WO2011148774A1 - 表面応力センサ - Google Patents
表面応力センサ Download PDFInfo
- Publication number
- WO2011148774A1 WO2011148774A1 PCT/JP2011/060673 JP2011060673W WO2011148774A1 WO 2011148774 A1 WO2011148774 A1 WO 2011148774A1 JP 2011060673 W JP2011060673 W JP 2011060673W WO 2011148774 A1 WO2011148774 A1 WO 2011148774A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flat member
- fixed end
- cantilever
- piezoresistive
- narrow
- Prior art date
Links
- 230000008859 change Effects 0.000 claims description 25
- 239000013078 crystal Substances 0.000 claims description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 238000005452 bending Methods 0.000 claims description 6
- 230000002618 waking effect Effects 0.000 claims 1
- 239000012141 concentrate Substances 0.000 abstract 1
- 230000003321 amplification Effects 0.000 description 39
- 238000003199 nucleic acid amplification method Methods 0.000 description 39
- 238000006073 displacement reaction Methods 0.000 description 34
- 230000035945 sensitivity Effects 0.000 description 27
- 238000001179 sorption measurement Methods 0.000 description 26
- 238000001514 detection method Methods 0.000 description 23
- 238000004458 analytical method Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 10
- 229920002873 Polyethylenimine Polymers 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000012491 analyte Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000004904 shortening Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000004335 scaling law Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 241000258963 Diplopoda Species 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 239000002156 adsorbate Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000005483 Hooke's law Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000011898 label-free detection Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/18—Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/022—Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q90/00—Scanning-probe techniques or apparatus not otherwise provided for
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/84—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/024—Mixtures
- G01N2291/02466—Biological material, e.g. blood
Definitions
- the present invention relates to a piezoresistive surface stress sensor (SSS) having a much higher sensitivity than a conventional piezoresistive cantilever type sensor.
- SSS piezoresistive surface stress sensor
- Non-Patent Document 1 Cantilever array sensors have attracted widespread interest due to their various advantages such as real-time characteristics and label-free detection (Non-Patent Document 1). Applications have been published that use cantilever arrays, including electrical nose (Non-Patent Documents 2 and 3), chemical and biological detection (Non-Patent Documents 4-9). Although many of such studies employ optical reading using a laser reflected at the cantilever surface, this approach entails several significant problems with respect to the actual application of the technology. First, the reading laser and its peripherals are expensive and difficult to miniaturize. In addition, attempts to detect molecules of interest in opaque liquids such as blood with optical readout are not possible due to large attenuation of the signal and significant changes in refractive index.
- Non-Patent Document 10 One of the most promising solutions to these problems is the piezoresistive cantilever array sensor (Non-Patent Document 10).
- the cantilever sensor surface stress is induced by the specimen adsorbing on a receptor layer (receptor layer) prepared in advance on the surface of the cantilever, whereby the cantilever bends. Therefore, the specimen can be detected by detecting this bending.
- FIG. 1 shows an example of the structure of a piezoresistive cantilever array sensor. This figure shows a cross-sectional view of a portion near the fixed end of the cantilever.
- a piezoresistive member is incorporated on the cantilever surface and protected by a nitride film.
- the upward / downward deflection of the cantilever due to stress on the cantilever surface causes compression / elongation strain in the piezoresistive member, which changes the resistance of the piezoresistive member.
- a change in the piezoresistive member due to such surface stress is detected using an electrical circuit as schematically shown in FIG.
- four sides that is, the piezoresistive member of the measurement cantilever as shown in FIG. 1, the reference cantilever and the other two resistors constitute a bridge, and one side, ie, the piezo in the measurement cantilever.
- the change in resistance of the resistance member can be detected based on the voltage of another opposing corner pair in a state where a voltage is applied to the pair of corners of the bridge.
- the piezoresistive cantilever array sensor does not require complex and bulky peripherals related to optical reading.
- CMOS complementary metal oxide semiconductor
- the sensor can be used for detection in any opaque liquid.
- Non-Patent Document 11 focused on various factors such as annealing time, doping level and measurement frequency, and obtained a signal-to-noise ratio (S / N) of almost 10 times. It has been shown that a multilayer cantilever using residual stress in each layer has better curvature and sensitivity (Non-patent Document 12). Various shapes such as a patterned surface and various positions of the receptor layer were studied, and a sensitivity improvement of several tens of percent was obtained (Non-patent Document 13).
- Measures for optimizing piezoresistive cantilevers for detection applications ie detection of analyte-induced surface stress
- AFMs normal atomic force microscopes
- optical read cantilevers The AFM sensor is based on “point force”, that is, the force applied to the probe located at the free end of the scanning cantilever.
- cantilever sensors are based on “surface stress” that is uniformly induced on the entire surface of the cantilever (Non-Patent Documents 14 and 15). Due to the surface stress, each part of the cantilever bends equally and, as a result, the displacement accumulates towards the free end, so that the displacement is maximized at the free end.
- the laser is usually reflected at the free end of the cantilever. Therefore, the entire surface stress induced on the cantilever can be detected efficiently.
- the signal of the piezoresistive cantilever depends not on the displacement of the free end but on the stress induced by the piezoresistor.
- the stress is concentrated near the fixed end, but in the case of a cantilever sensor, only a part of the stress caused by the specimen can be detected by piezoresistance. Can not. This is because this stress is uniformly distributed over the entire surface. Therefore, another optimization strategy for the piezoresistive cantilever array sensor is required to obtain greater stress at the piezoresistive portion to provide higher sensitivity.
- Non-Patent Document 16 shows a cantilever configuration that is stacked in the vertical direction to improve sensitivity, but this design requires a double stacked structure and is very difficult to manufacture.
- An object of the present invention is to provide a surface stress sensor having a novel and simple structure that provides dramatically higher sensitivity than a piezoresistive cantilever array sensor of the prior art.
- the first fixed end and the first free end are provided, the first free end is opposed to the first fixed end, A first flat member in which stress causes deflection; and a second fixed end and a second free end, disposed on substantially the same plane as the first flat member, wherein the second free end Is opposed to the second fixed end, has at least a part of a piezoresistive member, and is provided with a second flat member that causes a change in the resistance value of the piezoresistive member,
- the first free end of the first flat member is coupled to the second free end of the second flat member, and the deflection of the first flat member is the first of the second flat member.
- a surface stress sensor characterized in that a force is applied to the free end of 2 to cause a change in the resistance value of the piezoresistive member. It is provided.
- the second flat member has a narrow end portion on a fixed end side and a flat member main body, and the narrow end portion on the fixed end side is connected to the second fixed portion.
- a surface stress sensor is provided, which is disposed between the flat member main body and the narrow portion on the fixed end side includes the piezoresistive member.
- a length between the first fixed end and the first free end of the first flat member is equal to that of the second flat member.
- a surface stress sensor is provided that is longer than a length between the second fixed end and the second free end.
- the surface stress sensor according to any one of the first to third aspects, wherein substantially all of the second flat member is a narrow portion on the fixed end side. Is done.
- a surface stress sensor is provided in which the first flat member and the second flat member are arranged in the same direction.
- a surface stress sensor is provided in which the first flat member and the second flat member are arranged to face each other.
- a flat member having stress applied to the surface and having at least a pair of fixed ends, the flat member including a flat member main body and at least one fixed end side narrow portion, the fixed end side The narrow portion is disposed between the flat member main body and one of the fixed ends, the at least one narrow end portion has a piezoresistive member, and is fixed by stress on the flat member.
- a surface stress sensor characterized in that the bending caused in the narrow portion on the end side causes a change in the resistance value of the piezoresistive member.
- a flat member having stress applied to the surface and having at least two pairs of fixed ends is provided, and each fixed end of the pair is disposed to face the periphery of the flat member, and the flat member is a flat member.
- the flat member has two pairs of fixed ends and four narrow portions on the fixed end side, and the four narrow portions on the fixed end side respectively.
- Each of the narrow portions on the fixed end side is associated with the fixed end, and each of the fixed ends has a piezoresistive member, and each of the fixed ends is formed by the associated one of the narrow end portions on the fixed end side.
- the piezoresistive ratio of the piezoresistive member in the flat member that is connected to the main body varies depending on the direction in which the bending occurs, and the piezoresistive members in the narrow portion on the fixed end side are adjacent to each other.
- a surface stress sensor is provided in which the piezoresistive member is connected to form a full bridge, and the piezoresistive member forms four sides of the full bridge.
- the planar member is a p-type silicon single crystal film, the surface of the film is the (001) plane of the single crystal, and one of the pairs is the single crystal.
- the surface stress sensor of the present invention provides much higher sensitivity than conventional cantilever-based surface stress sensors without introducing complex and / or difficult fabrication configurations. Since the surface stress sensor according to an embodiment of the present invention is a structure that eliminates the free end, it is far more than conventional configurations due to its resistance to mechanical disturbances such as vibration around the sensor, fluid motion, and the like. Surface stress can be detected stably.
- FIG. 7 is a perspective view of the full bridge configuration surface stress sensor shown in FIG. 6. It is a graph which shows the dependence to the size (L) of the adsorption
- (A) is a diagram obtained by adding a circuit diagram of an electrical connection to the membrane surface stress sensor (MSS) array chip photograph of the fabricated inset is an enlarged image of the piezoresistive detection beam portion (R 3).
- (B) is a graph which shows the sensor output signal ( Vout ) from MSS in this array. It is principal part sectional drawing and a top view of the example of preparation of a surface stress sensor. It is the figure which compared distortion amplification in various shapes. It is a figure which shows distortion amplification by the narrow part of the fixed end side with respect to the given displacement in the case of point force.
- FIG. 6 is a diagram showing strain amplification in the case of a double lever shape for a given surface stress applied on the surface of an adsorption cantilever.
- the surface stress sensor of the present invention is provided with an “adsorption cantilever” and a “sensor cantilever”, and both are coupled at their free ends in the same plane.
- an “adsorption cantilever” and a “sensor cantilever” are coupled at their free ends in the same plane.
- the surface stress sensor of the present invention implements a new scaling law for piezoresistive cantilever sensors. That is, the sensitivity increases as the adsorption cantilever increases.
