WO2006030969A1 - 燃料電池システムおよび燃料電池システムのガス漏れ判定方法 - Google Patents

燃料電池システムおよび燃料電池システムのガス漏れ判定方法 Download PDF

Info

Publication number
WO2006030969A1
WO2006030969A1 PCT/JP2005/017438 JP2005017438W WO2006030969A1 WO 2006030969 A1 WO2006030969 A1 WO 2006030969A1 JP 2005017438 W JP2005017438 W JP 2005017438W WO 2006030969 A1 WO2006030969 A1 WO 2006030969A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel
fuel cell
pressure
fuel gas
Prior art date
Application number
PCT/JP2005/017438
Other languages
English (en)
French (fr)
Inventor
Naohiro Yoshida
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112005002230.7T priority Critical patent/DE112005002230B4/de
Priority to CN2005800303164A priority patent/CN101015086B/zh
Priority to US11/660,810 priority patent/US8216729B2/en
Publication of WO2006030969A1 publication Critical patent/WO2006030969A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a gas leak determination method thereof, and more particularly, to an improved technique for accurately determining a gas leak of a fuel gas supply system in a short time.
  • shut-off valves for example, high-pressure hydrogen tank valve, hydrogen supply valve, FC stack inlet valve, FC, etc.
  • FC fuel cell supply path
  • Stack outlet pulp, purge pulp, etc. are provided.
  • a shut-off valve disposed in a fuel gas supply path of a vehicle is closed.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-274311
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-308868 Disclosure of Invention
  • an object of the present invention is to solve such problems and to propose a fuel cell system and a gas leak determination method for a fuel cell system capable of accurately determining a gas leak in a fuel gas supply system in a short time. To do.
  • the fuel cell system of the present invention consumes the fuel gas existing in the gas leak detection part of the fuel gas supply system at the anode electrode of the fuel cell, and exists in the gas leak detection part.
  • a fuel cell system comprising a determination means for determining a gas leak based on a pressure change state of a fuel gas, wherein the fuel gas present in the gas leak detection unit is purged out of the fuel gas supply system.
  • Exhaust means for reducing the pressure at the leak detection site is provided.
  • the “pressure change state” means a physical quantity related to the pressure change, for example, a pressure drop allowance is suitable.
  • the pressure at the gas leak detection site can be brought close to the target pressure in a short time by purging outside the fuel gas supply path. Yes, gas leak Can be performed accurately in a short time.
  • purging the fuel gas an increase in the impurity concentration of the fuel gas can be suppressed, so that a decrease in the cell voltage can be suppressed.
  • the exhaust means is preferably configured to purge the fuel gas so as to limit the purge of the fuel gas when the pressure at the gas leak detection unit is lower than the target pressure.
  • “restriction” means that the purge amount of the fuel gas is reduced to a small amount or the purge of the fuel gas is prohibited. Thereby, the pressure of the gas leak detection part can be brought close to the target pressure.
  • the exhaust means may vary the purge amount of the fuel gas according to the consumption amount of the fuel gas existing in the gas leak detection unit. For example, when there is a large amount of fuel gas present in the gas leak detection part, the pressure of the gas leak detection part can be brought close to the target pressure quickly by increasing the purge amount of the fuel gas. On the other hand, when the amount of fuel gas present in the gas leak detection part is small, the purge amount of the fuel gas is small.
  • the fuel cell system of the present invention preferably further includes control means for varying the generated current of the fuel cell in accordance with the consumption amount of the fuel gas inherent in the gas leak detection unit. For example, when there is a large amount of fuel gas in the gas leak detection part, the pressure of the gas leak detection part can be brought close to the target pressure quickly by increasing the amount of fuel gas consumed by power generation. On the other hand, when there is a small amount of fuel gas in the gas leak detection site, the amount of fuel gas consumed by power generation is small.
  • the fuel cell system of the present invention preferably further includes a power storage means for storing the power generated by the fuel cell, and the exhaust means preferably makes the amount of purge of the fuel gas variable according to the amount of charge of the power storage means.
  • the amount of charge of the power storage means is small, a large amount of electric power obtained by consuming the fuel gas inherent in the gas leak detection site can be charged, so the fuel gas purge amount is small.
  • the amount of charge of the power storage means is large, it is not possible to charge the electric power obtained by consuming the fuel gas present in the gas leak detection site, so it is better to increase the purge amount of the fuel gas.
  • the fuel cell system of the present invention is a mixture of an oxidant gas supply means for supplying an oxidizing gas to a power sword electrode of a fuel cell, a power sword electrode off-gas discharged from the fuel cell, and a fuel gas purged from the exhaust means. It is preferable that a diluter for dilution is further provided, and the oxidizing gas supply means changes the supply amount of the oxidizing gas in accordance with the purge amount of the fuel gas purged from the exhaust means. As a result, the exhaust fuel gas concentration can be reduced.
  • the fuel cell system of the present invention further includes a fuel gas sensor for detecting leakage of the fuel gas, and the amount of purge per purge of the fuel gas purged from the exhaust means is a leakage detection threshold range detected by the fuel gas sensor. It is preferable to be within. Thereby, erroneous determination by the fuel gas sensor can be avoided.
  • the gas leak detection site is a substantially sealed space formed by closing a valve disposed in the fuel gas supply system, and the judging means is a valve closed. It is preferable that the gas leak determination is performed after the time required for the pressure in the substantially sealed space to stabilize has elapsed. Thereby, an accurate gas leak determination can be performed.
  • the exhaust means may be a purge valve disposed in an anode off gas flow path for exhausting the hydrogen off gas discharged from the fuel cell to the outside of the system.
  • the gas leak determination method for a fuel cell system of the present invention consumes fuel gas present in a gas leak detection site of a fuel gas supply system at the anode electrode of the fuel cell, and the pressure of the fuel gas present in the gas leak detection site.
  • a gas leak determination method for a fuel cell system that performs gas leak determination based on a change state, wherein the fuel gas existing in the gas leak detection site is purged out of the fuel gas supply system. Therefore, the process of reducing the pressure of the said gas leak detection site
  • purging of the fuel gas when the pressure of the gas leak detection portion is lower than the target pressure by purging the fuel gas, purging of the fuel gas may be limited.
  • the fuel gas purge amount may be varied in accordance with the amount of fuel gas consumed in the gas leak detector.
  • FIG. 1 is a configuration diagram of a fuel cell system according to the present embodiment.
  • Figure 2 shows the main routine for system control.
  • FIG. 3 shows the gas leak judgment processing routine at system startup.
  • Figure 4 shows the normal power generation control routine.
  • Fig. 5 shows the gas leak judgment processing routine.
  • Fig. 6 shows the gas leak judgment processing routine.
  • Fig. 7 shows the gas leak judgment processing routine.
  • Fig. 8 shows the gas leak judgment processing routine.
  • Fig. 9 shows the gas leak judgment processing routine.
  • FIG. 10 is a gas leak determination processing routine.
  • Figure 11 shows the system stop processing routine.
  • Figure 12 shows the abnormal stop processing routine.
  • FIG. 1 shows a schematic configuration of a fuel cell system according to the present embodiment.
  • the fuel cell system 10 is used as an in-vehicle power generation system of a fuel cell vehicle (FCEV) is shown, but it can also be used as a stationary power generation system.
  • Fuel cell (cell stack) 20 is composed of multiple single cells stacked in series It has a stack structure, for example, a solid polymer electrolyte fuel cell.
  • the fuel gas supply system (fuel gas piping system) of the fuel cell 20 is provided with a fuel gas supply source 30, a fuel gas supply path 31, and a fuel gas circulation path 32.
  • the fuel gas supply system is a general term for gas pipes, pulp, and the like disposed on a path for supplying fuel gas from the fuel gas supply source 30 to the fuel cell 20.
  • the fuel gas supply system further includes the fuel gas circulation path 32. It's good.
  • the fuel gas supply source 30 is configured by, for example, a hydrogen storage source such as a high-pressure hydrogen tank or a hydrogen storage tank, or a reformer that reforms the reforming raw material into hydrogen rich gas.
  • the fuel gas supply path 3 1 is a gas flow path for guiding the fuel gas released from the fuel gas supply source 3 ⁇ to the anode electrode of the fuel cell 20.
  • the gas flow path includes tank pulp from upstream to downstream. H 2 0 1, high pressure regulator H 9, low pressure regulator HI 0, hydrogen supply pulp H 2 0 0, and FC stack inlet pulp H 2 1 are arranged.
  • the fuel gas compressed to a high pressure is reduced to a medium pressure by the high pressure regulator H 9 and further reduced to a low pressure (normal operating pressure) by the low pressure regulator HI 0.
  • the fuel gas circulation path 3 2 is a return gas flow path for recirculating unreacted fuel gas to the fuel cell 20, and the FC flow outlet pulp H 2 2, hydrogen pump 6 from upstream to downstream. 3 and a check valve H 52 are respectively provided.
  • the low-pressure unreacted fuel gas discharged from the fuel cell 20 is appropriately pressurized by the hydrogen pump 63 and guided to the fuel gas supply path 31.
  • the check valve H 5 2 suppresses the back flow of the fuel gas from the fuel gas supply path 3 1 to the fuel gas circulation path 3 2.
  • Anode off gas flow path 3 3 is fuel cell 2 0 This is a gas flow path for exhausting the hydrogen off-gas discharged from the system to the outside of the system, and a purge valve (exhaust means) H 51 is disposed in the gas flow path.
  • the tank valve H 2 0 1, hydrogen supply valve H 2 0 0, FC stack inlet valve H 2 1, FC stack outlet pulp H 2 2, and purge pulp H 5 1 are gas flow paths 3 1 to 3 3 or fuel. It is a shut valve for supplying or shutting off fuel gas to the battery 20, and is constituted by, for example, a solenoid valve. As such an electromagnetic valve, for example, an on-off valve or a linear valve that can adjust the valve opening degree by PWM control is suitable.
  • the oxidant gas supply system (oxidation gas piping system) of the fuel cell 20 is provided with an air conditioner (oxidation gas supply source) 40, an oxidant gas supply channel 41, and a cathode off gas channel 42.
  • the oxidizing gas supply means in the present embodiment is configured to include at least an air compressor 40 and an oxidizing gas supply path 41.
  • the air compressor 40 compresses the air taken from the outside air via the air filter 61 and supplies the compressed air as an oxidizing gas to the cathode electrode of the fuel cell 20.
  • the oxygen off-gas after being subjected to the cell reaction of the fuel cell 20 flows through the power sword off-gas channel 42 and is exhausted out of the system.
  • Oxygen off-gas is in a highly moist state because it contains moisture generated by the cell reaction in the fuel cell 20.
  • the humidification module 62 exchanges moisture between the low-humidity oxidation gas flowing through the oxidant gas supply channel 41 and the high-humidity oxygen off-gas flowing through the force sword-off gas flow channel 42, and the fuel cell 20 Appropriately humidify the oxidizing gas supplied to the.
  • the back pressure of the oxidizing gas supplied to the fuel cell 20 is regulated by a pressure regulating valve A 4 disposed in the vicinity of the force sword outlet of the force sword off gas passage 42.
  • the downstream of the force sword off-gas flow path 4 2 communicates with the diluter 6 4, and oxygen off gas is supplied to the diluter 6 4.
