JP6867630B2 - センサ、検出方法、及び、センサ製造方法 - Google Patents

センサ、検出方法、及び、センサ製造方法 Download PDF

Info

Publication number
JP6867630B2
JP6867630B2 JP2018063978A JP2018063978A JP6867630B2 JP 6867630 B2 JP6867630 B2 JP 6867630B2 JP 2018063978 A JP2018063978 A JP 2018063978A JP 2018063978 A JP2018063978 A JP 2018063978A JP 6867630 B2 JP6867630 B2 JP 6867630B2
Authority
JP
Japan
Prior art keywords
sensor
main body
supported
volume
supported portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018063978A
Other languages
English (en)
Other versions
JP2019174330A (ja
Inventor
崇人 小野
崇人 小野
雅也 戸田
雅也 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Mitsui Chemicals Inc
Original Assignee
Tohoku University NUC
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Mitsui Chemicals Inc filed Critical Tohoku University NUC
Priority to JP2018063978A priority Critical patent/JP6867630B2/ja
Priority to PCT/JP2019/009577 priority patent/WO2019188164A1/ja
Priority to CN201980022971.7A priority patent/CN111919110B/zh
Priority to EP19775806.3A priority patent/EP3779420B8/en
Priority to US16/975,275 priority patent/US11506527B2/en
Publication of JP2019174330A publication Critical patent/JP2019174330A/ja
Application granted granted Critical
Publication of JP6867630B2 publication Critical patent/JP6867630B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、センサ、検出方法、及び、センサ製造方法に関する。
対象(例えば、気体又は液体を構成する分子等)の量に応じて体積が変化する体積変化体を備えるとともに、体積変化体の体積の変化に伴って生じる応力を検出するセンサが知られている。例えば、特許文献1に記載のセンサは、本体部と体積変化体と検出部とを備える。本体部は、平板状である。体積変化体は、対象を受容することにより体積が変化するとともに、本体部の厚さ方向における両端面を被覆する。検出部は、本体部の端から延びるとともに、先端が支持される。検出部は、ピエゾ抵抗素子を備えるとともに、体積変化体の体積の変化に伴って生じる応力を検出する。
国際公開第2013/157581号
ところで、上記センサにおいては、体積変化体に受容される対象の量の相違等によって、本体部の厚さ方向にて応力が生じることがある。この場合、本体部が撓んでしまうことがある。この結果、体積変化体の体積の変化を、検出部にて生じる応力に高い精度にて反映できない虞がある。換言すると、上記センサにおいては、対象を高い精度にて検出できない虞がある。
本発明の目的の一つは、対象を高い精度にて検出することである。
一つの側面では、センサは、
平板状であり、且つ、第1方向における第1端が支持されるとともに、厚さ方向における両端面のうちの少なくとも一方にて開口する収容空間を有する本体部と、
対象の量に応じて体積が変化するとともに、少なくとも一部が上記収容空間に収容されるように上記本体部により支持される体積変化体と、
上記本体部のうちの、上記第1方向における第2端に連接し、且つ、上記体積変化体の体積の変化に伴って生じる応力を検出する検出部と、
を備える。
他の一つの側面では、検出方法は、
平板状であり、且つ、第1方向における第1端が支持されるとともに、厚さ方向における両端面のうちの少なくとも一方にて開口する収容空間を有する本体部の、上記収容空間に少なくとも一部が収容されるように上記本体部により支持された体積変化体が、対象の量に応じて体積を変化させ、
上記本体部のうちの、上記第1方向における第2端に連接する検出部が、上記体積変化体の体積の変化に伴って生じる応力を検出する、ことを含む。
他の一つの側面では、センサ製造方法は、
平板状であり、且つ、第1方向における第1端が支持される第1部材に、厚さ方向における両端面のうちの少なくとも一方にて開口する収容空間を形成するとともに、上記第1部材のうちの、上記第1方向における第2端に連接する第2部材に、応力を検出する素子を設け、
対象の量に応じて体積が変化する体積変化体の少なくとも一部を、上記第1部材により支持されるように上記収容空間に収容する、ことを含む。
対象を高い精度にて検出できる。
第1実施形態のセンサの右前上方斜視図である。 第1実施形態のセンサが分解された状態におけるセンサの右前上方斜視図である。 第1実施形態のセンサの右側面図である。 第1実施形態のセンサの平面図である。 第1実施形態のセンサの底面図である。 図4のVI−VI線により表される平面により切断されたセンサの断面図である。 図4のVII−VII線により表される平面により切断されたセンサの断面図である。 第1実施形態のセンサが接続される電気回路を表すブロック図である。 第1実施形態のセンサの製造工程を表す説明図である。 第1実施形態のセンサの製造工程を表す説明図である。 第1実施形態の第3変形例のセンサの断面図である。 第1実施形態の第4変形例のセンサの断面図である。 第1実施形態の第5変形例のセンサの平面図である。 第1実施形態の第6変形例のセンサの平面図である。 第2実施形態のセンサの右前上方斜視図である。 第2実施形態のセンサが分解された状態におけるセンサの右前上方斜視図である。 第2実施形態のセンサの平面図である。 図17のXVIII−XVIII線により表される平面により切断されたセンサの断面図である。 第2実施形態の第3変形例のセンサの平面図である。 第2実施形態の第4変形例のセンサの平面図である。 第2実施形態の第5変形例のセンサの平面図である。 第2実施形態の第6変形例のセンサの平面図である。 第2実施形態の第7変形例のセンサの平面図である。
以下、本発明の、センサ、検出方法、及び、センサ製造方法に関する各実施形態について図1乃至図23を参照しながら説明する。
<第1実施形態>
(概要)
第1実施形態のセンサは、本体部と、体積変化体と、検出部と、を備える。
本体部は、平板状であり、且つ、第1方向における第1端が支持されるとともに、厚さ方向における両端面のうちの少なくとも一方にて開口する収容空間を有する。
体積変化体は、対象の量に応じて体積が変化するとともに、少なくとも一部が収容空間に収容されるように本体部により支持される。
検出部は、本体部のうちの、第1方向における第2端に連接し、且つ、体積変化体の体積の変化に伴って生じる応力を検出する。
これによれば、体積変化体が収容空間に収容されているので、体積変化体の体積が変化した場合であっても、本体部の厚さ方向にて応力が生じることを抑制できる。これにより、本体部が撓むことを抑制できる。従って、第2端において、本体部の厚さ方向における応力が生じることを抑制できる。この結果、体積変化体の体積の変化を、第2端にて生じる、本体部に沿った方向における応力に高い精度にて反映できる。換言すると、上記センサによれば、対象を高い精度にて検出できる。
次に、第1実施形態のセンサについて、詳細に説明する。
(構成)
以下、図1乃至図7に表されるように、x軸、y軸、及び、z軸を有する右手系の直交座標系を用いて、第1実施形態のセンサ1を説明する。なお、本明細書において、後述の図11乃至図23においても同様の座標系が用いられる。
センサ1は、対象を検出する。例えば、対象は、気体、液体、又は、固体を構成する分子である。また、例えば、対象は、気体、液体、及び、固体のうちの少なくとも2つからなる混合物を構成する分子である。また、例えば、対象は、微粒子、温度、湿度、又は、電磁波等である。
本例では、x軸方向、y軸方向、及び、z軸方向は、センサ1の左右方向、センサ1の前後方向、及び、センサ1の上下方向とそれぞれ表されてもよい。また、本例では、x軸の正方向、x軸の負方向、y軸の正方向、y軸の負方向、z軸の正方向、及び、z軸の負方向は、センサ1の右方向、センサ1の左方向、センサ1の前方向、センサ1の後方向、センサ1の上方向、及び、センサ1の下方向とそれぞれ表されてもよい。
図1は、センサ1の右方であり、センサ1の前方であり、且つ、センサ1の上方である位置から、センサ1を見た図(換言すると、右前上方斜視図)である。図2は、センサ1が分解された状態におけるセンサ1の右前上方斜視図である。図3は、センサ1の右方からセンサ1を見た図(換言すると、右側面図)である。
図4は、センサ1の上方からセンサ1を見た図(換言すると、平面図)である。図5は、センサ1の下方からセンサ1を見た図(換言すると、底面図)である。図6は、図4のVI−VI線により表される平面により切断されたセンサ1の断面をx軸の負方向にて見た図である。図7は、図4のVII−VII線により表される平面により切断されたセンサ1の断面をy軸の負方向にて見た図である。
