WO2011148805A1 - 回路基板用積層板及び金属ベース回路基板 - Google Patents

回路基板用積層板及び金属ベース回路基板 Download PDF

Info

Publication number
WO2011148805A1
WO2011148805A1 PCT/JP2011/061167 JP2011061167W WO2011148805A1 WO 2011148805 A1 WO2011148805 A1 WO 2011148805A1 JP 2011061167 W JP2011061167 W JP 2011061167W WO 2011148805 A1 WO2011148805 A1 WO 2011148805A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic filler
circuit board
range
group
boron nitride
Prior art date
Application number
PCT/JP2011/061167
Other languages
English (en)
French (fr)
Inventor
水野 克美
和彦 許斐
豊 夏目
亮 宮越
剛司 近藤
Original Assignee
日本発條株式会社
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社, 住友化学株式会社 filed Critical 日本発條株式会社
Priority to KR1020127030877A priority Critical patent/KR101618401B1/ko
Priority to CN201180026282.7A priority patent/CN102948264B/zh
Publication of WO2011148805A1 publication Critical patent/WO2011148805A1/ja
Priority to US13/685,972 priority patent/US9357642B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Definitions

  • the present invention relates to a circuit board laminate and a metal base circuit board manufactured from the circuit board laminate.
  • the metal base circuit board has a structure in which an insulating layer and a circuit pattern are laminated in this order on a metal board.
  • this insulating layer is formed from a mixture of a resin and an inorganic filler, a metal base circuit board having excellent heat dissipation can be obtained.
  • alumina, silica, aluminum nitride, boron nitride, beryllium oxide, or a combination thereof is used as an inorganic filler, and an epoxy resin, a phenol resin, a silicon resin or a resin is used as a resin.
  • the use of a polyimide resin is described.
  • JP-A-2005-325231 describes a resin composition obtained by filling a liquid crystalline polyester having a specific structure with a highly thermally conductive inorganic substance.
  • This document describes that two or more materials such as aluminum nitride, boron nitride, and aluminum oxide may be used as a highly thermally conductive inorganic substance.
  • this resin composition is used as a sealing material for semiconductors, resistors and capacitors, a material for electrical and electronic parts such as substrates and housings, or a material for equipment components such as heat exchangers and bearings. It is described that it is possible.
  • a laminated board for circuit board used for a circuit board is required to have high insulation and peel strength.
  • the withstand voltage is 4.0 kV or more in consideration of the durability of the substrate.
  • the peel strength of the circuit pattern is desirably 7.0 N / cm or more.
  • a metal base circuit board excellent in heat dissipation, insulation, and peel strength may be obtained.
  • the present inventors have found that the circuit board obtained in this way may not always achieve the expected performance when the proportion of the inorganic filler in the insulating layer is increased. ing.
  • An object of the present invention is to provide a technique advantageous for realizing a metal base circuit board excellent in heat dissipation, insulation, and peel strength.
  • a metal substrate and a liquid crystal polyester provided on the metal substrate and containing 50% by volume or more of an inorganic filler, the inorganic filler being boron nitride, aluminum nitride, and aluminum oxide.
  • the ratio of the boron nitride in the inorganic filler is in the range of 35 to 80% by volume, and a circuit board comprising a metal foil provided on the insulating layer A laminate is provided.
  • a metal substrate and a liquid crystal polyester provided on the metal substrate and containing 50% by volume or more of an inorganic filler, the inorganic filler being boron nitride, aluminum nitride, and aluminum oxide.
  • a metal base circuit comprising: an insulating layer in which the proportion of the boron nitride in the inorganic filler is in the range of 35 to 80% by volume; and a circuit pattern provided on the insulating layer A substrate is provided.
  • the perspective view which shows schematically the laminated board for circuit boards which concerns on 1 aspect of this invention.
  • Sectional drawing along the II-II line of the laminated board for circuit boards shown in FIG. Sectional drawing which shows roughly an example of the metal base circuit board obtained from the laminated board for circuit boards shown in FIG.1 and FIG.2.
  • the graph which shows the example of the influence which the ratio of the boron nitride to an inorganic filler has on the compressibility of an insulating layer.
  • the graph which shows the example of the influence which the ratio of the boron nitride which occupies for an inorganic filler has on the ratio of the pore for an insulating layer.
  • the present inventors do not always have the expected performance when the proportion of the inorganic filler in the insulating layer is increased. I have found that it may not be possible.
  • the present inventors have found that liquid crystal polyester has a higher viscosity than other resins such as epoxy resin, so that the dispersion containing the liquid crystal polyester solution and the inorganic filler has bubbles. It was easy to contain, and it was found that it was difficult to sufficiently remove bubbles from the coating film obtained from this dispersion. And the present inventors have found that the porosity of the insulating layer obtained from this coating film has a great influence on the performance of the circuit board laminate and the metal base circuit board obtained therefrom, in particular, the withstand voltage. .
  • the present inventors have found that the porosity of the insulating layer can be reduced by using boron nitride as at least a part of the inorganic filler. Furthermore, the present inventors use a combination of at least one of aluminum nitride and aluminum oxide and boron nitride as the inorganic filler, and if the proportion of boron nitride in the inorganic filler is within a predetermined range, sufficient peel is achieved. It has been found that strength, high withstand voltage, and low thermal resistance can be achieved simultaneously. The present invention has been invented based on the above findings.
  • FIG. 1 is a perspective view schematically showing a laminated board for a circuit board according to one embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line II-II of the circuit board laminate shown in FIG.
  • the laminated board 1 for circuit boards shown in FIG.1 and FIG.2 contains the metal substrate 2, the insulating layer 3, and the metal foil 4. As shown in FIG. 1 and 2, the X and Y directions are parallel to the main surface of the metal substrate 2 and perpendicular to each other, and the Z direction is a thickness direction perpendicular to the X and Y directions.
  • a rectangular circuit board laminate 1 is depicted as an example, but the circuit board laminate 1 may have other shapes.
  • the metal substrate 2 is made of, for example, a single metal or an alloy. As a material of the metal substrate 2, for example, aluminum, iron, copper, an aluminum alloy, or stainless steel can be used.
  • the metal substrate 2 may further contain a nonmetal such as carbon.
  • the metal substrate 2 may contain aluminum combined with carbon.
  • the metal substrate 2 may have a single layer structure or a multilayer structure.
  • the metal substrate 2 has a high thermal conductivity. Typically, the metal substrate 2 has a thermal conductivity of 60 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more.
  • the metal substrate 2 may have flexibility or may not have flexibility.
  • the thickness of the metal substrate 2 is in the range of 0.2 to 5 mm, for example.
  • the insulating layer 3 is provided on the metal substrate 2.
  • the insulating layer 3 contains liquid crystal polyester and an inorganic filler.
  • the liquid crystalline polyester plays a role as a binder for bonding inorganic fillers and an adhesive for bonding the metal foil 4 to the metal substrate 2. Further, the liquid crystal polyester plays a role of flattening the surface of the insulating layer 3.
  • Liquid crystal polyester is an electrically insulating material. Liquid crystalline polyester has a higher specific resistance than many other resins.
  • the proportion of the liquid crystal polyester in the insulating layer 3 is, for example, in the range of 20 to 50% by volume, and typically in the range of 35 to 50% by volume.
  • this ratio is excessively reduced, the adhesive strength between the inorganic fillers is reduced, the adhesive strength between the insulating layer 3 and the metal substrate 2 or the metal foil 4 is reduced, or the surface of the insulating layer 3 is flattened. It becomes difficult to do.
  • this ratio is excessively increased, the withstand voltage of the circuit board laminate 1 decreases or the thermal resistance of the circuit board laminate 1 increases.
  • the liquid crystal polyester typically has thermoplasticity.
  • a material that exhibits optical anisotropy at the time of melting and forms an anisotropic melt at a temperature of 450 ° C. or lower can be used.
  • a liquid crystalline polyester for example, those having structural units represented by the following general formulas (1) to (3) can be used.
  • Ar1 represents, for example, a phenylene group or a naphthylene group
  • Ar2 represents, for example, a phenylene group, a naphthylene group, or a group represented by the following general formula (4)
  • Ar3 represents Represents a group represented by, for example, a phenylene group or the following general formula (4)
  • X and Y each independently represent, for example, O or NH.
  • the hydrogen atom bonded to the aromatic ring of Ar, Ar2 and Ar3 may be substituted with, for example, a halogen atom, an alkyl group or an aryl group.
  • the Ar11 and Ar12 for example, each independently represent a phenylene group or a naphthylene group
  • Z represents represents O, and CO or SO 2.
  • the ratio of the structural unit represented by the general formula (1) to the total of the structural units represented by the general formulas (1) to (3) is, for example, 30 to 80 mol%. It is in the range.
  • the ratio of the structural unit represented by the general formula (2) to the total of the structural units represented by the general formulas (1) to (3) is, for example, in the range of 10 to 35 mol%. Is in.
  • the ratio of the structural unit represented by the general formula (3) to the total of the structural units represented by the general formulas (1) to (3) is, for example, 10 to 35 mol%. It is in the range.
  • the proportion of the structural unit represented by the general formula (1) is in the range of 30 to 45 mol% with respect to the total of the structural units represented by the general formulas (1) to (3). It may be inside.
  • the ratio of the structural unit represented by the general formula (2) to the total of the structural units represented by the general formulas (1) to (3) is in the range of 27.5 to 35 mol%. It may be inside.
  • the proportion of the structural unit represented by the general formula (3) is 27.5 to 35 mol% with respect to the total of the structural units represented by the general formulas (1) to (3). It may be within the range.
  • the liquid crystalline polyester comprises 27.5 to 35 of at least one structural unit (a) selected from the group consisting of a structural unit derived from an aromatic diamine and a structural unit derived from an aromatic amine having a hydroxyl group, based on the total structural units. It is preferable to contain within the range of 0.0 mol%.
  • the liquid crystal polyester having the structural unit (a) as the structural unit represented by the general formula (3) has the above-described effect, that is, “temperature at 450 ° C. or less, showing optical anisotropy when melted”. The effect of “forming an anisotropic melt with” tends to be obtained better.
  • the structural unit represented by the general formula (1) is a structural unit derived from an aromatic hydroxycarboxylic acid
  • the structural unit represented by the general formula (2) is a structural unit derived from an aromatic dicarboxylic acid
  • the general formula ( The structural unit represented by 3) is a structural unit derived from an aromatic diamine or an aromatic amine having a phenolic hydroxyl group.
  • the above-mentioned liquid crystalline polyester is obtained by polymerizing these monomers using compounds that respectively derive such structural units (1) to (3) as monomers.
  • ester-forming derivatives or amide-forming derivatives may be used instead of the above-mentioned monomers.
  • the carboxyl group is a derivative having a high reaction activity such as an acid chloride or an acid anhydride so as to promote a reaction to form a polyester or polyamide.
  • a carboxyl group forms an ester with alcohols, ethylene glycol, or the like so that a polyester or polyamide is produced by an ester exchange reaction or an amide exchange reaction.
  • ester-forming derivative or amide-forming derivative of the phenolic hydroxyl group examples include those in which the phenolic hydroxyl group forms an ester with a carboxylic acid so as to produce a polyester or polyamide by a transesterification reaction. It is done.
  • examples of the amide-forming derivative of the amino group include those in which the amino group forms an ester with a carboxylic acid so that a polyamide is formed by an amide exchange reaction.
  • structural unit represented by the structural units (1) to (3) include the following. However, the structural units represented by the structural units (1) to (3) are not limited to these.
  • Examples of the structural unit represented by the general formula (1) include aromatic hydroxycarboxylic acids selected from p-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid and 4-hydroxy-4′-biphenylcarboxylic acid. Examples are derived structural units. Liquid crystalline polyester may contain only 1 type in these structural units, and may contain 2 or more types. In particular, it is preferable to use an aromatic liquid crystal polyester having a structural unit derived from p-hydroxybenzoic acid or a structural unit derived from 2-hydroxy-6-naphthoic acid.
  • the ratio of the structural unit represented by the general formula (1) to the total of all the structural units is, for example, in the range of 30.0 to 45.0 mol%, preferably 35.0 to 40.0. It is in the range of mol%.
  • Examples of the structural unit represented by the general formula (2) include a structural unit derived from an aromatic dicarboxylic acid selected from terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid.
  • Liquid crystalline polyester may contain only 1 type in these structural units, and may contain 2 or more types.
  • the ratio of the structural unit represented by the general formula (2) to the total of all the structural units is, for example, in the range of 27.5 to 35.0 mol%, preferably 30.0 to 32.5. It is in the range of mol%.
  • Examples of the structural unit represented by the general formula (3) include aromatic amine-derived structural units having a phenolic hydroxyl group such as 3-aminophenol and 4-aminophenol, 1,4-phenylenediamine, and 1, Mention may be made of structural units derived from aromatic diamines such as 3-phenylenediamine.
  • Liquid crystalline polyester may contain only 1 type in these structural units, and may contain 2 or more types. Among these, it is preferable to use a liquid crystal polyester having a structural unit derived from 4-aminophenol from the viewpoint of a polymerization reaction performed in the production of the liquid crystal polyester.
  • the ratio of the structural unit represented by the general formula (3) to the total of all the structural units is, for example, in the range of 27.5 to 35.0 mol%, and preferably 30.0 to 32.5. It is in the range of mol%.