  • the diluter 64 also communicates with the downstream side of the anode offgas flow path 33, and is configured to exhaust the hydrogen offgas outside the system after being mixed and diluted with the oxygen offgas.
  • Part of the DC power generated by the fuel cell 20 is stepped down by the DC / DC converter 53 and charged to the secondary battery (storage means) 54.
  • the secondary battery 54 plays a role as a regenerative energy storage source during vehicle braking, and as an energy buffer during load fluctuations accompanying acceleration or deceleration of the vehicle, such as a nickel-powered lithium storage battery, nickel-hydrogen storage battery, lithium It is composed of a secondary battery or the like.
  • Traction motor 5 1 and auxiliary inverter 52 convert dc power supplied from either or both of fuel cell 20 and secondary battery 54 into AC power to produce traction motor M 3 and auxiliary motor M4. Supply AC power to each of these.
  • the auxiliary motor M 4 is a generic term for a motor M 2 that drives a hydrogen circulation pump 63 described later, a motor M 1 that drives a air compressor 40, and the like.
  • the control unit 50 obtains the system required power (the sum of the vehicle travel power and auxiliary power) based on the accelerator opening detected by the accelerator sensor 55, the vehicle speed detected by the vehicle speed sensor 56, etc., and the output power of the fuel cell 20
  • the fuel cell system 10 is controlled so as to match the target power.
  • the control unit 50 adjusts the rotational speed of the motor M1 that drives the air conditioner 40 to adjust the supply amount of the oxidizing gas, and adjusts the rotational speed of the motor M2 that drives the hydrogen pump 63. Adjust the fuel gas supply.
  • the control unit 50 controls the DC / DC converter 53 to adjust the operation point (output voltage, output current) of the fuel cell 20 and adjust the output power of the fuel cell 20 to match the target power.
  • the fuel gas supply system consists of a high pressure section (tank pulp H201 to hydrogen supply pulp H200 section), a low pressure section (hydrogen supply valve H200 to FC stack inlet valve H21 section), and FC section (stack inlet pulp). H 21 to FC stack outlet valve H 22 section) and circulation section (FC stack outlet pulp H 22 to check valve H52 section). Each section detects fuel gas pressure.
  • Pressure sensors P6, P7, P9, P61, P5, P10, P11 are provided. More specifically, the pressure sensor P 6 is a fuel gas supply source. Detect the fuel gas supply pressure of 30.
  • the pressure sensor P 7 detects the secondary pressure of the high pressure regulator H 9.
  • Pressure sensor P9 detects the secondary pressure of low pressure regulator HI0.
  • the pressure sensor P 61 detects the pressure in the low pressure part of the fuel gas supply path 3 1.
  • the pressure sensor P5 detects the pressure at the stack inlet.
  • Pressure sensor P1 0 detects the pressure on the input port side (upstream side) of hydrogen circulation pump 63.
  • the pressure sensor P 1 1 detects the pressure on the output port side (downstream side) of the hydrogen circulation pump 63.
  • the gas leak judgment of the fuel gas supply system is performed for each section (high pressure section, low pressure section, FC section, and circulation section). That is, each section becomes a gas leak detection site.
  • the control unit 50 functions as a determination means for performing a gas leak determination (S 1 0 2, S 1 0 6, S 1 0 8), which will be described later, as well as fuel for consuming fuel gas present in the gas leak detection site. It also functions as a control means that controls the generated current of the battery. Since the volume of each gas leak detection part is different, the amount of fuel gas contained therein is also different. The control unit 50 preferably controls the generated current of the fuel cell 20 according to the volume of the gas leak detection part (amount of fuel gas). For example, if the volume of the gas leak detection part is large, increase the value of the generated current, and if the volume of the gas leak detection part is small, decrease the value of the generated current to control the fuel gas consumption. .
  • control unit 50 preferably controls the amount of fuel gas (purge amount) purged from the purge pulp H 51 according to the volume of the gas leak detection portion. For example, when the volume of the gas leak detection part is large, the purge amount is increased, and when the volume of the gas leak detection part is small, the purge amount is reduced so that the pressure of the gas leak detection part approaches the target pressure. To control. Further, the control unit 50 preferably controls the purge amount of the fuel gas in accordance with the SOC (State Of Charge) of the secondary battery 54. For example, when the SOC of the secondary battery 54 is high, even if the fuel cell 20 is generated and the fuel gas is consumed, the generated power cannot be charged into the secondary battery 54. When the amount of purge of gas is increased and the SOC of the secondary battery 5 4 is low, the power generation of the fuel cell 20 Since the secondary battery 54 can be charged with electric power, the fuel gas purge amount is reduced.
  • SOC State Of Charge
  • the fuel cell sensor 10 is provided with a fuel gas sensor (for example, a hydrogen sensor) that detects leakage of fuel gas, the purge pulp H 51 force and the purge of fuel gas to be purged once
  • the amount is preferably within the leak detection threshold range detected by the fuel gas sensor (below the minimum concentration at which gas leak can be detected). Thereby, erroneous determination of the fuel gas sensor can be avoided.
  • FIG. 2 is a main routine in which the system control executed by the control unit 50 is described. After explaining the outline of system control with reference to the figure, each subroutine will be explained.
  • the control unit 50 determines a gas leak in the fuel gas supply system (S 102).
  • S103; YES normal power generation control is performed (S104).
  • S 1 05; YES the control unit 50 determines the gas leak of the fuel gas supply system (S 10 06).
  • Intermittent operation is an operation that temporarily stops power generation of the fuel cell 20 during low-load operation, such as idling, low-speed driving, or regenerative braking, and runs with the power supplied from the secondary battery 54.
  • the control unit 50 performs a gas leak determination of the fuel gas supply system (S 108) and performs a system stop process (S 109). If a gas leak is detected (S 1 1 0; YES), an abnormal stop process is performed (S 1 1 Do)
  • S 1 1 0; YES
  • FIG. 3 is a flowchart describing the gas leak judgment processing routine (S102) at system startup.
  • the control unit 50 opens the tank pulp H 201, the hydrogen supply pulp H 200, the FC stack inlet pulp H 21, and the FC stack outlet pulp H 22, and passes through the fuel gas supply path 31. Then, fuel gas is supplied to the fuel cell 20 (S201). Next, the control unit 50 determines whether or not the pressure values of all the pressure sensors P 5 to P 6 arranged in the fuel gas supply system are equal to or higher than a predetermined pressure value P j:! To P j 7. Determine (S 2 02).
  • All of the pressure sensors P5 to P6 reach a predetermined pressure value Pj1 to Pj7 or higher, and the pressure in the fuel gas supply path 31 and the fuel gas circulation path 32 is increased to a state where gas leak judgment can be performed. Then (S 202; YES), the control unit 50 closes the tanta pulp H 201, the hydrogen supply valve H 200, the FC stack inlet valve H 21, and the FC stack outlet valve H 22 (S 203), and the fuel gas supply path 31 and The fuel gas circuit 32 is sealed. Then, after a predetermined time t1 has elapsed from the sealed state (S204), the control unit 50 stores the pressure values of the pressure sensors P5 to P6 as P5P to P6P (S205).
  • the control unit 50 detects the stored pressure values P5P to P6P, and the pressure sensors P5 to P6 detect when the predetermined time t2 has elapsed.
  • the differential pressure ⁇ 5 to ⁇ 6 with the calculated pressure value is calculated (S207).
  • the differential pressures ⁇ 5 to ⁇ 6 obtained here correspond to the pressure drop over time (t2-t1).
  • the controller 50 determines whether or not each of the differential pressures ⁇ 5 to ⁇ 6 is equal to or greater than a predetermined pressure value pj 8 to: P j 14 (S 208).
  • Fig. 4 is a flowchart describing the power generation control routine (S104) during normal operation.
  • the controller 50 opens each pulp (tank valve H 201, hydrogen supply valve H 200, FC stack inlet pulp H21, and FC stack outlet pulp H22) in the fuel gas supply system (S 301).
  • the required vehicle power (system required power) is calculated based on the accelerator opening, the vehicle speed, etc. (S 302), and the ratio between the output power of the fuel cell 20 and the output power of the secondary battery 54 is determined (S 303).
  • the control unit 50 refers to the fuel cell power generation amount stoichiometric map and controls the rotation speed of the motor Ml so that a desired flow rate of oxidizing gas is supplied to the fuel cell 20 (S304).
  • control unit 50 refers to the fuel cell power generation amount / hydrogen stoichiometric map, and controls the rotation speed of the motor M 2 so that a desired flow rate of fuel gas is supplied to the fuel cell 20 (S 305 ).
  • controller 50 controls the opening and closing of the purge pulp H 51 with reference to the fuel cell power generation amount-one fuel gas purge frequency map (S 306).
  • the normal operation is continuously executed by repeatedly executing the power generation control routine at predetermined intervals.
  • FIGS. 5 to 10 are flowcharts describing the gas leak judgment processing routine (S106, S108) during intermittent operation or when the system is stopped.
  • the routine is invoked, whether the control unit 50 closes the tank valve H 201 (S 40 1), and performs the purge judgment of the high pressure section (S 402) 0 purge judgment, the fuel gas is purged It is to determine whether. First, based on the differential pressure between the pressure detected by the pressure sensor P6 and the target pressure P6A of the high-pressure part, the fuel gas consumption required to make the pressure of the high-pressure part coincide with the target pressure P6A is calculated. Calculate (S 403).
  • the degree of pressure reduction ⁇ is calculated from the ratio of the purge amount per purge pulp H 51 and the volume of the high-pressure part (S 404), and the pressure difference between the pressure of the high-pressure part and the target pressure P 6 A is ⁇ ⁇ ⁇ + predetermined If it is less than the value (margin) (S 405; YES), purging is prohibited because the pressure in the high pressure section will decrease the target pressure P 6 A if the fuel gas is purged (S 406) . On the other hand, if the pressure difference between the pressure in the high pressure section and the target pressure P 6 A exceeds APQ + the specified value (margin) (S 40 5; NO), the pressure in the high pressure section will not change even if the fuel gas is purged.
  • the degree of pressure reduction APQ is calculated from the ratio of the purge amount per purge pulp H 5 1 to the volume of the low pressure part (S 410), and the differential pressure between the pressure of the low pressure part and the target pressure P 6 1A is APQ + predetermined If it is less than the value (margin) (S 41 1; YES), purging the fuel gas prohibits the purge because the pressure in the low-pressure part will drop the target pressure P 6 1 A (S 41 2).
  • the purge judgment of the FC section is performed (S 414) .0 First, based on the pressure difference between the pressure detected by the pressure sensor P 5 and the target pressure P 5 A of the high pressure section, the pressure of the FC section is set to the target pressure P The fuel gas consumption required to match 5 A is calculated (S 41 5).
  • the degree of pressure reduction ⁇ is calculated from the ratio of the purge amount per purge valve H 1 and the volume of the FC section (S 41 6), and the differential pressure between the pressure in the FC section and the target pressure cover 5 is calculated.
  • 3 + Predetermined value (margin)
  • the differential pressure between the FC pressure and the target pressure P 5 A exceeds ⁇ + predetermined value (margin) (S 41 7; NO)
  • purge is permitted (S 41 9).
  • the purge judgment of the circulation part is performed (S420). First, power generation is prohibited (S 421). 0 Next, the degree of pressure reduction APQ is calculated from the ratio of the purge amount per one purge valve H 5 1 to the volume of the circulation part (S 422). If the differential pressure from the standard pressure P 1 OA is below APQ + predetermined value (margin) (S 423; YES), when the fuel gas is purged, the pressure in the circulating section will decrease the target pressure P 10 A Therefore, purging is prohibited (S424).
