環流路8が接続されている。具体的には、循環流路8の下流端は供給流路4に接続されている。また、循環流路8には、燃料電池2から排出された燃料ガスを加圧して供給流路4へ送るための循環ポンプ9が設置されている。これにより、本燃料電池システムでは、燃料電池2の運転時には燃料ガスは供給流路4と循環流路8を通って循環する。
循環流路8の途中には気液分離器12が配置され、燃料ガスから水分を分離し、分離した水を貯留する貯留槽12aを有している。システム1では、燃料電池2の発電によって生成された水がカソード側から電解質膜を透過してアノード側に漏れ出してくる。アノード側に移動した水は燃料ガスとともに循環流路8に排出され、気液分離器12において回収される。
気液分離器12の貯留槽12aの底部には、気液分離器12内の貯留水及び燃料ガスを外部に排出する排出流路14が接続されている。排出流路14の下流端は外気に晒されている。排出流路14には排出弁16が配置されている。排出弁16は通常は閉じており、ECU20によって必要に応じて開かれる。排出弁16としては、シャットオフバルブや流量調整バルブなど排出状態を制御することが可能なバルブであればよい。本実施形態では、排出弁16はシャットオフバルブである。貯留槽12aから貯留水があふれる前に排出弁16が開いて排水することにより、液水が循環経路8、供給経路4を介して燃料電池2に供給されることを防止できる。
供給流路4には、インジェクタ10よりも下流側に供給流路4内の圧力を検出する圧力センサ21が設けられている。圧力センサ21は主に燃料電池2に供給される燃料ガスの圧力を検出する。循環流路8には、気液分離器12よりも上流側に循環流路8内の圧力を検出する圧力センサ22が設けられている。圧力センサ22は、主に燃料電池2から排出される燃料ガスの圧力を検出し、排出弁16よりも上流側の圧力を検出できる。排出流路14には、排出弁16よりも下流側の排出流路14内の圧力を検出する圧力センサ23が設けられ、排出弁16よりも下流側の圧力を検出できる。圧力センサ23の検出値は略大気圧を示す。圧力センサ21〜23はECU20の入力側に接続され、検出した圧力に応じた信号をECU20に入力している。圧力センサ21は、供給流路4内の圧力を検出する圧力検出部の一例である。圧力センサ22、23は、供給流路4、循環流路8、気液分離器12、又は排出弁16よりも上流側の排出流路14内の圧力と、排出弁16よりも下流側の圧力との差圧を検出する差圧検出部の一例である。
燃料電池2には負荷装置30が接続されている。負荷装置30は、燃料電池2の電気的特性を測定するための装置であり、例えば、電気化学系汎用ポテンシオガルバノスタットを含んで構成することができる。負荷装置30は、配線によって燃料電池2のアノード側セパレータとカソード側セパレータに電気的に接続されている。負荷装置30は、燃料電池2の発電時に燃料電池2を流れる負荷電流と、燃料電池2の負荷電圧(セル電圧)を測定できる。負荷装置30は負荷電流値を検出する電流検出部の一例である。
ECU20は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)を備えるマイクロコンピュータを含んで構成されている。ECU20は、システム1の各構成要素と電気的に接続され、各構成要素から受け取る情報に基づいて、各構成要素の動作を制御する。また、ECU20は、詳しくは後述する燃料ガスの排気量を推定する制御を実行する制御部の一例である。
尚、燃料電池2のカソード入口には酸化ガスを供給するための流路が接続され、カソード出口には酸化オフガスを排出するための流路が接続されているが、図1では省略している。
上述したように排出弁16を開弁することにより気液分離器12内の貯留水を外部へと排出できる。この際に、貯留水と共に燃料ガスの一部が外部へと排出される。ここで、排出弁16から排出される燃料ガスの実際の排気量が目標排気量となるように制御することが求められる。実際の排気量が目標排気量に対して多すぎると、燃料ガスを無駄に消費することになり燃費が悪化する恐れがあるからである。逆に実際の排気量が目標排気量に対して少なすぎると、例えば実際の排気量がゼロであると、貯留水を完全に排出できていない恐れがあるからである。そこで、本システム1では、排出弁16の開弁中に排出される燃料ガスの排気量を後述する方法により推定し、推定した排気量が目標排気量に至った場合に排出弁16を閉じる。