- a full-bridge structure that utilizes the anisotropic high piezoresistance coefficient of single crystal silicon, compared to ordinary cantilevers using piezoresistive elements of the same size, depending on the size of the adsorption lever or adsorption film, A dramatic increase in sensitivity of 3 orders of magnitude or more is obtained. Even a realistic design with a 500 ⁇ 500 ⁇ m 2 surface on the adsorber shows a S / N that is over 100 times higher than a piezoresistive cantilever designed for scanning purposes.
- the present inventor has already demonstrated the highest sensitivity (detection of sub-ppm level volatile organic compounds) using this cantilever designed for a scanning microscope (Non-Patent Document 10).
- the sensor i.e., the surface stress sensor (SSS) of the present invention, is any sensor that requires high sensitivity for detecting small quantities of objects using medical diagnostics, genetic and environmental studies, and low cost mobile devices. It is expected to provide many possibilities for applications.
- ⁇ , l, w and t are the resistivity, length, width and thickness of the piezoresistor, ⁇ and ⁇ are the stress and strain induced by the piezoresistor, and ⁇ is the piezoresistive constant.
- the subscript indicates the direction, and x, y, and z correspond to the longitudinal direction, the lateral direction, and the normal direction of the cantilever, respectively.
- the relationship between strain and stress can be derived from the generalized Hooke's law:
- E and ⁇ are the Young's modulus and Poisson's ratio of the cantilever, respectively.
- Non-Patent Documents 17 to 19 a cantilever made of single crystal Si (001) and having a p-type piezoresistance is considered in order to obtain a large signal and make maximum use of the high piezo coefficient of silicon.
- the piezoresistance coefficient is determined by the following relationship (Non-Patent Documents 17 to 19):
- ⁇ 11 , ⁇ 12 and ⁇ 44 are basic piezoresistance coefficients of the crystal.
- ⁇ 11 , ⁇ 12 and ⁇ 44 are in units of 10 ⁇ 11 Pa ⁇ 1 , respectively. +6.6, -1.1 and +138.1.
- the piezoresistance coefficients ⁇ x and ⁇ y are calculated as 71.8 ⁇ 10 ⁇ 11 Pa ⁇ 1 and ⁇ 66.3 ⁇ 10 ⁇ 11 Pa ⁇ 1 , respectively.
- E and ⁇ are 1.70 ⁇ 10 11 Pa and 0.28.
- the piezoresistive signal (ie, ⁇ R / R) is mainly determined by the difference between ⁇ x and ⁇ y .
- the receptor film can be regarded as almost two-dimensional (surface).
- a thin gold film with initial stress is placed on the surface of the cantilever to simulate the surface stress induced by the analyte.
- any other material can be used as a “surface stress generating layer”, but it is too hard or too soft, in other words too large or too small Young's modulus. This means that the results will be quite different from the analysis results.
- the thickness of the gold film (10 nm) and the applied initial stress (1.0 ⁇ 10 7 Pa) result in a surface stress of 0.1 N / m, Generally, it is judged to be the reported typical value of surface stress induced by the analyte, such as protein adsorption.
- the length, width, and thickness of the cantilever calculated individually are 135 ⁇ m, 30 ⁇ m, and 1 ⁇ m, respectively, and the two narrow end portions of (b) and (d) are 45 ⁇ m in length and 8 ⁇ m in width.
- the thickness is 1 ⁇ m.
- the stress is concentrated in a region close to the fixed end, and in the case of point force (circle), a higher ⁇ R / R is obtained in this region. .
- the signal is effectively increased by the narrow portion of the fixed end on the fixed end side.
- the point force is applied so that the displacement is the same (about 23 nm) at the free end in all cases. Therefore, by placing the piezoresistive portion near the fixed end or on the fixed end side, the applied point force can be effectively read out by the resistance change of the piezoresistor.
- the stress induced by the analyte is uniformly distributed over the entire cantilever surface.
- ⁇ R / R Due to the effect of asymmetry at the fixed end, ⁇ R / R is slightly increased in some regions, but there is no significant stress concentration even at the fixed end side, which results in a relatively small ⁇ R / R. Become. Furthermore, it is almost impossible to obtain a large signal wherever the piezoresistive portion is placed. This is because ⁇ R / R is determined by the difference between ⁇ x and ⁇ y , which is uniform and isotropic over the entire surface in most regions, as shown in FIGS. 3 (c) and 3 (d). This is because it is applied, that is, ( ⁇ x ⁇ y ) ⁇ 0. In FIGS. 3C and 3D, in-plane stress ( ⁇ 0.1 N / m) is uniformly applied to the entire surface.
- the lower larger cantilever is an adsorption cantilever (500 ⁇ 100 ⁇ 1 ⁇ m 3 ; Any shape as an example).
- the basic idea of this design is double. That is, 1) the total surface stress uniformly distributed over the entire surface of the adsorption cantilever is accumulated at the free end in the form of displacement; 2) the sensor cantilever as a point force applied to the free end of the sensor cantilever To move to. Since the surface stress induced in each part along the cantilever causes the corresponding part of the cantilever to bend, this bend is accumulated at the free end. Therefore, the displacement of the free end of the cantilever can be regarded as the sum of all surface stresses induced on the entire surface of the adsorption cantilever.
- the sensor cantilever receives a point force at its free end through mechanical coupling with the suction cantilever.
- This situation in the sensor cantilever is similar to a cantilever operating for scanning that detects the point force applied to the free end.
- the point force applied to the free end induces stress concentrated in a region near the fixed end, where the narrow portion on the fixed end side has this stress. Can be effectively enhanced. Therefore, this double cantilever shape allows the entire stress excited on the surface of the adsorption cantilever to be concentrated in a region near the fixed end type of the sensor cantilever.
- the piezoresistive portion embedded in the stress concentration region can effectively detect the entire surface stress applied to the adsorption cantilever.
- a R is the area of the piezoresistive portion.
- ⁇ R / R ave of the narrow width portion on the fixed end side of the sensor cantilever in the double cantilever configuration (FIG. 4A) is 2.85 ⁇ 10 ⁇ 4 , but a normal cantilever (FIG. 3D) This value of is only 2.47 ⁇ 10 ⁇ 5 .
- a signal having a magnitude of more than 10 times can be obtained using the sensor cantilever having the same size.
- this shape causes some loss of force at the connection in addition to the unbalanced stress due to the asymmetric shape.
- the stiffness of the sensor cantilever should be minimized. This is because this rigidity causes a reaction to the adsorption cantilever and adversely affects the transmission of force from the adsorption cantilever.
- the body part of the sensor cantilever that is, the part other than the narrow-width part on the fixed end side
- the width of the main body portion of the sensor cantilever is larger than the width of the suction cantilever, a loss is caused in the transmission of force at the connection portion.
- the most efficient shape is as shown in FIG. That is, the sensor cantilever has the same width as the suction cantilever.
- the suction cantilever has a structure in which the narrow portion on the fixed end side of the sensor cantilever is directly joined. This minimizes force loss.
- ⁇ R / R is measured as a change in output voltage (V out ) using a Wheatstone bridge as shown in FIG.
- V B is a bias voltage applied to the bridge. All four resistors (R 1 , R 2 , R 3 and R 4 ) in the Wheatstone bridge are available as part of the sensor, as is usually applied to pressure sensors. In this case, the total output can be determined as follows:
- the length of R 2 and R 4 is twice the length of R 1 and R 2 (90 ⁇ m) and the current equivalent area (90 ⁇ 8 ⁇ m 2 , R 1 and R 3 are two 45 ⁇ 8 ⁇ m 2 Note that you have (in series).
- the calculated values of these resistors are: ⁇ R 1 / R 1
- ave ⁇ R 3 / R 3
- ave ⁇ 6.95 ⁇ 10 ⁇ 4 or ⁇ R 2 / R 2
- ave ⁇ R 4 / R 4
- ave 4.39 ⁇ 10 ⁇ 4 .
- the total relative resistance change is ⁇ R total / R total
- ave ⁇ R 1 / R 1
- ave 2.27 ⁇ 10 ⁇ 3 , which is almost 100 times larger than that of a normal cantilever having a piezoresistive portion having a narrow width of similar dimensions.
- the above-described configuration of the surface stress sensor is sometimes referred to herein as a membrane-type surface stress sensor, or MSS (Membrane-type Surface Sensor). This is because the film is fixed at several points on the peripheral side.
- this full-bridge configuration provides additional benefits when compared to normal cantilevers.
- the four resistors constituting the Wheatstone bridge have almost the same physical characteristics such as temperature dependence of resistivity. This is because these resistors are produced by the same fine manufacturing process. Therefore, external noise such as thermal drift is canceled out in the circuit, so that noise in the signal is reduced.
- this geometry provides much higher stability during measurement, particularly in the environment where the sample flows over the sensor array.
- One of the main problems with cantilever array sensors was the lack of stability that the very flexible shape at the free end provides, so full-bridge or bi-fixed configurations are very sensitive. In addition, significant improvements in stability are achieved.
- the silicon film supported by the four narrow portions on the fixed end side is square in this embodiment, but this may be another shape. Specifically, since the stress on the corner region of the square film hardly contributes to the change in resistance of the narrow portion on the fixed end side, these corner regions may be removed. In fact, according to the FEA calculation, even a round film has only a few percent difference compared to the output of a square film.
- FIG. 8 shows the size dependence of the relative resistance change in various shapes. The properties of each shape are summarized in Table 1. This scaling law is clearly observed for full-bridge and bi-fixed shapes, but ordinary cantilevers give an almost constant level of
- l, w and t are the length, width and thickness of the piezoresistor
- ⁇ and ⁇ are carrier mobility and carrier concentration
- k B , T and q are Boltzmann constants
- temperature and electron charge f max and f min is the maximum measurement frequency and minimum measurement frequency
- ⁇ is a Hooge constant.
- the MSS array shown in FIG. A round film was used instead of a square. This is slightly less sensitive (approximately 3%) than the square shape, according to the simulation, but the round membrane can be easily coated with a liquid sample using the inkjet spotting method. There are several practical advantages, such as better sample flow due to the opening. Two sizes of membranes having diameters of 500 ⁇ m and 300 ⁇ m were produced in the same array of FIG. 9A and evaluated under the same conditions. For comparison purposes, a standard cantilever having the same dimensions as shown in FIG. 3 (d) was also tested. The length of the sensor beam of the MSS in the x and y directions is 10 ⁇ m and 16 ⁇ m for R 1 and R 3 and 5 ⁇ m and 36 ⁇ m for R 2 and R 4 in the configurations shown in FIGS. is there.