  • the control unit 50 When the purge determination for each section is completed, the control unit 50 then refers to the hydrogen consumption-one fuel cell power generation amount map, and the fuel for consuming the fuel gas determined in S 403, S 409, S 41 5 Obtain the amount of power generated by battery 20 (S 426). Further, referring to the fuel cell power generation amount-one air 'stoky' map, the rotational speed of the motor Ml is adjusted so that the oxidizing gas necessary for obtaining the desired power generation amount is supplied to the fuel cell 20 (S 427 ). When the hydrogen supply pulp H 200 is opened (S 428; YES), the control unit 50 is necessary to obtain the desired power generation amount by referring to the fuel cell power generation amount / hydrogen stoichiometry map.
  • the rotational speed of the motor M2 is adjusted so that a proper fuel gas flow rate is supplied to the fuel cell 20 (S429). Further, the control unit 50 controls the opening and closing of the purge pulp H 51 with reference to the fuel cell power generation amount-one purge frequency map (S430). At this time, if the purge is prohibited (S 406, S 41 2, S 418, S 424), the purge valve H 51 is kept closed. On the other hand, when the hydrogen supply valve H 200 is closed (S 428; NO), the control unit 50 stops the hydrogen pump 63 (S 43 1) and refers to the fuel cell power generation amount one purge frequency map. Open / close the purge valve H 51 (S 432).
  • the purge amount per operation is calculated based on the primary pressure, the secondary pressure, and the valve opening time of the purge valve H 51 (S433).
  • the primary pressure of the purge pulp H5 1 can be obtained from the pressure value detected by the pressure sensor P 11.
  • the secondary pressure of the oxygen valve H 5 1 can be obtained from the flow rate of the oxygen off gas flowing through the force sword off gas flow path 4 2.
  • the control unit 50 When the SOC of the secondary battery 54 is equal to or greater than a predetermined value (for example, 80./. To 90%) (S4 3 4; YES), the control unit 50 generates power by consuming fuel gas. Since the generated power cannot be stored in the secondary battery 54, the control unit 50 decreases the power generation amount of the fuel cell 20 and increases the purge amount of the fuel gas (S 4 35). In addition, if the fuel gas purge frequency exceeds the predetermined frequency (S 4 3 6; YES), the concentration of the fuel gas exhausted outside the system increases, so the air compressor 40 The rotational speed is increased to increase the flow rate of the oxygen off-gas flowing through the force sword off-gas channel 42, and the exhaust fuel gas concentration diluted by the diluter 64 is reduced (S 4 37).
  • a predetermined value for example, 80./. To 90%
  • the force introduced into the diluter 64 by increasing the amount of oxidant gas supplied to the cathode electrode of the fuel cell 20 in response to an increase in the purge amount of the fuel gas (increase in the exhaust gas concentration). Increase the sword pole off-gas (oxidation gas). As a result, the concentration of the purged fuel gas can be diluted.
  • the purge gas may be oxidized by a combustor having a catalyst instead of the diluter 64.
  • the pressure in each section (gas leak detection part) of the fuel gas supply system can be quickly reduced. More specifically, the pressure in the high-pressure section, low-pressure section, and FC section can be reduced by fuel gas consumption by electric power generation and fuel gas purging operation, and the pressure in the circulation section is fuel gas purging operation. Can be lowered.
  • the determination of gas leakage in each section is, for example, by closing each valve arranged in the fuel gas supply system to form a closed space (substantially sealed space) and detecting the pressure drop allowance of the closed space. It is better to do it.
  • Gas leak determination is performed after the time required for the pulp to close and the time required for the pressure in the substantially closed space to stabilize have elapsed. It is preferable. Thereby, the accuracy of gas leak detection can be increased.
  • the detected pressure of the pressure sensor P 6 becomes equal to or lower than the target pressure P 6 A (S 438; Y ES)
  • the hydrogen supply pulp H 200 is closed (S 439). As a result, the high-pressure part is sealed.
  • it is determined whether or not the detected pressure of the pressure sensor P 61 disposed on the downstream side of the hydrogen supply pulp H 200 has been reduced to a predetermined pressure PJA 1 or less (S 44 ⁇ 0).
  • the predetermined pressure PJA 1 is a pressure for determining whether or not the hydrogen supply valve H200 is securely closed.
  • a predetermined time t 3 has elapsed from the time when the hydrogen supply pulp H 200 is closed in order to determine the gas leak in the high pressure section. It is determined whether or not the time has passed (S441).
  • the pressure detected by the pressure sensor P6 is stored as P6P (S442). Further, it is determined whether or not a predetermined time t 4 has elapsed since the hydrogen supply pulp H 200 was closed (S 443).
  • the stored pressure P 6 Differential pressure between P and the detected pressure of pressure sensor P 6 (pressure drop allowance) ⁇ 6 is calculated (S 444).
  • the differential pressure ⁇ 6 is equal to or higher than the predetermined threshold pressure P j 15 (S 445; YES)
  • P j 15 S 445; YES
  • Possible causes of the gas leakage include an open failure of the tank pulp H 201 or the hydrogen supply valve H 22, or damage to the regulators H 9, HI 0 or the fuel gas supply path 31.
  • an open failure is a failure state in which the pulp remains open and cannot be closed.
  • the control unit 50 permits the gas leakage judgment of the low pressure unit. (S 447). Even if the predetermined time t3 or t4 has not elapsed since the hydrogen supply valve H 200 was closed, this is in parallel with the gas leak judgment of the high pressure part as long as the hydrogen supply valve H 200 is already closed. This is because it is possible to determine the gas leakage in the low pressure part.
  • the control unit 50 closes the FC stack inlet valve H21 (S449). As a result, the low-pressure part is sealed.
  • the predetermined pressures P JA2 and P J A3 are pressures for determining whether or not the FC stack inlet valve H21 is securely closed.
  • the FC stack inlet valve H21 is closed to determine the gas leak in the low pressure part. It is determined whether or not a predetermined time t 5 has elapsed since time (S 45 1). When the predetermined time t5 has elapsed (S451: YES), the detected pressure of the pressure sensor P61 is stored as P61P (S452). Further, it is determined whether or not a predetermined time t 6 has elapsed since the FC stack inlet valve H 21 was closed (S 453). When the predetermined time t 6 has elapsed (S 453; YES), the stored pressure is stored.
  • Differential pressure between P 6 1 P and pressure detected by pressure sensor P 61 pressure drop allowance
  • ⁇ P 61 pressure drop allowance
  • P j 16 predetermined threshold pressure
  • Possible causes of the gas leak include an open failure of the hydrogen supply valve H22 or FC stack inlet pulp H21, or a breakage of the fuel gas supply path 31 or the fuel gas circulation path 32.
  • the control unit 50 permits the gas leakage judgment of the FC unit (S457). This is because the FC stack inlet valve H21 is already closed, even if the predetermined time t5 or t6 has not elapsed since the FC stack inlet pulp H21 was closed. This is because the gas leakage judgment of the FC section can be performed in parallel.
  • a predetermined time t from when the FC stack outlet valve H 22 is closed is used to determine the gas leakage in the FC section. It is determined whether or not 7 has elapsed (S 46 1). When the predetermined time t 7 has elapsed (S 46 1: YES), the detected pressure of the pressure sensor P 5 is stored as P 5 P (S 46 2). Further, it is determined whether or not the predetermined time t 8 has elapsed since the FC stack and the outlet valve H22 were closed (S 463).
  • the control unit 50 permits the gas leakage judgment of the circulation unit (S 467). This is because even if the specified time t7 or t8 has not elapsed since the FC stack outlet pulp H22 was closed, the FC section's gas leakage judgment was made as long as the FC stack outlet pulp H22 was already closed. This is because the gas leakage judgment of the circulating part can be performed in parallel.
  • the control section 50 determines whether or not a predetermined time t 9 has elapsed since the purge valve H 51 was prohibited from being opened or closed (or when the FC stack outlet pulp H22 was closed). (S 470). When the predetermined time t9 has elapsed (S470: YES), the pressure sensor P10 detected pressure is stored as P10P (S471).
  • Possible causes of the gas leakage include an open failure of the FC stack outlet valve H22 or the check valve H52, or damage to the fuel gas circuit 32.
  • the differential pressure ⁇ 10 is less than the predetermined threshold pressure P j 1 8 (S 474; NO)
  • P j 1 8 the predetermined threshold pressure P j 1 8
  • FIG 11 is a flowchart describing the system stop processing routine (S109).
  • the control unit 50 determines whether or not the gas leakage judgment of the circulation unit is completed (S 50 1).
  • the control section 50 opens the FC stack inlet valve H21 and the FC stack outlet valve H22, and the fuel gas supply path 3 1 and fuel
  • the fuel gas remaining in the gas circulation path 32 is guided to the fuel cell 20 (S 5002).
  • the control unit 50 rotates the air compressor 40 to supply oxidizing gas to the fuel cell 20.
  • the fuel gas introduced into the fuel cell 20 is consumed by electric power generation.
  • control unit 50 opens the purge valve H 51 at an appropriate time interval, thereby purging the fuel gas and reducing the impurity concentration of the fuel gas circulating in the fuel cell 20. Then, it is determined whether or not the pressure detected by the pressure sensor P 5 has decreased below the target pressure P 5 AE (S 503).
  • the target pressure P 5AE is preferably a pressure that does not cause the fuel gas to cross-leak to the power sword when the system is stopped.
  • the control unit 50 closes the FC stack inlet valve H21, the FC stack outlet pulp H22, and the purge valve H 51.
  • the air compressor 40 and the hydrogen pump 63 are stopped to stop power generation (S504).
  • Fig. 12 is a flowchart describing the abnormal stop processing routine (S 1 1 1). If it is determined in the above gas leak judgment (S 102, S 106, S 108) that a gas leak has occurred (S 210, S 446, S 456, S 4 46, S 475), an abnormal stop process is performed. The routine is called. When this routine is called, the controller 50 controls all the valves arranged in the fuel gas supply system, that is, tank valve H 201, hydrogen supply pulp H 200, FC stack. Inlet valve H 2 1, FC stack outlet valve H 2 2, and purge valve H 5 1 are all closed, and air compressor 40 and hydrogen pump 6 3 are stopped to stop power generation (S 6 0 1 ).
  • the pressure of the gas leak detection part can be reduced to the target pressure in a short time. This makes it possible to make a gas leak determination accurately in a short time. Also, by purging the fuel gas, an increase in the impurity concentration of the fuel gas can be suppressed, so that a decrease in the cell voltage can be suppressed.
  • the present invention not only the fuel gas existing in the gas leak detection part is consumed by electric power generation, but also the pressure at the gas leak detection part is set to the target pressure in a short time by purging outside the fuel gas supply path.
  • the gas leak can be determined accurately in a short time. Further, by purging the fuel gas, an increase in the impurity concentration of the fuel gas can be suppressed, so that a decrease in the cell voltage can be suppressed. Therefore, the present invention can be widely used in a gas leak determination method for such a fuel cell system and a fuel cell system that have such requirements.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明の燃料電池システム(10)は、燃料ガス供給系統(31,32)のガス漏れ検出部位に内在する燃料ガスを燃料電池(20)の発電によって消費し、ガス漏れ検出部位に内在する燃料ガスの圧力低下代に基づいてガス漏れ判定を行う判定手段(50)を備えたシステムであって、ガス漏れ検出部位に内在する燃料ガスを燃料ガス供給系統(31,32)の外にパージすることによってガス漏れ検出部位の圧力を低下させる排気手段(H51)を備える。ガス漏れ検出部位に内在する燃料ガスを電力発電で消費するだけでなく、燃料ガス供給系統の外にパージすることによってガス漏れ検出部位の圧力を短時間で目標圧力に近づけることができ、ガス漏れ判定を短時間で精度良く行える。