  • the structural unit represented by the general formula (3) and the structural unit represented by the general formula (2) are substantially equivalent.
  • the difference between the ratio of the structural unit represented by the general formula (3) to the total structural unit and the ratio of the structural unit represented by the general formula (2) to the total structural unit is within a range of ⁇ 10 to +10 mol%.
  • the degree of polymerization of the aromatic liquid crystal polyester can also be controlled.
  • the method for producing the liquid crystal polyester is not particularly limited.
  • a manufacturing method of this liquid crystal polyester for example, an aromatic hydroxycarboxylic acid corresponding to the structural unit represented by the general formula (1) and an aromatic having a hydroxyl group corresponding to the structural unit represented by the general formula (3) Acylation of the phenolic hydroxyl group or amino group of the aromatic amine or aromatic diamine with an excess amount of fatty acid anhydride, and the resulting acylated product (ester-forming derivative or amide-forming derivative) with the general formula (2)
  • the method of melt-polymerizing by transesterifying (polycondensation) with the aromatic dicarboxylic acid corresponding to the structural unit represented is mentioned.
  • acylated product a fatty acid ester obtained by acylation in advance may be used (see, for example, JP 2002-220444 A or JP 2002-146003 A).
  • the amount of fatty acid anhydride added is preferably 1.0 to 1.2 times equivalent to the total of the phenolic hydroxyl group and amino group, and is preferably 1.05 to 1.1. More preferably, it is a double equivalent.
  • the acylation reaction is preferably performed at 130 to 180 ° C. for 5 minutes to 10 hours, more preferably at 140 to 160 ° C. for 10 minutes to 3 hours.
  • the fatty acid anhydride used for the acylation reaction is not particularly limited.
  • the fatty acid anhydride include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, 2-ethylhexanoic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, trichloroacetic anhydride, and anhydrous Examples include monobromoacetic acid, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, glutaric anhydride, maleic anhydride, succinic anhydride, and ⁇ -bromopropionic anhydride. These may be used alone or in combination of two or more.
  • acetic anhydride propionic anhydride, butyric anhydride and isobutyric anhydride are preferable, and acetic anhydride is more preferable, from the viewpoints of price and handleability.
  • the acyl group of the acylated product is preferably 0.8 to 1.2 times the carboxyl group.
  • the transesterification and amide exchange reactions are preferably performed at 130 to 400 ° C. while increasing the temperature at a rate of 0.1 to 50 ° C./min, and at 150 to 350 ° C., 0.3 to 5 ° C./min. More preferably, the temperature is raised at a rate.
  • the acylation reaction, transesterification and amide exchange reaction may be performed in the presence of a catalyst.
  • a catalyst for example, a conventional catalyst for polyester polymerization can be used.
  • Such catalysts include, for example, metal salt catalysts such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate and antimony trioxide, and N, N-dimethylaminopyridine and N Mention may be made of organic compound catalysts such as methylimidazole.
  • heterocyclic compounds containing two or more nitrogen atoms such as N, N-dimethylaminopyridine and N-methylimidazole are preferably used (see JP 2002-146003 A).
  • the above catalyst is usually charged when monomers are charged. This catalyst may or may not be removed after acylation. If this catalyst is not removed, transesterification can be carried out continuously with acylation.
  • Polymerization by the transesterification and amide exchange reactions is usually performed by melt polymerization, but melt polymerization and solid phase polymerization may be used in combination.
  • the solid phase polymerization can be performed by a known solid phase polymerization method after the polymer is extracted from the melt polymerization step and pulverized into powder or flakes. Specifically, for example, a method of heat treatment in a solid state at 20 to 350 ° C. for 1 to 30 hours under an inert atmosphere such as nitrogen can be given.
  • the solid phase polymerization may be performed with stirring, or may be performed in a state of standing without stirring.
  • melt polymerization and solid phase polymerization can also be performed in the same reaction tank by providing an appropriate stirring mechanism.
  • the obtained liquid crystal polyester may be formed into, for example, a pellet by a known method.
  • the above-mentioned liquid crystalline polyester can be produced using a batch apparatus and / or a continuous apparatus.
  • the liquid crystal polyester preferably has a flow start temperature determined by the following method of 250 ° C. or higher, more preferably 260 ° C. or higher. When such a liquid crystal polyester is used, it is between the insulating layer 3 and the metal foil 4 and between the insulating layer 3 and the metal substrate 2 as compared with the case where a liquid crystal polyester having a lower flow start temperature is used. A higher degree of adhesion can be obtained.
  • the polyester preferably has a flow start temperature of 300 ° C. or lower, more preferably 290 ° C. or lower.
  • a liquid crystal polyester tends to have higher solubility in a solvent as compared with a liquid crystal polyester having a higher flow start temperature.
  • the “flow start temperature” refers to the lowest temperature at which the melt viscosity of the aromatic polyester is 4800 Pa ⁇ s or less under a pressure of 9.8 MPa in the evaluation of the melt viscosity by a flow tester.
  • the flow start temperature of the liquid crystalline polyester is controlled by, for example, extracting the polymer from the melt polymerization step, pulverizing the polymer into powder or flakes, and then adjusting the flow start temperature by a known solid phase polymerization method. Can be implemented easily.
  • the melt polymerization step in an inert atmosphere such as nitrogen, at a temperature exceeding 210 ° C., more preferably at a temperature of 220 to 350 ° C., for 1 to 10 hours in a solid state. It is obtained by a method of heat treatment at The solid phase polymerization may be performed with stirring, or may be performed in a state of standing without stirring. For example, solid state polymerization may be performed at 225 ° C. for 3 hours in an inactive atmosphere such as nitrogen without being stirred.
  • an inert atmosphere such as nitrogen
  • the inorganic filler is distributed throughout the insulating layer 3.
  • the inorganic filler has a larger thermal conductivity than the liquid crystal polyester.
  • the proportion of the inorganic filler in the insulating layer 3 is, for example, in the range of 50 to 80% by volume, and typically in the range of 50 to 65% by volume. When this ratio is too small, the thermal resistance increases or the withstand voltage decreases. When this ratio is excessively increased, the adhesive strength between the inorganic fillers is decreased, the adhesive strength between the insulating layer 3 and the metal substrate 2 or the metal foil 4 is decreased, or the surface of the insulating layer 3 is flattened. It becomes difficult to do.
  • the inorganic filler is composed of boron nitride and at least one of aluminum nitride and aluminum oxide. Each of these is distributed substantially uniformly throughout the insulating layer 3.
  • Aluminum nitride and aluminum oxide are used, for example, in the form of substantially spherical particles.
  • aluminum nitride and aluminum oxide may be distributed in the form of primary particles, or may be distributed in the form of secondary particles.
  • a part of aluminum nitride and aluminum oxide may be distributed in the form of primary particles, and the rest may be distributed in the form of secondary particles.
  • the average particle size of aluminum nitride and aluminum oxide is, for example, in the range of 5 to 30 ⁇ m.
  • the “average particle diameter” means the average particle diameter of the particles measured by the laser diffraction scattering method.
  • the proportion of the total amount of aluminum nitride and / or aluminum oxide in the inorganic filler is in the range of 20 to 65% by volume, and typically in the range of 20 to 50% by volume.
  • this ratio is excessively large, it is difficult to obtain the insulating layer 3 with few pores, and it is difficult to achieve a high counter voltage and a small thermal resistance.
  • this ratio is too small, it is difficult to obtain the circuit board laminate 1 and the metal base circuit board 1 ′ having high peel strength.
  • Boron nitride is used in the form of, for example, scale-like or plate-like particles.
  • boron nitride may be distributed in the form of scaly or plate-like primary particles.
  • boron nitride may be distributed in the form of secondary particles obtained by agglomerating the scaly or plate-like primary particles so that the normal direction thereof is randomly oriented.
  • a part of boron nitride is distributed in the form of scaly or plate-like primary particles, and the other part is distributed in the form of the secondary particles described above.
  • the average particle diameter of boron nitride is, for example, in the range of 10 to 50 ⁇ m. This average particle diameter is obtained by the same method as described above for aluminum nitride and aluminum oxide.
  • a surface-treated one may be used in order to improve the adhesion with the liquid crystal polyester and the dispersibility in the dispersion described later.
  • surface treatment agents that can be used for this surface treatment include silane coupling agents, titanium coupling agents, aluminum or zirconium coupling agents, long chain fatty acids, isocyanate compounds, and, for example, epoxy groups, methoxy Mention may be made of polar polymers or reactive polymers containing silane groups, amino groups or hydroxyl groups.
  • the proportion of boron nitride in the inorganic filler is in the range of 35 to 80% by volume, and typically in the range of 50 to 80% by volume.
  • this ratio is excessively large, it is difficult to obtain the circuit board laminate 1 and the metal base circuit board 1 ′ having high peel strength.
  • this ratio is excessively small, it is difficult to obtain the insulating layer 3 with few pores, and it is difficult to achieve a high withstand voltage and a small thermal resistance.
  • the metal foil 4 is provided on the insulating layer 3.
  • the metal foil 4 faces the metal substrate 2 with the insulating layer 3 interposed therebetween.
  • the metal foil 4 is made of, for example, a single metal or an alloy. As a material of the metal foil 4, for example, copper or aluminum can be used. The thickness of the metal foil 4 is, for example, in the range of 10 to 500 ⁇ m.
  • the circuit board laminate 1 is manufactured, for example, by the following method. First, the liquid crystalline polyester described above is dissolved in a solvent to obtain an optically isotropic solution.
  • liquid crystal polyester having a relatively low molecular weight in consideration of its solubility in a solvent.
  • a thermosetting resin such as an epoxy resin changes with time during storage.
  • liquid crystal polyester is thermoplastic, such a change with time does not occur. Therefore, it can be used with confidence as an industrial product.
  • an aprotic solvent containing no halogen atom examples include ether solvents such as diethyl ether, tetrahydrofuran and 1,4-dioxane; ketone solvents such as acetone and cyclohexanone; ester solvents such as ethyl acetate; ⁇ -butyrolactone and the like.
  • Lactone solvents include carbonate solvents such as ethylene carbonate and propylene carbonate; amine solvents such as triethylamine and pyridine; nitrile solvents such as acetonitrile and succinonitrile; N, N-dimethylformamide, N, N-dimethylacetamide, tetra Amide solvents such as methylurea and N-methylpyrrolidone; Nitro solvents such as nitromethane and nitrobenzene; Sulfide solvents such as dimethyl sulfoxide and sulfolane; And phosphoric acid-based solvent such as tri-n- butyl phosphate.
  • carbonate solvents such as ethylene carbonate and propylene carbonate
  • amine solvents such as triethylamine and pyridine
  • nitrile solvents such as acetonitrile and succinonitrile
  • a solvent having a dipole moment of 3 to 5 is preferable from the viewpoint of the solubility of the liquid crystal polyester described above.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, tetramethylurea and N-methylpyrrolidone, and lactone solvents such as ⁇ -butyrolactone are preferable, and N, N-dimethyl Particularly preferred are formamide, N, N-dimethylacetamide and N-methylpyrrolidone (NMP).
  • NMP N-dimethylpyrrolidone
  • N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAc) are particularly preferable.
  • This dispersion contains, for example, 10 to 50 parts by mass, preferably 20 to 40 parts by mass with respect to 100 parts by mass of the aprotic solvent. If the amount of liquid crystalline polyester is too small, a large amount of solvent must be removed from the coating. Therefore, it is easy to produce the appearance defect of a coating film. When the amount of the liquid crystal polyester is excessively large, the above-described solution or dispersion tends to increase in viscosity, and the handleability thereof decreases.
  • the above-mentioned inorganic filler is dispersed in the above solution to obtain a dispersion containing polyester and inorganic filler.
  • the inorganic filler may be dispersed in the solution while being pulverized using, for example, a ball mill, three rolls, a centrifugal stirrer, or a bead mill.
  • a coupling agent such as a silane coupling agent and a titanium coupling agent and an additive such as an ion adsorbent may be added to the solution.
  • this dispersion is applied onto at least one of the metal substrate 2 and the metal foil 4.
  • a roll coating method, a bar coating method, or a screen printing method can be used. You may carry out by a continuous type and may carry out by a single plate type.
  • the metal substrate 2 and the metal foil 4 are overlaid so that they face each other with the coating film in between. Furthermore, they are hot pressed. As described above, the circuit board laminate 1 is obtained.
  • a coating film containing liquid crystal polyester is subjected to a heating process.
  • the liquid crystalline polyester is heated, its molecular weight increases and the coating is cured.
  • the insulating layer 3 obtained in this way is excellent in mechanical strength.
  • the orientation of the mesogen can be sufficiently developed after the coating film is dried. That is, by passing through a heating process that sufficiently increases the molecular weight, the phonon conduction path length can be increased, and as a result, the thermal conductivity is greatly improved.
  • boron nitride primary particles are typically scaly or plate-like, when the dried coating film is heated and pressure is applied to the coating film in a state where the liquid crystalline polyester can flow, the primary boron nitride particles Some of the particles change their orientation. Thereby, movement of bubbles, liquid crystal polyester, aluminum nitride, and aluminum oxide is promoted, and the dense insulating layer 3 with few bubbles is obtained.
  • At least a part of boron nitride exists in the form of secondary particles formed by agglomerating the scaly or plate-like primary particles so that the normal direction thereof is randomly oriented.
  • at least a part of the primary particles included in the secondary particles are oriented so that their main surfaces are perpendicular or oblique to the underlying surface of the coating film.
