WO2009005158A1 - 燃料電池システムおよび燃料電池システムの制御装置 - Google Patents

燃料電池システムおよび燃料電池システムの制御装置 Download PDF

Info

Publication number
WO2009005158A1
WO2009005158A1 PCT/JP2008/062242 JP2008062242W WO2009005158A1 WO 2009005158 A1 WO2009005158 A1 WO 2009005158A1 JP 2008062242 W JP2008062242 W JP 2008062242W WO 2009005158 A1 WO2009005158 A1 WO 2009005158A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
electrolyte membrane
fuel gas
gas
Prior art date
Application number
PCT/JP2008/062242
Other languages
English (en)
French (fr)
Inventor
Takuya Hashimoto
Hideki Kubo
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2008800230862A priority Critical patent/CN101689665B/zh
Priority to US12/666,489 priority patent/US8309261B2/en
Priority to DE112008001769T priority patent/DE112008001769T5/de
Publication of WO2009005158A1 publication Critical patent/WO2009005158A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a control device for the fuel cell system.
  • oxidizing oxygen such as oxygen containing oxygen supplied to the oxidant electrode
  • fuel cell systems that generate electric power using an agent gas and a fuel gas containing hydrogen supplied to a fuel electrode (for example, Japanese Unexamined Patent Application Publication Nos. 2004-127914 and 2000-3).
  • Japanese Patent Application Publication No. 2004-127914 describes that when hydrogen in the fuel cell is diagnosed as being deficient in hydrogen, It has been proposed that the pressure be lower than the air pressure to promote the movement of water from the oxidizer electrode side to the fuel electrode side through the electrolyte membrane.
  • the oxygen-containing gas is supplied to the oxidant electrode at a pressure higher than that of the hydrogen-containing gas supplied to the fuel electrode.
  • the technology to eliminate the water on the fuel electrode side and supplement the necessary water on the fuel electrode side is disclosed. Disclosure of the invention
  • the present invention makes the water distribution in the electrolyte membrane uniform without lowering the pressure of the fuel gas.
  • a fuel cell system capable of achieving the above is provided.
  • the fuel cell system includes an electrolyte membrane, an oxidant electrode provided on one surface of the electrolyte membrane, and a fuel electrode provided on the other surface of the electrolyte membrane, An oxidant gas flow path for supplying an oxidant gas along the surface of the agent electrode, and a fuel gas flow path for supplying the fuel gas along the surface of the fuel electrode, the flow direction of the oxidant gas and the flow of the fuel gas
  • An oxidant gas flow path for supplying an oxidant gas along the surface of the agent electrode, and a fuel gas flow path for supplying the fuel gas along the surface of the fuel electrode, the flow direction of the oxidant gas and the flow of the fuel gas
  • a fuel cell system provided so as to face the flow direction, and a control means for performing control to increase the flow rate of the fuel gas flowing through the fuel gas flow path when the electrolyte membrane is dry It is characterized by having.
  • control means includes a fuel in the fuel gas flow path when the electrolyte membrane is dry and the operating state of the fuel cell system is a predetermined high load state. Control to reduce the gas pressure.
  • a control device for a fuel cell system includes an electrolyte membrane, an oxidant electrode provided on one surface of the electrolyte membrane, and a fuel electrode provided on the other surface of the electrolyte membrane, An oxidant gas flow path for supplying an oxidant gas along the surface of the oxidant electrode, and a fuel gas flow path for supplying a fuel gas along the surface of the fuel electrode, the flow direction of the oxidant gas, A control device for a fuel cell system provided so as to face a flow direction of fuel gas, wherein the flow rate of the fuel gas flowing through the fuel gas flow path is increased when the electrolyte membrane is dry Control is performed.
  • the pressure of the fuel gas in the fuel gas passage is set. Control to reduce.
  • FIG. 1 is a schematic diagram showing a configuration of a fuel cell system according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the fuel cell.
  • FIG. 3 is a flowchart showing the processing executed by the control device.
  • FIG. 4 is a schematic diagram showing a case where the electrolyte membrane is dried.
  • Fig. 5 is a schematic diagram showing the case where the flow rate of hydrogen is increased.
  • FIG. 1 is a schematic diagram showing a configuration of a fuel cell system 1 according to the present embodiment.
  • the fuel cell system 1 is a system that generates electric power using an oxidant gas and a fuel gas, and is mounted on a fuel cell vehicle in the present embodiment.
  • the fuel cell system 1 may be applied to other than fuel cell vehicles.
  • the fuel cell system 1 includes a fuel cell 10.
  • the fuel cell 10 generates power upon receiving supply of oxidant gas and fuel gas.
  • the oxidant gas is a gas such as air containing oxygen
  • the fuel gas is a gas containing hydrogen
  • the fuel cell 10 generates power using an electrochemical reaction between hydrogen and oxygen.
  • the fuel cell 10 is, for example, a solid polymer electrolyte type fuel cell.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the fuel cell 10.
  • the fuel cell 10 has a stack structure in which a large number of single cells are stacked.
  • a single cell is shown for convenience.
  • the fuel cell 10 includes an electrolyte membrane 1 1, an oxidant electrode (referred to as a force sword) 1 2 provided on one surface of the electrolyte membrane 1 1, and the other surface of the electrolyte membrane 1 1. And a fuel electrode (referred to as an anode) 1 3 provided.
  • the fuel cell 10 includes a membrane electrode assembly (MEA) formed by joining an oxidizer electrode 12 and a fuel electrode 13 to an electrolyte membrane 11.
  • MEA membrane electrode assembly
  • an oxidant gas flow path 1 4 for supplying an oxidant gas to the oxidant electrode 1 2 along the surface of the oxidant electrode 1 2 is provided on the outer surface side of the fuel electrode 1 2.
  • a fuel gas passage 15 for supplying fuel gas to the fuel electrode 13 along the surface of the fuel electrode 13 is provided on the outer surface side of the fuel electrode.
  • a separator in which an oxidant gas flow path 14 is formed is provided on the outer surface side of the oxidant electrode 12 via a diffusion layer 16, and on the outer surface side of the fuel electrode 13, A separator in which a fuel gas channel 15 is formed is provided through the diffusion layer 17.
  • the oxidant gas flow path 14 and the fuel gas flow path 15 include the flow direction of the oxidant gas in the oxidant gas flow path 14 and the flow direction of the fuel gas in the fuel gas flow path 15. Are provided so as to face each other.
  • the flow direction of the oxidant gas and the flow direction of the fuel gas may be opposed to each other in at least a part of the surface of the fuel cell 10, or may be opposed obliquely.
