WO2007018132A1 - 燃料電池システム、および燃料電池システムにおける燃料ガス漏れ判定方法 - Google Patents

燃料電池システム、および燃料電池システムにおける燃料ガス漏れ判定方法 Download PDF

Info

Publication number
WO2007018132A1
WO2007018132A1 PCT/JP2006/315449 JP2006315449W WO2007018132A1 WO 2007018132 A1 WO2007018132 A1 WO 2007018132A1 JP 2006315449 W JP2006315449 W JP 2006315449W WO 2007018132 A1 WO2007018132 A1 WO 2007018132A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
pressure
gas leak
gas
Prior art date
Application number
PCT/JP2006/315449
Other languages
English (en)
French (fr)
Inventor
Mikio Kizaki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US11/920,701 priority Critical patent/US7829233B2/en
Priority to DE112006002060T priority patent/DE112006002060B4/de
Publication of WO2007018132A1 publication Critical patent/WO2007018132A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system and a fuel gas knitting determination method in the fuel cell system.
  • the present invention relates to a fuel cell system and a fuel gas leakage determination method in the fuel cell system. More specifically, the present invention relates to an improvement in technology for detecting and judging fuel gas leakage in a fuel cell system.
  • shut-off valves arranged in a fuel gas circulation supply system (hereinafter also referred to as “fuel gas system”) including a fuel cell, and pressure changes (for example, a technique has been proposed in which fuel gas leakage is determined by detecting the pressure drop rate and the differential pressure across each shut-off valve (see, for example, Japanese Patent Laid-Open No. 8-329960). ) Disclosure of the invention
  • the fuel gas leak determination technique as described above may not be sufficient when the fuel cell system is restarted.
  • the nitrogen concentration on the fuel electrode side temporarily becomes higher than usual due to cross leakage, and the amount of fuel gas leakage decreases. As a result, the amount of gas leakage may be underestimated.
  • the present invention provides a fuel cell system capable of performing highly accurate gas leak determination even when the fuel cell is restarted as in normal operation, and a fuel gas leak determination method in the fuel cell system.
  • the inventor examined the contents of the prior art. When trying to determine fuel gas leaks based on pressure changes in a closed space, if the above-mentioned underestimation occurs, the accuracy of fuel gas leak judgment will not be sufficient. When this is further examined, the gas pressure of the fuel cell temporarily increases (including the temporarily high state) at the time of restart, so the amount of fuel gas leak detected at startup and the purge after startup Compared to the amount of fuel gas leakage detected when the hydrogen concentration is high enough, the latter is more likely to have led to an underestimation at startup.
  • the present invention is based on such knowledge.
  • the present invention detects a pressure change in a closed space formed in the fuel electrode j of the fuel cell, and determines a predetermined gas leak judgment value based on the detection result of the pressure change.
  • a fuel gas leakage determination method in a fuel cell system for determining fuel gas leakage in the closed space with reference to the fuel gas leakage determination level according to the nitrogen concentration in the fuel electrode, This is to determine the fuel gas leak.
  • the fuel gas leakage determination method considers the concentration of nitrogen in the fuel electrode and performs a necessary correction accordingly. In other words, it is intended to improve the accuracy of fuel gas leak judgment by varying the fuel gas leak judgment level according to the nitrogen concentration at the fuel electrode. This is because the concentration of nitrogen in the fuel electrode temporarily increases when the fuel cell is restarted, and the gas concentration depends on the nitrogen concentration. Necessary correction is performed on the leak judgment value. In other words, the judgment level of fuel gas leakage varies depending on the concentration of nitrogen in the fuel electrode.
  • the concentration of nitrogen in the fuel electrode is the amount of fuel gas that permeates through the electrolyte membrane of the fuel cell and leaks to the air electrode side, and the amount of time left until the fuel cell is stopped and restarted. It can be estimated based on at least one of them.
  • the present invention provides a fuel cell that generates power upon receiving fuel gas supply, a fuel gas system that supplies and discharges fuel to and from the fuel cell, a pressure regulating valve provided in the fuel gas system, and the fuel
  • a fuel cell system comprising: a pressure sensor that detects a pressure in a closed space formed in a gas system; and a gas leak determination unit that determines a gas leak in the closed space formed in the fuel gas system.
  • the leak determination unit determines a gas leak with reference to a gas leak determination value based on a change in pressure in the closed space detected by the pressure sensor, and the leak determination unit determines the gas leak according to the concentration of nitrogen in the fuel electrode. The determination level of the gas leak is made different to determine the fuel gas leak.
  • the nitrogen concentration at the fuel electrode is taken into consideration, and the gas leak determination level is varied accordingly to improve the accuracy of fuel gas leak determination. I am going to do that.
  • This also takes into account the temporary increase in the nitrogen concentration at the fuel electrode when the fuel cell is restarted. Necessary corrections are made to the gas leak judgment value according to the concentration. In other words, the judgment level of gas leakage is made different.
  • the gas leak amount can be reduced by using the gas leak judgment value with different judgment levels as in the present invention. It is possible to avoid being evaluated.
  • Such a gas leak determination in the fuel cell system takes into account that the nitrogen concentration at the fuel electrode temporarily increases when the fuel cell is restarted, and the gas leak determination level differs depending on the nitrogen concentration. It is preferable that the gas leak determination unit varies the determination level of the fuel gas leak by changing the gas leak determination value.
  • the fuel cell system that performs the gas leak determination as described above includes a stack temperature detection unit that detects the temperature of the fuel cell stack, a fuel electrode pressure detection unit that detects the pressure of the fuel electrode, and a standing time.
  • FIG. 1 is a block diagram of a fuel cell system showing an embodiment of the present invention.
  • Figure 2 A map showing the changes in anode pressure and anode nitrogen concentration versus standing time when the stack temperature at shutdown is 65 ° C.
  • FIG. 3 is a chart showing a flow of estimating the anode nitrogen concentration in the present embodiment.
  • FIG. 4 is a chart showing a flow of fuel gas leak determination in the present embodiment.
  • Fig. 5 An example of a map in which the judgment level for fuel gas leakage varies depending on the nitrogen concentration.
  • Fig. 6 Function blocks for gas leak detection according to the present invention.
  • the fuel cell system 10 includes a fuel cell (hereinafter referred to as “fuel cell stack”, denoted by reference numeral 20 in the figure) that generates electric power upon supply of fuel gas, and the fuel cell stack 20.
  • a fuel gas system 3 for supplying and discharging fuel gas, a pressure regulating valve provided in the fuel gas system 3, a pressure sensor for detecting pressure in a closed space formed in the fuel gas system 3, and a fuel gas system 3 It is configured as a system with a gas leak judgment unit that judges gas leaks in a closed space formed in (see Fig. 1).
  • this fuel cell system 10 in the present embodiment detects a pressure change in a closed space formed on the fuel electrode side of the fuel cell, and refers to a predetermined gas leak judgment value based on the detection result of the pressure change. Thus, the fuel gas leakage in the closed space is judged.
  • FIG. 1 shows a schematic configuration of a fuel cell system 10 according to the present embodiment.
  • the fuel cell system 10 is used as an in-vehicle power generation system for a fuel cell vehicle (FCHV: Fuel Cell Vehicle).
  • FCHV Fuel Cell Vehicle
  • Fuel cell stack hereinafter also referred to as “fuel cell stack” or simply ⁇ stack).
  • 2 0 is a stack structure in which multiple single cells are stacked in series. For example, it is composed of a solid polymer electrolyte fuel cell or the like.
  • the fuel cell system 10 in the present embodiment includes a fuel gas circulation supply system (referred to herein as “fuel gas system J”) 3 and an oxidizing gas supply system 4 connected to the fuel cell stack 20.
  • the fuel gas system 3 supplies and discharges fuel gas to and from the fuel cell stack 20.
  • the fuel gas supply source 3 0, fuel gas supply path 31, fuel cell stack 20, fuel gas circulation path 32, and anode offgas flow path 33 (see Fig.
  • Fuel gas supply source 30 For example, the fuel gas supply path 31 is configured to supply fuel gas discharged from the fuel gas supply source 30 to the anode of the fuel cell stack 20 ( Gas flow path to the fuel electrode)
  • a tank valve H 2 0 1, a high pressure regulator H 9, a low pressure regulator H 1 0, a hydrogen supply valve H 2 0 0, and an FC inlet valve H 2 1 are arranged in the gas flow path from upstream to downstream.
  • the fuel gas compressed to high pressure is reduced to medium pressure by the high pressure regulator H 9 and then reduced to low pressure (normal operating pressure) by the further low pressure regulator H 10. .
  • the fuel gas circulation path 3 2 is a return gas flow path for allowing unreacted fuel gas to flow into the fuel cell stack 20, and the gas flow path from upstream to downstream is an FC outlet valve ⁇ 2 2, a hydrogen pump 6 3 and check valve ⁇ 5 2 are provided respectively.
  • the low-pressure unreacted fuel gas discharged from the fuel cell stack 20 is moderately pressurized by the hydrogen pump 63 and guided to the fuel gas supply path 31.
  • Check valve ⁇ 5 2 suppresses the backflow of fuel gas from fuel gas supply path 3 1 to fuel gas circulation path 3 2.
  • the anode off-gas flow path 33 that branches in the middle of the fuel gas circulation path 32 is a gas flow path for exhausting the hydrogen off-gas discharged from the fuel cell stack 20 out of the system.
  • a purge valve ⁇ 51 is provided in the gas flow path.
  • tank valve ⁇ 2 01, hydrogen supply valve ⁇ 2 0 0, FC inlet valve ⁇ 2 1, FC outlet valve ⁇ 2 2, and purge valve ⁇ 5 1 are the gas flow paths 3 1 to 3 3 or a fuel cell stack 20 for supplying or shutting off fuel gas.
  • These shirt bag valves are constituted by electromagnetic valves, for example.
  • an electromagnetic valve for example, an on / off valve or a linear valve capable of adjusting the valve opening degree by PWM control is suitable.
  • the oxidant gas supply system 4 of the fuel cell stack 20 includes an air compressor (oxidant gas supply source) 40, an oxidant gas supply channel 41, and a power sword-off gas channel 42 (see Fig. 1). See)
  • the air compressor 40 compresses air taken in from outside air via the air filter 61 and supplies the compressed air as an oxidizing gas to the cathode (oxygen electrode) of the fuel cell stack 20.
  • the oxygen off-gas after being subjected to the cell reaction of the fuel cell stack 20 flows through the cathode off-gas flow path 42 and is exhausted outside the system. This oxygen off gas is in a highly moist state because it contains water generated by the cell reaction in the fuel cell stack 20.
  • the humidification module 62 exchanges moisture between the low-humidity oxidizing gas flowing in the oxidizing gas supply path 41 and the high-humidity oxygen off-gas flowing in the force sodo gas flow path 42 and supplies the fuel cell stack 20 to the fuel cell stack 20. Appropriately humidify the supplied oxidizing gas.
  • the back pressure of the oxidizing gas supplied to the fuel cell stack 20 is regulated by a pressure regulating valve A 4 disposed in the vicinity of the cathode outlet of the force sword-off gas channel 42.
  • the force sword-off gas flow path 42 is communicated with the diluter 64 at the downstream side.
  • the diluter 64 is connected to an anode off-gas flow path 33 downstream thereof, and is configured to exhaust the hydrogen off gas outside the system after being mixed and diluted with oxygen off gas. . .
