WO2011149049A1 - 衝撃吸収体及び衝撃吸収体の製造方法 - Google Patents

衝撃吸収体及び衝撃吸収体の製造方法 Download PDF

Info

Publication number
WO2011149049A1
WO2011149049A1 PCT/JP2011/062206 JP2011062206W WO2011149049A1 WO 2011149049 A1 WO2011149049 A1 WO 2011149049A1 JP 2011062206 W JP2011062206 W JP 2011062206W WO 2011149049 A1 WO2011149049 A1 WO 2011149049A1
Authority
WO
WIPO (PCT)
Prior art keywords
shock absorber
ribs
wall
impact
hollow body
Prior art date
Application number
PCT/JP2011/062206
Other languages
English (en)
French (fr)
Inventor
輝雄 玉田
大野 誠治
Original Assignee
キョーラク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010123536A external-priority patent/JP5655374B2/ja
Priority claimed from JP2010003620U external-priority patent/JP3161748U/ja
Priority claimed from JP2010123557A external-priority patent/JP2011247385A/ja
Application filed by キョーラク株式会社 filed Critical キョーラク株式会社
Priority to CN201180026293.5A priority Critical patent/CN102933431B/zh
Publication of WO2011149049A1 publication Critical patent/WO2011149049A1/ja
Priority to US13/686,063 priority patent/US20130154286A1/en
Priority to US13/693,622 priority patent/US8915536B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/04Padded linings for the vehicle interior ; Energy absorbing structures associated with padded or non-padded linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/04Padded linings for the vehicle interior ; Energy absorbing structures associated with padded or non-padded linings
    • B60R2021/0414Padded linings for the vehicle interior ; Energy absorbing structures associated with padded or non-padded linings using energy absorbing ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/04Padded linings for the vehicle interior ; Energy absorbing structures associated with padded or non-padded linings
    • B60R21/0428Padded linings for the vehicle interior ; Energy absorbing structures associated with padded or non-padded linings associated with the side doors or panels, e.g. displaced towards the occupants in case of a side collision