  • Oxidant gas is supplied to the oxidant gas flow path 14 via the inlet 14 A, and thereby, the oxidant gas is supplied to the oxidant electrode 12.
  • the fuel gas is supplied to the fuel gas flow path 15 via its inlet 15 A, whereby the fuel gas is supplied to the fuel electrode 13.
  • the fuel cell 10 generates power using the oxidant gas supplied to the oxidant electrode 12 and the fuel gas supplied to the fuel electrode 13. Specifically, due to the catalytic action of platinum, the reaction shown by the following formula (1) occurs on the fuel electrode 1 3 side, and the reaction shown by the following formula (2) occurs on the oxidizer electrode 1 2 side. As a result, an electromotive reaction represented by the following formula (3) occurs.
  • the power sword off gas is discharged from the oxidant gas flow path 14 via the outlet 14 B, and the anode off gas is discharged from the fuel gas flow path 15 via the outlet 15 B.
  • an oxidant supply flow path 22 that guides air supplied from the compressor 21 to the oxidant gas flow path 14 is connected to the inlet of the oxidant gas flow path 14.
  • an oxidant discharge flow path 23 that guides the cathode off-gas discharged from the oxidant gas flow path 14 to the outside.
  • the oxidant discharge passage 23 is provided with a pressure adjustment valve 24 for adjusting the pressure of the gas in the passage.
  • the pressure sensors for measuring the pressure of the gas in the flow paths and the flow paths are appropriately opened and closed for the flow paths 22 and 23 connected to the oxidant gas flow path 14.
  • a valve (air shut valve) and a humidification module are provided.
  • the fuel gas flow path 15 is connected to a fuel supply flow path 3 2 for guiding hydrogen supplied from the hydrogen tank 31 storing high-pressure hydrogen gas to the fuel gas flow path 15 at the inlet.
  • the outlet of the fuel gas passage 15 is connected to a circulation passage 33 that returns the anode off gas discharged from the fuel gas passage 15 to the fuel supply passage 32.
  • the fuel supply flow path 3 2 is provided with a pressure adjustment valve 3 4 for adjusting the pressure of the gas in the flow path.
  • the circulation flow path 33 is provided with a hydrogen pump 38 for circulating hydrogen.
  • the circulation flow path 3 3 is connected to a fuel discharge flow path 3 5 that guides the anode off gas discharged from the fuel gas flow path 15 to the outside.
  • a purge valve 36 that opens and closes the flow path is provided.
  • the pressure sensor for measuring the pressure in the flow path and the flow path are appropriately opened and closed for the flow paths 3 2 and 3 3 connected to the fuel gas flow path 15.
  • a valve (air shut valve), etc. is provided for this purpose.
  • An external load 41 is electrically connected to the fuel cell 10.
  • the external load 41 is, for example, a DC / DC converter or a load (for example, a secondary battery, a capacitor, an auxiliary machine, a resistor, etc.) connected to the fuel cell 10 via the DC ZDC converter.
  • the fuel cell system 1 includes an impedance measuring unit 43 that measures the impedance of the fuel cell 10 and a control device 50 that controls the entire fuel cell system 1.
  • the control device 50 is based on various input information (such as the output value of the impedance measurement unit 4 3) and the controlled device (compressor 2 1, pressure adjustment valve 2 4, hydrogen pump 3 8, pressure adjustment Valve 3 4 etc.).
  • the control device 50 can be realized by an appropriate configuration.
  • the control device 50 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a main memory, and the like. This is realized by the CPU executing a control program stored in a storage medium such as ROM.
  • the control device 50 performs the following control. That is, the control device 50 is When the electrolyte membrane 11 is dry, control is performed to increase the flow rate of the fuel gas flowing through the fuel gas flow path 15. Specifically, the control device 50 determines whether or not the electrolyte membrane 11 is dry. When it is determined that the electrolyte membrane 11 is dry, the control device 50 determines the flow rate of the fuel gas flowing through the fuel gas flow path 15. Control to increase.
  • increasing the flow rate of fuel gas means increasing the flow rate of fuel gas rather than the normal flow rate of fuel gas.
  • the fuel gas flow rate should be increased with reference to the fuel gas flow rate set in advance according to the target output, for example, the fuel gas flow rate corresponding to the target output in the control map prepared in advance. Means.
  • control device 50 determines whether or not the electrolyte membrane 11 is dry based on the impedance measured by the impedance measuring unit 43. However, whether or not the electrolyte membrane 11 is dry may be determined by another method. Further, in the present embodiment, the control device 50 performs control to increase the rotation speed of the hydrogen pump 38 as control for increasing the flow rate of the fuel gas. However, the increase in the flow rate of the fuel gas may be realized by another method.
  • control device 50 has a fuel gas flow when the electrolyte membrane 11 is dry and the operating state of the fuel cell system 1 is a predetermined high load state. Control is performed to reduce the pressure of the fuel gas in the passage 15, thereby promoting the movement of moisture from the oxidizer electrode 12 side to the fuel electrode 13 side.
  • the flow rate of the fuel gas increases as the load increases, and the control device 50 cannot increase the flow rate of the fuel gas from the viewpoint that the flow rate of the fuel gas has an upper limit.
  • control is performed to reduce the fuel gas pressure.
  • the control device 50 controls the reduction of hydrogen when the rotation speed of the hydrogen pump 3 8 reaches a predetermined rotation speed. I do.
  • the control device 50 is When the load is high enough to reduce the fuel gas pressure, control is performed to reduce the fuel gas pressure. Specifically, water From the viewpoint of low possibility of a hydrogen deficient state when the elementary pressure is high, the control device 50 performs control to lower the hydrogen pressure when the hydrogen pressure is equal to or higher than a predetermined value.
  • control device 50 performs control to reduce the pressure of the fuel gas when the required output is equal to or greater than a predetermined value.
  • the control device 50 determines the target values of the output voltage and output current based on the preset current-voltage characteristic map (I-V characteristic map) of the fuel cell 10 according to the required output. Then, the control device 50 controls the pressure and flow rate of the air supplied to the oxidizer electrode 12 and the fuel electrode 13 based on a preset control map according to the target values of the output voltage and output current. Determine target values for pressure and flow rate of hydrogen supplied. The control device 50 then sets the pressure and flow rate of the air supplied to the oxidizer electrode 12 and the pressure and flow rate of hydrogen supplied to the fuel electrode 13 to the target values, respectively. Controls the pressure control valve 2 4, the compressor 2 1, the pressure control valve 3 4, and the hydrogen pump 3 8. At this time, when the pressure and flow rate are controlled to target values, a pressure sensor or flow rate sensor may be used.