  • some of the primary particles oriented perpendicularly or diagonally to the underlying surface change their orientation, but not all of these primary particles change their orientation.
  • the primary particles that are oriented in parallel to the underlying surface by applying pressure to the coating film are only a part of the primary particles that change the orientation.
  • the insulating layer 3 in which the primary particles of boron nitride are oriented in this way has a thermal conductivity in the Z direction as compared with the insulating layer 3 in which the primary particles of boron nitride are oriented perpendicular to the Z direction. high. That is, when boron nitride is present in the above-described form, it is possible to obtain the circuit board laminate 1 having better performance.
  • FIG. 3 is a cross-sectional view schematically showing an example of a metal base circuit board 1 ′ obtained from the circuit board laminate 1 shown in FIGS. 1 and 2.
  • the metal base circuit board 1 'shown in FIG. 3 includes a metal board 2, an insulating layer 3, and a circuit pattern 4'.
  • the circuit pattern 4 ′ is obtained by patterning the metal foil 4 of the circuit board laminate 1 described with reference to FIGS. 1 and 2. This patterning can be obtained, for example, by forming a mask pattern on the metal foil 4 and removing the exposed portion of the metal foil 4 by etching.
  • the metal base circuit board 1 ′ can be obtained, for example, by performing the above-described patterning on the metal foil 4 of the circuit board laminate 1 and performing processing such as cutting and drilling as necessary. it can.
  • this metal base circuit board 1 ′ is obtained from the circuit board laminate 1 described above, it has excellent heat dissipation and heat resistance.
  • the circuit pattern 4 ′ has a sufficient peel strength despite the high proportion of the inorganic filler in the insulating layer 3.
  • the viscosity of this solution was 320 cP. This viscosity is a value measured at 23 ° C. using a B-type viscometer (manufactured by Toki Sangyo, “TVL-20 type”, rotor No. 21 (rotation speed: 5 rpm)).
  • Example 1 Aluminum nitride (“FAN-f30” manufactured by Furukawa Electronics Co., Ltd., average particle size 30 ⁇ m) was added to the liquid crystal polyester solution obtained by the above-described method to prepare a dispersion.
  • aluminum nitride was added so that the proportion occupied by the inorganic filler made of aluminum nitride in the insulating layer obtained from this dispersion was 65% by volume.
  • This dispersion was stirred for 5 minutes with a centrifugal stirring deaerator, and then applied to a thickness of about 130 ⁇ m on a copper foil having a thickness of 70 ⁇ m.
  • the coating film was dried at 100 ° C. for 20 minutes and then heat-treated at 340 ° C. for 3 hours.
  • the metal substrate and the previous copper foil were superposed so that the coating film was interposed between them.
  • an aluminum alloy substrate having a thermal conductivity of 140 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 and a thickness of 2.0 mm was used as the metal substrate. And these were heat-processed for 20 minutes at 340 degreeC, applying the pressure of 20 Mpa, and were heat-bonded.
  • the thickness D1 of the coating before applying pressure and the thickness D2 of the coating after thermal bonding, that is, the insulating layer are measured, and the difference D1-D2 between the thickness D2 and the thickness D1 is obtained. It was. Then, the ratio (D1 ⁇ D2) / D1 between the difference D1 ⁇ D2 and the thickness D1 was obtained as a compression rate. As a result, the compression rate was 14.6%.
  • the thickness D2 'of the insulating layer when the bubble content was assumed to be zero was calculated. Then, the ratio (D2 ⁇ D2 ′) / D2 of the difference D2 ⁇ D2 ′ between the thickness D2 and the thickness D2 ′ and the thickness D2 was determined as the porosity. As a result, the porosity was 20.0%.
  • Withstand voltage The laminated board for circuit boards cut
  • T peel strength test The copper foil of the circuit board laminate cut to a predetermined size was partially removed by etching to form a copper foil pattern with a width of 10 mm. Grasp one end of the copper foil pattern and pull the copper foil pattern from the metal substrate at a speed of 50 mm / min while applying a force so that the peeled portion of the copper foil pattern is perpendicular to the main surface of the metal substrate. I peeled it off. At this time, the force applied to the copper foil pattern was defined as T peel strength.
  • Thermal resistance The copper foil of the circuit board laminate cut to a size of 30 mm ⁇ 40 mm was partially removed by etching to form a 14 mm ⁇ 10 mm land. After the transistor (C2233) was attached to the land using solder, it was set in the water cooling device so that the metal substrate faced the cooling surface of the cooling device through the silicone grease layer. Next, power P of 30 W was supplied to the transistor, and the temperature T1 of the transistor and the temperature T2 of the cooling surface of the cooling device were measured. The difference T1-T2 between the temperature T1 and the temperature T2 obtained in this way was determined, and the ratio (T1-T2) / P between the difference T1-T2 and the supplied power P was defined as the thermal resistance.
  • the withstand voltage was 1.5 kV
  • the T peel strength was 13.6 N / cm
  • the thermal resistance was 0.20 ° C./W.
  • Example 2 To the liquid crystal polyester solution obtained by the above-described method, the same aluminum nitride and boron nitride (“HP-40”, average particle diameter 20 ⁇ m, manufactured by Mizushima Alloy Iron Co., Ltd.) used in Example 1 were added. A dispersion was prepared.
  • boron nitride and boron nitride are used so that the proportion of the inorganic filler composed of aluminum nitride and boron nitride is 65% by volume in the insulating layer obtained from this dispersion, and the inorganic filler
  • the boron nitride was added so that the proportion of boron nitride (hereinafter referred to as “BN blend ratio”) was 25% by volume.
  • a circuit board laminate was produced in the same manner as in Example 1 except that the dispersion prepared as described above was used.
  • the compression rate and the porosity were determined by the same method as in Example 1.
  • the compression rate and the porosity were 18.0% and 10.8%, respectively.
  • withstand voltage, T peel strength and thermal resistance were measured by the same method as in Example 1 except that this circuit board laminate was used.
  • the withstand voltage was 2.0 kV
  • the T peel strength was 13.1 N / cm
  • the thermal resistance was 0.18 ° C./W.
  • Example 3 A circuit board laminate was produced in the same manner as in Example 2 except that the BN blend ratio was 35% by volume.
  • the compression rate and the porosity were determined by the same method as in Example 1. As a result, the compression rate and the porosity were 20.0% and 7.0%, respectively.
  • withstand voltage, T peel strength and thermal resistance were measured by the same method as in Example 1 except that this circuit board laminate was used.
  • the withstand voltage was 4.0 kV
  • the T peel strength was 12.3 N / cm
  • the thermal resistance was 0.17 ° C./W.
  • Example 4 A circuit board laminate was produced in the same manner as in Example 2 except that the BN blend ratio was 50% by volume. In this case, the compression rate and the porosity were determined by the same method as in Example 1. As a result, the compression rate and the porosity were 21.7% and 1.3%, respectively.
  • withstand voltage, T peel strength and thermal resistance were measured by the same method as in Example 1 except that this circuit board laminate was used.
  • the withstand voltage was 7.0 kV
  • the T peel strength was 11.6 N / cm
  • the thermal resistance was 0.16 ° C./W.
  • Example 5 A circuit board laminate was produced in the same manner as in Example 2 except that the BN blend ratio was 80% by volume. In this case, the compression rate and the porosity were determined by the same method as in Example 1. As a result, the compression rate and the porosity were 29.0% and 0.5%, respectively.
  • withstand voltage, T peel strength and thermal resistance were measured by the same method as in Example 1 except that this circuit board laminate was used.
  • the withstand voltage was 8.0 kV
  • the T peel strength was 7.5 N / cm
  • the thermal resistance was 0.15 ° C./W.
  • Example 6 A circuit board laminate was produced in the same manner as in Example 1 except that the same boron nitride as used in Example 2 was used instead of aluminum nitride. In this case, the compression rate and the porosity were determined by the same method as in Example 1. As a result, the compression rate and the porosity were 33.3% and 0.1%, respectively.
  • withstand voltage, T peel strength and thermal resistance were measured by the same method as in Example 1 except that this circuit board laminate was used.
  • the withstand voltage was 9.0 kV
  • the T peel strength was 5.0 N / cm
  • the thermal resistance was 0.15 ° C./W.
  • Example 7 A laminated board for a circuit board is produced in the same manner as in Example 1 except that aluminum oxide (“AA-5”, average particle size 5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd.) is used instead of aluminum nitride. did.
  • the compression rate and the porosity were determined by the same method as in Example 1. As a result, the compression rate and the porosity were 13.0% and 25.0%, respectively.
  • withstand voltage, T peel strength and thermal resistance were measured by the same method as in Example 1 except that this circuit board laminate was used.
  • the withstand voltage was 1.5 kV
  • the T peel strength was 15.9 N / cm
  • the thermal resistance was 0.26 ° C./W.
  • Example 8> A dispersion liquid was prepared by adding the same aluminum oxide as used in Example 7 and the same boron nitride as used in Example 2 to the liquid crystal polyester solution obtained by the above-described method.
  • aluminum oxide and boron nitride are such that the proportion of the inorganic filler composed of aluminum oxide and boron nitride in the insulating layer obtained from this dispersion is 65% by volume, and the BN blend ratio is It added so that it might become 25 volume%.
  • a circuit board laminate was produced in the same manner as in Example 1 except that the dispersion prepared as described above was used.
  • the compression rate and the porosity were determined by the same method as in Example 1.
  • the compression rate and the porosity were 17.0% and 13.0%, respectively.
  • withstand voltage, T peel strength and thermal resistance were measured by the same method as in Example 1 except that this circuit board laminate was used.
  • the withstand voltage was 1.5 kV
  • the T peel strength was 12.9 N / cm
  • the thermal resistance was 0.23 ° C./W.
  • Example 9 A circuit board laminate was produced in the same manner as in Example 8 except that the BN blend ratio was 35% by volume.
  • the compression rate and the porosity were determined by the same method as in Example 1. As a result, the compression rate and the porosity were 19.0% and 8.5%, respectively.
  • withstand voltage, T peel strength and thermal resistance were measured by the same method as in Example 1 except that this circuit board laminate was used.
  • the withstand voltage was 4.0 kV
  • the T peel strength was 12.3 N / cm
  • the thermal resistance was 0.20 ° C./W.
  • Example 10 A circuit board laminate was produced in the same manner as in Example 8 except that the BN blend ratio was 50% by volume. In this case, the compression rate and the porosity were determined by the same method as in Example 1. As a result, the compression rate and the porosity were 22.0% and 1.0%, respectively.
  • withstand voltage, T peel strength and thermal resistance were measured by the same method as in Example 1 except that this circuit board laminate was used.
  • the withstand voltage was 8.0 kV
  • the T peel strength was 11.1 N / cm
  • the thermal resistance was 0.17 ° C./W.
  • Example 11 A circuit board laminate was produced in the same manner as in Example 8 except that the BN blend ratio was 80% by volume. In this case, the compression rate and the porosity were determined by the same method as in Example 1. As a result, the compression rate and the porosity were 29.0% and 0.5%, respectively.
  • withstand voltage, T peel strength, and thermal resistance were measured by the same method as in Example 1 except that this circuit board laminate was used.
  • the withstand voltage was 8.5 kV
  • the T peel strength was 7.9 N / cm
  • the thermal resistance was 0.16 ° C./W.
  • FIG. 4 is a graph showing an example of the influence of the proportion of boron nitride in the inorganic filler on the compressibility of the insulating layer.
  • FIG. 5 is a graph showing an example of the influence of the proportion of boron nitride in the inorganic filler on the proportion of pores in the insulating layer.
  • FIG. 6 is a graph showing an example of the influence of the proportion of boron nitride in the inorganic filler on the peel strength of the metal foil.
  • FIG. 7 is a graph showing an example of the influence of the proportion of boron nitride in the inorganic filler on the withstand voltage of the circuit board laminate.
  • FIG. 8 is a graph showing an example of the influence of the proportion of boron nitride in the inorganic filler on the thermal resistance of the circuit board laminate.
  • the compression ratio was increased as shown in FIG. 4, and the porosity was decreased as shown in FIG. Specifically, when the BN blend rate was increased, the compression rate decreased at a substantially constant rate with respect to the increment. In addition, when the BN blend rate is increased, the porosity decreases at a substantially constant rate with respect to the increment within the range of BN blend rate of 0 to 50% by volume, and the BN blend rate is 50 to 100% by volume. Within the range, the change to the increment was slight.
  • the withstand voltage increased as the BN blend ratio was increased. Specifically, the withstand voltage was high at a substantially constant rate with respect to the increment of the BN blend rate when the BN blend rate was in the range of 0 to 25% by volume, but the change was slight. When the BN blend rate is in the range of 25 to 50% by volume, the withstand voltage is high at a substantially constant rate with respect to the increment of the BN blend rate, and the BN blend rate is in the range of 0 to 25% by volume. Compared to the case, the increase in the withstand voltage with respect to the increase in the BN blend ratio was larger.
  • the withstand voltage increases at a substantially constant rate with respect to the increment of the BN blend rate, but the BN blend rate is within the range of 25 to 50% by volume. Compared to some cases, the increase in the withstand voltage with respect to the increase in the BN blend ratio was smaller.
  • the BN blend rate is 35% by volume or more, a withstand voltage of 4 kV or more can be achieved, and when the BN blend rate is 50% by volume or more, a withstand voltage of 7 kV or more can be achieved. .
  • the thermal resistance decreased as the BN blend ratio was increased.
  • the BN blend ratio is 35% by volume or more
  • aluminum oxide is used as a part of the inorganic filler
  • a thermal resistance of 0.20 ° C./W or less can be achieved, and a part of the inorganic filler
  • aluminum nitride was used, a thermal resistance of 0.17 ° C./W or less could be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Laminated Bodies (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 放熱性、絶縁性及びピール強度に優れた金属ベース回路基板の実現に有利な技術を提供する。回路基板用積層板(1)は、金属基板(2)と、金属基板(2)上に設けられた絶縁層(3)と、絶縁層(3)上に設けられた金属箔(4)とを含んでいる。絶縁層(3)は、液晶ポリエステルと50体積%以上の無機充填材とを含有している。無機充填材は、窒化硼素と窒化アルミニウム及び酸化アルミニウムの少なくとも一方とからなる。無機充填材に占める窒化硼素の割合は35乃至80体積%の範囲内にある。