Definitions

  • the present invention relates to an impact absorber that relaxes and absorbs an impact at the time of a collision, and a method of manufacturing the impact absorber.
  • an impact absorber that absorbs an impact there is an impact absorber having a hollow wall structure in which a thermoplastic resin is blow-molded.
  • this type of shock absorber is provided between the door panel and the door trim in order to protect the occupant from the side impact.
  • the shock absorber 1 shown in FIG. 5 and FIG. 6 is installed between the door panel and the door trim, assuming the position where the waist and chest of the occupant hit the door trim when receiving an impact from the side of the automobile. To protect.
  • the above-described shock absorber having a hollow wall structure obtained by blow molding the thermoplastic resin is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-29341.
  • the shock absorber of Patent Document 1 is intended to improve the shock absorbing performance by forming a large number of concave ribs connecting the front wall and the back wall.
  • the conventional shock absorber by blow molding has been progressed on the assumption that the waist and chest dummy hit the entire shock absorber, but in recent years, due to changes in the test conditions, impact points with different impact absorption performance at two or more locations. Is required.
  • blow molding there has been a limit due to deviations in the thickness setting during molding and the degree of change in thickness in the control of impact absorption performance due to changes in thickness.
  • the impact is partially concentrated. For example, when an impact is received with only one concave rib, the impact is applied. In some cases, only the periphery of one concave rib that has received the distortion is distorted, and the shock cannot be effectively absorbed.
  • the shock absorber is provided in a space with restrictions on the shape and thickness, the thickness of the shock absorber itself and the arrangement of ribs are also restricted. As a result, the shock absorbing performance of the shock absorber may differ from part to part, and the shock may not be absorbed effectively.
  • An object of the present invention has been made in view of the above circumstances, and is to provide a blow-molded impact absorber having different impact absorption performance at two or more locations and a method of manufacturing the impact absorber.
  • Another object of the present invention is to provide an impact absorber capable of effectively absorbing an impact even when the impact is partially concentrated or when the shape or the like of the impact absorber is limited. It is in providing the manufacturing method of the shock absorber.
  • the shock absorber according to the present invention is a shock absorber made of a hollow body having a plurality of ribs, and the hollow body has a density of the ribs. It has a low part and a part with the high density of the said rib, It is characterized by the above-mentioned.
  • a parison is disposed between molds having rib forming cavities for forming a plurality of ribs of a pair of split molds, and then the molds are clamped. After that, the compressed air is introduced to form a hollow body having a plurality of ribs along the cavity of the mold, and then the parison is cooled, and the plurality of ribs have a low density portion and , And a portion having a high density.
  • the shock absorber in the present invention is a shock absorber made of a hollow body having a plurality of ribs, and includes at least two ribs.
  • a straddling plate material is provided on the impact absorbing surface of the hollow body.
  • the method for manufacturing the shock absorber according to the present invention includes a step of setting a plate material having a partially different thickness on the cavity surface of one split mold so that the exposed surface is horizontal, and a plurality of ribs. Placing the parison between the other split mold having the cavity surface and the one split mold; clamping the split mold; and introducing pressurized air to the parison Forming a hollow body having a plurality of ribs along the cavity surface, and welding the plate material to the hollow body across at least two or more ribs.
  • the shock absorber and the shock absorber capable of effectively absorbing the shock even when the shock is partially concentrated or when the shape or the like of the shock absorber is limited.
  • a method of manufacturing a body can be provided.
  • shock absorber 1 of the 1st Embodiment of this invention It is the top view and side view of the shock absorber 1 of the 1st Embodiment of this invention. It is a figure explaining the manufacturing method of the shock absorber 1 of the 1st Embodiment of this invention. It is a figure explaining the manufacturing method of the shock absorber 1 of the 1st Embodiment of this invention. It is the top view and side view of the shock absorber 1 of the 2nd Embodiment of this invention. It is a figure explaining an example of the installation place of the shock absorber 1 of the 1st or 2nd embodiment of this invention. It is sectional drawing which installed the shock absorber 1 of the 1st or 2nd embodiment of this invention in the door trim.
  • the shock absorber 1 of the present embodiment has a portion having a different rib density although the total thickness is the same over the entire surface of the hollow body 11.
  • the broken arrow X side is a portion 41 having a low rib density
  • the arrow Y side is a portion 42 having a high rib density.
  • the portion 41 having a low rib density and the portion 42 having a high rib density are present as in the shock absorber 1 of the present embodiment, the rigidity and strain amount of each portion 41 and 42 are different. For this reason, different shock absorbing performance can be obtained in two different regions, that is, the portion 41 having a low rib density and the portion 42 having a high rib density.
  • As a method of changing the density of the ribs there is a method of changing the average pitch interval of the ribs.
  • the rib average pitch interval b of the portion 41 having a low rib density and the rib average pitch interval a of the portion 42 having a high rib density a.
  • the impact absorption performance can be significantly changed at two locations. Also, by changing the rib size (diameter in the cross section) for each region, it is possible to obtain different shock absorbing performance in the portion 41 where the rib density is low and the portion 42 where the rib density is high.
  • the hollow body 11 includes a hollow portion 2, a peripheral wall surface (or side wall) 3, a first wall 4, and a second wall 5.
  • the shock absorber 1 of the present embodiment has a large number of pairs of concave ribs 6 and 7 formed by recessing both the first wall 4 and the second wall 5 forming the hollow body 11 toward the other. Have. These concave ribs 6 and 7 are welded to each other at a substantially intermediate position between the first wall 4 and the second wall 5 to form a welded plate-like portion 8 as a single unit.
  • the shape of the concave ribs 6 and 7 is substantially circular, and the concave ribs 6 and 7 are reduced in diameter from the open ends 12 and 13 of the first wall 4 or the second wall 5 in the direction of the hollow portion 2.
  • the diameter ⁇ is 5 to 300 °
  • the diameter A of the open ends 12 and 13 is 10 to 40 mm. It has been experimentally confirmed that when the concave ribs 6 and 7 are formed in the range of this numerical value, the hollow body 11 is bent into a “ ⁇ ” shape at the center position, and the cushioning effect of the hollow body 11 against the impact received by the shock absorber 1 is the highest. Yes.
  • the concave ribs 6 and 7 may be oval.
  • a plurality of rib-shaped portions 15 formed by being recessed toward the hollow portion 2 are formed at a part of the peripheral wall surface 3 (side wall) of the hollow body 11 at appropriate intervals.
  • the rib-like portion 15 has a substantially semicircular shape and is reduced in diameter from the opening end 14 of the first wall 4 or the second wall 5 of the hollow body 11 in the direction of the hollow portion 2. ⁇ 300 ° and the radius B of the open end 14 is 5-20 mm.
  • a welding plate-like portion 9 is formed at a substantially intermediate portion between the first wall 4 and the second wall 5 to enhance the reinforcing effect. It has been experimentally confirmed that the cushioning effect of the hollow body 11 against the impact received by the shock absorber 1 is maximized by forming the rib-like portion 15 in the above numerical range.
  • the above-mentioned concave ribs 6 and 7 and the rib-shaped portion 15 can be provided in the hollow body 11 (increasing the density of the ribs) to increase the rigidity of the hollow body 11. On the contrary, if it is provided in a small amount (reducing the density of the ribs), the rigidity can be lowered.
  • the density of the ribs indicates a value obtained by dividing the total surface area of the open ends 12, 14, 13, 14 by the surface area of the first wall 4 or the second wall 5.
  • a generic term for the concave ribs 6 and 7 and the rib-shaped portion 15 is a rib.
  • the shock absorber 1 of this embodiment does not necessarily have to be welded at the center.
  • the shock absorber 1 may be welded on the wall surfaces of the first wall 4 and the second wall 5.
  • thermoplastic resin constituting the hollow body 11 a known resin can be applied.
  • resins with high mechanical strength such as rigidity, such as polyolefin resins such as polyethylene and polypropylene, styrene resins such as polystyrene and ABS resin, polyester resins such as polyethylene terephthalate, polyamide and mixtures thereof. can do.
  • fillers such as silica, pigments, dyes, heat stabilizers, light stabilizers, plasticizers, antistatic agents, flame retardants, flame retardants,
  • additives used in this field such as anti-aging agent, ultraviolet absorber, antioxidant, anti-fogging agent and lubricant can also be contained.
  • the shock absorber 1 of the present embodiment is manufactured by blow molding as shown in FIGS. That is, 19 and 19 are a pair of split molds, 16 is a rib forming cavity, 17 is an extrusion die, and 18 is a parison.
  • a parison 18 is disposed between molds having rib forming cavities 16 for forming a plurality of ribs of a pair of split molds 19, 19.
  • pressurized air is introduced from an air blowing pin (not shown) so that the parison 18 extends along the cavity of the mold and has a plurality of ribs 11.
  • the parison 18 is cooled to form the hollow body 11 having a plurality of ribs.
  • the rib forming cavity 16 can be slid to form a rib.
  • the shock absorber 1 includes the portion 41 having a low rib density and the portion 42 having a high rib density, so that two different regions, that is, the rib density is low. Different impact absorbing performance can be obtained in the low portion 41 and the portion 42 having a high rib density.
  • the density of the ribs is also naturally limited. May not be available.
  • the shock absorber 1 of the second embodiment of the present invention significantly changes the shock absorption performance in different regions by controlling the density and total thickness of the ribs of the hollow body 11. I am letting.
  • the relationship between the thickness d of the thick portion 22: d and the thickness c of the thin portion 21: c satisfies the condition of 1.3c ⁇ d. It is possible to make the absorption performance significantly different.
  • the rib density of the thick portion 22 is increased, and the rib density of the thin portion 21 is lower than that of the thick portion 22.
  • the thick portion 22 is thin due to the stretch of the parison at the time of blow molding, and the rigidity is smaller than the thin portion 21 in the blow molding. Therefore, the rib density of the thin portion 21 is increased. By doing so, the rigidity of the thin portion 21 can be made significantly higher than that of the thick portion 22. As a result, it is possible to significantly change the shock absorbing performance in each of the thick portion 22 and the thin portion 21 and obtain the desired shock absorbing performance.
  • the rib density is different between the thick portion 22 and the thin portion 21, but the present invention is not limited to this. It is also possible to vary the density of the ribs within the range of the thin portion 21.
  • the manufacturing method of the shock absorber 1 of the second embodiment of the present invention is the same as that of the first embodiment except that the shape of the mold used in the manufacturing method of the first embodiment is different. It can be manufactured by a simple manufacturing method.
  • the shock absorber 1 of the present embodiment can obtain a desired rigidity in each region by controlling the density and the total thickness of the rib, and further, the rib collapses due to the difference in the density of the rib. It is possible to make the shock absorbing performances in both regions remarkably different from each other.
  • the shock absorber 1 of the present embodiment is not limited to the mode provided between the door panel and the door trim in order to protect the passenger from the impact from the side as shown in FIGS. It can be used in a vehicle component such as a body side panel, roof panel, pillar, bumper or the like of an automobile.
  • the impact absorber 1 of this embodiment is not limited to a motor vehicle, For example, it can also be used for transport machines, such as a train, a ship, and an aircraft.
  • the shock absorber 1 of the present embodiment is a shock absorber 1 composed of a hollow body 11 having a plurality of ribs 6, 7, and 15.
  • the shock absorber 1 of the present embodiment has a plate material 10 straddling at least two or more ribs 6, 7, 15 on the shock absorbing surface (for example, the first wall 4 side) of the hollow body 11. To do.
  • the shock absorber 1 of the present embodiment receives an impact on a part of the plate material 10, the shock can be uniformly distributed over the entire surface of the plate material 10. , 7 and 15, the stress can be absorbed by the entirety of the plurality of ribs 6, 7 and 15 across the plate shape 10 without concentration of stress.
  • the shock absorber 1 of the present embodiment will be described in detail with reference to the accompanying drawings.
  • the shock absorber 1 of the present embodiment is blown into a hollow shape by blowing a plate material 10 and a thermoplastic resin on a surface (first wall 4 side, described as a shock absorbing surface) with respect to the shock direction. And a molded hollow body 11.
  • the plate material 10 receives an impact on the surface and uniformly distributes the impact to the plurality of ribs 6, 7, and 15. Therefore, the plate member 10 is provided across at least two or more ribs 6, 7, 15. Thereby, even when an impact is received by a part of the plate material 10, the impact can be uniformly distributed over the entire surface of the plate material 10, so that the stress is concentrated only on the ribs 6, 7, and 15 of the portion that received the impact. The impact can be absorbed by the whole of the plurality of ribs 6, 7, 15 straddling the plate 10 without any problems. Therefore, the shock absorber 1 having the plurality of ribs 6, 7, 15 can effectively absorb the shock.
  • plate material 10 is provided in the whole surface of the impact-absorption surface of the hollow body 11 with the single plate. Thereby, the impact can be absorbed by all the ribs 6, 7 and 15 formed on the impact absorbing surface of the hollow body 11.
  • the plate material 10 can be divided into a plurality instead of one.
  • each plate member 10 needs to straddle at least two or more ribs 6, 7, 15. This is because the plurality of ribs 6, 7, 15 across the plate shape 10 absorb the shock and effectively absorb the shock.
  • the plate member 10 can be provided not only on the surface (the first wall 4 side in FIG. 7) with respect to the impact direction, but also on the opposite side (the second wall 5 side in FIG. 7). Further, the plate member 10 can be provided on the side surface (the peripheral wall surface 3 side) in order to give impact resistance to the impact from the side surface. Thereby, the rigidity of the shock absorber 1 can be further improved.
  • plate material 10 concentrates partially and disperse
  • the plate material 10 having higher rigidity than the material forming the hollow body 11 is formed, or the plate material 10 having elasticity and high resilience is formed. can do.
  • the hollow body 11 includes a hollow portion 2, a peripheral wall surface (or side wall) 3, a first wall 4, and a second wall 5.
  • the shock absorber 1 of the present embodiment has a large number of pairs of concave ribs 6 and 7 formed by recessing both the first wall 4 and the second wall 5 forming the hollow body 11 toward the other. Have. These concave ribs 6 and 7 are welded to each other at a substantially intermediate position between the first wall 4 and the second wall 5 to form a welded plate-like portion 8 as a single unit.
  • the shape of the concave ribs 6 and 7 is substantially circular, and the concave ribs 6 and 7 are reduced in diameter from the open ends 12 and 13 of the first wall 4 or the second wall 5 in the direction of the hollow portion 2.
  • the reduction angle ⁇ is 5 to 300, and the diameter a of the open ends 12 and 13 is 10 to 40 mm. It has been experimentally confirmed that when the concave ribs 6 and 7 are formed in this numerical value range, the hollow body 11 is bent at the center position into a square shape and the cushioning effect of the hollow body 11 against the impact received by the shock absorber 1 is the highest.
  • the concave ribs 6 and 7 may be oval.
  • a plurality of rib-shaped portions 15 formed by being recessed toward the hollow portion 2 are formed at a part of the peripheral wall surface 3 (side wall) of the hollow body 11 at appropriate intervals.
  • the rib-like portion 15 has a substantially semicircular shape and is reduced in diameter from the opening end 14 of the first wall 4 or the second wall 5 of the hollow body 11 in the direction of the hollow portion 2. From 300 ° and the radius b of the open end 14 is 5 to 20 mm.
  • the welding plate-like portion 9 is formed at a substantially intermediate portion between the first wall 4 and the second wall 5 to enhance the reinforcing effect. It has been experimentally confirmed that the cushioning effect of the hollow body 11 against the impact received by the shock absorber 1 is maximized by forming the rib-like portion 15 in the above numerical range.
  • the above-mentioned concave ribs 6 and 7 and the rib-shaped portion 15 can be provided in the hollow body 11 (increasing the density of the ribs) to increase the rigidity of the hollow body 11. On the contrary, if it is provided in a small amount (reducing the density of the ribs), the rigidity can be lowered.
  • the density of the ribs indicates a value obtained by dividing the total surface area of the open ends 12, 14, 13, 14 by the surface area of the first wall 4 or the second wall 5.
  • a generic term for the concave ribs 6 and 7 and the rib-shaped portion 15 is a rib.
  • the shock absorber 1 of this embodiment does not necessarily have to be welded at the center.
  • the shock absorber 1 may be welded on the wall surfaces of the first wall 4 and the second wall 5.
  • the plate member 10 can be welded to the hollow body 11 later using a known adhesive or the like after the hollow body 11 is formed. Further, for example, when the concave ribs 6 and 7 are welded on the wall surface instead of the center, they can be welded to the hollow body 11 simultaneously by insert molding at the time of forming the hollow body 11.
  • thermoplastic resin constituting the hollow body 11 a known resin can be applied.
  • resins with high mechanical strength such as rigidity, such as polyolefin resins such as polyethylene and polypropylene, styrene resins such as polystyrene and ABS resin, polyester resins such as polyethylene terephthalate, polyamide and mixtures thereof. can do.
  • fillers such as silica, pigments, dyes, heat stabilizers, light stabilizers, plasticizers, antistatic agents, flame retardants, flame retardants,
  • additives used in this field such as anti-aging agent, ultraviolet absorber, antioxidant, anti-fogging agent and lubricant can also be contained.
  • the shock absorber 1 of this embodiment is blow-molded as shown in FIGS. That is, 19 and 19 are a pair of split molds, 16 is a rib forming cavity, 17 is an extrusion die, and 18 is a parison.
  • the plate material 10 previously molded is set in one mold on the side of the pair of split molds 19, 19 where the rib forming cavity 16 is not present.
  • the parison 18 is disposed between the other mold having the rib forming cavity 16 for forming the plurality of ribs of the pair of split molds 19 and 19 and the one mold.
  • pressurized air is introduced from an air blowing pin (not shown) so that the parison 18 extends along the cavity of the mold and has a plurality of ribs 11.
  • the plate material 10 is welded so as to straddle at least two or more ribs and blow-molded.
  • the plate 10 is thermally welded to the parison 18.
  • the parison 18 wraps around the plate material 10 by blow molding, and the plate material 10 is thermally welded so as to be embedded in the parison 18.
  • the hollow body 11 is molded with respect to the preset plate material 10, for example, even when the plate material 10 has a partial thickness, when the plate material 10 is bonded with an adhesive or the like after the hollow body 11 is formed. In comparison, the exposed surface, that is, the shock absorbing surface can be easily produced horizontally.
  • the plate member 10 is set so as to straddle at least two or more ribs with respect to one mold having no rib forming cavity 16. Thereby, the shock absorber 1 can be obtained. It is also possible to slide the rib forming cavity 16.
  • the shock absorber 1 of the present embodiment is configured by having the plate member 10 straddling at least two or more ribs 6, 7, 15 on the shock absorbing surface of the hollow body 11.
  • the impact can be uniformly distributed over the entire surface of the plate material 10, so that the stress is concentrated only on the ribs 6, 7, and 15 of the portion that received the impact.
  • the impact can be absorbed by at least two or more of the ribs 6, 7, 15 across the plate shape 10 without any problems. Therefore, in the shock absorber 1 having the plurality of ribs 6, 7, and 15, even when the shock is partially concentrated, the shock can be effectively absorbed.
  • the shock absorber 1 of the present embodiment is obtained by blow-molding a plate material 10 and a thermoplastic resin on a surface (first wall 4 side, described as a shock absorbing surface) with respect to the impact direction.
  • a hollow body 11 formed into a hollow shape.
  • the shock absorber 1 of the present embodiment is provided in a space with restrictions on the shape, thickness, and the like, the hollow body 11 has a thin portion 21 and a thick portion 22. There is a case.
  • the distortion amount of each of the portions 21 and 22 is different, so that the thin portion 21 and the thick portion 22 are thick. Cannot be uniformly distorted, and the shock cannot be absorbed effectively.
  • the relationship between the thickness of the thick portion 22: d and the thickness of the thin portion 21: c satisfies the condition of 1.3c ⁇ d, the above problem is remarkable. Become.
  • the shock absorber 1 of the present embodiment is provided with a plate material 10 straddling the thin portion 21 and the thick portion 22 on the shock absorbing surface of the hollow body 11.
  • the impact can be uniformly distributed over the entire surface of the plate material 10, so that only the impacted portion (for example, the thick portion 22) is distorted.
  • the thin portion 21 and the thick portion 22 can be uniformly distorted, so that the impact can be effectively absorbed.
  • FIG. 10 it decided to provide the board
  • the shock absorbing surface is provided with at least the plate member 10 straddling the thin portion 21 and the thick portion 22, the same effect as described above can be obtained.
  • the thin portion 21 and the thick portion 21 are thick. It is necessary to provide the plate 10 so as to straddle at least one or more ribs in each of the portions 22 and 22 of the portion 22.
  • the shock absorber 1 of the present embodiment is provided with the plate material 10 that extends over at least the thin portion 21 and the thick portion 22 on the shock absorbing surface. Even when the shock absorber 1 is provided in a space where the shape and thickness of the shock absorber 1 are restricted, the shock can be effectively absorbed.
  • the thick portion 22 is thinned because it is stretched when a parison having the same thickness is blow molded, Rigidity becomes low compared with the part 21 with a thin total thickness. For this reason, if the thin part 21 and the thick part 22 exist, the rigidity of the parts 21 and 22 will be different.
  • the shock absorber 1 of the present embodiment is provided with the plate material 10 on the shock absorbing surface of the thick portion 22 and improves the rigidity of the thick portion 22 with the plate material 10. I have decided. As a result, the rigidity of the thick portion 22 can be made closer to the rigidity of the thin portion 21. As a result, it is possible to achieve a balance between the rigidity of the thin portion 21 and the rigidity of the thick portion 22.
  • the plate material 10 can be divided into a plurality of pieces instead of one. However, in this case, it is necessary that each plate member 10 straddles at least two or more ribs. This is because the impact is absorbed by the entire plurality of ribs straddling the plate 10 and the impact is effectively absorbed.
  • the plate member 10 can be provided not only on the shock absorbing surface but also on the opposite side. Further, the plate member 10 can be provided on the side surface (the peripheral wall surface 3 side) in order to give impact resistance to the impact from the side surface. Thereby, the rigidity of the shock absorber 1 can be further improved.