- MSSs were produced as described below. Description will be made with reference to a cross-sectional view (lower view) and a plan view (upper view) of FIG.
- SOI silicon-on-insulator
- Boron diffusion was performed at 950 degrees for 30 minutes. In this step, boron does not diffuse to the wafer through the thermal oxide film 12, but is diffused selectively only in the portion opened in the piezoresistive shape, and the piezoresistive portion 14 is formed.
- a silicon nitride film 15 was deposited on the entire wafer surface by low pressure CVD. After photolithography, contact holes 16 were opened by plasma and BHF etching. This step also formed an opening on the backside of the wafer for KOH etching.
- a 900 nm aluminum film was deposited on the device side. Using the drawn photoresist mask, the aluminum film was etched in a chemical etching solution to form a device electrode 17.
- plasma enhanced CVD was performed to form an oxide film 18 having a thickness of 700 nm.
- Pad openings were made by photolithography and chemical etching.
- the device layer of the wafer was processed by photography and etching to form a film.
- the wafer was mounted on a mechanical chuck and immersed in 40 wt% KOH at 60 ° C. to form a large opening from the back surface.
- the etching was automatically stopped at the SOI buried oxide film (BOX) 19.
- BOX was etched in BHF to complete the membrane (membrane) 20.
- This film and a standard cantilever were coated with a polyethyleneimine (PEI) layer 21 by inkjet spotting technology.
- the upper surface of the MSS (and the standard cantilever used for comparison with the MSS performed as described below) was coated with a customized inkjet spotting system (Microjet® Model® 'LaboJet® 500SP').
- a PEI solution with a concentration of 1 g / l was deposited to form a 1 ⁇ m thick PEI layer 21 on this surface.
- real-time side monitoring confirmed that there was no overflow from the surface.
- the coatings on both sides generate almost a signal due to competing forces from both sides.
- 22 is a bulk substrate
- 23 is a thermal oxide film
- 24 is a silicon nitride film
- 25 is a sensor cantilever.
- test products were exposed three times to pure nitrogen carrier gas containing 20% water vapor at a flow rate of 100 ml / min for 5 minutes and with purging with pure nitrogen for 5 minutes.
- the entire system was set in a thermostat maintained at 293.00 ⁇ 0.05K.
- Pure nitrogen gas was introduced into a sample bottle filled with pure water vapor via a mass flow controller (Fujikin FCST1005C-4F2-F1L-N2), and the mixed sample gas was fed into the measurement chamber at a rate of 100 ml / min as a whole. .
- pure nitrogen gas Prior to the start of measurement, pure nitrogen gas is kept flowing for a minimum of 10 minutes so that purging of impurity molecules from the PEI layer or thermal drift of piezoresistance is saturated.
- FIG. 9 (b) shows the acquired output signals of these MSS and standard cantilevers. Both signals were measured at the same electrical setting with a bias voltage of -1.5V in both cases.
- a low signal indicates standard cantilever data
- a high solid signal indicates MSS data having a diameter of 500 ⁇ m
- a high broken line indicates MSS data having a diameter of 300 ⁇ m.
- the 500 ⁇ m and 300 ⁇ m diameter films showed signals about 22 times and about 15 times larger than standard cantilevers, respectively. From this experimental result, the significantly increased sensitivity and the size dependence of the membrane could be clearly confirmed.
- the acquired signal is somewhat smaller than the values calculated by the finite element method (about 46 times and about 31 times for the films with manufactured dimensions of 500 ⁇ m and 300 ⁇ m, respectively), but these are dependent on the diffusion depth of the dopant and the etching process. It seems to be due to some parameters ignored in the calculation, such as the induced surface profile.
- the slightly thicker MSS film and beam (3.2 ⁇ m) compared to the standard cantilever thickness (1 to 1.5 ⁇ m)
- significantly enhanced sensitivity was obtained.
- the stiffness of the film decreases, and according to the finite element method, the sensitivity increases linearly. Therefore, in the MSS having the same thickness (1 to 1.5 ⁇ m) as a standard cantilever, the sensitivity Can be further increased by a factor of three.
- strain amplification is realized by a “double lever” configuration consisting of two cantilevers, a sensor cantilever and an adsorption cantilever coupled at their free ends.
- the surface stress on the adsorption cantilever induced by the specimen is transferred to the surface strain at the fixed end of the sensor cantilever that receives the force.
- Non-Patent Document 23 the displacement was measured by a tunnel current. Shortly thereafter, various optical detection schemes were used (Non-Patent Documents 24-26). Optical detection is attractive because of the low noise. On the other hand, it is difficult to detect the displacement of individual cantilevers in an integrated cantilever arrangement, and time-consuming adjustments such as light reflection alignment on the cantilever are necessary each time the chip is replaced. It is.
- Non-patent Document 27 piezoresistance detection of cantilever displacement introduced by Tortonese and Quate. This technique can be easily miniaturized to any cantilever size, and can perform measurements in opaque liquids such as blood without using bulky peripherals such as optical reading.
- other dedicated integrated sensing schemes have been successfully applied, such as heat detection used in Millipede (Non-Patent Document 29).
- Piezoresistive detection has not yet been widely used despite the fact that it can be integrated, which is extremely important for its application. The reason is as follows. a) The signal to noise ratio is lower than in the case of optical detection. b) This method is more important in actual application and manufacturing because it can be mass-produced. In order to increase the signal-to-noise ratio, various mechanical amplification schemes for piezoresistive strain detection have been proposed. For example: a) A narrow portion on the fixed end side of the cantilever, which is suitable for a lever to which a point force is applied. b) A dual lever system, as is appropriate in the case of a cantilever to which stress is applied. An example of the latter is detection of strain caused by a bimorph type lever for detecting surface stress or temperature change due to being covered with an adsorbate.
- E (x) is a Young's modulus
- I [w (x) t (x) 3 ] / 12 is an area moment of inertia
- w (x) And t (x) are width and thickness, respectively.
- E (x) is uniform on a given cross section.
- M B is in equilibrium is equal to "load" moment M L acting on the lever. For small bends, the following relationship is obtained:
- Equation (17) the distortion at the fixed end can be written as follows.
- the strain is proportional to H (x), and this value is equal to 12 / ⁇ E (x) w (x) t 3 (x) ⁇ . Therefore, a large value of H can be obtained by a small value of width (w), thickness (t), and Young's modulus (E).
- the surface stress sensor according to the present invention has a configuration in which the width of the fixed end side portion, which is the vicinity of the individual end of the sensor cantilever, is locally reduced, which results in a large value of H.
- the width (w) is set to a small value, but the value of H can also be increased by reducing the thickness (t).
- the strain is amplified by a factor of ⁇ / ⁇ for a given force, but the strain amplification for a given displacement is correspondingly multiplied by a factor (1 + ⁇ ) of the lever stiffness. Only decrease.
- ⁇ z, l ( ⁇ , ⁇ ) has no maximum value for a given ⁇ .
- FIG. 12 is a diagram showing distortion amplification by the narrow end portion on the fixed end side for a given displacement in the case of point force.
- the amplification degree is as follows by this ⁇ Max .
- ⁇ > 1 is required for the thickness in order to obtain a high amplification degree.
- the parameters at hand for maximizing the overall distortion are the narrow end parameters w C , t C , E C and l C on the fixed end side, the reduced fixed end given by the manufacturing process.
- the parameters ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ of the narrow portion on the side, and the rigidity and bandwidth, or the lever response time are determined depending on the application method.
- t must have a margin for making the narrow portion on the fixed end side thinner.
- the exemplary lever selected above is a good example as a starting point.
- the narrow part on the fixed end side By making the narrow part on the fixed end side short, wide or thick, it is possible to compensate for the softening caused by the narrow part on the fixed end side.
- u ⁇ 3 1/3 is obtained for the shortening coefficient, and the amplification degree is as follows.
- FIG. 11 shows a comparison of distortion amplification in various shapes.
- the distortion in the x direction is expressed by shading.
- a point force (10 nN) is applied to the point indicated by the rightmost edge of each cantilever in (A) and (B).
- anisotropic surface stress (0.1 N / m) is induced on the entire surface of the cantilever.
- the cantilevers of (E) and (F) Induced on the surface of a suction lever.
- the strain is effectively enhanced at the narrow portion on the fixed end side.
- the shape deformed by the point force or surface stress to which (B) and (F) are applied is shown in the inset.
- FIG. 12 shows strain amplification in the case of a double lever shape for a given surface stress applied on the surface of the suction lever.
- the dependence on the ratio between the length of the suction lever and the sensor lever and the ratio of the width (l UC / l A , w U / w A ) is shown.
- the value obtained by the appended equation (17) is given as a shaded wire frame.
- the FEA results are plotted with a gray ball. Always amplification degree when the value increases the ratio increases of the width, there is a maximum value at the position of the l UC / l A value with respect to any given w U / w A.
- the strain ⁇ C at the fixed end of the sensor cantilever can be obtained as follows according to the equation (19).
- the strain amplification for a given shape can be calculated.