  • auxiliary motor M 4 is a motor M 2 that drives a hydrogen circulation pump 63 described later, and an air conditioner plate.
  • the motor M 1 and the like that drive the motor 40 are generically expressed. Therefore, the motor M 1 may function as the motor M 1 or the motor M 2.
  • the control unit 50 obtains the system required power (the sum of the vehicle travel power and auxiliary power) based on the accelerator opening detected by the accelerator sensor 55, the vehicle speed detected by the vehicle speed sensor 56, etc., and the fuel cell stack 20 sets the target Control the system to match the power. Specifically, the control unit 50 adjusts the rotation speed of the motor M 1 that drives the air compressor 40 to adjust the supply amount of the oxidizing gas, and adjusts the rotation speed of the motor M 2 that drives the hydrogen pump 63. Then, the fuel gas supply amount is adjusted. The control unit 50 also controls the DCZDC converter 53 to adjust the operating point (output voltage, output current) of the fuel cell stack 20 and adjust the output power of the fuel cell stack 20 to match the target power. .
  • High pressure section for example, tank valve H 201 to hydrogen supply valve H200
  • Low pressure section for example, hydrogen supply valve ⁇ 1200 ⁇ " ⁇ input valve ⁇ 121”
  • FC section for example, stack input relo valve H21 ⁇
  • the circulation part for example, FC outlet valve H 22 to check valve H 52
  • P 1 1 and temperature sensors T 6, T 7, T 9, T 61, T 5, T 10 for detecting the temperature of the fuel gas are arranged.
  • the pressure sensor P 6 detects the fuel gas supply pressure of the fuel gas supply source 30.
  • the pressure sensor P 7 detects the secondary pressure of the high pressure regulator H 9.
  • the pressure sensor P 9 Detects the secondary pressure of the low-pressure regulator H 1 0.
  • the pressure sensor P 61 detects the pressure in the low-pressure part of the fuel gas supply path 31.
  • the pressure sensor P 1 0 detects the hydrogen circulation. Detect the pressure on the input port side (upstream side) of the ring pump 63.
  • the pressure sensor P 1 1 detects the pressure on the output port side (downstream side) of the hydrogen circulation pump 63.
  • the fuel cell system 10 is provided with a fuel electrode pressure detecting means for detecting the pressure at the anode (fuel electrode).
  • a fuel electrode pressure detecting means for detecting the pressure at the anode (fuel electrode).
  • Pressure gauge (hereinafter referred to as “pressure sensor”) installed as a sensor for expelling pressure in the closed space formed in the fuel gas system 3 P 5 functions as this fuel electrode pressure detection means.
  • the pressure sensor P 5 of the present embodiment detects the pressure in the above-described FC section (stack inlet relo valve H 2 "! To FC outlet valve H 2 2). It is arranged between the battery stack 20 and the FC inlet valve H 21 (see Fig. 1) According to the pressure sensor P5, the closed space (in the case of this embodiment, the FC section described above)
  • the pressure sensor P 5 is connected to the ECU 13 and transmits data related to the detected pressure value to the ECU 13. (refer graph1) .
  • FIG. 6 is a functional block diagram for gas leak determination according to the present invention.
  • the fuel cell system includes a fuel cell 10 0 that generates electric power by receiving fuel gas, a fuel gas system 1 0 1 that supplies and discharges fuel gas to and from the fuel cell 1 1, and the fuel gas system 1 0 1
  • a pressure regulating valve 10 0 2 provided in the fuel gas system 10 1, a pressure sensor 10 3 for detecting pressure in a closed space 10 4 formed in the fuel gas system 10 1, and a fuel gas system 1 0 1.
  • a gas leakage determination unit 1 0 5 for determining gas leakage in the closed space 10 4.
  • the gas leak determination unit 10 5 determines the gas leak by referring to the gas leak determination value 1 0 6 based on the pressure change in the closed space 10 4 detected by the pressure sensor 10 3. Is.
  • the determination of the fuel gas leakage is performed by changing the determination level of the gas leakage according to the concentration of nitrogen in the fuel electrode. This is because the nitrogen concentration in the fuel electrode temporarily increases when the fuel cell is restarted, and a necessary correction is made to the gas leak judgment value according to the nitrogen concentration. Correction means changing the judgment level of gas leak.
  • the gas leak judgment unit 1 0 5 performs the change of the gas leak judgment value 1 0 6. It is preferable to vary the determination level of fuel gas leakage. That is, as shown in FIG. 6, the gas leak determination unit 105 is configured to be able to change the determination level of the fuel gas leak by appropriately selecting a plurality of gas leak determination values 106.
  • the stack temperature detecting means 10 8 for detecting the temperature of the fuel cell stack
  • the fuel electrode pressure detecting means 10 9 for detecting the pressure of the fuel electrode
  • the standing time measurement for measuring the standing time. It is preferred to have means 1 1 0.
  • the gas leak determination unit 10 5 determines the concentration of nitrogen in the fuel electrode, the temperature of the fuel cell stack when the operation is stopped, the pressure of the fuel electrode when the fuel cell is restarted, and the fuel cell is stopped. Estimated based on the amount of time left until the system is restarted.
  • the anode nitrogen in the fuel cell stack 20 As shown in FIG. 1, in the fuel cell system 10 of the present embodiment, the anode nitrogen in the fuel cell stack 20; the degree of purity (permeated through the electrolyte membrane in the fuel cell stack 20 and reached from the cathode to the anode)
  • a stack temperature detecting means 1 1 for detecting the stack temperature of the fuel cell (reference numeral 1 in FIG. 6) is used. 0 8), anode pressure detection means for detecting the pressure of the anode (fuel electrode) ⁇ 5 (symbol 1 0 9 in FIG. 6), and leaving time measuring means 1 2 (symbol in FIG. 6) 1 10) and ECU 1 3 (reference numeral 10 5 in FIG. 6).
  • the details of the configuration for estimating the anode nitrogen concentration and the method for estimating the anode nitrogen concentration will be described below. '
  • the stack temperature detecting means 1 1 is a means for detecting the temperature of the fuel cell stack, that is, the temperature of the fuel cell stack 2 0 (reference numeral 1 0 0 in FIG. 6), and relates to the temperature measuring portion and the measured temperature. And a portion for transmitting information.
  • the stack temperature detecting means 11 in the present embodiment detects the temperature of the fuel cell stack 20. It is provided to detect and send data about the detected temperature to the ECU 13 (see Fig. 1).
  • the neglected time measuring means 12 is a means for measuring the neglected time of the fuel cell stack 20, that is, the time from when the fuel cell operation is stopped until it is restarted. (Including clock).
  • the neglected time measuring means 12 of this embodiment is connected to the ECU 1 3 (see FIG. 1), receives the command signal from the ECU 1 3 and starts measuring the neglected time. In response to the command signal, measurement is completed.
  • the waiting time measuring means 12 is activated when the fuel cell stack 20 is stopped and the ignition switch is turned on and the ignition switch is turned on. It is now possible to measure the time (ignition ⁇ on duration) until the time is taken.
  • E C U 1 3 is a control means constituted by an electronic control unit.
  • the ECU 13 of this embodiment is connected to the stack temperature detecting means 1 1, the leaving time measuring means 1 2, and the pressure fuel electrode pressure detecting means P 5 described above, and the stack temperature, the leaving time, and the fuel electrode are connected. Data on pressure (anode pressure) is acquired, and based on these data, the anode nitrogen concentration (concentration of nitrogen in the anode including the one that has passed through the electrolyte membrane and reached the anode from the force sword) is estimated.
  • the ECU 13 is also connected to the control unit 50, and the output of the fuel cell stack 20 is limited when necessary according to the estimated anode nitrogen concentration. It is like that.
  • a map showing the relationship between the standing time and the anode pressure during operation stop is prepared, and the nanonode nitrogen concentration is estimated based on this map.
  • the actual machine data shown in Fig. 2 that is, the transition of the anode pressure and anode nitrogen concentration with respect to the standing time when the stack temperature at the time of operation stop is a predetermined temperature, for example 65 ° C.
  • a predetermined temperature for example 65 ° C.
  • the ⁇ mark in the map indicates the anode nitrogen concentration (cnc_N2, in%)
  • the X mark indicates the anode pressure (prs_fc i, in kPaA).
  • the anode pressure value (prs_fc i) indicated by the X mark suddenly decreases when the fuel cell operation is stopped, and reaches the minimum value, that is, the negative pressure peak at the time T 1.
  • the negative pressure here is based on the atmospheric pressure.
  • the anode nitrogen concentration (crui-N2) indicated by ⁇ continues to increase halfway, and then gradually changes and converges.
  • the standing time corresponding to this pressure P includes two times of To and T 2 as shown in Fig. 2 (that is, two different times). Leave time).
  • the anode nitrogen concentration (cncJI2) at the time before the time T 1 when the anode pressure reaches the peak of negative pressure (T o in Fig. 2) is the estimated value, this value is increasing. Since the value is still small, an error is introduced and appropriate control cannot be performed.
  • a time point after the time T 1 when the anode pressure reaches the minimum value (negative pressure peak) in the case of this embodiment).
  • the neglected time measured by the neglected time measuring means 1 2 is calculated by referring to the map (FIG. 2) consisting of actual machine data. Since it is easy to determine whether it is before 1 (the time when the negative pressure peak occurs) or after it, an estimated value of the anode nitrogen concentration is obtained after making such a determination. . In such a case, it is not possible to obtain an estimated value in the state before T 1, that is, the state of low nitrogen concentration before the rear node nitrogen concentration sufficiently increases. Nothing is gone. (Description of operation)
  • the estimation flow of the anode nitrogen concentration in the present embodiment starts when the operation of the fuel cell is stopped (IG_0FF) by turning off the ignition (step 1).
  • the temperature (thm_fc_igoff) of the fuel cell stack at the time of stop is detected by the stack temperature detecting means 11 and the temperature is stored in the ECU 13 (step 2).
  • the measurement of the leave time (tjeave) is started (step 3).
  • the ignition switch is turned on (IG ON state shown as step 4)
  • the IG ON measurement time (tjgon) from when the ignition switch is turned on until the fuel cell stack 20 is started Start time measurement (Step 5) o
  • step 9 it is determined whether the total neglected time TR and the neglected time T 1 are large (step 9). If the neglected time T 1 is larger than the total neglected time TR (TR ⁇ T 1), the system is restarted. Determines that the anode pressure is before the negative pressure peak, and proceeds to step 10. In step 10, a map representing the anode nitrogen concentration before hydrogen pressure is referred to, and the anode nitrogen concentration (cncN2_tmp) before hydrogen pressure is calculated (step 10).
  • the map referred to here can be a map (see Fig. 2) consisting of the actual machine data itself as described above, but is applied in advance to the first nitrogen state (for example, low nitrogen concentration state). It is also preferable to divide the map into a first map and a second map that is applied when the second nitrogen state has a higher concentration.
  • Step 1 1 is similar to Step 10 above in that the nitrogen nitrogen concentration (cncN2_tmp) before hydrogen pressurization is calculated, but in this Step 1 1 refer to Map B instead of Map A. Yes (see Figure 2). After calculating the anode nitrogen concentration (cncN2_tmp) before hydrogen pressurization, proceed to Step 12.