  • the single plate material 10 is provided on the shock absorbing surface of the thick portion 22, and the rigidity of the thick portion 22 is improved by the single plate material 10.
  • a single plate 10 is provided across the thick portion 22 and the thin portion 21, and the thickness of the portion 10 provided in the thick portion 22. It is also possible to increase the thickness, increase the rigidity by the plate material 10, reduce the thickness of the plate material 10 at the portion provided in the thin portion 21, and decrease the rigidity by the plate material 10. That is, the shock absorber 1 of the present embodiment can be constructed so as to adjust the rigidity depending on the thickness and material of the plate 10.
  • the manufacturing method of the shock absorber 1 of the second embodiment is the same as the manufacturing method of the first embodiment, except that the shape of the mold used in the manufacturing method of the first embodiment is different. Can be manufactured.
  • the hollow portion 11 of the shock absorber 1 of the present embodiment includes the thin portion 21 having the total thickness and the thick portion 22 having the total thickness as shown in FIG.
  • the plate member 10 that spans at least the thin portion 21 and the thick portion 22 is formed on the shock absorbing surface of the hollow body 11.
  • the impact can be uniformly distributed over the entire surface of the plate material 10, so that only the impacted portion (for example, the portion of the thick portion 22).
  • the plate 10 is provided on the shock absorbing surface of the thick portion 22 as shown in FIG. Configure.
  • the rigidity of the thick portion 22 can be increased by the plate member 10, and the rigidity of the thin portion 21 and the thick portion 22 can be balanced.
  • an impact can be absorbed by the whole several rib ranging over the plate shape 10, and an impact can be absorbed effectively.
  • the shock absorber 1 of the present embodiment is obtained by blow-molding a plate material 10 and a thermoplastic resin on a surface with respect to the shock direction (denoted as the first wall 4 side, shock absorbing surface).
  • a hollow body 11 formed into a hollow shape.
  • the shock absorber 1 of the third embodiment has a higher density of ribs of the hollow body 11 than the shock absorber 1 of the second embodiment, and the rigidity of the thick portion 22 is increased. To increase. As a result, the rigidity of the thick portion 22 is made closer to the rigidity of the thin portion 21 and the rigidity of the thin portion 21 and the thick portion 22 is balanced. .
  • the shock absorber 1 of the third embodiment is in a state in which the rigidity balance between the thin portion 21 and the thick portion 22 is balanced, as in the second embodiment.
  • the plate member 10 straddling the thin portion 21 and the thick portion 22 is provided on the shock absorbing surface of the hollow body 11.
  • the thin portion 21 across the plate 10 and the thick portion 22 Both can be distorted with the same stress.
  • the thin portion 21 and the thick portion 22 can be uniformly distorted while balancing the rigidity of the thin portion 21 and the thick portion 22. Therefore, the impact can be effectively absorbed.
  • the plate material 10 is provided on the shock absorbing surface of the thick portion 22, and the rigidity of the thick portion 22 is improved by the plate material 10. did.
  • the density of the ribs of the thick portion 22 can be increased, and the rigidity of the thick portion 22 can be increased.
  • the rib density of the thick portion 22 is increased and the rigidity of the thick portion 22 is increased, there is a limit to increasing the rib density.
  • the shock absorber 1 of this embodiment not only increases the density of the ribs of the thick portion 22 and increases the rigidity of the thick portion 22, but also increases the total thickness.
  • the plate member 10 is provided on the shock absorbing surface of the thick portion 22 and the rigidity of the thick portion 22 is improved by the plate member 10.
  • the rigidity of the thick portion 22 can be made closer to the rigidity of the thin portion 21.
  • a balance between the rigidity of the thick portion 22 and the rigidity of the thin portion 21 can be achieved by the rib density and the plate material 10.
  • the number of ribs straddling the plate member 10 can be increased by increasing the density of the ribs. As a result, the shock can be absorbed effectively by absorbing the impact with the entire many ribs straddling the plate 10.
  • the single plate material 10 is provided on the shock absorbing surface of the thick portion 22, and the rigidity of the thick portion 22 is improved by the single plate material 10.
  • a single plate 10 is provided across the thick portion 22 and the thin portion 21, and the thickness of the portion 10 provided in the thick portion 22. It is also possible to increase the thickness, increase the rigidity of the plate material 10, reduce the thickness of the plate material 10 at the portion provided in the thin portion 21, and decrease the rigidity of the plate material 10. That is, the shock absorber 1 of the present embodiment can be constructed so as to partially adjust the rigidity depending on the thickness and material of the plate material 10.
  • the manufacturing method of the shock absorber 1 of the third embodiment is the same as the manufacturing method of the first embodiment, except that the shape of the mold used in the manufacturing method of the first embodiment is different. Can be manufactured.
  • the shock absorber 1 of the present embodiment has a thick total thickness as shown in FIG. 12 in the shock absorber 1 in which the thin portion 21 and the thick portion 22 exist. While increasing the density of the ribs of the portion 22 to balance the rigidity of the thin portion 21 and the thick portion 22, the thin portion 21 and the thick portion 22, The plate member 10 straddling at least is formed on the impact absorbing surface of the hollow body 11. Accordingly, the thin total portion 21 and the thick total portion 22 can be uniformly distorted while balancing the rigidity of the thin total portion 21 and the thick total portion 22. Therefore, the impact can be effectively absorbed.
  • the rib density of the thick portion 22 is increased while increasing the rib density.
  • the plate member 10 is provided on the shock absorbing surface of the thick portion 22.
  • the rigidity of the thick portion 22 can be increased by the density of the ribs and the plate member 10, and the rigidity of the thin portion 21 and the thick portion 22 can be balanced.
  • an impact can be absorbed by the whole several rib ranging over the plate shape 10, and an impact can be absorbed effectively.
  • the shock absorber 1 of this embodiment is obtained by blow-molding a plate material 10 and a thermoplastic resin on a surface (first wall 4 side, described as a shock absorbing surface) with respect to the shock direction.
  • a hollow body 11 formed into a hollow shape.
  • the shock absorber 1 of the fourth embodiment has a portion where the total thickness of the hollow body 11 is the same as that of the first embodiment, but the rib density is different.
  • the broken arrow X side is a portion 41 having a low rib density
  • the arrow Y side is a portion 42 having a high rib density.
  • the portions 41 having a low rib density and the portion 42 having a high rib density exist as in the shock absorber 1 of the present embodiment, the amounts of distortion of the portions 41 and 42 are different.
  • the portion 41 where the rib density is low and the portion 42 where the rib density is high cannot be uniformly distorted, and the impact may not be absorbed effectively.
  • As a method of changing the density of the ribs there is a method of changing the average pitch interval of the ribs.
  • the shock absorber 1 of this embodiment is provided with a plate material 10 straddling a portion 41 having a low rib density and a portion 42 having a high rib density on the shock absorbing surface. ing.
  • the impact can be uniformly distributed over the entire surface of the plate material 10, so that only the impacted portion (for example, the portion 41 having a low rib density) is obtained.
  • both the low rib density portion 41 and the high rib density portion 42 straddling the plate 10 can be distorted with the same amount of distortion.
  • the portion 41 having a low rib density and the portion 42 having a high rib density can be uniformly distorted, so that an impact can be effectively absorbed.
  • the plate member 10 straddling all the shock absorbing surfaces of the portion 41 having a low rib density with respect to the hollow body 11 and the portion 42 having a high rib density with respect to the hollow body 11 is shown as the shock absorbing surface. I decided to provide it. However, as shown in FIG. 15, at least the plate material 10 straddling the rib material portion 41 with respect to the plate material 10 and the rib material density portion 42 with respect to the plate material 10 is provided on the shock absorbing surface. In this case, the same effect as described above can be obtained. In FIG.
  • the relationship is 1.2a ′ ⁇ b ′.
  • at least two portions 41 and 42 each of a portion 41 having a low rib density relative to the hollow body 11 and a portion 42 having a high rib density relative to the hollow body 11 are provided. The impact can be effectively absorbed by providing the plate member 10 so as to straddle the above ribs.
  • the rigidity of the portion 41 having a low rib density is different from that of the portion 42 having a high rib density. It will end up.
  • the shock absorber 1 of the present embodiment is provided with the plate material 10 on the shock absorbing surface of the portion 41 having a low rib density, and the plate member 10 has the rigidity of the portion 41 having a low rib density.
  • the rigidity of the portion 41 having a low rib density can be made closer to the rigidity of the portion 42 having a high rib density.
  • the arrangement or the like of the rib of the shock absorber 1 itself is restricted, it is possible to achieve a balance between the portion 41 having a low rib density and the portion 42 having a high rib density.
  • each plate member 10 straddles at least two or more ribs. This is because the impact is absorbed by the entire plurality of ribs straddling the plate 10 and the impact is effectively absorbed.
  • the plate 10 can be provided not only on the shock absorbing surface but also on the opposite side. Further, the plate member 10 can be provided on the side surface (the peripheral wall surface 3 side) in order to give impact resistance to the impact from the side surface. Thereby, the rigidity of the shock absorber 1 can be further improved.
  • the single plate material 10 is provided on the shock absorbing surface of the low rib portion 41, and the rigidity of the low rib portion 41 is improved by the single plate material 10.
  • a single plate 10 is provided across a portion 41 having a low rib density and a portion 42 having a high rib density, and is provided in the portion 41 having a low rib density. It is also possible to increase the thickness of the plate material 10 of the portion, increase the rigidity by the plate material 10, reduce the thickness of the plate material 10 of the portion provided in the portion 42 where the rib density is high, and reduce the rigidity by the plate material 10. It is. That is, the shock absorber 1 of the present embodiment can be constructed so as to partially adjust the rigidity depending on the thickness and material of the plate material 10.
  • the manufacturing method of the shock absorber 1 of the fourth embodiment is the same as that of the first embodiment except that the shape of the mold used in the manufacturing method of the first embodiment described above is different. Can be manufactured.
  • the shock absorber 1 of the present embodiment includes the portion 41 having a low rib density and the portion 42 having a high rib density as shown in FIGS.
  • the plate 10 that spans at least the portion 41 having a low rib density and the portion 42 having a high rib density is provided on the impact absorbing surface of the hollow body 11.
  • the impact can be uniformly distributed over the entire surface of the plate material 10, so that only the impacted portion (for example, the portion 41 having a low rib density) is obtained.
  • both the portion 41 having a low rib density across the plate 10 and the portion 42 having a high rib density can be distorted with the same amount of distortion. Therefore, there is a restriction on the arrangement of ribs of the shock absorber 1, and the shock absorber 1 in which the rib density portion 41 and the rib density portion 42 exist also effectively absorbs the shock. can do.
  • the plate 10 is formed on the shock absorbing surface of the portion 41 having a low rib density. It comprises and has. Thereby, the rigidity of the portion 41 having a low rib density can be increased by the plate member 10, and the rigidity of the portion 41 having a low rib density and the portion 42 having a high rib density can be balanced. Moreover, the impact can be absorbed by the entire plurality of ribs straddling the plate 10 and the impact can be effectively absorbed.
  • the shock absorber 1 of the present embodiment is not limited to the mode provided between the door panel and the door trim in order to protect the passenger from the impact from the side as shown in FIGS. It can be used in a vehicle component such as a body side panel, roof panel, pillar, bumper or the like of an automobile.
  • the impact absorber 1 of this embodiment is not limited to a motor vehicle, For example, it can also be used for transport machines, such as a train, a ship, and an aircraft.
  • SYMBOLS 1 Shock absorber 2 Hollow part 21 Thin part 22 Total part 3 Thick wall surface (side wall) 4 First Wall 41 Low Rib Density 42 High Rib Density 5 Second Wall 6, 7 Concave Rib 8, 9 Welding Plate Part 10 Plate Material 11 Hollow Body 12, 13, 14 Open End 15 Rib Part 16 Rib Molding Cavity 17 Extrusion Die 18 Parison 19 Dividing Die 21 Total Thin Thickness 22 Total Thick Thickness 41 Rib Low Density 42 Rib High Density
  • the present invention relates to an impact absorber that absorbs an impact.
  • Background art A general vehicle component member is provided with a shock absorber in order to provide cushioning in the event of a vehicle collision, and to reduce vehicle damage and passenger impact.
  • An example of this type of shock absorber is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2002-187508). As shown in FIG. 18, the shock absorber 1 of Patent Document 1 is formed by forming a concave rib 10 from a closed hollow portion 6, a front surface wall 8, and a back surface wall 9, and joining the tip portions thereof together.
  • the impact absorption is improved.
  • the semicircular rib-shaped portion 13 of Patent Document 1 is reduced in diameter in the direction of the hollow portion 6 from the opening end of the front wall 8 or the rear wall 9, and the reduced diameter angle ⁇ is 5-300 °, The radius ⁇ of the open end is 5-20 mm.
  • the shock absorber 1 disclosed in Patent Document 1 is broken so that the side wall 7 of the shock absorber 1 is crushed in the process of absorbing energy due to the shock. Specifically, as shown in FIG.
  • FIG. 19B when the shock absorber 1 is crushed, the parting lines (not shown) of the side walls 7a and 7b at both ends of the shock absorber 1 are folded outward.
  • the side walls 7a and 7b are inclined in the shape of " ⁇ " and absorb energy due to impact.
  • FIG. 19A shows a state before the shock absorber 1 shown in FIG. 18 is crushed
  • FIG. 19B shows a state where the shock absorber 1 shown in FIG. 18 is crushed.
  • the side walls 7a, 7b, 7c of the shock absorber 1 shown in FIG. 20 are simultaneously inclined in a dogleg shape as shown in FIG. 19 (b), the corner g connecting the side walls 7a, 7c is 20 is buckled in the a ′ and c ′ directions shown in FIG.
  • the corner g is hollowed in, the corner g is folded, and the corner g is deformed. Will interfere. For this reason, in the process of absorbing energy due to impact, the amount of compressive strain of the side walls 7a and 7c and the amount of compressive strain of the corner g are different. As a result, the corner portion g undergoes a so-called bottoming phenomenon in which the load suddenly increases from a predetermined amount of compressive strain, and the substantial maximum displaceable amount as the shock absorber 1 decreases.
  • the corner h connecting the side walls 7b and 7c shown in FIG. 20 also has the same problem as the corner g described above.
  • the maximum displaceable amount mentioned above refers to the amount of compressive strain that can be deformed within a range in which the passenger or pedestrian is not damaged. Further, the amount of compressive strain is the thickness of the shock absorber 1 when deformation occurs relative to the thickness of the shock absorber 1 before deformation ( ⁇ shown in FIG. 19A) (FIG. 19B). (Compression strain ⁇ (thickness of shock absorber 1 when deformation occurs; ⁇ / thickness of shock absorber 1 before deformation; ⁇ ) ⁇ 100%). For this reason, it is necessary to develop an impact absorber that can balance the amount of compressive strain between the side wall and the corner in the process of absorbing energy due to impact.
  • Patent Document 2 JP 2009-23521 A
  • the shock absorber 1 of Patent Document 2 has a recessed portion 8 having a target structure formed on the shock absorbing rib 6 and the peripheral wall 5, and the recessed portion 8 includes a substantially triangular welding surface 10 and a welding surface 10. And a pair of flat surfaces 11 and a pair of other flat surfaces 12 that connect the front wall 3 and the back wall 4, and when the shock absorber 1 is crushed, the peripheral wall 5 is folded and the deformation is inhibited.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2009-1610278.
  • the impact absorber 1 of the above-mentioned Patent Document 3 forms recesses 13 and 15 having a shape that extends around the corner 12 or the edge 14 on the wall surface that constitutes the impact absorber 1. 15 is intended to exhibit stable shock absorbing performance.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-187508
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2009-23521
  • Patent Document 3 Japanese Unexamined Patent Application Publication No.
  • Patent Documents 1 to 3 disclose techniques related to shock absorbers for ensuring desired shock absorption performance.
  • Patent Documents 1 to 3 do not describe or suggest any point about balancing the amount of compressive strain between the side wall and the corner in the process of absorbing energy due to impact.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an impact absorber capable of balancing the amount of compressive strain between the side wall and the corner in the process of absorbing energy due to impact.
  • Means for solving the problem In order to achieve this object, the present invention has the following features.
  • the shock absorber (100) of the present invention is a shock absorber (100) for absorbing impact energy at the time of collision, and a corner portion (20) connecting the side walls (3) of the shock absorber (100).
  • the shock absorber (100) has at least one destruction inducing part (21, 31) that breaks the periphery of the corner part (20) when receiving an impact.
  • FIG. 1 is a perspective view which shows the state which fractured
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG. FIG.
  • FIG. 1 is sectional drawing which shows the blow molding aspect of the shock absorber 100 of this embodiment.
  • FIG. 1 is a perspective view which shows the state which fractured
  • FIG. is a top view of the shock absorber 100 shown in FIG.
  • FIG. 3 is a perspective view showing a configuration example of a corner portion 20 of the shock absorber 100.
  • FIG. FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG.
  • FIG. is sectional drawing which shows the blow molding aspect of the shock absorber 100 of this embodiment.
  • FIG. 6 is a perspective view showing another configuration example of the corner portion 20 of the shock absorber 100.
  • FIG. FIG. It is a figure which shows the load raise in the case where the destruction induction part 21 is provided in the corner
  • FIG. It is a figure which shows the case where the destruction induction parts 21 and 31 are provided in the vertex of the corner part 20.
  • FIG. It is a figure which shows the case where the destruction induction part 21 is provided in the predetermined range from the corner part 20.
  • FIG. 1 shows the 1st structural example of the destruction induction part 21 of 2nd Embodiment.
  • FIG. It is a figure which shows the 1st structural example of the destruction induction part 31 of 2nd Embodiment.
  • FIG. It is a figure which shows the 2nd structural example of the destruction induction part 21 of 2nd Embodiment.
  • FIG. It is a figure which shows the 2nd structural example of the destruction induction part 31 of 2nd Embodiment.
  • FIG. It is a figure which shows the structural example of the shock absorber 1 relevant to this invention.
  • FIG. 1 It is a figure which shows the state before the shock absorber 1 is crushed, and the state by which it is crushed.
  • FIG. It is a figure which shows the direction of the force concerning the corner
  • FIG. It is a figure which shows the state which the corner
  • the shock absorber 100 of the present embodiment is a shock absorber 100 for absorbing impact energy at the time of a collision, and the shock absorber 100 has a shock around the corner portion 20 that connects the side walls 3 of the shock absorber 100. It has at least 1 destruction induction part 21 (refer FIG. 3) and 31 (refer FIG. 8) which destroys the corner
  • the shock absorber 100 of the present embodiment will be described with reference to the accompanying drawings.
  • FIG. 1 is a perspective view showing a state in which a part of the shock absorber 100 of the present embodiment is broken
  • FIG. 2 is a top view of the shock absorber 100 shown in FIG. 1
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG. 1
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG.
  • the shock absorber 100 of the present embodiment is formed by blow molding a thermoplastic resin into a hollow shape.
  • the shock absorber 100 of the present embodiment has a large number of pairs of concave ribs 6 and 7 formed by recessing a part of the first wall 4 and the second wall 5 toward the other side.
  • the front and rear ends of 6 and 7 are in contact with each other to form the welding surface 8.
  • the concave ribs 6 and 7 are formed in a substantially cylindrical shape, but the concave ribs 6 and 7 are configured in an arbitrary shape such as a substantially triangular tube shape, a substantially square tube shape, and a substantially polygonal tube shape. Is possible.
  • the impact absorber 100 of this embodiment forms the connection rib 9 so that the concave rib 6 formed in the 1st wall 4 side may be connected, and it is supposed that the intensity
  • the connecting rib 9 is formed on the first wall 4 side.
  • the connecting rib 9 is formed on the second wall 5 side, or the first wall 4 side and the second wall. It is also possible to form both on the 5 side.
  • the shape of the connecting rib 9 is not particularly limited, and the connecting rib 9 having any shape can be formed. For example, the shape disclosed in FIGS. 6 to 8 of Japanese Patent Application Laid-Open No. 2002-187508, etc. It can also be formed.
  • the attachment piece 10 is formed in the side wall 3 of the shock absorber 100 of this embodiment toward the 2nd wall 5 side from the parting line PL vicinity, 11 is an attachment hole.
  • the shock absorber 100 according to the present embodiment is tested with a screw or the like in the mounting hole 11 of the mounting piece 10 and the shock absorber 100 is mounted on a vehicle component or the like.
  • the side wall 3 connecting the first wall 4 and the second wall 5 of the shock absorber 100 of the present embodiment is provided with semicircular concave ribs 12 and 13 that are recessed toward the hollow portion 2 side and the side surfaces are opened. Have. Unlike the substantially cylindrical concave ribs 6 and 7, the semicircular concave ribs 12 and 13 are formed in contact with the side wall 3.
  • the semicircular concave ribs 12 and 13 of the present embodiment are reduced in diameter in the direction of the hollow portion 2 from the open ends of the first wall 4 and the second wall 5. For this reason, in the process of absorbing the energy due to the impact, the shock absorber 100 of the present embodiment tilts the side wall 3 in a dogleg shape when the shock absorber 100 is crushed. Moreover, the semicircular concave ribs 12 and 13 of this embodiment form the plate-shaped part 14 in the substantially intermediate part of the 1st wall 4 and the 2nd wall 5, and make the reinforcement effect high. Further, the corner portion 20 of the shock absorber 100 of the present embodiment has a destruction inducing portion 21 that destroys the corner portion 20 when the shock absorber 100 is crushed.
  • the wall 4 and the second wall 5 are configured to be recessed from the open ends 22 to the hollow portion 2 side.
  • the corner 20 of the present embodiment is a part that connects the side walls 3, and in the case of the shape of the shock absorber 100 shown in FIGS. 1 and 2, the four corners of the shock absorber 100 correspond to the corner 20.
  • the opening end 22 of the first wall 4 is shown in FIG. 2, the opening end 22 similar to the first wall 4 is formed on the second wall 5. As shown in FIG.
  • the destruction inducing portion 21 provided in the corner portion 20 of the present embodiment includes a first side 211a located on the parting line PL, a second side 211b opposite to the ⁇ th side 211a, It has a substantially rectangular welding surface 211 formed by a third side 211c and a fourth side 211d connecting the first side 211a and the second side 211b.
  • the first side 211a and the second side 211b are formed with a width of about 2.5 to 20 mm, preferably with a width of about 5 mm.