図1に表されるように、センサ1は、z軸方向にて延びる柱体状である。本例では、z軸に直交する平面(換言すると、xy平面)により切断されたセンサ1の断面は、正方形状である。なお、xy平面により切断されたセンサ1の断面は、正方形状と異なる形状(例えば、円形状、楕円形状、又は、長方形状等)であってもよい。
例えば、xy平面により切断されたセンサ1の断面の一辺の長さは、50μm乃至5mmの長さである。本例では、xy平面により切断されたセンサ1の断面の一辺の長さは、500μmである。例えば、センサ1は、マイクロ・ファブリーケーション、又は、ナノ・ファブリケーションと呼ばれる技術を用いて製造されてよい。
センサ1は、第1層状体11と、第2層状体12と、第3層状体13と、体積変化体14と、を備える。第1層状体11、第2層状体12、及び、第3層状体13は、z軸方向にて順に並ぶように積層されている。換言すると、第2層状体12は、第1層状体11と接し、且つ、第3層状体13は、第1層状体11と反対側にて第2層状体12と接する。また、換言すると、第2層状体12は、第1層状体11及び第3層状体13に挟まれている。
例えば、第1層状体11の厚さは、0.5μm乃至50μmの厚さであり、第2層状体12の厚さは、0.05μm乃至5μmの厚さであり、第3層状体13の厚さは、50μm乃至5mmの厚さである。本例では、第1層状体11の厚さは、5μmであり、第2層状体12の厚さは、0.5μmであり、且つ、第3層状体13の厚さは、500μmである。
本例では、第1層状体11は、シリコンからなる。図1及び図2に表されるように、第1層状体11は、z軸方向にて延びるとともに、z軸方向における両端面にて開口する、中空の柱体状である。
本例では、第2層状体12は、二酸化ケイ素からなる。図1及び図2に表されるように、第2層状体12は、平板状である。第2層状体12は、第2層状体12のうちの、z軸方向における両端面にて開口する穴を有する。本例では、xy平面により切断された第2層状体12の断面は、xy平面により切断された第1層状体11の断面と同じ形状を有する。
本例では、第3層状体13は、シリコンからなる。図1及び図2に表されるように、第3層状体13は、平板状である。本例では、第3層状体13のうちの、露出している表面は、図示されない絶縁体薄膜により被覆される。
第3層状体13は、枠部131と、本体部132と、検出部133と、を備える。
枠部131は、枠部131のうちの、z軸方向における両端面にて開口する穴を有する。本例では、xy平面により切断された枠部131の断面は、xy平面により切断された第1層状体11の断面と同じ形状を有する。
図4に表されるように、本体部132は、y軸方向にて延びる長辺と、x軸方向にて延びる短辺と、を有する長方形状である。なお、本体部132は、正方形状であってもよい。本体部132のy軸方向における長さは、枠部131の穴のy軸方向における長さよりも短い。本例では、本体部132のy軸方向における長さは、367μmである。本体部132のx軸方向における長さは、枠部131の穴のx軸方向における長さよりも短い。本例では、本体部132のx軸方向における長さは、300μmである。本体部132のうちの、x軸方向における両端は、枠部131と隔てられている。
本体部132は、本体部132のうちの、y軸の正方向における第1端1321にて枠部131に連接する。換言すると、本体部132は、本体部132のうちの、y軸の正方向における第1端1321が枠部131により支持される。
本体部132のうちの、y軸の負方向における第2端1322の中の、x軸方向における両端部は、検出部133を介して枠部131に連接する。本体部132のうちの、y軸の負方向における第2端1322の中の、x軸方向における中央部は、枠部131と隔てられている。
本体部132は、本体部132のうちの、z軸方向(換言すると、本体部132の厚さ方向)における両端面にて開口する収容空間を形成する空間形成部1323を有する。収容空間は、x軸方向にて延びるスリット状の孔を複数含む。本例では、収容空間に含まれる各孔は、z軸方向にて本体部132を貫通する貫通孔である。本例では、収容空間に含まれる複数の孔は、y軸方向に沿って等間隔にて並ぶ。
例えば、収容空間に含まれる各孔のy軸方向における長さは、0.1μm乃至10μmの長さである。本例では、収容空間に含まれる各孔のy軸方向における長さは、1μmである。例えば、収容空間に含まれる孔間のy軸方向における間隔は、0.1μm乃至10μmの長さである。本例では、収容空間に含まれる孔間のy軸方向における間隔は、1μmである。本例では、収容空間に含まれる複数の孔は、133個である。なお、図1乃至図7において、収容空間に含まれる複数の孔は、y軸方向において拡大された態様にて図示されている。従って、図1乃至図7において、収容空間に含まれる複数の孔は、数が減じられた態様にて図示されている。
本例では、収容空間に含まれる複数のスリット状の孔のx軸方向における長さは、280μmである。
検出部133は、第1被支持部1331と、第2被支持部1332と、第1配線1333と、第2配線1334と、を備える。
図4に表されるように、第1被支持部1331は、y軸方向にて延びる帯状である。第1被支持部1331のうちの、y軸の負方向における端は、枠部131に連接する。第1被支持部1331のうちの、y軸の正方向における端は、本体部132の第2端1322のうちの、x軸の負方向における端部に連接する。換言すると、第1被支持部1331は、本体部132の第2端1322からy軸の負方向へ延びるとともに、先端が枠部131により支持される。
第1被支持部1331の幅(換言すると、第1被支持部1331のx軸方向における長さ)は、本体部132の幅(換言すると、本体部132のx軸方向における長さ)よりも狭い。第1被支持部1331のうちの、第1被支持部1331が延びる方向である延在方向(本例では、y軸方向)における中央部の幅は、第1被支持部1331のうちの、延在方向における両端部の幅よりも狭い。
第1被支持部1331は、第1被支持部1331のうちの延在方向における中央部に位置するピエゾ抵抗素子PZを備える。ピエゾ抵抗素子PZは、ピエゾ抵抗素子PZに加えられた応力に応じて電気抵抗が変化する素子である。換言すると、ピエゾ抵抗素子PZは、圧抵抗効果又はピエゾ抵抗効果を有する素子である。
本例では、図7に表されるように、ピエゾ抵抗素子PZは、第1被支持部1331の、z軸の正方向における端面に露出するように、第1被支持部1331に埋設されている。
このような構成により、検出部133は、本体部132から伝達された応力を、第1被支持部1331のうちの延在方向における中央部にて検出する。
図4に表されるように、第2被支持部1332は、y軸方向にて延びる帯状である。第2被支持部1332のうちの、y軸の負方向における端は、枠部131に連接する。第2被支持部1332のうちの、y軸の正方向における端は、本体部132の第2端1322のうちの、x軸の正方向における端部に連接する。換言すると、第2被支持部1332は、本体部132の第2端1322からy軸の負方向へ延びるとともに、先端が枠部131により支持される。
第2被支持部1332の幅(換言すると、第2被支持部1332のx軸方向における長さ)は、本体部132の幅よりも狭い。第2被支持部1332のうちの、第2被支持部1332が延びる方向である延在方向(本例では、y軸方向)における中央部の幅は、第2被支持部1332のうちの、延在方向における両端部の幅よりも狭い。
第1配線1333、及び、第2配線1334は、導体(本例では、アルミニウム)からなる。第1配線1333、及び、第2配線1334は、第3層状体13のうちの、z軸の正方向における端面に敷設される。
例えば、第1配線1333及び第2配線1334の厚さ(換言すると、第1配線1333及び第2配線1334のz軸方向における長さ)は、10nm乃至1μmの厚さである。本例では、第1配線1333及び第2配線1334の厚さは、100nmである。
本例では、第1配線1333及び第2配線1334のうちの、露出している表面の一部は、図示されない酸化物薄膜により被覆される。例えば、第1配線1333及び第2配線1334のうちの、露出している表面の中で酸化物薄膜により被覆されていない部分は、接続用の端子として用いられてよい。
図4及び図6に表されるように、第1配線1333のうちの一方の端部は、ピエゾ抵抗素子PZのうちの、y軸の負方向における端部と接する。第1配線1333のうちの他方の端部は、枠部131の外縁に位置する。第1配線1333は、ピエゾ抵抗素子PZのうちの、y軸の負方向における端部から、第1被支持部1331の先端(換言すると、第1被支持部1331のうちの、枠部131に連接する端)を通って、枠部131の外縁まで延びる。換言すると、第1配線1333は、ピエゾ抵抗素子PZと第1被支持部1331の先端とを結ぶ。
第2配線1334のうちの一方の端部は、ピエゾ抵抗素子PZのうちの、y軸の正方向における端部と接する。第2配線1334のうちの他方の端部は、枠部131の外縁に位置する。第2配線1334は、ピエゾ抵抗素子PZのうちの、y軸の正方向における端部から、第1被支持部1331の基端(換言すると、第1被支持部1331のうちの、本体部132に連接する端)、本体部132のうちの、y軸の負方向における端部、及び、第2被支持部1332を通って、枠部131の外縁まで延びる。
換言すると、第2配線1334は、ピエゾ抵抗素子PZと第2被支持部1332の先端(換言すると、第2被支持部1332のうちの、枠部131に連接する端)とを、本体部132を通って結ぶ。