次に、排出弁16の作動による圧力の変化等を説明する。図2は、排出弁16の作動と、供給流路4内の圧力の変化と、循環流路8内の圧力と排出弁16よりも下流側の排出流路14内の圧力との差圧の変化とを示したタイミングチャートである。尚、図2は、インジェクタ10からの燃料ガスの供給は行われていない状態でのタイミングチャートである。上述したように供給流路4内の圧力は、圧力センサ21により検出される。循環流路8内の圧力と排出弁16よりも下流側の排出流路14内の圧力との差圧(以下、単に差圧と称する)は、圧力センサ22、23からの出力値に基づいて検出される。図2では、時点t0で排出弁16が閉じており、時点t1で排出弁16が開き、時点t1〜t2間で気液分離器12内の貯留水の排出が完了し、時点t2〜t3間で燃料ガスが排出される。
図2に示すように、排出弁16が開く前から供給流路4内の圧力は僅かに低下しており、排出弁16が開いた直後は供給流路4内の圧力はすぐには変化せず、排出弁16の開弁から暫くして圧力が大きく低下する。排出弁16が開く前から貯留水の排水が完了する時点t0〜t2間での供給流路4内の圧力低下は、燃料電池2の発電によって燃料ガスが消費されたことに起因している。同様の理由により、時点t0〜t2間での差圧も低下する。また、時点t1〜t2間での供給流路4内の圧力が、時点t0〜t1間での供給流路4内の圧力と略変化しない理由は、時点t1〜t2間では貯留水の排水は行われているが燃料ガスの排気は行われていないためである。
排水が完了して気液分離器12及び排出流路14が大気に連通すると、排出流路14を通って燃料ガスが排気されていく。これにより、時点t2〜t3間で供給流路4内の圧力、及び差圧は低下する。燃料ガスが排気されることにより、循環流路8と連通している供給流路4内の圧力も低下するからである。従って、時点t2〜t3間での供給流路4内の圧力の低下は、上述した燃料電池2の発電による燃料ガスの消費量と、燃料ガスの排気量とに起因している。また、時点t2〜t3間で差圧が低下する理由は、燃料ガスが排気されることにより圧力センサ22によって検出される循環流路8内の圧力が低下するのに対し、圧力センサ23によって検出される大気圧は略変化しないためである。また、後述する推定方法によって推定された排気量が目標排気量に到達したと判断された場合には、排出弁16は閉じられる。
図3は、ECU20により実行される排出弁16の開閉制御のフローチャートである。ECU20は、システム1が運転中か否を判定する(ステップ1)。貯留水の排水処理はシステムの運転中に実施するからである。システム1の運転中の場合にはECU20はステップ1以降の処理が実行され、システム1の運転中ではない場合には、本制御は終了する。
次にECU20は、排出弁16の開弁条件が成立したか否かを判定する(ステップS2)。排出弁16の開弁条件とは、例えば、前回の排出弁16の開弁からの経過時間が所定時間に達した場合等であるがこれに限定されない。開弁条件が成立していない場合には、本制御は終了する。排出弁16の開弁条件が成立すると、ECU20は負荷装置30により検出された燃料電池2の負荷電流値が基準値以下であるか否かを判定する(ステップS3)。基準値については詳しくは後述する。負荷電流値が基準値以下の場合、ECU20は排出弁16を開き(ステップS4a)、排出弁16の開弁による燃料ガスの排気量を推定するための推定方法Aを実行する(ステップS5a)。ECU20は、推定された排気量が目標排気量以上となったか否かを判定し(ステップS6a)、推定された排気量が目標排気量以上となるまで排気量の推定を継続する。推定された排気量が目標排気量以上となった場合には、ECU20は排出弁16を閉じて(ステップS7)、本制御を終了する。尚、目標排気量は予め設定された固定値でもよいし、システム1の運転状態に応じて設定されるものであってもよい。
一方、ステップS3で否定判定の場合、即ち、負荷電流値が基準値を超えている場合には、ECU20は、排出弁16を開き(ステップS4b)、排出弁16の開弁による燃料ガスの排気量を推定するための推定方法Bを実行する(ステップS5b)。ECU20は、推定された排気量が目標排気量以上となったか否かを判定し(ステップS6b)、推定された排気量が目標排気量以上となるまで排気量の推定を継続する。推定された排気量が目標排気量以上となった場合には、ECU20は排出弁16を閉じて(ステップS7)、本制御を終了する。以上の制御により、気液分離器12内の貯留水は排水され、燃料ガスも所望の量だけ排気される。
次に、推定方法A、Bを負荷電流値に応じて切り替える理由について説明する。図4は、推定方法A、Bのそれぞれにより推定された排気量が目標排気量に一致するように制御した場合での、実際の排気量を示した実験結果のグラフである。グラフの縦軸は排気量を示し、横軸は負荷電流値を示している。線分CA、CBは、目標排気量を一定として負荷電流値が異なっている条件下で、推定方法A、Bにより排気量を推定した場合での実際の排気量を示している。従って図4は、推定された排気量と実際の排気量との誤差の程度を示している。