  • the power sword off gas is discharged from the oxidant gas flow path 14, and the power sword off gas is discharged to the outside through the oxidant discharge flow path 23.
  • control device 50 performs the process shown in FIG. 3 in order to prevent a decrease in battery output due to drying of the electrolyte membrane 11. The processing shown in FIG. 3 is repeated as appropriate.
  • the control device 50 acquires the impedance of the fuel cell 10 measured by the impedance measuring unit 43 (S 1).
  • control device 50 determines whether or not the acquired impedance is greater than or equal to a predetermined threshold value (S2).
  • the control device 50 When it is determined that the impedance is not equal to or higher than the predetermined threshold (S2: NO), the control device 50 does not change the operating conditions such as pressure and flow rate (S3).
  • the control device 50 determines whether or not the operating state of the fuel cell system 1 is in a predetermined high load state. (S4). For example, the control device 50 determines whether or not the rotation speed of the hydrogen pump 38 has reached the upper limit.
  • the control device 50 increases the rotation speed of the hydrogen pump 38 by a predetermined rotation speed. (S 5).
  • the flow rate of hydrogen in the fuel gas channel 15 increases, the movement of moisture in the fuel cell 10 is promoted (that is, the internal humidification effect is enhanced), and the moisture distribution in the fuel cell 10 is made uniform.
  • the impedance of the fuel cell 10 decreases.
  • the control device 50 controls the pressure regulating valve 3 4. Reduce the hydrogen pressure (S 6). As a result, the hydrogen pressure (anode pressure) on the fuel electrode 1 3 side becomes lower than the air pressure (force sword pressure) on the oxidizer electrode 1 2 side. Due to this pressure difference, the oxidizer electrode 1 2 Permeation of water from the fuel electrode 13 to the fuel electrode 13 side is promoted, and the impedance of the fuel cell 10 decreases.
  • FIG. 4 is a schematic diagram showing a case where the electrolyte membrane 11 is dried.
  • FIG. 5 is a schematic diagram showing the case where the flow rate of hydrogen is increased.
  • the uniformity of moisture distribution in the electrolyte membrane 11 due to the increase in the hydrogen flow rate will be described.
  • the dashed arrows indicate the movement of water.
  • the upstream side of the air flow in the electrolyte membrane 11 becomes dry and the downstream side becomes wet. This is because the water generated at the oxidizer electrode 12 is moved by the air flow.
  • the water on the oxidizer electrode 12 side passes through the fuel electrode 13 side.
  • the flow direction of air and the flow direction of hydrogen are opposed to each other, the downstream side of air corresponds to the upstream side of hydrogen, and the upstream side of air corresponds to the downstream side of hydrogen.
  • the upstream side of hydrogen becomes wet, and the downstream side of hydrogen becomes dry.
  • the power generation performance decreases due to drying of the electrolyte membrane 11 on the upstream side of the air, power generation concentrates on the downstream side, and the output of the fuel cell 10 as a whole decreases.
  • a dry state occurs, for example, during low-load operation or high-temperature operation.
  • the hydrogen flow rate is increased, the amount of movement of water from the upstream side to the downstream side of hydrogen is increased on the fuel electrode 13 side in the plane of the fuel cell 10.
  • the upstream side of hydrogen is wet and the downstream side is dry. Therefore, the increase in the hydrogen flow rate promotes the uniform distribution of moisture in the surface on the fuel electrode 13 side.
  • the amount of moisture transferred from the oxidant electrode 12 side to the fuel electrode 13 side on the downstream side of the air (upstream side of hydrogen) also increases, and the fuel electrode on the upstream side of the air (downstream side of hydrogen) 1
  • the amount of moisture transferred from the 3 side to the oxidant electrode 1 2 side also increases.
  • the moisture distribution of the electrolyte membrane 11 is made uniform, the power generation distribution is also made uniform, the impedance of the fuel cell 10 is lowered, and the output of the fuel cell 10 is improved.
  • the present embodiment includes an electrolyte membrane, an oxidant electrode provided on one surface of the electrolyte membrane, and a fuel electrode provided on the other surface of the electrolyte membrane,
  • An oxidant gas flow path for supplying an oxidant gas along the surface, and a fuel gas flow path for supplying the fuel gas along the surface of the fuel electrode are provided with a flow direction of the oxidant gas and a flow direction of the fuel gas.
  • control is performed to increase the flow rate of the fuel gas flowing through the fuel gas flow path.
  • the movement of moisture can be promoted by increasing the flow rate of the fuel gas, and the moisture distribution of the electrolyte membrane can be made uniform without lowering the pressure of the fuel gas. It becomes possible. This avoids or reduces fuel gas shortage due to fuel gas pressure drop (specifically, hydrogen shortage due to hydrogen pressure drop), and avoids or reduces battery output drop due to electrolyte membrane drying. It becomes possible Further, in the present embodiment, when the electrolyte membrane is dry and the operation state of the fuel cell system is a predetermined high load state, the pressure of the fuel gas in the fuel gas flow path is reduced. Take control.
  • the water distribution in the electrolyte membrane can be made uniform by lowering the pressure of the fuel gas.
  • the efficiency can be reduced by reducing the fuel gas pressure.
  • the moisture distribution of the electrolyte membrane can be made uniform.
  • an injector may be provided instead of the pressure adjusting valve 34, and the pressure of the fuel gas may be adjusted by controlling the on / off of the injector.
  • the movement of water is promoted by reducing the pressure of the fuel gas in a high load state.
  • the movement of water may be promoted by increasing the pressure of the oxidant gas. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明は、燃料ガスの圧力を下げずに、電解質膜の水分分布の均一化を図る。電解質膜11と、電解質膜11の一方の面に設けられた酸化剤極と、電解質膜11の他方の面に設けられた燃料極とを備え、酸化剤極の面に沿って酸化剤ガスを供給する酸化剤ガス流路14と、燃料極の面に沿って燃料ガスを供給する燃料ガス流路15とが、酸化剤ガスの流通方向と燃料ガスの流通方向とが対向するように設けられている燃料電池システム1において、制御装置50は、電解質膜11が乾燥している場合に、燃料ガス流路15を流れる燃料ガスの流量を増加させる制御を行う。