  • step 12 the anode pressure (prsH2_fc_a) after hydrogen pressurization is detected (step 12). Then, the anode nitrogen concentration (cncN2) after hydrogen pressurization is calculated (step 13). As shown in Fig. 3, the anode nitrogen concentration (cncN2) after this hydrogen pressurization is
  • cncN2 cncN2_tmp * prsH2_fc_b / prsH2_fc_a
  • the anode nitrogen concentration (cncN2_tmp) before hydrogen pressurization and the hydrogen pressurization It can be obtained by multiplying by the anode pressure (prsH2_fc—b) and dividing this by the anode pressure after hydrogen pressurization (prsH2_fc_a). This completes the series of processing (step 14).
  • the anode nitrogen concentration is maximized when the measurement time by the leaving time measuring means is cleared during the measurement of the leaving time. . If the measurement time up to that time is reset to 0 due to some factor (for example, when the auxiliary battery is removed) during the time measurement by the neglected time measurement means 1 2 1 The neglected time obtained by 2 has become shorter than the original value. As a result, a value lower than the true value of the anode nitrogen concentration to be estimated is estimated, and power generation failure due to hydrogen deficiency is estimated. May be caused.
  • the anode nitrogen concentration is the maximum value in such a case, it is possible to avoid at least power generation failure due to hydrogen deficiency as described above.
  • the pseudo value in this case can be various values, but in this embodiment, the value of the anode nitrogen concentration is almost converged and becomes the maximum value: the value of ⁇ is about 80% or less.
  • a means for storing the anode nitrogen concentration at the time of shutdown of the fuel cell is prepared, and the larger of the anode nitrogen concentration at the time of shutdown and the anode nitrogen concentration (estimated value) at the next startup (restart) It is also preferable to adopt the value of
  • the anode nitrogen concentration is estimated to be lower than the true value even though the anode nitrogen concentration has not decreased so much. As with the case, there is a risk of power generation failure due to hydrogen deficiency.
  • the ECU 13 stores the anode nitrogen concentration when the operation is stopped, and compares the stored value with the estimated value if necessary.
  • the fuel cell system 10 is formed on the fuel electrode side by the above-described closed space (in the case of the present embodiment, two pressure regulating valves, ie, a stack inlet relo valve H 2 1 and an FC outlet valve H 2 2.
  • the pressure change in the closed space is detected, and the fuel gas leak is determined with reference to the predetermined gas leak judgment value based on the pressure change I. It is said.
  • a necessary correction is performed, that is, the fuel gas leakage determination level is changed, and then the fuel leakage is determined. That is, when the fuel cell system 10 is restarted, the concentration of nitrogen gas in the closed space of the fuel gas system 3 temporarily increases.
  • the gas leak judgment level is made different.
  • a gas leak determination unit for making the gas leak determination level different is provided.
  • the gas leak judgment unit judges gas leak with reference to the gas leak judgment value based on the change in pressure in the closed space detected by the pressure sensor (fuel electrode pressure detection means).
  • the pressure change in the closed space on the fuel electrode side is detected by the pressure sensor P5, and based on the detection result, the gas leak determination unit determines the gas leak.
  • the gas leak determination unit varies the gas leak determination level based on the pressure detection result. As a specific example of varying levels in this way, the entire gas leak judgment value set corresponding to the pressure detection result is used as it is, and the pressure detection result is substituted into a mathematical expression representing the level change content. To use the numerical value obtained by Can be mentioned.
  • the gas leak determination unit As described above is configured.
  • the ECU 13 to which the stack temperature detecting means 11, the standing time measuring means 12, and the pressure sensor P 5 are connected functions as the above-described gas leak determination unit.
  • a map as shown in FIG. 5 is prepared as a gas leak judgment value that is referred to in the gas leak judgment.
  • This map (MAP 1) shown as an example of the gas leak judgment value shows the fuel gas leak amount (judgment value) C (L, for example, when the nitrogen concentration N (%) is 0, 20, 40, 60, 80%.
  • the standard value for gas leakage is preset, such that min) is 30, 25, 20, 1 5, 10 (see Fig. 5).
  • a uniform gas leak judgment value for example, 30 (LZmin)
  • the nitrogen concentration in the closed space is taken into account.
  • the nitrogen concentration may be as appropriate interpolation when these other values, for example, if the map (MAP 1), the nitrogen concentration N (0/0) 1 is the case of 70 2. 5 (LZm in ), 90 should be 7.5 (LZmin).
  • the nitrogen concentration in the closed space formed on the fuel electrode side is estimated (step 22).
  • the temperature of the fuel cell stack 20 when the operation is stopped the anode pressure when the fuel cell is restarted, and the time until the fuel cell is restarted after being stopped. Based on the time, the flow described above (see Figure 3) and anode nitrogen concentration map before hydrogen pressurization A, B (See Fig. 2).
  • the leak detection judgment value C (LZm corresponding to the estimated value N (%) of the nitrogen concentration is referred to the above-mentioned map (MAP 1 in FIG. 5). in) is calculated (step 23). For example, if the nitrogen concentration (estimated value) N is 20 (%), the fuel gas leak judgment value C is 25 (LZm ⁇ n), and if the nitrogen concentration (estimated value) N is 40 (%), the fuel gas leak judgment value C is 20 (LZm in) (see Fig. 5).
  • the gas leak judgment value C obtained by such calculation is a judgment value or a reference value obtained by changing the judgment level according to the nitrogen concentration (estimated value) in the closed space.
  • step 23 measure the fuel gas leak based on the pressure change.
  • the pressure in the closed space formed by the two pressure regulating valves FC inlet valve H21, FC outlet Rorev H22 (sealing of the portion sealed in the pipe)
  • FC inlet valve H21, FC outlet Rorev H22 sealing of the portion sealed in the pipe
  • the fuel gas leak amount Q is measured based on the detection result (step 24).
  • the fuel gas leak amount Q is compared with the fuel gas leak judgment value C described above.
  • the fuel gas leakage amount ⁇ 3 ⁇ the fuel gas leakage judgment value C it can be determined that the fuel gas leakage is in a normal state (a state in which no problematic gas leakage has occurred).
  • the determination is made in light of the fuel gas leak judgment value that takes into account the nitrogen concentration (more specifically, the judgment value that has been changed so as to increase as the nitrogen concentration increases). There is no underestimation of fuel gas leakage when the concentration is temporarily high.
  • step 25 if the fuel gas leak quantity Q is greater than the fuel gas leak judgment value C as a result of comparing the fuel gas leak quantity Q with the fuel gas leak judgment value C (step 25), the judgment value C used as a reference is used. Since the amount of fuel gas leak Q is larger than the amount of fuel gas leak, it can be determined that the fuel gas leak is occurring to the extent that is problematic. In this case, it is determined that there is an abnormality, and processing according to the abnormal state is performed (step 26). Such a place After carrying out the operation, check to see if there are any other fuel gas leaks, and then check the prescribed items for starting and operating the fuel cell (Step 27). If there is not, the operation will continue (step 28). These steps are not specific to this application (see Figure 4).
  • the fuel cell system 10 of the present embodiment described so far even if the nitrogen concentration on the fuel electrode side temporarily becomes higher than normal due to the cross leak phenomenon when the fuel cell is restarted, as already explained.
  • the corrected gas leak judgment value that is, the fuel gas leak judgment level set at a different level
  • the nitrogen concentration at the fuel electrode is temporarily high, it is possible to make a highly accurate gas leak determination.
  • the above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.
  • the gas leak judgment value C is corrected according to the amount of nitrogen gas contained in the closed space on the fuel electrode side (that is, the fuel cell stack 20).
  • the embodiment of different gas leak judgment levels has been described, the embodiment of the present invention is not limited to this.
  • the nitrogen concentration or the amount of nitrogen gas may be obtained based on these detection results.
  • the nitrogen concentration (or nitrogen gas amount) on the fuel electrode side increases temporarily due to cross-leakage
  • the nitrogen concentration is accurately detected or estimated, and the result is used for fuel gas leak judgment. If it can be reflected in the reference value (map), it will be possible to perform gas leak judgment with higher accuracy.
  • the determination of the fuel gas leakage is performed according to the anode pressure (the pressure at the fuel electrode of the fuel cell stack 20).
  • the determination of the gas leakage is performed based on other factors.
  • the rate of change in the anode pressure one
  • the nitrogen concentration on the fuel electrode side temporarily increases due to crossing, the nitrogen concentration is not accurately detected or estimated.
  • the results are reflected in the form of different judgment levels used for fuel gas leak judgment. According to this, at the time of restarting the fuel cell, it is possible to perform the gas leak determination with the same accuracy as during normal operation.
  • the gas leak judgment value is changed according to the nitrogen concentration.
  • Gas leak determination can be performed with high accuracy.
  • the nitrogen concentration in the fuel electrode is estimated based on one or both of the fuel gas permeation amount and the fuel cell leaving time, and based on this, the gas leak judgment is performed. It becomes possible to carry out with high precision.
  • the permeation rate of hydrogen is different from the permeation rate of nitrogen, it is difficult to estimate the nitrogen concentration from the permeation amount of hydrogen gas to the air electrode, but according to the present invention, as described above. Therefore, it is possible to estimate the nitrogen concentration and determine the gas leak.
  • the temperature of the fuel cell stack at the time of operation stop, the pressure of the fuel electrode at the time of restart of the fuel cell, and from when the fuel cell is stopped until it is restarted Therefore, it is possible to accurately estimate the nitrogen concentration at the fuel electrode based on the time for which the gas is left, and to accurately determine the gas leak based on this.
  • the nitrogen concentration is accurately determined. After detection or estimation, the results are reflected in the form of different judgment levels used for fuel gas leak judgment. As a result, when the fuel cell is restarted, it is possible to perform a gas leak determination with the same level of accuracy as during normal operation.
  • the gas leak judgment value is changed according to the nitrogen concentration. Gas leak determination can be performed with high accuracy.
  • the temperature of the fuel cell stack when the operation is stopped the pressure of the fuel electrode when the fuel cell is restarted, and after the fuel cell is stopped until it is restarted. Therefore, it is possible to accurately estimate the nitrogen concentration at the fuel electrode based on the remaining time of the gas, and to perform the gas leak determination based on the estimation result.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池の再起動時においても通常の運転時と同様に精度の高いガス漏れ判定を行う。燃料ガス系3に形成される閉空間でのガス漏れを判定するガス漏れ判定部(例えばECU13)は、圧力センサP5によって検出された当該閉空間における圧力の変化に基づきガス漏れ判定値を参照してガス漏れを判定するものであって、尚かつ、燃料極における窒素の濃度に応じて燃料ガス漏れの判定レベルを異ならせるようにする。これは、燃料電池スタック20の再起動時において燃料極における窒素の濃度が一時的に高くなることを考慮して当該窒素濃度に応じてガス漏れ判定レベルを異ならせるというものであり、この場合、窒素の濃度に応じてガス漏れ判定値の変更を行うことなどが好ましい。