体積変化体14は、対象の量に応じて体積が変化する感知材料からなる。感知材料の詳細については後述する。体積変化体14は、感知体、又は、感応体と表されてもよい。本例では、体積変化体14は、対象を受容(例えば、吸着、吸収、又は、収着)することにより、体積が増加(換言すると、膨張)する。本例では、体積変化体14は、受容体と表されてもよい。本例では、体積変化体14は、受容された対象の量が多くなるほど、体積が増加する。なお、体積変化体14は、対象の量に応じて、体積変化体14から物質を、脱着、又は、離脱させることにより、体積が減少(換言すると、収縮)してもよい。
体積変化体14は、本体部132の収容空間に収容されるように本体部132により支持される。本例では、体積変化体14は、本体部132の収容空間を充填する。本例では、体積変化体14は、本体部132の空間形成部1323に固定される。
更に、第1配線1333、及び、第2配線1334は、図1乃至図7において図示されない電気回路に接続される。これにより、センサ1は、図8に表される電気回路100を構成する。電気回路100は、第1電源101と、第2電源102と、第1抵抗器103と、第2抵抗器104と、増幅器105と、記憶装置106と、を備える。
第2電源102、第1電源101、第1抵抗器103、及び、第2抵抗器104は、順に直列に接続される。電気回路100は、第1電源101と第2電源102との間で接地される。増幅器105は、第1抵抗器103と第2抵抗器104との間の電位が入力されるとともに、入力された電位を増幅し、且つ、増幅された電位を記憶装置106へ出力する。記憶装置106は、増幅器105から入力された電位が表す信号を記憶する。
第1電源101の電圧は、+V[V]である。第2電源102の電圧は、−V[V]である。第1抵抗器103の電気抵抗は、R[Ω]である。第2抵抗器104の電気抵抗は、R[Ω]である。本例では、センサ1のピエゾ抵抗素子PZは、第1抵抗器103を構成する。従って、第1抵抗器103は、可変抵抗器である、と捉えられてよい。また、第2抵抗器104は、参照抵抗器である、と捉えられてよい。
このような構成により、記憶装置106は、第1抵抗器103の電気抵抗と第2抵抗器104の電気抵抗との差に応じた信号を記憶する。
(感知材料)
次に、感知材料について説明を加える。
本例では、感知材料は、流動性を有する。例えば、収容空間に感知材料を充填することにより体積変化体14を形成するためには、感知材料の粘度が低いこと、感知材料の、収容空間を形成する壁面に対する濡れ性が良いこと、感知材料が収容空間に流入しやすいこと、及び、感知材料が収容空間から流出することなく固化しやすいこと、が好適である。
従って、感知材料は、ブルックフィールド型(換言すると、B型)粘度計による粘度が1000[mPa・sec]以下であることが好ましく、500[mPa・sec]以下であることがより好ましく、250[mPa・sec]以下であることがさらに好ましく、200[mPa・sec]以下であることが特に好ましく、100[mPa・sec]以下であることが最も好ましい。
なお、感知材料の最適な粘度は、第3層状体13を構成する材料、収容空間を形成する壁面の状態、収容空間の形状、及び、収容空間の大きさに応じて異なってよい。
また、例えば、毛細管現象を用いて収容空間に感知材料を流入させる場合において、収容空間を形成する壁面を構成する主たる材料がシリコンである場合、感知材料に含まれる溶媒の表面張力が十分に低いことが好適である。溶媒は、溶剤と表されてもよい。
なお、溶媒の最適な表面張力は、以下に述べる感知材料の充填方法に応じて異なってよい。
感知材料を収容空間に充填する方法として、浸漬法(換言すると、ディップコート法、又は、ディップコーティング法)、スプレーコート法、又は、スピンコート法と呼ばれる技術が用いられてよい。また、インクジェットプリンタ、又は、ニードルディスペンサを用いて、感知材料を収容空間に充填してもよい。例えば、浸漬法は、感知材料を収容空間に充填する作業の効率を高めるために好適である。
感知材料に含まれる溶媒は、感知材料に含まれる溶質の少なくとも一部を溶かすことができればよい。溶媒は、感知材料に含まれる溶質の少なくとも一部を溶かすことにより、溶液、又は、懸濁液(例えば、コロイド溶液、又は、スラリー液等)を構成する。
例えば、溶媒は、水、アルコール系溶媒(例えば、イソプロピルアルコール、エタノール、又は、フェノキシエタノール等)、ホルムアミド系溶媒(例えば、N,N−ジメチルホルムアミド等)、ケトン系溶媒(例えば、アセトン、シクロヘキサノン、又は、2−ブタノン等)、エーテル系溶媒(例えば、ジエチルエーテル等)、ハロゲン系溶媒(例えば、ジクロロホルム、又は、クロロホルム等)、環式化合物を有する極性溶媒(例えば、2−ピロリドン、N−メチル−2−ピロリドン、又は、テトラヒドロフラン等)、又は、ベンゼン系溶媒(例えば、トルエン、又は、キシレン等)等であってよい。
例えば、感知材料は、合成ポリマー(例えば、熱可塑性高分子、熱硬化性高分子、又は、光硬化性高分子等)、天然物由来ポリマー(例えば、生体高分子等)、無機材料(例えば、金属、又は、セラミックス等)、カーボン材料、又は、これらのうちの少なくとも一つを含む組成物を含む。また、例えば、感知材料は、無機材料、カーボン材料、低分子化合物、又は、ポリマー等の微小粒子を含んでいてもよい。
なお、合成ポリマーの製造方法は、例えば、非特許文献1に開示されている。
(非特許文献1) 「実用プラスチック事典」、実用プラスチック事典編集委員会編、産業調査会、1993年
感知材料は、1種類の熱可塑性高分子を含んでいてもよく、2種類以上の熱可塑性高分子を含んでいてもよい。
例えば、熱可塑性高分子は、ポリオレフィン樹脂(例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、又は、ポリビニルアルコール等)、ポリオレフィン系ワックス(例えば、ポリエチレンオリゴマー、又は、ポリプロピレンオリゴマー等)、熱可塑性アクリル樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ABS(Acrylonitrile Butadiene Styrene)樹脂、エラストマー(例えば、ポリオレフィン系エラストマー、水添スチレン系ブロック共重合体、又は、水添スチレン系ランダム共重合体等)、スーパーエンジニアリングプラスチック(例えば、ポリフェニレンスルフィド、ポリアミドイミド、ポリエーテルサルフォン、又は、ポリエーテルエーテルケトン等)、又は、シンジオタクティックポリスチレン等であってよい。
例えば、熱硬化性高分子、又は、光硬化性高分子は、アクリル樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ウレア樹脂、ポリウレタン樹脂、メラミン樹脂、シリコーン樹脂、アルキド樹脂、又は、熱硬化性ポリイミド等である。感知材料が熱硬化性高分子、又は、光硬化性高分子を含む場合、硬化前のモノマー及び開始剤等を混合し、その直後に混合物を収容空間に充填し、熱又は光によって混合物を硬化させることにより、体積変化体14が形成されてよい。
例えば、天然物由来ポリマーは、天然物由来の多糖類(例えば、セルロース、キチン、キトサン、ヒアルロン酸、又は、キサンタンガム等)、天然物由来の多糖類の誘導体、アミノ酸重合体、アミノ酸重合体の誘導体、タンパク質(例えば、ゼラチン、又は、コラーゲン等)、又は、タンパク質の誘導体である。
例えば、無機材料は、ガラス繊維、カーボン繊維、及び、無機フィラーからなる材料群から選択される少なくとも1つの材料からなる。
例えば、無機フィラーは、無定形フィラー(例えば、炭酸カルシウム、シリカ、カオリン、クレー、酸化チタン、硫酸バリウム、酸化亜鉛、水酸化アルミニウム、アルミナ、又は、水酸化マグネシウム等)、板状フィラー(例えば、タルク、マイカ、又は、ガラスフレーク等)、針状フィラー(例えば、ワラストナイト、チタン酸カリウム、塩基性硫酸マグネシウム、セピオライト、ゾノトライト、又は、ホウ酸アルミニウム等)、導電性フィラー(例えば、金属粉、金属フレーク、カーボンブラック、又は、カーボンナノチューブ等)、ガラスビーズ、ガラス粉、アパタイト、又は、ゼオライト等である。
感知材料は、1種類の無機フィラーを含んでいてもよく、2種類以上の無機フィラーを含んでいてもよい。また、無機フィラーの表面は、炭素により被覆されていてもよいし、シランカップリング処理等が施されていてもよい。
例えば、カーボン材料は、活性炭、カーボンナノチューブ、及び、グラファイトからなる材料群から選択される少なくとも1つの材料からなる。
例えば、感知材料は、金属有機構造体(MOF;Metal Organic Frameworks)等の合成された多孔質体を含んでもよい。金属有機構造体は、多孔性配位高分子と呼ばれてもよい。例えば、金属有機構造体は、Basolite(登録商標)C300(BASF社製)等であってよい。
また、感知材料は、添加剤を含んでいてもよい。例えば、添加剤は、難燃剤(例えば、臭素化ビスフェノール、臭素化エポキシ樹脂、臭素化ポリスチレン、臭素化ポリカーボネート、トリフェニルホスフェート、ホスホン酸アミド、又は、赤リン等)、難燃助剤(例えば、三酸化アンチモン、又は、アンチモン酸ナトリウム等)、熱安定剤(例えば、リン酸エステル、又は、亜リン酸エステル等)、酸化防止剤(例えば、ヒンダードフェノール等)、耐熱剤、耐候剤、光安定剤、離型剤、流動改質剤、着色剤、顔料、滑剤、帯電防止剤、結晶核剤、可塑剤、発泡剤、ハロゲンキャッチャー、又は、ドリップ防止剤等であってよい。
例えば、対象が炭酸ガスである場合、感知材料は、水酸化カリウムを含んでよい。例えば、対象が温度である場合、感知材料は、ポリエチレンを含んでよい。例えば、対象が湿度である場合、感知材料は、ナイロンを含んでよい。例えば、対象が電磁波である場合、感知材料は、ブラックカーボンを含んでよい。
(製造方法)
次に、第1実施形態のセンサ1の製造方法(換言すると、センサ製造方法)について説明する。
本例では、センサ1は、図9及び図10に表される工程に従って製造される。なお、センサ1の少なくとも一部は、図9及び図10に表される工程と異なる工程に従って製造されてもよい。