線分CAが示すように、負荷電流値が低い領域では目標排気量、即ち推定された排気量と実際の排気量との誤差は小さいが、負荷電流値が高い領域では誤差が大きい。これに対して線分CBが示すように、負荷電流値が低い領域で誤差は大きいが、負荷電流値が高い領域で誤差は小さい。本システム1では、線分CA、CBの交点付近での負荷電流値を基準値として採用している。これにより、上述したように、基準値よりも負荷電流値が低い領域で誤差の少ない推定方法Aを用いて排気量を推定し、基準値よりも負荷電流値が高い領域で誤差の少ない推定方法Bを用いて排気量を推定する。
次に、推定方法Aについて図2、5を参照して説明する。図5は、推定方法Aによる排気量推定制御のフローチャートである。推定方法Aでは、排出弁16が開いている開弁期間での供給流路4内の圧力の低下率から算出した燃料ガスの消失量と開弁期間での燃料電池2の負荷電流値から算出した燃料電池の発電による燃料ガスの消費量とに基づいて燃料ガスの排気量を推定する。
ECU20は、排出弁16が開いた時点t1からの供給流路4内の圧力低下率ΔPaから積算燃料ガス消失量Q1を算出する(ステップS11)。図6は、圧力低下率ΔPaと単位時間当たりの燃料ガス消失量との関係を規定したマップである。ECU20はこのマップに基づいて、圧力低下率ΔPaでの単位時間当たりでの燃料ガス消失量を算出して、時点t1から現在までの時間積分をして、積算燃料ガス消失量Q1を算出する。尚、単位時間当たりの燃料ガス消失量は、圧力低下率ΔPaを用いた計算式により算出してもよい。また、ECU20は、圧力センサ21により検出された前回の圧力値から今回の圧力値を減算した値を圧力低下率ΔPとして算出する。
次に、ECU20は、負荷電流値から燃料電池2の発電に起因する積算燃料ガス消費量Q2を算出する(ステップS12)。図7は、負荷電流値と単位時間当たりでの燃料ガス消費量との関係を規定したマップである。ECU20はこのマップに基づいて、負荷電流値に対応した単位時間当たりの燃料ガス消費量を算出して、時点t1から現在時点までの時間積分を算出して、積算燃料ガス消費量Q2を算出する。尚、図6、7のマップは予め実験などに基づいて規定され、ECU20のROMに記録されている。尚、単位時間当たりの燃料ガス消費量は、負荷電流値を用いた計算式により算出してもよい。
ここで、上述した積算燃料ガス消費量Q2は、燃料電池2の発電によって消費された燃料ガスの全体量を示す。積算燃料ガス消失量Q1は、理由の如何を問わずに供給経路4や循環経路8及び燃料電池2内からの消失した燃料ガスの全体量を示す。従って、積算燃料ガス消失量Q1は、積算燃料ガス消費量Q2と排出弁16の開弁による燃料ガスの排気量Qとを含む。図8は、積算燃料ガス消失量Q1と、積算燃料ガス消費量Q2と、燃料ガスの推定排気量Qとの関係を示した図である。尚、貯留水の排水が完了していない場合には、積算燃料ガス消失量Q1と発電によって消費された積算燃料ガス消費量Q2は略同じ値となるため、燃料ガスの排気量Qは略ゼロとなる。
次に、ECU20は、積算燃料ガス消失量Q1から積算燃料ガス消費量Q2を減算して得られる排気量Qを推定された排気量として算出する(ステップS13)。上記ステップS11〜S13は、図3に示したように推定された排気量が目標排気量に到達するまで繰り返し行われ(ステップS6aでNo)、推定された排気量が目標排気量に到達すると(ステップS6aでYes)、排出弁16が閉じられる(ステップS7)。以上のようにして、排気量が推定される。尚、積算燃料ガス消失量Q1から積算燃料ガス消費量Q2を減算して得られる値に補正係数などを乗算した値を推定された排気量として算出してもよい。
次に、図4で示したように、推定方法Aに関して負荷電流が高い領域で誤差が大きくなる理由について説明する。推定方法Aでは、燃料電池2の負荷電流が大きい場合、換言すれば燃料電池2の発電による燃料ガスの消費量が大きい場合、図2に示した時点t1〜t2間での供給流路4内の圧力の低下率が大きくなる。換言すれば、供給流路4内の圧力を示す線分が急勾配になる。このため、発電に起因する供給流路4内の圧力低下率と燃料ガスの排気による供給流路4内の圧力低下率とが略一致する恐れがある。この場合、上記方法で算出された積算燃料ガス消失量Q1と積算燃料ガス消費量Q2とが略一致して、実際の排気量よりも排気量Qが少なく算出される恐れがある。これにより、目標排気量よりも実際の排気量が多くなってから排出弁16が閉じられる恐れがある。このような原因により、負荷電流値が高い領域で推定方法Aでの誤差が大きくなると考えられる。