- Optimized SSS with several orders of magnitude amplification compared to normal cantilevers due to various advantages for practical applications such as small size, low cost, no laser alignment and use in opaque liquids, medical diagnostics It will open the door to a new era of genetic and environmental research, and any other application that detects trace amounts of target molecules. It is also important to note that the mechanical detection of surface stresses, often induced by structural changes, is a very unique feature of cantilever sensors. As a result, the SSS provided here makes a significant contribution to the elucidation of various phenomena that are essential for finding the principle of structural change observation, and establishes a new analysis method, “Nano Stress Analysis”.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Pressure Sensors (AREA)
Abstract
Description
ピエゾ抵抗の抵抗値(R)及びその相対抵抗変化(ΔR/R)は以下で与えられる:
COMSOL Multiphysics 3.5aによる有限要素(FE)解析、あるいは、有限要素解析(FEA)を使用して、カンチレバー及びSSSの構造を評価し最適化した。各々の構造を5000~30000個の要素のメッシュに分割したが、これは本形状にとって十分な分解能を与えるものである。
「表面応力(N/m)」=「圧力(N/m2)」×「膜厚(m)」
つまり、N/mの単位をもつ力は、三次元的な圧力を膜厚方向に積算したものと考えることもできる。ここで受容体膜の膜厚が非常に小さい場合、この受容体膜は、ほとんど二次元(表面)とみなすことができる。例えば、10nmの受容体膜に10MPaの圧力が加わっている場合、10×106[Pa]×10×10-9[m]=0.1[N/m]の表面応力が加わっているとみなすことができる。すなわち、表面応力(s)は表面に関するものなので、二次元の量と仮定してN/mで定義される。しかしながら、面内応力が印加されるどのような現実の事例でも、この「表面」は厳密には二次元ではなく、何層かの原子層に広がっている。これにより、表面は有限の厚さ(tsurf)を有し、これにより表面応力sを以下のように三次元の「バルク」応力σとして記述することができる(非特許文献15):
a)点力と一様な応力
カンチレバー上の応力分布は印加される力のタイプに非常に依存する。ピエゾ抵抗の信号、つまりΔR/Rはσx及びσyによって決定されるので、式(7)から判るように、x方向とy方向の間のより大きな差を伴う、より大きな応力が誘起される場所に、ピエゾ抵抗を設置することが重要である。図3は自由端における点力によってあるいは一様に分散した応力によって生起したΔR/Rの分布の計算結果を夫々示す。前者(a)及び(b)は走査プローブ顕微鏡の場合であり、後者(c)及び(d)はカンチレバーセンサの場合である。個々で計算したカンチレバーの長さ、幅及び厚さは夫々135μm、30μm及び1μmであり、(b)及び(d)の2つの固定端側の細幅部分は長さが45μmで幅が8μmで厚さが1μmである。これは、元々平行走査用に最適化したものではあるが(非特許文献21及び22)、本願発明者がその高感度(揮発性有機化合物に対するサブppmの感度)と選択性(同族列中の個々のアルカンの識別)を以前に実証したピエゾ抵抗カンチレバーと同じ形状である(非特許文献10及び21)。図3の(a)及び(b)から明確に判るように、応力は固定端から近い領域に集中し、従って点力(丸印)の場合にはこの領域でより高いΔR/Rが得られる。固定端における固定端側の細幅部分により、信号が効果的に増大する。全ての場合に自由端で変位が同じになる(約23nm)ように点力を印加していることに注意されたい。従って、ピエゾ抵抗部を固定端から近くに、あるいは固定端側部分に置くことで、印加された点力をピエゾ抵抗の抵抗変化により効果的に読み出せるようになる。これとは対照的に、カンチレバーセンサの場合には、検体によって誘起された応力はカンチレバー表面全体の上に一様に分布する。固定端での非対称性の効果によりいくつかの領域ではΔR/Rがわずかに大きくなるが、固定端側部分においてさえも顕著な応力集中はなく、これによってΔR/Rが相対的に小さなものとなる。更に、ピエゾ抵抗部をどこに置いても、大きな信号を得ることは殆ど不可能である。というのも、ΔR/Rはσxとσyの差によって決まるが、これらは図3の(c)及び(d)に示すように、殆どの領域で表面全体に一様かつ等方的に印加される、すなわち(σx-σy)≒0だからである。図3の(c)及び(d)では面内応力(in-plane stress)(-0.1N/m)が表面全体に一様に印加される。
この重大な問題を解決してセンシング用途のためのピエゾ抵抗カンチレバーの性能を向上するため、本願発明者は、もう一つのカンチレバーを導入することによって一様に分布する表面応力を特定の領域に集中するという新たな方策を提案する。すなわち、「吸着カンチレバー」に対して、ピエゾ抵抗部を有する別のカンチレバーを「センサカンチレバー」と呼ぶ。センサカンチレバーと吸着カンチレバーの自由端同士は同じ平面内で接続されているが、これは簡単に作製することができる。
この形状の例を図4(a)に示す。上側の小さい方のカンチレバーがセンサカンチレバー(135×30×1μm3;図3(d)中のものと同一寸法)であり、下側の大きな方のカンチレバーが吸着カンチレバー(500×100×1μm3;例として任意の形状)である。この設計の基本的な考え方は二重である。すなわち、1)吸着カンチレバー表面全体に一様に分布した全表面応力を、変位の形でその自由端に集積すること;2)この変位をセンサカンチレバーの自由端に印加される点力としてセンサカンチレバーに移行すること。カンチレバーに沿った各々の部分に誘起される表面応力は当該カンチレバーの対応する部分の屈曲を引き起こすので、この屈曲は自由端に集積される。従って、カンチレバーの自由端の変位は吸着カンチレバーの表面全体に誘起された全ての表面応力の合計とみなすことができる。センサカンチレバーは、吸着カンチレバーとの機械的な結合を通してその自由端に点力を受ける。センサカンチレバーにおけるこの状況は、自由端に印加された点力を検出する走査用に動作するカンチレバーと同様である。図3の(a)及び(b)に示すように、自由端に印加される点力は固定端から近い領域に集中された応力を誘起し、ここで固定端側の細幅部分がこの応力を効果的に増強することができる。従って、この二重カンチレバー形状により、吸着カンチレバー表面に励起された応力全体をセンサカンチレバーの固定端型近くにある領域に集中することができる。この応力集中領域に埋め込まれたピエゾ抵抗部は、吸着カンチレバーに印加された表面応力全体を効果的に検出することができる。この応力集中、従ってより大きなΔR/Rは、図4(a)の固定端側の細幅部分に見ることができる。この二重カンチレバー形状の変形した形状は図4(c)に示されている。定量的な比較のため、相対抵抗変化の平均値(ΔR/R|ave)が以下のように計算される:
シリコンの単結晶の特性を利用することで、信号を更に増強することができる。多くの場合、ΔR/Rは、図5に示すようなホイートストンブリッジを使って、出力電圧(Vout)変化として測定される。
通常のカンチレバーと、双固定式あるいはフルブリッジ形状との最も重要な相違は、信号のサイズ依存性である。誘起された応力は全て、双固定式あるいはフルブリッジ形状におけるピエゾ抵抗部に集中させることができるので、これによりいかなる通常のピエゾ抵抗カンチレバー形状でも原理的に達成不能であるところの、「より大きな吸着カンチレバーはより高い感度をもたらす」という新たなスケーリング則が実現される。図8は、各種の形状における相対抵抗変化についてのサイズ依存性を示す。各形状の性質は表1にまとめられている。このスケーリング則はフルブリッジ及び双固定式形状で明確に認められるが、通常のカンチレバーではほとんど一定レベルの|ΔR/R|が与えられる。ここで提示されている2000μmまでの寸法範囲の中で、3桁を越える増幅率が達成されることは注目に値する。
センサの実際の性能は信号対雑音比(S/N)で決まる。ピエゾ抵抗の場合、Johnson雑音(Vj)及びHooge(1/f)雑音(VH)の2つの主要な雑音がある。これらの雑音は以下の式で見積もることができる:
表面応力集中に基づいた、センシングアプリケーションのためのピエゾ抵抗カンチレバーの最適化のための新規な形状を提案した。双固定式及びフルブリッジ構成を含む二重カンチレバー形状により、検体によって誘起された表面応力全体をピエゾ抵抗部に集中することができる。有限要素解析により、同一寸法のピエゾ抵抗部を使って通常のカンチレバーに比べて数10倍から数100倍も高い感度をもたらす、効率的な集中が検証された。これらの形状により、吸着部が大きくなると感度が高くなるという新たなスケーリング則が実現される。これによって、吸着部の寸法を変更するだけで、通常のカンチレバーよりも数桁以上高い感度の、各々の目的に適合した任意の感度を有する表面応力センサを設計できる。これはもはや双固定式やフルブリッジ形状の「カンチレバー」ではなく、単に「表面応力センサ(SSS)」と呼ぶべきものである。
理論的な面から本発明に更に裏づけを与えるため、本発明の上述の説明に対する付記として、カンチレバー偏位のピエゾ抵抗ひずみ検出についての機械歪増幅の枠組みの代数学的モデルを提示し、所与の条件、とりわけ作製の制約の下での最適な形状を得るための一般的な方策を提供する。このモデルは有限要素解析によって検証した。カンチレバーの自由端に印加される力に基づく走査については、固定端における固定端側の細幅部分が歪増幅器としてうまく機能する。吸着によって誘起される応力の検出の場合は、歪増幅は、両者の自由端で結合されたセンサカンチレバーと吸着カンチレバーの2つのカンチレバーで構成される「二重レバー」形状によって実現される。この形状では、検体によって誘起された吸着カンチレバー上の表面応力は、力を受けるセンサカンチレバーの固定端での表面歪に振り替えられる。
カンチレバー変位の検出は、カンチレバーを使用した多くの走査アプリケーション及びセンシングアプリケーションの鍵となる要素である。最初の原子間力顕微鏡(AFM)(非特許文献23)では、変位はトンネル電流で測定された。そのすぐ後、多様な光学的検出方式が使用されるようになった(非特許文献24~26)。雑音が小さいことから、光学的検出は魅力的である。その一方で、これは集積化されたカンチレバー配列における個々のカンチレバーの変位検出が困難であり、また、時間のかかる、カンチレバー上での光の反射位置あわせなどの調整がチップを交換する度に必要である。しかしながら、これら両局面、つまり、集積化されたカンチレバーの変位検出と、光の位置あわせ無しでのチップの交換は、「大きな空間」が手に入らない多くのタイプのナノシステム、例えばカンチレバーアレイ(特に2次元アレイ)、リモートセンシング、生物学的アプリケーションでしばしば必要とされるところの血液などの不透明な液体中での測定など、では必須である。
a)信号対雑音比が光学的検出の場合よりも低い。
b)この方式は、大量生産が可能であるため、実際の応用・製造の際にさらに重要になる。
信号対雑音比を稼ぐため、ピエゾ抵抗歪検出の多様な機械的増幅方式が提案されてきた。
例えば:
a)点力が印加されるレバーの場合に適しているところの、カンチレバーの固定端側の細幅部分。
b)応力が印加されるカンチレバーの場合に適切であるところの、二重レバーシステム。後者の例が、吸着物で覆われることによる表面応力あるいは温度変化検出のためのバイモルフタイプのレバーによって引き起こされる歪の検出である。
ニュートラルラインから距離ξで曲げられた矩形カンチレバーの歪は、曲率半径Rによって以下のように与えられる:
1)固定端側の細幅部分なし(単純なレバー)
w(x)、t(x)、E(x)、従ってH(x)=12/{w(x)t(x)E(x)}が全て定数であると仮定して、単純なレバーを最初に議論する。このレバーの自由端における力Fは負荷モーメント(load moment)ML(x)=F(l-x)を引き起こし、従ってこの歪は固定端(x=0)において最も大きい。ML(x)についてのこの式を式(16)に代入し、境界条件dz(x)/dx|x=0=0及びz(0)=0を守って式(16)を連続して積分することで、変位についての周知の式が得られる。
式(17)により、歪はH(x)に比例し、この値は12/{E(x)w(x)t3(x)}に等しい。従って、小さな値の幅(w)、厚さ(t)、またYoung率(E)によって大きな値のHが得られる。本発明の表面応力センサでは、センサカンチレバーの個体端の近傍部である固定端側部分の幅を局所的にへらす構成をとっているが、これにより大きな値のHがもたらされる。前述の例では、幅(w)を小さな値に設定したが、厚さ(t)を小さくすることによってもHの値を大きくすることができる。固定端側の細幅部分を固定端側に設けることで、大きな歪を得るために最も効率的に機能する。それは、MLがその位置で最も大きくなるからである。
所与の力と所与の剛性において、増幅度について同一の方針で進む。τMaxは存在せず、また固定端側の細幅部分の厚さがα=βητ3に含まれるいかなる厚さであっても、短縮係数uが式(29)から得られる。増幅度はuによって低減され、以下で与えられる。
一様な応力が表面上に与えられる「単一」の吸着カンチレバーの変位εAは以下で記述される。
・l、w、t、E 二重レバー構成中のカンチレバーまたはセンサレバーの長さ、幅、厚さ及びYoung率
・lC、wC、tC、EC レバーの固定端側の細幅部分についての上と同じ値。ここでlCはlの一部であることに注意