Description

回路基板用積層板及び金属ベース回路基板
 本発明は、回路基板用積層板及びこの回路基板用積層板から製造される金属ベース回路基板に関する。
 近年のエレクトロニクス技術の発達は目覚しく、電気電子機器の高性能化及び小型化は急速に進行している。これに伴い、電気素子及び/又は電子素子を実装した部品の発熱量は益々大きくなっている。このような背景のもと、典型的にはMOSFET(metal-oxide-semiconductor field-effect transistor)及びIGBT(insulated-gate bipolar transistor)などの所謂パワーデバイスを搭載する金属ベース回路基板には、十分な耐熱性に加え、優れた放熱性が求められている。
 金属ベース回路基板は、金属基板上に絶縁層と回路パターンとがこの順に積層された構造を有している。この絶縁層を樹脂と無機充填材との混合物から形成すると、放熱性に優れた金属ベース回路基板が得られる。特開平5-167212号公報には、無機充填材として、アルミナ、シリカ、窒化アルミニウム、窒化硼素、酸化ベリリウム、又はそれらの組み合わせを使用することと、樹脂として、エポキシ樹脂、フェノール樹脂、シリコン樹脂又はポリイミド樹脂を使用することが記載されている。
 なお、特開2005-325231号公報には、特定の構造を有している液晶ポリエステルに高熱伝導性無機物を充填してなる樹脂組成物が記載されている。この文献には、高熱伝導性無機物として、窒化アルミニウム、窒化硼素及び酸化アルミニウムなどの材料を2種以上混合して使用してもよいことが記載されている。更に、この文献には、この樹脂組成物は、半導体、抵抗体及びコンデンサなどの封止材、基板及びハウジングなどの電気電子部品の素材、又は、熱交換器及び軸受などの機器構成素材として使用可能であることが記載されている。
 回路基板に使用する回路基板用積層板には、放熱性に優れていることに加えて、絶縁性及びピール強度も高いことが求められている。例えば、パワーデバイスを搭載する金属ベースアルミ基板の場合、基板の耐久性を考慮すると、耐電圧は4.0kV以上であることが望ましい。また、回路パターンの剥離を生じることなしに基板の切断及び基板へ穴あけ加工などの加工ができることを考慮すると、回路パターンのピール強度は7.0N/cm以上であることが望ましい。
 液晶ポリエステルと無機充填材とを含んだ樹脂組成物を使用すると、放熱性、絶縁性及びピール強度に優れた金属ベース回路基板が得られる可能性がある。しかしながら、本発明者らは、このようにして得られる回路基板は、絶縁層に占める無機充填材の割合を高めた場合に、必ずしも期待されるほどの性能を達成できない可能性があることを見出している。
 本発明の目的は、放熱性、絶縁性及びピール強度に優れた金属ベース回路基板の実現に有利な技術を提供することにある。
 本発明の第1側面によると、金属基板と、前記金属基板上に設けられ、液晶ポリエステルと50体積%以上の無機充填材とを含有し、前記無機充填材は窒化硼素と窒化アルミニウム及び酸化アルミニウムの少なくとも一方とからなり、前記無機充填材に占める前記窒化硼素の割合は35乃至80体積%の範囲内にある絶縁層と、前記絶縁層上に設けられた金属箔とを具備した回路基板用積層板が提供される。
 本発明の第2側面によると、金属基板と、前記金属基板上に設けられ、液晶ポリエステルと50体積%以上の無機充填材とを含有し、前記無機充填材は窒化硼素と窒化アルミニウム及び酸化アルミニウムの少なくとも一方とからなり、前記無機充填材に占める前記窒化硼素の割合は35乃至80体積%の範囲内にある絶縁層と、前記絶縁層上に設けられた回路パターンとを具備した金属ベース回路基板が提供される。
本発明の一態様に係る回路基板用積層板を概略的に示す斜視図。 図1に示す回路基板用積層板のII-II線に沿った断面図。 図1及び図2に示す回路基板用積層板から得られる金属ベース回路基板の一例を概略的に示す断面図。 無機充填材に占める窒化硼素の割合が絶縁層の圧縮率に及ぼす影響の例を示すグラフ。 無機充填材に占める窒化硼素の割合が絶縁層に占める気孔の割合に及ぼす影響の例を示すグラフ。 無機充填材に占める窒化硼素の割合が回路基板用積層板の金属箔のピール強度に及ぼす影響の例を示すグラフ。 無機充填材に占める窒化硼素の割合が回路基板用積層板の耐電圧に及ぼす影響の例を示すグラフ。 無機充填材に占める窒化硼素の割合が回路基板用積層板の熱抵抗に及ぼす影響の例を示すグラフ。
 以下、本発明の態様について、図面を参照しながら詳細に説明する。なお、同様又は類似した機能を発揮する構成要素には全ての図面を通じて同一の参照符号を付し、重複する説明は省略する。
 上記の通り、本発明者らは、液晶ポリエステルと無機充填材とを含んだ樹脂組成物を使用すると、絶縁層に占める無機充填材の割合を高めた場合に、必ずしも期待されるほどの性能を達成できない可能性があることを見出している。本発明者らは、その理由について鋭意検討した結果、液晶ポリエステルはエポキシ樹脂などの他の樹脂と比較して高粘度であるため、液晶ポリエステル溶液と無機充填材とを含んだ分散液は気泡を含み易く、この分散液から得られる塗膜から気泡を十分に除去することは難しいことを見出した。そして、本発明者らは、この塗膜から得られる絶縁層の気孔率が、回路基板用積層板及びこれから得られる金属ベース回路基板の性能、特には耐電圧に大きな影響を及ぼすことを見出した。
 そして、本発明者らは、無機充填材の少なくとも一部として窒化硼素を使用することによって絶縁層の気孔率を低減できることを見出した。更に、本発明者らは、無機充填材として窒化アルミニウム及び酸化アルミニウムの少なくとも一方と窒化硼素との組み合わせを使用し且つ無機充填材に占める窒化硼素の割合を所定の範囲内とすると、十分なピール強度と、高い耐電圧と、低い熱抵抗とを同時に達成できることを見出した。本発明は、以上の知見に基いて発明されたものである。
 図1は、本発明の一態様に係る回路基板用積層板を概略的に示す斜視図である。図2は、図1に示す回路基板用積層板のII-II線に沿った断面図である。
 図1及び図2に示す回路基板用積層板1は、金属基板2と、絶縁層3と、金属箔4とを含んでいる。なお、図1及び図2において、X及びY方向は金属基板2の主面に平行であり且つ互いに直交する方向であり、Z方向はX及びY方向に対して垂直な厚さ方向である。図1には、一例として矩形状の回路基板用積層板1を描いているが、回路基板用積層板1は他の形状を有していてもよい。
 金属基板2は、例えば、単体金属又は合金からなる。金属基板2の材料としては、例えば、アルミニウム、鉄、銅、アルミニウム合金、又はステンレスを使用することができる。金属基板2は、炭素などの非金属を更に含んでいてもよい。例えば、金属基板2は、炭素と複合化したアルミニウムを含んでいてもよい。また、金属基板2は、単層構造を有していてもよく、多層構造を有していてもよい。
 金属基板2は、高い熱伝導率を有している。典型的には、金属基板2は、60W・m-1・K-1以上の熱伝導率を有している。
 金属基板2は、可撓性を有していてもよく、可撓性を有していなくてもよい。金属基板2の厚さは、例えば、0.2乃至5mmの範囲内にある。
 絶縁層3は、金属基板2上に設けられている。絶縁層3は、液晶ポリエステルと無機充填材とを含有している。
 液晶ポリエステルは、無機充填材同士を結合させるバインダとしての役割と、金属箔4を金属基板2に接着させる接着剤としての役割とを果たしている。更に、液晶ポリエステルは、絶縁層3の表面を平坦にする役割を果たしている。
 液晶ポリエステルは、電気絶縁性の材料である。液晶ポリエステルは、他の多くの樹脂と比較して、比抵抗がより大きい。
 絶縁層3に占める液晶ポリエステルの割合は、例えば20乃至50体積%の範囲内にあり、典型的には35乃至50体積%の範囲内にある。この割合を過度に小さくすると、無機充填材同士の接着強度が低下するか、絶縁層3と金属基板2若しくは金属箔4との接着強度が低下するか、又は、絶縁層3の表面を平坦にすることが困難になる。この割合を過度に大きくすると、回路基板用積層板1の耐電圧が低下するか又は回路基板用積層板1の熱抵抗が大きくなる。
 液晶ポリエステルは、典型的には熱可塑性を有している。液晶ポリエステルとしては、例えば、溶融時に光学異方性を示し、450℃以下の温度で異方性溶融体を形成するものを使用することができる。そのような液晶ポリエステルとしては、例えば、下記一般式(1)乃至(3)で表される構造単位を有しているものを使用することができる。
 下記一般式(1)乃至(3)において、Ar1は、例えばフェニレン基又はナフチレン基を表し、Ar2は、例えばフェニレン基、ナフチレン基又は下記一般式(4)で表される基を表し、Ar3は、例えばフェニレン基又は下記一般式(4)で表される基を表し、X及びYは、例えば、それぞれ独立にO又はNHを表している。Ar、Ar2及びAr3の芳香族環に結合している水素原子は、例えば、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。また、下記一般式(4)において、Ar11及びAr12は、例えば、それぞれ独立にフェニレン基又はナフチレン基を表し、Zは、例えば、O、CO又はSO2を表している。
 -O-Ar1-CO- …(1)
 -CO-Ar2-CO- …(2)
 -X-Ar3-Y- …(3)
 -Ar11-Z-Ar12- …(4)
 この液晶ポリエステルでは、上記一般式(1)乃至(3)で表される構造単位の合計に対して、上記一般式(1)で表される構造単位の割合は、例えば、30乃至80モル%の範囲内にある。この場合、上記一般式(1)乃至(3)で表される構造単位の合計に対して、上記一般式(2)で表される構造単位の割合は、例えば、10乃至35モル%の範囲内にある。そして、この場合、上記一般式(1)乃至(3)で表される構造単位の合計に対して、上記一般式(3)で表される構造単位の割合は、例えば、10乃至35モル%の範囲内にある。
 この液晶ポリエステルでは、上記一般式(1)乃至(3)で表される構造単位の合計に対して、上記一般式(1)で表される構造単位の割合は、30乃至45モル%の範囲内にあってもよい。この場合、上記一般式(1)乃至(3)で表される構造単位の合計に対して、上記一般式(2)で表される構造単位の割合は、27.5乃至35モル%の範囲内にあってもよい。そして、この場合、上記一般式(1)乃至(3)で表される構造単位の合計に対して、上記一般式(3)で表される構造単位の割合は、27.5乃至35モル%の範囲内にあってもよい。
 液晶ポリエステルは、芳香族ジアミン由来の構成単位及び水酸基を有する芳香族アミン由来の構成単位からなる群より選ばれる少なくとも1種の構成単位(a)を、全構成単位に対して27.5乃至35.0モル%の範囲内で含んでいることが好ましい。特に、上記一般式(3)で表される構成単位として構成単位(a)を有している液晶ポリエステルは、上述した効果、即ち、「溶融時に光学異方性を示し、450℃以下の温度で異方性溶融体を形成する」という効果がより良好に得られる傾向にある。
 一般式(1)で表される構造単位は芳香族ヒドロキシカルボン酸由来の構造単位であり、一般式(2)で表される構造単位は芳香族ジカルボン酸由来の構造単位であり、一般式(3)で表される構造単位は芳香族ジアミン又はフェノール性水酸基を有する芳香族アミンに由来の構造単位である。このような構造単位(1)乃至(3)をそれぞれ誘導する化合物をモノマーとして用い、それらモノマーを重合することにより、上記の液晶ポリエステルが得られる。
 なお、この液晶ポリエステルを得るための重合反応の進行を容易にする観点からは、上述のモノマーの代わりに、それらのエステル形成性誘導体やアミド形成性誘導体を用いてもよい。
 上記カルボン酸のエステル形成性誘導体又はアミド形成性誘導体としては、例えば、ポリエステルやポリアミドを生成する反応を促進するように、カルボキシル基が酸塩化物及び酸無水物などの反応活性が高い誘導体となっているもの、並びに、エステル交換反応又はアミド交換反応によりポリエステルやポリアミドを生成するように、カルボキシル基がアルコール類やエチレングリコールなどとエステルを形成しているものが挙げられる。