Description

燃料電池システムおよび燃料電池システムの制御装置 技術分野
本発明は、 燃料電池システムおよび燃料電池システムの制御装置に関する。 背景技術
電解質膜と、 当該電解質膜の一方の面に設けられた酸化剤極と、 他方の面に設 けられた燃料極とを備え、 酸化剤極に供明給される酸素を含む空気等の酸化剤ガス と、 燃料極に供給される水素を含む燃料ガスとを用いて発電する燃料電池システ ムがある (例えば、 特開 2004— 1 279 14号公報および特開 2000— 3 書
40241号公報を参照) 。
このような燃料電池システムでは、 電解質膜の含水量が不足すると、 電解質膜 のインピーダンスが高くなり、 電池の出力が低下してしまう。
当該電解質膜の含水量の不足による電池の出力低下を防止する技術として、 特 開 2004— 1 279 14号公報には、 燃料電池の内部の水分が不足していると 診断される場合に、 水素圧力を空気圧力よりも低く して、 酸化剤極側から電解質 膜を介して燃料極側へ水が移動するのを促進するものが提案されている。
なお、 特開 2000— 34024 1号公報には、 燃料極に供給される水素含有 ガスより高い圧力で酸化剤極に酸素含有ガスを供給することにより、 酸化剤極側 で生じる生成水を圧力差をもって燃料極側に排除するとともに、 燃料極側で必要 な水を補う技術が開示されている。 発明の開示
しかし、 上記特開 2004- 1 279 14号公報に記載の技術では、 水素圧を 下げることにより、 発電に必要な水素が不足する状態、 すなわち水素欠状態にな つてしまう恐れがある。
そこで、 本発明は、 燃料ガスの圧力を下げずに、 電解質膜の水分分布の均一化 を図ることが可能な燃料電池システムを提供する。
本発明に係る燃料電池システムは、 電解質膜と、 前記電解質膜の一方の面に設 けられた酸化剤極と、 前記電解質膜の他方の面に設けられた燃料極とを備え、 前 記酸化剤極の面に沿って酸化剤ガスを供給する酸化剤ガス流路と、 前記燃料極の 面に沿って燃料ガスを供給する燃料ガス流路とが、 酸化剤ガスの流通方向と燃料 ガスの流通方向とが対向するように設けられている燃料電池システムであって、 前記電解質膜が乾燥している場合に、 前記燃料ガス流路を流れる燃料ガスの流量 を増加させる制御を行う制御手段を有することを特徴とする。
本発明の一態様では、 前記制御手段は、 前記電解質膜が乾燥しており、 且つ、 前記燃料電池システムの運転状態が所定の高負荷状態である場合には、 前記燃料 ガス流路内の燃料ガスの圧力を低下させる制御を行う。
本発明に係る燃料電池システムの制御装置は、 電解質膜と、 前記電解質膜の一 方の面に設けられた酸化剤極と、 前記電解質膜の他方の面に設けられた燃料極と を備え、 前記酸化剤極の面に沿って酸化剤ガスを供給する酸化剤ガス流路と、 前 記燃料極の面に沿って燃料ガスを供給する燃料ガス流路とが、 酸化剤ガスの流通 方向と燃料ガスの流通方向とが対向するように設けられている燃料電池システム の制御装置であって、 前記電解質膜が乾燥している場合に、 前記燃料ガス流路を 流れる燃料ガスの流量を増加させる制御を行うことを特徴とする。
本発明の一態様では、 前記電解質膜が乾燥しており、 且つ、 前記燃料電池シス テムの運転状態が所定の高負荷状態である場合には、 前記燃料ガス流路内の燃料 ガスの圧力を低下させる制御を行う。
本発明によれば、 燃料ガスの圧力を下げずに、 電解質膜の水分分布の均一化を 図ることが可能な燃料電池システムを提供することができる。 図面の簡単な説明
図 1は、 実施の形態に係る燃料電池システムの構成を示す概略図である。 図 2は、 燃料電池の構成を示す概略断面図である。
図 3は、 制御装置により実行される処理を示すフローチヤ一トである。
図 4は、 電解質膜が乾燥している場合を示す模式図である。 図 5は、 水素の流量を増加させた場合を示す模式図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面に従って説明する。
図 1は、 本実施の形態に係る燃料電池システム 1の構成を示す概略図である。 この燃料電池システム 1は、 酸化剤ガスと燃料ガスを用いて発電するシステムで あり、 本実施の形態では、 燃料電池自動車に搭載されるものである。 ただし、 燃 料電池システム 1は、 燃料電池自動車以外に適用されてもよい。
図 1において、 燃料電池システム 1は、 燃料電池 1 0を有する。 この燃料電池 1 0は、 酸化剤ガスと燃料ガスとの供給を受けて発電する。 具体的には、 酸化剤 ガスは、 酸素を含む空気等のガスであり、 燃料ガスは、 水素を含むガスであり、 燃料電池 1 0は、 水素と酸素との電気化学反応を利用して発電する。 燃料電池 1 0は、 例えば、 固体高分子電解質型の燃料電池である。
図 2は、 燃料電池 1 0の構成を示す概略断面図である。 以下、 図 2を参照して 、 燃料電池 1 0の構成について説明する。 なお、 本実施の形態では、 燃料電池 1 0は、 多数の単セルが積層されたスタック構造を有するものであるが、 図 2では 、 便宜上、 単一のセルが示されている。
図 2において、 燃料電池 1 0は、 電解質膜 1 1と、 電解質膜 1 1の一方の面に 設けられた酸化剤極 (力ソードと呼ばれる) 1 2と、 電解質膜 1 1の他方の面に 設けられた燃料極 (アノードと呼ばれる) 1 3とを含む。 具体的には、 燃料電池 1 0は、 電解質膜 1 1に酸化剤極 1 2および燃料極 1 3が接合されてなる膜電極 接合体 (MEA : Membrane Electrode Assembly) ¾ra'む。
酸化剤極 1 2の外面側には、 酸化剤極 1 2の面に沿って酸化剤極 1 2に酸化剤 ガスを供給する酸化剤ガス流路 1 4が設けられており、 燃料極 1 3の外面側には 、 燃料極 1 3の面に沿って燃料極 1 3に燃料ガスを供給する燃料ガス流路 1 5が 設けられている。 具体的には、 酸化剤極 1 2の外面側には、 拡散層 1 6を介して 、 酸化剤ガス流路 1 4が形成されたセパレータが設けられ、 燃料極 1 3の外面側 には、 拡散層 1 7を介して、 燃料ガス流路 1 5が形成されたセパレータが設けら れる。 本実施の形態では、 酸化剤ガス流路 14および燃料ガス流路 1 5とは、 酸化剤 ガス流路 14内の酸化剤ガスの流通方向と燃料ガス流路 1 5内の燃料ガスの流通 方向とが互いに対向するように設けられている。 ここで、 酸化剤ガスの流通方向 と燃料ガスの流通方向とは、 燃料電池 1 0の面内の少なくとも一部の領域で対向 していればよく、 また、 斜めに対向していてもよい。
ここで、 燃料電池 1 0の発電作用について説明する。 酸化剤ガス流路 14には 、 その入口 14 Aを介して酸化剤ガスが供給され、 これにより酸化剤極 1 2に酸 化剤ガスが供給される。 一方、 燃料ガス流路 1 5には、 その入口 1 5 Aを介して 燃料ガスが供給され、 これにより燃料極 1 3に燃料ガスが供給される。 燃料電池 1 0は、 酸化剤極 1 2に供給される酸化剤ガスと燃料極 1 3に供給される燃料ガ スとを用いて発電を行う。 具体的には、 白金の触媒作用などにより、 燃料極 1 3 側では下記式 (1) に示される反応が起こり、 酸化剤極 1 2側では下記式 (2) に示される反応が起こり、 全体としては下記式 (3) に示される起電反応が起こ る。