Description

明細書 燃料電池システム、 および燃料電池システムにおける燃料ガス編れ判定方法 技術分野
本発明は、燃料電池システム、 および燃料電池システムにおける燃料ガス漏れ判 定方法に関する。 さらに詳述すると、本発明は、 燃料電池システムにおける燃料ガ ス漏れを検知し判定する技術の改良に関する。
背景技術
燃料電池システムにおいては、燃料ガスの漏れを正確に検知してその内容を判定 する (以下、 単に 「判定」 と表現する。 ) ことが非常に重要である。 かかる要請に 応えるべく、燃料電池を含む燃料ガス循環供給系(以下、 「燃料ガス系」ともいう。) に配した遮断弁等により複数の閉空間を形成し、 これら閉空間毎の圧力変化(例え ば圧力降下速度)や各遮断弁等の前後差圧を検出することによって燃料ガス漏れを 判定するという技術が提案されている (例えば、特開平 8— 3 2 9 9 6 5号公報参 照) 。 発明の開示
しかしながら、上述のような燃料ガス漏れ判定技術は、燃料電池シズテムの再起 動時においては不十分なことがある。すなわち、燃料電池システムをいつたん停止 させて放置した後に始動させた場合においては、クロスリークによって燃料極側の 窒素濃度が一時的に通常時よリも高くなり、燃料ガスの漏れ量が少なくなるという 現象が生じる結果、 ガス漏れ量を過少評価してしまう とがある。
そこで、本発明は、燃料電池の再起動時においても通常の運転時と同様に精度の 高いガス漏れ判定を行うことができる燃料電池システム、および燃料電池システム における燃料ガス漏れ判定方法を提供することを目的とする。 本発明者は従来技術の内容について検討した。閉空間における圧力変化に基づい て燃料ガス漏れを判定しょうとする場合、上述したような過少評価が生じると燃料 ガス漏れ判定の精度が十分でなくなつてしまう。 これについてさらに検討すると、 再起動時には 料電池のガス圧が一時的に高くなる (一時的に高くなつている状態 を含む) ことから、起動時に検出した燃料ガス漏れ量と、起動後、パージが十分に 行われて水素濃度が高くなつた状態で検出する燃料ガス漏れ量とを比較すると後 者の方が多く、 このことが起動時の過少評価につながっていると考えられた。
そこで本発明者がさらに詳細に検討すると、以下のことが考えられた。すなわち、 クロスリークによって燃料極側に流れ込む窒素の量が多くなリ、当該燃料極側にお ける閉空間内の圧力が高まった状態になると、例えば配管に生じた孔に起因して異 常なガス漏れが生じたとしても、圧力変化が少ないために過少評価となってしまう。 以上のことからすると、再起動時における特有の現象を前提として踏まえつつ、燃 料ガス漏れの判定を精度よく行うための技術が必要と考えられた。 ここで、本発明 者は燃料電池の当該閉空間に含ま txる窒素ガスに着目し、さらに検討を重ねた結果、 課題解決につながる知見を得るに至った。
本発明はかかる知見に基づくもので、本発明は、燃料電池の燃料極 jに.形成され ている閉空間における圧力変化を検出し、当該圧力変化の検出結果に基づき所定の ガス漏れ判定値を参照して前記閉空間における燃料ガス漏れの判定を行う燃料電 池システムにおける燃料ガス漏れ判定方法であって、前記燃料極における窒素の濃 度に応じて燃料ガス漏れの判定レベルを異ならせ、前記燃料ガス漏れの判定を行う というものである。
すなわち、本発明にかかる燃料ガス漏れ判定方法'は、燃料極における窒素の濃度 を考慮し、 これに応じて所要の補正を行う。つまり燃料極における窒素の濃度に応 じて燃料ガス漏れの判定レベルを異ならせることによつて燃料ガス漏れ判定の精 度を向上させようとするものである。 これは、燃料電池の再起動時において燃料極 における窒素の濃度が一時的に高くなることを考慮し、当該窒素濃度に応じてガス 漏れ判定値に所要の補正を行うものである。つまり燃料極における窒素の濃度に応 じて燃料ガス漏れの判定レベルを異ならせるのである。
この場合、 前記窒素の濃度に応じて前記ガス漏れ判定値を変更することによリ、 前記燃料ガス漏れの判定レベルを異ならせるものであることが好ましし、。燃料電池 の再起動時、クロスリーク現象によって燃料極側の窒素濃度が一時的に高いとして も、本発明のごとく変更したガス漏れ判定値を利用することにより、ガス漏れ量が 過少評価されることを回避することができる。 これにより、燃料極における窒素濃 、 度が一時的に高くなつた状況にも対応することが可能である。
燃料極における窒素の濃度は、燃料電池の電解質膜を透過して空気極側へと漏れ た燃料ガズの透過量と、燃料電池が停止してから再起動されるまでの放置時間との うちの少なくともいずれか一方に基づいて推定することができる。
あるいは、燃料極における窒素の濃度を、運転停止時における燃料電池スタック の温度と、燃料電池の再起動時における燃料極 圧力と、燃料電池が停止してから 再起動されるまでの放置時間と、 に基づいて推定することもできる。
さらに、 本発明は、 燃料ガスの供給を受けて発電する燃料電池と、 該燃料電池に 燃料^スを給排する燃料ガス系と、該燃料ガス系に設けられている調圧弁と、前記 燃料ガス系に形成される閉空間における圧力を検出する圧力センサと、前記燃料ガ ス系に形成される閉空間でのガス漏れを判定するガス漏れ判定部とを備えた燃料 電池システムにおいて、前記ガス漏れ判定部は、前記圧力センサによって検出され た前記閉空間における圧力の変化に基づきガス漏れ判定値を参照してガス漏れを 判定するものであって、前記燃料極における窒素の濃度に応じて前記ガス漏れの判 定レベルを異ならせ、 前記燃料ガス漏れの判定を行うというものである。
上述の燃料ガス漏れ判定方法と同様、この燃料電池システムにおいても燃料極に おける窒素濃度を考慮し、 これに応じてガス漏れの判定レベルを異ならせ、燃料ガ ス漏れ判定の精度の向上を図ることとしている。 これも、燃料電池の再起動時にお し、て燃料極における窒素濃度が一時的に高くなることを考慮したもので、当該窒素 濃度に応じてガス漏れ判定値に所要の補正を行う。つまり、 ガス漏れの判定レベル を異ならせることである。燃料電池の再起動時、 クロスリーク現象によって燃料極 側の窒素濃度が一時的に高いとしても、本発明のごとく判定レベルを異ならせたガ ス漏れ判定値き利用することによりガス漏れ量が過少評価されることを回避する ことができる。
燃料電池システムにおけるこのようなガス漏れ判定は、燃料電池の再起動時にお いて燃料極における窒素の濃度が一時的に高くなることを考慮して当該窒素濃度 に応じてガス漏れの判定レベルを異ならせるものであり、 ガス漏れ判定部は、 ガス 漏れ判定値の変更を行うことにより、燃料ガス漏れの判定レベルを異ならせること が好ましい。
また、上述のようにしてガス漏れ判定を行う燃料電池システムは、燃料電池スタ ックの温度を検出するスタック温度検出手段と、燃料極の圧力を検出する燃料極圧 力検出手段と、 放置時間を計測する放置時間計測手段と、 を備え、燃料極における 窒素の濃度を、運転停止時における燃料電池スタックの温度と、燃料電池の再起動 時における燃料極の圧力と、燃料電池が停止してから再起動されるまでの放置時間 と、 に基づき推定するものであることが好ましい。 図面の簡単な説明
図 1 :本発明の一実施形態を示す燃料電池システムのブロック図である。
図 2:運転停止時のスタック温度が 6 5 °Cの場合におけるアノード圧力およびァノ 一ド窒素濃度の放置時間に対する推移を表すマップである。
図 3 ··本実施形態におけるアノード窒素濃度の推定のフローを示すチャートである。 図 4 :本実施形態における燃料ガス漏れ判定のフローを示すチャートである。
図 5:窒素濃度に応じて燃料ガス漏れの判定レベルを異ならせるようにしたマップ の一例である。
図 6 :本発明に係るガス漏れ判定のための機能ブロックである。 発明を実施するための最良の形態
以下、 本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。 図 1〜図 6 1こ本発明の一実施形態を示す。本発明にかかる燃料電池システム 1 0 は、 燃料ガスの供給を受けて発電する燃料電池 (以下、 「燃料電池スタック」 とい い、 図中では符号 2 0で表す) と、 該燃料電池スタック 2 0に燃料ガスを給排する 燃料ガス系 3と、該燃料ガス系 3に設けられている調圧弁と、燃料ガス系 3に形成 される閉空間における圧力を検出する圧力センサと、燃料ガス系 3に形成される閉 空間でのガス漏れを判定するガス漏れ判定部とを備えたシステムとして構成され ているものである (図 1参照) 。 さらに本実施形態におけるこの燃料電池システム 1 0は、 燃料電池の燃料極側に形成されている閉空間に ける圧力変化を検出し、 当該圧力変化の検出結果に基づき所定のガス漏れ判定値を参照して閉空間におけ る燃料ガス漏れの判定を行うものである。
以下においてはまず燃料電池システム 1 0の全体の概要について説明し、その後、 燃料極における窒素濃度.(本明細書ではこれを 「燃料極窒素濃度」 ともいう。 ) を 推定するための構成、閉空間における燃料ガス漏れを判定するための 成について 順次説明する。
(全体構成)
まず、本実施形態にかかる燃料電池システム 1 0の概要について説明する。なお、 以下においては燃料電池を 「F C」 と表現する場合もある。 図 1に本実施形態にか かる燃料電池システム 1 0の概略構成を示す。 ここでは、燃料電池システム 1 0を 燃料電池車両 (F C H V : Fue l Ce l I Hybr i d Veh i c l e) の車載発電システムとして 用いる例を示すが、 各種移動体 (例えば船舶や飛行機など) やロボットなどといつ た自走可能なものに搭載される発電システム等としても用いることができるのは 当然である。燃料電池セルスタック (以下、 「燃料電池スタック」あるいは単に Γス タック」 ともいう。 ) 2 0は、 複数の単セルを直列に積層して成るスタック構造を 有するものであり、 例えば、 固体高分子電解質型燃料電池等から構成されている。 また、本実施形態における燃料電池システム 1 0は、燃料電池スタック 2 0に接 続された燃料ガス循環供給系 (本明細書ではこれを 「燃料ガス系 J という。 ) 3と 酸化ガス供給系 4とを備えている。 これらのうち、燃料ガス系 3.は燃料電池スタツ ク 2 0に対して燃料ガスを給排するものであり、例えば本実施形態の場合には、燃 料ガス供給源 3 0、燃料ガス供給路 3 1、 燃料電池スタック 2 0、燃料ガス循環路 3 2、 及びアノードオフガス流路 3 3を含んだ構成どなっている (図 1参照) 。 燃料ガス供給源 3 0は、例えば、高圧水素タンク又は水素貯蔵タンク等の水素貯 蔵源によって構成されている。燃料ガス供給路 3 1は燃料ガス供給源 3 0から放出 される燃料ガスを燃料電池スタック 2 0のアノード(燃料極) に導くためのガス流 路であり、そのガス流路には上流から下流にかけてタンクバルブ H 2 0 1、高圧レ ギユレータ H 9、 低圧レギユレータ H 1 0、水素供給バルブ H 2 0 0、 及び F C入 口バルブ H 2 1が各々配設されている。高圧に圧縮された燃料ガスは高圧レギユレ —タ H 9にて中圧に減圧され、更 ίこ低圧レギユレータ H 1 0にて低圧(通常運転圧 力) に減圧されるようになっている。