Description

明細書 燃料電池システムおよぴ燃料電池システムのガス漏れ判定方法 技術分野
本発明は燃料電池システムとそのガス漏れ判定方法に関し、 特に、 燃料ガ ス供給系統のガス漏れ判定を短時間で精度良く行うための改良技術に関する。 背景技術
燃料電池車両の発電システムとして、 燃料ガスと酸化ガスの酸化還元反応 による化学エネルギーを電気エネルギーとして直接取り出すことのできる燃 料電池システムが用いられている。 この種の燃料電池システムにおいては、 水素供給源から燃料電池へ燃料ガスを供給するための燃料ガス供給路に各種 の遮断弁 (例えば、 高圧水素タンクバルブ、 水素供給バルブ、 F Cスタック 入口バルブ、 F Cスタック出口パルプ、 パージパルプ等) が配設されている。 これら各種の遮断弁の故障診断を行うための手法として、 例えば、 特開 2 0 0 0 - 2 7 4 3 1 1号公報には、 車両の燃料ガス供給路に配設された遮断弁 を閉弁することによって燃料ガス供給路内に閉空間を作り出し、 その閉空間 の時間経過に対する圧力低下率が圧力低下率閾値よりも小さいときに弁故障 を判定する技術が提案されている。 ところが、 遮断弁下流側の圧力低下速度 は車両の運転状態、 即ち、 燃料消費率によって変動する。 このため、 車両の 運転状態によって燃料消費率が低くなる場合には、 遮断弁下流側の圧力低下 に多くの時間を要し、 迅速な故障診断を行うことができない。 このような技 術的背景に鑑みて、 特開 2 0 0 3— 3 0 8 8 6 8号公報には、 遮断弁の故障 診断を行う際に電力消費部 (モータ等) の消費電力を増加させることによつ て、 燃料電池の燃料消費量を増大させ、 遮断弁下流側の圧力を短時間で低下 させる技術が提案されている。
[特許文献 1] 特開 2000— 274311号公報
[特許文献 2] 特開 2003— 308868号公報 発明の開示
しかし、 電力消費部の消費電力の増加のみによつて燃料消費量を増大させ たのでは、 燃料電池を循環する水素オフガスの不純物濃度が高くなり、 セル 電圧低下を回避することができない。 セル電圧が低下すると、 燃料消費量が 目標値よりも少なくなり、 遮断弁下流側の圧力を低下させるのに時間を要す る。 また、 特開 2003— 308868号公報に記載の技術では、 故障診断 によって得られる電力をエネルギー保存手段に蓄電できるように、 故障診断 前に予めエネルギー保存手段のェネルギー保存量を低下させておく必要があ るので、 迅速な故障診断を行うことができない。
そこで、 本発明はこのような問題を解決し、 燃料ガス供給系統のガス漏れ 判定を短時間で精度良く行うことのできる燃料電池システムおよび燃料電池 システムのガス漏れ判定方法を提案することを課題とする。
上記の課題を解決するため、 本発明の燃料電池システムは、 燃料ガス供給 系統のガス漏れ検出部位に内在する燃料ガスを燃料電池のァノ一ド極で消費 し、 ガス漏れ検出部位に内在する燃料ガスの圧力変化状態に基づいてガス漏 れ判定を行う判定手段を備えた燃料電池システムであって、 ガス漏れ検出部 位に内在する燃料ガスを燃料ガス供給系統の外にパージすることによってガ ス漏れ検出部位の圧力を低下させる排気手段を備える。 ここで、 「圧力変化 状態」 とは、 圧力変化に関連する物理量をいい、 例えば、 圧力低下代等が好 適である。 ガス漏れ検出部位に内在する燃料ガスを燃料電池のアノード極で 消費するだけでなく、 燃料ガス供給路の外にパージすることによって、 ガス 漏れ検出部位の圧力を短時間で目標圧力に近づけることができ、 ガス漏れ判 定を短時間で精度良く行うことができる。 また、 燃料ガスをパージすること によって、 燃料ガスの不純物濃度の上昇を抑えることができるので、 セル電 圧の低下を抑制できる。
ここで、 排気手段は燃料ガスをパージすることによって.、 ガス漏れ検出部 位の圧力が目標圧力を下回る場合には燃料ガスのパージを制限するように構 成するのが好ましい。 ここで、 「制限」 とは、 燃料ガスのパージ量を少量に 減少させたり、 或いは燃料ガスのパージを禁止する意味である。 これにより、 ガス漏れ検出部位の圧力を目標圧力に近づけることができる。
また、 排気手段はガス漏れ検出部に内在する燃料ガスの消費量に応じて燃 料ガスのパージ量を可変にしてもよい。 例えば、 ガス漏れ検出部位に内在す る燃料ガスが多い場合には燃料ガスのパージ量を多くすることで、 ガス漏れ 検出部位の圧力を迅速に目標圧力付近に近づけることができる。 一方、 ガス 漏れ検出部位に内在する燃料ガスが少ない場合には燃料ガスのパージ量は少 量となる。
また、 本発明の燃料電池システムは、 ガス漏れ検出部に内在する燃料ガス の消費量に応じて燃料電池の発電電流を可変にする制御手段を更に備えるの が好ましい。 例えば、 ガス漏れ検出部位に内在する燃料ガスが多い場合には 電力発電による燃料ガスの消費量を多くすることで、 ガス漏れ検出部位の圧 力を迅速に目標圧力付近に近づけることができる。 一方、 ガス漏れ検出部位 に内在する燃料ガスが少ない場合には電力発電による燃料ガスの消費量は少 量となる。
また、 本発明の燃料電池システムは、 燃料電池が発電した電力を蓄電する 蓄電手段を更に備え、 排気手段は蓄電手段の充電量に応じて燃料ガスのパー ジ量を可変にするのが好ましい。 例えば、 蓄電手段の充電量が少ない場合に はガス漏れ検出部位に内在する燃料ガスを消費することによって得られた電 力を多く充電することができるので、 燃料ガスのパージ量は少量となる。 一 方、 蓄電手段の充電量が多い場合にはガス漏れ検出部位に内在する燃料ガス を消費することによって得られた電力を充電することができないので、 燃料 ガスのパージ量は多くした方がよい。
また、 本発明の燃料電池システムは、 燃料電池の力ソード極に酸化ガスを 供給する酸ィヒガス供給手段と、 燃料電池から排出される力ソード極オフガス と排気手段からパージされる燃料ガスとを混合希釈する希釈器とを更に備え、 酸化ガス供給手段は排気手段からパージされる燃料ガスのパージ量に対応し て酸化ガスの供給量を変更するのが好ましい。 これにより、 排気燃料ガス濃 度を低減できる。
また、 本発明の燃料電池システムは、 燃料ガスの漏洩を検出する燃料ガス センサを更に備え、 排気手段からパージされる燃料ガスの 1回あたりのパー ジ量は燃料ガスセンサが検出する漏れ検出閾値範囲内であることが好ましい。 これにより、 燃料ガスセンサによる誤判定を避けることができる。
また、 本発明の燃料電池システムにおいて、 ガス漏れ検出部位は燃料ガス 供給系統に配設されたバルブが閉弁することによつて形成された略密閉空間 であり、 判定手段はバルブが閉弁してから略密閉空間の圧力が安定するのに 要する時間が経過してからガス漏れ判定を行うのが好ましい。 これにより、 正確なガス漏れ判定を行うことができる。
また、 本発明の燃料電池システムにおいて、 前記排気手段は、 前記燃料電 池から排出された水素オフガスをシステム外に排気するためのアノードオフ ガス流路に配設されたパージバルブでもよい。
本発明の燃料電池システムのガス漏れ判定方法は、 燃料ガス供給系統のガ ス漏れ検出部位に内在する燃料ガスを燃料電池のアノード極で消費し、 前記 ガス漏れ検出部位に内在する燃料ガスの圧力変化状態に基づいてガス漏れ判 定を行う、 燃料電池システムのガス漏れ判定方法であって、 前記ガス漏れ検 出部位に内在する燃料ガスを前記燃料ガス供給系統の外にパージすることに よつて前記ガス漏れ検出部位の圧力を低下させる工程を備える。
本発明のガス漏れ判定方法においては、 前記燃料ガスをパージすることに よって前記ガス漏れ検出部位の圧力が目標圧力を下回る場合には、 当該燃料 ガスのパージを制限してもよい。
また、 本発明のガス漏れ判定方法においては、 前記ガス漏れ検出部に内在 する燃料ガスの消費量に応じて燃料ガスのパージ量を可変にしてもよい。
図面の簡単な説明
図 1は、 本実施形態に係わる燃料電池システムの構成図である。
図 2は、 システム制御のメインルーチンである。
図 3は、 システム起動時のガス漏れ判定処理ルーチンである。
図 4は、 通常発電制御ルーチンである。
図 5は、 ガス漏れ判定処理ルーチンである。
図 6は、 ガス漏れ判定処理ルーチンである。
図 7は、 ガス漏れ判定処理ルーチンである。
図 8は、 ガス漏れ判定処理ルーチンである。
図 9は、 ガス漏れ判定処理ルーチンである。
図 1 0は、 ガス漏れ判定処理ルーチンである。
図 1 1は、 システム停止処理ルーチンである。
図 1 2は、 異常停止処理ルーチンである。
発明を実施するための最良の形態
図 1は本実施形態に係わる燃料電池システムの概略構成を示している。 こ こでは、 燃料電池システム 1 0を燃料電池車両 (F C E V) の車載発電シス テムとして用いる例を示すが、 定置用発電システムとしても用いることがで きる。 燃料電池 (セルスタック) 2 0は複数の単セルを直列に積層して成る スタック構造を備えており、 例えば、 固体高分子電解質型燃料電池等から構 成されている。
燃料電池 2 0の燃料ガス供給系統 (燃料ガス配管系統) には、 燃料ガス供 給源 3 0、 燃料ガス供給路 3 1、 及ぴ燃料ガス循環路 3 2が配設されている。 ここで、 燃料ガス供給系統とは、 燃料ガス供給源 3 0から燃料電池 2 0に燃 料ガスを供給する経路上に配設されたガス配管やパルプ等を総称するもので あり、 例えば、 燃料ガス供給源 3 0と、 燃料ガス供給源 3 0と燃料電池 2 0 とを接続する燃料ガス供給路 3 1と、 燃料ガス供給路 3 1に設けられた開閉 弁ゃレギユレ一タ等を含む構成である。 また、 燃料電池 2 0から排出される 燃料ガスを燃料ガス供給路 3 1に循環させるシステム構成を採用する場合に は、 燃料ガス供給系統は、 更に燃料ガス循環路 3 2を含む構成であってもよ い。 燃料ガス供給源 3 0は、 例えば、 高圧水素タンク又は水素貯蔵タンク等 の水素貯蔵源、 或いは改質原料を水素リツチガスに改質する改質器等によつ て構成される。 燃料ガス供給路 3 1は燃料ガス供給源 3◦から放出される燃 料ガスを燃料電池 2 0のアノード極に導くためのガス流路であり、 そのガス 流路には上流から下流にかけてタンクパルプ H 2 0 1、 高圧レギユレータ H 9、 低圧レギユレータ H I 0、 水素供給パルプ H 2 0 0、 及ぴ F Cスタック 入口パルプ H 2 1が各々配設されている。 高圧に圧縮された燃料ガスは高圧 レギユレータ H 9にて中圧に減圧され、 更に低圧レギユレータ H I 0にて低 圧 (通常運転圧力) に減圧される。 燃料ガス循環路 3 2は未反応燃料ガスを 燃料電池 2 0に還流させるための帰還ガス流路であり、 そのガス流路には上 流から下流にかけて F Cスタック出口パルプ H 2 2、 水素ポンプ 6 3、 及び 逆止弁 H 5 2が各々配設されている。 燃料電池 2 0から排出された低圧の未 反応燃料ガスは水素ポンプ 6 3によって適度に加圧され、 燃料ガス供給路 3 1に導かれる。 逆止弁 H 5 2は燃料ガス供給路 3 1から燃料ガス循環路 3 2 への燃料ガスの逆流を抑制する。 アノードオフガス流路 3 3は燃料電池 2 0 から排出された水素オフガスをシステム外に排気するためのガス流路であり、 そのガス流路にはパージバルブ (排気手段) H 5 1が配設されている。
上述したタンクバルブ H 2 0 1、 水素供給バルブ H 2 0 0 、 F Cスタック 入口バルブ H 2 1 、 F Cスタック出口パルプ H 2 2、 及びパージパルプ H 5 1は各ガス流路 3 1 〜 3 3又は燃料電池 2 0 へ燃料ガスを供給し、 或いは遮 断するためのシャットバルブであり、 例えば、 電磁弁によって構成されてい る。 このような電磁弁として、 例えば、 オンオフ弁、 或いは P WM制御で弁 開度をリユアに調整できるリニァ弁等が好適である。
燃料電池 2 0の酸化ガス供給系統 (酸化ガス配管系統) には、 エアコンプ レッサ (酸化ガス供給源) 4 0、 酸化ガス供給路 4 1、 及ぴカソードオフガ ス流路 4 2が配設されている。 本実施形態における酸化ガス供給手段は、 少 なくとも、 エアコンプレッサ 4 0と、 酸化ガス供給路 4 1とを備えて構成さ れる。 エアコンプレッサ 4 0はエアフィルタ 6 1を介して外気から取り込ん だ空気を圧縮し、 その圧縮エアを酸化ガスとして燃料電池 2 0のカソード極 に供給する。 燃料電池 2 0の電池反応に供した後の酸素オフガスは力ソード オフガス流路 4 2を流れてシステム外に排気される。 酸素オフガスは燃料電 池 2 0での電池反応により生成された水分を含むため高湿潤状態になってい る。 加湿モジュール 6 2は酸化ガス供給路 4 1を流れる低湿潤状態の酸化ガ スと、 力ソードオフガス流路 4 2を流れる高湿潤状態の酸素オフガスとの間 で水分交換を行い、 燃料電池 2 0に供給される酸化ガスを適度に加湿する。 燃料電池 2 0に供給される酸化ガスの背圧は力ソードオフガス流路 4 2の力 ソード出口付近に配設された圧力調整弁 A 4によって調圧される。 力ソード オフガス流路 4 2の下流は希釈器 6 4に連通しており、 希釈器 6 4に酸素ォ フガスを供給する。 希釈器 6 4はアノードオフガス流路 3 3の下流にも連通 しており、 水素オフガスを酸素オフガスによって混合希釈した後にシステム 外に排気するように構成されている。 燃料電池 20で発電された直流電力の一部は DC/DCコンバータ 53に よって降圧され、 二次電池 (蓄電手段) 54に充電される。 二次電池 54は 車両制動時の回生エネルギー貯蔵源、 車両の加速又は減速に伴う負荷変動時 のエネルギーバッファとしての役割を担うものであり、 二ッケル ·力ドミゥ ム蓄電池、 ニッケル.水素蓄電池、 リチウム二次電池等で構成されている。 トラクシヨンィンパータ 5 1及ぴ補機ィンバータ 52は燃料電池 20と二次 電池 54の双方又は何れか一方から供給される直流電力を交流電力に変換し てトラクションモータ M 3と補機モータ M4のそれぞれに交流電力を供給す る。 補機モータ M 4は後述の水素循環ポンプ 63を駆動するモータ M 2ゃェ アコンプレッサ 40を駆動するモータ Ml等を総称している。
制御部 50はアクセルセンサ 55が検出したアクセル開度、 車速センサ 5 6が検出した車速等に基づいてシステム要求電力 (車両走行電力と補機電力 との総和) を求め、 燃料電池 20の出力電力が目標電力に一致するように燃 料電池システム 10を制御する。 具体的には、 制御部 50はエアコンプレツ サ 40を駆動するモータ Mlの回転数を調整して酸化ガス供給量を調整する とともに、 水素ポンプ 63を駆動するモータ M 2の回転数を調整して燃料ガ ス供給量を調整する。 更に、 制御部 50は DC/DCコンバータ 53を制御 して燃料電池 20の運転ポイント (出力電圧、 出力電流) を調整し、 燃料電 池 20の出力電力が目標電力に一致するように調整する。