H2 → 2 H + + 2 e— · · · ( 1 )
2H + + (1/2) O2+ 2 e - → H20 · · · (2)
H2+ (1/2) O2 → H20 · · · (3)
そして、 酸化剤ガス流路 14からは、 その出口 14 Bを介して力ソードオフガ スが排出され、 燃料ガス流路 1 5からは、 その出口 1 5 Bを介してアノードオフ ガスが排出される。
再び図 1を参照すると、 酸化剤ガス流路 14の入口には、 コンプレッサ 2 1か ら供給される空気を酸化剤ガス流路 14に導く酸化剤供給流路 22が接続されて おり、 酸化剤ガス流路 14の出口には、 当該酸化剤ガス流路 14から排出される カソードオフガスを外部に導く酸化剤排出流路 23が接続されている。 酸化剤排 出流路 23には、 当該流路内のガスの圧力を調整するための圧力調整弁 24が設 けられている。 なお、 図 1には示されていないが、 酸化剤ガス流路 14に接続さ れる流路 22, 23には、 適宜、 流路内のガスの圧力を測定する圧力センサや、 流路を開閉するための弁 (エアシャッ トバルブ) 、 加湿モジュールなどが設けら れる。 一方、 燃料ガス流路 1 5の入口には、 高圧水素ガスを貯蔵する水素タンク 3 1 から供給される水素を燃料ガス流路 1 5に導く燃料供給流路 3 2が接続されてお り、 燃料ガス流路 1 5の出口には、 当該燃料ガス流路 1 5から排出されるァノー ドオフガスを燃料供給流路 3 2に戻す循環流路 3 3が接続されている。 燃料供給 流路 3 2には、 当該流路内のガスの圧力を調整する圧力調整弁 3 4が設けられて いる。 循環流路 3 3には、 水素を循環させるための水素ポンプ 3 8が設けられて いる。 また、 循環流路 3 3には、 燃料ガス流路 1 5から排出されたアノードオフ ガスを外部に導く燃料排出流路 3 5が接続されており、 この燃料排出流路 3 5に は、 当該流路を開閉するパージ弁 3 6が設けられている。 なお、 図 1には示され ていないが、 燃料ガス流路 1 5に接続される流路 3 2, 3 3には、 適宜、 流路内 の圧力を測定する圧力センサや、 流路を開閉するための弁 (エアシャッ トバルブ ) などが設けられる。
燃料電池 1 0には、 外部負荷 4 1が電気的に接続される。 外部負荷 4 1は、 例 えば、 D C /D Cコンバータや、 当該 D C ZD Cコンバータを介して燃料電池 1 0に接続される負荷 (例えば、 二次電池、 キャパシタ、 補機、 抵抗体など) であ る。
さらに、 燃料電池システム 1は、 燃料電池 1 0のインピーダンスを測定するィ ンピーダンス測定部 4 3と、 燃料電池システム 1全体を制御する制御装置 5 0と を有する。 制御装置 5 0は、 具体的には、 各種の入力情報 (インピーダンス測定 部 4 3の出力値など) に基づき、 被制御装置 (コンプレッサ 2 1、 圧力調整弁 2 4、 水素ポンプ 3 8、 圧力調整弁 3 4など) を制御する。
制御装置 5 0は、 適宜の構成により実現可能であるが、 本実施の形態では、 C P U (Central Processing Unit) 、 R O M (Read Only Memory) 、 メインメモ リなどを含んで構成され、 その機能は、 R OM等の記憶媒体に記憶された制御プ ログラムが C P Uにより実行されることによって実現される。
上記構成において、 電解質膜 1 1が乾燥すると、 電解質膜 1 1のインピーダン スが上昇し、 燃料電池 1 0の出力が低下する。
そこで、 上記電解質膜 1 1の乾燥による燃料電池 1 0の出力の低下を防止する 観点より、 制御装置 5 0は、 次のような制御を行う。 すなわち、 制御装置 5 0は 、 電解質膜 1 1が乾燥している場合に、 燃料ガス流路 1 5を流れる燃料ガスの流 量を增加させる制御を行う。 具体的には、 制御装置 5 0は、 電解質膜 1 1が乾燥 しているか否かを判定し、 乾燥していると判定された場合に、 燃料ガス流路 1 5 を流れる燃料ガスの流量を増加させる制御を行う。
ここで、 「燃料ガスの流量を増加させる」 とは、 通常時の燃料ガスの流量より も、 燃料ガスの流量を増加させることを意味する。 具体的には、 目標出力に応じ た予め設定された燃料ガスの流量、 例えば予め用意された制御マップにおいて目 標出力に対応する燃料ガスの流量を基準として、 燃料ガスの流量を増加させるこ とを意味する。
本実施の形態では、 制御装置 5 0は、 インピーダンス測定部 4 3により測定さ れたインピーダンスに基づき、 電解質膜 1 1が乾燥しているか否かを判定する。 ただし、 電解質膜 1 1が乾燥しているか否かは、 別の方法で判定されてもよい。 また、 本実施の形態では、 制御装置 5 0は、 燃料ガスの流量を増加させる制御 として、 水素ポンプ 3 8の回転数を上げる制御を行う。 ただし、 燃料ガスの流量 の増加は、 別の方法で実現されてもよい。
また、 本実施の形態では、 制御装置 5 0は、 電解質膜 1 1が乾燥しており、 且 つ、 燃料電池システム 1の運転状態が所定の高負荷状態である場合には、 燃料ガ ス流路 1 5内の燃料ガスの圧力を低下させる制御を行い、 これにより酸化剤極 1 2側から燃料極 1 3側への水分の移動を促進させる。
一つの態様では、 高負荷になるほど燃料ガスの流量が増大し、 燃料ガスの流量 には上限がある観点より、 制御装置 5 0は、 燃料ガスの流量を増加させることが できなレ、程の高負荷状態である場合には、 燃料ガスの圧力を低下させる制御を行 う。 具体的には、 水素ポンプ 3 8の回転数には上限がある観点より、 制御装置 5 0は、 水素ポンプ 3 8の回転数が所定回転数に達している場合には、 水素を低下 させる制御を行う。
また、 別の一つの態様では、 高負荷になるほど燃料ガスの圧力が増大し、 燃料 ガスの圧力を低下させることによる燃料ガス不足の発生の恐れが少ないという観 点より、 制御装置 5 0は、 燃料ガスの圧力を低下させることができる程の高負荷 状態である場合には、 燃料ガスの圧力を低下させる制御を行う。 具体的には、 水 素圧が高い場合には水素欠状態になる可能性が低い観点より、 制御装置 5 0は、 水素圧が所定値以上である場合には、 水素圧を下げる制御を行う。
さらに、 別の一^ 3の態様では、 制御装置 5 0は、 要求出力が所定値以上である 場合には、 燃料ガスの圧力を低下させる制御を行う。
以下、 上記構成を有する燃料電池システム 1の動作を具体的に説明する。 制御装置 5 0は、 要求出力に応じて、 予め設定された燃料電池 1 0の電流ー電 圧特性マップ (I一 V特性マップ) に基づき、 出力電圧および出力電流の目標値 を決定する。 そして、 制御装置 5 0は、 出力電圧および出力電流の目標値に応じ て、 予め設定された制御マップに基づき、 酸化剤極 1 2に供給される空気の圧力 および流量、 ならびに燃料極 1 3に供給される水素の圧力および流量の目標値を 決定する。 そして、 制御装置 5 0は、 酸化剤極 1 2に供給される空気の圧力およ び流量、 ならびに燃料極 1 3に供給される水素の圧力および流量が、 それぞれ目 標値となるように、 圧力調整弁 2 4、 コンプレッサ 2 1、 圧力調整弁 3 4、 水素 ポンプ 3 8を制御する。 このとき、 圧力や流量を目標値に制御する際、 圧力セン サゃ流量センサが用いられてもよい。