燃料ガス循環路 3 2は未反応燃料ガスを燃料電池スタック 2 0に遑流させるた めの帰還ガス流路であり、そのガス流路には上流から下流にかけて F C出口バルブ Η 2 2、水素ポンプ 6 3、 及び逆止弁 Η 5 2が各々配設されている。 燃料電池スタ ック 2 0から排出された低圧の未反応燃料ガスは水素ポンプ 6 3によって適度に 加圧され、燃料ガス供給路 3 1に導かれる。逆止弁 Η 5 2は燃料ガス供給路 3 1か ら燃料ガス循環路 3 2への燃料ガスの逆流を抑制する。また、 この燃料ガス循環路 3 2の途中で分岐するアノードオフガス流路 3 3は燃料電池スタック 2 0から排 出された水素オフガスをシス亍ム外に排気するためのガス流路であり、そのガス流 路にはパージバルブ Η 5 1が配設されている。
なお、 上述したタンクバルブ Η 2 0 1、水素供給バルブ Η 2 0 0、 F C入口バル ブ Η 2 1、 F C出口バルブ Η 2 2、及びパージバルブ Η 5 1は各ガス流路 3 1〜3 3又は燃料電池スタック 2 0へ燃料ガスを供給し、或いは遮断するためのシャツ卜 ノヽレブである。これらのシャツ卜バルブは、例えば電磁弁によって構成されている。 このような電磁弁としては、例えばオンオフ弁、或いは PWM制御で弁開度をリ二 ァに調整できるリニア弁等が好適である。
燃料電池スタック 2 0の酸化ガス供給系 4は、エアコンプレッサ(酸化ガス供給 源) 4 0、 酸化ガス供給路 4 1、 及び力ソードオフガス流路 4 2を含んだ構成とな つている (図 1参照) 。 なお、 エアコンプレッサ 4 0はエアフィルタ 6 1を介して 外気から取り込んだ空気を圧縮し、その圧縮エアを酸化ガスとして燃料電池スタッ ク 2 0のカソード (酸素極) に供給する。燃料電池スタック 2 0の電池反応に供さ れた後の酸素オフガスはカソードオフガス流路 4 2を流れてシステム外に排気さ れる。この酸素オフガスは燃料電池スタック 2 0での電池反応により生成された水 分を含むため高湿潤状態になっている。加湿モジュール 6 2は酸化ガス供給路 4 1 を流れる低湿潤状態の酸化ガスと、力ソードォ ガス流路 4 2を流れる高湿潤状態 の酸素オフガスとの間で水分交換 行い、燃料電池スタック 2 0に供給される酸化 ガスを適度に加湿する。燃料電池スタック 2 0に供給される酸化ガスの背圧は、 力 ソードオフガス流路 4 2のカソード出口付近に配設された圧力調整弁 A 4によつ て調圧される。また、 力ソードオフガス流路 4 2はその下流において希釈器 6 4に 連通している。さらにこの希釈器 6 4にはアノードオフガス流路 3 3がその下流に おいて連通しておリ、水素ォフガスを酸素ォフガスによつて混合希釈した後にシス テム外に排気するように構成されている。 .
燃 電池スタック 2 0で発電された直流電力の一部は D C Z D Cコンバータ 5 3によって降圧され、 バッテリー (二次電池) 5 4に充電される。 トラクシヨンィ ンバータ 5 1及び補機ィンバータ 5 2は燃料電池スタック 2 0とバッテリー 5 4 の双方又は何れか一方から供給される直流電力を交流電力に変換してトラクショ ンモータ M 3と補機モータ M 4のそれぞれに交流電力を供給する。 ちなみに、補機 モータ M 4は後述の水素循環ポンプ 6 3を駆動するモータ M 2やエアコンプレツ サ 40を駆動するモータ M 1等を総称して表現しているものであり、したがってモ ータ M 1.として機能する場合もあればモータ M2として機能する場合もあるとい うことになる。
制御部 50はアクセルセンサ 55が検出したアクセル開度、車速センサ 56が検 出した車速等に基づいてシステム要求電力 (車両走行電力と補機電力との総和) を 求め、燃料電池スタック 20が目標電力に一致するようにシステムを制御する。具 体的には、制御部 50はエアコンプレッサ 40を駆動するモータ M 1の回転数を調 整して酸化ガス供給量を調整するとともに、水素ポンプ 63を駆動するモータ M 2 の回転数を調整して燃料ガス供給量を調整する。また、制御部 50は DCZDCコ ンバータ 53を制御して燃料電池スタック 20の運転ポイント (出力電圧、出力電 流) を調整し、燃料電池スタック 20の出力電力が目標電力に一致するように調整 する。
高圧部 (例えば、 タンクバルブ H 201〜水素供給バルブ H200の区間) 、 低 圧部 (例えば、 水素供給バルブ^1200~「〇入ロバルブ^121 ) 、 FC部 (例え ば、 スタック入リロバルブ H 21〜FC出口バルブ H 22) 、 循環部 (例えば、 F C出口バルブ H 22〜逆止弁 H 52)の各部には、.燃料ガスの圧力を検出する圧力 センサ P 6, P 7, P 9, P 61 , P 5, P 1 0,. P 1 1と、 燃料ガスの温度を検 出する温度センサ T 6, T 7, T 9, T 61 , T 5, T 1 0が配設されている。 各 圧力センサの役割について詳述すると、压カセンサ P 6は燃料ガス供給源 30の燃 料ガス供給圧を検出する。圧力センサ P 7は高圧レギユレータ H 9の二次圧を検出 する。圧力センサ P 9は低圧レギユレータ H 1 0の二次圧を検出する。圧力センサ P 61は燃料ガス供給路 31の低圧部の圧力を検出する。圧力センサ P 1 0は水素 循環ポンプ 63の入力ポート側 (上流側) の圧力を検出する。 圧力センサ P 1 1は 水素循環ポンプ 63の出力ポート側 (下流側) の圧力を検出する。
さらに、 この燃料電池システム 1 0にはアノード (燃料極) における圧力を検出 するための燃料極圧力検出手段が設けられている。 例えば本実施形態の場合には、 燃料ガス系 3に形成される閉空間における圧力を挨出するためのセンサとして設 けられている圧力計 (以下 「圧力センサ」 という。 ) P 5がこの燃料極圧力検出手 段として機能している。本実施形態のこの圧力センサ P 5は、 上述した F C部 (ス タック入リロバルブ H 2 "!〜 F C出口バルブ H 2 2 )における圧力を検出するため、 例えばスタック入口、よリ具体的には燃料電池スタック 2 0と F C入口バルブ H 2 1との間に配設されている (図 1参照) 。 この圧力センサ P 5によれば、 当該閉空 間 (本実施形態の場合、 上述した F C部) における圧力の変化を検知して捕捉する ことができる。 また、 圧力センサ P 5は E C U 1 3に接続されており、検出した圧 力値に関するデータを当該 E C U 1 3に送信するようになっている (図 1参照) 。
(窒素濃度推定の構成)
まず、 本発明の本質的な窒素濃度推定のために必要な構成について説明する。 図 6は、 本発明に係るガス漏れ判定のための機能ブロック図である。
本発明の燃料電池システムは、燃料ガスの供 を受けて発電する燃料電池 1 0 0、 該燃料電池 1 0 0に燃料ガスを給排する燃料ガス系 1 0 1、該燃料ガス系 1 0 1に 設けられている調圧弁 1 0 2と、前記燃料ガス系 1 0 1に形成される閉空間 1 0 4 における圧力を検出する圧力センサ 1 0 3、および前記燃料ガス系 1 0 1に形成さ れる閉空間 1 0 4でのガス漏れを判定するガス漏れ判定部 1 0 5を備えている。特 に、 ガス漏れ判定部 1 0 5は、圧力センサ 1 0 3によって検出された前記閉空間 1 0 4における圧力の変化に基づきガス漏れ判定値 1 0 6を参照してガス漏れを判 定するものである。
つまリ、燃料極における窒素の濃度に応じて前記ガス漏れの判定レベルを異なら せ、前記燃料ガス漏れの判定を行うというものである。 これは、 燃料電池の再起動 時において燃料極における窒素濃度が一時的に高くなることを考慮したもので、当 該窒素濃度に応じてガス漏れ判定値に所要の補正を行う。補正とは、 ガス漏れの判 定レベルを異ならせることである。
ここで、ガス漏れ判定部 1 0 5は、 ガス漏れ判定値 1 0 6の変更を行うことによ リ、燃料ガス漏れの判定レベルを異ならせることは好ましい。すなわち図 6に示す ように、 ガス漏れ判定部 1 0 5は、複数のガス漏れ判定値 1 0 6を適宜選択するこ とで、 燃料ガス漏れの判定レベルを変更可能に構成されている。
さらに本発明の燃料電池システムにおいて、燃料電池スタックの温度を検出する スタック温度検出手段 1 0 8、燃料極の圧力を検出する燃料極圧力検出手段 1 0 9、 および放置時間を計測する放置時間計測手段 1 1 0を備えることは好ましし、。この 場合、 ガス漏れ判定部 1 0 5は、 燃料極における窒素の濃度を、運転停止時におけ る燃料電池スタックの温度と、燃料電池の再起動時における燃料極の圧力と、燃料 電池が停止してから再起動されるまでの放置時間と、 に基づき推定する。
続いて、本実施形態の燃料電池システムにおいて、上記本発明の機能ブロックに 対応した、燃料電池スタック 2 0の燃料極における窒素濃度を推定するための構成 について説明する。
図 1に示すように、本実施形態の燃料電池システム 1 0においては、燃料電池ス タック 2 0におけるアノード窒素; ί度(燃料電池スタック 2 0において電解質膜を 透過してカソードからアノードまで達したものをはじめとする窒素の当該ァノー ドにおける濃度のこと) を推定することとし、 これを実現するための一例として、 燃料電池のスタック温度を検出するスタック温度検出手段 1 1 (図 6の符号 1 0 8 ) と、 アノード (燃料極) の圧力を検出する燃料極圧力検出手段 Ρ 5 (図 6の符 号 1 0 9 )と、放置時間を計測する放置時間計測手段 1 2 (図 6の符号 1 1 0 )と、 E C U 1 3 (図 6の符号 1 0 5 ) とを備えた構成となっている。 以下、 アノード窒 素濃度を推定するための構成の詳細およびこれによるアノード窒素濃度推定手法 について説明する。 '
スタック温度検出手段 1 1は燃料電池のスタック温度、つまリ燃料電池スタック 2 0 (図 6の符号 1 0 0 ) の温度を検出するための手段で、 温度を測定する部分と 当該測定した温度に関する情報を送信するための部分とで構成されている。例えば 本実施形態におけるスタック温度検出手段 1 1は、燃料電池スタック 2 0の温度を 検出し、検出した温度に関するデータを E C U 1 3に送信するように設けられてい る (図 1参照) 。
放置時間計測手段 1 2は、燃料電池スタック 2 0の放置時間、すなわち燃料電池 の運転が停止してから再起動されるまでの時間を計測するための手段であり、例え ばタイマ (コンピュータの内部クロックを含む) によって構成されている。本実施 形態の放置時間計測手段 1 2は E C U 1 3に接続されており (図 1参照) 、 この E C U 1 3からの指令信号を受けて放置時間の計測を開始し、さらに E C U 1 3から 、 の指令信号を受けて計測を終了するように設けられている。なお、本実施形態にお ける放置時間計測手段 1 2は、停止状態の燃料電池スタック 2 0に対してィダニッ シヨンスィッチが入れられてィグニッシヨン'オンとなった状態から当該燃料電池 スタック 2 0が起動されるまでの時間 (ィグニッシヨン ·オン継続時間) を計測す ることもできるようになつている。