尚、 燃料ガス供給系統は、 高圧部 (タンクパルプ H201〜水素供給パル プ H 200の区間)、 低圧部 (水素供給バルブ H 200〜FCスタック入口 バルブ H 21の区間)、 FC部 (スタック入り口パルプ H 21〜F Cスタツ ク出口バルブ H 22の区間)、 循環部 (FCスタック出口パルプ H 22〜逆 止弁 H52の区間) の 4つのセクションから構成されており、 各部には燃料 ガスの圧力を検出する圧力センサ P 6, P 7, P 9, P 6 1, P 5, P 10, P 1 1が配設されている。 より詳細には、 圧力センサ P 6は燃料ガス供給源 3 0の燃料ガス供給圧を検出する。 圧力センサ P 7は高圧レギユレータ H 9 の二次圧を検出する。 圧力センサ P 9は低圧レギユレータ H I 0の二次圧を 検出する。 圧力センサ P 6 1は燃料ガス供給路 3 1の低圧部の圧力を検出す る。 圧力センサ P 5はスタック入口の圧力を検出する。 圧力センサ P 1 0は 水素循環ポンプ 6 3の入力ポート側 (上流側) の圧力を検出する。 圧力セン サ P 1 1は水素循環ポンプ 6 3の出力ポート側 (下流側) の圧力を検出する。 本実施形態では、 燃料ガス供給系統のガス漏れ判定を各々のセクション毎 (高圧部、 低圧部、 F C部、 及び循環部) に行う。 即ち、 各セクションはガ ス漏れ検出部位となる。 制御部 5 0は後述するガス漏れ判定 (S 1 0 2 , S 1 0 6 , S 1 0 8 ) を行う判定手段として機能する他、 ガス漏れ検出部位に 内在する燃料ガスを消費するために燃料電池の発電電流を制御する制御手段 としても機能する。 各々のガス漏れ検出部位の容積は異なるため、 そこに内 在する燃料ガスの量も異なる。 制御部 5 0はガス漏れ検出部位の容積 (燃料 ガスの量) に応じて、 燃料電池 2 0の発電電流を制御するのが好ましい。 例 えば、 ガス漏れ検出部位の容積が大きい場合には発電電流の値を大きくし、 ガス漏れ検出部位の容積が小さい場合には発電電流の値を小さくする等して 燃料ガスの消費を制御する。 また、 制御部 5 0はガス漏れ検出部位の容積に 応じて、 パージパルプ H 5 1からパージされる燃料ガスの量 (パージ量) を 制御するのが好ましい。 例えば、 ガス漏れ検出部位の容積が大きい場合には パージ量を大きくし、 ガス漏れ検出部位の容積が小さい場合にはパージ量を 小さくする等してガス漏れ検出部位の圧力が目標圧力に近づくように制御す る。 更に、 制御部 5 0は二次電池 5 4の S O C (State Of Charge) に応じ て燃料ガスのパージ量を制御するのが好ましい。 例えば、 二次電池 5 4の S O Cが高い場合には、 燃料電池 2 0を発電させて燃料ガスを消費しても、 そ の発電電力を二次電池 5 4に充電することができないので、 燃料ガスのパー ジ量を多くし、 二次電池 5 4の S O Cが低い場合には、 燃料電池 2 0の発電 電力を二次電池 54に充電することができるので、 燃料ガスのパージ量を少 なくする。
尚、 燃料電池システム 1 0に燃料ガスの漏洩を検出する燃料ガスセンサ (例えば、 水素センサ) が配設されている場合には、 パージパルプ H 51力、 らパージされる燃料ガスの 1回あたりのパージ量は燃料ガスセンサが検出す る漏れ検出閾値範囲内 (ガス漏れを検出できる最低濃度以下) が好ましい。 これにより、 燃料ガスセンサの誤判定を避けることができる。
図 2は制御部 50が実行するシステム制御を記述したメィンルーチンであ る。 同図を参照してシステム制御の概要を説明した後に各サブルーチンにつ いて説明する。 燃料電池システム 10が起動すると (S 101 ; YES)、 制御部 50は燃料ガス供給系統のガス漏れ判定を行う (S 102)。 ここで、 ガス漏れがなく、 正常に発電できると判定されると (S 103 ; YES), 通常発電制御が行われる (S 104)。 このようにして通常運転が継続され、 予め定められた間欠運転開始条件が満たされると (S 1 05 ; YES), 制 御部 50は燃料ガス供給系統のガス漏れ判定を行う (S 1 06)。 間欠運転 とは、 アイドリング時、 低速走行時、 或いは回生制動時等のように低負荷運 転時に燃料電池 20の発電を一時的に休止し、 二次電池 54から供給される 電力で走行する運転モードをいう。 そして、 システム停止が行われる場合に は (S 1 07 ; YE S), 制御部 50は燃料ガス供給系統のガス漏れ判定を 行い (S 108)、 システム停止処理を行う (S 109)。 ガス漏れが検出さ れた場合には (S 1 1 0 ; YES), 異常停止処理を行う (S 1 1 Do 次に、 各サブルーチンについて詳述する。
図 3はシステム起動時のガス漏れ判定処理ルーチン (S 102) を記述し たフローチャートである。 同ルーチンが呼び出されると、 制御部 50はタン クパルプ H 201、 水素供給パルプ H 200、 F Cスタック入口パルプ H 2 1、 及び FCスタック出口パルプ H 22を開き、 燃料ガス供給路 31を通じ て燃料電池 20に燃料ガスを供給する (S 201)。 次いで、 制御部 50は 燃料ガス供給系統に配設されている全ての圧力センサ P 5〜P 6のそれぞれ の圧力値が所定の圧力値 P j :!〜 P j 7以上であるか否かを判定する (S 2 02)。 全ての圧力センサ P 5〜P 6のそれぞれが所定の圧力値 P j 1〜P j 7以上に達し、 燃料ガス供給路 31及び燃料ガス循環路 32の圧力がガス 漏れ判定を行える状態にまで昇圧すると (S 202 ; YES), 制御部 50 はタンタパルプ H201、 水素供給バルブ H200、 FCスタック入口バル プ H21、 及び F Cスタック出口バルブ H 22を閉弁し (S 203)、 燃料 ガス供給路 31及ぴ燃料ガス循環路 32を密封する。 そして、 密封状態から 所定時間 t 1経過後に ( S 204 )、 制御部 50は圧力センサ P 5〜 P 6の 圧力値を P 5 P〜P 6 Pとして記憶する (S 205)。 更に、 密封状態から 所定時間 t 2経過すると (S 206)、 制御部 50は記憶済みの圧力値 P 5 P〜 P 6 Pと、 所定時間 t 2経過時点で圧力センサ P 5〜 P 6が検出した圧 力値との差圧 ΔΡ 5〜ΔΡ 6を演算する (S 207)。 ここで求めた差圧 ΔΡ 5〜ΔΡ 6は時間 ( t 2— t 1 ) の圧力低下量に相当する。 制御部 50はそ れぞれの差圧 ΔΡ 5〜ΔΡ 6が所定の圧力値 p j 8〜: P j 14以上であるか 否かを判定する (S 208)。 差圧 ΔΡ 5〜ΔΡ 6の全てが所定の圧力値 p j 8〜P j 14以下である場合には (S 208 ; NO)、 ガス漏れがないと考 えられるので、 システム起動を完了し、 通常発電を開始する (S 209)。 一方、 差圧 ΔΡ 5〜ΔΡ 6のうち何れか一つでも所定の圧力値 p j 8〜P j 14以上である場合には (S 208 ; YES), 制御部 50はガス漏れが生 じていると判定する (S 210)。
図 4は通常運転時の発電制御ルーチン (S 104) を記述したフローチヤ ートである。 同ルーチンが呼び出されると、 制御部 50は燃料ガス供給系統 の各パルプ (タンクバルブ H 201、 水素供給バルブ H 200、 FCスタツ ク入口パルプ H21、 及び FCスタック出口パルプ H22) を開弁する (S 301)。 次いで、 アクセル開度、 車速等を基に車両要求パワー (システム 要求電力) を演算し (S 302)、 燃料電池 20の出力電力と二次電池 54 の出力電力の比を決定する (S 303)。 制御部 50は燃料電池発電量ーェ ァ .ストイキ .マップを参照して、 所望の流量の酸化ガスが燃料電池 20に 供給されるようにモータ Mlの回転数を制御する (S 304)。 更に、 制御 部 50は燃料電池発電量一水素 ·ストイキ ·マップを参照して、 所望の流量 の燃料ガスが燃料電池 20に供給されるようにモータ M 2の回転数を制御す る (S 305)。 次いで、 制御部 50は燃料電池発電量一燃料ガスパージ頻 度マップを参照してパージパルプ H 51の開閉制御を行う (S 306)。 以 下、 本発電制御ルーチンを所定のインターバルで繰り返し実行することで、 通常運転が継続的に実行される。
図 5乃至図 1 0は間欠運転時、 又はシステム停止時のガス漏れ判定処理ル 一チン (S 106, S 108) を記述したフローチャートである。 同ルーチ ンが呼び出されると、 制御部 50はタンクバルブ H 201を閉弁し (S 40 1)、 高圧部のパージ判定を行う (S 402)0 パージ判定とは、 燃料ガスを パージするか否かを判定することである。 まず、 圧力センサ P 6が検出した 圧力と高圧部の目標圧力 P 6 Aとの差圧に基づいて、 高圧部の圧力を目標圧 力 P 6 Aに一致させるために必要な燃料ガス消費量を演算する (S 403)。 次いで、 パージパルプ H 51の一回あたりのパージ量と高圧部の容積との比 から減圧度 ΔΡ を算出し (S 404)、 高圧部の圧力と目標圧力 P 6 Aと の差圧が ΔΡΟ+所定値 (余裕度) 以下である場合には (S 405 ; YE S)、 燃料ガスをパージすると、 高圧部の圧力が目標圧力 P 6 Aを低下して しまうため、 パージを禁止する (S 406)。 一方、 高圧部の圧力と目標圧 力 P 6 Aとの差圧が APQ+所定値 (余裕度) を超える場合には (S 40 5 ; NO), 燃料ガスをパージしても、 高圧部の圧力が目標圧力 P 6 A以下 になることはないので、 パージを許可する (S 407)。 次いで、 低圧部のパージ判定を行う (S 408)。 まず、 圧力センサ P 6 1が検出した圧力と高圧部の目標圧力 P 6 1 Aとの差圧に基づいて、 低圧部 の圧力を目標圧力 P 6 1 Aに一致させるために必要な燃料ガス消費量を演算 する (S 409)。 次いで、 パージパルプ H 5 1の一回あたりのパージ量と 低圧部の容積との比から減圧度 APQを算出し (S 410)、 低圧部の圧力 と目標圧力 P 6 1Aとの差圧が APQ+所定値 (余裕度) 以下である場合に は (S 41 1 ; YES)、 燃料ガスをパージすると、 低圧部の圧力が目標圧 力 P 6 1 Aを低下してしまうため、 パージを禁止する (S 41 2)。 一方、 低圧部の圧力と目標圧力 P 6 1 Aとの差圧が APQ+所定値 (余裕度) を超 える場合には (S 4 1 1 ; NO)、 燃料ガスをパージしても、 低圧部の圧力 が目標圧力 P 6 1 A以下になることはないので、 パージを許可する (S 41 3)。
次いで、 F C部のパージ判定を行う (S 414)0 まず、 圧力センサ P 5 が検出した圧力と高圧部の目標圧力 P 5 Aとの差圧に基づいて、 FC部の圧 力を目標圧力 P 5 Aに一致させるために必要な燃料ガス消費量を演算する (S 41 5)。 次いで、 パージバルブ H 5 1の一回あたりのパージ量と FC 部の容積との比から減圧度 ΔΡΟを算出し (S 41 6)、 FC部の圧力と目 標圧カ卩 5 との差圧が 卩(3+所定値 (余裕度) 以下である場合には (S 41 7 ; YES)、 燃料ガスをパージすると、 FC部の圧力が目標圧力 P 5 Aを低下してしまうため、 パージを禁止する (S 41 8)。 一方、 FC部の 圧力と目標圧力 P 5 Aとの差圧が ΔΡΟ+所定値 (余裕度) を超える場合に は (S 41 7 ; NO), 燃料ガスをパージしても、 FC部の圧力が目標圧力 P 5 A以下になることはないので、 パージを許可する (S 41 9)。
次いで、 循環部のパージ判定を行う (S 420)。 まず、 発電を禁止する (S 421)0 次いで、 パージバルブ H 5 1の一回あたりのパージ量と循環 部の容積との比から減圧度 APQを算出し (S 422)、 循環部の圧力と目 標圧力 P 1 OAとの差圧が APQ+所定値 (余裕度) 以下である場合には (S 423 ; YES), 燃料ガスをパージすると、 循環部の圧力が目標圧力 P 10 Aを低下してしまうため、 パージを禁止する (S 424)。 一方、 循 環部の圧力と目標圧力 P 1 OAとの差圧が APQ+所定値 (余裕度) を超え る場合には (S 423 ; NO)、 燃料ガスをパージしても、 循環部の圧力が 目標圧力 P 1 OA以下になることはないので、 パージを許可する (S 42 5)。
各セクションのパージ判定が終了すると、 次に、 制御部 50は水素消費量 一燃料電池発電量マップを参照して、 S 403, S 409, S 41 5で求め た燃料ガスを消費するための燃料電池 20の発電量を求める (S 426)。 更に、 燃料電池発電量一エア 'ストィキ 'マップを参照して、 所望の発電量 を得るために必要な酸化ガスが燃料電池 20に供給されるようにモータ Ml の回転数を調整する (S 427)。 そして、 水素供給パルプ H 200が開弁 している場合には (S 428 ; YES), 制御部 50は燃料電池発電量一水 素ストィキ ·マップを参照して所望の発電量を得るために必要な燃料ガス流 量が燃料電池 20に供給されるようにモータ M 2の回転数を調整する (S 4 29)。 更に、 制御部 50は燃料電池発電量一パージ頻度マップを参照して パージパルプ H 51を開閉制御する (S 430)。 このとき、 パージが禁止 されている場合には (S 406, S 41 2 , S 41 8 , S 424)、 パージ バルブ H 51は閉弁状態を維持する。 一方、 水素供給バルブ H 200が閉弁 している場合には (S 428 ; NO), 制御部 50は水素ポンプ 63を停止 し (S 43 1)、 燃料電池発電量一パージ頻度マップを参照してパージバル プ H 5 1を開閉制御する (S 432)。 パージパルプ H 5 1を開閉する際に は、 パージバルブ H 5 1の 1次圧、 2次圧、 及び開弁時間に基づいて 1回あ たりのパージ量を演算する (S 433)。 ここで、 パージパルプ H5 1の 1 次圧は圧力センサ P 1 1が検出した圧力値によって求めることができる。 パ ージバルブ H 5 1の 2次圧は力ソードオフガス流路 4 2を流れる酸素オフガ スの流量によって求めることができる。