 また、上記フェノール性水酸基のエステル形成性誘導体又はアミド形成性誘導体としては、例えば、エステル交換反応によりポリエステルやポリアミドを生成するように、フェノール性水酸基がカルボン酸類とエステルを形成しているものが挙げられる。
 また、上記アミノ基のアミド形成性誘導体としては、例えば、アミド交換反応によりポリアミドを生成するように、アミノ基がカルボン酸類とエステルを形成しているものが挙げられる。
 上記構造単位(1)乃至(3)で表される構造単位としては、具体的には、下記のものを例示することができる。但し、上記構造単位(1)乃至(3)で表される構造単位は、これらに限定されるものではない。
 一般式(1)で表される構造単位としては、例えば、p-ヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸及び4-ヒドロキシ-4’-ビフェニルカルボン酸から選ばれる芳香族ヒドロキシカルボン酸に由来の構造単位等が挙げられる。液晶ポリエステルは、これら構造単位のうち1種のみを含んでいてもよく、2種以上を含んでいてもよい。特に、p-ヒドロキシ安息香酸由来の構造単位又は2-ヒドロキシ-6-ナフトエ酸由来の構造単位を有する芳香族液晶ポリエステルを用いることが好ましい。
 全構造単位の合計に対して、一般式(1)で表される構造単位が占める割合は、例えば30.0乃至45.0モル%の範囲内にあり、好ましくは35.0乃至40.0モル%の範囲内にある。
 一般式(1)で表される構造単位の全構造単位に対する割合を大きくすると、後述する非プロトン性溶媒に対する液晶ポリエステルの溶解性が低下する。この割合が小さい場合、ポリエステルが液晶性を示さない傾向がある。
 一般式(2)で示される構造単位としては、例えば、テレフタル酸、イソフタル酸及び2,6-ナフタレンジカルボン酸から選ばれる芳香族ジカルボン酸に由来の構造単位が挙げられる。液晶ポリエステルは、これら構造単位のうち1種のみを含んでいてもよく、2種以上を含んでいてもよい。とりわけ、後述する非プロトン性溶媒に対する液晶ポリエステルの溶解性の観点からは、イソフタル酸由来の構造単位を有する液晶ポリエステルを用いることが好ましい。
 全構造単位の合計に対して、一般式(2)で表される構造単位が占める割合は、例えば27.5乃至35.0モル%の範囲内にあり、好ましくは30.0乃至32.5モル%の範囲内にある。
 一般式(2)で表される構造単位の全構造単位に対する割合を大きくすると、ポリエステルの液晶性が低下する傾向がある。この割合を小さくすると、非プロトン性溶媒に対するポリエステルの溶解性が低下する傾向がある。
 一般式(3)で表される構造単位としては、例えば、3-アミノフェノール及び4-アミノフェノールなどのフェノール性水酸基を有する芳香族アミン由来構造単位、並びに、1,4-フェニレンジアミン及び1,3-フェニレンジアミンなどの芳香族ジアミン由来の構造単位を挙げることができる。液晶ポリエステルは、これらの構造単位のうち1種のみを含んでいてもよく、2種以上を含んでいてもよい。なかでも、液晶ポリエステルの製造において行う重合反応の観点から、4-アミノフェノール由来の構造単位を有する液晶ポリエステルを用いることが好ましい。
 全構造単位の合計に対して、一般式(3)で表される構造単位が占める割合は、例えば27.5乃至35.0モル%の範囲内にあり、好ましくは30.0乃至32.5モル%の範囲内にある。
 一般式(3)で表される構造単位の全構造単位に対する割合を大きくすると、ポリエステルの液晶性が低下する傾向がある。この割合を小さくすると、非プロトン性溶媒に対する液晶ポリエステルの溶解性が低下する傾向がある。
 なお、一般式(3)で表される構造単位と、一般式(2)で表される構造単位とは、実質的に等量であることが好ましい。一般式(3)で表される構造単位の全構造単位に対する割合と一般式(2)で表される構造単位の全構造単位に対する割合との差を-10乃至+10モル%の範囲内とすることにより、芳香族液晶ポリエステルの重合度を制御することもできる。
 上記液晶ポリエステルの製造方法は、特に限定されない。この液晶ポリエステルの製造方法としては、例えば、一般式(1)で表される構造単位に対応する芳香族ヒドロキシカルボン酸と、一般式(3)で表される構造単位に対応する水酸基を有する芳香族アミン又は芳香族ジアミンのフェノール性水酸基若しくはアミノ基とを、過剰量の脂肪酸無水物によりアシル化し、得られたアシル化物(エステル形成性誘導体やアミド形成性誘導体)と、一般式(2)で表される構造単位に対応する芳香族ジカルボン酸とをエステル交換(重縮合)して溶融重合する方法が挙げられる。
 上記アシル化物としては、予めアシル化して得た脂肪酸エステルを用いてもよい(例えば、特開2002-220444号公報又は特開2002-146003号公報を参照のこと)。
 上記アシル化反応においては、脂肪酸無水物の添加量は、フェノール性水酸基とアミノ基との合計に対して、1.0乃至1.2倍当量であることが好ましく、1.05乃至1.1倍当量であることがより好ましい。
 脂肪酸無水物の添加量が少ない場合、エステル交換(重縮合)時にアシル化物や原料モノマーなどが昇華し、反応系が閉塞し易い傾向にある。また、脂肪酸無水物の添加料が多い場合、得られる芳香族液晶ポリエステルの着色が著しくなる傾向にある。
 上記アシル化反応は、130乃至180℃で5分乃至10時間に亘って行うことが好ましく、140乃至160℃で10分乃至3時間に亘って行うことがより好ましい。
 上記アシル化反応に使用される脂肪酸無水物は、特に限定されない。この脂肪酸無水物としては、例えば、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水ピバル酸、無水2エチルヘキサン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロモ酢酸、無水ジブロモ酢酸、無水トリブロモ酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水グルタル酸、無水マレイン酸、無水コハク酸、及び無水β-ブロモプロピオン酸が挙げられる。これらは、単独で用いてもよく、2種類以上を混合して用いてもよい。
 これらの中でも、価格と取り扱い性との観点から、無水酢酸、無水プロピオン酸、無水酪酸及び無水イソ酪酸が好ましく、より好ましくは無水酢酸である。
 上記エステル交換及びアミド交換反応においては、アシル化物のアシル基がカルボキシル基の0.8乃至1.2倍当量であることが好ましい。
 また、上記エステル交換及びアミド交換反応は、130乃至400℃で0.1乃至50℃/分の割合で昇温しながら行うことが好ましく、150乃至350℃で0.3乃至5℃/分の割合で昇温しながら行うことがより好ましい。
 上記アシル化して得た脂肪酸エステルとカルボン酸やアミンとをエステル交換及びアミド交換させる際、平衡を移動させるため、副生する脂肪酸と未反応の脂肪酸無水物とは、蒸発させるなどして系外へ留去することが好ましい。
 なお、アシル化反応並びにエステル交換及びアミド交換反応は、触媒の存在下で行ってもよい。この触媒としては、例えば、ポリエステルの重合用触媒として慣用のものを使用することができる。そのような触媒としては、例えば、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム及び三酸化アンチモンなどの金属塩触媒、並びに、N,N-ジメチルアミノピリジン及びN-メチルイミダゾールなどの有機化合物触媒を挙げることができる。
 上記触媒の中でも、N,N-ジメチルアミノピリジン及びN-メチルイミダゾールなどの窒素原子を2個以上含む複素環状化合物が好ましく使用される(特開2002-146003号公報を参照のこと)。
 上記触媒は、通常、モノマー類の投入時に投入される。この触媒は、アシル化後に除去してもよく、除去しなくてもよい。この触媒を除去しない場合には、アシル化と連続してエステル交換を行うことができる。
 上記エステル交換及びアミド交換反応による重合は、通常、溶融重合により行なわれるが、溶融重合と固相重合とを併用してもよい。固相重合は、溶融重合工程からポリマーを抜き出し、これを粉砕してパウダー状又はフレーク状にした後、公知の固相重合方法により行うことができる。具体的には、例えば、窒素等の不活性雰囲気下、20乃至350℃で、1乃至30時間に亘って固相状態で熱処理する方法が挙げられる。固相重合は、攪拌しながら行ってもよく、攪拌することなく静置した状態で行ってもよい。
 なお、適当な攪拌機構を設けることにより、溶融重合と固相重合とを同一の反応槽において行うこともできる。
 固相重合後、得られた液晶ポリエステルは、公知の方法により、例えばペレット状に成形してもよい。
 上記液晶ポリエステルの製造は、回分装置及び/又は連続装置を用いて行うことができる。
 上記液晶ポリエステルは、下記の方法で求められる流動開始温度が250℃以上であることが好ましく、260℃以上であることがより好ましい。このような液晶ポリエステルを使用した場合、流動開始温度がより低い液晶ポリエステルを使用した場合と比較して、絶縁層3と金属箔4との間で、及び、絶縁層3と金属基板2との間で、より高度の密着性が得られる。
 また、上記ポリエステルは、流動開始温度が300℃以下であることが好ましく、290℃以下であることがより好ましい。このような液晶ポリエステルは、流動開始温度がより高い液晶ポリエステルと比較して、溶媒への溶解性がより高い傾向にある。
 ここで、「流動開始温度」とは、フローテスタによる溶融粘度の評価において、かかる芳香族ポリエステルの溶融粘度が9.8MPaの圧力下で4800Pa・s以下になる最低温度をいう。
 なお、1987年発行の書籍「液晶ポリマー-合成・成形・応用-」(小出直之編、95乃至105頁、シーエムシー、1987年6月5日発行)によれば、1970年代に液晶ポリエステル樹脂が開発されて以降、液晶ポリエステル樹脂の分子量の目安として、フロー温度(本明細書で使用している用語「流動開始温度」と同等)が用いられている。
 上記液晶ポリエステルの流動開始温度の制御は、例えば、溶融重合工程からポリマーを抜き出し、そのポリマーを粉砕してパウダー状又はフレーク状にした後、公知の固相重合方法により流動開始温度を調整することで容易に実施できる。
 より具体的には、例えば、溶融重合工程の後、窒素等の不活性雰囲気下、210℃を超える温度で、より好ましくは220乃至350℃の温度で、1乃至10時間に亘って固相状態で熱処理する方法によって得られる。固相重合は、攪拌しながら行ってもよく、攪拌することなく静置した状態で行ってもよい。例えば、窒素などの不活性雰囲気下、攪拌することなく静置した状態で、225℃で3時間に亘って固相重合を行ってもよい。
 無機充填材は、絶縁層3の全体に亘って分布している。無機充填材は、液晶ポリエステルと比較して熱伝導率は大きい。
 絶縁層3に占める無機充填材の割合は、例えば50乃至80体積%の範囲内にあり、典型的には50乃至65体積%の範囲内にある。この割合を過度に小さくすると、熱抵抗が大きくなるか又は耐電圧が低下する。この割合を過度に大きくすると、無機充填材同士の接着強度が低下するか、絶縁層3と金属基板2若しくは金属箔4との接着強度が低下するか、又は、絶縁層3の表面を平坦にすることが困難になる。
 無機充填材は、窒化硼素と、窒化アルミニウム及び酸化アルミニウムの少なくとも一方とからなる。これらの各々は、絶縁層3の全体に亘って略均一に分布している。
 窒化アルミニウム及び酸化アルミニウムは、例えば、略球状の粒子の形態で使用する。絶縁層3において、窒化アルミニウム及び酸化アルミニウムは、一次粒子の形態で分布していてもよく、二次粒子の形態で分布していてもよい。或いは、絶縁層3において、窒化アルミニウム及び酸化アルミニウムの一部は一次粒子の形態で分布し、残りは二次粒子の形態で分布していてもよい。