  • the third side 211c and the fourth side 211d are formed with a width of about 2.5 mm to 20 mm, preferably with a width of about 5 mm.
  • the fracture inducing portion 21 of the present embodiment has a substantially quadrangular prism shape extending in a direction substantially perpendicular to the first wall 4 and the second wall 5, and has a substantially rectangular welding surface 211 and a fourth side 211 d.
  • the pair of flat surfaces 212, 213, and 214 are configured to be parallel to the impact direction.
  • the pair of flat surfaces 212, 213, and 214 can be formed with a gradient within a predetermined angle range (for example, a range of 3 to 80 °) from parallel to the impact direction.
  • a ridge line 215 is formed at a position where the surfaces of the flat surfaces 213 and 214 intersect, and a ridge line 216 is formed at a position where the surfaces of the flat surfaces 212 and 214 intersect. Yes.
  • the ridge lines 215 and 216 are linear portions formed such that the flat surfaces of the ridge lines 215 and 216 are in contact with each other with curved surfaces of 1.0 R or less (R is a radius of curvature), and the ridge lines 215 and 216 are perpendicular to the welding surface 211. It forms so that it becomes.
  • R is a radius of curvature
  • the fracture inducing portion 21 of the present embodiment can generate a local thin wall and easily burst on its own when a predetermined load is received. it can. For this reason, it is preferable to form the ridgelines 215 and 216 so as to be 1.0 R or less.
  • the ridge lines 215 and 216 can also be formed with a gradient within a predetermined angle range (for example, a range of 3 to 80 °) from the perpendicular to the welding surface 211.
  • the fracture inducing portion 21 of the present embodiment includes a first quadrangular prism-shaped first recess 21 a that is recessed from the opening end 22 of the first wall 4 to the hollow portion 2 side and has an open side surface, and an opening end of the second wall 5.
  • a welding surface 211 having a substantially rectangular shape is formed by welding a joining surface of the second concave portion 21b having a substantially quadrangular prism shape that is recessed from 22 to the hollow portion 2 side and whose side surface is open.
  • the fracture inducing portion 21 of the present embodiment forms a thin portion by the first concave portion 21a and the second concave portion 21b, forms a stress concentration portion by the ridge lines 215 and 216, and the shock absorber 100 pushes. When it is crushed, the destruction-inducing part 21 is ruptured, and a part of the corner part 20 can be opened.
  • the thickness of the thin portion is not particularly limited as long as it is relatively thin with respect to the thickness of the other wall portions 3, 4, and 5 constituting the shock absorber 100, and can be configured with an arbitrary thickness. It is. For example, when the average wall thickness of the other wall portions 34 and 5 constituting the shock absorber 100 is about 2.0 mm, the thickness of the thin wall portion is preferably 0.5 mm or less.
  • the destruction inducing portion 21 of the present embodiment can be configured in a substantially quadrangular prism shape instead of a quadrangular prism shape.
  • FIG. 6 is a cross-sectional view showing a blow-molding aspect of the shock absorber 100 of the present embodiment
  • FIG. 7 is a cross-sectional view in a state where the mold is clamped.
  • the impact absorber 100 of this embodiment can be formed by a known method such as blow molding or sheet blow molding using a thermoplastic resin.
  • thermoplastic resin for example, a polyolefin resin such as polyethylene or polypropylene, a styrene resin such as polystyrene or ABS resin, a polyester resin such as polyethylene terephthalate, a polyamide, or the like, a resin having high mechanical strength such as rigidity.
  • the impact absorber 100 of this embodiment is preferably made of polypropylene, ABS resin, impact-resistant polystyrene (HIPS), polyphenylene ether resin, or the like from the viewpoint of making the opening caused by the burst of the fracture inducing portion 21 suitable.
  • the shock absorber 100 of this embodiment is comprised with the thermoplastic resin which is a polymer alloy of polyolefin resin and non-defective resin, it can make it easy to generate
  • FIG. The shock absorber 100 of this embodiment is blow-molded as shown in FIGS. That is, 14 and 14 are a pair of split molds, 15 and 15 are concave rib forming cavities, 16 is an extrusion die, and 17 is a parison. As shown in FIG.
  • the shock absorber 100 of the present embodiment has a parison 17 disposed between a pair of split molds 14 and 14, and is clamped and blown nozzles (not shown). )) Into the parison and blow molded. Thereby, the shock absorber 100 shown in FIG. 1 can be formed.
  • the breakage inducing portion 21 having a substantially quadrangular prism shape is provided in the corner portion 20.
  • the shape of the fracture inducing portion 21 is not limited to the substantially quadrangular prism shape shown in FIG. 3, and when the predetermined load is received, the fracture inducing portion 21 can be ruptured by itself to destroy a part of the corner portion 20.
  • FIG. 8 shows a configuration example of the destruction inducing portion 31 when configured in a substantially triangular prism shape.
  • 8 includes a first side 311a located on the parting line PL, a second side 311b connecting the first side 311a, and a third side 311c, and a substantially triangular welding surface 311.
  • the fracture inducing portion 31 of the present embodiment has a substantially triangular prism shape extending in a direction substantially perpendicular to the first wall 4 and the second wall 5, and includes a substantially triangular weld surface 311 and a second side 311 b.
  • a pair of flat surfaces 312 extending from the first wall 4 and the second wall 5 and a pair of flat surfaces 313 extending from the third side 311c to the second wall 4 and the second wall 5 are configured.
  • the pair of flat surfaces 312 and 313 is configured to be parallel to the impact direction.
  • the pair of flat surfaces 312 and 313 can also be formed with a gradient within a predetermined angle range (for example, a range of 3 to 80 °) from parallel to the impact direction.
  • the fracture inducing portion 31 is configured such that the lengths of the second side 311b and the third side 311c are equal, and the welding surface 311 has a substantially isosceles triangular shape.
  • the first side 311 is formed with a width of about 2.5 mm to 20 mm, and preferably with a width of about 5 mm.
  • the second side 311b and the third side 311c are formed with a width of about 2 mm to 16 mm, and preferably with a width of about 3 mm.
  • a ridge line 314 is formed at a position where the flat surfaces 312 and 313 intersect.
  • the ridge line 314 is a linear part formed by contacting flat surfaces of each other with a curved surface of 1.0 R or less, and the ridge line 314 is formed to be perpendicular to the welding surface 311.
  • the ridge line 314 can also be formed with a gradient within a predetermined angle range (for example, a range of 3 to 80 °) from the perpendicular to the welding surface 311.
  • a predetermined angle range for example, a range of 3 to 80 °
  • the fracture inducing portion 31 of the present embodiment can generate a local thin wall and easily rupture by itself when a predetermined load is received. For this reason, it is preferable to form so that the ridgeline 314 may be 1.0 R or less.
  • the fracture inducing portion 31 of the present embodiment includes a first concave portion 31 a having a substantially triangular prism shape that is recessed from the opening end 22 of the first wall 4 toward the hollow portion 2 and has a side surface opened, and the opening end 22 of the second wall 5.
  • the welding surface 311 having a substantially triangular shape is formed by welding the joining surface of the second concave portion 31b having a substantially triangular prism shape that is recessed from the side to the hollow portion 2 side and has an open side surface.
  • the fracture inducing portion 31 of the present embodiment forms a thin portion by the first concave portion 31a and the second concave portion 31b, forms a stress concentration portion by the ridge line 314, and the shock absorber 100 is crushed.
  • the destruction inducing portion 31 is ruptured, and a part of the corner portion 20 can be opened.
  • the fracture inducing portions 21 and 31 of the present embodiment can be configured in any substantially polygonal column shape as long as it has a thin portion and a stress concentration portion. 8 includes straight flat surfaces 312 and 313, and a ridge line 314 of 1.0R or less is formed at a position where the straight flat surfaces 312 and 313 intersect. It was configured as follows. However, the fracture inducing portion 31 is configured by arc-shaped flat surfaces 312 and 313, and a ridge line 314 of 1.0R or less is formed at a position where the surfaces of the arc-shaped flat surfaces 312 and 313 intersect. It is also possible to do.
  • the destruction inducing portion 31 of the present embodiment can be configured in a substantially triangular prism shape instead of a triangular prism shape.
  • the substantially rectangular prism-shaped fracture inducing portion 21 shown in FIG. 3 can be made thinner than the substantially triangular prism-shaped fracture inducing portion 31 shown in FIG. it can.
  • it is preferable to configure the fracture inducing portion 21 with a substantially quadrangular prism shape shown in FIG. 3 has three flat surfaces 212, 213, and 214, and the substantially triangular prism-shaped destruction inducing portion 31 shown in FIG.
  • the substantially square prism-shaped fracture inducing portion 21 can be more rigid than the substantially triangular prism-shaped fracture inducing portion 31. For this reason, in view of obtaining impact resistance, it is preferable to configure the fracture inducing portion 21 in a substantially quadrangular prism shape shown in FIG. ⁇ Operation / Effect of Shock Absorber 100 of this Embodiment> As described above, the shock absorber 100 of the present embodiment has the breakage inducing portion 21 that breaks the corner portion 20 when the shock absorber 100 receives an impact at the corner portion 20 that connects the side walls 3 of the shock absorber 100. (See FIG. 3), 31 (see FIG. 8).
  • the amount of compressive strain between the side wall 3 and the corner portion 20 can be balanced.
  • the corner portion 20 is recessed in the middle, the corner portion 20 is folded, and the deformation of the corner portion 20 is inhibited.
  • the amount of compressive strain of the side wall 3 and the amount of compressive strain of the corner portion 20 are different.
  • the corner portion 20 has a so-called bottoming phenomenon in which the load suddenly increases from a certain amount of compressive strain (50% in FIG. 9), and absorbs shock.
  • the substantial maximum displaceable amount of the body 100 is reduced.
  • the vertical axis in FIG. 9 indicates the load (KN), and the horizontal axis indicates the amount of compressive strain (%).
  • the shock absorber 100 of the present embodiment is configured by providing the breakage inducing portion 21 at the corner portion 20, destroying the corner portion 20 when the shock absorber 100 is crushed, The amount of compressive strain is made close to the amount of compressive strain of the side wall 3.
  • the shock absorber 100 according to the present embodiment makes it possible to balance the amount of compressive strain between the side wall 3 and the corner 20 in the process of absorbing energy due to the shock.
  • the corner portion 20 breaks the corner portion 20 with a certain predetermined amount of compressive strain (50% in FIG.
  • the destruction inducing portions 21 and 31 are provided at the apexes of the corner portions 20.
  • the same effect can be obtained by providing the destruction inducing portion 21 within a predetermined range from the corner 20 (for example, within 50 mm from the end of the bent portion of the corner 20).
  • the bent portion of the corner portion 20 is a portion forming a curved shape, and the end portion of the bent portion is a boundary portion between the curved portion and the linear portion.
  • the destruction induction part 21 may be located in the predetermined range from the corner
  • the 1st side wall 3 in which the semicircular concave rib 13 is not provided, and the semicircular concave rib 13 are provided.
  • the shock absorber 100 when the shock absorber 100 receives an impact, the amount of distortion on the first side wall 3 is larger than that on the second side wall 3 'side, and the first side wall 3 and the second side wall 3' The amount of distortion of the side wall 3 ′ will be different. Therefore, the destruction inducing part 21 is provided so as to be positioned on the second side wall 3 side. Thereby, when the shock absorber 100 receives an impact, the fracture inducing portion 21 ruptures by itself with the distortion of the first side wall 3, destroys a part of the corner 20, and compresses the corner 20. The amount can approach the amount of compressive strain of the first side wall 3.
  • the first side wall 3 and the corner portion 20 can be balanced in compressive strain amount.
  • the destruction inducing portions 21 and 31 may be provided in the range from the vertex 20A of the corner portion 20 to the boundary portion 3C. It is also possible to provide the destruction inducing portions 21 and 31 respectively at the vertex 20A of the corner 20 and the range from the vertex 20A of the corner 20 to the boundary portion 3C. Further, it is possible to provide a plurality of destruction inducing parts 21 and 31 within a predetermined range without providing the destruction inducing parts 21 and 31 at the apex 20A of the corner part 20.
  • the plurality of fracture inducing portions 21 and 31 within a predetermined range from the corner portion 20 (around the corner portion 20), it is possible to easily induce cracks around the corner portion 20, and the side wall 3 And the corner portion 20 can be easily balanced in the amount of compressive strain. Further, it is possible not to provide the destruction inducing parts 21 and 31 only around the corner part 20 but to provide the destruction inducing parts 21 and 31 also to the side wall 3. Accordingly, it is possible to easily induce cracks around the corner 20 and the side wall 3 and to easily balance the amount of compressive strain between the side wall 3 and the corner 20.
  • the end portions 40 of the destruction inducing portions 21 and 31 are not formed in a sharp shape, but are formed in a polygonal shape or rounded. Thereby, a surface is provided in the edge part 40 of the destruction induction parts 21 and 31, and when the shock absorber 100 receives an impact, it can prevent that the edge part of the destruction induction parts 21 and 31 is damaged. Moreover, in the said embodiment, as shown in FIG. 2, it decided to provide the destruction induction part 21 in the corner
  • the destruction inducing portion 21 when the angle of the apex of the corner portion 20 is in the range of 450-1200.
  • the destruction inducing part 21 is ruptured when the shock absorber 100 is crushed.
  • the amount of compressive strain at the corner portion 20 can be made closer to the amount of compressive strain at the side wall 3. 8 is also provided when the apex angle of the corner 20 is in the range of 450 to 1200, as shown in FIGS. 13 (a) and 13 (b). It is preferable. (Second Embodiment) Next, a second embodiment will be described.
  • the corner portion 20 is a portion that originally generates thinness in the process of blow molding, and with respect to the corner portion 20, the substantially square prism-shaped fracture inducing portion 21 shown in FIG.
  • the triangular prism-shaped destruction inducing part 31 is provided, the thin parts of the destruction inducing parts 21 and 31 may be too thin to obtain rigidity against impact. For this reason, as shown in FIGS.
  • the shock absorber 100 has the destruction inducing portion 21 on at least one of the first wall 4 side and the second wall 5 side of the destruction inducing portions 21 and 31.
  • 31 is formed with a recessed portion 50 having higher rigidity.
  • FIG. 14 shows a case where a substantially crescent-shaped recess 50 is formed on the side of the first wall 4 of the substantially square prism-shaped destruction inducing part 21, and
  • FIG. 15 shows the first wall of the substantially triangular prism-shaped destruction inducing part 31. The case where the substantially crescent-shaped recessed part 50 is formed in 4 side is shown.
  • the thin portions of the fracture inducing portions 21 and 31 provided in the corner portion 20 are thinned by forming the substantially crescent-shaped concave portions 50 in the destruction inducing portions 21 and 31.
  • the strength reduction with respect to a load can be suppressed by the recessed part 50 of a substantially crescent moon shape.
  • the substantially crescent-shaped concave portion 50 in the fracture inducing portions 21 and 31 it is possible to ensure rigidity against impact. In order to increase the rigidity of the recessed part 50 as compared with the destruction inducing parts 21 and 31, as shown in FIGS.
  • the opening width b (b> a) larger than the opening width a of the destruction inducing parts 21 and 31.
  • the recessed portion 50 is formed.
  • the rigidity of the recessed part 50 can be made higher than the destruction induction parts 21 and 31.
  • the ridge line 51 formed in the recessed portion 50 is made larger than 1.0R.
  • the substantially crescent-shaped recessed part 50 suppresses the strength reduction with respect to the load, and the destruction is induced when a predetermined load is received.
  • the parts 21 and 31 can rupture themselves, and a part of the corner part 20 can be destroyed.
  • the shape of the recessed part 50 is not limited to the substantially crescent moon shape shown in FIG. 14, FIG. 15, For example, the substantially rectangular column shape shown in FIG. 16, or the substantially triangular prism-shaped recessed part 50 shown in FIG. It is also possible to form. FIG.
  • FIG. 16 shows a case where a substantially rectangular prism-shaped recessed portion 50 larger than the shape of the destruction-inducing portion 21 is formed on the first wall 4 side of the approximately square-column-shaped destruction-inducing portion 21.
  • the three flat surfaces 512, 513, 514 parallel to the impact direction are configured, and two ridge lines 51 ′ are formed at positions where the three flat surfaces 512, 513, 514 intersect with each other,
  • the two ridge lines 51 ′ are linear portions formed so that their flat surfaces are in contact with each other with a curved surface of 1.0 R or less, and form a stress concentration portion.
  • the flat surface 511 is configured to have a flat surface 511 parallel to the welding surface 211, and the width b of the flat surface 511 is configured to be larger than the width a of the welding surface 211.
  • FIG. 17 shows a case in which a substantially triangular prism-shaped concave portion 50 larger than the shape of the fracture inducing portion 31 is formed on the first wall 4 side of the substantially triangular prism-shaped destruction inducing portion 31. It has two flat surfaces 512 and 513 parallel to the direction, and one ridge line 51 ′ is formed at a position where the two flat surfaces 512 and 513 intersect with each other.
  • the flat surface 511 is configured to have a flat surface 511 parallel to the welding surface 311, and the width b of the flat surface 511 is larger than the width a of the welding surface 311. Since the recess 50 shown in FIGS. 16 and 17 includes the flat surfaces 512, 513, and 514 that are parallel to the impact direction, the rigidity in the impact direction can be increased, and the flat surface 512 can be increased.
  • the recessed part 50 is formed at a position where the ridge lines 51 'intersect, and the ridge lines 51' are linear portions formed by contacting the flat surfaces with curved surfaces of 1.0R or less, and stress concentration portions Forming part.
  • the recessed part 50 reduces strength against load. While suppressing, when the predetermined load is received, the destruction inducing parts 21 and 31 and the recessed part 50 can be ruptured by themselves, and a part of the corner part 20 can be destroyed. 14 to 17, the recessed portion 50 is formed on the first wall 4 side.
  • the recessed portion 50 is formed on the second wall 5 side, or the first wall 4 side and the second wall 5 side are formed. It is also possible to form the recessed part 50 in both. However, in view of obtaining rigidity against impact, it is preferable to form the recessed portion 50 on the side receiving the impact.
  • the relative ratio of the part which formed the recessed part 50 in the impact direction of the destruction induction parts 21 and 31 and the part which does not form the recessed part 50 is not specifically limited, A recessed part straddling the parting line PL If 50 is not formed, it will not specifically limit, It is possible to form the recessed part 50 by arbitrary relative ratios.
  • the parting line PL is not limited to the center position of the shock absorber 100, and can be formed at any position.
  • the shock absorber 100 of the present embodiment has higher rigidity than the fracture inducing portions 21 and 31 on at least one of the first wall 4 side and the second wall 5 side of the fracture inducing portions 21 and 31.
  • a recessed portion 50 is formed.
  • the substantially rectangular prism-shaped destruction inducing portion 21 shown in FIG. 3 is thinner than the substantially triangular prism-shaped destruction inducing portion 31 shown in FIG.
  • at least one of the first wall 4 side and the second wall 5 side of the substantially four-column-shaped fracture inducing part 21 is a recess having higher rigidity than the destruction inducing part 21.
  • the portion 50 is formed on at least one of the first wall 4 side and the second wall 5 side of the substantially triangular prism-shaped destruction inducing portion 31 as compared with the destruction inducing portion 31. Rather than forming the recessed portion 50 with increased rigidity, it is possible to effectively exhibit a reduction in strength against a load.
  • the above-described embodiment is a preferred embodiment of the present invention, and the scope of the present invention is not limited to the above-described embodiment alone, and various modifications are made without departing from the gist of the present invention. Implementation is possible.
  • the shock absorber 100 of the present embodiment is designed in a shape that matches the internal space of the vehicle component, the first wall 4 and the second wall 5 are not necessarily flat, and further, the first wall The distance between the 4 and the second wall 5 is not constant, and the width of the hollow portion 2 is generally wide or narrow depending on the part.
  • the shock absorption amount of the shock absorber 100 depends on the displaceable amount, it is preferable that the space between the first wall 4 and the second wall 5 is maximized within the range allowed by the internal space of the vehicle component.
  • the destruction inducing portions 21 and 31 are provided vertically between the first wall 4 and the second wall 5 as shown in FIG. 3, FIG. 8, and FIG. 14 to FIG. .
  • the destruction inducing portions 21 and 31 can be configured to be provided obliquely between the first wall 4 and the second wall 5.
  • the 1st side wall 3 in which the semicircular concave rib 13 is not provided, and the semicircular concave rib 13 are provided.
  • the first wall 4 side of the shock absorber 100 receives an impact, the amount of distortion on the first side wall 3 becomes larger than that on the second side wall 3 ′ side, and the first side wall 3 And the amount of distortion of the second side wall 3 ′ will be different.
  • the destruction inducing portion 21 is positioned on the second side wall 3 side, and on the second wall 5 side, as shown in FIG.
  • the destruction inducing part 21 is provided obliquely between the first wall 4 and the second wall 5 so that the destruction inducing part 21 is positioned at the apex of the corner part 20.
  • the shock absorber 100 of this embodiment can be used by being installed in a vehicle component such as a door of a car, a door trim, a body side panel, a roof panel, a pillar, a bumper, or the like.
  • the impact absorber 100 of this embodiment is not limited to a motor vehicle, For example, it can also be used for transport machines, such as a train, a ship, and an aircraft.
  • the shock absorber includes a main body having a hollow portion, and a first wall and a second wall facing each other of the main body, and the destruction inducing portion includes the first wall and / or the second wall. It has a substantially polygonal column shape in which a side surface that is recessed from the open end to the hollow portion side and is welded to the other wall surface is opened, and the shock absorber absorbs an impact by a thin portion formed by the substantially polygonal column shape.
  • the shock absorber according to claim 1 wherein when it is received, the periphery of the corner is destroyed. 3.
  • the impact absorber according to claim 1 or 2 wherein the destruction inducing portion is formed in a substantially quadrangular prism shape. 4).
  • the recessed part which made rigidity higher than the said destruction induction part is formed in at least one of the said 1st wall side and the said 2nd wall side of the said destruction induction part.
  • the shock absorber (100) of the present embodiment is a shock absorber (100) for absorbing shock energy at the time of collision, and a corner portion connecting the side walls (3) of the shock absorber (100) ( 20) Around the periphery, the shock absorber (100) has at least one destruction inducing portion that destroys the periphery of the corner (20) when receiving an impact (see FIG. 1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Dampers (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