制御部 5 0は二次電池 5 4の S O Cが所定値 (例えば、 8 0。/。〜 9 0 %) 以上である場合には (S 4 3 4 ; Y E S )、 燃料ガスの消費によって発電し た電力を二次電池 5 4に蓄電することができないので、 制御部 5 0は燃料電 池 2 0の発電量を減少させ、 且つ燃料ガスのパージ量を増加させる (S 4 3 5 )。 また、 燃料ガスのパージ頻度が所定頻度より多くなると (S 4 3 6 ; Y E S ) , システム外に排気される燃料ガス濃度が高くなるので、 排気燃料 ガス濃度を低減させるためにエアコンプレッサ 4 0の回転数を増加させて、 力ソードオフガス流路 4 2を流れる酸素オフガスの流量を増量し、 希釈器 6 4で希釈される排気燃料ガス濃度を低減する (S 4 3 7 )。 即ち、 燃料ガス のパージ量の増加 (排気燃料ガス濃度の増加) に対応して、 燃料電池 2 0の カソード極への酸化ガス供給量を増加させることにより、 希釈器 6 4に導入 される力ソード極オフガス (酸化ガス) を増加させる。 この結果、 パージさ れる燃料ガスの濃度を希釈できる。 尚、 希釈器 6 4の代わりに触媒を有する 燃焼器でパージガスを酸ィ匕させてもよい。
このように、 電力発電による燃料ガスの消費と、 燃料ガスのパージ操作を 実行することで ( S 4 2 6〜S 4 3 7 )、 燃料ガス供給系統の各セクション (ガス漏れ検出部位) の圧力を迅速に低下させることができる。 より詳細に は、 高圧部、 低圧部、 及び F C部の圧力は電力発電による燃料ガス消費と燃 料ガスのパージ操作によつて低下させることができ、 循環部の圧力は燃料ガ スのパージ操作によって低下させることができる。 各セクションのガス漏れ 判定は、 例えば、 燃料ガス供給系統に配設されている各パルブを閉弁し、 閉 空間 (略密閉空間) を形成して当該閉空間の圧力低下代を検出することによ り行うのがよい。 ガス漏れ判定はパルプが閉弁するのに要する時間と、 略密 閉空間の圧力が安定するのに要する時間とが経過してからガス漏れ判定を行 うのが好ましい。 これにより、 ガス漏れ検出精度を高めることができる。 圧力センサ P 6の検出圧力が目標圧力 P 6 A以下になると (S 438 ; Y ES)、 高圧部の圧力がガス漏れ判定に好適な圧力に達したことを示してい るので、 制御部 50は水素供給パルプ H 200を閉弁する ( S 439 )。 こ れにより高圧部は密封状態になる。 次いで、 水素供給パルプ H 200の下流 側に配設されている圧力センサ P 6 1の検出圧力が所定圧力 P J A 1以下に 降圧したか否かを判定する (S 44· 0)。 所定圧力 P J A 1は、 水素供給パ ルブ H200が確実に閉弁しているか否かを判定するための圧力である。 圧 力センサ P 61の検出圧力が所定圧力 P J A 1以下になると (S 440 : Y ES)、 高圧部のガス漏れ判定を行うために、 水素供給パルプ H 200の閉 弁時から所定時間 t 3が経過したか否かを判定する (S 441)。 所定時間 t 3が経過すると (S 441 : YES), 圧力センサ P 6の検出圧力を P 6 Pとして記憶する (S 442)。 更に水素供給パルプ H 200の閉弁時から 所定時間 t 4が経過したか否かを判定し ( S 443 )、 所定時間 t 4が経過 すると (S 443 ; YE S)、 記憶済みの圧力 P 6 Pと圧力センサ P 6の検 出圧力との差圧 (圧力低下代) ΔΡ 6を演算する (S 444)。 ここで、 差 圧 ΔΡ 6が所定の閾値圧力 P j 1 5以上である場合には (S 445 ; YE S)、 高圧部にガス漏れが生じていると判定する (S 446)。 ガス漏れの原 因としては、 タンクパルプ H 201或いは水素供給バルブ H 22の開故障、 又はレギユレータ H9、 HI 0或いは燃料ガス供給路 31の破損等が考えら れる。 ここで、 開故障とは、 パルプが開いたままになって、 閉弁できなくな , る故障状態をいう。
一方、 水素供給バルブ H 200の閉弁時から所定時間 t 3が経過していな い場合 (S 44 1 ; NO), 或いは所定時間 t 4が経過していない場合 (S 443 ; NO), 又は差圧 ΔΡ 6が所定の閾値圧力 P j 1 5未満である場合 (S 445 ; NO) には、 制御部 50は低圧部のガス漏れ判定を許可する (S 447 )。 これは、 水素供給バルブ H 200の閉弁時から所定時間 t 3 又は t 4が経過していなくても、 既に水素供給バルブ H 200が閉弁してい る以上、 高圧部のガス漏れ判定と並行して低圧部のガス漏れ判定を行うこと ができるためである。
そして、 圧力センサ P 6 1の検出圧力が目標圧力 P 6 1 A以下になると (S 448 ; YE S), 低圧部の圧力がガス漏れ判定に好適な圧力に達した ことを示しているので、 制御部 50は FCスタック入口バルブ H 21を閉弁 する (S 449)。 これにより低圧部は密封状態になる。 次いで、 FCスタ ック入口パルプ H 21の下流側に配設されている圧力センサ P 5, P I 1の 検出圧力がそれぞれ所定圧力 P J A 2, P J A3以下に降圧したか否かを判 定する (S 450)。 所定圧力 P JA2, P J A3は、 FCスタック入ロバ ルブ H21が確実に閉弁しているか否かを判定するための圧力である。 圧力 センサ P 5, P 1 1の検出圧力がそれぞれ所定圧力 P J A 2, P J A3以下 になると (S 450 : YES), 低圧部のガス漏れ判定を行うために、 FC スタック入口バルブ H 21の閉弁時から所定時間 t 5が経過したか否かを判 定する (S 45 1)。 所定時間 t 5が経過すると (S 451 : YES), 圧力 センサ P 6 1の検出圧力を P 6 1 Pとして記憶する (S 452)。 更に F C スタック入口バルブ H 21の閉弁時から所定時間 t 6が経過したか否かを判 定し (S 453)、 所定時間 t 6が経過すると (S 453 ; YES), 記憶済 みの圧力 P 6 1 Pと圧力センサ P 6 1の検出圧力との差圧 (圧力低下代) Δ P 61を演算する (S 454)。 ここで、 差圧 ΔΡ 6 1が所定の閾値圧力 P j 1 6以上である場合には (S 455 ; YES), 低圧部にガス漏れが生じ ていると判定する (S 456)。 ガス漏れの原因としては、 水素供給バルブ H22或いは F Cスタック入口パルプ H 21の開故障、 又は燃料ガス供給路 31或いは燃料ガス循環路 32の破損等が考えられる。
一方、 FCスタック入口バルブ H 21の閉弁時から所定時間 t 5が経過し ていない場合 (S 45 1 ; NO)、 或いは所定時間 t 6が経過していない場 合 (S 453 ; NO), 又は差圧 ΔΡ 61が所定の閾値圧力 P j 16未満で ある場合 (S 455 ; NO) には、 制御部 50は FC部のガス漏れ判定を許 可する (S 457)。 これは、 FCスタック入口パルプ H 21の閉弁時から 所定時間 t 5又は t 6が経過していなくても、 既に FCスタック入口バルブ H21が閉弁している以上、 低圧部のガス漏れ判定と並行して FC部のガス 漏れ判定を行うことができるためである。
そして、 圧力センサ P 5の検出圧力が目標圧力 P 5 A以下になると (S 4 58 ; YE S), FC部の圧力がガス漏れ判定に好適な圧力に達したことを 示しているので、 制御部 50は FCスタック出口バルブ H 22を閉弁する (S 459)0 これにより F C部は密封状態になる。 次いで、 FCスタック 出口パルプ H 22の下流側に配設されている圧力センサ P 10の検出圧力が 所定圧力 P JA4以下に降圧したか否かを判定する (S 460)。 所定圧力 P J A4は、 FCスタック出口バルブ H 22が確実に閉弁しているか否かを 判定するための圧力である。 圧力センサ P 10の検出圧力がそれぞれ所定圧 力 P JA4以下になると (S 460 : YES)、 F C部のガス漏れ判定を行 うために、 FCスタック出口バルブ H 22の閉弁時から所定時間 t 7が経過 したか否かを判定する (S 46 1)。 所定時間 t 7が経過すると (S 4 6 1 : YES), 圧力センサ P 5の検出圧力を P 5 Pとして記憶する (S 46 2)。 更に FCスタ,ック出口バルブ H22の閉弁時から所定時間 t 8が経過 したか否かを判定し (S 463)、 所定時間 t 8が経過すると (S 463 ; YE S), 記憶済みの圧力 P 5 Pと圧力センサ P 5の検出圧力との差圧 (圧 力低下代) ΔΡ 5を演算する (S464)。 ここで、 差圧 ΔΡ 5が所定の閾値 圧力 P j 1 7以上である場合には (S 465 ; YE S), FC部にガス漏れ が生じていると判定する (S 466)。 ガス漏れの原因としては、 FCスタ ック入口パルプ H21或いは FCスタック出口バルブ H22の開故障、 又は 燃料ガス供給路 31或いは燃料ガス循環路 32の破損等が考えられる。
一方、 FCスタック出口バルブ H 22の閉弁時から所定時間 t 7が経過し ていない場合 (S 46 1 ; NO)、 或いは所定時間 t 8が経過していない場 合 (S 463 ; NO), 又は差圧 ΔΡ 5が所定の閾値圧力 P j 1 7未満であ る場合 (S 465 ; NO) には、 制御部 50は循環部のガス漏れ判定を許可 する (S 467)。 これは、 F Cスタック出口パルプ H22の閉弁時から所 定時間 t 7又は t 8が経過していなくても、 既に FCスタック出口パルプ H 22が閉弁している以上、 FC部のガス漏れ判定と並行して循環部のガス漏 れ判定を行うことができるためである。
そして、 圧力センサ P 1 0の検出圧力が目標圧力 P 1 OA以下になると (S 468 ; YES), 循環部の圧力がガス漏れ判定に好適な圧力に達した ことを示しているので、 制御部 50はパージバルブ H 51の開閉を禁止する (S 469)0 これにより循環部は密封状態になる。 循環部のガス漏れ判定 を行うために、 制御部 50はパージバルブ H 51の開閉を禁止した時点 (又 は FCスタック出口パルプ H22の閉弁時) から所定時間 t 9が経過したか 否かを判定する (S 470)。 所定時間 t 9が経過すると (S 470 : YE S)、 圧力センサ P 10検出圧力を P 10 Pとして記憶する (S 471)。 更 に、 パージパルプ H 5 1の開閉を禁止した時点 (又は F Cスタック出口バル プ H22の閉弁時) から所定時間 t 10が経過したか否かを判定し (S 47 2 )、 所定時間 t 10が経過すると (S 472 ; YES)、 記憶済みの圧力 P 10 Pと圧力センサ P 1 0の検出圧力との差圧 (圧力低下代) ΔΡ 1 0を演 算する (S 473)。 ここで、 差圧 ΔΡ 1 0が所定の閾値圧力 P j 1 8以上 である場合には (S 474 ; YES)、 循環部にガス漏れが生じていると判 定する (S 475)。 ガス漏れの原因としては、 FCスタック出口バルブ H 22或いは逆止弁 H 52の開故障、 又は燃料ガス循環路 32の破損等が考え られる。 一方、 差圧 ΔΡ 10が所定の閾値圧力 P j 1 8未満である場合には (S 474 ; NO), 循環部にガス漏れが生じてないと判定し、 ガス漏れ判 定を完了する (S 476)。
図 1 1はシステム停止処理ルーチン (S 109) を記述したフローチヤ一 トである。 同ルーチンが呼び出されると、 制御部 50は循環部のガス漏れ判 定が完了したか否かを判定する (S 50 1)。 循環部のガス漏れ判定が完了 したならば (S 501 ; YES)、 制御部 50は F Cスタック入口バルブ H 21、 及び FCスタック出口バルブ H 22を開弁し、 燃料ガス供給路 3 1及 ぴ燃料ガス循環路 32に残留している燃料ガスを燃料電池 20に導く (S 5 02)。 これと同時に、 制御部 50はエアコンプレッサ 40を回転させて燃 料電池 20に酸化ガスを供給する。 燃料電池 20に導入された燃料ガスは電 力発電によって消費される。 更に、 制御部 50は適当な時間間隔でパージバ ルプ H 51を開弁することにより、 燃料ガスをパージし、 燃料電池 20を循 環する燃料ガスの不純物濃度を低減する。 そして、 圧力センサ P 5の検出圧 力が目標圧力 P 5 AE以下に降圧したか否かを判定する (S 503)。 目標 圧力 P 5AEとしては、 システム停止時に燃料ガスが力ソード側にクロスリ ークしない程度の圧力が好ましい。 圧力センサ P 5の検出圧力が目標圧力 P 5 A E以下に降圧すると (S 503 ; YES), 制御部 50は FCスタック 入口バルブ H21、 FCスタック出口パルプ H22、 及びパージバルブ H 5 1を閉弁し、 エアコンプレッサ 40と水素ポンプ 63を停止させて、 発電を 停止する (S 504)。
図 1 2は異常停止処理ルーチン (S 1 1 1) を記述したフローチャートで ある。 上述のガス漏れ判定 (S 102, S 106, S 108) において、 ガ ス漏れが生じていると判定されると (S 210, S 446, S 456, S 4 46, S 475)、 異常停止処理ルーチンが呼び出される。 同ルーチンが呼 び出されると、 制御部 50は燃料ガス供給系統に配設されている全てのパル ブ、 即ち、 タンクバルブ H 201、 水素供給パルプ H 200、 FCスタック 入口バルブ H 2 1、 F Cスタック出口バルブ H 2 2、 及ぴパージバルブ H 5 1を全て閉弁し、 更にエアコンプレッサ 4 0と水素ポンプ 6 3を停止させて、 発電を停止する (S 6 0 1 )。
本実施形態によれば、 ガス漏れ検出部位に内在する燃料ガスを電力発電で 消費するだけでなく、 燃料ガス供給路の外にパージすることによって、 ガス 漏れ検出部位の圧力を短時間で目標圧力に近づけることが可能になり、 ガス 漏れ判定を短時間で精度良く行うことができる。 また、 燃料ガスをパージす ることによって、 燃科ガスの不純物濃度の上昇を抑えることができるので、 セル電圧の低下を抑制できる。 産業上の利用可能性
本発明によれば、 ガス漏れ検出部位に内在する燃料ガスを電力発電で消費 するだけでなく、 燃料ガス供給路の外にパージすることによって、 ガス漏れ 検出部位の圧力を短時間で目標圧力に近づけることができ、 ガス漏れ判定を 短時間で精度良く行うことができる。 また、 燃料ガスをパージすることによ つて、 燃料ガスの不純物濃度の上昇を抑えることができるので、 セル電圧の 低下を抑制できる。 よって、 本発明は、 そのような要求のある燃料電池シス テムおょぴ燃料電池システムのガス漏れ判定方法に広く利用することができ る。