E C U 1 3は電子制御装置 ( l ectr i c Contro l Un it) によって構成された制御 手段である。本実施形態の E C U 1 3は上述したスタック温度検出手段 1 1、放置 時間計測手段 1 2、圧力燃料極圧力検出手段 P 5のそれぞれと接続されていて、ス タック温度、 放置時間、 そして燃料極圧力 (アノード圧力) に関するデータを取得 し、 これらデータに基づいてアノード窒素濃度 (電解質膜を透過して力ソードから アノードまで達したものなどを含む窒素の当該アノードにおける濃度)を推定する。 なお、図 1では特に詳しく表示していないが、 この E C U 1 3は制御部 5 0とも接 続されており、推定したアノード窒素濃度に応じて必要時には燃料電池スタック 2 0の出力が制限されるようになっている。
さらに本実施形態においては、放置時間と運転停止中におけるアノード圧力との 関係を表すマップを用意しておき、このマップに基づいてァノード窒素濃度を推定 することとしている。具体的には、 図 2に示すような実機データ、 すなわち運転停 止時のスタック温度が所定の温度、例えば 6 5 °Cの場合におけるアノード圧力およ びアノード窒素濃度の放置時間に対する推移を表したマップを用意しておき、この マップに基づいてァノード窒素濃度を推定することとしている。ちなみにマップ中 の♦印はアノード窒素濃度(cnc_N2、単位は%) 、 X印はアノード圧力 (prs_fc i、 単位は kPaA) をそれぞれ示している。 図 2に示すように、 X印で示すアノード圧 力の値 (prs_fc i ) は、 燃料電池の運転を停止するといつたん急激に低下し、 経過 時間 T 1の時点で最低値つまり負圧のピーク(図 2の実機データの場合であればお よそ 8 0強 kPaA) に達した後は徐々に増加していくという変化を見せている (な お、 ここでいう負圧は大気圧を基準としたもの) 。 一方、 ♦印で示すアノード窒素 濃度 (crui— N2) は途中まで増加し続け、 その後なだらかになって収束していくとい う変化を見せている。
ここで 例えばある圧力 P (図 2参照) を基準としてこの圧力 Pに相当する放置 時間には、 図 2から明らかなように T o , T 2という 2通りの時間 (つまり相異な る 2通りの放置時間) がある。 この場合、 アノード圧力が負圧のピークに達する時 間 T 1よりも前の時間 (図 2であれば T o ) におけるアノード窒素濃度 (cncJI2) を推定値とすると、この値は増加途中にあってまだ少ない段階の値であることから 誤差を招いてしまい適切な制御が行えなくなる。 この場合、 このような誤差が生じ るのを抑制する手段の一つとして、 アノード圧力が最低値 (負圧のピーク) に達す る時間 T 1よリも後の時点 (本実施形態の場合であれば経過時間 T 2 ) のアノード 窒素濃度 (cnc_N2) を推定値にするという手段を講じうる。 し力、しな力《ら、 本実施 形態ではこれとは異なる手段を講じることとしている。すなわち、放置時間をも計 測することとした本実施形態の場合には、実機データからなるマップ (図 2 ) に照 らせば、放置時間計測手段 1 2によって計測された放置時間が時間 T 1 (負圧のピ ークとなる時間) の以前なのか、 あるいはそれ以後なのかの判別が容易であること から、このような判別を行ってからァノード窒素濃度の推定値を求めることとして いる。 こうした場合には、 T 1以前の状態、 つまリアノード窒素濃度が十分に増加 する前の段階のいわば低窒素濃度の状態にときに推定値を求めるようなことがな くなるため、 誤差を招くようなこともなくなる。 (動作の説明)
引き続いて、チャートを参照しつつ本実施形態におけるアノード窒素濃度の推定 のフローを以下に説明する (図 3参照) 。
まず、本実施形態におけるアノード窒素濃度の推定フローは、 ィグニッシヨンの オフにより燃料電池の運転が停止する (IG_0FF) ことによって開始する (ステップ 1 ) 。 燃料電池が停止したら、 停止時における燃料電池スタックの温度 (thm_fc_igoff) をスタック温度検出手段 1 1により検出し、 当該温度を ECU 1 3に記憶する (ステップ 2) 。 さらに、放置時間 (tjeave)の計測を開始する (ス テツプ 3) 。 また、 ィグニッシヨンスィッチがオンとなったら (ステップ 4として 示す IG ONの状態) 、 IG ON計測時間 . (tjgon) 、 ィグニッシヨンスィッチがオン となってから燃料電池スタック 20が起動するまでの時間の計測を開始する(ステ ップ 5) o
次に、 停止していた燃料電池が再起動されたら (ステップ 6に示す ST_0N) 、 水 素加圧前におけるアノード圧力 (p^s -fcJj) を検出する (ステップ 7) 。 そうし たら、 合計放置時間 TR、 すなわち上述の 「放置時間 (tjeave) 」 と 「IG_0N継 続時間 (tjgon) 」 との合計時間 (TR=t_leave + t.igon) を算出する (ス亍 ップ 8) 0
そうしたら、 このように算出した結果に基づき、 当該合計放置時間 TRが放置時 間 T 1よりも長いのか短いのか、別の表現をすれば、燃料電池スタック 20を再起 動したタイミングが、アノード圧力が負圧のピークを迎える前なのかそれともピー ケを迎えた後なのかを判断する。要するに、 ここでは合計放置時間 TRと放置時間 T 1との大小を判断し (ステップ 9) 、 合計放置時間 TRよりも放置時間 T 1の方 が大きければ (TR<T 1) 、再起動したのはアノード圧力が負圧のピークになる よりも前であると判断してステップ 10へと進む。 このステップ 10では、水素加 圧前のアノード窒素濃度を表すマップを参照し、 水素加圧前のアノード窒素濃度 (cncN2_tmp) を算出する (ステップ 10) 。 なお、ここで参照するマツプは例えば上述したような実機データそのものからな るマップ (図 2参照) とすることもできるが、 あらかじめ第 1の窒素状態 (例えば 低窒素濃度状態) の場合に適用する第 1のマップと、 これよりも高濃度である第 2 の窒素状態の 合に適用する第 2のマップとに分けておくことも好ましい。例えば 本実施形態では、低窒素濃度状態を表す第 1のマップとしての水素加圧前アノード 窒素濃度マップ A (図 2の時間 t = 0〜 t (= T 1 ) の間に変化する曲線) と、 こ れょリも高濃度である高窒素濃度状態を表す第 2のマップとしての水素加圧前ァ ノード窒素濃度マップ Β (図 2の時間 t = Τ 1以降に変化する曲線) とに分けてい る。 したがづて、 上述のように T R < T 1である場合は、 負圧のピークを迎える前 に燃料電池スタック 2 0を再起動したということなので、低窒素濃度状態を表すマ ップ Aを参照してアノード窒素濃度を算出することになる (ステップ 1 0 ) 。 この ようにして水素加圧前のアノード窒素濃度 (cncN2_tmp) を算出したら、 ステップ 1 2へと進む。
一方、ステップ 9において合計放置時間 T Rと放置時間 T 1との大小を判断した 結果、上述の場合とは逆、つまリ合計放置時間 T Rよりも放置時間 T 1の方が小さ ければ (T R > T 1 ) 、 アノード圧力が負圧のピークを迎えた後に再起動したと判 断してステップ 1 1へと進む。ステップ 1 1では、水素加圧前のァノ_ド窒素濃度 (cncN2_tmp) を算出するという点においては上述のステップ 1 0と同様だが、 こ のステップ 1 1においてはマップ Aではなくマップ Bを参照する (図 2参照) 。水 素加圧前のアノード窒素濃度(cncN2_tmp)を算出したら、ステップ 1 2へと進む。 次に、 ステップ 1 2においては、 水素加圧後のアノード圧力 (prsH2_fc_a) を検 出する (ステップ 1 2 ) 。 そうしたら、 水素加圧後のアノード窒素瀘度 (cncN2) を算出する (ステップ 1 3 ) 。 図 3に示しているように、 この水素加圧後アノード 窒素濃度 (cncN2) は、
cncN2 = cncN2_tmp * prsH2_fc_b / prsH2_fc_a
という式、 つまり、 水素加圧前のアノード窒素濃度 (cncN2_tmp) と水素加圧後の アノード圧力 (prsH2_fc— b ) とを乗じ、 これを水素加圧後のアノード圧力 (prsH2_fc_a) で除した値として求めることができる。 これによつて一連の処理を 終了する (ステップ 1 4 ) 。
また、上述のごとくアノード窒素濃度を推定する場合において、放置時間の計測 中、放置時間計測手段よる計測時間がクリアされた場合にはアノード窒素濃度を最 大値にするという手法を採ることも好ましい。放置時間計測手段 1 2による時間計 測中、 何らかの要因 (一例として、 補機バッテリーを外したような場合) によりそ れまでの計測時間がリセットされて 0にクリアされたとすると、放置時間計測手段 1 2によって得られた放置時間が本来の値よりも短くなつてしまい、 この結果、本 来推定されるべきァノード窒素濃度の真値よリも低い値が推定され、水素欠乏によ る発電不良が引き起こされるおそれがある。 これに対し、 このような場合にァノー ド窒素濃度を最大値だと擬制することとすれば、少なくとも上記のように水素欠乏 による発電不良が引き起こされるのを回避するヒとが可能となる。この場合におけ る擬制値は種々の値たり得るが、本実施形態においては、 アノード窒素濃度の値が ほぼ収束して最大値とな: δ値の、 およそ 8 0 %弱の値とする。 また、 燃料電池スタ ック 2 0が放置状態であるにもかかわ ず放置時間計測手段 1 2がリセッ卜され たことは、例えば上述した E C U 1 3によって検出ないしは判別することができる, さらには、燃料電池の運転停止時におけるアノード窒素濃度を記憶する手段を備 えておき、 運転停止時の当該アノード窒素濃度と次回起動時 (再起動時) のァノー ド窒素濃度 (推定値) のうち、 大きい方の値を採用することも好ましい。
例えば、 アノード窒素濃度が高い状態で燃料電池を一旦停止し、その直後に再起 動すると、 アノード窒素濃度がまだそれほど低下していないにもかかわらず、真値 よリも低く推定してしまい上述の場合と同様に水素欠乏による発電不良が引き起 こされるおそれがある。
これに対し、運転停止時におけるアノード窒素濃度を記憶しておき、 当該記憶値 と推定値とを比較して高い方を選択■採用することとすれば、少なくとも上記のよ うに水素欠乏による発電不良が引き起こされるのを回避することが可能となる。本 実施形態においては、 E C U 1 3によって運転停止時のアノード窒素濃度を記憶し ておき、 尚かつ必要な場合にはこの記憶値と推定値とを比較することとしている。
(漏れ判定動作)
引き続き、本実施形態の燃料電池システム 1 0における、閉空間における燃料ガ ス漏れを判定するための構成について説明する。