上記制御装置 5 0の制御により、 水素タンク 3 1から燃料供給流路 3 2を介し て水素が燃料ガス流路 1 5に供給され、 コンプレッサ 2 1から酸化剤供給流路 2 2を介して空気が酸化剤ガス流路 1 4に供給され、 燃料電池 1 0が発電する。 燃料ガス流路 1 5からは、 反応に寄与しなかった水素を含むアノードオフガス が排出され、 当該アノードオフガスは循環流路 3 3を通って再び燃料ガス流路 1 5に供給される。 このとき、 アノードオフガスには、 水素以外の不純物が含まれ ているため、 循環するうちに当該アノードオフガス中の水素濃度が低下していく 。 そこで、 適宜のタイミングでパージ弁 3 6が開かれ、 水素濃度が低下したァノ ードオフガスが燃料排出流路 3 5を通って外部に排気される。
一方、 酸化剤ガス流路 1 4からは力ソードオフガスが排出され、 当該力ソード オフガスは酸化剤排出流路 2 3を通って外部に排出される。
本実施の形態では、 電解質膜 1 1の乾燥による電池出力の低下を防止するため 、 制御装置 5 0は、 図 3に示される処理を行う。 当該図 3に示される処理は、 適 宜繰り返し行われる。 図 3において、 制御装置 50は、 インピーダンス測定部 43により測定された 燃料電池 1 0のインピーダンスを取得する (S 1) 。
ついで、 制御装置 50は、 取得されたインピーダンスが所定の閾値以上である か否かを判定する (S 2) 。
インピーダンスが所定の閾値以上でないと判定された場合 (S 2 : NO) 、 制 御装置 50は、 圧力や流量等の運転条件の変更を行わない (S 3) 。
一方、 インピーダンスが所定の閾値以上であると判定された場合 (S 2 : YE S) 、 制御装置 50は、 燃料電池システム 1の運転状態が所定の高負荷状態にあ るか否かを判定する (S 4) 。 例えば、 制御装置 50は、 水素ポンプ 38の回転 数が上限に達しているか否かを判定する。
所定の高負荷状態でないと判定された場合 (S 4 : NO) 、 すなわち低負荷運 転 (例えば常用域運転) の場合、 制御装置 50は、 水素ポンプ 38の回転数を所 定回転数だけ上げる (S 5) 。 これにより、 燃料ガス流路 1 5内の水素の流量が 増加し、 燃料電池 1 0内の水分の移動が促進され (すなわち内部加湿効果が高め られ) 、 燃料電池 10における水分分布が均一化され、 燃料電池 10のインピー ダンスが低下する。
一方、 所定の高負荷状態であると判定された場合 (S 4 : YE S) 、 すなわち 高負荷運転 (例えば最大出力要求時等) の場合、 制御装置 50は、 圧力調整弁 3 4を制御して、 水素圧を下げる (S 6) 。 これにより、 燃料極 1 3側の水素の圧 力 (アノード圧) が、 酸化剤極 1 2側の空気の圧力 (力ソード圧) よりも低くな り、 この圧力差により、 酸化剤極 1 2側から燃料極 1 3側への水の透過が促進さ れ、 燃料電池 10のインピーダンスが低下する。
図 4は、 電解質膜 1 1が乾燥している場合を示す模式図である。 図 5は、 水素 の流量を増加させた場合を示す模式図である。 以下、 図 4, 5を参照して、 水素 流量の増加による電解質膜 1 1の水分分布の均一化について説明する。 なお、 図 4, 5において、 破線の矢印は水の移動を表す。
図 4に示されるように、 乾燥時は、 電解質膜 1 1のうち、 空気の流れの上流側 が乾燥状態となり、 下流側が湿潤状態となる。 これは、 酸化剤極 1 2で生成され た水が、 空気の流れによって移動するからである。 電解質膜 1 1において、 酸化剤極 1 2側の水は、 燃料極 1 3側に透過する。 本 実施の形態では、 空気の流通方向と水素の流通方向とは互いに対向関係にあり、 空気の下流側が水素の上流側に対応し、 空気の上流側が水素の下流側に対応する ので、 燃料極 1 3側においては、 水素の上流側が湿潤状態となり、 水素の下流側 が乾燥状態となる。
図 4に示される状態になると、 空気の上流側では電解質膜 1 1の乾燥により発 電性能が低下し、 下流側に発電が集中し、 燃料電池 1 0全体では出力が低下する 。 このような乾燥状態は、 例えば、 低負荷での運転や高温での運転等で生じる。 このような場合において、 図 5に示されるように、 水素流量を増加させると、 燃料電池 1 0の面内の燃料極 1 3側において、 水素の上流側から下流側への水の 移動量が増加する。 図 4の乾燥状態では水素の上流側が湿潤状態であり下流側が 乾燥状態であるので、 水素流量の増加により、 燃料極 1 3側の面内における水分 分布の均一化が促進されることとなる。 これに伴い、 空気の下流側 (水素の上流 側) における酸化剤極 1 2側から燃料極 1 3側への水分の移動量も増加し、 空気 の上流側 (水素の下流側) における燃料極 1 3側から酸化剤極 1 2側への水分の 移動量も増加する。 これにより、 電解質膜 1 1の水分分布が均一化され、 発電分 布も均一化され、 燃料電池 1 0のインピーダンスが低下し、 燃料電池 1 0の出力 が向上する。
以上のとおり、 本実施の形態では、 電解質膜と、 電解質膜の一方の面に設けら れた酸化剤極と、 電解質膜の他方の面に設けられた燃料極とを備え、 酸化剤極の 面に沿つて酸化剤ガスを供給する酸化剤ガス流路と、 燃料極の面に沿って燃料ガ スを供給する燃料ガス流路とが、 酸化剤ガスの流通方向と燃料ガスの流通方向と が対向するように設けられている燃料電池システムにおいて、 電解質膜が乾燥し ている場合に、 燃料ガス流路を流れる燃料ガスの流量を増加させる制御を行う。 このため、 本実施の形態によれば、 燃料ガスの流量の増加により水分の移動を促 進することができ、 燃料ガスの圧力を下げずに、 電解質膜の水分分布の均一化を 図ることが可能となる。 これにより、 燃料ガスの圧力低下による燃料ガスの不足 状態 (具体的には水素圧低下による水素欠状態) の発生を回避または軽減しつつ 、 電解質膜の乾燥による電池の出力低下を回避または軽減することが可能となる また、 本実施の形態では、 電解質膜が乾燥しており、 且つ、 燃料電池システム の運転状態が所定の高負荷状態である場合には、 燃料ガス流路内の燃料ガスの圧 力を低下させる制御を行う。 このため、 高負荷状態において燃料ガスの流量を増 加させることができなレ、場合に、 燃料ガスの圧力を低下させることにより電解質 膜の水分分布の均一化を図ることが可能となる。 または、 高負荷状態において燃 料ガスの圧力を低下させても燃料ガスの不足状態 (具体的には水素欠状態) の発 生の恐れがない場合に、 燃料ガスの圧力を低下させることにより効率的に電解質 膜の水分分布の均一化を図ることが可能となる。
なお、 本発明は、 上記実施の形態に限定されるものではなく、 本発明の要旨を 逸脱しない範囲内で種々変更することができる。
例えば、 上記圧力調整弁 3 4の代わりにインジュクタが設けられ、 燃料ガスの 圧力は、 インジェクタのオンオフを制御することにより調整されてもよい。 また、 上記実施の形態では、 高負荷状態において、 燃料ガスの圧力を下げるこ とで水の移動を促進させているが、 酸化剤ガスの圧力を上げることで水の移動を 促進させてもよい。 ただし、 エネルギー効率 (具体的には補機損) の観点より、 燃料ガスの圧力を下げる方が好ましい。