Claims

請求の範囲
1 . 燃料ガス供給系統のガス漏れ検出部位に内在する燃料ガスを燃料電池 のアノード極で消費し、 前記ガス漏れ検出部位に内在する燃料ガスの圧力変 化状態に基づいてガス漏れ判定を行う判定手段を備えた燃料電池システムで あって、 前記ガス漏れ検出部位に内在する燃料ガスを前記燃科ガス供給系統 の外にパージすることによって前記ガス漏れ検出部位の圧力を低下させる排 気手段を備える、 燃料電池システム。
2 . 請求項 1に記載の燃料電池システムであって、
前記排気手段は燃料ガスをパージすることによって、 前記ガス漏れ検出部 位の圧力が目標圧力を下回る場合には燃料ガスのパージを制限するように構 成されている、 燃料電池システム。
3 . 請求項 1又は請求項 2に記載の燃料電池システムであって、 . 前記排気手段は前記ガス漏れ検出部に内在する燃料ガスの消費量に応じて 燃料ガスのパージ量を可変にする、 燃料電池システム。
4 . 請求項 1乃至請求項 3のうち何れか 1項に記載の燃料電池システムで あって、
前記ガス漏れ検出部に内在する燃料ガスの消費量に応じて前記燃料電池の 発電電流を可変にする制御手段を更に備える、 燃料電池システム。
5 . 請求項 1乃至請求項 4のうち何れか 1項に記載の燃料電池システムで あって、
前記燃料電池が発電した電力を蓄電する蓄電手段を更に備え、 前記排気手 段は前記蓄電手段の充電量に応じて燃料ガスのパージ量を可変にする、 燃料 電池システム。
6 . 請求項 1乃至請求項 5のうち何れか 1項に記載の燃料電池システムで あって、 前記燃料電池のカソード極に酸化ガスを供給する酸化ガス供給手段と、 前 記燃料電池から排出されるカソード極オフガスと前記排気手段からパージさ れる燃料ガスとを混合希釈する希釈器とを更に備え、 前記酸化ガス供給手段 は前記排気手段からパージされる燃科ガスのパージ量に対応して酸化ガスの 供給量を変更する、 燃料電池システム。
7 . 請求項 1乃至請求項 6のうち何れか 1項に記載の燃料電池システムで あって、
燃料ガスの漏洩を検出する燃料ガスセンサを更に備え、 前記排気手段から パージされる燃料ガスの 1回あたりのパージ量は前記燃料ガスセンサが検出 する漏れ検出閾値範囲内である、 燃料電池システム。
8 . 請求項 1乃至請求項 7のうち何れか 1項に記載の燃料電池システムで あって、
前記ガス漏れ検出部位は前記燃料ガス供給系統に配設されたバルブが閉弁 することによって形成された略密閉空間であり、 前記判定手段は前記バルブ が閉弁してから前記略密閉空間の圧力が安定するのに要する時間が経過して からガス漏れ判定を行う、 燃料電池システム。
9 . 請求項 1乃至請求項 8のうち何れか 1項に記載の燃料電池システムで あって、
前記排気手段は、 前記燃料電池から排出された水素オフガスをシステム外 に排気するためのアノードオフガス流路に配設されたパージパルプである、 燃料電池システム。
1 0 . 燃料ガス供給系統のガス漏れ検出部位に内在する燃料ガスを燃料電 池のアノード極で消費し、 前記ガス漏れ検出部位に内在する燃料ガスの圧力 変化状態に基づいてガス漏れ判定を行う、 燃料電池システムのガス漏れ判定 方法であって、
前記ガス漏れ検出部位に内在する燃料ガスを前記燃科ガス供給系統の外に パージすることによって前記ガス漏れ検出部位の圧力を低下させる工程を備 える、 燃料電池システムのガス漏れ判定方法。
1 1 . 請求項 1 0に記載の燃料電池システムのガス漏れ判定方法であって、 前記燃料ガスをパージすることによって前記ガス漏れ検出部位の圧力が目 標圧力を下回る場合には、 当該燃料ガスのパージを制限する、 燃料電池シス テムのガス漏れ判定方法。
1 2 . 請求項 1 0又は請求項 1 1に記載の燃料電池システムのガス漏れ判 定方法であって、
前記ガス漏れ検出部に内在する燃料ガスの消費量に応じて燃料ガスのパー ジ量を可変にする、 燃料電池システムのガス漏れ判定方法。
PCT/JP2005/017438 2004-09-16 2005-09-15 燃料電池システムおよび燃料電池システムのガス漏れ判定方法 WO2006030969A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112005002230.7T DE112005002230B4 (de) 2004-09-16 2005-09-15 Brennstoffzellensystem und Verfahren zur Bestimmung einer Gasundichtigkeit für ein Brennstoffzellensystem
CN2005800303164A CN101015086B (zh) 2004-09-16 2005-09-15 燃料电池系统以及燃料电池系统的气体泄漏判断方法
US11/660,810 US8216729B2 (en) 2004-09-16 2005-09-15 Fuel cell system and gas leak determination method for fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-269683 2004-09-16
JP2004269683A JP4730646B2 (ja) 2004-09-16 2004-09-16 燃料電池システム