 窒化アルミニウム及び酸化アルミニウムの平均粒径は、例えば、5乃至30μmの範囲内にある。ここで、「平均粒径」は、レーザ回折散乱法によって測定した粒子の平均粒径を意味している。
 無機充填材に占める窒化アルミニウム及び/又は酸化アルミニウムの合計量の割合は、20乃至65体積%の範囲内にあり、典型的には20乃至50体積%の範囲内にある。この割合が過度に大きい場合、気孔が少ない絶縁層3を得ることは難しく、高い対電圧と小さな熱抵抗とを達成することは困難である。この割合が過度に小さい場合、高いピール強度を有している回路基板用積層板1及び金属ベース回路基板1’を得ることが困難である。
 窒化硼素は、例えば、鱗片状又は板状の粒子の形態で使用する。絶縁層3において、窒化硼素は、鱗片状又は板状の一次粒子の形態で分布していてもよい。或いは、絶縁層3において、窒化硼素は、鱗片状又は板状の一次粒子をその法線方向がランダムに配向するように凝集させてなる二次粒子の形態で分布していてもよい。典型的には、絶縁層3において、窒化硼素の一部は鱗片状又は板状の一次粒子の形態で分布し、他の一部は上記の二次粒子の形態で分布している。
 窒化硼素の平均粒径は、例えば、10乃至50μmの範囲内にある。なお、この平均粒径は、窒化アルミニウム及び酸化アルミニウムについて上述したのと同様の方法により得られるものである。
 無機充填材の少なくとも一部として、液晶ポリエステルとの密着性及び後述する分散液中での分散性を向上させるべく、表面処理を施したものを使用してもよい。この表面処理に使用可能な表面処理剤としては、例えば、シランカップリング剤、チタンカップリング剤、アルミニウム又はジルコニウム系のカップリング剤、長鎖脂肪酸、イソシアナート化合物、及び、例えば、エポキシ基、メトキシシラン基、アミノ基若しくは水酸基を含んだ極性高分子又は反応性高分子を挙げることができる。
 無機充填材に占める窒化硼素の割合は、35乃至80体積%の範囲内にあり、典型的には50乃至80体積%の範囲内にある。この割合が過度に大きい場合、高いピール強度を有している回路基板用積層板1及び金属ベース回路基板1’を得ることが困難である。この割合が過度に小さい場合、気孔が少ない絶縁層3を得ることは難しく、高い耐電圧と小さな熱抵抗とを達成することは困難である。
 金属箔4は、絶縁層3上に設けられている。金属箔4は、絶縁層3を間に挟んで金属基板2と向き合っている。
 金属箔4は、例えば、単体金属又は合金からなる。金属箔4の材料としては、例えば、銅又はアルミニウムを使用することができる。金属箔4の厚さは、例えば、10乃至500μmの範囲内にある。
 この回路基板用積層板1は、例えば、以下の方法により製造する。 
 まず、上述した液晶ポリエステルを溶媒に溶解させて、光学的に等方性の溶液を得る。
 液晶ポリエステルとしては、その溶媒への溶解性を考慮して、分子量が比較的小さなものを使用することが好ましい。なお、エポキシ樹脂などの熱硬化性樹脂は、保管している間に経時変化を生じる。これに対し、液晶ポリエステルは、熱可塑性であるため、そのような経時変化を生じない。従って、工業製品として安心して使用することができる。
 上記溶媒としては、ハロゲン原子を含まない非プロトン性溶媒を用いることが好ましい。そのような非プロトン性溶媒とは、例えば、ジエチルエーテル、テトラヒドロフラン及び1,4-ジオキサンなどのエーテル系溶媒;アセトン及びシクロヘキサノンなどのケトン系溶媒;酢酸エチルなどのエステル系溶媒;γ-ブチロラクトンなどのラクトン系溶媒;エチレンカーボネート及びプロピレンカーボネートなどのカーボネート系溶媒;トリエチルアミン及びピリジンなどのアミン系溶媒;アセトニトリル及びサクシノニトリルなどのニトリル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素及びN-メチルピロリドンなどのアミド系溶媒;ニトロメタン及びニトロベンゼンなどのニトロ系溶媒;ジメチルスルホキシド及びスルホランなどのスルフィド系溶媒;ヘキサメチルリン酸アミド及びトリn-ブチルリン酸などのリン酸系溶媒が挙げられる。
 これらの中でも、双極子モーメントが3乃至5の溶媒が、上述した液晶ポリエステルの溶解性の観点から好ましい。具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素、N-メチルピロリドン等のアミド系溶媒、及びγ-ブチロラクトン等のラクトン系溶媒が好ましく、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びN-メチルピロリドン(NMP)が特に好ましい。更に、1気圧における沸点が180℃以下である揮発性の高い溶媒を使用した場合、液晶ポリエステルと無機充填材とを含んだ分散液からなる塗膜を形成した後に、この塗膜から溶媒を除去し易い。この観点からは、N,N-ジメチルホルムアミド(DMF)及びN,N-ジメチルアセトアミド(DMAc)が特に好ましい。
 この分散液には、液晶ポリエステルを、非プロトン性溶媒100質量部に対して、例えば10乃至50質量部、好ましくは20乃至40質量部含有させる。液晶ポリエステルの量が過度に少ない場合、塗膜から大量の溶媒を除去しなければならない。それ故、塗膜の外観不良を生じ易い。液晶ポリエステルの量が過度に多くすると、上述した溶液又は分散液が高粘度化する傾向があり、その取り扱い性が低下する。
 次に、上述した無機充填材を先の溶液中に分散させて、ポリエステルと無機充填材とを含んだ分散液を得る。無機充填材は、例えば、ボールミル、3本ロール、遠心攪拌機又はビーズミルを用いて、粉砕しつつ上記溶液中に分散させてもよい。また、上記溶液に無機充填材を加えるのに先立って、この溶液に、シランカップリング剤及びチタンカップリング剤などのカップリング剤並びにイオン吸着剤などの添加剤を加えてもよい。
 次に、この分散液を、金属基板2及び金属箔4の少なくとも一方の上に塗布する。分散液の塗布には、例えば、ロールコート法、バーコート法又はスクリーン印刷法を利用することができる。連続式で行ってもよく、単板式で行ってもよい。
 必要に応じて塗膜を乾燥させた後、金属基板2と金属箔4とが塗膜を間に挟んで向き合うように重ね合わせる。更に、それらを熱プレスする。以上のようにして、回路基板用積層板1を得る。
 この方法では、液晶ポリエステルを含んだ塗膜を加熱プロセスに供する。液晶ポリエステルを加熱すると、その分子量が増大して、塗膜が硬化する。このようにして得られる絶縁層3は、機械的強度に優れている。
 更に、液晶ポリエステルは熱可塑性であるため、塗膜の乾燥後にメソゲンの配向を十分発達させることが可能である。即ち、分子量を十分に増大させる加熱プロセスを経ることにより、フォノン伝導のパス長さを長くすることができ、その結果、熱伝導率が大幅に向上する。
 また、典型的には窒化硼素の一次粒子は鱗片状又は板状であるため、乾燥後の塗膜を加熱し、液晶ポリエステルが流動し得る状態で塗膜に圧力を加えると、窒化硼素の一次粒子の一部は、その方位を変化させる。これにより、気泡、液晶ポリエステル、窒化アルミニウム及び酸化アルミニウムの移動が促進され、気泡が少なく且つ緻密な絶縁層3が得られる。
 また、圧力を加える前の塗膜において、窒化硼素の少なくとも一部が、鱗片状又は板状の一次粒子をその法線方向がランダムに配向するように凝集させてなる二次粒子の形態で存在している場合、この二次粒子が含んでいる一次粒子の少なくとも一部は、その主面が塗膜の下地表面に対して垂直又は斜めになるように配向している。塗膜に圧力を加えると、下地表面に対して垂直又は斜めに配向した一次粒子の一部は、その方位を変化させるが、それら一次粒子の全てがその方位を変化させる訳ではない。また、塗膜に圧力を加えることによって下地表面に対して平行に配向する一次粒子は、方位を変化させる一次粒子のうちの一部に過ぎない。即ち、圧力を加えた後の塗膜では、窒化硼素の一次粒子の少なくとも一部は、塗膜の下地表面に対して垂直又は斜めに配向している。窒化硼素の一次粒子がそのように配向している絶縁層3は、窒化硼素の一次粒子がZ方向に対して垂直に配向している絶縁層3と比較して、Z方向における熱伝導率が高い。即ち、窒化硼素を上述した形態で存在させると、より優れた性能の回路基板用積層板1を得ることができる。
 次に、上述した回路基板用積層板1から得られる金属ベース回路基板1’について説明する。 
 図3は、図1及び図2に示す回路基板用積層板1から得られる金属ベース回路基板1’の一例を概略的に示す断面図である。
 図3に示す金属ベース回路基板1’は、金属基板2と、絶縁層3と、回路パターン4’とを含んでいる。回路パターン4’は、図1及び図2を参照しながら説明した回路基板用積層板1の金属箔4をパターニングすることにより得られる。このパターニングは、例えば、金属箔4の上にマスクパターンを形成し、金属箔4の露出部をエッチングによって除去することにより得られる。金属ベース回路基板1’は、例えば、先の回路基板用積層板1の金属箔4に対して上記のパターニングを行い、必要に応じて、切断及び穴あけ加工などの加工を行うことにより得ることができる。
 この金属ベース回路基板1’は、上述した回路基板用積層板1から得られるので、放熱性及び耐熱性に優れている。加えて、この金属ベース回路基板1’は、絶縁層3に占める無機充填材の割合が高いにも拘らず、回路パターン4’は十分なピール強度を有している。
 以下に、本発明の例を記載する。
 <液晶ポリエステルの製造>
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、1976g(10.5モル)の2-ヒドロキシ-6-ナフトエ酸と、1474g(9.75モル)の4-ヒドロキシアセトアニリドと、1620g(9.75モル)のイソフタル酸と、2374g(23.25モル)の無水酢酸とを仕込んだ。反応器内の雰囲気を窒素ガスで十分に置換した後、窒素ガス気流下で15分かけて150℃まで昇温させ、この温度で3時間に亘って還流させた。
 その後、留出した副生酢酸及び未反応の無水酢酸を留去しながら、170分かけて300℃まで昇温させ、トルクの上昇が認められた時点を反応終了と見做して、内容物を取り出した。取り出した内容物を室温まで冷却し、粉砕機で粉砕することにより、比較的低分子量の液晶ポリエステルの粉末を得た。
 得られた粉末の流動開始温度を島津製作所フローテスタCFT-500によって測定したところ、235℃であった。また、この液晶ポリエステル粉末を、窒素雰囲気において223℃で3時間に亘って加熱処理して、固相重合を生じさせた。固相重合後の液晶ポリエステルの流動開始温度は270℃であった。
 <液晶ポリエステル溶液の調製>
 上述した方法によって得られた2200gの液晶ポリエステルを、7800gのN,N-ジメチルアセトアミド(DMAc)に加え、100℃で2時間に亘って加熱して液晶ポリエステル溶液を得た。この溶液の粘度は320cPであった。なお、この粘度は、B型粘度計(東機産業製、「TVL-20型」、ロータNo.21(回転数:5rpm))を用いて、23℃で測定した値である。
 <例1>
 上述した方法により得られた液晶ポリエステル溶液に窒化アルミニウム(古河電子工業株式会社製、「FAN-f30」、平均粒径30μm)を添加して、分散液を調製した。ここでは、窒化アルミニウムは、この分散液から得られる絶縁層において、窒化アルミニウムからなる無機充填材が占める割合が65体積%となるように添加した。
 この分散液を遠心式攪拌脱泡機で5分間に亘って攪拌した後、これを厚さが70μmの銅箔上に約130μmの厚さに塗布した。次いで、この塗膜を100℃で20分間に亘って乾燥させた後、340℃で3時間に亘って熱処理した。
 次に、金属基板と先の銅箔とをそれらの間に塗膜が介在するように重ね合わせた。ここでは、金属基板として、熱伝導率が140W・m-1・K-1であり、厚さが2.0mmであるアルミニウム合金基板を使用した。そして、これらを、20MPaの圧力を加えながら340℃で20分間に亘って加熱処理して熱接着させた。