Claims

請 求 の 範 囲
1 . 電解質膜と、 前記電解質膜の一方の面に設けられた酸化剤極と、 前記電解質 膜の他方の面に設けられた燃料極とを備え、 前記酸化剤極の面に沿って酸化剤ガ スを供給する酸化剤ガス流路と、 前記燃料極の面に沿って燃料ガスを供給する燃 料ガス流路とが、 酸化剤ガスの流通方向と燃料ガスの流通方向とが対向するよう に設けられている燃料電池システムであって、
前記電解質膜が乾燥している場合に、 前記燃料ガス流路を流れる燃料ガスの流 量を増加させる制御を行う制御手段を有することを特徴とする燃料電池システム
2 . 請求の範囲 1に記載の燃料電池システムであって、
前記制御手段は、 前記電解質膜が乾燥しており、 且つ、 前記燃料電池システム の運転状態が所定の高負荷状態である場合には、 前記燃料ガス流路内の燃料ガス の圧力を低下させる制御を行うことを特徴とする燃料電池システム。
3 . 電解質膜と、 前記電解質膜の一方の面に設けられた酸化剤極と、 前記電解質 膜の他方の面に設けられた燃料極とを備え、 前記酸化剤極の面に沿って酸化剤ガ スを供給する酸化剤ガス流路と、 前記燃料極の面に沿って燃料ガスを供給する燃 料ガス流路とが、 酸化剤ガスの流通方向と燃料ガスの流通方向とが対向するよう に設けられている燃料電池システムの制御装置であって、
前記電解質膜が乾燥している場合に、 前記燃料ガス流路を流れる燃料ガスの流 量を増加させる制御を行うことを特徴とする燃料電池システムの制御装置。
4 . 請求の範囲 3に記載の燃料電池システムの制御装置であって、
前記電解質膜が乾燥しており、 且つ、 前記燃料電池システムの運転状態が所定 の高負荷状態である場合には、 前記燃料ガス流路内の燃料ガスの圧力を低下させ る制御を行うことを特徴とする燃料電池システムの制御装置。
PCT/JP2008/062242 2007-07-04 2008-06-30 燃料電池システムおよび燃料電池システムの制御装置 WO2009005158A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008800230862A CN101689665B (zh) 2007-07-04 2008-06-30 燃料电池系统以及燃料电池系统的控制装置
US12/666,489 US8309261B2 (en) 2007-07-04 2008-06-30 Fuel cell with control unit for recirculating fuel
DE112008001769T DE112008001769T5 (de) 2007-07-04 2008-06-30 Brennstoffzellensystem und Steuereinheit für das Brennstoffzellensystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-176306 2007-07-04
JP2007176306A JP4548453B2 (ja) 2007-07-04 2007-07-04 燃料電池システムおよび燃料電池システムの制御装置

Publications (1)

Publication Number Publication Date
WO2009005158A1 true WO2009005158A1 (ja) 2009-01-08

Family

ID=40226195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/062242 WO2009005158A1 (ja) 2007-07-04 2008-06-30 燃料電池システムおよび燃料電池システムの制御装置

Country Status (5)