次に、推定方法Bについて図2、9を参照して説明する。図9は、推定方法Bによる排気量推定制御のフローチャートである。推定方法Bでは、排出弁16の開弁期間での差圧に基づいて前記燃料ガスの排気量を推定する。
ECU20は、排出弁16が開く直前の気液分離器12内の貯留量を算出する(ステップS21)。具体的には、ECU20は、前回排水が行われてからの燃料電池2の発電量に応じて生成された生成水量を、燃料電池2の負荷電流等と生成水量とが対応付けされた関係式やマップ等を用いて、気液分離器12内の貯水量を算出する。燃料電池2の発電量は負荷電流から算出される。次にECU20は、循環流路8内の圧力と排出弁16の下流側の圧力との差圧ΔPbから、排出弁16が開弁してからの排水量を推定する(ステップS22)。図10は、差圧ΔPbと排水流量との関係を規定したマップである。ECU20は、このマップに基づいて、差圧ΔPbに対応した排水流量を算出して、排出弁16が開いた時点t1から現在時点までの時間積分を算出して、排水量を推定する。尚、図10のマップは予め実験などに基づいて規定され、ECU20のROMに記録されている。図10のマップは、差圧ΔPbが大きいほど、即ち、排出弁16の下流側の圧力に対して循環流路8内の圧力が大きいほど、単位時間当たりの排水量が多いことを示している。差圧ΔPbが大きいほど、外部への排水が促進されるからである。
次にECU20は、推定された排水量が算出された貯水量以上となったか否かを判定する(ステップS23)。ECU20は、推定された排水量が貯水量以上となるまで、排水量の推定を継続する。
推定された排水量が貯水量に到達すると、排水が完了したものと判断され、ECU20は排出弁16の上流側及び下流側の差圧ΔPbから、排気量を推定する(ステップS24)。図11は、差圧ΔPbと排気流量との関係を規定したマップである。ECU20は、このマップに基づいて、差圧ΔPbに対応した燃料ガスの排気量を算出して、貯留水の排水が完了した時点t2から現在時点までの時間積分を算出して、排気量Qを算出する。尚、図11のマップは予め実験などに基づいて規定され、ECU20のROMに記録されている。図11のマップは、図10のマップと同様に、差圧ΔPbが大きいほど、単位時間当たりの排気流量が多いことを示している。差圧ΔPbが大きいほど、外部への排気が促進されるからである。尚、図10、11のマップを用いずに、差圧ΔPbを用いた計算式により排水量及び排気量を推定してもよい。
上記ステップS21〜S24は、図3に示したように推定された排気量が目標排気量に到達するまで繰り返し行われ(ステップS6bでNo)、推定された排気量が目標排気量に到達すると(ステップS6bでYes)、排出弁16が閉じられる(ステップS7)。以上のようにして、排気量が推定される。
図4で示したように負荷電流値が低い領域では、何らかの原因により推定方法Bの誤差が推定方法Aの誤差よりも大きくなっている。考えられる可能性としては以下の理由がある。負荷電流値が低い領域では高い領域よりも循環流路8内の圧力は低くなり、循環流路8内の圧力と排出弁16の下流側の圧力との差圧も小さくなる。このように差圧が小さくなると、圧力センサ22、23の検出誤差によって、検出された差圧ΔPbが実際の差圧よりも小さくなる恐れがある。このため、実際の排気流量よりも少ない排気流量が算出され、結果的に実際の排気量よりも少ない排気量が推定される。この結果、推定された排気量よりも実際の排気量が多く排出される可能性がある。
また、その他に以下のような理由が考えられる。負荷電流値が低い領域では発電による生成水量も少ないため、気液分離器12内の実際の貯水量よりもステップS21で算出された貯水量が多く算出される恐れがある。このため、実際には排水が完了しているにもかかわらず排水中と判断されて、排出弁16の閉じるタイミングが本来のタイミングよりも遅れるものと考えられる。この結果、目標排気量よりも実際の排気量が大きくなる可能性がある。
以上のように本システム1のECU20は、基準値よりも負荷電流値が低い領域で誤差の少ない推定方法Aにより排気量を推定し、基準値よりも負荷電流値が高い領域で誤差の少ない推定方法Bにより排気量を推定する。これにより、燃料電池2の広い負荷領域において燃料ガスの排気量の推定精度の低下が抑制されている。
また、上記実施例では推定方法Bにおいて、循環流路8内の圧力を検出する圧力センサ22に基づいて差圧ΔPbを検出したがこれに限定されない。例えば、圧力センサ22の代わりに、供給流路4、気液分離器12、又は排出弁16よりも上流側の排出流路14内の圧力を検出する圧力センサの検出値を用いてもよい。