・lA、wA、tA、EA 一様表面応力負荷、つまり吸着物で覆われたレバーについての同上の値
・H、HC、HA =12/Ewt3、添え字C、A付きも同じ
・λ、λA =lC/l、l/lA
・β、η、τ =夫々wC/w、EC/E、tC/t
・α、αA =夫々H/HC=βητ3、HA/HS
・εF、εM 夫々、所与の力におけるx方向の表面応力、負荷モーメント
・εz 所与のレバー変位zにおける同上の値
・εFc、εMc、εzc 固定端側の細幅部分における同上の値
・νz、νA 夫々、固定端側の細幅部分による歪増幅度と二重レバーによる歪増幅度
・z(x)、z 位置xにおけるレバーの変位であり、夫々自由端及びセンサレバーと吸着レバーとの間の「接続」位置における変位
・F カンチレバーの自由端あるいはセンサレバーと吸着レバーとの間にある「接続」位置に印加される力
・ML 力または一様な表面応力による負荷モーメント
・X =lA/l
・Y =wA/w
12 酸化膜
13 二重膜
14 ピエゾ抵抗部
15 窒化ケイ素膜
16 コンタクトホール
17 デバイス電極
18 酸化膜
19 埋込み酸化膜(BOX)
20 膜(メンブレン)
21 ポリエチレンイミン(PEI)層
22 バルク基板
23 熱酸化膜
24 窒化ケイ素膜
25 センサビーム
Claims (10)
- 第1の固定端と第1の自由端を有し、前記第1の自由端は前記第1の固定端と対向しており、表面上の応力が撓みを引き起こす第1の平坦部材と、
前記第1の平坦部材と実質的に同じ面上に配置され、第2の固定端と第2の自由端を有し、前記第2の自由端は前記第2の固定端と対向しており、少なくとも一部はピエゾ抵抗部材を有しており、撓みが前記ピエゾ抵抗部材の抵抗値に変化を起こす第2の平坦部材を設けてなり、
前記第1の平坦部材の前記第1の自由端は前記第2の平坦部材の前記第2の自由端に連結されており、前記第1の平坦部材の撓みが前記第2の平坦部材の前記第2の自由端に力を印加して前記ピエゾ抵抗部材の抵抗値に変化を引き起こすことを特徴とする表面応力センサ。 - 前記第2の平坦部材は固定端側の細幅部分及び平坦部材本体を有し、前記固定端側の細幅部分は前記第2の固定部と前記平坦部材本体との間に配置され、前記固定端側の細幅部分は前記ピエゾ抵抗部材を有することを特徴とする請求項1に記載の表面応力センサ。
- 前記第1の平坦部材の前記第1の固定端と前記第1の自由端との間の長さが、前記第2の平坦部材の前記第2の固定端と前記第2の自由端との間の長さよりも長いことを特徴とする請求項1または2に記載の表面応力センサ。
- 前記第2の平坦部材の実質的に全てが前記固定端側の細幅部分であることを特徴とする請求項1から3のいずれか一項に記載の表面応力センサ。
- 前記第1の平坦部材と前記第2の平坦部材は同じ向きに配置されていることを特徴とする請求項1から4のいずれか一項に記載の表面応力センサ。
- 前記第1の平坦部材と前記第2の平坦部材は対向配置されていることを特徴とする請求項1から4のいずれか一項に記載の表面応力センサ。
- 表面に応力が印加され、少なくとも一対の固定端を有する平坦部材であって、前記平坦部材は平坦部材本体と少なくとも一つの固定端側の細幅部分を含み、前記固定端側の細幅部分は前記平坦部材本体と前記固定端の一つとの間に配置され、
前記少なくとも一つの固定端側の細幅部分はピエゾ抵抗部材を有し、前記平坦部材上の応力によって前記固定端側の細幅部分に引き起こされた撓みが前記ピエゾ抵抗部材の抵抗値に変化を起こすことを特徴とする表面応力センサ。 - 表面に応力が印加され、少なくとも二対の固定端を有する平坦部材を備え、
前記対の各々の固定端は前記平坦部材の周辺に対向した配置され、
前記平坦部材は平坦部材本体と少なくとも一つの固定端側の細幅部分を含み、前記固定端側の細幅部分は前記平坦部材本体と前記固定端の一つとの間に配置され、
前記少なくとも一つの固定端側の細幅部分はピエゾ抵抗部材を含み、前記平坦部材上の応力によって前記固定端側の細幅部分に引き起こされた撓みが前記ピエゾ抵抗部材の抵抗値に変化を起こすことを特徴とする表面応力センサ。 - 前記平坦部材は2つの前記固定端の対及び4つの前記固定端側の細幅部分を有し、前記4つの固定端側の細幅部分は夫々前記固定端に関連付けられ、前記固定端側の細幅部分の各々はピエゾ抵抗部材を有し、
前記固定端の各々は前記固定端側の細幅部分のうちの関連付けられたものによって前記平坦部材本体に接続され、
前記平坦部材の中の前記ピエゾ抵抗部材のピエゾ抵抗率は、前記撓みの起こる方向によって変化し、
前記固定端側の細幅部分の前記ピエゾ抵抗部材のうちで隣接するものが接続され、前記ピエゾ抵抗部材がフルブリッジを形成するとともに、前記ピエゾ抵抗部材が前記フルブリッジの4つの辺を形成することを特徴とする請求項8に記載の表面応力センサ。 - 前記平面部材はp型シリコン単結晶の膜であり、前記膜の表面は前記単結晶の(001)面であり、
前記対の1つは前記単結晶の[110]方向に、前記対の他のものは前記単結晶の[1-10]方向に配置されることを特徴とする請求項9に記載の表面応力センサ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127030791A KR101451697B1 (ko) | 2010-05-24 | 2011-05-09 | 표면 응력 센서 |
US13/699,667 US9212959B2 (en) | 2010-05-24 | 2011-05-09 | Surface stress sensor |
EP11786474.4A EP2579010B1 (en) | 2010-05-24 | 2011-05-09 | Surface stress sensor |
JP2012517210A JP5649138B2 (ja) | 2010-05-24 | 2011-05-09 | 表面応力センサ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-118859 | 2010-05-24 | ||
JP2010118859 | 2010-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011148774A1 true WO2011148774A1 (ja) | 2011-12-01 |
Family
ID=45003766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/060673 WO2011148774A1 (ja) | 2010-05-24 | 2011-05-09 | 表面応力センサ |
Country Status (5)
Country | Link |
---|---|
US (1) | US9212959B2 (ja) |
EP (1) | EP2579010B1 (ja) |
JP (2) | JP5649138B2 (ja) |
KR (1) | KR101451697B1 (ja) |
WO (1) | WO2011148774A1 (ja) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013124953A (ja) * | 2011-12-15 | 2013-06-24 | National Institute For Materials Science | センサーアレイを用いた測定結果可視化装置 |
WO2013157581A1 (ja) | 2012-04-17 | 2013-10-24 | 独立行政法人物質・材料研究機構 | 両面被覆表面応力センサー |
WO2015198185A1 (en) | 2014-06-23 | 2015-12-30 | Ecole Polytechnique Federale De Lausanne (Epfl) | Electrochemical coating stress sensor, apparatus and method for accurately monitoring and controlling electrochemical reactions and material coating |
WO2017098862A1 (ja) | 2015-12-08 | 2017-06-15 | 国立研究開発法人物質・材料研究機構 | 炭化水素基修飾微粒子を受容体層とする燃料油識別センサおよび燃料油識別方法 |
JP2017156254A (ja) * | 2016-03-03 | 2017-09-07 | 国立研究開発法人物質・材料研究機構 | シグナル解析方法及び試料ガス識別方法 |
JP2017167036A (ja) * | 2016-03-17 | 2017-09-21 | 国立研究開発法人物質・材料研究機構 | ポリアリルアミン塩酸塩を受容体として用いたナノメカニカルセンサ並びにアセトン濃度測定装置 |
JP2017181433A (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ |
WO2017170748A1 (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ |
JP2017181438A (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ |
JP2017181431A (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ |
JP2017181436A (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ |
JP2017181439A (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ及びその製造方法 |
JP2017181434A (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ |
WO2018079509A1 (ja) | 2016-10-27 | 2018-05-03 | 国立研究開発法人物質・材料研究機構 | ガスセンサー装置および気体成分除去方法 |
WO2018097197A1 (ja) | 2016-11-28 | 2018-05-31 | 国立研究開発法人物質・材料研究機構 | 化学センサ測定による試料識別方法、試料識別装置、及び入力パラメータ推定方法 |
WO2018101128A1 (ja) | 2016-11-29 | 2018-06-07 | 国立研究開発法人物質・材料研究機構 | 試料に対応付けられた推定対象値を推定する方法及び装置 |
WO2018155344A1 (ja) | 2017-02-27 | 2018-08-30 | 国立研究開発法人物質・材料研究機構 | 化学センサによる試料識別方法及び装置 |
WO2018169023A1 (ja) | 2017-03-16 | 2018-09-20 | パナソニック株式会社 | 複合体結晶とこれを備えるケモセンサ |
WO2018221283A1 (ja) | 2017-05-31 | 2018-12-06 | 国立研究開発法人物質・材料研究機構 | 低吸湿性材料からなるナノメカニカルセンサ用受容体及びそれを受容体として使用するナノメカニカルセンサ |
WO2019021936A1 (ja) * | 2017-07-28 | 2019-01-31 | 京セラ株式会社 | センサ素子 |
WO2019239950A1 (ja) | 2018-06-11 | 2019-12-19 | 国立研究開発法人物質・材料研究機構 | 材料解析方法及び材料解析装置 |
WO2019244613A1 (ja) | 2018-06-19 | 2019-12-26 | 国立研究開発法人物質・材料研究機構 | 受容体応答変調方法及び受容体応答の変調を利用した測定装置 |
WO2020050110A1 (ja) * | 2018-09-03 | 2020-03-12 | 国立研究開発法人物質・材料研究機構 | 表面応力センサーの受容体層クリーニング方法 |
WO2020110720A1 (ja) | 2018-11-26 | 2020-06-04 | 国立研究開発法人物質・材料研究機構 | 液体試料分析方法及び装置 |
WO2020179400A1 (ja) | 2019-03-06 | 2020-09-10 | 国立研究開発法人物質・材料研究機構 | 水素センサー及び水素検出方法 |
WO2020218086A1 (ja) | 2019-04-26 | 2020-10-29 | 国立研究開発法人物質・材料研究機構 | ポリ(2,6-ジフェニル-p-フェニレンオキシド)を使用したナノメカニカルセンサ用感応膜、この感応膜を有するナノメカニカルセンサ、この感応膜のナノメカニカルセンサへの塗布方法、及びこのナノメカニカルセンサの感応膜の再生方法 |
WO2020255580A1 (ja) | 2019-06-18 | 2020-12-24 | 国立研究開発法人物質・材料研究機構 | ナノメカニカルセンサを用いた加湿型高感度・高選択性アンモニア検出方法及び検出装置 |
WO2021014835A1 (ja) | 2019-07-25 | 2021-01-28 | 国立研究開発法人物質・材料研究機構 | ガスセンサによる測定方法及び測定装置 |
WO2021192915A1 (ja) | 2020-03-23 | 2021-09-30 | 国立研究開発法人物質・材料研究機構 | 原臭選定方法、原臭の組み合わせによりニオイを表現、提示または合成する方法、及びそのための装置 |
WO2021200262A1 (ja) | 2020-03-30 | 2021-10-07 | 国立研究開発法人農業・食品産業技術総合研究機構 | サイレージ発酵品質評価方法及び装置 |
WO2022014512A1 (ja) | 2020-07-17 | 2022-01-20 | 国立研究開発法人農業・食品産業技術総合研究機構 | ケトーシス罹患判定方法及び装置 |
WO2023281674A1 (ja) * | 2021-07-07 | 2023-01-12 | 日本電気株式会社 | 膜型表面応力センサおよび膜型表面応力センサの製造方法 |
US11573137B2 (en) | 2017-09-20 | 2023-02-07 | Asahi Kasei Kabushiki Kaisha | Surface stress sensor, hollow structural element, and method for manufacturing same |