先ず、図9の(A)に表されるように、第1シリコン層LAと、第1シリコン層LAに接する絶縁層LBと、絶縁層LBに接する第2シリコン層LCと、からなるSOI(Silicon On Insulator)基板を用意する。本例では、絶縁層LBは、二酸化ケイ素からなる。
次に、図9の(B)に表されるように、第2シリコン層LCにホウ素を添加する。本例では、ホウ素の添加は、ドーピングと呼ばれる技術を用いて行われる。ホウ素が添加された第2シリコン層LCAによれば、導体の接触抵抗を低減できる。
次に、図9の(C)に表されるように、第2シリコン層LCAの、絶縁層LBと反対側の表面にアルミニウムからなる薄膜を形成する。本例では、アルミニウムからなる薄膜の形成は、スパッタリングと呼ばれる技術を用いて行われる。更に、形成された薄膜の一部を除去することにより、第1配線1333及び第2配線1334を形成する。本例では、薄膜の一部の除去は、メタルエッチングと呼ばれる技術を用いて行われる。本例では、第2シリコン層LCAは、第1部材及び第2部材に対応する。
次に、図9の(D)に表されるように、第2シリコン層LCAの一部を除去することにより、第3層状体13を形成する。本例では、第2シリコン層LCAの一部の除去は、ドライエッチングと呼ばれる技術を用いて行われる。
次に、図10の(E)に表されるように、第1シリコン層LAの一部、及び、絶縁層LBの一部を除去することにより、第1層状体11、及び、第2層状体12をそれぞれ形成する。本例では、第1シリコン層LAの一部、及び、絶縁層LBの一部の除去は、深掘りRIE(Deep Reactive Ion Etching)、及び、気相フッ酸エッチング(Vapor HF Etching)と呼ばれる技術を用いて行われる。
次に、図10の(F)に表されるように、第3層状体13、第1配線1333、及び、第2配線1334のうちの、露出している表面に絶縁体薄膜OLを形成する。本例では、絶縁体薄膜OLは、酸化アルミニウムからなる。本例では、絶縁体薄膜の形成は、原子層堆積法(Atomic Layer Deposition)と呼ばれる技術を用いて行われる。例えば、絶縁体薄膜の厚さは、5nm乃至50nmの厚さである。本例では、絶縁体薄膜の厚さは、20nmである。
次に、第1配線1333の表面に形成された絶縁体薄膜OLの一部、及び、第2配線1334の表面に形成された絶縁体薄膜OLの一部を除去することにより、接続用の端子を形成する。本例では、接続用の端子の形成は、イオンミリングと呼ばれる技術を用いて行われる。
次に、図10の(G)に表されるように、感知材料を本体部132の収容空間に充填することにより体積変化体14を形成する。本例では、体積変化体14の形成は、浸漬法と呼ばれる技術を用いて行われる。例えば、本体部132を感知材料である溶液に浸漬することにより、感知材料を本体部132の収容空間に充填し、充填された感知材料を摂氏10乃至350度の温度にて乾燥させることにより体積変化体14を形成する。
このようにして、センサ1は、製造される。
(動作)
次に、第1実施形態のセンサ1の動作について説明する。
対象がセンサ1の近傍に存在する場合を想定する。この場合、体積変化体14は、対象を受容することにより、対象の量に応じて体積が増加する。
これにより、体積変化体14は、本体部132の第2端1322にて、y軸の負方向の成分を含む応力を生じる。本体部132の第2端1322にて生じた応力は、検出部133に伝達される。
検出部133のピエゾ抵抗素子PZは、本体部132から伝達された応力に応じて電気抵抗が変化する。電気回路100は、検出部133のピエゾ抵抗素子PZの電気抵抗(本例では、第1抵抗器103の電気抵抗)と第2抵抗器104の電気抵抗との差に応じた信号を記憶装置106に記憶させる。
このようにして、センサ1は、対象を検出する。
以上、説明したように、第1実施形態のセンサ1において、本体部132は、平板状であり、且つ、第1方向(本例では、y軸方向)における第1端1321が支持されるとともに、本体部132の厚さ方向における両端面のうちの少なくとも一方にて開口する収容空間を有する。更に、体積変化体14は、対象の量に応じて体積が変化するとともに、少なくとも一部が収容空間に収容されるように本体部132により支持される。更に、検出部133は、本体部132のうちの、第1方向における第2端1322に連接し、且つ、体積変化体14の体積の変化に伴って生じる応力を検出する。
これによれば、体積変化体14が収容空間に収容されているので、体積変化体14の体積が変化した場合であっても、本体部132の厚さ方向にて応力が生じることを抑制できる。これにより、本体部132が撓むことを抑制できる。従って、第2端1322において、本体部132の厚さ方向における応力が生じることを抑制できる。この結果、体積変化体14の体積の変化を、第2端1322にて生じる、本体部132に沿った方向における応力に高い精度にて反映できる。換言すると、センサ1によれば、対象を高い精度にて検出できる。
更に、第1実施形態のセンサ1において、収容空間は、本体部132の厚さ方向における両端面にて開口する。
これによれば、体積変化体14の体積が変化した場合に、本体部132の厚さ方向にて生じる応力を、収容空間が本体部の厚さ方向における一端のみにて開口する場合よりも抑制できる。従って、体積変化体14の体積の変化を、第2端1322にて生じる応力に高い精度にて反映できる。この結果、対象を高い精度にて検出できる。
更に、第1実施形態のセンサ1において、収容空間は、第1方向(本例では、y軸方向)に直交する第2方向(本例では、x軸方向)にて延びるスリット状の孔を含む。
これによれば、体積変化体14を収容空間に容易に収容できる。また、体積変化体14の体積の変化に伴って本体部132にて生じる応力のうちの、第1方向の成分を大きくすることができる。従って、体積変化体14の体積の変化を、第2端1322にて生じる応力に高い精度にて反映できる。この結果、対象を高い精度にて検出できる。
更に、第1実施形態のセンサ1において、収容空間は、孔を複数含み、複数の孔は、第1方向(本例では、y軸方向)に沿って並ぶ。
ところで、孔が大きくなるほど、体積変化体14を本体部132により支持することが困難になりやすい。従って、体積変化体14の量を増加させにくい。
これに対し、センサ1によれば、孔の数を増やすことにより、体積変化体14の量を容易に増加できる。また、複数の孔が第1方向に沿って並ぶので、体積変化体14の体積の変化に伴って本体部132にて生じる応力のうちの、第1方向の成分を大きくすることができる。従って、体積変化体14の体積の変化を、第2端1322にて生じる応力に高い精度にて反映できる。この結果、対象を高い精度にて検出できる。
更に、第1実施形態のセンサ1において、検出部133は、第2端1322から第1方向(本例では、y軸方向)へ延びるとともに、先端が支持される第1被支持部1331を備えるとともに、第1被支持部1331にて、体積変化体14の体積の変化に伴って生じる応力を検出する。
これによれば、体積変化体14の体積の変化に伴って第1被支持部1331にて生じる、圧縮応力又は引っ張り応力を大きくすることができる。従って、体積変化体14の体積の変化を、第1被支持部1331にて生じる応力に高い精度にて反映できる。この結果、対象を高い精度にて検出できる。
更に、第1実施形態のセンサ1において、第1被支持部1331の幅は、本体部132の、第1方向(本例では、y軸方向)に直交する第2方向(本例では、x軸方向)における長さよりも狭い。
これによれば、体積変化体14の体積の変化に伴って第1被支持部1331にて生じる応力を、本体部132にて生じる応力よりも大きくすることができる。従って、体積変化体14の体積の変化を、第1被支持部1331にて生じる応力に高い精度にて反映できる。この結果、対象を高い精度にて検出できる。
更に、第1実施形態のセンサ1において、検出部133は、第2端1322から第1方向(本例では、y軸方向)へ延びるとともに、先端が支持される第2被支持部1332を備える。検出部133は、第1被支持部1331に位置するピエゾ抵抗素子PZを備える。検出部133は、ピエゾ抵抗素子PZと第1被支持部1331の先端とを結ぶ第1配線1333と、ピエゾ抵抗素子PZと第2被支持部1332の先端とを、本体部132を通って結ぶ第2配線1334と、を備える。
これによれば、第1配線1333と第2配線1334との間で生じる漏れ電流を抑制できる。従って、対象を高い精度にて検出できる。
更に、第1実施形態のセンサ1において、第1被支持部1331のうちの、第1被支持部1331が延びる方向である延在方向における中央部の幅は、第1被支持部1331のうちの、延在方向における両端部の幅よりも狭い。検出部133は、第1被支持部1331のうちの、延在方向における中央部にて、体積変化体14の体積の変化に伴って生じる応力を検出する。
これによれば、体積変化体14の体積の変化に伴って、第1被支持部1331のうちの、延在方向における中央部にて生じる応力を、第1被支持部1331のうちの、延在方向における両端部にて生じる応力よりも大きくすることができる。従って、体積変化体14の体積の変化を、当該中央部にて生じる応力に高い精度にて反映できる。この結果、対象を高い精度にて検出できる。
第1実施形態のセンサ1において、体積変化体14は、体積変化体14の全体が本体部132の収容空間に収容される。なお、第1実施形態の第1変形例のセンサ1において、体積変化体14は、体積変化体14の一部が収容空間に収容されるとともに、体積変化体14の他の部分が、本体部132のうちの、本体部132の厚さ方向における両端面の中の少なくとも一部を被覆してもよい。例えば、体積変化体14は、本体部132の厚さ方向における両端面のうちの、空間形成部1323が存在する領域を被覆してよい。