 この際、圧力を加える前の塗膜の厚さD1と、熱接着後の塗膜、即ち絶縁層の厚さD2とを測定し、厚さD2と厚さD1との差D1-D2を求めた。そして、差D1-D2と厚さD1との比(D1-D2)/D1を圧縮率として求めた。その結果、圧縮率は、14.6%であった。
 また、分散液の組成及び単位面積当たりの塗工量などに基づいて、気泡含有率がゼロであると仮定した場合の絶縁層の厚さD2’とを算出した。そして、厚さD2と厚さD2’との差D2-D2’と厚さD2との比(D2-D2’)/D2を気孔率として求めた。その結果、気孔率は20.0%であった。
 次に、このようにして得られた回路基板用積層板を用いて、耐電圧、Tピール強度及び熱抵抗の測定をそれぞれ以下の条件で行った。
 耐電圧:
 所定の寸法に切断した回路基板用積層板を絶縁油中に浸漬させ、室温で銅箔に交流電圧を印加した。印加電圧を上昇させ、絶縁破壊を生じる最低電圧を耐電圧とした。
 Tピール強度試験:
 所定の寸法に切断した回路基板用積層板の銅箔をエッチングにより部分的に除去して、幅10mmの銅箔パターンを形成した。この銅箔パターンの一端を掴み、銅箔パターンのうち剥離した部分が金属基板の主面に対して垂直となるように力を加えながら、銅箔パターンを50mm/分の速度で金属基板から引き剥がした。このとき、銅箔パターンに加えた力をTピール強度とした。
 熱抵抗:
 30mm×40mmの寸法に切断した回路基板用積層板の銅箔をエッチングにより部分的に除去して、14mm×10mmのランドを形成した。このランドに半田を用いてトランジスタ(C2233)を取り付けた後、これを、金属基板がシリコーングリース層を介して冷却装置の冷却面と向き合うように水冷却装置にセットした。次いで、トランジスタに30Wの電力Pを供給して、トランジスタの温度T1と冷却装置の冷却面の温度T2とを測定した。このようにして得られた温度T1と温度T2との差T1-T2を求め、この差T1-T2と供給した電力Pとの比(T1-T2)/Pを熱抵抗とした。
 以上の条件で各測定を行ったところ、耐電圧は1.5kV、Tピール強度は13.6N/cm、熱抵抗は0.20℃/Wであった。
 <例2>
 上述した方法により得られた液晶ポリエステル溶液に、例1において使用したのと同様の窒化アルミニウムと窒化ホウ素(水島合金鉄株式会社製、「HP-40」、平均粒径20μm)とを添加して、分散液を調製した。ここでは、窒化アルミニウムと窒化ホウ素とは、この分散液から得られる絶縁層において、窒化アルミニウムと窒化ホウ素とからなる無機充填材が占める割合が65体積%となるように、及び、無機充填材に占める窒化ホウ素の割合(以下、「BNブレンド率」という)が25体積%となるように添加した。
 以上のようにして調製した分散液を使用したこと以外は、例1で行ったのと同様の方法により回路基板用積層板を製造した。なお、ここでも、例1で行ったのと同様の方法により、圧縮率及び気孔率を求めた。その結果、圧縮率及び気孔率は、それぞれ、18.0%及び10.8%であった。
 また、この回路基板用積層板を用いたこと以外は例1で行ったのと同様の方法により、耐電圧、Tピール強度及び熱抵抗の測定を行った。その結果、耐電圧は2.0kV、Tピール強度は13.1N/cm、熱抵抗は0.18℃/Wであった。
 <例3>
 BNブレンド率を35体積%としたこと以外は、例2で行ったのと同様の方法により回路基板用積層板を製造した。なお、ここでも、例1で行ったのと同様の方法により、圧縮率及び気孔率を求めた。その結果、圧縮率及び気孔率は、それぞれ、20.0%及び7.0%であった。
 また、この回路基板用積層板を用いたこと以外は例1で行ったのと同様の方法により、耐電圧、Tピール強度及び熱抵抗の測定を行った。その結果、耐電圧は4.0kV、Tピール強度は12.3N/cm、熱抵抗は0.17℃/Wであった。
 <例4>
 BNブレンド率を50体積%としたこと以外は、例2で行ったのと同様の方法により回路基板用積層板を製造した。なお、ここでも、例1で行ったのと同様の方法により、圧縮率及び気孔率を求めた。その結果、圧縮率及び気孔率は、それぞれ、21.7%及び1.3%であった。
 また、この回路基板用積層板を用いたこと以外は例1で行ったのと同様の方法により、耐電圧、Tピール強度及び熱抵抗の測定を行った。その結果、耐電圧は7.0kV、Tピール強度は11.6N/cm、熱抵抗は0.16℃/Wであった。
 <例5>
 BNブレンド率を80体積%としたこと以外は、例2で行ったのと同様の方法により回路基板用積層板を製造した。なお、ここでも、例1で行ったのと同様の方法により、圧縮率及び気孔率を求めた。その結果、圧縮率及び気孔率は、それぞれ、29.0%及び0.5%であった。
 また、この回路基板用積層板を用いたこと以外は例1で行ったのと同様の方法により、耐電圧、Tピール強度及び熱抵抗の測定を行った。その結果、耐電圧は8.0kV、Tピール強度は7.5N/cm、熱抵抗は0.15℃/Wであった。
 <例6>
 窒化アルミニウムの代わりに例2において使用したのと同様の窒化ホウ素を使用したこと以外は、例1で行ったのと同様の方法により回路基板用積層板を製造した。なお、ここでも、例1で行ったのと同様の方法により、圧縮率及び気孔率を求めた。その結果、圧縮率及び気孔率は、それぞれ、33.3%及び0.1%であった。
 また、この回路基板用積層板を用いたこと以外は例1で行ったのと同様の方法により、耐電圧、Tピール強度及び熱抵抗の測定を行った。その結果、耐電圧は9.0kV、Tピール強度は5.0N/cm、熱抵抗は0.15℃/Wであった。
 <例7>
 窒化アルミニウムの代わりに酸化アルミニウム(住友化学株式会社製、「AA-5」、平均粒径5μm)を使用したこと以外は、例1で行ったのと同様の方法により回路基板用積層板を製造した。なお、ここでも、例1で行ったのと同様の方法により、圧縮率及び気孔率を求めた。その結果、圧縮率及び気孔率は、それぞれ、13.0%及び25.0%であった。
 また、この回路基板用積層板を用いたこと以外は例1で行ったのと同様の方法により、耐電圧、Tピール強度及び熱抵抗の測定を行った。その結果、耐電圧は1.5kV、Tピール強度は15.9N/cm、熱抵抗は0.26℃/Wであった。
 <例8>
 上述した方法により得られた液晶ポリエステル溶液に、例7において使用したのと同様の酸化アルミニウムと、例2において使用したのと同様の窒化ホウ素とを添加して、分散液を調製した。ここでは、酸化アルミニウムと窒化ホウ素とは、この分散液から得られる絶縁層において、酸化アルミニウムと窒化ホウ素とからなる無機充填材が占める割合が65体積%となるように、及び、BNブレンド率が25体積%となるように添加した。
 以上のようにして調製した分散液を使用したこと以外は、例1で行ったのと同様の方法により回路基板用積層板を製造した。なお、ここでも、例1で行ったのと同様の方法により、圧縮率及び気孔率を求めた。その結果、圧縮率及び気孔率は、それぞれ、17.0%及び13.0%であった。
 また、この回路基板用積層板を用いたこと以外は例1で行ったのと同様の方法により、耐電圧、Tピール強度及び熱抵抗の測定を行った。その結果、耐電圧は1.5kV、Tピール強度は12.9N/cm、熱抵抗は0.23℃/Wであった。
 <例9>
 BNブレンド率を35体積%としたこと以外は、例8で行ったのと同様の方法により回路基板用積層板を製造した。なお、ここでも、例1で行ったのと同様の方法により、圧縮率及び気孔率を求めた。その結果、圧縮率及び気孔率は、それぞれ、19.0%及び8.5%であった。
 また、この回路基板用積層板を用いたこと以外は例1で行ったのと同様の方法により、耐電圧、Tピール強度及び熱抵抗の測定を行った。その結果、耐電圧は4.0kV、Tピール強度は12.3N/cm、熱抵抗は0.20℃/Wであった。
 <例10>
 BNブレンド率を50体積%としたこと以外は、例8で行ったのと同様の方法により回路基板用積層板を製造した。なお、ここでも、例1で行ったのと同様の方法により、圧縮率及び気孔率を求めた。その結果、圧縮率及び気孔率は、それぞれ、22.0%及び1.0%であった。
 また、この回路基板用積層板を用いたこと以外は例1で行ったのと同様の方法により、耐電圧、Tピール強度及び熱抵抗の測定を行った。その結果、耐電圧は8.0kV、Tピール強度は11.1N/cm、熱抵抗は0.17℃/Wであった。
 <例11>
 BNブレンド率を80体積%としたこと以外は、例8で行ったのと同様の方法により回路基板用積層板を製造した。なお、ここでも、例1で行ったのと同様の方法により、圧縮率及び気孔率を求めた。その結果、圧縮率及び気孔率は、それぞれ、29.0%及び0.5%であった。
 また、この回路基板用積層板を用いたこと以外は例1で行ったのと同様の方法により、耐電圧、Tピール強度及び熱抵抗の測定を行った。その結果、耐電圧は8.5kV、Tピール強度は7.9N/cm、熱抵抗は0.16℃/Wであった。 
 例1乃至例11において得られた結果を、下記表1及び図4乃至図8に示す。
Figure JPOXMLDOC01-appb-T000001
 図4は、無機充填材に占める窒化硼素の割合が絶縁層の圧縮率に及ぼす影響の例を示すグラフである。図5は、無機充填材に占める窒化硼素の割合が絶縁層に占める気孔の割合に及ぼす影響の例を示すグラフである。図6は、無機充填材に占める窒化硼素の割合が金属箔のピール強度に及ぼす影響の例を示すグラフである。図7は、無機充填材に占める窒化硼素の割合が回路基板用積層板の耐電圧に及ぼす影響の例を示すグラフである。図8は、無機充填材に占める窒化硼素の割合が回路基板用積層板の熱抵抗に及ぼす影響の例を示すグラフである。
 BNブレンド率を高くすると、圧縮率は図4に示すように大きくなり、気孔率は図5に示すように小さくなった。具体的には、圧縮率は、BNブレンド率を増加させると、その増分に対してほぼ一定の割合で減少した。また、気孔率は、BNブレンド率を増加させると、BNブレンド率が0乃至50体積%の範囲内では、その増分に対してほぼ一定の割合で減少し、BNブレンド率が50乃至100体積%の範囲内では、その増分に対する変化は僅かであった。
 図6に示すように、ピール強度は、BNブレンド率を増加させると、その増分に対してほぼ一定の割合で低くなった。BNブレンド率が80体積%以下である場合、7.5N/cm以上のピール強度を達成することができた。
 図7に示すように、耐電圧は、BNブレンド率を増加させると高くなった。具体的には、耐電圧は、BNブレンド率が0乃至25体積%の範囲内では、BNブレンド率の増分に対してほぼ一定の割合で高くなっているものの、その変化は僅かであった。BNブレンド率が25乃至50体積%の範囲内では、耐電圧は、BNブレンド率の増分に対してほぼ一定の割合で高くなっており、BNブレンド率が0乃至25体積%の範囲内にある場合と比較して、BNブレンド率の増分に対する耐電圧の上昇はより大きかった。BNブレンド率が50乃至100体積%の範囲内では、耐電圧は、BNブレンド率の増分に対してほぼ一定の割合で高くなっているものの、BNブレンド率が25乃至50体積%の範囲内にある場合と比較して、BNブレンド率の増分に対する耐電圧の上昇はより小さかった。そして、BNブレンド率を35体積%以上とした場合、4kV以上の耐電圧を達成することができ、BNブレンド率を50体積%以上とした場合、7kV以上の耐電圧を達成することができた。
 図8に示すように、熱抵抗は、BNブレンド率を増加させると小さくなった。BNブレンド率が35体積%以上である場合、無機充填材の一部として酸化アルミニウムを使用した場合には0.20℃/W以下の熱抵抗を達成することができ、無機充填材の一部として窒化アルミニウムを使用した場合には0.17℃/W以下の熱抵抗を達成することができた。
 更なる利益及び変形は、当業者には容易である。それゆえ、本発明は、そのより広い側面において、ここに記載された特定の記載や代表的な態様に限定されるべきではない。従って、添付の請求の範囲及びその等価物によって規定される本発明の包括的概念の真意又は範囲から逸脱しない範囲内で、様々な変形が可能である。