2箇所以上で衝撃吸収性能の異なるブロー成形製の衝撃吸収体、または部分的に衝撃が集中してかかる場合や、衝撃吸収体の形状等に制約がある場合においても効果的に衝撃を吸収することが可能な衝撃吸収体及びその製造方法を提供する。複数のリブ(6,7,15)を有する中空体(11)から成る衝撃吸収体(1)であって、前記中空体(11)は、前記リブ(6,7,15)の密度が低い部分(41)と、前記リブ(6,7,15)の密度が高い部分(42)と、を有することを特徴とする。

Description

衝撃吸収体及び衝撃吸収体の製造方法
 本発明は、衝突時の衝撃を緩和・吸収する衝撃吸収体及びその衝撃吸収体の製造方法に関する。
 衝撃を吸収する衝撃吸収体としては、熱可塑性樹脂をブロー成形した中空壁構造の衝撃吸収体などがある。この種の衝撃吸収体は、例えば、図5、図6に示すように側面からの衝撃から搭乗者を保護するため、ドアパネルとドアトリムとの間に設けられる。図5、図6に示す衝撃吸収体1は、自動車の側面からの衝撃受付時に搭乗者の腰や胸がドアトリムに当たる位置を想定してドアパネルとドアトリムとの間に設置し、搭乗者を効果的に保護することにしている。
 上述した熱可塑性樹脂をブロー成形した中空壁構造の衝撃吸収体としては、例えば、特許文献1(特開2002-29341号公報)に開示されている。特許文献1の衝撃吸収体は、表面壁と裏面壁とをつなぐ凹状リブを多数形成し、衝撃吸収性能を向上させることにしている。
特開2002-29341号公報
 ところで、従来のブロー成形による衝撃吸収体は、腰や胸のダミーが衝撃吸収体全体に当たるという想定で進められていたが、近年では試験条件の変化により、2箇所以上で衝撃吸収性能の異なる打点が必要となっている。しかしながら、ブロー成形においては、肉厚変化による衝撃吸収性能の制御で、成形時の肉厚設定のずれや肉厚変更度合いから限界があった。
 また、特許文献1の衝撃吸収体のように凹状リブを多数形成していたとしても、部分的に衝撃が集中してかかり、例えば、1つの凹状リブだけで衝撃を受け付けた場合は、その衝撃を受け付けた1つの凹状リブ周辺だけが歪んでしまい、効果的に衝撃を吸収することができない場合がある。
 そのうえ、衝撃吸収体は、形状や厚みなどに制約のある空間に設けられるため、衝撃吸収体自体の厚みやリブの配置等にも制約がかかることになる。その結果、衝撃吸収体の衝撃吸収性能が部分毎に異なる場合があり、効果的に衝撃を吸収することができない場合がある。
 本発明の一つの目的は、上記事情に鑑みてなされたものであり、2箇所以上で衝撃吸収性能の異なるブロー成形製の衝撃吸収体及びその衝撃吸収体の製造方法を提供することにある。
 また本発明の他の目的は、部分的に衝撃が集中してかかる場合や、衝撃吸収体の形状等に制約がある場合においても、効果的に衝撃を吸収することが可能な衝撃吸収体及びその衝撃吸収体の製造方法を提供することにある。
 上記本発明の一つの目的を達成する課題を解決するため、本発明における衝撃吸収体は、複数のリブを有する中空体から成る衝撃吸収体であって、前記中空体は、前記リブの密度が低い部分と、前記リブの密度が高い部分と、を有することを特徴とする。
 また、上記本発明における衝撃吸収体の製造方法は、一対の分割金型の複数のリブを形成するリブ形成キャビティを有する金型の間にパリソンを配置し、次に、前記金型を型締めした後に、加圧エアを導入してパリソンを金型のキャビティに沿わして複数のリブを有する中空体を形成するとともに、その後、パリソンを冷却して、前記複数のリブに密度が低い部分と、密度が高い部分と、を形成することを特徴とする。
 さらに、上記本発明の他の目的を達成する課題を解決するため、本発明における衝撃吸収体は、複数のリブを有する中空体から成る衝撃吸収体であって、少なくとも2つ以上の前記リブに跨った板材を、前記中空体の衝撃吸収面に有することを特徴とする。
 また、上記本発明における衝撃吸収体の製造方法は、部分的に厚みの異なる板材を露出面が水平になるように一方の分割金型のキャビティ面にセットする工程と、複数のリブを形成するキャビティ面を有する他方の分割金型と、前記一方の分割金型と、の間にパリソンを配置する工程と、前記分割金型を型締めする工程と、加圧エアを導入してパリソンを前記キャビティ面に沿わして複数のリブを有する中空体を形成すると共に、少なくとも2つ以上の前記リブに跨って前記板材を前記中空体に溶着させる工程と、を有することを特徴とする。
 本発明によれば、2箇所以上で衝撃吸収性能の異なるブロー成形製の衝撃吸収体及び衝撃吸収体の製造方法を提供することができる。
 また本発明によれば、部分的に衝撃が集中してかかる場合や、衝撃吸収体の形状等に制約がある場合においても、効果的に衝撃を吸収することが可能な衝撃吸収体及び衝撃吸収体の製造方法を提供することができる。
本発明の第1の実施形態の衝撃吸収体1の平面図と側面図である。 本発明の第1の実施形態の衝撃吸収体1の製造方法を説明する図である。 本発明の第1の実施形態の衝撃吸収体1の製造方法を説明する図である。 本発明の第2の実施形態の衝撃吸収体1の平面図と側面図である。 本発明の第1または第2の実施形態の衝撃吸収体1の設置場所の一例を説明する図である。 本発明の第1または第2の実施形態の衝撃吸収体1をドアトリムに内設した断面図である。 本発明の他の第1の実施形態の衝撃吸収体1の平面図と側面図である。 本発明の他の第1の実施形態の衝撃吸収体1の製造方法を説明する図である。 本発明の他の第1の実施形態の衝撃吸収体1の製造方法を説明する図である。 本発明の他の第2の実施形態の衝撃吸収体1の平面図と側面図である。 本発明の他の第2の実施形態の衝撃吸収体1の平面図と側面図である。 本発明の他の第3の実施形態の衝撃吸収体1の平面図と側面図である。 本発明の他の第3の実施形態の衝撃吸収体1の平面図と側面図である。 本発明の他の第4の実施形態の衝撃吸収体1の平面図と側面図である。 本発明の他の第4の実施形態の衝撃吸収体1の平面図と側面図である。 本発明の他の第4の実施形態の衝撃吸収体1の平面図と側面図である。 本発明の他の第1ないし第4の実施形態の衝撃吸収体1の設置場所の一例を説明する図である。 本発明の他の第1ないし第4の実施形態の衝撃吸収体1をドアトリムに内設した断面図である。
 まず、本発明の第1の実施形態について、図1に基づいて説明する。
  (第1の実施形態)
 本実施形態の衝撃吸収体1は、中空体11全面にわたって総厚は同じであるが、リブの密度が異なる部分を有している。破線の矢印X側は、リブの密度が低い部分41であり、矢印Y側は、リブの密度が高い部分42である。
 本実施形態の衝撃吸収体1のように、リブの密度が低い部分41と、リブの密度が高い部分42と、が存在すると、各々の部分41,42の剛性及び歪み量が異なる。このため、異なる2箇所の領域、すなわち、リブの密度が低い部分41と、リブの密度が高い部分42と、で異なる衝撃吸収性能を得ることができる。なお、リブの密度を変更する方法としては、リブの平均ピッチ間隔を変更する方法がある。リブの平均ピッチ間隔を変更してリブの密度を変更する場合は、リブの密度が低い部分41のリブの平均ピッチ間隔:bと、リブの密度が高い部分42のリブの平均ピッチ間隔:aと、の関係が、1.2a≦bの条件を満たすことで、衝撃吸収性能を2箇所で顕著に変化させることができる。また、リブの大きさ(断面における径)を領域ごとに変えることでも、リブの密度が低い部分41と、リブの密度が高い部分42と、で異なる衝撃吸収性能を得ることが可能である。
 中空体11は、中空部2と周壁面(または側壁)3と第一壁4と第二壁5とを備える。本実施形態の衝撃吸収体1は、中空体11を形成する第一壁4および第二壁5の両方を、それぞれ他方に向けて窪ませて形成された対をなす凹状リブ6,7を多数有している。これらの凹状リブ6,7は、第一壁4と第二壁5との間の略中間位置で互いに溶着して一体状として溶着板状部8を形成している。
 また上記凹状リブ6,7の形状は略円形であって、その凹状リブ6,7は、第一壁4または第二壁5の開口端12,13から中空部2方向に縮径していて、その縮径角αは5-300°であり、開口端12,13の直径Aは10-40mmである。凹状リブ6,7をこの数値の範囲に形成すると、中央位置で「く」の字に折れ曲がり、衝撃吸収体1が受ける衝撃に対する中空体11の緩衝効果が最も高くなることが実験上確かめられている。なおこの凹状リブ6,7は長円形であっても良い。
 中空体11の周壁面3(側壁)の一部には、中空部2側に凹ませて形成したリブ状部分15が適当な間隔で複数形成されている。このリブ状部分15の形状は略半円形であって中空体11の第一壁4または第二壁5の開口端14から中空部2方向に縮径していて、その縮径角αは5-300°、開口端14の半径Bは5-20mmである。
 リブ状部分15にあっては、第一壁4と第二壁5との略中間部に溶着板状部9を形成して補強効果を高くしている。リブ状部分15を上記数値の範囲に形成することにより、衝撃吸収体1が受ける衝撃に対する中空体11の緩衝効果が最も高くなることが実験上確かめられている。
 上記の凹状リブ6,7およびリブ状部分15は、中空体11に多く設ける(リブの密度を高くする)と、中空体11の剛性を高くすることができる。逆に、少なく設ける(リブの密度を低くする)と、剛性を低くすることができる。ここで、リブの密度とは、開口端12,14または13,14の合計表面積を第一壁4または第二壁5の表面積で割った値のことを示す。本実施形態では、凹状リブ6,7およびリブ状部分15を総称したものをリブとする。
 なお、ここでは、中央で溶着されたリブについて説明した。しかし、本実施形態の衝撃吸収体1は、必ずしも中央で溶着されている必要はなく、例えば、第一壁4や第二壁5の壁面で溶着されていても良い。
 中空体11を構成する熱可塑性樹脂としては、公知の樹脂が適用可能である。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスチレン、ABS樹脂等のスチレン系樹脂、ポリエチレンテレフタ-ト等のポリエステル系樹脂、ポリアミドおよびこれらの混合物など、剛性等の機械的高度の大きい樹脂で構成することができる。
 また、機械的強度(耐衝撃性)を損なわない範囲において、例えば、シリカ等の充填剤、顔料、染料、熱安定剤、光安定剤、可塑剤、帯電防止剤、難燃剤、防炎剤、老化防止剤、紫外線吸収剤、酸化防止剤、防曇剤、滑剤など当該分野で使用されている添加剤の1種または2種以上を含有することもできる。
  <衝撃吸収体1の製造方法>
 次に、図2、図3を参照しながら、本実施形態の衝撃吸収体1の製造方法例について説明する。
 本実施形態の衝撃吸収体1は、図2、図3に示すようにブロー成形により作製される。即ち、19,19は、一対の分割金型、16は、リブ成形キャビティ、17は、押出ダイ、18は、パリソンである。
 まず、図2に示すように、一対の分割金型19,19の複数のリブを形成するリブ形成キャビティ16を有する金型の間にパリソン18を配置する。次に、図3に示すように型締めした後に、エア吹込みピン(図示せず)から加圧エアを導入してパリソン18を金型のキャビティに沿わして複数のリブを有する中空体11を形成する。
 その後、パリソン18を冷却し、複数のリブを有する中空体11を形成する。なお、リブ成形キャビティ16をスライドさせてリブを形成することも可能である。
  <本実施形態の衝撃吸収体1の作用・効果>
 このように、本実施形態の衝撃吸収体1は、リブの密度が低い部分41と、リブの密度が高い部分42と、が存在することで、異なる2箇所の領域、すなわち、リブの密度が低い部分41と、リブの密度が高い部分42と、で異なる衝撃吸収性能を得ることができる。
  (第2の実施形態)
 次に、本発明の第2の実施形態について図4に基づいて説明する。
 リブの密度による衝撃吸収性能の改善においては、衝撃吸収体自体の大きさに制約がある場合には、リブの密度にも自ずと制約がかかってしまうため、異なる領域において所望の衝撃吸収性能の差を出せない場合がある。
 そこで、本発明の第2の実施形態の衝撃吸収体1は、図4に示すように、中空体11のリブの密度及び総厚を制御することで、異なる領域における衝撃吸収性能を顕著に変化させている。
 このとき、総厚の厚い部分22の厚さ:dと、総厚の薄い部分21の厚さ:cと、の関係が、1.3c≦dの条件を満たすことで、各々の領域における衝撃吸収性能を顕著に異ならせることが可能である。
 なお、本実施形態においては、一例として、総厚の厚い部分22のリブの密度を高くし、総厚の薄い部分21のリブの密度を総厚の厚い部分22よりも低くしたものを示した。しかし、総厚の厚い部分22は、ブロー成形ではブロー時のパリソンの延伸により薄肉となり、総厚の薄い部分21に比べて剛性が小さくなるため、総厚の薄い部分21のリブの密度を高くすることで、総厚の薄い部分21の剛性を総厚の厚い部分22に比べて大幅に高くすることができる。その結果、総厚の厚い部分22と、総厚の薄い部分21と、の各々の領域における衝撃吸収性能を顕著に変化させ、所望の衝撃吸収性能を得ることができる。
 なお、ここでは総厚の厚い部分22と、総厚の薄い部分21と、でリブの密度を異ならせたが、これに限定されることなく、総厚の厚い部分22の範囲内や、総厚の薄い部分21の範囲内でリブの密度を異ならせることも可能である。
 なお、本発明の第2の実施形態の衝撃吸収体1の製造方法は、上述した第1の実施形態の製造方法において使用する金型の形状が違うだけであり、第1の実施形態と同様な製造方法で製造することができる。
  <本実施形態の衝撃吸収体1の作用・効果>
 このように、本実施形態の衝撃吸収体1は、リブの密度及び総厚を制御することで、各々の領域において所望の剛性を得ることができ、さらに、リブの密度の差によるリブの倒れ方の違いから両領域の衝撃吸収性能を顕著に異ならせることが可能である。
 なお、上述する実施形態は、本発明の好適な実施形態であり、上記実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。
 例えば、本実施形態の衝撃吸収体1は、図5、図6に示すように側面からの衝撃から搭乗者を保護するため、ドアパネルとドアトリムとの間に設けられる態様に限定するものではなく、自動車等のボディーサイドパネル、ルーフパネル、ピラー、バンパーなどの車両構成部材に内設して使用することができる。また、本実施形態の衝撃吸収体1は、自動車に限定せず、例えば、列車、船舶、航空機等の輸送機に使用することもできる。
  <他の実施形態の衝撃吸収体1の概要>
 まず、図7を参照しながら、本実施形態の衝撃吸収体1の概要について説明する。
 本実施形態の衝撃吸収体1は、複数のリブ6,7,15を有する中空体11から成る衝撃吸収体1である。本実施形態の衝撃吸収体1は、少なくとも2つ以上のリブ6,7,15に跨った板材10を、中空体11の衝撃吸収面(例えば、第一壁4側)に有することを特徴とする。
 これにより、本実施形態の衝撃吸収体1は、板材10の一部分で衝撃を受け付けた場合でも、その衝撃を板材10の全面にわたって均一に分散させることができるので、衝撃を受けた部分のリブ6,7,15だけに応力が集中することなく板状10に跨った複数のリブ6,7,15全体で衝撃を吸収することができる。以下、添付図面を参照しながら、本実施形態の衝撃吸収体1について詳細に説明する。
  (他の第1の実施形態)
 図7に示すように、本実施形態の衝撃吸収体1は、衝撃方向に対する面(第一壁4側、衝撃吸収面と記述する)に板材10と熱可塑性樹脂をブロー成形して中空状に成形された中空体11とを備える。
 板材10は、衝撃を面で受け、衝撃を複数のリブ6,7,15に均一に分散させるものである。従って、板材10は、少なくとも2つ以上のリブ6,7,15に跨って設けられる。これにより、板材10の一部分で衝撃を受け付けた場合でも、その衝撃を板材10の全面にわたって均一に分散させることができるので、衝撃を受けた部分のリブ6,7,15だけに応力が集中することなく板状10に跨った複数のリブ6,7,15全体で衝撃を吸収することができる。従って、複数のリブ6,7,15を有する衝撃吸収体1において、効果的に衝撃を吸収することができる。なお、板材10は、中空体11の衝撃吸収面の全面に一枚板にて設けられていることが好ましい。これにより、中空体11の衝撃吸収面に形成されている全てのリブ6,7,15全体で衝撃を吸収することができる。
 また、板材10は、1つではなく複数に分割して設けることも可能である。但し、この場合、1つ1つの板材10が少なくとも2つ以上のリブ6,7,15に跨っている必要がある。これは、板状10に跨った複数のリブ6,7,15全体で衝撃を吸収し、効果的に衝撃を吸収するためである。
 また、板材10は、衝撃方向に対する面(図7では第一壁4側)だけでなく、衝撃方向の反対側(図7では第二壁5側)にも設けることも可能である。また、板材10は、側面からの衝撃に対して耐衝撃性を持たせるため、側面(周壁面3側)に設けることも可能である。これにより、衝撃吸収体1の剛性を更に向上させることができる。
 なお、板材10は、部分的に集中してかかる衝撃を分散させるため、少なくとも中空体11を形成する材料よりも剛性が高いものが好ましい。また、更に弾性があり復元性の高い材料を用いることが好ましい。例えば、公知の熱可塑性樹脂や金属などの材料を用いることで、中空体11を形成する材料よりも剛性が高い板材10を形成したり、更に弾性があり復元性の高い板材10を形成したりすることができる。
 中空体11は、中空部2と周壁面(または側壁)3と第一壁4と第二壁5とを備える。本実施形態の衝撃吸収体1は、中空体11を形成する第一壁4および第二壁5の両方を、それぞれ他方に向けて窪ませて形成された対をなす凹状リブ6,7を多数有している。これらの凹状リブ6,7は、第一壁4と第二壁5との間の略中間位置で互いに溶着して一体状として溶着板状部8を形成している。
 また上記凹状リブ6,7の形状は略円形であって、その凹状リブ6,7は、第一壁4または第二壁5の開口端12,13から中空部2方向に縮径していて、その縮径角αは5から300であり、開口端12,13の直径aは10から40mmである。凹状リブ6,7をこの数値の範囲に形成すると、中央位置でくの字に折れ曲がり、衝撃吸収体1が受ける衝撃に対する中空体11の緩衝効果が最も高くなることが実験上確かめられている。なおこの凹状リブ6,7は長円形であっても良い。
 中空体11の周壁面3(側壁)の一部には、中空部2側に凹ませて形成したリブ状部分15が適当な間隔で複数形成されている。このリブ状部分15の形状は略半円形であって中空体11の第一壁4または第二壁5の開口端14から中空部2方向に縮径していて、その縮径角αは5から300°、開口端14の半径bは5から20mmである。
 図7に示すリブ状部分15にあっては、第一壁4と第二壁5との略中間部に溶着板状部9を形成して補強効果を高くしている。リブ状部分15を上記数値の範囲に形成することにより、衝撃吸収体1が受ける衝撃に対する中空体11の緩衝効果が最も高くなることが実験上確かめられている。
 上記の凹状リブ6,7およびリブ状部分15は、中空体11に多く設ける(リブの密度を高くする)と、中空体11の剛性を高くすることができる。逆に、少なく設ける(リブの密度を低くする)と、剛性を低くすることができる。ここで、リブの密度とは、開口端12,14または13,14の合計表面積を第一壁4または第二壁5の表面積で割った値のことを示す。本実施形態では、凹状リブ6,7およびリブ状部分15を総称したものをリブとする。
 なお、図7では、中央で溶着されたリブについて説明した。しかし、本実施形態の衝撃吸収体1は、必ずしも中央で溶着されている必要はなく、例えば、第一壁4や第二壁5の壁面で溶着されていても良い。
 板材10は、中空体11を成形した後、公知の接着剤等を用いて後から中空体11に溶着することもできる。また、例えば、凹状リブ6,7を中央ではなく、壁面で溶着する場合は、中空体11成形時にインサート成形により同時に中空体11に溶着することもできる。
 中空体11を構成する熱可塑性樹脂としては、公知の樹脂が適用可能である。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスチレン、ABS樹脂等のスチレン系樹脂、ポリエチレンテレフタ-ト等のポリエステル系樹脂、ポリアミドおよびこれらの混合物など、剛性等の機械的高度の大きい樹脂で構成することができる。
 また、機械的強度(耐衝撃性)を損なわない範囲において、例えば、シリカ等の充填剤、顔料、染料、熱安定剤、光安定剤、可塑剤、帯電防止剤、難燃剤、防炎剤、老化防止剤、紫外線吸収剤、酸化防止剤、防曇剤、滑剤など当該分野で使用されている添加剤の1種または2種以上を含有することもできる。
  <衝撃吸収体1の製造方法>
 次に、図8、図9を参照しながら、本実施形態の衝撃吸収体1の製造方法例について説明する。なお、以下の製造方法は、衝撃吸収体1をブロー成形の一体成形で製造する場合について説明する。この場合は、第二壁5側から凹状リブ7を形成する。従って、溶着板状部8は、第一壁4と一体となって形成されることになる。
 本実施形態の衝撃吸収体1は、図8、図9に示すようにブロー成形される。即ち、19,19は、一対の分割金型、16は、リブ成形キャビティ、17は、押出ダィ、18は、パリソンである。
 まず、図8に示すように、一対の分割金型19,19のリブ形成キャビティ16のない側の一方の金型にあらかじめ成形された板材10をセットする。次に、一対の分割金型19,19の複数のリブを形成するリブ形成キャビティ16を有する他方の金型と、一方の金型と、の間にパリソン18を配置する。次に、図9に示すように型締めした後に、エア吹込みピン(図示せず)から加圧エアを導入してパリソン18を金型のキャビティに沿わして複数のリブを有する中空体11を形成すると共に、少なくとも2つ以上のリブに跨るように板材10を溶着させてブロー成形する。
 これにより板材10は、パリソン18と熱溶着される。このとき、板材10の大きさが第一壁4の面積よりも小さい場合は、ブロー成形によりパリソン18が板材10の周囲に回り込み、板材10は、パリソン18にめり込むように熱溶着されることになる。また、中空体11が予めセットされた板材10に対して成形されるため、例えば、板材10に部分的な厚みがあるときでも、中空体11成形後に板材10を接着剤などで接着させる場合に比べ、露出面、すなわち、衝撃吸収面を水平に容易に作製することができる。
 なお、リブ形成キャビティ16のない側の一方の金型に対し、少なくとも2つ以上のリブに跨るように板材10をセットする以外は、公知のブロー成形方法が適用可能である。これにより、衝撃吸収体1を得ることができる。なお、リブ成形キャビティ16をスライドさせるようにすることも可能である。
  <本実施形態の衝撃吸収体1の作用・効果>
 このように、本実施形態の衝撃吸収体1は、少なくとも2つ以上のリブ6,7,15に跨った板材10を、中空体11の衝撃吸収面に有して構成する。これにより、板材10の一部分で衝撃を受け付けた場合でも、その衝撃を板材10の全面にわたって均一に分散させることができるので、衝撃を受けた部分のリブ6,7,15だけに応力が集中することなく板状10に跨った少なくとも2つ以上のリブ6,7,15全体で衝撃を吸収することができる。従って、複数のリブ6,7,15を有する衝撃吸収体1において、部分的に衝撃が集中してかかる場合でも、効果的に衝撃を吸収することができる。
  (第2の実施形態)
 次に、第2の実施形態について説明する。図10、図11に示すように、本実施形態の衝撃吸収体1は、衝撃方向に対する面(第一壁4側、衝撃吸収面と記述する)に板材10と熱可塑性樹脂をブロー成形して中空状に成形された中空体11とを備える。
 本実施形態の衝撃吸収体1は、形状や厚みなどに制約のある空間に設けられるため、中空体11は、総厚の薄い部分21と、総厚の厚い部分22と、が存在してしまう場合がある。
