WO2011148753A1 - ハイブリッド車両のアクセルペダル踏力制御装置 - Google Patents

ハイブリッド車両のアクセルペダル踏力制御装置 Download PDF

Info

Publication number
WO2011148753A1
WO2011148753A1 PCT/JP2011/060305 JP2011060305W WO2011148753A1 WO 2011148753 A1 WO2011148753 A1 WO 2011148753A1 JP 2011060305 W JP2011060305 W JP 2011060305W WO 2011148753 A1 WO2011148753 A1 WO 2011148753A1
Authority
WO
WIPO (PCT)
Prior art keywords
accelerator opening
opening degree
accelerator
accelerator pedal
depression force
Prior art date
Application number
PCT/JP2011/060305
Other languages
English (en)
French (fr)
Inventor
上野 宗利
正英 橋田
大輔 吉野谷
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP11786453.8A priority Critical patent/EP2578432B1/en
Priority to RU2012156160/11A priority patent/RU2527652C2/ru
Priority to KR1020127030745A priority patent/KR101420959B1/ko
Priority to US13/699,174 priority patent/US8620566B2/en
Priority to CN201180025688.3A priority patent/CN102905927B/zh
Priority to MX2012013367A priority patent/MX2012013367A/es
Priority to BR112012030026A priority patent/BR112012030026A2/pt
Publication of WO2011148753A1 publication Critical patent/WO2011148753A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • B60K26/021Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/04Arrangements or mounting of propulsion unit control devices in vehicles of means connecting initiating means or elements to propulsion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/103Accelerator thresholds, e.g. kickdown
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to an accelerator pedal depression force control device for a hybrid vehicle.
  • Patent Document 1 in a hybrid vehicle including a motor and an internal combustion engine as a drive source of the vehicle, the vehicle is caused to travel by a combination of the motor and the internal combustion engine from a first traveling mode in which the motor travels solely by the motor.
  • the drive mode is shifted against the driver's intention and the internal combustion engine is started and fuel consumption Technology has been disclosed that does not cause deterioration.
  • the accelerator opening degree which increases the resistance to depression of the accelerator pedal can be variably set, when the accelerator opening degree which increases the resistance to depression of the accelerator pedal becomes smaller, the accelerator pedal There is a problem that it becomes difficult to step in and it becomes difficult to accelerate the vehicle.
  • the predetermined accelerator opening degree threshold Is a first accelerator opening set on the basis of a mode switching accelerator opening that switches from a first traveling mode in which only the electric motor is driven to travel the vehicle to a second traveling mode in which the internal combustion engine is driven A predetermined lower limit value is set to the first accelerator opening degree.
  • the present invention by setting the lower limit value for the first accelerator opening, it is possible to depress the accelerator pedal more than a fixed amount, and the acceleration of the vehicle can be secured.
  • FIG. 1 is a system configuration diagram of a hybrid vehicle to which the present invention is applied.
  • Explanatory drawing which shows the example of a characteristic of an engine start / stop line map.
  • Explanatory drawing which showed typically the system configuration of the accelerator pedal depression force control apparatus which concerns on this invention with the outline of a depression force change mechanism.
  • Explanatory drawing which shows typically one Example of the treading force change mechanism in this invention.
  • the characteristic view which shows the characteristic of the accelerator pedal depression force in the present invention.
  • FIG. 1 is an explanatory view schematically showing a schematic configuration of a power train system of a hybrid vehicle to which the present invention is applied.
  • An output shaft of an engine 1 which is an internal combustion engine and an input shaft of a motor generator 2 (MG) as a motor which also functions as a generator are connected via a first clutch 4 (CL1) of variable torque capacity.
  • the output shaft of the motor generator 2 is connected to the input shaft of the automatic transmission 3 (AT), and the output shaft of the automatic transmission 3 is connected to the tire 7 via the differential gear 6.
  • the automatic transmission 3 automatically switches (performs shift control), for example, a stepped gear ratio such as 5 forward speeds and 1 reverse speed or 6 forward speed and 1 reverse speed according to the vehicle speed and the accelerator opening degree. is there.
  • the second clutch 5 is a plurality of friction coupling elements provided as the transmission elements of the automatic transmission 3 and uses the friction coupling elements present in the power transmission path of each shift stage. , Substantially inside the automatic transmission 3.
  • the automatic transmission 3 combines the motive power of the engine 1 input through the first clutch 4 and the motive power input from the motor generator 2 and outputs the resultant to the tire 7.
  • a wet multi-plate clutch capable of continuously controlling the flow rate and hydraulic pressure of hydraulic fluid with a proportional solenoid is used.
  • the power train system has two operation modes according to the connection state of the first clutch 4. That is, when the first clutch 4 is disconnected, the EV mode travels with only the power of the motor generator 2, and when the first clutch 4 is connected, the HEV mode travels with the power of the engine 1 and the motor generator 2. It becomes.