また、第1実施形態のセンサ1において、本体部132は、第2端1322にて、第1被支持部1331及び第2被支持部1332からなる2つの被支持部を介して枠部131に連接する。なお、第1実施形態の第2変形例のセンサ1において、本体部132は、第2端1322にて、1つの被支持部を介して枠部131に連接してもよいし、3つ以上の被支持部を介して枠部131に連接してもよい。また、本体部132は、第1端1321にて、1つ以上の被支持部を介して枠部131に連接してもよい。
また、図6に表されるように、第1実施形態のセンサ1において、本体部132の空間形成部1323が形成する収容空間に含まれる各孔は、本体部132の厚さ方向にて本体部132を貫通する貫通孔である。なお、図11に表されるように、第1実施形態の第3変形例のセンサ1において、本体部132の空間形成部1323Aが形成する収容空間に含まれる各孔は、本体部132のうちの、z軸の正方向における端面にて開口する有底の孔であってもよい。
また、図12に表されるように、第1実施形態の第4変形例のセンサ1において、本体部132の空間形成部1323Bが形成する収容空間に含まれる各孔は、本体部132のうちの、z軸の正方向における端面にて開口する有底の第1孔、又は、本体部132のうちの、z軸の負方向における端面にて開口する有底の第2孔であってもよい。例えば、図12に表されるように、収容空間に含まれる複数の孔は、y軸方向に沿って、第1孔と第2孔とが交互に並んでよい。
また、図4に表されるように、第1実施形態のセンサ1において、本体部132の空間形成部1323が形成する収容空間に含まれる孔の数は、2個以上である。なお、図13に表されるように、第1実施形態の第5変形例のセンサ1において、本体部132の空間形成部1323Cが形成する収容空間に含まれる孔の数は、1個であってもよい。例えば、図13に表されるように、本体部132の空間形成部1323Cは、本体部132の平面視(換言すると、本体部132をz軸の負方向にて見た場合)において櫛歯状であってよい。
また、図4に表されるように、第1実施形態のセンサ1において、本体部132の空間形成部1323が形成する収容空間は、スリット状の孔を複数含む。なお、図14に表されるように、第1実施形態の第6変形例のセンサ1において、本体部132の空間形成部1323Cは、本体部132の平面視(換言すると、本体部132をz軸の負方向にて見た場合)においてメッシュ状であってよい。例えば、図14に表されるように、収容空間に含まれる各孔は、本体部132の平面視において、正六角形であってよい。なお、収容空間に含まれる各孔は、本体部132の平面視において、正六角形以外の形(円形、楕円形、又は、正六角形以外の多角形等)であってもよい。
なお、第1実施形態のセンサ1は、異なる複数の対象のそれぞれを検出する検出装置に適用されてよい。この場合、検出装置は、感知材料が異なる複数のセンサ1を備えることが好適である。例えば、複数のセンサ1は、格子状の配列を有してよい。
<第2実施形態>
次に、第2実施形態のセンサについて説明する。第2実施形態のセンサは、第1実施形態のセンサに対して、曲げ応力に基づいて対象の検出を行う点において相違している。以下、相違点を中心として説明する。なお、第2実施形態の説明において、第1実施形態にて使用した符号と同じ符号を付したものは、同一又は略同様のものである。
図15乃至図18に表されるように、第2実施形態のセンサ1Aは、第1実施形態のセンサ1と同様に、第1層状体11と、第2層状体12と、第3層状体13と、体積変化体14と、を備える。
図15は、センサ1Aの右前上方斜視図である。図16は、センサ1Aが分解された状態におけるセンサ1Aの右前上方斜視図である。図17は、センサ1Aの平面図である。図18は、図17のXVIII−XVIII線により表される平面により切断されたセンサ1Aの断面をx軸の負方向にて見た図である。
図17に表されるように、第3層状体13は、枠部131と、本体部132と、検出部133と、を備える。検出部133は、第1実施形態の検出部133が備える、第1被支持部1331、第2被支持部1332、第1配線1333、及び、第2配線1334、に加えて、延在部1335を備える。
枠部131は、第1実施形態の枠部131と同様の構成を有する。
本体部132は、y軸方向にて延びる長辺と、x軸方向にて延びる短辺と、を有する長方形状である。なお、本体部132は、正方形状であってもよい。本体部132のy軸方向における長さは、枠部131の穴のy軸方向における長さよりも短い。本例では、本体部132のy軸方向における長さは、260μmである。本体部132のx軸方向における長さは、枠部131の穴のx軸方向における長さよりも短い。本例では、本体部132のx軸方向における長さは、240μmである。本体部132のうちの、x軸の正方向における端は、枠部131と隔てられている。
本体部132は、本体部132のうちの、y軸の正方向における第1端1321にて枠部131に連接する。換言すると、本体部132は、本体部132のうちの、y軸の正方向における第1端1321が枠部131により支持される。
本体部132のうちの、y軸の負方向における第2端1322の中の、x軸の負方向における端部以外の部分は、延在部1335に連接する。本体部132のうちの、y軸の負方向における第2端1322の中の、x軸の負方向における端部は、枠部131と隔てられている。
本体部132は、本体部132のうちの、x軸の負方向における第3端1324にて枠部131に連接する。換言すると、本体部132は、本体部132のうちの、x軸の負方向における第3端1324が枠部131により支持される。
本体部132は、本体部132のうちの、z軸方向(換言すると、本体部132の厚さ方向)における両端面にて開口する収容空間を形成する空間形成部1323を有する。本例では、収容空間は、z軸方向にて本体部132を貫通する貫通孔である。
収容空間は、x軸方向にて延びるスリット状のスリット部を複数含むとともに、互いに隣接する2つのスリット部をx軸方向における中央部にて連結する連結部を含む。本例では、収容空間に含まれる複数のスリット部は、y軸方向に沿って等間隔にて並ぶ。
例えば、収容空間に含まれる各スリット部のy軸方向における長さは、1μm乃至10μmの長さである。本例では、収容空間に含まれる各スリット部のy軸方向における長さは、5μmである。例えば、収容空間に含まれるスリット部間のy軸方向における間隔は、1μm乃至10μmの長さである。本例では、収容空間に含まれるスリット部間のy軸方向における間隔は、1μmである。本例では、収容空間に含まれる複数のスリット部は、40個である。なお、図15乃至図18において、収容空間に含まれる複数のスリット部は、y軸方向において拡大された態様にて図示されている。従って、図15乃至図18において、収容空間に含まれる複数のスリット部は、数が減じられた態様にて図示されている。
本例では、収容空間に含まれる複数のスリット部のx軸方向における長さは、220μmである。
図17に表されるように、延在部1335は、x軸方向にて延びる長辺と、y軸方向にて延びる短辺と、を有する長方形状である。延在部1335のうちの、x軸の負方向における端は、枠部131と隔てられている。延在部1335のうちの、y軸の負方向における端は、枠部131と隔てられている。
延在部1335のうちの、y軸の正方向における端のうちの、x軸の正方向における端部以外の部分は、本体部132の第2端1322に連接する。延在部1335のうちの、y軸の正方向における端のうちの、x軸の正方向における端部は、枠部131と隔てられている。
このように、延在部1335は、第2端1322に連接する位置と、x軸方向における位置が異なる位置(本例では、第2端1322に連接する位置よりもx軸の正方向の位置)まで、第2端1322から延びる。
延在部1335のうちの、x軸の正方向における端(換言すると、延在部1335の先端)の中の、y軸方向における両端部は、第1被支持部1331及び第2被支持部1332を介して枠部131に連接する。延在部1335の先端のうちの、y軸方向における中央部は、枠部131と隔てられている。
第1被支持部1331は、x軸方向にて延びる帯状である。第1被支持部1331のうちの、x軸の正方向における端は、枠部131に連接する。第1被支持部1331のうちの、x軸の負方向における端は、延在部1335の先端のうちの、y軸の負方向における端部に連接する。換言すると、第1被支持部1331は、延在部1335の先端からx軸の正方向へ延びるとともに、先端が枠部131により支持される。
第1被支持部1331の幅(換言すると、第1被支持部1331のy軸方向における長さ)は、延在部1335の幅(換言すると、延在部1335のy軸方向における長さ)よりも狭い。
第1被支持部1331は、切欠部NTを有する。本例では、x軸方向における位置が、第1被支持部1331のうちの、x軸方向における端から中央へ近づくほど、切欠部NTのうちの、y軸の負方向における端は、y軸の正方向に位置する。従って、第1被支持部1331のうちの、第1被支持部1331が延びる方向である延在方向(本例では、x軸方向)における中央部の幅は、第1被支持部1331のうちの、延在方向における両端部の幅よりも狭い。
第1被支持部1331は、第1被支持部1331のうちの延在方向における中央部に位置するピエゾ抵抗素子PZを備える。ピエゾ抵抗素子PZは、ピエゾ抵抗素子PZに加えられた応力に応じて電気抵抗が変化する素子である。換言すると、ピエゾ抵抗素子PZは、圧抵抗効果又はピエゾ抵抗効果を有する素子である。
ピエゾ抵抗素子PZは、第1実施形態のピエゾ抵抗素子PZと同様に、第1被支持部1331の、z軸の正方向における端面に露出するように、第1被支持部1331に埋設されている。
このような構成により、検出部133は、本体部132から伝達された応力を、第1被支持部1331のうちの延在方向における中央部にて検出する。
第2被支持部1332は、x軸方向にて延びる帯状である。第2被支持部1332のうちの、x軸の正方向における端は、枠部131に連接する。第2被支持部1332のうちの、x軸の負方向における端は、延在部1335の先端のうちの、y軸の正方向における端部に連接する。換言すると、第2被支持部1332は、延在部1335の先端からx軸の正方向へ延びるとともに、先端が枠部131により支持される。