 総厚の薄い部分21と、総厚の厚い部分22と、が存在してしまうと、各々の部分21,22の歪み量が異なるため、総厚の薄い部分21と、総厚の厚い部分22と、を均一に歪ませることができず、効果的に衝撃を吸収することができない。特に、総厚の厚い部分22の厚さ:dと、総厚の薄い部分21の厚さ:cと、の関係が、 1.3c≦dの条件を満たす場合は、上記の問題が顕著になる。
 このため、本実施形態の衝撃吸収体1は、図10に示すように、総厚の薄い部分21と、総厚の厚い部分22と、に跨る板材10を中空体11の衝撃吸収面に設けることにしている。これにより、板材10の一部分で衝撃を受け付けた場合でも、その衝撃を板材10の全面にわたって均一に分散させることができるので、衝撃を受けた部分(例えば、総厚の厚い部分22)だけを歪ませるのではなく、板状10に跨った総厚の厚い部分22と、総厚の薄い部分21と、の両方を同じ歪み量で歪ませることができる。その結果、総厚の薄い部分21と、総厚の厚い部分22と、を均一に歪ませることができるため、効果的に衝撃を吸収することができる。
 なお、図10では、総厚の薄い部分21と、総厚の厚い部分22と、の全ての衝撃吸収面に跨る板材10を設けることにした。しかし、総厚の薄い部分21と、総厚の厚い部分22と、に少なくとも跨る板材10を衝撃吸収面に設けていれば、上記と同様な効果を奏することになる。但し、図4に示すように、総厚の薄い部分21と、総厚の厚い部分22と、の各々に複数のリブを設けている場合は、総厚の薄い部分21と、総厚の厚い部分22と、の各々の部分21,22において少なくとも1つ以上のリブに跨るように板材10を設ける必要がある。また、総厚の薄い部分21と、総厚の厚い部分22と、の各々の部分21,22に複数のリブを設けていない場合は、総厚の薄い部分21と、総厚の厚い部分22と、に少なくとも跨る板材10を衝撃吸収面に設けていれば良い。このように、本実施形態の衝撃吸収体1は、図10に示すように、総厚の薄い部分21と、総厚の厚い部分22と、に少なくとも跨る板材10を衝撃吸収面に設けることで、衝撃吸収体1の形状や厚みなどに制約がある空間に衝撃吸収体1が設けられた場合であっても、効果的に衝撃を吸収することができる。
 また、総厚の薄い部分21と、総厚の厚い部分22と、が存在する場合は、総厚が厚い部分22は、同じ厚さのパリソンをブロー成形した時に、延伸されるので薄くなり、総厚が薄い部分21と比較して剛性が低くなってしまう。このため、総厚の薄い部分21と、総厚の厚い部分22と、が存在してしまうと、各々の部分21,22で剛性が各々異なってしまうことになる。
 このため、本実施形態の衝撃吸収体1は、図11に示すように、総厚の厚い部分22の衝撃吸収面に板材10を設け、総厚の厚い部分22の剛性を板材10により向上させることにしている。これにより、総厚の厚い部分22の剛性を、総厚の薄い部分21の剛性に近づけることができる。その結果、総厚の薄い部分21の剛性と、総厚の厚い部分22の剛性と、の均衡を図ることができる。
 なお、図11に示すように、総厚の厚い部分22に複数のリブが設けられている場合は、少なくとも2つ以上のリブに跨るように板材10を設けるようにする必要がある。これにより、板状10に跨った複数のリブ全体で衝撃を吸収し、効果的に衝撃を吸収することができる。
 また、板材10は1つではなく複数に分割して設けることも可能である。但し、この場合は、1つ1つの板材10が少なくとも2つ以上のリブに跨っていることが必要である。これは、板状10に跨った複数のリブ全体で衝撃を吸収し、効果的に衝撃を吸収するためである。
 なお、板材10は、衝撃吸収面だけでなく、反対側にも設けることも可能である。また、板材10は、側面からの衝撃に対して耐衝撃性を持たせるため、側面(周壁面3側)に設けることも可能である。これにより、衝撃吸収体1の剛性を更に向上させることができる。
 なお、図11では、総厚の厚い部分22の衝撃吸収面に一枚板の板材10を設け、総厚の厚い部分22の剛性を一枚板の板材10により向上させることにした。しかし、図4に示すように、総厚の厚い部分22と、総厚の薄い部分21と、に跨る一枚板の板材10を設け、総厚の厚い部分22に設ける部分の板材10の厚さを厚くし、板材10による剛性を高め、総厚の薄い部分21に設ける部分の板材10の厚さを薄くし、板材10による剛性を低めるようにすることも可能である。即ち、本実施形態の衝撃吸収体1は、板材10の厚さや材料により、剛性を調整するように構築することも可能である。
 なお、第2の実施形態の衝撃吸収体1の製造方法は、上述した第1の実施形態の製造方法において使用する金型の形状が違うだけであり、第1の実施形態と同様な製造方法で製造することができる。
  <本実施形態の衝撃吸収体1の作用・効果>
 このように、本実施形態の衝撃吸収体1の中空部11は、総厚の薄い部分21と、総厚の厚い部分22と、が存在する衝撃吸収体1において、図10に示すように、総厚の薄い部分21と、総厚の厚い部分22と、に少なくとも跨る板材10を、中空体11の衝撃吸収面に有して構成する。これにより、板材10の一部分で衝撃を受け付けた場合でも、その衝撃を板材10の全面にわたって均一に分散させることができるので、衝撃を受けた部分(例えば、総厚の厚い部分22の部分)だけを歪ませるのではなく、板状10に跨った総厚の厚い部分22と、総厚の薄い部分21と、の両方を同じ歪み量で歪ませることができる。従って、衝撃吸収体1の形状等に制約があり、総厚の薄い部分21と、総厚の厚い部分22と、が存在する衝撃吸収体1においても、効果的に衝撃を吸収することができる。
 また、総厚の薄い部分21と、総厚の厚い部分22と、が存在する衝撃吸収体1において、図11に示すように、総厚の厚い部分22の衝撃吸収面に板材10を有して構成する。これにより、総厚の厚い部分22の剛性を板材10により高め、総厚の薄い部分21と、総厚の厚い部分22と、の剛性の均衡を図ることができる。また、板状10に跨った複数のリブ全体で衝撃を吸収し、効果的に衝撃を吸収することができる。
  (第3の実施形態)
 次に、第3の実施形態について説明する。図12、図13に示すように、本実施形態の衝撃吸収体1は、衝撃方向に対する面(第一壁4側、衝撃吸収面と記述する)に板材10と熱可塑性樹脂をブロー成形して中空状に成形された中空体11とを備える。
 第3の実施形態の衝撃吸収体1は、図12に示すように、第2の実施形態の衝撃吸収体1よりも中空体11のリブの密度を高くし、総厚の厚い部分22の剛性を高めることにしている。これにより、総厚の厚い部分22の剛性を、総厚の薄い部分21の剛性に近づけ、総厚の薄い部分21と、総厚の厚い部分22と、の剛性の均衡を図ることにしている。
 このため、第3の実施形態の衝撃吸収体1は、総厚の薄い部分21と、総厚の厚い部分22と、の剛性の均衡を図った状態で、第2の実施形態のように、総厚の薄い部分21と、総厚の厚い部分22と、に跨る板材10を中空体11の衝撃吸収面に設けることにしている。これにより、総厚の薄い部分21と、総厚の厚い部分22と、の剛性の均衡を図った状態で、板状10に跨った総厚の薄い部分21と、総厚の厚い部分22と、の両方を同じ応力で歪ませることができる。その結果、総厚の薄い部分21と、総厚の厚い部分22と、の剛性の均衡を図りつつ、総厚の薄い部分21と、総厚の厚い部分22と、を均一に歪ませることができるため、効果的に衝撃を吸収することができる。
 なお、図11に示す第2の実施形態の衝撃吸収体1では、総厚の厚い部分22の衝撃吸収面に板材10を設け、総厚の厚い部分22の剛性を板材10により向上させることにした。しかし、総厚の厚い部分22のリブの密度を高くし、総厚の厚い部分22の剛性を高めることもできる。但し、総厚の厚い部分22のリブの密度を高くし、総厚の厚い部分22の剛性を高めたとしても、リブの密度を高くするにも限界がある。
 このため、本実施形態の衝撃吸収体1は、図12に示すように、総厚の厚い部分22のリブの密度を高くし、総厚の厚い部分22の剛性を高めるだけでなく、総厚の厚い部分22の衝撃吸収面に板材10を設け、総厚の厚い部分22の剛性を板材10により向上させることにしている。これにより、リブの密度を高めるだけでなく、板材10を設けることで、層厚の厚い部分22の剛性を、総厚の薄い部分21の剛性に近づけることができる。その結果、リブの密度と板材10とにより、総厚の厚い部分22の剛性と、総厚の薄い部分21の剛性と、の均衡を図ることができる。また、リブの密度を高めることで、板材10に跨るリブの数を多くすることができる。その結果、板状10に跨った多くのリブ全体で衝撃を吸収し、効果的に衝撃を吸収することができる。
 また、図12では、総厚の厚い部分22の衝撃吸収面に一枚板の板材10を設け、総厚の厚い部分22の剛性を一枚板の板材10により向上させることにした。しかし、図6に示すように、総厚の厚い部分22と、総厚の薄い部分21と、に跨る一枚板の板材10を設け、総厚の厚い部分22に設ける部分の板材10の厚さを厚くし、板材10による剛性を高め、総厚の薄い部分21に設ける部分の板材10の厚さを薄くし、板材10による剛性を低めるようにすることも可能である。即ち、本実施形態の衝撃吸収体1は、板材10の厚さや材料により、部分的に剛性を調整するように構築することも可能である。
 なお、第3の実施形態の衝撃吸収体1の製造方法は、上述した第1の実施形態の製造方法において使用する金型の形状が違うだけであり、第1の実施形態と同様な製造方法で製造することができる。
  <本実施形態の衝撃吸収体1の作用・効果>
 このように、本実施形態の衝撃吸収体1は、総厚の薄い部分21と、総厚の厚い部分22と、が存在する衝撃吸収体1において、図12に示すように、総厚の厚い部分22のリブの密度を高くし、総厚の薄い部分21と、総厚の厚い部分22と、の剛性の均衡を図りつつ、総厚の薄い部分21と、総厚の厚い部分22と、に少なくとも跨る板材10を、中空体11の衝撃吸収面に有して構成する。これにより、総厚の薄い部分21と、総厚の厚い部分22と、の剛性の均衡を図りつつ、総厚の薄い部分21と、総厚の厚い部分22と、を均一に歪ませることができるため、効果的に衝撃を吸収することができる。
 また、総厚の薄い部分21と、総厚の厚い部分22と、が存在する衝撃吸収体1において、図13に示すように、総厚の厚い部分22のリブの密度を高くしつつ、総厚の厚い部分22の衝撃吸収面に板材10を有して構成する。これにより、総厚の厚い部分22の剛性をリブの密度と板材10により高め、総厚の薄い部分21と、総厚の厚い部分22と、の剛性の均衡を図ることができる。また、板状10に跨った複数のリブ全体で衝撃を吸収し、効果的に衝撃を吸収することができる。
  (第4の実施形態)
 次に、第4の実施形態について説明する。図14ないし図16に示すように、本実施形態の衝撃吸収体1は、衝撃方向に対する面(第一壁4側、衝撃吸収面と記述する)に板材10と熱可塑性樹脂をブロー成形して中空状に成形された中空体11とを備える。
 第4の実施形態の衝撃吸収体1は、第1の実施形態と中空体11の総厚は同じであるが、リブの密度が異なる部分を有している。破線の矢印X側は、リブの密度が低い部分41であり、矢印Y側は、リブの密度が高い部分42である。
 本実施形態の衝撃吸収体1のように、リブの密度が低い部分41と、リブの密度が高い部分42と、が存在してしまうと、各々の部分41,42の歪み量が異なるため、リブの密度が低い部分41と、リブの密度が高い部分42と、を均一に歪ませることができず、効果的に衝撃を吸収することができない場合がある。なお、リブの密度を変更する方法としては、リブの平均ピッチ間隔を変更する方法がある。リブの平均ピッチ間隔を変更してリブの密度を変更する場合は、リブの密度が低い部分41のリブの平均ピッチ間隔:bと、リブの密度が高い部分42のリブの平均ピッチ間隔:aと、の関係が、1.2a≦bの条件を満たす場合は、上記の問題が顕著になる。また、リブの大きさ(断面における径)を領域ごとに変える場合でも、上記の問題が発生する。
 このため、本実施形態の衝撃吸収体1は、図14に示すように、リブの密度が低い部分41と、リブの密度が高い部分42と、に跨る板材10を衝撃吸収面に設けることにしている。これにより、板材10の一部分で衝撃を受け付けた場合でも、その衝撃を板材10の全面にわたって均一に分散させることができるので、衝撃を受けた部分(例えば、リブの密度の低い部分41)だけを歪ませるのではなく、板状10に跨ったリブの密度の低い部分41と、リブの密度の高い部分42と、の両方を同じ歪み量で歪ませることができる。その結果、リブの密度の低い部分41と、リブの密度の高い部分42と、を均一に歪ませることができるため、効果的に衝撃を吸収することができる。
 なお、図14では、中空体11に対してリブの密度の低い部分41と、中空体11に対してリブの密度の高い部分42と、の全ての衝撃吸収面に跨る板材10を衝撃吸収面に設けることにした。しかし、図15に示すように、板材10に対してリブの密度の低い部分41と、板材10に対してリブの密度の高い部分42と、に少なくとも跨る板材10を衝撃吸収面に設けていれば、上記とほぼ同様な効果を奏することになる。図15では、板材10に対してリブの密度が低い部分41のリブの平均ピッチ間隔:b’と、板材10に対してリブの密度が高い部分42のリブの平均ピッチ間隔:a’と、の関係が1.2a’≦b’となるように構成している。但し、図15に示すように、中空体11に対してリブの密度の低い部分41と、中空体11に対してリブの密度の高い部分42と、の各々の部分41,42において少なくとも2つ以上のリブに跨るように板材10を設ける方が効果的に衝撃を吸収することができる。
 また、リブの密度が低い部分41と、リブの密度が高い部分42と、が存在する場合は、リブの密度が低い部分41と、リブの密度が高い部分42と、で剛性が各々異なってしまうことになる。
 このため、本実施形態の衝撃吸収体1は、図16に示すように、リブの密度の低い部分41の衝撃吸収面に板材10を設け、リブの密度の低い部分41の剛性を板材10により向上させることにしている。これにより、リブの密度の低い部分41の剛性を、リブの密度の高い部分42の剛性に近づけることができる。その結果、衝撃吸収体1自身のリブの配置等に制約がかかった場合でも、リブの密度が低い部分41と、リブの密度が高い部分42と、の均衡を図ることができる。
 なお、板材10は1つではなく複数に分割して設けることも可能である。但し、この場合は、1つ1つの板材10が少なくとも2つ以上のリブに跨っていることが必要である。これは、板状10に跨った複数のリブ全体で衝撃を吸収し、効果的に衝撃を吸収するためである。
 また、板材10は、衝撃吸収面だけでなく、反対側にも設けることも可能である。また、板材10は、側面からの衝撃に対して耐衝撃性を持たせるため、側面(周壁面3側)に設けることも可能である。これにより、衝撃吸収体1の剛性を更に向上させることができる。
 また、図16では、リブの密度の低い部分41の衝撃吸収面に一枚板の板材10を設け、リブの密度の低い部分41の剛性を一枚板の板材10により向上させることにした。しかし、図14、図15に示すように、リブの密度が低い部分41と、リブの密度が高い部分42と、に跨る一枚板の板材10を設け、リブの密度の低い部分41に設ける部分の板材10の厚さを厚くし、板材10による剛性を高め、リブの密度が高い部分42に設ける部分の板材10の厚さを薄くし、板材10による剛性を低めるようにすることも可能である。即ち、本実施形態の衝撃吸収体1は、板材10の厚さや材料により、部分的に剛性を調整するように構築することも可能である。
 なお、第4の実施形態の衝撃吸収体1の製造方法は、上述した第1の実施形態の製造方法において使用する金型の形状が違うだけであり、第1の実施形態と同様な製造方法で製造することができる。
  <本実施形態の衝撃吸収体1の作用・効果>
 このように、本実施形態の衝撃吸収体1は、リブの密度が低い部分41と、リブの密度が高い部分42と、が存在する衝撃吸収体1において、図8、図9に示すように、リブの密度が低い部分41と、リブの密度が高い部分42と、に少なくとも跨る板材10を、中空体11の衝撃吸収面に有して構成する。これにより、板材10の一部分で衝撃を受け付けた場合でも、その衝撃を板材10の全面にわたって均一に分散させることができるので、衝撃を受けた部分(例えば、リブの密度が低い部分41)だけを歪ませるのではなく、板状10に跨ったリブの密度が低い部分41と、リブの密度が高い部分42と、の両方を同じ歪み量で歪ませることができる。従って、衝撃吸収体1のリブの配置等に制約があり、リブの密度が低い部分41と、リブの密度が高い部分42と、が存在する衝撃吸収体1においても、効果的に衝撃を吸収することができる。
 また、リブの密度が低い部分41と、リブの密度が高い部分42と、が存在する衝撃吸収体1において、図16に示すように、リブの密度が低い部分41の衝撃吸収面に板材10を有して構成する。これにより、リブの密度が低い部分41の剛性を板材10により高め、リブの密度が低い部分41と、リブの密度が高い部分42と、の剛性の均衡を図ることができる。また、板状10に跨った複数のリブ全体で衝撃を吸収し、効果的に衝撃を吸収することができる。
 なお、上述する実施形態は、本発明の好適な実施形態であり、上記実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。
 例えば、本実施形態の衝撃吸収体1は、図17、図18に示すように側面からの衝撃から搭乗者を保護するため、ドアパネルとドアトリムとの間に設けられる態様に限定するものではなく、自動車等のボディーサイドパネル、ルーフパネル、ピラー、バンパーなどの車両構成部材に内設して使用することができる。また、本実施形態の衝撃吸収体1は、自動車に限定せず、例えば、列車、船舶、航空機等の輸送機に使用することもできる。
 1 衝撃吸収体
 2 中空部
 21 総厚の薄い部分
 22 総厚の厚い部分
 3 周壁面(側壁)
 4 第一壁
 41 リブの密度が低い部分
 42 リブの密度が高い部分
 5 第二壁
 6,7 凹状リブ
 8,9 溶着板状部
 10 板材
 11 中空体
 12,13,14 開口端
 15 リブ状部分
 16 リブ成形キャビティ
 17 押出ダイ
 18 パリソン
 19 分割金型
21 総厚の薄い部分
22 総厚の厚い部分
41 リブの密度が低い部分
42 リブの密度が高い部分
  ≪関連発明の開示≫
発明の名称:衝撃吸収体
技術分野
 本発明は、衝撃を吸収する衝撃吸収体に関する。
背景技術
 一般的な車両構成部材は、車両の衝突時にクッション性を与え、車両の破損および搭乗者-の衝撃を低減させるために、衝撃吸収体を内設している。この種の衝撃吸収体としては、例えば、特許文献1(特開2002-187508号公報)に開示されたものがある。
 特許文献1の衝撃吸収体1は、図18に示すように、閉じた中空部6と、表面壁8と裏面壁9とから凹状リブ10を形成してその互いの先端部を接合して一体化した溶着板状部11と、を有し、更に、衝撃吸収体1の側壁7の一部を中空部6側に凹ませて側面が開放した半円形状のリブ状部分13を有し、衝撃吸収性の向上を図っている。また、特許文献1の半円形状のリブ状部分13は、表面壁8または裏面壁9の開口端から中空部6方向に縮径しており、その縮径角αは、5-300°、開口端の半径βは、5-20mmにしている。
 なお、上記特許文献1に開示されている衝撃吸収体1は、衝撃によるエネルギーを吸収する過程において、衝撃吸収体1の側壁7が押し潰されるように破壊される。
 具体的には、図19(b)に示すように、衝撃吸収体1が押し潰される際に、衝撃吸収体1の両端の側壁7a,7bのパーティングライン(図示せず)が外折れし、側壁7a,7bが「く」の字状に傾斜し、衝撃によるエネルギーを吸収することにしている。図19(a)は、図18に示す衝撃吸収体1が押し潰される前の状態を示し、図19(b)は、図18に示す衝撃吸収体1が押し潰されている状態を示す。
 しかし、図20に示す衝撃吸収体1の側壁7a,7b,7cが図19(b)に示すように同時にくの字状に傾斜した場合は、側壁7a,7cを繋ぐ角部gは、図20に示すa’,c’方向に座屈とともに引っ張られ、図21に示すように衝撃方向に押し潰され、角部gが中窪みして角部gが折り重なり、角部gの変形を阻害することになる。このため、衝撃によるエネルギーを吸収する過程において、側壁7a,7cの圧縮歪み量と、角部gの圧縮歪み量と、が異なってしまうことになる。その結果、角部gは、ある所定の圧縮歪み量から急激に荷重が上昇する、所謂、底付現象が生じ、衝撃吸収体1としての実質的な最大変位可能量が低下することになる。なお、図20に示す側壁7b,7cを繋ぐ角部hも上述した角部gと同様な問題が発生する。
 上述した最大変位可能量とは、搭乗者または歩行者が損傷を受けない範囲で変形させることができる圧縮歪み量を言う。また、圧縮歪み量とは、変形が生じる前の衝撃吸収体1の厚み(図19(a)に示すα)に対して変形が生じた時の衝撃吸収体1の厚み(図19(b)に示すβ)の比である(圧縮歪み量-(変形が生じた時の衝撃吸収体1の厚み;β/変形が生じる前の衝撃吸収体1の厚み;α)×100%)。
 このようなことから、衝撃によるエネルギーを吸収する過程において、側壁と角部との圧縮歪み量の均衡を図ることが可能な衝撃吸収体の開発が必要祝されることになる。
 なお、本発明より先に出願された技術文献として、衝撃吸収体が押し潰されたときに壁面が折り重なり変形が阻害され、最大変位可能量の低下を防止する技術について開示された文献がある(例えば、特許文献2:特開2009-23521号公報参照) 。
 上記特許文献2の衝撃吸収体1は、衝撃吸収リブ6および周囲壁5に形成される対象構造からなる凹陥部8を有し、凹陥部8は、略三角形状の溶着面10、溶着面10と表面壁3および裏面壁4をつなぐ一対の平坦面11および他の一対の平坦面12で構成し、衝撃吸収体1が押し潰されたときに周囲壁5が折り重なり変形が阻害され、最大変位可能量の低下を防止している。
 また、安定した衝撃吸収性能を発揮する技術について開示された文献がある(例えば、特許文献3:特開2009-161028号公報参照) 。
 上記特許文献3の衝撃吸収体1は、衝撃吸収体1を構成する壁面に隅部12または縁部14にかかってその周辺に及ぶ形状の凹陥部13,15を形成し、その凹陥部13,15により、安定した衝撃吸収性能を発揮することにしている。
 先行技術文献
 特許文献1:特開2002-187508号公報
 特許文献2:特開2009-23521号公報
 特許文献3:特開2009-161028号公報
発明の概要
 発明が解決しようとする課題
 上記特許文献1ないし3には、所望の衝撃吸収性能を確保するための衝撃吸収体に関する技術について開示されている。しかし、上記特許文献1ないし3には、衝撃によるエネルギーを吸収する過程において、側壁と角部との圧縮歪み量の均衡を図る点については何ら記載も示唆もされていない。
 本発明は、上記事情に鑑みてなされたものであり、衝撃によるエネルギーを吸収する過程において、側壁と角部との圧縮歪み量の均衡を図ることが可能な衝撃吸収体を提供することを目的とする。
 課題を解決するための手段
 かかる目的を達成するために、本発明は以下の特徴を有することとする。なお、以下に説明する( )の中の記載は、『発明の要旨』と、『発明の実施の形態』と、の対応関係を明らかにするために付加したものであり、『発明の要旨』に記載されている発明の技術的範囲の解釈を意識的に限定するものではない。
  <衝撃吸収体100>
 本発明の衝撃吸収体(100)は、衝突時の衝撃エネルギーを吸収するための衝撃吸収体(100)であって、前記衝撃吸収体(100)の側壁(3)を繋ぐ角部(20)周辺には、前記衝撃吸収体(100)が衝撃を受け付けた際に前記角部(20)周辺を破壊する少なくとも1つの破壊誘発部(21,31)を有することを特徴とする。
 発明の効果
 本発明によれば、衝撃によるエネルギーを吸収する過程において、側壁と角部との圧縮歪み量の均衡を図ることができる。
関連発明に関する説明図
  図1
 本実施形態の衝撃吸収体100の一部を破断した状態を示す斜視図である。
Figure JPOXMLDOC01-appb-I000001