また、排出弁16よりも下流側の排出流路14内の圧力を検出する圧力センサ23に基づいて差圧ΔPbを検出したがこれに限定されない。例えば、圧力センサ23の代わりに排出流路14以外の場所に設けられて大気圧を検出可能な位置に設けられた圧力センサを用いてもよい。排出弁16の開弁によって排気は大気へ排出されるため、このような圧力センサであっても排出弁16の下流側の圧力を検出していることになる。
上記実施例では、圧力センサ21からの検出値に基づいて供給流路4内の圧力低下率ΔPを取得して、圧力低下率ΔPから積算燃料ガス消失量Q1を算出したがこれに限定されない。例えば、ECU20は、循環流路8内の圧力を検出する圧力センサ22からの検出値に基づいて循環流路8内の圧力低下率を取得して、循環流路8内の圧力低下率から積算燃料ガス消失量Q1を算出してもよい。燃料電池2の発電によって燃料ガスが消費されることにより循環流路8内の圧力も低下し、また排出弁16が開くことによって循環流路8内の圧力も低下するからである。この場合、圧力センサ22は、循環流路8内の圧力を検出する圧力検出部の一例である。尚、圧力センサ22は、気液分離器12よりも上流側の循環流路8に設けられていてもよいし、気液分離器12よりも下流側の循環流路8に設けられていてもよい。
次に、システムの変形例について説明する。図12は、第1変形例に係るシステム1aの概略構成図である。尚、上述したシステム1と同一の構成については同一の符号を付することにより重複する説明を省略する。システム1aでは、気液分離器12内の圧力を検出する圧力センサ24が設けられている。圧力センサ24は、気液分離器12内の貯留水が被らないように高い位置に設けられている。システム1aでは、ECU20は、圧力センサ24からの検出値に基づいて気液分離器12内の圧力低下率を取得して、気液分離器12内の圧力低下率から積算燃料ガス消失量Q1を算出する。燃料電池2の発電によって燃料ガスが消費されることにより気液分離器12内の圧力も低下し、また排出弁16が開くことによって気液分離器12内の圧力も低下するからである。この場合、圧力センサ24は、気液分離器12内の圧力を検出する圧力検出部の一例である。
図13は、第2変形例に係るシステム1bの概略構成図である。システム1bは、システム1、1aと異なりアノード非循環型であり、循環流路8及び循環ポンプ9は設けられておらず、燃料電池2から排出された燃料ガスが再び供給流路4及び燃料電池2に戻されることはない。また、システム1bは、燃料電池2から排出された燃料ガスを気液分離器12に供給する第1の排出流路14aと、気液分離器12に接続され気液分離器12内の貯留水及び燃料ガスを外部に排出する第2の排出流路14bとを備えている。排出弁16は、第2の排出流路14bに配置されている。従って、燃料電池2から排出された燃料ガスは、排出弁16が開くことにより外部へと排出される。圧力センサ22は、第1の排出流路14aに設けられて第1の排出流路14a内の圧力を検出する。圧力センサ23は、第2の排出流路14bに設けられ、排出弁16よりも下流側での第2の排出流路14b内の圧力を検出する。
システム1bも、システム1、1aと同様に、積算燃料ガス消失量Q1から積算燃料ガス消費量Q2を減算して得られる排気量Qを推定された排気量として算出できる。また、ECU20は、圧力センサ21からの検出値に基づいて供給流路4内の圧力低下率ΔPを取得して、圧力低下率ΔPから積算燃料ガス消失量Q1を算出してもよいし、圧力センサ22からの検出値に基づいて第1の排出流路14a内の圧力低下率を取得して、積算燃料ガス消失量Q1を算出してもよい。また、ECU20は、気液分離器12内の圧力を検出する圧力センサ24からの検出値に基づいて気液分離器12内の圧力低下率を取得して、積算燃料ガス消失量Q1を算出してもよい。圧力センサ21、22、24は、それぞれ、供給流路4内、第1の排出流路14a内、及び気液分離器12内の何れかの圧力を検出する圧力検出部の一例である。
システム1bについては、ECU20は、第1の排出流路14a内の圧力を検出する圧力センサ22の検出値に基づいて差圧ΔPbを検出するが、これに限定されない。例えば、ECU20は、供給流路4内の圧力を検出する圧力センサ21の検出値、気液分離器12内の圧力を検出する圧力センサ24の検出値又は、第2の排出流路14b内の排出弁16よりも上流側の圧力を検出する圧力センサの検出値に基づいて、差圧ΔPbを検出してもよい。
以上本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