第2被支持部1332の幅(換言すると、第2被支持部1332のy軸方向における長さ)は、延在部1335の幅よりも狭い。第2被支持部1332のうちの、第2被支持部1332が延びる方向である延在方向(本例では、x軸方向)における中央部の幅は、第2被支持部1332のうちの、延在方向における両端部の幅と等しい。
第1配線1333、及び、第2配線1334は、位置が異なる点を除いて、第1実施形態の第1配線1333、及び、第2配線1334と同様の構成をそれぞれ有する。
本例では、第1配線1333のうちの一方の端部は、ピエゾ抵抗素子PZのうちの、x軸の正方向における端部と接する。第1配線1333のうちの他方の端部は、枠部131の外縁に位置する。第1配線1333は、ピエゾ抵抗素子PZのうちの、x軸の正方向における端部から、第1被支持部1331の先端(換言すると、第1被支持部1331のうちの、枠部131に連接する端)を通って、枠部131の外縁まで延びる。換言すると、第1配線1333は、ピエゾ抵抗素子PZと第1被支持部1331の先端とを結ぶ。
第2配線1334のうちの一方の端部は、ピエゾ抵抗素子PZのうちの、x軸の負方向における端部と接する。第2配線1334のうちの他方の端部は、枠部131の外縁に位置する。第2配線1334は、ピエゾ抵抗素子PZのうちの、x軸の負方向における端部から、第1被支持部1331の基端(換言すると、第1被支持部1331のうちの、延在部1335に連接する端)、延在部1335のうちの、x軸の正方向における端部、及び、第2被支持部1332を通って、枠部131の外縁まで延びる。
換言すると、第2配線1334は、ピエゾ抵抗素子PZと第2被支持部1332の先端(換言すると、第2被支持部1332のうちの、枠部131に連接する端)とを、延在部1335を通って結ぶ。
体積変化体14は、第1実施形態の体積変化体14と同様に、本体部132の収容空間に収容されるように本体部132により支持される。
更に、第1配線1333、及び、第2配線1334は、第1実施形態と同様の電気回路に接続される。
以上、説明したように、第2実施形態のセンサ1Aによれば、第1実施形態のセンサ1と同様の作用及び効果が奏される。
更に、第2実施形態のセンサ1Aにおいて、延在部1335は、第2端1322に連接する位置と、第1方向(本例では、y軸方向)に直交する第2方向(本例では、x軸方向)における位置が異なる位置まで、第2端1322から延びる。第1被支持部1331は、延在部1335の先端から延びるとともに、第1被支持部1331の先端が支持される。検出部133は、第1被支持部1331にて、体積変化体14の体積の変化に伴って生じる応力を検出する。
これによれば、体積変化体14の体積の変化に伴って第1被支持部1331にて生じる曲げ応力を大きくすることができる。従って、体積変化体14の体積の変化を、第1被支持部1331にて生じる応力に高い精度にて反映できる。この結果、対象を高い精度にて検出できる。
更に、第2実施形態のセンサ1Aにおいて、第1被支持部1331の幅は、延在部1335の幅よりも狭い。
これによれば、体積変化体14の体積の変化に伴って第1被支持部1331にて生じる応力を、延在部1335にて生じる応力よりも大きくすることができる。従って、体積変化体14の体積の変化を、第1被支持部1331にて生じる応力に高い精度にて反映できる。この結果、対象を高い精度にて検出できる。
更に、第2実施形態のセンサ1Aにおいて、検出部133は、延在部1335の先端から延びるとともに、先端が支持される第2被支持部1332を備える。検出部133は、第1被支持部1331に位置するピエゾ抵抗素子PZを備える。検出部133は、ピエゾ抵抗素子PZと第1被支持部1331の先端とを結ぶ第1配線1333と、ピエゾ抵抗素子PZと第2被支持部1332の先端とを、延在部1335を通って結ぶ第2配線1334と、を備える。
これによれば、第1配線1333と第2配線1334との間で生じる漏れ電流を抑制できる。従って、対象を高い精度にて検出できる。
更に、第2実施形態のセンサ1Aにおいて、第1被支持部1331のうちの、第1被支持部1331が延びる方向である延在方向における中央部の幅は、第1被支持部1331のうちの、延在方向における両端部の幅よりも狭い。検出部133は、第1被支持部1331のうちの、延在方向における中央部にて、体積変化体14の体積の変化に伴って生じる応力を検出する。
これによれば、体積変化体14の体積の変化に伴って、第1被支持部1331のうちの、延在方向における中央部にて生じる応力を、第1被支持部1331のうちの、延在方向における両端部にて生じる応力よりも大きくすることができる。従って、体積変化体14の体積の変化を、当該中央部にて生じる応力に高い精度にて反映できる。この結果、対象を高い精度にて検出できる。
第2実施形態のセンサ1Aにおいて、体積変化体14は、体積変化体14の全体が本体部132の収容空間に収容される。なお、第2実施形態の第1変形例のセンサ1Aにおいて、体積変化体14は、体積変化体14の一部が収容空間に収容されるとともに、体積変化体14の他の部分が、本体部132のうちの、本体部132の厚さ方向における両端面の中の少なくとも一部を被覆してもよい。例えば、体積変化体14は、本体部132の厚さ方向における両端面のうちの、空間形成部1323が存在する領域を被覆してよい。
また、第2実施形態のセンサ1Aにおいて、延在部1335は、延在部1335の先端にて、第1被支持部1331及び第2被支持部1332からなる2つの被支持部を介して枠部131に連接する。なお、第2実施形態の第2変形例のセンサ1Aにおいて、延在部1335は、延在部1335の先端にて、1つの被支持部を介して枠部131に連接してもよいし、3つ以上の被支持部を介して枠部131に連接してもよい。
また、図17に表されるように、第2実施形態のセンサ1Aにおいて、第1被支持部1331、及び、第2被支持部1332は、延在部1335のうちの、x軸の正方向における端の中の、y軸方向における両端部からx軸の正方向へそれぞれ延びる。なお、図19に表されるように、第2実施形態の第3変形例のセンサ1Aにおいて、第1被支持部1331J、及び、第2被支持部1332Jは、延在部1335のうちの、y軸の負方向における端の中の、x軸の正方向における端部からy軸の負方向へそれぞれ延びてもよい。
また、図20に表されるように、第2実施形態の第4変形例のセンサ1Aにおいて、第1被支持部1331K、及び、第2被支持部1332Kは、延在部1335のうちの、y軸の正方向における端の中の、x軸の正方向における端部からy軸の正方向へそれぞれ延びてもよい。この場合、検出部133は、第1被支持部1331K、及び、第2被支持部1332Kと、枠部131と、を連接する連接部1336を備えてよい。
また、図17に表されるように、第2実施形態のセンサ1Aにおいて、本体部132の空間形成部1323が形成する収容空間は、複数のスリット部を含む1個の孔である。なお、図21に表されるように、第2実施形態の第5変形例のセンサ1Aにおいて、本体部132の空間形成部1323Lが形成する収容空間は、第1実施形態の空間形成部1323と同様に、x軸方向にて延びるスリット状の孔を複数含んでいてもよい。この場合、収容空間に含まれる各孔は、本体部132のうちの、z軸の正方向における端面にて開口する有底の孔であってもよい。また、収容空間に含まれる各孔は、本体部132のうちの、z軸の正方向における端面にて開口する有底の第1孔、又は、本体部132のうちの、z軸の負方向における端面にて開口する有底の第2孔であってもよい。
また、図17に表されるように、第2実施形態のセンサ1Aにおいて、本体部132の空間形成部1323が形成する収容空間は、複数のスリット部と、中央部にてスリット部間を連結する連結部と、を含む。なお、図22に表されるように、第2実施形態の第6変形例のセンサ1Aにおいて、本体部132の空間形成部1323Mは、本体部132の平面視(換言すると、本体部132をz軸の負方向にて見た場合)において櫛歯状であってよい。
また、図23に表されるように、第2実施形態の第7変形例のセンサ1Aにおいて、本体部132の空間形成部1323Nは、本体部132の平面視(換言すると、本体部132をz軸の負方向にて見た場合)においてメッシュ状であってよい。例えば、図23に表されるように、収容空間に含まれる各孔は、本体部132の平面視において、正六角形であってよい。なお、収容空間に含まれる各孔は、本体部132の平面視において、正六角形以外の形(円形、楕円形、又は、正六角形以外の多角形等)であってもよい。
なお、第2実施形態のセンサ1Aは、異なる複数の対象のそれぞれを検出する検出装置に適用されてよい。この場合、検出装置は、感知材料が異なる複数のセンサ1Aを備えることが好適である。例えば、複数のセンサ1Aは、格子状の配列を有してよい。
なお、本発明は、上述した実施形態に限定されない。例えば、上述した実施形態に、本発明の趣旨を逸脱しない範囲内において当業者が理解し得る様々な変更が加えられてよい。
1,1A センサ
11 第1層状体
12 第2層状体
13 第3層状体
131 枠部
132 本体部
1321 第1端
1322 第2端
1323,1323A〜1323C,1323L〜1323N 空間形成部
1324 第3端
133 検出部
1331,1331J,1331K 第1被支持部
1332,1332J,1332K 第2被支持部
1333 第1配線
1334 第2配線
1335 延在部
1336 連接部
14 体積変化体
100 電気回路
101 第1電源
102 第2電源
103 第1抵抗器
104 第2抵抗器
105 増幅器
106 記憶装置
LA 第1シリコン層
LB 絶縁層
LC,LCA 第2シリコン層
NT 切欠部
OL 酸化物薄膜
PZ ピエゾ抵抗素子