Publications (1)

Publication Number Publication Date
WO2006030969A1 true WO2006030969A1 (ja) 2006-03-23

Family

ID=36060204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017438 WO2006030969A1 (ja) 2004-09-16 2005-09-15 燃料電池システムおよび燃料電池システムのガス漏れ判定方法

Country Status (5)

Country Link
US (1) US8216729B2 (ja)
JP (1) JP4730646B2 (ja)
CN (1) CN101015086B (ja)
DE (1) DE112005002230B4 (ja)
WO (1) WO2006030969A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090263684A1 (en) * 2006-07-28 2009-10-22 Takatoshi Masui Reforming system and reforming method
US20100055521A1 (en) * 2007-02-05 2010-03-04 Kenji Umayahara Fuel cell system
US8722266B2 (en) 2007-11-21 2014-05-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006016747A1 (de) * 2006-04-10 2007-10-18 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und Vorrichtung zur Leckprüfung
JP2009087713A (ja) * 2007-09-28 2009-04-23 Sony Corp 燃料電池システムおよび電子機器
US7942035B2 (en) * 2008-04-09 2011-05-17 Ford Motor Company Anode leak test implementation
JP4893772B2 (ja) * 2009-03-31 2012-03-07 トヨタ自動車株式会社 燃料電池システム
US8387441B2 (en) * 2009-12-11 2013-03-05 GM Global Technology Operations LLC Injector flow measurement for fuel cell applications
DE102012005690B4 (de) * 2012-03-21 2015-03-05 Audi Ag Verfahren und Anordnung zum Betreiben eines Brennstoffzellensystems
DE102012005692B4 (de) * 2012-03-21 2014-09-25 Audi Ag Verfahren und Anordnung zum Überprüfen einer Dichtheit eines Brennstoffzellensystems
WO2013156666A1 (en) * 2012-07-05 2013-10-24 Convion Oy Method and arrangement for determination of leakage levels in fuel cell system
US8877402B2 (en) * 2012-09-13 2014-11-04 GM Global Technology Operations LLC Method for a fuel cell air system leakage diagnostic
JP5836913B2 (ja) * 2012-10-31 2015-12-24 本田技研工業株式会社 流体供給システム
DE102013011127A1 (de) 2013-07-03 2015-01-08 Daimler Ag Verfahren zum Überwachen eines Brennstoffzellensystems
JP6079749B2 (ja) 2014-11-13 2017-02-15 トヨタ自動車株式会社 燃料電池システムおよび水素ガス漏れ検出方法
US10644336B2 (en) * 2014-12-12 2020-05-05 Ford Global Technologies, Llc Methods for determining anode integrity during fuel cell vehicle operation
DE102015225471A1 (de) * 2015-12-16 2017-06-22 Robert Bosch Gmbh Verfahren zur Diagnose einer Leckage sowie Brennstoffzellensystem
JP6326440B2 (ja) * 2016-02-29 2018-05-16 本田技研工業株式会社 燃料電池システム及びその運転方法
JP6376184B2 (ja) * 2016-07-21 2018-08-22 トヨタ自動車株式会社 燃料電池システムおよび車両
US10112486B2 (en) * 2016-09-21 2018-10-30 Hyundai Motor Company Apparatus for detecting gas leakage of a vehicle equipped with a fuel cell system
FR3059474B1 (fr) * 2016-11-30 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme electrochimique a pile a combustible comportant un dispositif de regulation de pression
JP2018147654A (ja) * 2017-03-03 2018-09-20 パナソニックIpマネジメント株式会社 燃料電池システム及びその運転方法
CN107458244A (zh) * 2017-07-21 2017-12-12 浙江中车电车有限公司 一种具有安全链的甲醇制氢燃料系统
JP2019129141A (ja) * 2018-01-23 2019-08-01 トヨタ自動車株式会社 燃料電池システム
JP6958419B2 (ja) * 2018-02-22 2021-11-02 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
US10615438B2 (en) 2018-02-23 2020-04-07 Cummins Enterprise Llc Degradation detecting device for fuel cell stack, fuel cell system and managing method thereof
CN108844699A (zh) * 2018-03-07 2018-11-20 福州艾弗斯智能科技有限公司 一种氢能汽车管路自检装置
CN109501637B (zh) * 2018-11-08 2021-05-28 奇瑞汽车股份有限公司 燃料泄漏处理系统及燃料电池汽车
US11404710B2 (en) * 2018-12-17 2022-08-02 Cummins Enterprise Llc Assembled portion of a solid oxide fuel cell and methods for inspecting the same
CN109860663A (zh) * 2019-03-26 2019-06-07 一汽解放汽车有限公司 一种快速判断氢气泄露部位的供氢系统
JP7189849B2 (ja) * 2019-08-09 2022-12-14 株式会社豊田自動織機 燃料電池車両及びその制御方法
US11814027B2 (en) * 2022-02-04 2023-11-14 Toyota Motor Engineering & Manufacturing North America, Inc. Fuel reactant leak detection system and method of detecting fuel reactant leaks

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056864A (ja) * 2000-08-10 2002-02-22 Mitsubishi Heavy Ind Ltd 燃料電池装置、及び、燃料電池装置の運転方法
JP2003132915A (ja) * 2001-10-23 2003-05-09 Honda Motor Co Ltd 排出燃料希釈器および排出燃料希釈式燃料電池システム
JP2003148252A (ja) * 2001-11-14 2003-05-21 Honda Motor Co Ltd 燃料供給装置
JP2004111167A (ja) * 2002-09-18 2004-04-08 Honda Motor Co Ltd 水素供給装置
JP2004158200A (ja) * 2002-11-01 2004-06-03 Nissan Motor Co Ltd 燃料電池装置
JP2004253259A (ja) * 2003-02-20 2004-09-09 Nissan Motor Co Ltd 燃料電池プラントの制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3663669B2 (ja) 1995-05-29 2005-06-22 松下電器産業株式会社 燃料電池発電システム
DE19649434C1 (de) 1996-11-28 1998-01-15 Siemens Ag Verfahren zur Ermittlung von Gaslecks in Brennstoffzellen
JP2000274311A (ja) 1999-03-19 2000-10-03 Honda Motor Co Ltd 車両用ガス燃料供給システム
DE10060626A1 (de) 2000-12-06 2002-06-20 Siemens Ag Verfahren zm Erkennen einer Undichtigkeit in einer Brennstoffzelle
JP4162874B2 (ja) 2001-07-26 2008-10-08 本田技研工業株式会社 燃料電池におけるガス漏れ検知方法
JP3846354B2 (ja) 2002-04-16 2006-11-15 日産自動車株式会社 燃料電池システムのガス漏れ検知方法及び装置
JP3783650B2 (ja) 2002-04-18 2006-06-07 日産自動車株式会社 ガス燃料供給装置
JP4085793B2 (ja) * 2002-11-22 2008-05-14 トヨタ自動車株式会社 流体の漏れの検出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056864A (ja) * 2000-08-10 2002-02-22 Mitsubishi Heavy Ind Ltd 燃料電池装置、及び、燃料電池装置の運転方法
JP2003132915A (ja) * 2001-10-23 2003-05-09 Honda Motor Co Ltd 排出燃料希釈器および排出燃料希釈式燃料電池システム
JP2003148252A (ja) * 2001-11-14 2003-05-21 Honda Motor Co Ltd 燃料供給装置
JP2004111167A (ja) * 2002-09-18 2004-04-08 Honda Motor Co Ltd 水素供給装置
JP2004158200A (ja) * 2002-11-01 2004-06-03 Nissan Motor Co Ltd 燃料電池装置
JP2004253259A (ja) * 2003-02-20 2004-09-09 Nissan Motor Co Ltd 燃料電池プラントの制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090263684A1 (en) * 2006-07-28 2009-10-22 Takatoshi Masui Reforming system and reforming method
US20100055521A1 (en) * 2007-02-05 2010-03-04 Kenji Umayahara Fuel cell system
US9034495B2 (en) * 2007-02-05 2015-05-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8722266B2 (en) 2007-11-21 2014-05-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Also Published As

Publication number Publication date
CN101015086B (zh) 2010-06-16
JP2006086025A (ja) 2006-03-30
DE112005002230B4 (de) 2023-03-02
CN101015086A (zh) 2007-08-08
US20070207355A1 (en) 2007-09-06
DE112005002230T5 (de) 2007-08-09
JP4730646B2 (ja) 2011-07-20
US8216729B2 (en) 2012-07-10

Similar Documents

Publication Publication Date Title
WO2006030969A1 (ja) 燃料電池システムおよび燃料電池システムのガス漏れ判定方法
JP4868251B2 (ja) 燃料電池システム、アノードガス生成量推定装置及びアノードガス生成量の推定方法
JP4761182B2 (ja) 燃料電池システム
JP5327557B2 (ja) 燃料電池のセル水分量の状態を判定する方法、その装置、燃料電池のセル水分量の状態を制御する方法、その装置及び燃料電池システム
KR100845567B1 (ko) 연료전지시스템과 그 운전방법 및 연료전지 차량
WO2007004719A1 (ja) 燃料電池システム及びそのガス漏れ検知方法並びに移動体
WO2007013667A1 (ja) 燃料電池システムおよびガス漏れ検知装置
JP2008103137A (ja) 燃料電池システムおよびその膜含水量調節方法
WO2009005158A1 (ja) 燃料電池システムおよび燃料電池システムの制御装置
JP2009146618A (ja) 燃料電池システム及び移動体
CA2597570C (en) Fuel cell system with voltage detection device
US8691460B2 (en) Method of stopping operation of fuel cell system
US9070916B2 (en) Method for controlling fuel cell system
JP5164014B2 (ja) 燃料電池システムおよびその制御方法
WO2008099743A1 (ja) 燃料電池システム
JP2014035822A (ja) 燃料電池システム
WO2008007690A1 (fr) Système de pile à combustible
CN116742069A (zh) 燃料电池系统以及燃料电池系统的阀控制方法
JP5057086B2 (ja) ポンプ駆動制御装置
EP2056387B1 (en) Fuel cell system and scavenging method therefor
JP2009158268A (ja) 燃料電池システム
JP2006092789A (ja) 燃料電池システム及び該システムを備えた車両
JP5080876B2 (ja) 燃料電池システム
JP2012209154A (ja) 燃料電池システムを制御する制御装置
WO2006033426A1 (ja) 燃料電池システム、該システムの異常検出方法及び移動体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11660810

Country of ref document: US

Ref document number: 2007207355

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580030316.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050022307

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005002230

Country of ref document: DE

Date of ref document: 20070809

Kind code of ref document: P

WWP Wipo information: published in national office

Ref document number: 11660810

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05785903

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607