JP7304606B2 (ja) | 2017-08-10 | 2023-07-07 | 国立研究開発法人物質・材料研究機構 | 膜型表面応力センサーを用いた水素センサー及び水素検出方法 |
US12130270B2 (en) | 2019-06-18 | 2024-10-29 | National Institute For Materials Science | Humidification type highly-sensitive/highly-selective ammonia detection method and detection device using nanomechanical sensor |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011148774A1 (ja) * | 2010-05-24 | 2011-12-01 | 独立行政法人物質・材料研究機構 | 表面応力センサ |
JP6544744B2 (ja) | 2015-01-27 | 2019-07-17 | 国立研究開発法人物質・材料研究機構 | 多孔質材料または粒状材料を受容体層として有するセンサ |
KR101981209B1 (ko) * | 2015-07-17 | 2019-05-23 | 한국전자통신연구원 | 유연성 열전 물질을 포함하는 센서 |
CN107329615B (zh) * | 2017-06-30 | 2020-06-16 | 上海天马微电子有限公司 | 显示面板及显示装置 |
WO2019059326A1 (ja) | 2017-09-20 | 2019-03-28 | 旭化成株式会社 | 表面応力センサ、中空構造素子及びそれらの製造方法 |
JP6963494B2 (ja) * | 2017-12-22 | 2021-11-10 | 旭化成株式会社 | 中空構造素子及びその製造方法 |
JP6971109B2 (ja) * | 2017-09-27 | 2021-11-24 | 京セラ株式会社 | センサ素子 |
JP6998334B2 (ja) * | 2018-03-14 | 2022-01-18 | 旭化成株式会社 | 表面応力センサ及びその製造方法 |
JP6864966B2 (ja) * | 2018-03-29 | 2021-04-28 | 三井化学株式会社 | センサ、及び、センサ製造方法 |
JP6867630B2 (ja) * | 2018-03-29 | 2021-04-28 | 国立大学法人東北大学 | センサ、検出方法、及び、センサ製造方法 |
JP7176986B2 (ja) * | 2018-03-29 | 2022-11-22 | 旭化成株式会社 | 表面応力センサ、表面応力センサの検査方法、表面応力センサの製造方法 |
US12038424B2 (en) | 2019-03-13 | 2024-07-16 | Asahi Kasei Kabushiki Kaisha | Gas sensor, component detection apparatus including gas sensor, inspection system including gas sensor, gas sensor inspection method, and gas sensor manufacturing method |
US11906546B2 (en) | 2019-07-03 | 2024-02-20 | Massachusetts Institute Of Technology | Coated active cantilever probes for use in topography imaging in opaque liquid environments, and methods of performing topography imaging |
US20230146214A1 (en) * | 2020-03-19 | 2023-05-11 | Shenzhen New Degree Technology Co., Ltd. | Pressure sensing device and pressure sensing apparatus |
CN112179541B (zh) * | 2020-09-02 | 2021-07-16 | 大连理工大学 | 一种基于变形反推的初始残余应力调整方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49132989A (ja) * | 1973-04-25 | 1974-12-20 | ||
JPS5623316B2 (ja) * | 1974-05-11 | 1981-05-30 | ||
JPS5965232A (ja) * | 1982-10-05 | 1984-04-13 | Yamato Scale Co Ltd | 力測定装置 |
JPS6312930A (ja) * | 1986-07-04 | 1988-01-20 | Ricoh Co Ltd | 力検出素子 |
JPH06230023A (ja) * | 1992-03-04 | 1994-08-19 | Omron Corp | 変位検出センサ |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3304787A (en) * | 1962-12-29 | 1967-02-21 | Toyoda Chuo Kenkyusho Kk | Three-dimensional accelerometer device |
US3500451A (en) * | 1967-06-29 | 1970-03-10 | Gen Telephone & Elect | Piezoelectric voltage generator |
JPS5623316A (en) | 1979-08-01 | 1981-03-05 | Kawasaki Steel Corp | Method and device for controlling hoop winding in hot strip mill |
AU545387B2 (en) * | 1982-10-05 | 1985-07-11 | Yamato Scale Company, Limited | Weight and force measuring device |
US4849730A (en) | 1986-02-14 | 1989-07-18 | Ricoh Company, Ltd. | Force detecting device |
JP2575939B2 (ja) * | 1990-09-21 | 1997-01-29 | 日産自動車株式会社 | 半導体加速度センサ |
JP3700910B2 (ja) * | 1997-10-16 | 2005-09-28 | セイコーインスツル株式会社 | 半導体歪センサ及びその製造方法ならびに走査プローブ顕微鏡 |
US6311557B1 (en) * | 1999-09-24 | 2001-11-06 | Ut-Battelle, Llc | Magnetically tunable resonance frequency beam utilizing a stress-sensitive film |
EP1226437B1 (en) * | 1999-11-03 | 2004-08-11 | International Business Machines Corporation | Cantilever sensors and transducers |
US6479920B1 (en) * | 2001-04-09 | 2002-11-12 | Wisconsin Alumni Research Foundation | Direct charge radioisotope activation and power generation |
FR2823998B1 (fr) * | 2001-04-25 | 2004-01-02 | Centre Nat Rech Scient | Matrice de biocapteurs et son procede de fabrication |
WO2003067248A1 (en) * | 2002-02-08 | 2003-08-14 | Cantion A/S Scion.Dtu | A sensor comprising mechanical amplification of surface stress sensitive cantilever |
JP2005049320A (ja) * | 2003-07-30 | 2005-02-24 | Microstone Corp | 加速度センサ |
JP3866258B2 (ja) * | 2004-08-24 | 2007-01-10 | 太平洋セメント株式会社 | 圧電デバイスおよびこれを備える圧電スイッチ |
EP2141490B1 (en) * | 2008-07-02 | 2015-04-01 | Stichting IMEC Nederland | Chemical sensing microbeam device |
WO2011148774A1 (ja) * | 2010-05-24 | 2011-12-01 | 独立行政法人物質・材料研究機構 | 表面応力センサ |
-
2011
- 2011-05-09 WO PCT/JP2011/060673 patent/WO2011148774A1/ja active Application Filing
- 2011-05-09 JP JP2012517210A patent/JP5649138B2/ja active Active
- 2011-05-09 US US13/699,667 patent/US9212959B2/en active Active
- 2011-05-09 KR KR1020127030791A patent/KR101451697B1/ko active IP Right Grant
- 2011-05-09 EP EP11786474.4A patent/EP2579010B1/en active Active
-
2014
- 2014-11-06 JP JP2014226301A patent/JP5891465B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49132989A (ja) * | 1973-04-25 | 1974-12-20 | ||
JPS5623316B2 (ja) * | 1974-05-11 | 1981-05-30 | ||
JPS5965232A (ja) * | 1982-10-05 | 1984-04-13 | Yamato Scale Co Ltd | 力測定装置 |
JPS6312930A (ja) * | 1986-07-04 | 1988-01-20 | Ricoh Co Ltd | 力検出素子 |
JPH06230023A (ja) * | 1992-03-04 | 1994-08-19 | Omron Corp | 変位検出センサ |
Non-Patent Citations (27)
Title |
---|
AESCHIMANN, L.; GOERICKE, F.; POLESEL-MARIS, J.; MEISTER, A.; AKIYAMA, T.; CHUI, B.; STAUFER, U.; PUGIN, R.; HEINZELMANN, H.; ROOI, J. PHYS., vol. 61, 2007, pages 6 |
AESCHIMANN, L.; MEISTER, A; AKIYAMA, T.; CHUI, B. W.; NIEDERMANN, P.; HEINZELMANN, H.; DE ROOIJ, N. F.; STAUFER, U.; VETTIGER, P., MICROELECTRON. ENG., vol. 83, 2006, pages 1698 |
BACKMANN, N.; ZAHND, C.; HUBER, F.; BIETSCH, A.; PLUCKTHUN, A.; LANG, H. P.; GUNTHERODT, H. J.; HEGNER, M.; GERBER, C., PROC. NATL. ACAD. SCI. U. S. A., vol. 102, 2005, pages 14587 |
BINNIG G; QUATE C F; GERBER C, ATOMIC FORCE MICROSCOPE PHYS. REV. LETT., vol. 56, 1986, pages 930 - 3 |
CHOUDHURY, A.; HESKETH, P. J.; THUNDAT, T.; HU, Z. Y., J. MICROMECH. MICROENG., vol. 17, 2007, pages 2065 |
DRAKE B; PRATER C B; WEISENHORN A L; GOULD S A C; ALBRECHT T R; QUATE C F; CANNELL D S; HANSMA H G; HANSMA P K: "Imaging Crystals, Polymers, and Processes in Water with the Atomic Force Microscope", SCIENCE, vol. 243, 1989, pages 1586 - 9, XP000566320, DOI: doi:10.1126/science.2928794 |
FRITZ, J.; BALLER, M. K.; LANG, H. P.; ROTHUIZEN, H.; VETTIGER, P.; MEYER, E.; GUNTHERODT, H. J.; GERBER, C.; GIMZEWSKI, J. K., SCIENCE, vol. 288, 2000, pages 316 |
KANDA, Y., IEEE TRANS. ELECTRON DEVICES, vol. 29, 1982, pages 64 |
KANDA, Y., SENS. ACTUATORS A, vol. 28, 1991, pages 83 |
MARTIN Y; WILLIAMS C C; WICKRAMASINGHE H K: "Atomic Force Microscope Force Mapping and Profiling on a Sub 100-a Scale", J. APPL. PHYS., vol. 61, 1987, pages 4723 - 9, XP000992634, DOI: doi:10.1063/1.338807 |