Claims (13)

  1. 平板状であり、且つ、第1方向における第1端が支持されるとともに、厚さ方向における両端面のうちの少なくとも一方にて開口する収容空間を有する本体部と、
    対象の量に応じて体積が変化するとともに、少なくとも一部が前記収容空間に収容されるように前記本体部により支持される体積変化体と、
    前記本体部のうちの、前記第1方向における第2端に連接し、且つ、前記体積変化体の体積の変化に伴って生じる応力を検出する検出部と、
    を備える、センサ。
  2. 請求項1に記載のセンサであって、
    前記収容空間は、前記厚さ方向における両端面にて開口する、センサ。
  3. 請求項1又は請求項2に記載のセンサであって、
    前記収容空間は、前記第1方向に直交する第2方向にて延びるスリット状の孔を含む、センサ。
  4. 請求項3に記載のセンサであって、
    前記収容空間は、前記孔を複数含み、
    前記複数の孔は、前記第1方向に沿って並ぶ、センサ。
  5. 請求項1乃至請求項4のいずれか一項に記載のセンサであって、
    前記検出部は、
    前記第2端に連接する位置と、前記第1方向に直交する第2方向における位置が異なる位置まで、前記第2端から延びる延在部と、
    前記延在部の先端部から延びるとともに、先端が支持される第1被支持部と、
    を備えるとともに、前記第1被支持部にて前記応力を検出する、センサ。
  6. 請求項5に記載のセンサであって、
    前記第1被支持部の幅は、前記延在部の幅よりも狭い、センサ。
  7. 請求項5又は請求項6に記載のセンサであって、
    前記検出部は、
    前記延在部の先端部から延びるとともに、先端が支持される第2被支持部と、
    前記第1被支持部に位置するピエゾ抵抗素子と、
    前記ピエゾ抵抗素子と前記第1被支持部の先端とを結ぶ第1配線と、
    前記ピエゾ抵抗素子と前記第2被支持部の先端とを、前記延在部を通って結ぶ第2配線と、
    を備える、センサ。
  8. 請求項1乃至請求項4のいずれか一項に記載のセンサであって、
    前記検出部は、前記第2端から前記第1方向へ延びるとともに、先端が支持される第1被支持部を備えるとともに、前記第1被支持部にて前記応力を検出する、センサ。
  9. 請求項8に記載のセンサであって、
    前記第1被支持部の幅は、前記本体部の、前記第1方向に直交する第2方向における長さよりも狭い、センサ。
  10. 請求項8又は請求項9に記載のセンサであって、
    前記検出部は、
    前記第2端から前記第1方向へ延びるとともに、先端が支持される第2被支持部と、
    前記第1被支持部に位置するピエゾ抵抗素子と、
    前記ピエゾ抵抗素子と前記第1被支持部の先端とを結ぶ第1配線と、
    前記ピエゾ抵抗素子と前記第2被支持部の先端とを、前記本体部を通って結ぶ第2配線と、
    を備える、センサ。
  11. 請求項5乃至請求項10のいずれか一項に記載のセンサであって、
    前記第1被支持部のうちの、前記第1被支持部が延びる方向である延在方向における中央部の幅は、前記第1被支持部のうちの、前記延在方向における両端部の幅よりも狭く、
    前記検出部は、前記第1被支持部の前記中央部にて前記応力を検出する、センサ。
  12. 平板状であり、且つ、第1方向における第1端が支持されるとともに、厚さ方向における両端面のうちの少なくとも一方にて開口する収容空間を有する本体部の、前記収容空間に少なくとも一部が収容されるように前記本体部により支持された体積変化体が、対象の量に応じて体積を変化させ、
    前記本体部のうちの、前記第1方向における第2端に連接する検出部が、前記体積変化体の体積の変化に伴って生じる応力を検出する、検出方法。
  13. 平板状であり、且つ、第1方向における第1端が支持される第1部材に、厚さ方向における両端面のうちの少なくとも一方にて開口する収容空間を形成するとともに、前記第1部材のうちの、前記第1方向における第2端に連接する第2部材に、応力を検出する素子を設け、
    対象の量に応じて体積が変化する体積変化体の少なくとも一部を、前記第1部材により支持されるように前記収容空間に収容する、ことを含む、センサ製造方法。
JP2018063978A 2018-03-29 2018-03-29 センサ、検出方法、及び、センサ製造方法 Active JP6867630B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018063978A JP6867630B2 (ja) 2018-03-29 2018-03-29 センサ、検出方法、及び、センサ製造方法
PCT/JP2019/009577 WO2019188164A1 (ja) 2018-03-29 2019-03-11 センサ、検出方法、及び、センサ製造方法
CN201980022971.7A CN111919110B (zh) 2018-03-29 2019-03-11 传感器、检测方法及传感器制造方法
EP19775806.3A EP3779420B8 (en) 2018-03-29 2019-03-11 Sensor, detecting method, and sensor manufacturing method
US16/975,275 US11506527B2 (en) 2018-03-29 2019-03-11 Sensor, detection method, and sensor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018063978A JP6867630B2 (ja) 2018-03-29 2018-03-29 センサ、検出方法、及び、センサ製造方法