Claims (6)

  1.  金属基板と、
     前記金属基板上に設けられ、液晶ポリエステルと50体積%以上の無機充填材とを含有し、前記無機充填材は窒化硼素と窒化アルミニウム及び酸化アルミニウムの少なくとも一方とからなり、前記無機充填材に占める前記窒化硼素の割合は35乃至80体積%の範囲内にある絶縁層と、
     前記絶縁層上に設けられた金属箔と
    を具備した回路基板用積層板。
  2.  前記無機充填材に占める前記窒化硼素の割合は50乃至80体積%の範囲内にある請求項1に記載の回路基板用積層板。
  3.  前記液晶ポリエステルは、下記一般式(1)乃至(3)で表される構造単位を有し、下記一般式(1)乃至(3)で表される構造単位の合計に対して、下記一般式(1)で表される構造単位の割合は30乃至80モル%の範囲内にあり、下記一般式(2)で表される構造単位の割合は10乃至35モル%の範囲内にあり、下記一般式(3)で表される構造単位の割合は10乃至35モル%の範囲内にある請求項1又は2に記載の回路基板用積層板。
     -O-Ar1-CO- …(1)
     -CO-Ar2-CO- …(2)
     -X-Ar3-Y- …(3)
    (式中、Ar1は、フェニレン基又はナフチレン基を表し、Ar2は、フェニレン基、ナフチレン基又は下記一般式(4)で表される基を表し、Ar3はフェニレン基又は下記式(4)で表される基を表し、X及びYは、それぞれ独立に、O又はNHを表している。Ar、Ar2及びAr3の芳香族環に結合している水素原子は、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
     -Ar11-Z-Ar12- …(4)
    (式中、Ar11及びAr12は、それぞれ独立に、フェニレン基又はナフチレン基を表し、Zは、O、CO又はSO2を表している。)
  4.  金属基板と、
     前記金属基板上に設けられ、液晶ポリエステルと50体積%以上の無機充填材とを含有し、前記無機充填材は窒化硼素と窒化アルミニウム及び酸化アルミニウムの少なくとも一方とからなり、前記無機充填材に占める前記窒化硼素の割合は35乃至80体積%の範囲内にある絶縁層と、
     前記絶縁層上に設けられた回路パターンと
    を具備した金属ベース回路基板。
  5.  前記無機充填材に占める前記窒化硼素の割合は50乃至80体積%の範囲内にある請求項4に記載の金属ベース回路基板。
  6.  前記液晶ポリエステルは、下記一般式(1)乃至(3)で表される構造単位を有し、下記一般式(1)乃至(3)で表される構造単位の合計に対して、下記一般式(1)で表される構造単位の割合は30乃至80モル%の範囲内にあり、下記一般式(2)で表される構造単位の割合は10乃至35モル%の範囲内にあり、下記一般式(3)で表される構造単位の割合は10乃至35モル%の範囲内にある請求項4又は5に記載の金属ベース回路基板。
     -O-Ar1-CO- …(1)
     -CO-Ar2-CO- …(2)
     -X-Ar3-Y- …(3)
    (式中、Ar1は、フェニレン基又はナフチレン基を表し、Ar2は、フェニレン基、ナフチレン基又は下記一般式(4)で表される基を表し、Ar3はフェニレン基又は下記式(4)で表される基を表し、X及びYは、それぞれ独立に、O又はNHを表している。Ar、Ar2及びAr3の芳香族環に結合している水素原子は、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
     -Ar11-Z-Ar12- …(4)
    (式中、Ar11及びAr12は、それぞれ独立に、フェニレン基又はナフチレン基を表し、Zは、O、CO又はSO2を表している。)
PCT/JP2011/061167 2010-05-27 2011-05-16 回路基板用積層板及び金属ベース回路基板 WO2011148805A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127030877A KR101618401B1 (ko) 2010-05-27 2011-05-16 회로 기판용 적층판 및 금속 베이스 회로 기판
CN201180026282.7A CN102948264B (zh) 2010-05-27 2011-05-16 电路基板用层叠板及金属基底电路基板
US13/685,972 US9357642B2 (en) 2010-05-27 2012-11-27 Circuit board laminate and metal-based circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010121940A JP5487010B2 (ja) 2010-05-27 2010-05-27 回路基板用積層板及び金属ベース回路基板
JP2010-121940 2010-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/685,972 Continuation US9357642B2 (en) 2010-05-27 2012-11-27 Circuit board laminate and metal-based circuit board

Publications (1)

Publication Number Publication Date
WO2011148805A1 true WO2011148805A1 (ja) 2011-12-01

Family

ID=45003796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061167 WO2011148805A1 (ja) 2010-05-27 2011-05-16 回路基板用積層板及び金属ベース回路基板

Country Status (6)

Country Link
US (1) US9357642B2 (ja)
JP (1) JP5487010B2 (ja)
KR (1) KR101618401B1 (ja)
CN (1) CN102948264B (ja)
TW (1) TW201212740A (ja)
WO (1) WO2011148805A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133189A1 (ja) * 2013-02-28 2014-09-04 住友化学株式会社 積層板及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101317184B1 (ko) 2012-03-20 2013-10-15 안강모 알루미늄 박을 사용한 피씨비용 기판 및 이의 제조 방법
WO2014007327A1 (ja) * 2012-07-06 2014-01-09 日本発條株式会社 回路基板用積層板、金属ベース回路基板及びパワーモジュール
JP2014154660A (ja) * 2013-02-07 2014-08-25 Sumitomo Chemical Co Ltd 積層板及び金属ベース回路基板
JP2014165485A (ja) * 2013-02-28 2014-09-08 Sumitomo Chemical Co Ltd 積層板及び金属ベース回路基板
KR102338614B1 (ko) * 2014-06-30 2021-12-13 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 방향족 폴리에스테르 함유 경화성 수지 조성물, 경화물, 전기·전자 부품 및 회로 기판
KR102318231B1 (ko) * 2015-01-29 2021-10-27 엘지이노텍 주식회사 무기충전재, 이를 포함하는 수지 조성물, 그리고 이를 이용한 방열 기판
JP6368657B2 (ja) * 2015-02-02 2018-08-01 日本発條株式会社 金属ベース回路基板及びその製造方法
CN107427155A (zh) * 2015-03-26 2017-12-01 住友化学株式会社 烤箱器皿及烤箱器皿成型用树脂组合物
US10763002B2 (en) * 2015-04-28 2020-09-01 Mitsui Mining & Smelting Co., Ltd. Surface-treated copper foil, manufacturing method therefor, printed circuit board copper-clad laminate, and printed circuit board
TWI608763B (zh) * 2016-07-01 2017-12-11 立邁科技股份有限公司 製作電路板的方法
JP7262918B2 (ja) * 2017-06-08 2023-04-24 日本発條株式会社 回路基板用積層板、金属ベース回路基板及びパワーモジュール

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106107A (ja) * 2005-07-29 2007-04-26 Sumitomo Chemical Co Ltd 液晶ポリエステル銅張積層板
JP2010098246A (ja) * 2008-10-20 2010-04-30 Kyocera Chemical Corp 金属基板および電子回路モジュール
WO2011037173A1 (ja) * 2009-09-25 2011-03-31 住友化学株式会社 金属箔積層体の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815290A (ja) * 1981-07-21 1983-01-28 電気化学工業株式会社 混成集積回路用基板
JPH05167212A (ja) 1991-12-16 1993-07-02 Matsushita Electric Works Ltd 金属ベース基板
EP1030366B1 (en) * 1999-02-15 2005-10-19 Mitsubishi Gas Chemical Company, Inc. Printed wiring board for semiconductor plastic package
EP1314760A4 (en) * 2000-08-29 2004-11-10 Otsuka Chemical Co Ltd RESIN COMPOSITION, MOLDED OBJECT MANUFACTURED FROM SUCH A COMPOSITION AND USE THEREOF
JP2002146003A (ja) 2000-08-29 2002-05-22 Sumitomo Chem Co Ltd 液晶性ポリエステル及びその製造方法
JP4670153B2 (ja) 2001-01-26 2011-04-13 住友化学株式会社 芳香族液晶ポリエステル及びその製造方法
TWI234210B (en) * 2002-12-03 2005-06-11 Sanyo Electric Co Semiconductor module and manufacturing method thereof as well as wiring member of thin sheet
JP4470390B2 (ja) 2003-04-17 2010-06-02 住友化学株式会社 液晶性ポリエステル溶液組成物
JP4501526B2 (ja) 2004-05-14 2010-07-14 住友化学株式会社 高熱伝導性樹脂組成物
JP4686274B2 (ja) * 2005-06-30 2011-05-25 ポリマテック株式会社 放熱部品及びその製造方法
TW200714666A (en) * 2005-07-29 2007-04-16 Sumitomo Chemical Co Laminate of liquid crystalline polyester with copper foil
JP2009024126A (ja) * 2007-07-23 2009-02-05 Nitto Denko Corp ポリマー組成物、熱伝導性シート、金属箔付高熱伝導接着シート、金属板付高熱伝導接着シート、金属ベース回路基板ならびにパワーモジュール
KR101156151B1 (ko) 2009-04-09 2012-06-18 스미또모 가가꾸 가부시키가이샤 금속 베이스 회로 기판 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106107A (ja) * 2005-07-29 2007-04-26 Sumitomo Chemical Co Ltd 液晶ポリエステル銅張積層板
JP2010098246A (ja) * 2008-10-20 2010-04-30 Kyocera Chemical Corp 金属基板および電子回路モジュール
WO2011037173A1 (ja) * 2009-09-25 2011-03-31 住友化学株式会社 金属箔積層体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133189A1 (ja) * 2013-02-28 2014-09-04 住友化学株式会社 積層板及びその製造方法
CN105075404A (zh) * 2013-02-28 2015-11-18 住友化学株式会社 层叠板及其制造方法
JPWO2014133189A1 (ja) * 2013-02-28 2017-02-09 住友化学株式会社 積層板及びその製造方法

Also Published As

Publication number Publication date
US9357642B2 (en) 2016-05-31
US20130081865A1 (en) 2013-04-04
JP2011249606A (ja) 2011-12-08
CN102948264A (zh) 2013-02-27
KR20130004930A (ko) 2013-01-14
CN102948264B (zh) 2016-09-21
KR101618401B1 (ko) 2016-05-04
TW201212740A (en) 2012-03-16
JP5487010B2 (ja) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5487010B2 (ja) 回路基板用積層板及び金属ベース回路基板
JP5427884B2 (ja) 金属ベース回路基板およびその製造方法
JP2010528149A (ja) 芳香族液晶ポリエステルアミド共重合体、この芳香族液晶ポリエステルアミド共重合体を使用したプリプレグ、及びこのプリプレグを使用した積層板並びに配線板
KR20120055569A (ko) 액정 폴리에스테르 조성물 및 이것을 사용한 전자 회로 기판
KR101891939B1 (ko) 액상 조성물 및 금속 베이스 회로 기판
JP2018029187A (ja) 積層板及び金属ベース回路基板
WO2013061975A1 (ja) 回路基板用積層板及び金属ベース回路基板
JP5721570B2 (ja) 熱硬化性樹脂製造用の組成物及びその硬化物、該硬化物を含むプリプレグ及びプリプレグ積層体、並びに該プリプレグまたはプリプレグ積層体を採用した金属箔積層板及びプリント配線板
JP5504064B2 (ja) 回路基板用積層板及び金属ベース回路基板の製造方法
JP6385917B2 (ja) 積層板及びその製造方法
JP5640121B2 (ja) 回路基板用積層板及び金属ベース回路基板
JP2012197325A (ja) 液状組成物および金属ベース回路基板
JP5855371B2 (ja) 熱硬化性樹脂製造用の組成物及びその硬化物、該硬化物を含むプリプレグ及びプリプレグ積層体、並びに該プリプレグまたはプリプレグ積層体を採用した金属箔積層板及びプリント配線板
JP2014165485A (ja) 積層板及び金属ベース回路基板
KR20140004927A (ko) 금속박 적층체 및 이의 제조방법
JP2014154660A (ja) 積層板及び金属ベース回路基板
KR20140005512A (ko) 방열수지 조성물 및 이를 이용한 금속 베이스 회로 기판
JP2013084847A (ja) 金属ベース回路基板の製造方法
JP2011124550A (ja) 電子回路基板およびその製造方法
JP2010129420A (ja) メンブレン回路基板
JP2011205072A (ja) 電子回路基板の製造方法
JP2014116544A (ja) 多層金属ベース回路基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026282.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127030877

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786504

Country of ref document: EP

Kind code of ref document: A1