1 燃料電池システム
2 燃料電池
3 タンク(燃料供給源)
4 供給流路
8 循環流路
12 気液分離器
16 排出弁
20 ECU(制御部)
21 圧力センサ(圧力検出部)
22、23 圧力センサ(差圧検出部)
30 負荷装置(電流検出部)

Claims (4)

  1. 燃料電池と、
    前記燃料電池へ燃料ガスを供給する燃料供給源と、
    前記燃料供給源から供給された前記燃料ガスを前記燃料電池に流す供給流路と、
    前記燃料電池から排出された前記燃料ガスを前記供給流路に流す循環流路と、
    前記循環流路上に配置され前記燃料ガスから水分を分離して貯留する気液分離器と、
    前記気液分離器に接続され前記気液分離器内の貯留水及び前記燃料ガスを外部に排出する排出流路と、
    前記排出流路に設けられた排出弁と、
    前記燃料電池の負荷電流値を検出する電流検出部と、
    前記供給流路内の圧力を検出する圧力検出部と、
    前記供給流路、前記循環流路、前記気液分離器、又は前記排出弁よりも上流側の前記排出流路内の圧力と、前記排出弁よりも下流側の圧力との差圧を検出する差圧検出部と、
    前記排出弁の開弁により排出される前記燃料ガスの排気量を推定する制御部と、を備え、
    前記制御部は、前記負荷電流値が基準値以下の場合には、前記排出弁の開弁期間での前記供給流路内の圧力の低下率から算出した前記燃料ガスの消失量と前記開弁期間での前記負荷電流値から算出した前記燃料電池の発電による前記燃料ガスの消費量とに基づいて前記燃料ガスの排気量を推定し、前記負荷電流値が前記基準値を超えている場合には、前記開弁期間での前記差圧に基づいて前記燃料ガスの排気量を推定する、燃料電池システム。
  2. 前記制御部は、前記負荷電流値が前記基準値以下の場合には、前記燃料ガスの消失量から前記燃料ガスの消費量を減算した値に基づいて前記燃料ガスの排気量を推定する、請求項1の燃料電池システム。
  3. 燃料電池と、
    前記燃料電池へ燃料ガスを供給する燃料供給源と、
    前記燃料供給源から供給された前記燃料ガスを前記燃料電池に流す供給流路と、
    前記燃料電池から排出された前記燃料ガスを前記供給流路に流す循環流路と、
    前記循環流路上に配置され前記燃料ガスから水分を分離して貯留する気液分離器と、
    前記気液分離器に接続され前記気液分離器内の貯留水及び前記燃料ガスを外部に排出する排出流路と、
    前記排出流路に設けられた排出弁と、
    前記燃料電池の負荷電流値を検出する電流検出部と、
    前記循環流路内及び前記気液分離器内の何れかの圧力を検出する圧力検出部と、
    前記供給流路、前記循環流路、前記気液分離器、又は前記排出流路内の前記排出弁よりも上流側の圧力と、前記排出弁よりも下流側の圧力との差圧を検出する差圧検出部と、
    前記排出弁の開弁により排出される前記燃料ガスの排気量を推定する制御部と、を備え、
    前記制御部は、前記負荷電流値が基準値以下の場合には、前記排出弁の開弁期間での前記循環流路内及び前記気液分離器内の何れかの圧力の低下率から算出した前記燃料ガスの消失量と前記開弁期間での前記負荷電流値から算出した前記燃料電池の発電による前記燃料ガスの消費量とに基づいて前記燃料ガスの排気量を推定し、前記負荷電流値が前記基準値を超えている場合には、前記開弁期間での前記差圧に基づいて前記燃料ガスの排気量を推定する、燃料電池システム。
  4. 燃料電池と、
    前記燃料電池へ燃料ガスを供給する燃料供給源と、
    前記燃料供給源から供給された前記燃料ガスを前記燃料電池に流す供給流路と、
    前記燃料電池から排出された前記燃料ガスから水分を分離して貯留する気液分離器と、
    前記燃料電池から排出された前記燃料ガスを前記気液分離器に供給する第1の排出流路と、
    前記気液分離器に接続され前記気液分離器内の貯留水及び前記燃料ガスを外部に排出する第2の排出流路と、
    前記第2の排出流路に設けられた排出弁と、
    前記燃料電池の負荷電流値を検出する電流検出部と、
    前記供給流路内、前記第1の排出流路内、及び前記気液分離器内の何れかの圧力を検出する圧力検出部と、
    前記供給流路、前記第1の排出流路、前記気液分離器、又は前記第2の排出流路内の前記排出弁よりも上流側の圧力と、前記排出弁よりも下流側の圧力との差圧を検出する差圧検出部と、
    前記排出弁の開弁により排出される前記燃料ガスの排気量を推定する制御部と、を備え、