本発明にかかる燃料電池システム 1 0は、上述した閉空間 (本実施形態の場合で あれば、スタック入リロバルブ H 2 1と F C出口バルブ H 2 2という 2つの調圧弁 にて燃料極側に形成される閉空間) における燃料ガス漏れの判定を行うにあたり、 当該閉空間の圧力変化を検出し、 当該压カ変化 Iこ基づき、所定のガス漏れ判定値を 参照して燃料ガス漏れを判定することとしている。 ここで、 本実施形態では、 燃料 極における窒素濃度に応じて必要ある場合には所要の補正を行う、つまり燃料ガス 漏れの判定レベルを異ならせ、 それから燃料 ス漏れを判定することとしている。 すなわち、燃料電池システム 1 0の再起動時においては燃料ガス系 3の閉空間にお ける窒素ガスの濃度が一時的に高くなることから、 このような現象を考慮し、 当該 窒素濃度に応じ、 ガス漏れ判定レベルを異ならせるようにしている。
例えば本実施形態の燃料電池システム 1 0においては、ガス漏れ判定レベルを異 ならせるためのガス漏れ判定部が設けられている。 このガス漏れ判定部は、圧力セ ンサ(燃料極圧力検出手段) によって検出された閉空間における圧力の変化に基づ き、 ガス漏れ判定値を参照してガス漏れを判定するというものである。本実施形態 においては、圧力センサ P 5によって燃料極側の閉空間における圧力変化を検出し、 当該検出結果に基づき、このガス漏れ判定部においてガス漏れを判定することとし ている。 さらに、 ガス漏れ判定部は圧力検出結果に基づきガス漏れ判定レベルを異 ならせる。 このようにレベルを異ならせる場合の具体例としては、圧力検出結果に 対応して設定されているガス漏れ判定値全体をそのまま採用すること、レベル変更 内容を表す数式に圧力検出結果を代入し算出して得られる数値を用いること、等を 挙げることができる。
以上のようなガス漏れ判定部が具体的にどのような装置によって構成されるか については特に限定されることはないが、例えば本実施形態の燃料電池システム 1 0であれば、 上述したようにスタック温度検出手段 1 1、 放置時間計測手段 1 2、 そして圧力センサ P 5が接続されている ECU 1 3が以上のようなガス漏れ判定 部としても機能するようになっている。
続いて、上述し 構成により、閉空間における燃料ガス漏れを判定する場合の流 、 れを一例に沿って説明する (図 4、 図 5参照) 。例えば本実施形態の場合、 ガス漏 れ判定の際に参照するガス漏れ判定値として、図 5に示すようなマップを用意して いる。 ガス漏れ判定値の一例として示すこのマップ(MAP 1) は、例えば窒素濃 度 N (%) が 0, 20, 40, 60, 80%であるときの燃料ガス漏れ量(判定値) C (L m i n) がそれぞれ 30, 25, 20, 1 5, 1 0であるというように、 いわばガス漏れの基準値を予め設定しているものである (図 5参照) 。 すなわち、 従来であれば窒素濃度にかかわらず一律のガス漏れ判定値(例えば 30 (LZm i n) ) を使用していたのに対し、本実施形態においては閉空間における窒素濃度を 考慮し、当該窒素濃度が増すにつれて対応するガス漏れ判定値を減らしていくよう なマップを用いることにしたものである。なお、窒素濃度がこれら以外の値の時は 適宜補間すればよく、 例えばこのマップ (MAP 1 ) であれば、 窒素濃度 N (0/0) が 70の場合には 1 2. 5 (LZm i n) 、 90の場合には 7. 5 (LZm i n) とすればよい。
燃料ガス漏れ判定を行う場合、 まず燃料電池システム 1 0の起動時等において . (図 4におけるステップ 21 )、燃料極側に形成されている閉空間における窒素濃 度を推定する (ステップ 22) 。 窒素濃度を推定するにあたり、 本実施形態では、 運転停止時における燃料電池スタック 20の温度と、燃料電池の再起動時における アノードの圧力と、燃料電池が停止してから再起動されるまでの放置時間とに基づ き、 上述したフロー (図 3参照) および水素加圧前アノード窒素濃度マップ A, B (図 2参照) を活用して推定することとしている。
以上のようにして閉空間内における窒素濃度を推定したら、上述のマップ(図 5 の MAP 1 ) を参照し、 当該窒素濃度の推定値 N (%) に対応する漏れ検知の判定 値 C (LZm i n) を算出する (ステップ 23) 。 例えば窒素濃度 (推定値) Nが 20 (%) ならば燃料ガス漏れ判定値 Cは 25 (LZm ί n) 、窒素濃度 (推定値) Nが 40 (%) ならば燃料ガス漏れ判定値 Cは 20 (LZm i n) ということにな る (図 5参照) 。 このように算出して得られるガス漏れ判定値 Cは、 閉空間におけ る窒素濃度 (推定値) に応じて判定レベルが変更されて得られた判定値ないしは基 準値である。
当該レベル変更後のガス漏れ判定値 Cが得られたら (ステップ 23) 、 圧力変化 に基づく燃料ガス漏れを測定する。すなわち、 ^^実施形態の場合であれば 2つの調 圧弁 (FC入口バルブ H 21、 FC出ロノ レブ H 22) によって形成されている閉 空間の圧力 (配管内にて封止された部分の封止圧力)の変化を圧力センサ P 5によ つて検出し、当該検出結果に基づいて燃料ガス漏れ量 Qを測定する(ステップ 24 )。 そうしたら、 当該燃料ガス漏れ量 Qと上述の燃料ガス漏れ判定値 Cとを比較する。 比較の結果、燃料ガス漏れ量<3<燃料ガス漏れ判定値 Cならば燃料ガス漏れについ は正常状態(問題となるようなガス漏れが生じていない状態) にあると判定するこ とができる。この場合、窒素濃度を考慮した燃料ガス漏れ判定値(より具体的には、 窒素濃度が増えれば増えるほど減らすような変更が加えられた判定値)に照らして 判定を行っていることから、窒素濃度が一時的に高くなつた状態において燃料ガス 漏れを過少評価するようなことがない。
その一方で、燃料ガス漏れ量 Qと燃料ガス漏れ判定値 Cとを比較した結果、燃料 ガス漏れ量 Q>燃料ガス漏れ判定値 Cとなったなら (ステップ 25) 、基準として 用いた判定値 Cよりも燃料ガス漏れ量 Qの方が多いということから、問題となりう る程度に燃料ガスの漏れが生じていると判定することができる。この場合には異常 と判定し、 当該異常状態に即した処理を実施する (ステップ 26) 。 このような処 理を実施した後は、他に燃料ガス漏れが生じていないかどうかを点検 '判定し、 さ らに燃料電池を起動 ·運転するための所定の項目の確認を行い (ステップ 2 7 ) 、 問題がなければ運転を継続していくことになる (ステップ 2 8 ) 。 これらステップ は特に本願に特有のものではない (図 4参照) 。
ここまで説明した本実施形態の燃料 池システム 1 0によると、燃料電池の再起 動時、クロスリーク現象によって燃料極側の窒素濃度が一時的に通常時より高くな つたとしても、 既に説明したように補正したガス漏れ判定値 (つまり、異なるレべ ルに設定された燃料ガス漏れ判定レベル) を利用することにより、 ガス漏れ量が過 少評価されることを回避することができる。 これにより、燃料極における窒素濃度 が一時的に高くなつた状況であっても精度の高いガス漏れ判定を行うことが可能 となる。
なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定される ものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。 例えば本実施形態においては、燃料電池スタック 2 0の燃料極における窒素濃度 に着目し、燃料極側の閉空間に含まれる窒素ガス量に応じてガス漏れ判定値 Cを補 正する (つまり、燃料ガス漏れの判定レベルを異ならせる) という形態について説 明したが本発明の実施形態がこのようなものに限定されるということはない。他の 例を挙げれば、例えば燃料極側における水素濃度や水素分圧が検出可能であればこ れらの検出結果に基づいて窒素濃度ないしは窒素ガス量を求めることとしてもよ い。 要は、 クロスリークによって燃料極側の窒素濃度 (あるいは窒素ガス量) がー 時的に高くなるという現象を踏まえ、当該窒素濃度を精度よく検出ないしは推定し、 その結果を燃料ガス漏れ判定用の基準値(マップ) に反映させることができればガ ス漏れ判定をよリ精度よく行うことが可能になるというものである。
また、本実施形態においてはアノード圧力 (燃料電池スタック 2 0の燃料極にお ける圧力) に応じて燃料ガス漏れの判定を行うこととしたが、 これ以外の要素に基 づいてガス漏れの判定を行うことも可能であり、例えば、ァノード圧力の変化率(一 例として、圧力増加に伴う勾配または圧力減少に伴う勾配) に基づいて判断するこ とも可能である。 すなわち、 図 2のマップに示す停止時の圧力変化特性において、 t = T 1以前は圧力勾配が減少する傾向を示され、その一方、 t = Τ 1以降は圧力 勾配が増加する傾向が示されていることからすれば、圧力勾配が減少から増加へと 移る時点でマップを切り換え、 ガス漏れを判定することも可能である。
(産業上の利用可能性)
本発明の燃料ガス漏れ判定方法においては、クロスリ,クによって燃料極側の窒 素濃度が一時的に高くなるという現象に着目し、当該窒素濃度を精度よく検出ない しは推定したうえで、その結果を燃料ガス漏れ判定に用いる判定レベルを異ならせ るという形で反映させている。 これによれば、 燃料電池の再起動時において、 通常 の運転時と同程度の精度の高いガス漏れ判定を行うことが可能となる。
本発明の燃料ガス漏れ判定方法では、燃料電池の再起動時において燃料極におけ る窒素の濃度が一時的に高くなることを考慮 当該窒素の濃度に応じてガス漏れ 判定値を変更することによってガス漏れ判定を高精度に行うことが可能となる。 本発明の燃料ガス漏れ判定方法によると、燃料ガスの透過量、および燃料電池の 放置時間のいずれか一方または両方に基づいて燃料極における窒素の濃度を推定 し、 これに基づいてガス漏れ判定を高精度に行うことが可能となる。 実際、水素の 透過速度と窒素と透過速度とは異なることから、水素ガスの空気極への透過量から は窒素濃度を推定し難いのが実情であるが、本発明によれば上述のようにして窒素 濃度を推定レ、 ガス漏れ判定を行うことができる。
さらに、本発明の燃料ガス漏れ測定方法によれば、運転停止時における燃料電池 スタックの温度と、燃料電池の再起動時における燃料極の圧力と、燃料電池が停止 してから再起動されるまでの放置時間とに基づいて燃料極における窒素濃度を精 度よく推定し、 これに基づいてガス漏れ判定を精度よく行うことが可能となる。 また、本発明に記載の燃料電池システムにおいても、 クロスリークによって燃料 極側の窒素濃度が一時的に高くなるという現象に着目し、当該窒素濃度を精度よく 検出ないしは推定したうえで、その結果を燃料ガス漏れ判定に用いる判定レベルを 異ならせるという形で反映させている。これにより、燃料電池の再起動時において、 通常の運転時と同程度の精度の高いガス漏れ判定を行うことが可能となる。
本発明の燃料電池システムにおいては、燃料電池の再起動時において燃料極にお ける窒素の濃度が一時的に高くなることを考慮し、当該窒素濃度に応じてガス漏れ 判定値を変更することによってガス漏れ判定を高精度に行うことができる。
また、本発明の燃料電池システムによれば、運転停止時における燃料電池スタツ クの温度と、燃料電池の再起動時における燃料極の圧力と、燃料電池が停止してか ら再起動されるまでの放置時間と、に基づき燃料極における窒素濃度を精度よく推 定し、 当該推定結果に基づいてガス漏れ判定を精度よく行うことができる。