MCKENDRY, R.; ZHANG, J. Y.; ARNTZ, Y.; STRUNZ, T.; HEGNER, M.; LANG, H. P.; BALLER, M. K.; CERTA, U.; MEYER, E.; GUNTHERODT, H. J., PROC. NATL. ACAD. SCI. U. S. A., vol. 99, 2002, pages 9783 |
PFANN, W. G.; THURSTON, R. N., J. APPL. PHYS., vol. 32, 1961, pages 2008 |
PRIVOROTSKAYA, N. L.; KING, W. P., MICROSYST TECHNOL, vol. 15, 2008, pages 333 |
RASMUSSEN, P. A.; HANSEN, O.; BOISEN, A., APPL. PHYS. LETT., vol. 86, 2005, pages 203502 |
RUGAR D; MAMIN H J; GUETHNER P: "Improved Fiber-Optic Interferometer for Atomic Force Microscopy", APPL. PHYS. LETT., vol. 55, 1989, pages 2588 - 90, XP000126805, DOI: doi:10.1063/1.101987 |
SADER, J. E., J. APPL. PHYS., vol. 89, 2001, pages 2911 |
See also references of EP2579010A4 |
SEELIG, J. D.; LANG, H. P.; ZHANG, J.; HUNZIKER, P.; RAMSEYER, J. P.; MEYER, E.; HEGNER, M.; GERBER, C., NANOTECHNOLOGY, vol. 14, 2003, pages 86 |
STONEY, G. G., PROC. R. SOC. LONDON, SER. A, vol. 82, 1909, pages 172 |
TORTONESE M; BARRETT R C; QUATE C F: "ATOMIC RESOLUTION WITH AN ATOMIC FORCE MICROSCOPE USING PIEZORESISTIVE DETECTION", APPL. PHYS. LETT., vol. 62, 1993, pages 834 - 6, XP000338616, DOI: doi:10.1063/1.108593 |
VETTIGER P ET AL.: "The ''millipede'' - Nanotechnology entering data storage IEEE Trans.", NANOTECHNOL., vol. 1, 2002, pages 39 - 55 |
WATARI, M.; GALBRAITH, J.; LANG, H. P.; SOUSA, M.; HEGNER, M.; GERBER, C.; HORTON, M. A.; MCKENDRY, R. A., J. AM. CHEM. SOC., vol. 129, 2007, pages 601 |
YANG, S. M.; YIN, T. I.; CHANG, C., SENS. ACTUATORS B, vol. 121, 2007, pages 545 |
YOSHIKAWA G; LANG H-P; AKIYAMA T; AESCHIMANN L; STAUFER U; VETTIGER P; AONO M; SAKURAI T; GERBER C: "Sub-ppm detection of vapors using piezoresistive microcantilever array sensors", NANOTECHNOLOGY, vol. 20, 2009, pages 015501 |
YOSHIKAWA, G.; LANG, H.-P.; AKIYAMA, T.; AESCHIMANN, L.; STAUFER, U.; VETTIGER, P.; AONO, M.; SAKURAI, T.; GERBER, C., NANOTECHNOLOGY, vol. 20, 2009, pages 015501 |
YU, X. M.; THAYSEN, J.; HANSEN, O.; BOISEN, A., J. APPL. PHYS., vol. 92, 2002, pages 6296 |
ZHANG, J.; LANG, H. P.; HUBER, F.; BIETSCH, A.; GRANGE, W.; CERTA, U.; MCKENDRY, R.; GUENTHERODT, H.-J.; HEGNER, M.; GERBER, C., NAT. NANOTECHNOL., vol. 1, 2006, pages 214 |
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013124953A (ja) * | 2011-12-15 | 2013-06-24 | National Institute For Materials Science | センサーアレイを用いた測定結果可視化装置 |
WO2013157581A1 (ja) | 2012-04-17 | 2013-10-24 | 独立行政法人物質・材料研究機構 | 両面被覆表面応力センサー |
EP2840372A1 (en) * | 2012-04-17 | 2015-02-25 | National Institute for Materials Science | Double-sided coated surface stress sensor |
EP2840372A4 (en) * | 2012-04-17 | 2015-02-25 | Nat Inst For Materials Science | LOAD SENSOR WITH DOUBLE-SIDED SURFACE |
US9506822B2 (en) | 2012-04-17 | 2016-11-29 | National Institute For Materials Science | Double-side-coated surface stress sensor |
WO2015198185A1 (en) | 2014-06-23 | 2015-12-30 | Ecole Polytechnique Federale De Lausanne (Epfl) | Electrochemical coating stress sensor, apparatus and method for accurately monitoring and controlling electrochemical reactions and material coating |
WO2017098862A1 (ja) | 2015-12-08 | 2017-06-15 | 国立研究開発法人物質・材料研究機構 | 炭化水素基修飾微粒子を受容体層とする燃料油識別センサおよび燃料油識別方法 |
US10877016B2 (en) | 2015-12-08 | 2020-12-29 | National Institute For Materials Science | Fuel oil identification sensor equipped with receptor layer composed of hydrocarbon-group-modified particles, and fuel oil identification method |
JP2017156254A (ja) * | 2016-03-03 | 2017-09-07 | 国立研究開発法人物質・材料研究機構 | シグナル解析方法及び試料ガス識別方法 |
JP2017167036A (ja) * | 2016-03-17 | 2017-09-21 | 国立研究開発法人物質・材料研究機構 | ポリアリルアミン塩酸塩を受容体として用いたナノメカニカルセンサ並びにアセトン濃度測定装置 |
WO2017170748A1 (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ |
JP2017181438A (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ |
JP2017181431A (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ |
JP2017181436A (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ |
JP2017181439A (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ及びその製造方法 |
JP2017181434A (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ |
US10866203B2 (en) | 2016-03-31 | 2020-12-15 | Kyocera Corporation | Stress sensor |
JP2017181433A (ja) * | 2016-03-31 | 2017-10-05 | 京セラ株式会社 | 応力センサ |
WO2018079509A1 (ja) | 2016-10-27 | 2018-05-03 | 国立研究開発法人物質・材料研究機構 | ガスセンサー装置および気体成分除去方法 |
US11391687B2 (en) | 2016-10-27 | 2022-07-19 | National Institute For Materials Science | Gas sensor device and method for removing gas component |
WO2018097197A1 (ja) | 2016-11-28 | 2018-05-31 | 国立研究開発法人物質・材料研究機構 | 化学センサ測定による試料識別方法、試料識別装置、及び入力パラメータ推定方法 |
US11353437B2 (en) | 2016-11-28 | 2022-06-07 | National Institute For Materials Science | Sample identification method based on chemical sensor measurement, sample identification device, and input parameter estimation method |
WO2018101128A1 (ja) | 2016-11-29 | 2018-06-07 | 国立研究開発法人物質・材料研究機構 | 試料に対応付けられた推定対象値を推定する方法及び装置 |
US12100488B2 (en) | 2016-11-29 | 2024-09-24 | National Institute For Materials Science | Method and device for estimating value to be estimated associated with specimen |
JPWO2018101128A1 (ja) * | 2016-11-29 | 2019-06-27 | 国立研究開発法人物質・材料研究機構 | 試料に対応付けられた推定対象値を推定する方法及び装置 |
WO2018155344A1 (ja) | 2017-02-27 | 2018-08-30 | 国立研究開発法人物質・材料研究機構 | 化学センサによる試料識別方法及び装置 |
US11442051B2 (en) | 2017-02-27 | 2022-09-13 | National Institute For Materials Science | Method and device for identifying sample using chemical sensor |
US11434213B2 (en) | 2017-03-16 | 2022-09-06 | Panasonic Holdings Corporation | Complex crystal and chemosensor provided with same |
WO2018169023A1 (ja) | 2017-03-16 | 2018-09-20 | パナソニック株式会社 | 複合体結晶とこれを備えるケモセンサ |
US11215585B2 (en) | 2017-05-31 | 2022-01-04 | National Institute For Materials Science | Nanomechanical sensor receptor made of low-hygroscopic material and nanomechanical sensor using the same as receptor |
WO2018221283A1 (ja) | 2017-05-31 | 2018-12-06 | 国立研究開発法人物質・材料研究機構 | 低吸湿性材料からなるナノメカニカルセンサ用受容体及びそれを受容体として使用するナノメカニカルセンサ |
JPWO2019021936A1 (ja) * | 2017-07-28 | 2020-07-16 | 京セラ株式会社 | センサ素子 |
WO2019021936A1 (ja) * | 2017-07-28 | 2019-01-31 | 京セラ株式会社 | センサ素子 |
CN110959111A (zh) * | 2017-07-28 | 2020-04-03 | 京瓷株式会社 | 传感器元件 |
US11573121B2 (en) | 2017-07-28 | 2023-02-07 | Kyocera Corporation | Sensor element |
JP7000433B2 (ja) | 2017-07-28 | 2022-01-19 | 京セラ株式会社 | センサ素子 |
JP7304606B2 (ja) | 2017-08-10 | 2023-07-07 | 国立研究開発法人物質・材料研究機構 | 膜型表面応力センサーを用いた水素センサー及び水素検出方法 |
US11573137B2 (en) | 2017-09-20 | 2023-02-07 | Asahi Kasei Kabushiki Kaisha | Surface stress sensor, hollow structural element, and method for manufacturing same |