  図2
 図1に示す衝撃吸収体100の上面図である。
Figure JPOXMLDOC01-appb-I000002

  図3
 衝撃吸収体100の角部20の構成例を示す斜視図である。
Figure JPOXMLDOC01-appb-I000003

  図4
 図1のA-A断面図である。
Figure JPOXMLDOC01-appb-I000004

  図5
 図1のB-B断面図である。
Figure JPOXMLDOC01-appb-I000005

  図6
 本実施形態の衝撃吸収体100のブロー成形態様を示す断面図である。
Figure JPOXMLDOC01-appb-I000006

  図7
 型締めした状態の断面図である。
Figure JPOXMLDOC01-appb-I000007

  図8
 衝撃吸収体100の角部20の他の構成例を示す斜視図である。
Figure JPOXMLDOC01-appb-I000008

  図9
 角部20に破壊誘発部21を設けた場合と、設けていない場合と、における荷重上昇を示す図である。
Figure JPOXMLDOC01-appb-I000009

  図10
 角部20の頂点に破壊誘発部21,31を設けた場合を示す図である。
Figure JPOXMLDOC01-appb-I000010

  図11
 角部20から所定の範囲内に破壊誘発部21を設けた場合を示す図である。
Figure JPOXMLDOC01-appb-I000011

  図12
 角部20周辺の領域を説明するための図である。
Figure JPOXMLDOC01-appb-I000012

  図13
 破壊誘発部21,31を設ける好適な角部20の頂点の角度の範囲を示す図である。
Figure JPOXMLDOC01-appb-I000013

  図14
 第2の実施形態の破壊誘発部21の第1の構成例を示す図である。
Figure JPOXMLDOC01-appb-I000014

  図15
 第2の実施形態の破壊誘発部31の第1の構成例を示す図である。
Figure JPOXMLDOC01-appb-I000015

  図16
 第2の実施形態の破壊誘発部21の第2の構成例を示す図である。
Figure JPOXMLDOC01-appb-I000016

  図17
 第2の実施形態の破壊誘発部31の第2の構成例を示す図である。
Figure JPOXMLDOC01-appb-I000017

  図18
 本発明と関連する衝撃吸収体1の構成例を示す図である。
Figure JPOXMLDOC01-appb-I000018

  図19
 衝撃吸収体1が押し潰される前の状態と、押し潰されている状態を示す図である。
Figure JPOXMLDOC01-appb-I000019

  図20
 衝撃吸収体1の角部gにかかる力の方向を示す図である。
Figure JPOXMLDOC01-appb-I000020

  図21
 角部gが中窪みして角部gが折り重なる状態を示す図である。
Figure JPOXMLDOC01-appb-I000021

発明を実施するための形態
 <本実施形態の衝撃吸収体100の概要>
 まず、図1ないし図3、図8を参照しながら、本実施形態の衝撃吸収体100の概要について説明する。
 本実施形態の衝撃吸収体100は、衝突時の衝撃エネルギーを吸収するための衝撃吸収体100であり、衝撃吸収体100の側壁3を繋ぐ角部20周辺には、衝撃吸収体100が衝撃を受け付けた際に角部20周辺を破壊する少なくとも1つの破壊誘発部21(図3参照),31(図8参照)を有することを特徴とする。これにより、衝撃によるエネルギーを吸収する過程において、側壁3と角部20との圧縮歪み量の均衡を図ることができる。以下、添付図面を参照しながら、本実施形態の衝撃吸収体100について説明する。
 <衝撃吸収体100の構成例>
 まず、図1ないし図5を参照しながら、本実施形態の衝撃吸収体100の構成例について説明する。図1は、本実施形態の衝撃吸収体100の一部を破断した状態を示す斜視図であり、図2は、図1に示す衝撃吸収体100の上面図であり、図3は、衝撃吸収体100の角部20の構成例を示す斜視図であり、図4は、図1のA-A断面図であり、図5は、図1のB-B断面図である。
 本実施形態の衝撃吸収体100は、熱可塑性樹脂をブロー成形して中空状に成形したものである。1は、本体、2は、中空部、3は、側壁、4は、第一壁、5は、第二壁である。
 本実施形態の衝撃吸収体100は、第一壁4及び第二壁5の一部を互いに他方-向けて窪ませて形成した対をなす凹状リブ6,7を多数有しており、凹状リブ6,7の先端部が互いに当接して溶着面8を構成している。なお、本実施形態においては、凹状リブ6,7を略円筒形状に形成したが、この凹状リブ6,7は、略三角筒形状、略四角筒形状、略多角筒形状など任意の形状で構成することが可能である。
 また、本実施形態の衝撃吸収体100は、第一壁4側に形成された凹状リブ6間を繋ぐように連結リブ9を形成し、衝撃に対する強度及び剛性を向上させることにしている。なお、本実施形態においては、第一壁4側に連結リブ9を形成することにしたが、この連結リブ9は、第二壁5側に形成したり、第一壁4側と第二壁5側との両方に形成したりすることも可能である。また、連結リブ9の形状も特に限定せず、あらゆる形状の連結リブ9を形成することが可能であり、例えば、特開2002-187508号公報の図6ないし図8等に開示されている形状で形成することも可能である。
 また、本実施形態の衝撃吸収体100の側壁3には、パーティングラインPL近傍から第二壁5側に向けて取付片10が形成されており、11は取付孔である。本実施形態の衝撃吸収体100は、取付片10の取付孔11にネジ等を験め込み、車両構成部材等に衝撃吸収体100を取り付けることになる。
 また、本実施形態の衝撃吸収体100の第一壁4及び第二壁5を繋ぐ側壁3には、中空部2側に凹ませて側面が開放された半円形状の凹状リブ12,13を有している。半円形状の凹状リブ12,13は、略円筒形状の凹状リブ6,7と異なり、側壁3に接して形成される。
 本実施形態の半円形状の凹状リブ12,13は、第一壁4及び第二壁5の開口端から中空部2方向に縮径している。このため、本実施形態の衝撃吸収体100は、衝撃によるエネルギーを吸収する過程において、衝撃吸収体100が押し潰される際に、側壁3がくの字状に傾斜することになる。
 また、本実施形態の半円形状の凹状リブ12,13は、第一壁4及び第二壁5の略中間部に板状部14を形成し、補強効果を高くしている。
 また、本実施形態の衝撃吸収体100の角部20には、衝撃吸収体100が押し潰された際に角部20を破壊する破壊誘発部21を有し、破壊誘発部21は、第一壁4及び第二壁5の開口端22から中空部2側に窪ませて構成する。本実施形態の角部20は、側壁3を繋ぐ部位であり、図1、2に示す衝撃吸収体100の形状の場合は、衝撃吸収体100の四隅が角部20に該当する。なお、図2には第一壁4の開口端22しか図示していないが、第二壁5にも第一壁4と同様な開口端22が形成されることになる。
 本実施形態の角部20に設けられる破壊誘発部21は、図3に示すように、パーティングラインPL上に位置する第一辺211aと、第-辺211aと対向する第二辺211bと、第一辺211a,第二辺211bを繋ぐ第三辺211c,第四辺211dと、で構成する略四角形状の溶着面211を有している。第一辺211a,第二辺211bは、2.5~20mm程度の幅で形成し、好ましくは、5mm程度の幅で形成する。また、第三辺211c,第四辺211dは、2.5mm~20mm程度の幅で形成し、好ましくは、5mm程度の幅で形成する。
 本実施形態の破壊誘発部21は、第一壁4と第二壁5とに略垂直な方向に延びる略四角柱形状で構成しており、略四角形状の溶着面211と、第四辺211dから第一壁4及び第二壁5から伸びる一対の平坦面212と、第三辺211cから第一壁4及び第二壁5から伸びる一対の平坦面213と、第二辺211bから第一壁4及び第二壁5から伸びる一対の平坦面214と、を有して構成する。なお、一対の平坦面212,213,214は、衝撃方向に対して平行となるように構成する。但し、一対の平坦面212,213,214は、衝撃方向に対して平行より所定の角度の範囲(例えば、3~80°の範囲)の勾配を持って形成することも可能である。
 本実施形態の破壊誘発部21は、平坦面213, 214の面が交差する位置に稜線215が形成されており、また、平坦面212,214の面が交差する位置に稜線216が形成されている。稜線215,216は、互いの平坦面が1.0R(Rは、曲率半径)以下の曲面で接して形成される線状の部位であり、稜線215,216は、溶着面211に対して垂直となるように形成する。本実施形態の破壊誘発部21は、稜線215,216が、 1.0R以下となるように形成することで、局部薄肉を発生させ、所定の荷重を受け付けた際に自ら破裂し易くすることができる。このため、稜線215,216が、1.0R以下となるように形成することが好ましい。なお、稜線215,216は、溶着面211に対して垂直より所定の角度の範囲(例えば、3~80°の範囲)の勾配をもって形成することも可能である。
 本実施形態の破壊誘発部21は、第一壁4の開口端22から中空部2側に窪ませて側面が開口した略四角柱形状の第一の凹部21aと、第二壁5の開口端22から中空部2側に窪ませて側面が開口した略四角柱形状の第二の凹部21bと、の接合面を溶着させて略四角形状の溶着面211を形成している。
 本実施形態の破壊誘発部21は、第一の凹部21aと、第二の凹部21bと、により薄肉部を形成し、稜線215,216により応力集中箇所部を形成し、衝撃吸収体100が押し潰された際に破壊誘発部21が破裂し、角部20の一部を開口させることを可能にしている。薄肉部の肉厚は、衝撃吸収体100を構成する他の壁部3,4,5の肉厚に対して相対的に薄ければ特に限定せず、任意の肉厚で構成することが可能である。例えば、衝撃吸収体100を構成する他の壁部34,5の平均肉厚が2.0mm程度である場合は、薄肉部の肉厚は0.5mm以下であることが好ましい。なお、図3に示す破壊誘発部21は、直線形状の平坦面212,213,214で構成し、その直線形状の平坦面212,213,214の面が交差する位置に1.0R以下の稜線215,216が形成されるように構成した。しかし、破壊誘発部21は、円弧形状の平坦面212,213,214で構成し、その円弧形状の平坦面212,213,214の面が交差する位置に1.0R以下の稜線215,216が形成されるように構成することも可能である。即ち、本実施形態の破壊誘発部21は、四角柱形状ではなく、略四角柱形状で構成することも可能である。
 <本実施形態の衝撃吸収体100の製造方法>
 次に、図6、図7を参照しながら、本実施形態の衝撃吸収体100の製造方法について説明する。図6は、本実施形態の衝撃吸収体100のブロー成形態様を示す断面図であり、図7は、同上型締めした状態の断面図である。
 本実施形態の衝撃吸収体100は、熱可塑性樹脂を用いて公知のブロー成形、シートブロー成形などの方法により形成することができる。熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスチレン、ABS樹脂等のスチレン系樹脂、ポリエチレンテレフタ-ト等のポリエステル系樹脂、ポリアミドなど、剛性等の機械的強度の高い樹脂が適用可能である。
 本実施形態の衝撃吸収体100は、破壊誘発部21の破裂による開口を好適にさせる観点からポリプロピレン、ABS樹脂、耐衝撃性ポリスチレン(HIPS)、ポリフェニレンエーテル樹脂などが好適であり、さらにこれらのブレンド物またはポリマーアロイとすることが好ましく、曲げ弾性率が10000kg/cm以上であると共に、常温時におけるアイゾット衝撃値が35kg/cm以下の範囲であることが好ましい。
 なお、本実施形態の衝撃吸収体100をポリオレフィン系樹脂と非品性樹脂のポリマーアロイである熱可塑性樹脂により構成すれば、破壊誘発部21の破裂による開口を発生し易くすることができる。
 本実施形態の衝撃吸収体100は、図6、図7に示すようにブロー成形される。即ち、14,14は一対の分割金型、15,15は凹状リブ成形キャビティ、16は押出ダイ、17はパリソンである。
 本実施形態の衝撃吸収体100は、図6に示すように、一対の分割金型14,14の間にパリソン17を配置し、図7に示すように型締めして吹込みノズル(図示せず)をパリソンに突き刺し、ブロー成形する。これにより、図1に示す衝撃吸収体100を形成することができる。
 なお、図1に示す衝撃吸収体100は、図3に示すように、角部20に略四角柱形状の破壊誘発部21を設けることにした。しかし、破壊誘発部21の形状は、図3に示す略四角柱形状に限定するものではなく、所定の荷重を受け付けた際に自ら破裂し、角部20の一部を破壊させることが可能な形状であれば、略多角柱形状で構成することが可能であり、例えば、図8に示すように略三角柱形状で構成することも可能である。図8は、略三角柱形状で構成した場合の破壊誘発部31の構成例を示す。
 図8に示す破壊誘発部31は、パーティングラインPL上に位置する第一辺311aと、その第一辺311aを繋ぐ第二辺311b,第三辺311cで構成する略三角形状の溶着面311を有している。
 本実施形態の破壊誘発部31は、第一壁4と第二壁5とに略垂直な方向に延びる略三角柱形状で構成しており、略三角形状の溶着面311と、第二辺311bから第一壁4及び第二壁5-伸びる一対の平坦面312と、第三辺311cから第-壁4及び第二壁5-伸びる一対の平坦面313と、を有して構成する。なお、一対の平坦面312,313は、衝撃方向に対して平行となるように構成する。但し、一対の平坦面312,313は、衝撃方向に対して平行より所定の角度の範囲(例えば、3~80°の範囲)の勾配を持って形成することも可能である。破壊誘発部31は、第二辺311bと第三辺311cとの長さが等しくなるように構成し、溶着面311が略二等辺三角形状になるように構成することが好ましい。第一辺311は、2.5mm~20mm程度の幅で形成し、好ましくは、5mm程度の幅で形成する。また、第二辺311b,第三辺311cは、2mm~16mm程度の幅で形成し、好ましくは、3mm程度の幅で形成する。
 本実施形態の破壊誘発部31は、平坦面312,313の面が交差する位置に稜線314が形成されている。稜線314は、互いの平坦面が1.0R以下の曲面で接して形成される線状の部位であり、稜線314は、溶着面311に対して垂直となるように形成する。なお、稜線314は、溶着面311に対して垂直より所定の角度の範囲(例えば、3~80°の範囲)の勾配をもって形成することも可能である。本実施形態の破壊誘発部31は、稜線314が、1.0R以下となるように形成することで、局部薄肉を発生させ、所定の荷重を受け付けた際に自ら破裂し易くすることができる。このため、稜線314が、1.0R以下となるように形成することが好ましい。
 本実施形態の破壊誘発部31は、第一壁4の開口端22から中空部2側に窪ませて側面が開口した略三角柱形状の第一の凹部31aと、第二壁5の開口端22から中空部2側に窪ませて側面が開口した略三角柱形状の第二の凹部31bと、の接合面を溶着させて略三角形状の溶着面311を形成している。
 本実施形態の破壊誘発部31は、第一の凹部31aと、第二の凹部31bと、により薄肉部を形成し、稜線314により応力集中箇所部を形成し、衝撃吸収体100が押し潰された際に破壊誘発部31が破裂し、角部20の一部を開口させることを可能にしている。
 このように、本実施形態の破壊誘発部21,31は、薄肉部と応力集中箇所部とを有する構成であれば、あらゆる略多角柱形状で構成することが可能である。なお、図8に示す破壊誘発部31は、直線形状の平坦面312,313で構成し、その直線形状の平坦面312,313の面が交差する位置に1.0R以下の稜線314が形成されるように構成した。しかし、破壊誘発部31は、円弧形状の平坦面312,313で構成し、その円弧形状の平坦面312,313の面が交差する位置に1.0R以下の稜線314が形成されるように構成することも可能である。即ち、本実施形態の破壊誘発部31は、三角柱形状ではなく、略三角柱形状で構成することも可能である。
 なお、図3に示す略四角柱形状の破壊誘発部21は、図8に示す略三角柱形状の破壊誘発部31よりも薄肉部を薄くすることができると共に、応力集中箇所部を多くすることができる。このため、所定の荷重を受け付けた際に自ら破裂することを鑑み、図3に示す略四角柱形状で破壊誘発部21を構成することが好ましい。
 また、図3に示す略四角柱形状の破壊誘発部21は、3つの平坦面212,213,214を有し、図8に示す略三角柱形状の破壊誘発部31は、2つの平坦面312,313を有しているため、略四角柱形状の破壊誘発部21は、略三角柱形状の破壊誘発部31よりも剛性を高めることができる。このため、耐衝撃性を得ることを鑑み、図3に示す略四角柱形状で破壊誘発部21を構成することが好ましい。
 <本実施形態の衝撃吸収体100の作用・効果>
 このように、本実施形態の衝撃吸収体100は、衝撃吸収体100の側壁3を繋ぐ角部20には、衝撃吸収体100が衝撃を受け付けた際に角部20を破壊する破壊誘発部21(図3参照),31(図8参照)を有して構成する。これにより、衝撃によるエネルギーを吸収する過程において、側壁3と角部20との圧縮歪み量の均衡を図ることができる。
 例えば、従来の衝撃吸収体100は、角部20が中窪みして角部20が折り重なり、角部20の変形を阻害していた。このため、衝撃によるエネルギーを吸収する過程において、側壁3の圧縮歪み量と、角部20の圧縮歪み量と、が異なってしまっていた。その結果、角部20は、図9の点線Aで示すように、ある所定の圧縮歪み量(図9では、50%)から急激に荷重が上昇する、所謂、底付現象が生じ、衝撃吸収体100としての実質的な最大変位可能量が低減することになる。図9の縦軸は、荷重(KN)を示し、横軸は、圧縮歪み量(%)を示す。
 これに対し、本実施形態の衝撃吸収体100は、角部20に破壊誘発部21を設けて構成し、衝撃吸収体100が押し潰された際に角部20を破壊し、角部20の圧縮歪み量を側壁3の圧縮歪み量に近づけるようにしている。これにより、本実施形態の衝撃吸収体100は、衝撃によるエネルギーを吸収する過程において、側壁3と角部20との圧縮歪み量の均衡を図ることを可能にしている。その結果、角部20は、図9の実線Bで示すように、ある所定の圧縮歪み量(図9では、50%)で角部20を破壊し、圧縮歪み量が80%になるまで荷重上昇を抑えることができ、衝撃吸収体100としての実質的な最大変化可能量の低減を防止することができる。
 なお、上記実施形態では、図10(a),(b)に示すように、角部20の頂点に破壊誘発部21,31を設けることにした。しかし、図11に示すように、角部20から所定の範囲内(例えば、角部20の屈曲部の端部から50mm以内)に破壊誘発部21が位置するように設けることでも同様の効果を得ることができる。角部20の屈曲部とは、曲線形状を形成する部分であり、屈曲部の端部とは、曲線形状の部分と、直線形状の部分と、の境界部分である。
 なお、角部20から所定の範囲内に破壊誘発部21が位置するように設ける場合には、図11に示すように、半円形状の凹状リブ13が設けられていない第一の側壁3と、半円形状の凹状リブ13が設けられている第二の側壁3’と、が存在する場合に好適である。
 例えば、図11に示すように、角部20で繋がれた両端の側壁3において、半円形状の凹状リブ13が設けられていない第一の側壁3と、半円形状の凹状リブ13が設けられている第二の側壁3’と、があると仮定する。この場合、衝撃吸収体100が衝撃を受け付けた際に、第二の側壁3’側よりも第一の側壁3の方の歪み量が多くなってしまい、第一の側壁3と、第二の側壁3’と、の歪み量が異なってしまうことになる。そのため、破壊誘発部21を第二の側壁3側に位置するように設けるように構成する。これにより、衝撃吸収体100が衝撃を受け付けた際に、第一の側壁3の歪みに伴い、破壊誘発部21が自ら破裂し、角部20の一部を破壊し、角部20の圧縮歪み量を第一の側壁3の圧縮歪み量に近づけることができる。その結果、第一の側壁3と、第二の側壁3’と、の歪み量が異なっている場合でも、第一の側壁3、角部20の圧縮歪み量の均衡を図ることができる。
 なお、角部20から所定の範囲内とは、図12に示すように、衝撃吸収体100の圧縮歪み量が最大変化可能量になった状態(圧縮歪み量が80%になった状態)において衝撃吸収体100の側壁3が折れ曲がっている部分3Aと、側壁3が折れ曲がっていない部分3Bと、の境界部分を3Cと仮定した場合に、角部20の頂点20Aから境界部分3Cまでの範囲であり、角部20の頂点20Aから境界部分3Cまでの範囲に破壊誘発部21,31を設けるようにすれば良い。また、角部20の頂点20Aと、角部20の頂点20Aから境界部分3Cまでの範囲と、に各々破壊誘発部21,31を設けることも可能である。また、角部20の頂点20Aには破壊誘発部21,31を設けず、所定の範囲内に破壊誘発部21,31を複数設けることも可能である。このように、角部20から所定の範囲内(角部20周辺)に複数の破壊誘発部21,31を設けることで、角部20周辺のクラックを誘発させやすくすることができると共に、側壁3と角部20との圧縮歪み量の均衡を図り易くすることができる。また、角部20周辺だけに破壊誘発部21,31を設けるのではなく、側壁3にも破壊誘発部21,31を設けることも可能である。これにより、角部20周辺や側壁3のクラックを誘発させやすくすることができると共に、側壁3と角部20との圧縮歪み量の均衡を図り易くすることができる。
 また、破壊誘発部21,31の端部40は、尖った形状で構成するのではなく、多角形状で構成したり、丸みを施して構成したりする方が好ましい。これにより、破壊誘発部21,31の端部40に面を設け、衝撃吸収体100が衝撃を受け付けた際に、破壊誘発部21,31の端部が破損するのを防止することができる。
 また、上記実施形態では、図2に示すように、衝撃吸収体100の四隅の角部20に破壊誘発部21を設けることにした。しかし、図13(a),(b)に示すように、角部20の頂点の角度が450-1200 の範囲である場合に、破壊誘発部21を設けることが好ましい。角度20の頂点の角度が450-1200の範囲である場合に、破壊誘発部21を設けることで、衝撃吸収体100が押し潰された際に破壊誘発部21が破裂し、角部20の一部を破壊させ、角部20の圧縮歪み量を側壁3の圧縮歪み量に近づけることができる。なお、図8に示す破壊誘発部31も、図13(a),(b)に示すように、角部20の頂点の角度が450~1200 の範囲である場合に、破壊誘発部31を設けることが好ましい。
 (第2の実施形態)
 次に、第2の実施形態について説明する。
 第1の実施形態の衝撃吸収体100は、図3に示す略四角柱形状の破壊誘発部21や、図8に示す略三角柱形状の破壊誘発部31を角部20に設けることにした。
 しかし、角部20は、ブロー成形の過程でもともと薄肉を発生させてしまう部分であり、その角部20に対し、図3に示す略四角柱形状の破壊誘発部21や、図8に示す略三角柱形状の破壊誘発部31を設けた場合には、被壊誘発部21,31の薄肉部が薄肉になりすぎ、衝撃に対する剛性を得られない場合がある。
 このため、本実施形態の衝撃吸収体100は、図14、図15に示すように、破壊誘発部21,31の第一壁4側と第二壁5側との少なくとも一方に破壊誘発部21,31よりも剛性を高くした凹陥部50を形成する。図14は、略四角柱形状の破壊誘発部21の第一壁4側に略三日月形状の凹陥部50を形成した場合を示し、図15は、略三角柱形状の破壊誘発部31の第一壁4側に略三日月形状の凹陥部50を形成した場合を示す。
 本実施形態の衝撃吸収体100は、破壊誘発部21,31に略三日月形状の凹陥部50を形成することで、角部20に設けた破壊誘発部21,31の薄肉部が薄肉になっても、略三日月形状の凹陥部50により荷重に対する強度低下を抑制することができる。その結果、破壊誘発部21,31に略三日月形状の凹陥部50を形成することで、衝撃に対する剛性を確保することができる。
 凹陥部50の剛性を破壊誘発部21,31よりも高めるためには、図14、図15に示すように、破壊誘発部21,31の開放幅aよりも大きい開放幅b(b>a)で凹陥部50を形成する。これにより、凹陥部50の剛性を破壊誘発部21,31よりも高くすることができる。また、図14、図15に示すように、凹陥部50に形成された稜線51が1.0Rよりも大きくなるようにする。稜線51が1.0Rよりも大きくなるように凹陥部50を形成することで、破壊誘発部21,31よりも凹陥部50自体を破壊し難くすることができる。
 このため、破壊誘発部21,31に略三日月形状の凹陥部50を形成することで、略三日月形状の凹陥部50により荷重に対する強度低下を抑制しつつ、所定の荷重を受け付けた際に破壊誘発部21,31が自ら破裂し、角部20の一部を破壊させることができる。
 なお、凹陥部50の形状は、図14、図15に示す略三日月形状に限定するものではなく、例えば、図16に示す略四角柱形状や、図17に示す略三角柱形状の凹陥部50を形成することも可能である。
 図16は、略四角柱形状の破壊誘発部21の第一壁4側に、破壊誘発部21の形状よりも大きな略四角柱形状の凹陥部50を形成した場合を示し、その凹陥部50は、衝撃方向に対して平行な3つの平坦面512,513,514を有して構成し、3つの平坦面512,513,514同士が交差する位置に2つの稜線51’が形成されており、その2つの稜線51’は、互いの平坦面が1.0R以下の曲面で接して形成される線状の部位であり、応力集中箇所部を形成している。また、溶着面211と平行な1つの平坦面511を有して構成し、平坦面511の幅bは、溶着面211の幅aよりも大きい形状で構成している。
 図17は、略三角柱形状の破壊誘発部31の第一壁4側に、破壊誘発部31の形状よりも大きな略三角柱形状の凹陥部50を形成した場合を示し、その凹陥部50は、衝撃方向に対して平行な2つの平坦面512,513を有して構成し、2つの平坦面512,513同士が交差する位置に1つの稜線51’が形成されており、その1つの稜線51’は、互いの平坦面が1.0R以下の曲面で接して形成される線状の部位であり、応力集中箇所部を形成している。また、溶着面311と平行な1つの平坦面511を有して構成し、平坦面511の幅bは、溶着面311の幅aよりも大きい形状で構成している。
 図16、図17に示す凹陥部50は、衝撃方向に対して平行な平坦面512,513,514を有して構成するため、衝撃方向に対する剛性を高くすることができ、また、平坦面512,513,514同士が交差する位置に稜線51’が形成され、その稜線51’は、互いの平坦面が1.0R以下の曲面で接して形成される線状の部位であり、応力集中箇所部を形成している。このため、破壊誘発部21,31に、破壊誘発部21,31の形状よりも大きな略四角柱形状や、略三角柱形状の凹陥部50を形成することで、凹陥部50により荷重に対する強度低下を抑制しつつ、所定の荷重を受け付けた際に破壊誘発部21,31や凹陥部50が自ら破裂し、角部20の一部を破壊させることができる。
 なお、図14ないし図17では、第一壁4側に凹陥部50を形成したが、第二壁5側に凹陥部50を形成したり、第一壁4側と第二壁5側との両方に凹陥部50を形成したりすることも可能である。但し、衝撃に対する剛性を得る点を鑑み、衝撃を受け付ける側に凹陥部50を形成することが好ましい。
 また、破壊誘発部21,31の衝撃方向において凹陥部50を形成した部分と、凹陥部50を形成していない部分と、の相対比は特に限定せず、パーティングラインPLを跨いで凹陥部50を形成しなければ特に限定せず、任意の相対比で凹陥部50を形成することは可能である。なお、パーティングラインPLは、衝撃吸収体100の中央位置に限定せず、任意の位置に形成することが可能である。このため、本実施形態の破壊誘発部21,31は、第一壁4及び/または第二壁5の開口端20から中空部2側に窪ませて他方の壁面に溶着させた側面が開放された略多角柱形状で構成することも可能である。
 <本実施形態の衝撃吸収体100の作用・効力>
 このように、本実施形態の衝撃吸収体100は、破壊誘発部21,31の第一壁4側と第二壁5側との少なくとも一方に、破壊誘発部21,31よりも剛性を高くした凹陥部50を形成する。これにより、角部20に設けた破壊誘発部21,31の薄肉部が薄肉になっても、荷重に対する強度低下を抑制することができる。
 なお、図3に示す略四角柱形状の破壊誘発部21は、図8に示す略三角柱形状の破壊誘発部31よりも薄肉部が薄肉になってしまう。このため、図14、図16に示すように、略四柱形状の破壊誘発部21の第一壁4側と第二壁5側との少なくとも一方に、破壊誘発部21よりも剛性を高くした凹陥部50を形成した方が、図15、図17に示すように、略三角柱形状の破壊誘発部31の第一壁4側と第二壁5側との少なくとも一方に、破壊誘発部31よりも剛性を高くした凹陥部50を形成するよりも、荷重に対する強度低下の抑制を効果的に発揮することができる。
 なお、上述する実施形態は、本発明の好適な実施形態であり、上記実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。
 例えば、本実施形態の衝撃吸収体100は、車両構成部材の内部空間に合わせた形状で設計されるため、第一壁4及び第二壁5は、平坦とは限らず、更に、第一壁4及び第二壁5の間隔は一定ではなく、部位によって中空部2の幅が広いところもあれば狭いところもあるのが一般的である。但し、衝撃吸収体100の衝撃吸収量は変位可能量に依存するため、車両構成部材の内部空間の許す範囲で第-壁4と第二壁5との間隔を最大限あけることが好ましい。
 また、上記実施形態では、破壊誘発部21,31は、図3、図8、図14-図17に示すように、第一壁4と第二壁5との間で垂直に設けることにした。しかし、破壊誘発部21,31は、第一壁4と第二壁5との間で斜めに設けるように構成することも可能である。例えば、図11に示すように、角部20で繋がれた両端の側壁3において、半円形状の凹状リブ13が設けられていない第一の側壁3と、半円形状の凹状リブ13が設けられている第二の側壁3’と、があると仮定する。この場合、衝撃吸収体100の第-壁4側が衝撃を受け付けた際に、第二の側壁3’側よりも第一の側壁3の方の歪み量が多くなってしまい、第一の側壁3と、第二の側壁3’と、の歪み量が異なってしまうことになる。そのため、第一壁4側においては、図11に示すように、破壊誘発部21を第二の側壁3側に位置させ、第二壁5側においては、図10(a)に示すように、破壊誘発部21を角部20の頂点に位置させるように第一壁4と第二壁5との間で破壊誘発部21を斜めに設けるように構成する。これにより、衝撃吸収体100の第一壁4が衝撃を受け付けた際に、第一の側壁3の歪みに伴い、破壊誘発部21が角部20の一部を破壊し、角部20の圧縮歪み量を第一の側壁3の圧縮歪み量に近づけることができる。その結果、第一の側壁3と、第二の側壁3’と、の歪み量が異なっている場合でも、第一の側壁3、角部20の圧縮歪み量の均衡を図ることができる。
 なお、本実施形態の衝撃吸収体100は、自動車等のドア、ドアトリム、ボディーサイドパネル、ルーフパネル、ピラー、バンパーなどの車両構成部材に内設して使用することができる。また、本実施形態の衝撃吸収体100は、自動車に限定せず、例えば、列車、船舶、航空機等の輸送機に使用することもできる。
 符号の説明
100 衝撃吸収体
1 本体
2 中空部
3 側壁
4 第一壁
5 第二壁
5 側壁
6,7 凹状リブ
8 溶着面
9 連結リブ
10 取付片
11 取付孔
12,13 半円形状の凹状リブ
20 角部
21,31 破壊誘発部
22 開口端
40 端部
50 凹陥部
発明の要旨
1.衝突時の衝撃エネルギーを吸収するための衝撃吸収体であって、前記衝撃吸収体の側壁を繋ぐ角部周辺には、前記衝撃吸収体が衝撃を受け付けた際に前記角部周辺を破壊する少なくとも1つの破壊誘発部を有することを特徴とする衝撃吸収体。
2.前記衝撃吸収体は、中空部を有する本体と、前記本体の互いに対向する第一壁及び第二壁と、を有し、前記破壊誘発部は、前記第一壁及び/または前記第二壁の開口端から前記中空部側に窪ませて他方の壁面に溶着させた側面が開放された略多角柱形状であり、前記略多角柱形状により形成される薄肉部により、前記衝撃吸収体が衝撃を受け付けた際に前記角部周辺を破壊することを特徴とする請求項1記載の衝撃吸収体。
3.前記破壊誘発部は、略四角柱形状で形成されていることを特徴とする請求項1または2記載の衝撃吸収体。
4.前記側壁にも前記破壊誘発部を有することを特徴とする請求項1から3の何れか1項に記載の衝撃吸収体。
5.前記破壊誘発部の前記第一壁側と前記第二壁側との少なくとも一方には、前記破壊誘発部よりも剛性を高くした凹陥部が形成されていることを特徴とする請求項1から4の何れか1項に記載の衝撃吸収体。
6.前記凹陥部は、前記衝撃吸収体が衝撃を受け付ける方向と平行な面を有して形成されていることを特徴とする請求項5記載の衝撃吸収体。
発明の要約
 課題:衝撃によるエネルギーを吸収する過程において、側壁と角部との圧縮歪み量の均衡を図ることが可能な衝撃吸収体を提供する。
 解決手段:本実施形態の衝撃吸収体(100)は、衝突時の衝撃エネルギーを吸収するための衝撃吸収体(100)であり、衝撃吸収体(100)の側壁(3)を繋ぐ角部(20)周辺には、衝撃吸収体(100)が衝撃を受け付けた際に角部(20)周辺を破壊する少なくとも1つの破壊誘発部を有することを特徴とする(図1参照)。