    前記燃料電池から排出された前記燃料ガスを前記供給流路に戻さないアノード非循環型の燃料電池システムであって、
    前記制御部は、前記負荷電流値が基準値以下の場合には、前記排出弁の開弁期間での前記供給流路内、前記第1の排出流路内、及び前記気液分離器内の何れかの圧力の低下率から算出した前記燃料ガスの消失量と前記開弁期間での前記負荷電流値から算出した前記燃料電池の発電による前記燃料ガスの消費量とに基づいて前記燃料ガスの排気量を推定し、前記負荷電流値が前記基準値を超えている場合には、前記開弁期間での前記差圧に基づいて前記燃料ガスの排気量を推定する、燃料電池システム。
JP2015174965A 2014-11-12 2015-09-04 燃料電池システム Active JP6222191B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/935,590 US10038208B2 (en) 2014-11-12 2015-11-09 Fuel cell system
KR1020150156583A KR101846628B1 (ko) 2014-11-12 2015-11-09 연료 전지 시스템
CN201510760662.3A CN105591129B (zh) 2014-11-12 2015-11-10 燃料电池系统
CA2911847A CA2911847C (en) 2014-11-12 2015-11-10 Fuel cell system
DE102015119422.8A DE102015119422A1 (de) 2014-11-12 2015-11-11 Brennstoffzellensystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014230155 2014-11-12
JP2014230155 2014-11-12

Publications (2)

Publication Number Publication Date
JP2016103464A true JP2016103464A (ja) 2016-06-02
JP6222191B2 JP6222191B2 (ja) 2017-11-01

Family

ID=56089598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015174965A Active JP6222191B2 (ja) 2014-11-12 2015-09-04 燃料電池システム

Country Status (2)

Country Link
JP (1) JP6222191B2 (ja)
KR (1) KR101846628B1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969229A (zh) * 2019-01-07 2020-11-20 中氢新能技术有限公司 一种甲醇燃料电池的排气阀角度的控制系统
JP2021044067A (ja) * 2019-09-06 2021-03-18 株式会社Soken 燃料電池システム及びアノードオフガス排出量推定方法
JP2021044072A (ja) * 2019-09-06 2021-03-18 株式会社Soken 燃料電池システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7175786B2 (ja) 2019-02-07 2022-11-21 三菱重工業株式会社 異常検出装置、シミュレータ、プラント監視システム、異常検出方法及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302708A (ja) * 2004-03-16 2005-10-27 Toyota Motor Corp 燃料電池システム
JP2007305563A (ja) * 2006-04-11 2007-11-22 Toyota Motor Corp 燃料電池システム及び排気量推定方法
JP2008047329A (ja) * 2006-08-11 2008-02-28 Nissan Motor Co Ltd 燃料電池システム
WO2011151864A1 (ja) * 2010-06-03 2011-12-08 トヨタ自動車株式会社 燃料電池システム