JP7062256B2 (ja) | 2018-06-11 | 2022-05-06 | 国立研究開発法人物質・材料研究機構 | 材料解析方法及び材料解析装置 |
CN112262307A (zh) * | 2018-06-11 | 2021-01-22 | 国立研究开发法人物质材料研究机构 | 材料解析方法以及材料解析装置 |
WO2019239950A1 (ja) | 2018-06-11 | 2019-12-19 | 国立研究開発法人物質・材料研究機構 | 材料解析方法及び材料解析装置 |
US12007405B2 (en) | 2018-06-11 | 2024-06-11 | National Institute For Materials Science | Material analysis method and material analysis apparatus |
JPWO2019239950A1 (ja) * | 2018-06-11 | 2021-05-13 | 国立研究開発法人物質・材料研究機構 | 材料解析方法及び材料解析装置 |
US11774346B2 (en) | 2018-06-19 | 2023-10-03 | National Institute For Materials Science | Receptor response modulation method, and measuring device using receptor response modulation |
JPWO2019244613A1 (ja) * | 2018-06-19 | 2021-05-13 | 国立研究開発法人物質・材料研究機構 | 受容体応答変調方法及び受容体応答の変調を利用した測定装置 |
JP6995407B2 (ja) | 2018-06-19 | 2022-01-14 | 国立研究開発法人物質・材料研究機構 | 受容体応答変調方法及び受容体応答の変調を利用した測定装置 |
WO2019244613A1 (ja) | 2018-06-19 | 2019-12-26 | 国立研究開発法人物質・材料研究機構 | 受容体応答変調方法及び受容体応答の変調を利用した測定装置 |
CN112437873A (zh) * | 2018-09-03 | 2021-03-02 | 国立研究开发法人物质材料研究机构 | 表面应力传感器的受体层清洁方法 |
JP7090939B2 (ja) | 2018-09-03 | 2022-06-27 | 国立研究開発法人物質・材料研究機構 | 表面応力センサーの受容体層クリーニング方法 |
WO2020050110A1 (ja) * | 2018-09-03 | 2020-03-12 | 国立研究開発法人物質・材料研究機構 | 表面応力センサーの受容体層クリーニング方法 |
JPWO2020050110A1 (ja) * | 2018-09-03 | 2021-08-26 | 国立研究開発法人物質・材料研究機構 | 表面応力センサーの受容体層クリーニング方法 |
US11796408B2 (en) | 2018-09-03 | 2023-10-24 | National Institute For Materials Science | Method for cleaning receptor layer of surface stress sensor |
WO2020110720A1 (ja) | 2018-11-26 | 2020-06-04 | 国立研究開発法人物質・材料研究機構 | 液体試料分析方法及び装置 |
US11879863B2 (en) | 2018-11-26 | 2024-01-23 | National Institute For Materials Science | Method for analyzing liquid sample and apparatus |
WO2020179400A1 (ja) | 2019-03-06 | 2020-09-10 | 国立研究開発法人物質・材料研究機構 | 水素センサー及び水素検出方法 |
WO2020218086A1 (ja) | 2019-04-26 | 2020-10-29 | 国立研究開発法人物質・材料研究機構 | ポリ(2,6-ジフェニル-p-フェニレンオキシド)を使用したナノメカニカルセンサ用感応膜、この感応膜を有するナノメカニカルセンサ、この感応膜のナノメカニカルセンサへの塗布方法、及びこのナノメカニカルセンサの感応膜の再生方法 |
WO2020255580A1 (ja) | 2019-06-18 | 2020-12-24 | 国立研究開発法人物質・材料研究機構 | ナノメカニカルセンサを用いた加湿型高感度・高選択性アンモニア検出方法及び検出装置 |
US12130270B2 (en) | 2019-06-18 | 2024-10-29 | National Institute For Materials Science | Humidification type highly-sensitive/highly-selective ammonia detection method and detection device using nanomechanical sensor |
WO2021014835A1 (ja) | 2019-07-25 | 2021-01-28 | 国立研究開発法人物質・材料研究機構 | ガスセンサによる測定方法及び測定装置 |
US12078627B2 (en) | 2019-07-25 | 2024-09-03 | National Institute For Materials Science | Measurement method and measurement device using gas sensor |
WO2021192915A1 (ja) | 2020-03-23 | 2021-09-30 | 国立研究開発法人物質・材料研究機構 | 原臭選定方法、原臭の組み合わせによりニオイを表現、提示または合成する方法、及びそのための装置 |
WO2021200262A1 (ja) | 2020-03-30 | 2021-10-07 | 国立研究開発法人農業・食品産業技術総合研究機構 | サイレージ発酵品質評価方法及び装置 |
WO2022014512A1 (ja) | 2020-07-17 | 2022-01-20 | 国立研究開発法人農業・食品産業技術総合研究機構 | ケトーシス罹患判定方法及び装置 |
WO2023281674A1 (ja) * | 2021-07-07 | 2023-01-12 | 日本電気株式会社 | 膜型表面応力センサおよび膜型表面応力センサの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101451697B1 (ko) | 2014-10-16 |
JPWO2011148774A1 (ja) | 2013-07-25 |
KR20130028933A (ko) | 2013-03-20 |
JP2015045657A (ja) | 2015-03-12 |
JP5891465B2 (ja) | 2016-03-23 |
JP5649138B2 (ja) | 2015-01-07 |
EP2579010A4 (en) | 2015-08-19 |
US9212959B2 (en) | 2015-12-15 |
EP2579010B1 (en) | 2022-02-23 |
EP2579010A1 (en) | 2013-04-10 |
US20130133433A1 (en) | 2013-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5891465B2 (ja) | 表面応力センサ | |
Mathew et al. | A review on surface stress-based miniaturized piezoresistive SU-8 polymeric cantilever sensors | |
Yoshikawa et al. | Nanomechanical membrane-type surface stress sensor | |
Waggoner et al. | Micro-and nanomechanical sensors for environmental, chemical, and biological detection | |
Bausells | Piezoresistive cantilevers for nanomechanical sensing | |
US7434476B2 (en) | Metallic thin film piezoresistive transduction in micromechanical and nanomechanical devices and its application in self-sensing SPM probes | |
Loui et al. | The effect of piezoresistive microcantilever geometry on cantilever sensitivity during surface stress chemical sensing | |
Li et al. | A single-sided micromachined piezoresistive SiO2 cantilever sensor for ultra-sensitive detection of gaseous chemicals | |
US8122761B2 (en) | Biosensor based on polymer cantilevers | |
Aeschimann et al. | Scanning probe arrays for life sciences and nanobiology applications | |
Wang et al. | Design and optimization of laminated piezoresistive microcantilever sensors | |
Kale et al. | Design and fabrication issues in affinity cantilevers for bioMEMS applications | |
US7959873B1 (en) | Biological detection based on differentially coupled nanomechanical systems using self-sensing cantilevers with attonewton force resolution | |
Zhou et al. | A front-side released single crystalline silicon piezoresistive microcantilever sensor | |
Sohgawa et al. | Detection of amyloid beta fibril growth by liposome-immobilized micro-cantilever with NiCr thin-film strain gauge | |
Mathew et al. | Numerical study on the influence of buried oxide layer of SOI wafers on the terminal characteristics of a micro/nano cantilever biosensor with an integrated piezoresistor | |
US7157897B2 (en) | Method and system for electronic detection of mechanical perturbations using BIMOS readouts | |
Na et al. | Fabrication of piezoresistive microcantilever using surface micromachining technique for biosensors | |
Tsouti et al. | Sensitivity study of surface stress biosensors based on ultrathin Si membranes | |
KR20070011433A (ko) | 마이크로 메카니컬 디바이스 및 나노 메카니컬디바이스에서의 금속 박막 압전 저항형 변환체 및 이변환체에 대한 자체 감지형 spm 프로브에서의 적용 | |
Ahmed et al. | A stepwise approach for piezoresistive microcantilever biosensor optimization | |
Chen et al. | Micromachined SiO 2 microcantilever for high sensitive moisture sensor | |
Ansari et al. | An optimised silicon piezoresistive microcantilever sensor for surface stress studies | |
Lange | Cantilever-based microsystems for gas sensing and atomic force microscopy. | |
AHMED | Design, Simulation and Analysis of Piezoresistive Microcantilever for Biosensing Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11786474 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012517210 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127030791 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011786474 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13699667 Country of ref document: US |