Country Link
US (1) US8309261B2 (ja)
JP (1) JP4548453B2 (ja)
CN (1) CN101689665B (ja)
DE (1) DE112008001769T5 (ja)
WO (1) WO2009005158A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118649A1 (en) * 2008-03-26 2009-10-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system and operating method of a fuel cell
WO2011061817A1 (ja) * 2009-11-18 2011-05-26 トヨタ自動車株式会社 燃料電池のセル水分量の状態を判定する方法、その装置、燃料電池のセル水分量の状態を制御する方法、その装置及び燃料電池システム
CN113396008A (zh) * 2019-03-07 2021-09-14 日本多宁股份有限公司 加氢装置以及加氢方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329291B2 (ja) * 2009-04-24 2013-10-30 本田技研工業株式会社 燃料電池モジュールの制御プログラム
DE112009005151B4 (de) * 2009-08-14 2018-10-18 Toyota Jidosha Kabushiki Kaisha Verfahren zum Steuern eines Wassergehalts einer Brennstoffzelle und ein Brennstoffzellensystem
US8387441B2 (en) * 2009-12-11 2013-03-05 GM Global Technology Operations LLC Injector flow measurement for fuel cell applications
JP5581890B2 (ja) 2010-08-20 2014-09-03 トヨタ自動車株式会社 燃料電池システム、および、燃料電池システムの制御方法
DE112011104901B4 (de) * 2011-02-16 2022-05-05 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem und damit ausgestattetes Fahrzeug
JP2013109949A (ja) * 2011-11-21 2013-06-06 Denso Corp 燃料電池システム
US9793558B2 (en) * 2012-04-06 2017-10-17 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP6071950B2 (ja) * 2013-07-22 2017-02-01 本田技研工業株式会社 燃料電池の加湿制御方法及び燃料電池システム
JP6974205B2 (ja) * 2018-02-09 2021-12-01 株式会社Soken 燃料電池システム
JP7400757B2 (ja) * 2021-03-05 2023-12-19 トヨタ自動車株式会社 燃料電池システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340241A (ja) * 1999-05-31 2000-12-08 Toyota Motor Corp 固体高分子型燃料電池
JP2002083613A (ja) * 2000-09-07 2002-03-22 Toyota Motor Corp 燃料電池のガス流路
JP2004127914A (ja) * 2002-07-29 2004-04-22 Denso Corp 燃料電池システム
JP2007052988A (ja) * 2005-08-17 2007-03-01 Nippon Soken Inc 燃料電池システム
JP2007220322A (ja) * 2006-02-14 2007-08-30 Nissan Motor Co Ltd 燃料電池システム
JP2008041625A (ja) * 2006-08-10 2008-02-21 Nissan Motor Co Ltd 燃料電池システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973530A (en) * 1989-12-21 1990-11-27 The United States Of America As Represented By The United States Department Of Energy Fuel cell water transport
US6207312B1 (en) 1998-09-18 2001-03-27 Energy Partners, L.C. Self-humidifying fuel cell
JP4200576B2 (ja) * 1999-02-23 2008-12-24 トヨタ自動車株式会社 燃料電池システム
JP4516229B2 (ja) * 2001-03-06 2010-08-04 本田技研工業株式会社 固体高分子型セルアセンブリ
DE10151093A1 (de) 2001-10-12 2003-04-17 Heliocentris Energiesysteme Brennstoffzellensystem und Verfahren zum Betreiben desselben
JP2004340241A (ja) 2003-05-15 2004-12-02 Disco Abrasive Syst Ltd エアースピンドル
DE102005055741B4 (de) 2005-11-23 2023-06-22 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Brennstoffzellenanlage mit einer Dosiereinheit
US7858258B2 (en) * 2006-03-03 2010-12-28 Gm Global Technology Operations, Inc. Cascaded fuel cell stack operation with anode gas recirculation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340241A (ja) * 1999-05-31 2000-12-08 Toyota Motor Corp 固体高分子型燃料電池
JP2002083613A (ja) * 2000-09-07 2002-03-22 Toyota Motor Corp 燃料電池のガス流路
JP2004127914A (ja) * 2002-07-29 2004-04-22 Denso Corp 燃料電池システム
JP2007052988A (ja) * 2005-08-17 2007-03-01 Nippon Soken Inc 燃料電池システム
JP2007220322A (ja) * 2006-02-14 2007-08-30 Nissan Motor Co Ltd 燃料電池システム
JP2008041625A (ja) * 2006-08-10 2008-02-21 Nissan Motor Co Ltd 燃料電池システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118649A1 (en) * 2008-03-26 2009-10-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system and operating method of a fuel cell
US9991529B2 (en) 2008-03-26 2018-06-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system and operating method of a fuel cell
WO2011061817A1 (ja) * 2009-11-18 2011-05-26 トヨタ自動車株式会社 燃料電池のセル水分量の状態を判定する方法、その装置、燃料電池のセル水分量の状態を制御する方法、その装置及び燃料電池システム
JP5327557B2 (ja) * 2009-11-18 2013-10-30 トヨタ自動車株式会社 燃料電池のセル水分量の状態を判定する方法、その装置、燃料電池のセル水分量の状態を制御する方法、その装置及び燃料電池システム
US9105889B2 (en) 2009-11-18 2015-08-11 Toyota Jidosha Kabushiki Kaisha Method and apparatus for determining humidity states of individual cells in a fuel cell, method and apparatus for controlling humidity states of individual cells in a fuel cell, and a fuel cell system
CN113396008A (zh) * 2019-03-07 2021-09-14 日本多宁股份有限公司 加氢装置以及加氢方法

Also Published As

Publication number Publication date
JP4548453B2 (ja) 2010-09-22
CN101689665B (zh) 2012-09-05
JP2009016170A (ja) 2009-01-22
DE112008001769T5 (de) 2010-05-06
US20110008699A1 (en) 2011-01-13
CN101689665A (zh) 2010-03-31
US8309261B2 (en) 2012-11-13

Similar Documents

Publication Publication Date Title
JP4548453B2 (ja) 燃料電池システムおよび燃料電池システムの制御装置
JP4868251B2 (ja) 燃料電池システム、アノードガス生成量推定装置及びアノードガス生成量の推定方法
WO2009081697A1 (ja) 燃料電池システム
WO2008050881A1 (en) Fuel cell system
JP5435320B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
EP3070773B1 (en) Fuel cell system
JP5596758B2 (ja) 燃料電池システム及びその制御方法
JP2007172971A (ja) 燃料電池システム
US9147900B2 (en) Fuel cell apparatus and fuel cell system
JP5164014B2 (ja) 燃料電池システムおよびその制御方法
JP6258378B2 (ja) 燃料電池システムの制御方法
JP2007141744A (ja) 燃料電池システム
JP4806913B2 (ja) 燃料電池システム
JP5581880B2 (ja) 燃料電池システム
JP5057086B2 (ja) ポンプ駆動制御装置
JP2007294359A (ja) 燃料電池システム
JP5273032B2 (ja) 燃料電池の制御装置および燃料電池システム
CN110137546B (zh) 燃料电池系统
JP4675605B2 (ja) 燃料電池の酸化剤供給装置
JP2006190571A (ja) 燃料電池の制御装置
JP2008282616A (ja) 燃料電池システム
JP2009134977A (ja) 燃料電池システム
JP4956489B2 (ja) 燃料電池システム及びその運転方法
JP2022155643A (ja) 燃料電池システム
JP2021184362A (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880023086.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08777918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12666489

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112008001769

Country of ref document: DE

Date of ref document: 20100506

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08777918

Country of ref document: EP

Kind code of ref document: A1