Claims (13)

  1.  複数のリブを有する中空体から成る衝撃吸収体であって、前記中空体は、前記リブの密度が低い部分と、前記リブの密度が高い部分と、を有することを特徴とする衝撃吸収体。
  2.  前記中空体は、総厚の薄い部分と、総厚の厚い部分と、を有することを特徴とする請求項1記載の衝撃吸収体。
  3.  前記総厚の薄い部分と、前記総厚の厚い部分と、で前記リブの密度が異なることを特徴とする請求項2記載の衝撃吸収体。
  4.  前記総厚の薄い部分の厚さをcとし、前記総厚の厚い部分の厚さをdとした場合に、1.3c≦dの条件を満足することを特徴とする請求項2または3記載の衝撃吸収体。
  5.  前記リブの密度が低い部分の前記リブの平均ピッチ間隔をbとし、前記リブの密度が高い部分の前記リブの平均ピッチ間隔をaとした場合に、1.2a≦bの条件を満足することを特徴とする請求項1から4の何れか1項に記載の衝撃吸収体。
  6.  一対の分割金型の複数のリブを形成するリブ形成キャビティを有する金型の間にパリソンを配置し、次に、前記金型を型締めした後に、加圧エアを導入してパリソンを金型のキャビティに沿わして複数のリブを有する中空体を形成するとともに、その後、パリソンを冷却して、前記複数のリブに密度が低い部分と、密度が高い部分と、を形成することを特徴とする衝撃吸収体の製造方法。
  7.  複数のリブを有する中空体から成る衝撃吸収体であって、少なくとも2つ以上の前記リブに跨った板材を、前記中空体の衝撃吸収面に有することを特徴とする衝撃吸収体。
  8.  前記板材は、前記中空体を形成する材料の剛性よりも高いことを特徴とする請求項6記載の衝撃吸収体。
  9.  前記中空体は、総厚の薄い部分と、総厚の厚い部分と、を有することを特徴とする請求項6または7記載の衝撃吸収体。
  10.  前記中空体は、前記リブの密度が低い部分と、前記リブの密度が高い部分と、を有することを特徴とする請求項6から8の何れか1項に記載の衝撃吸収体。
  11.  前記板材は、前記中空体の衝撃吸収面の全面に一枚板にて設けられていることを特徴とする請求項6から9の何れか1項に記載の衝撃吸収体。
  12.  前記板材は、部分的に剛性が異なることを特徴とする請求項10記載の衝撃吸収体。
  13.  部分的に厚みの異なる板材を露出面が水平になるように一方の分割金型のキャビティ面にセットする工程と、複数のリブを形成するキャビティ面を有する他方の分割金型と、前記一方の分割金型と、の間にパリソンを配置する工程と、前記分割金型を型締めする工程と、加圧エアを導入してパリソンを前記キャビティ面に沿わして複数のリブを有する中空体を形成すると共に、少なくとも2つ以上の前記リブに跨って前記板材を前記中空体に溶着させる工程と、を有することを特徴とする衝撃吸収体の製造方法。
PCT/JP2011/062206 2010-05-28 2011-05-27 衝撃吸収体及び衝撃吸収体の製造方法 WO2011149049A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180026293.5A CN102933431B (zh) 2010-05-28 2011-05-27 冲击吸收体
US13/686,063 US20130154286A1 (en) 2010-05-28 2012-11-27 Impact absorbing member
US13/693,622 US8915536B2 (en) 2010-05-28 2012-12-04 Impact absorbing member and method of manufacturing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-123557 2010-05-28
JP2010123536A JP5655374B2 (ja) 2010-05-28 2010-05-28 衝撃吸収体
JP2010-123536 2010-05-28
JP2010-003620U 2010-05-28
JP2010003620U JP3161748U (ja) 2010-05-28 2010-05-28 衝撃吸収体
JP2010123557A JP2011247385A (ja) 2010-05-28 2010-05-28 衝撃吸収体及び衝撃吸収体の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/686,063 Continuation US20130154286A1 (en) 2010-05-28 2012-11-27 Impact absorbing member

Publications (1)

Publication Number Publication Date
WO2011149049A1 true WO2011149049A1 (ja) 2011-12-01

Family

ID=45004032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062206 WO2011149049A1 (ja) 2010-05-28 2011-05-27 衝撃吸収体及び衝撃吸収体の製造方法

Country Status (3)

Country Link
US (2) US20130154286A1 (ja)
CN (1) CN102933431B (ja)
WO (1) WO2011149049A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110726A1 (ja) * 2015-12-25 2017-06-29 宇部エクシモ株式会社 中空構造板

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933431B (zh) * 2010-05-28 2016-03-16 京洛株式会社 冲击吸收体
JP5700210B2 (ja) * 2011-03-15 2015-04-15 キョーラク株式会社 車両用衝撃エネルギー吸収体およびその成形方法
WO2013150895A1 (ja) * 2012-04-05 2013-10-10 キョーラク株式会社 衝撃吸収体
WO2014153482A1 (en) 2013-03-20 2014-09-25 Shiloh Industries, Inc. Energy absorbing assembly for vehicle
US8844988B1 (en) * 2013-04-12 2014-09-30 GM Global Technology Operations LLC Energy absorber system and energy absorber thereof
JP5858955B2 (ja) * 2013-07-08 2016-02-10 本田技研工業株式会社 パネル部材及びその成形方法
US9682676B2 (en) * 2013-09-26 2017-06-20 Kyoraku Co., Ltd. Impact absorber
JP6156291B2 (ja) * 2014-09-01 2017-07-05 トヨタ自動車株式会社 車両用ドア構造
CN108291600B (zh) * 2015-11-27 2020-03-20 京洛株式会社 冲击吸收体
US10155542B2 (en) * 2016-01-22 2018-12-18 Ford Global Technologies, Llc Stepped honeycomb rocker insert
US10696406B2 (en) * 2018-05-15 2020-06-30 The Boeing Company Aircraft air pads having restricted deployment volumes
EP4151469A4 (en) * 2020-06-30 2024-07-03 Toray Industries SHOCK ABSORBING STRUCTURE
US11331986B1 (en) * 2020-11-17 2022-05-17 Ford Global Technologies, Llc Energy absorption structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678036U (ja) * 1993-04-20 1994-11-01 河西工業株式会社 自動車用ドアトリム
JP2002193057A (ja) * 2000-12-26 2002-07-10 Kyoraku Co Ltd 自動車用中空体
JP2004149075A (ja) * 2002-10-31 2004-05-27 Kyoraku Co Ltd 車両用衝撃吸収体
JP2009012765A (ja) * 2008-10-14 2009-01-22 Kyoraku Co Ltd 車両用衝撃吸収体
JP2009257584A (ja) * 2001-06-19 2009-11-05 Oakwood Energy Management Inc 複合エネルギ吸収体
JP2010006195A (ja) * 2008-06-25 2010-01-14 Kyoraku Co Ltd 車両用衝撃吸収体
JP2010052533A (ja) * 2008-08-27 2010-03-11 Hayashi Engineering Inc 車両用衝撃吸収体
JP2010107027A (ja) * 2008-10-31 2010-05-13 Kyoraku Co Ltd 車両用衝撃吸収体

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871636A (en) * 1971-08-03 1975-03-18 Mccord Corp Energy absorbing device
SE383128B (sv) * 1974-07-04 1976-03-01 Saab Scania Ab Cellblock for stotupptagning
JPS5863673A (ja) * 1981-10-08 1983-04-15 三菱電機株式会社 エレベ−タ用緩衝装置
JP3127667B2 (ja) * 1992-07-02 2001-01-29 トヨタ自動車株式会社 ドアトリムの衝撃吸収構造
DE69526736T2 (de) * 1994-08-25 2002-12-05 Mitsubishi Motors Corp Aufprallenergieabsorbierende struktur für einen fahrzeuginnenraum
US5636866A (en) * 1994-09-21 1997-06-10 Kojima Press Industry Co., Ltd. Shock absorbing structure for motor vehicle
KR960013914A (ko) * 1994-10-04 1996-05-22 고오사이 아끼오 충격흡수 구조체
JP3000898B2 (ja) * 1995-07-12 2000-01-17 トヨタ自動車株式会社 自動車の衝撃エネルギ吸収構造
JP3186563B2 (ja) * 1996-01-31 2001-07-11 トヨタ自動車株式会社 衝撃エネルギー吸収部材
US7360822B2 (en) * 1998-02-04 2008-04-22 Oakwood Energy Management, Inc. Modular energy absorber and method for configuring same
US6443513B1 (en) * 1998-07-02 2002-09-03 Concept Analysis Corporation Cup bumper absorber
US7404593B2 (en) * 2000-02-07 2008-07-29 Oakwood Energy Management Inc. Modular energy absorber of varying topography and method for configuring same
US7625023B2 (en) * 2000-02-07 2009-12-01 Oakwood Energy Management, Inc. Modular energy absorber with ribbed wall structure
DE60106795T2 (de) * 2000-02-29 2005-10-27 Kyoraku Co., Ltd. Hohlförmiger blasgeformter Gegenstand; Herstellungsverfahren für solch einen Artikel und Vorrichtung zu dessen Herstellung
JP4584444B2 (ja) 2000-12-19 2010-11-24 キョーラク株式会社 自動車の衝撃吸収部材
US6406079B2 (en) 2000-07-14 2002-06-18 Kyoraku Co., Ltd. Automobile bumper core
JP4464539B2 (ja) 2000-07-14 2010-05-19 キョーラク株式会社 自動車の衝撃吸収部材
US6588557B2 (en) * 2001-04-04 2003-07-08 Daimlerchrysler Corporation Blow molded (HIC) formation with energy buffers
JP3592654B2 (ja) * 2001-06-11 2004-11-24 本田技研工業株式会社 乗員拘束装置
ITTO20020678A1 (it) * 2001-08-07 2004-01-29 Honda Motor Co Ltd Ammortizzatore per un veicolo a due ruote
CA2389842A1 (en) * 2002-06-07 2003-12-07 David Lekhtman Modular dock system
AU2003254828A1 (en) * 2002-10-31 2004-05-25 Kyoraku Co., Ltd. Impact absorbing body for vehicle
WO2004101323A1 (ja) * 2003-05-14 2004-11-25 Kyoraku Co., Ltd. 自動車の衝撃吸収体
JP4280153B2 (ja) * 2003-11-28 2009-06-17 キョーラク株式会社 車両用衝撃吸収体
WO2005105409A1 (ja) * 2004-04-30 2005-11-10 Kyoraku Co., Ltd. 車両用内装パネルおよびその製造方法
JP4598468B2 (ja) * 2004-09-30 2010-12-15 キョーラク株式会社 車両用衝撃吸収体
DE102006000481A1 (de) * 2005-09-27 2007-04-05 Tokai Rubber Industries, Ltd., Komaki Stossabsorbierendes Element für Fahrzeuge
US7513528B2 (en) * 2006-02-07 2009-04-07 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle glove box door incorporating variations in rib structure for adjusting impact deformation proximate to respective knee and hand hit areas
US20090045613A1 (en) * 2007-02-16 2009-02-19 Collins & Aikman Products Co. Energy management system
CN101622469B (zh) * 2007-02-28 2013-04-24 京洛株式会社 车辆用冲击吸收体
US20080296164A1 (en) * 2007-06-02 2008-12-04 Lanxess Deutschland Gmbh Reinforcement Element for a Vehicle Hollow Body
JP5011516B2 (ja) 2007-07-20 2012-08-29 キョーラク株式会社 車両用衝撃吸収体
KR20090063028A (ko) * 2007-12-13 2009-06-17 현대자동차주식회사 차량용 범퍼 어셈블리
JP5080965B2 (ja) 2007-12-31 2012-11-21 キョーラク株式会社 車両用衝撃吸収体
JP5194972B2 (ja) * 2008-04-09 2013-05-08 トヨタ紡織株式会社 防音材
US8029041B2 (en) * 2008-04-12 2011-10-04 Ford Global Technologies, Llc Door trim-integrated pelvic impact energy-absorbing construction for vehicle
US7677640B2 (en) * 2008-05-23 2010-03-16 Nissan Technical Center North America, Inc. Panel assembly for a vehicle
DE102008058225A1 (de) * 2008-11-19 2010-07-08 Lanxess Deutschland Gmbh Leichtbauteil in Hybridbauweise
DE102008058224A1 (de) * 2008-11-19 2010-05-20 Lanxess Deutschland Gmbh Leichtbauteil in Hybridbauweise
JP2010264971A (ja) * 2009-04-14 2010-11-25 Toyota Boshoku Corp 側突用樹脂衝撃吸収体の取付構造
JP5385015B2 (ja) * 2009-06-05 2014-01-08 トヨタ紡織株式会社 車両用衝撃吸収材の取付構造
US8454053B2 (en) * 2010-02-25 2013-06-04 Ford Global Technologies, Llc Energy absorbing structure for vehicle knee bolster cover
CN102933431B (zh) * 2010-05-28 2016-03-16 京洛株式会社 冲击吸收体
JP5603194B2 (ja) * 2010-09-30 2014-10-08 トヨタ紡織株式会社 衝撃吸収体
JP5700210B2 (ja) * 2011-03-15 2015-04-15 キョーラク株式会社 車両用衝撃エネルギー吸収体およびその成形方法
JP6081909B2 (ja) * 2011-04-05 2017-02-15 キョーラク株式会社 衝撃吸収体
CN103596744B (zh) * 2011-06-29 2015-10-14 京洛株式会社 与风管一体化的架空地板材料的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678036U (ja) * 1993-04-20 1994-11-01 河西工業株式会社 自動車用ドアトリム
JP2002193057A (ja) * 2000-12-26 2002-07-10 Kyoraku Co Ltd 自動車用中空体
JP2009257584A (ja) * 2001-06-19 2009-11-05 Oakwood Energy Management Inc 複合エネルギ吸収体
JP2004149075A (ja) * 2002-10-31 2004-05-27 Kyoraku Co Ltd 車両用衝撃吸収体
JP2010006195A (ja) * 2008-06-25 2010-01-14 Kyoraku Co Ltd 車両用衝撃吸収体
JP2010052533A (ja) * 2008-08-27 2010-03-11 Hayashi Engineering Inc 車両用衝撃吸収体
JP2009012765A (ja) * 2008-10-14 2009-01-22 Kyoraku Co Ltd 車両用衝撃吸収体
JP2010107027A (ja) * 2008-10-31 2010-05-13 Kyoraku Co Ltd 車両用衝撃吸収体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110726A1 (ja) * 2015-12-25 2017-06-29 宇部エクシモ株式会社 中空構造板

Also Published As

Publication number Publication date
CN102933431A (zh) 2013-02-13
CN102933431B (zh) 2016-03-16
US20130154286A1 (en) 2013-06-20
US20130154307A1 (en) 2013-06-20
US8915536B2 (en) 2014-12-23

Similar Documents

Publication Publication Date Title
WO2011149049A1 (ja) 衝撃吸収体及び衝撃吸収体の製造方法
ES2604762T3 (es) Amortiguador de metal vehicular, sistema de parachoques vehicular, amortiguador de parachoques vehicular y sistema de parachoques de automóvil
US6406079B2 (en) Automobile bumper core
KR101685857B1 (ko) 크래쉬 박스 및 자동차 차체
EP2412582B1 (en) Bumper reinforcement and bumper device for vehicle
CN100406768C (zh) 冲击吸收构件
CN101549675B (zh) 可扩展的对开加固件及其制造方法
WO2006036030A1 (ja) 車両用衝撃吸収体
JP5655374B2 (ja) 衝撃吸収体
US20110006554A1 (en) Automobile safety bumper assemlby
JP5288996B2 (ja) 車両用衝撃吸収体
JP2009161028A (ja) 車両用衝撃吸収体
US9643553B2 (en) Impact absorber
JP5603194B2 (ja) 衝撃吸収体
JP2011247385A (ja) 衝撃吸収体及び衝撃吸収体の製造方法
JP5552016B2 (ja) 衝撃吸収体
JP5011516B2 (ja) 車両用衝撃吸収体
JP4559200B2 (ja) 衝撃吸収体
JP5748036B2 (ja) 車両用空調ダクト
JP4473537B2 (ja) 対人保護用エネルギー吸収部材
JP4509505B2 (ja) 対人保護エネルギー吸収部材用アルミニウム合金中空押出形材
JP2000108826A (ja) 車両用衝撃吸収体
JP2013217414A (ja) 衝撃吸収体
US20220205506A1 (en) Impact absorbing body
JP3161748U (ja) 衝撃吸収体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026293.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2904/MUMNP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 11786746

Country of ref document: EP

Kind code of ref document: A1