Claims

請求の範囲
1 . 燃料電池の燃料極側に形成されている閉空間における圧力変化を検出し、 当 該圧力変化の検出結果に基づき所定のガス漏れ判定値を参照して前記閉空間にお ける燃料ガス漏れの判定を行う燃料電池システムにおける燃料ガス漏れ判定方法 であって、
前記燃料極における窒素の濃度に応じて燃料ガス漏れの判定レベルを異ならせ、 前記燃料ガス漏れの判定を行うことを特徴とする燃料電池システムにおける燃料 、 ガス漏れ判定方法。
2 . 前記窒素の濃度に応じて前記ガス漏れ判定値を変更することにより、前記燃 料ガス漏れの判定レベルを異ならせることを特徴とする請求項 1に記載の燃料電 池システムにおける燃料ガス漏れ判定方法。
3 . 前記燃料極における窒素の濃度を、燃料電池の電解質膜を透過して空気極側 へと漏れた前記燃料ガスの透過量と、前記燃料電池が停止してから再起動されるま での放置時間とのゔちの少なぐともいずれか一方に基づいて推定することを特徴 とする請求項 1または 2に記載の燃料電池システムにおける燃料ガス漏れ判定方 法。
4 . 前記燃料極における窒素の濃度を、運転停止時における燃料電池スタックの 温度と、燃料電池の再起動時における前記燃料極の圧力と、前記燃料電池が停止し てから再起動されるまでの放置時間と、に基づいて推定することを特徴とする請求 項 1または 2に記載の燃料電池システムにおける燃料ガス漏れ判定方法。
5 . 燃料ガスの供給を受けて発電する燃料電池と、該燃^ ^電池に燃料ガスを給排 する燃料ガス系と、該燃料ガス系に設けられている調圧弁と、前記燃料ガス系に形 成される閉空間における圧力を検出する圧力センサと、前記燃料ガス系に形成され る閉空間でのガス漏れを判定するガス漏れ判定部とを備えた燃料電池システムに おいて、
前記ガス漏れ判定部は、前記圧力センサによって検出された前記閉空間における 圧力の変化に基づきガス漏れ判定値を参照してガス漏れを判定するものであって、 前記燃料極における窒素の濃度に応じて前記ガス漏れの判定レベルを異ならせ、前 記燃料ガス漏れの判定を行うものであることを特徴とする燃料電池システム。
6 . 前記ガス漏れ判定部は、前記窒素の濃度に応じて前記ガス漏れ判定値の変更 を行うことによリ、前記燃料ガス漏れの判定レベルを異ならせることを特徴とする 請求項 5に記載の燃料電池システム。
7 . 燃料電池スタックの温度を検出するスタック温度検出手段と、前記燃料極の 圧力を検出する燃料極圧力検出手段と、前記放置時間を計測する放置時間計測手段 と、 を備え、
前記燃料極における窒素の濃度を、運転停止時における燃料電池スタックの温度 と、燃料電池の再起動時における前記燃料極の圧力と、前記燃料電池が停止してか ら再起動されるまでの放置時間と、に基づき推定することを特徴とする請求項 5ま たは6に記載の燃料電池システム。
PCT/JP2006/315449 2005-08-09 2006-07-28 燃料電池システム、および燃料電池システムにおける燃料ガス漏れ判定方法 WO2007018132A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/920,701 US7829233B2 (en) 2005-08-09 2006-07-28 Fuel cell system and method for judging fuel gas leak in a fuel cell system
DE112006002060T DE112006002060B4 (de) 2005-08-09 2006-07-28 Brennstoffzellensystem und Verfahren zum Beurteilen einer Brenngasleckage in einem Brennstoffzellensystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005231368A JP5196209B2 (ja) 2005-08-09 2005-08-09 燃料電池システム、および燃料電池システムにおける燃料ガス漏れ判定方法
JP2005-231368 2005-08-09

Publications (1)

Publication Number Publication Date
WO2007018132A1 true WO2007018132A1 (ja) 2007-02-15

Family

ID=37727317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315449 WO2007018132A1 (ja) 2005-08-09 2006-07-28 燃料電池システム、および燃料電池システムにおける燃料ガス漏れ判定方法

Country Status (6)

Country Link
US (1) US7829233B2 (ja)
JP (1) JP5196209B2 (ja)
KR (1) KR100974050B1 (ja)
CN (1) CN100546087C (ja)
DE (1) DE112006002060B4 (ja)
WO (1) WO2007018132A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008071402A1 (en) * 2006-12-14 2008-06-19 Daimler Ag Leakage test in a fuel cell system
JP7498689B2 (ja) 2021-09-22 2024-06-12 株式会社豊田自動織機 燃料電池システム

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120309A1 (en) * 2009-04-17 2010-10-21 Utc Power Corporation Fuel cell stack gas leak detection
CN102470749B (zh) * 2009-07-21 2014-02-26 丰田自动车株式会社 燃料系统和车辆
DE102009057130A1 (de) 2009-12-08 2011-06-09 Heinrich-Heine-Universität Düsseldorf Verfahren zur Analyse der Zusammensetzung von Gasgemischen
US8387441B2 (en) * 2009-12-11 2013-03-05 GM Global Technology Operations LLC Injector flow measurement for fuel cell applications
US8507141B2 (en) * 2010-08-25 2013-08-13 GM Global Technology Operations LLC Membrane permeation adjustment in PEM fuel cell
JP5470234B2 (ja) * 2010-12-21 2014-04-16 本田技研工業株式会社 燃料電池のクロスリーク判定方法と燃料電池システム
EP2733335B1 (en) * 2011-07-11 2016-11-09 Toyota Jidosha Kabushiki Kaisha Detection method of airtight failure in a working gas circulating type gas engine, and working gas circulating type gas engine using the method
WO2013156666A1 (en) * 2012-07-05 2013-10-24 Convion Oy Method and arrangement for determination of leakage levels in fuel cell system
JP6079749B2 (ja) 2014-11-13 2017-02-15 トヨタ自動車株式会社 燃料電池システムおよび水素ガス漏れ検出方法
JP6137128B2 (ja) * 2014-11-13 2017-05-31 トヨタ自動車株式会社 燃料電池の反応ガスの漏洩を検出する方法および燃料電池システム
JP6389440B2 (ja) * 2015-03-13 2018-09-12 株式会社神戸製鋼所 ガス供給システムおよびそれを備えた水素ステーション、蓄圧器の寿命判定方法、並びにガス供給システムの使用方法
KR102371601B1 (ko) 2017-05-25 2022-03-07 현대자동차주식회사 연료전지 시스템 제어 방법
JP6834867B2 (ja) * 2017-09-13 2021-02-24 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの異常診断方法
JP6996340B2 (ja) * 2018-02-26 2022-02-04 トヨタ自動車株式会社 燃料電池システム及び燃料電池の制御方法
US11404710B2 (en) * 2018-12-17 2022-08-02 Cummins Enterprise Llc Assembled portion of a solid oxide fuel cell and methods for inspecting the same
CN111106370B (zh) * 2019-12-31 2021-09-24 上海神力科技有限公司 一种燃料电池电堆膜电极串漏检测方法
CN111707419B (zh) * 2020-07-01 2022-05-03 郑州佛光发电设备有限公司 一种模拟燃料电池在目标温度下密封性能的检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329965A (ja) * 1995-05-29 1996-12-13 Matsushita Electric Ind Co Ltd 燃料電池発電システム
JPH10103547A (ja) * 1996-10-01 1998-04-21 Matsushita Electric Ind Co Ltd ガス遮断装置
JP2003045466A (ja) * 2001-07-26 2003-02-14 Honda Motor Co Ltd 燃料電池におけるガス漏れ検知方法
JP2003308866A (ja) * 2002-04-16 2003-10-31 Nissan Motor Co Ltd 燃料電池システムのガス漏れ検知方法及び装置
JP2004095425A (ja) * 2002-09-02 2004-03-25 Nissan Motor Co Ltd 供給開閉弁の故障診断システム
JP2004192919A (ja) * 2002-12-10 2004-07-08 Toyota Motor Corp 燃料電池システム
JP2004319332A (ja) * 2003-04-17 2004-11-11 Nissan Motor Co Ltd 燃料電池システム
JP2005011703A (ja) * 2003-06-19 2005-01-13 Toyota Motor Corp 燃料電池システムおよびガス漏洩検知方法
JP2006185886A (ja) * 2004-12-01 2006-07-13 Toyota Motor Corp 異常判定装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205762A (ja) * 1992-01-23 1993-08-13 Fuji Electric Co Ltd 単位燃料電池の特性評価装置
JPH08185878A (ja) 1994-12-27 1996-07-16 Fuji Electric Co Ltd 燃料電池発電装置
US5763765A (en) * 1996-09-25 1998-06-09 Ballard Power Systems Inc. Method and apparatus for detecting and locating perforations in membranes employed in electrochemical cells
US6492043B1 (en) * 1998-12-23 2002-12-10 Ballard Power Systems Inc. Method and apparatus for detecting a leak within a fuel cell
JP2002298890A (ja) 2001-03-30 2002-10-11 Osaka Gas Co Ltd 燃料電池の不良セル検出方法
JP4929556B2 (ja) 2003-05-14 2012-05-09 トヨタ自動車株式会社 燃料電池システムの運転制御
JP4617675B2 (ja) 2004-01-13 2011-01-26 トヨタ自動車株式会社 燃料電池システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329965A (ja) * 1995-05-29 1996-12-13 Matsushita Electric Ind Co Ltd 燃料電池発電システム
JPH10103547A (ja) * 1996-10-01 1998-04-21 Matsushita Electric Ind Co Ltd ガス遮断装置
JP2003045466A (ja) * 2001-07-26 2003-02-14 Honda Motor Co Ltd 燃料電池におけるガス漏れ検知方法
JP2003308866A (ja) * 2002-04-16 2003-10-31 Nissan Motor Co Ltd 燃料電池システムのガス漏れ検知方法及び装置
JP2004095425A (ja) * 2002-09-02 2004-03-25 Nissan Motor Co Ltd 供給開閉弁の故障診断システム
JP2004192919A (ja) * 2002-12-10 2004-07-08 Toyota Motor Corp 燃料電池システム
JP2004319332A (ja) * 2003-04-17 2004-11-11 Nissan Motor Co Ltd 燃料電池システム
JP2005011703A (ja) * 2003-06-19 2005-01-13 Toyota Motor Corp 燃料電池システムおよびガス漏洩検知方法
JP2006185886A (ja) * 2004-12-01 2006-07-13 Toyota Motor Corp 異常判定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008071402A1 (en) * 2006-12-14 2008-06-19 Daimler Ag Leakage test in a fuel cell system
JP7498689B2 (ja) 2021-09-22 2024-06-12 株式会社豊田自動織機 燃料電池システム

Also Published As

Publication number Publication date
JP2007048577A (ja) 2007-02-22
KR100974050B1 (ko) 2010-08-04
DE112006002060B4 (de) 2012-04-12
CN101133509A (zh) 2008-02-27
US20090047553A1 (en) 2009-02-19
CN100546087C (zh) 2009-09-30
KR20080016737A (ko) 2008-02-21
DE112006002060T5 (de) 2008-05-29
US7829233B2 (en) 2010-11-09
JP5196209B2 (ja) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5196209B2 (ja) 燃料電池システム、および燃料電池システムにおける燃料ガス漏れ判定方法
JP4894994B2 (ja) 燃料電池システム
JP4956906B2 (ja) 燃料電池システムおよび水素漏れ検出方法
US7648787B2 (en) Gas leak detection device and fuel cell system
JP2005011703A (ja) 燃料電池システムおよびガス漏洩検知方法
WO2004102719A1 (ja) 燃料電池システムの運転制御
WO2006030969A1 (ja) 燃料電池システムおよび燃料電池システムのガス漏れ判定方法
JP6376184B2 (ja) 燃料電池システムおよび車両
JP2006185886A (ja) 異常判定装置
US11171347B2 (en) Fuel cell system to control output of a fuel cell stack
JP4930822B2 (ja) 燃料電池システム
US20090110981A1 (en) Fuel Cell System and Operating Method of Fuel Cell System
JP2006294447A (ja) 異常判定装置
JP4363475B2 (ja) 燃料電池システム
JP2006310046A (ja) 燃料電池の水素循環量制御装置及び燃料電池の水素循環量制御方法
JP2007242408A (ja) 燃料電池システム
JP2012004032A (ja) 燃料電池システム
JP5114520B2 (ja) 燃料電池システム及び燃料電池システムの停止制御方法
JP2004342475A (ja) 燃料電池システムの運転制御
JP2007227159A (ja) 燃料電池システム
JP2012209154A (ja) 燃料電池システムを制御する制御装置
JP2009094000A (ja) 燃料電池システム
KR102663202B1 (ko) 연료전지의 수소 공급 제어방법
JP2006107998A (ja) 燃料電池システム
JP4811698B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680007062.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11920701

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087000739

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120060020609

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006002060

Country of ref document: DE

Date of ref document: 20080529

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782309

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607