WO2013021476A1 (ja) * 2011-08-10 2013-02-14 トヨタ自動車株式会社 燃料電池システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007172971A (ja) * 2005-12-21 2007-07-05 Nissan Motor Co Ltd 燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302708A (ja) * 2004-03-16 2005-10-27 Toyota Motor Corp 燃料電池システム
JP2007305563A (ja) * 2006-04-11 2007-11-22 Toyota Motor Corp 燃料電池システム及び排気量推定方法
JP2008047329A (ja) * 2006-08-11 2008-02-28 Nissan Motor Co Ltd 燃料電池システム
WO2011151864A1 (ja) * 2010-06-03 2011-12-08 トヨタ自動車株式会社 燃料電池システム
WO2013021476A1 (ja) * 2011-08-10 2013-02-14 トヨタ自動車株式会社 燃料電池システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969229A (zh) * 2019-01-07 2020-11-20 中氢新能技术有限公司 一种甲醇燃料电池的排气阀角度的控制系统
CN111969229B (zh) * 2019-01-07 2021-08-31 中氢新能技术有限公司 一种甲醇燃料电池的排气阀角度的控制系统
JP2021044067A (ja) * 2019-09-06 2021-03-18 株式会社Soken 燃料電池システム及びアノードオフガス排出量推定方法
JP2021044072A (ja) * 2019-09-06 2021-03-18 株式会社Soken 燃料電池システム
JP7267880B2 (ja) 2019-09-06 2023-05-02 株式会社Soken 燃料電池システム
JP7272912B2 (ja) 2019-09-06 2023-05-12 株式会社Soken 燃料電池システム及びアノードオフガス排出量推定方法

Also Published As

Publication number Publication date
KR20160056808A (ko) 2016-05-20
KR101846628B1 (ko) 2018-04-06
JP6222191B2 (ja) 2017-11-01

Similar Documents

Publication Publication Date Title
US7608354B2 (en) Fuel cell system and control method of same
JP4945912B2 (ja) 燃料電池システム
US8486577B2 (en) Fuel cell system
JP4876369B2 (ja) 燃料電池システムおよびガス漏洩検知方法
JP6308305B2 (ja) 燃料電池システム及びその制御方法
US9991531B2 (en) Fuel cell system
JP6222191B2 (ja) 燃料電池システム
US9653740B2 (en) Fuel cell system
US9876242B2 (en) Fuel cell system
JP6332205B2 (ja) 燃料電池システム
US10388972B2 (en) Fuel cell system and control method thereof
JP5109611B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP6222192B2 (ja) 燃料電池システム
CA2911847C (en) Fuel cell system
JP5104612B2 (ja) ガス濃度推定装置及び燃料電池システム
US11152630B2 (en) Fuel cell system
JP5297574B2 (ja) 燃料電池システム
JP2007059093A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161214

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R151 Written notification of patent or utility model registration

Ref document number: 6222191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151