Publications (2)

Publication Number Publication Date
JP2019174330A JP2019174330A (ja) 2019-10-10
JP6867630B2 true JP6867630B2 (ja) 2021-04-28

Family

ID=68170257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018063978A Active JP6867630B2 (ja) 2018-03-29 2018-03-29 センサ、検出方法、及び、センサ製造方法

Country Status (1)

Country Link
JP (1) JP6867630B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114644888B (zh) * 2022-04-01 2022-10-21 飞思仪表(深圳)有限公司 一种改性湿敏材料及其制备方法及应用、湿度传感器
WO2024122308A1 (ja) * 2022-12-06 2024-06-13 三井化学株式会社 センサ信号処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI118829B (fi) * 2005-07-08 2008-03-31 Valtion Teknillinen Mikromekaaninen sensori, sensoriryhmä ja menetelmä sekä pitkittäisten akustisten aaltojen uusi käyttö
JP5083984B2 (ja) * 2008-09-24 2012-11-28 独立行政法人産業技術総合研究所 検出センサ、振動子
WO2011148774A1 (ja) * 2010-05-24 2011-12-01 独立行政法人物質・材料研究機構 表面応力センサ
WO2013019714A1 (en) * 2011-07-29 2013-02-07 The Trustees Of Columbia University In The City Of New York Mems affinity sensor for continuous monitoring of analytes
EP2840372B1 (en) * 2012-04-17 2017-06-07 National Institute for Materials Science Double-sided coated surface stress sensor
JP6863009B2 (ja) * 2017-03-31 2021-04-21 I−Pex株式会社 物質検出素子

Also Published As

Publication number Publication date
JP2019174330A (ja) 2019-10-10

Similar Documents

Publication Publication Date Title
JP6867630B2 (ja) センサ、検出方法、及び、センサ製造方法
Chen et al. Ultrahydrophobic and ultralyophobic surfaces: some comments and examples
Kundu et al. Modeling and simulation of a piezoelectric vibration energy harvester
BR112020025373A2 (pt) deposição de electrospray limitada por espessura
CN108831828B (zh) 可应用于多种表面的柔性电子器件及其制备方法
Nesser et al. Towards wireless highly sensitive capacitive strain sensors based on gold colloidal nanoparticles
CN102066873A (zh) 用于形成安装有惯性传感器的电子组件的方法和系统
US9103673B2 (en) Inertial sensor using sliding plane proximity switches
CN102393264A (zh) 一种基于纳米压电纤维的压力传感器
Shi et al. Freestanding laser-assisted reduced graphene oxide microribbon textile electrode fabricated on a liquid surface for supercapacitors and breath sensors
CN104418285A (zh) 微机械构件和用于制造微机械构件的方法
JP6864966B2 (ja) センサ、及び、センサ製造方法
US11506527B2 (en) Sensor, detection method, and sensor manufacturing method
Bernasconi et al. Hybrid additive manufacturing of a piezopolymer-based inertial sensor
EP2976597A1 (en) Inertial sensor using sliding plane proximity switches
Fan et al. Effect of Additive Manufacturing on β‐Phase Poly (Vinylidene Fluoride)‐Based Capacitive Temperature Sensors
US12000908B2 (en) Membrane-based nano-electromechanical systems device and methods to make and use same
KR101640048B1 (ko) 변형 감지센서 및 이의 제조방법
Li et al. Influences of excitation on droplet spreading characteristics ejected by piezoelectric micro-jet
CN112461413A (zh) 一种一体化微悬臂梁检测芯片及其制备方法
KR101884923B1 (ko) 3차원 프린팅을 이용한 물리 센서 제작 장치 및 상기 제작 장치로 제작된 물리 센서
Jaques et al. Spreading patterns of high velocity nanodroplets impacting on suspended graphene
CN110446680A (zh) 基于金属-硫属元素化物纳米管的机电谐振器
HATAMI et al. Additive manufactured piezopolymer-based inertial sensor
US9052310B2 (en) Substrate imprinted universal sensors and sensors having nano-tunneling effect

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6867630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250