  • reference numeral 10 denotes an engine rotation sensor for detecting the rotation speed of the engine 1
  • 11 denotes an MG rotation sensor for detecting the rotation speed of the motor generator 2
  • 12 denotes an AT for detecting the input shaft rotation speed of the automatic transmission 3.
  • An input rotation sensor 13 is an AT output rotation sensor that detects the output shaft rotation speed of the automatic transmission 2, and detection signals of these sensors are input to an integrated controller 20 described later.
  • FIG. 2 shows a system configuration diagram of a hybrid vehicle to which the present invention is applied.
  • the hybrid vehicle includes an integrated controller 20 that integrally controls the vehicle, an engine controller 21 that controls the engine 1, and an MG controller 22 that controls the motor generator 2.
  • the integrated controller 20 is connected to the engine controller 21 and the MG controller 22 via communication lines 18 capable of exchanging information with each other.
  • the integrated controller 20 also includes a vehicle speed sensor 15 for detecting the vehicle speed. From the SOC sensor 16, which detects the state of charge (SOC) of the battery 9 that supplies power, the accelerator opening sensor 17, which detects the accelerator opening (APO), and the brake oil pressure sensor 23, which detects the brake oil pressure. A detection signal is input.
  • the integrated controller 20 selects an operation mode capable of realizing the driving force desired by the driver according to the accelerator opening degree and the SOC of the battery 9 and the vehicle speed, and transmits the target MG torque or target MG rotation speed to the MG controller 22. It commands the engine controller 21 to command the target engine torque. The engagement and release of the first clutch 4 and the second clutch 5 are controlled based on a command from the integrated controller 20.
  • the integrated controller 20 calculates the operation mode of the engine 1 using the vehicle speed and the accelerator opening. That is, using the engine start / stop line map as shown in FIG. 3, it is determined whether the engine is in an operation state to start or in an engine stop state.
  • the engine start line and the engine stop line change in the direction in which the accelerator opening decreases (downward in FIG. 3) as the SOC of the battery 9 decreases. Further, if the SOC of the battery 9 is in the same state, the engine stop line is set to a direction in which the accelerator opening degree becomes smaller than that of the engine start line.
  • the accelerator opening degree for stopping the engine 1 (accelerator opening on the engine stop line) is greater than the accelerator opening degree for starting the engine 1 (accelerator opening degree on the engine start line).
  • Degree is set to be small.
  • the torque capacity of the second clutch 5 is set so that the second clutch 5 slips to a half clutch state when the accelerator opening degree exceeds the engine start line shown in FIG.
  • engagement of the first clutch 4 is started to increase the engine speed.
  • the engine 1 is operated to completely engage the first clutch 4 when the MG speed and the engine speed become close, and then the second clutch 5 is locked. Up and transition to HEV mode.
  • the engine controller 21 controls the engine 1 in accordance with a command from the integrated controller 20.
  • the MG controller 22 controls an inverter 8 that drives the motor generator 2 in accordance with a command from the integrated controller 20.
  • the motor generator 2 is controlled by the MG controller 22 in a power running operation to which the power supplied from the battery 9 is applied, a regenerative operation functioning as a generator to charge the battery 9, and switching between start and stop. There is.
  • the output (current value) of the motor generator 2 is monitored by the MG controller 22.
  • FIG. 4 is an explanatory view schematically showing the system configuration of the accelerator pedal depression force control device together with the outline of the depression force change mechanism
  • FIG. 5 is an explanatory view schematically showing one embodiment of the depression force change mechanism.
  • the accelerator pedal depression force control device variably controls the depression force (operation reaction force) of an accelerator pedal 32 provided on a vehicle body 31 of a vehicle (not shown). In the region where the value of d is larger than the predetermined accelerator opening threshold, the depression force of the accelerator pedal 32 is increased more than the base depression force.
  • the accelerator pedal 32 as shown in FIGS. 4 and 5, is provided on the rotary shaft 33 and configured to swing around the rotary shaft 33, and one end is fixed to the vehicle body 31 and the other end is Reaction forces in the accelerator closing direction are provided by return springs 34 of various forms fixed to the rotation shaft 33. Further, while one end of the rotation shaft 33 is rotatably supported by the vehicle body 31 via the bearing 35, the above-mentioned accelerator opening sensor 17 is provided near the other end of the rotation shaft 33 as an accelerator opening detection means. ing.
  • the depression amount of the accelerator pedal 32 (accelerator opening degree) and the opening degree of the throttle valve (not shown) of the engine 1 interlock with each other, and the engine 1 is controlled according to the depression amount of the accelerator pedal 32.
  • Throttle valve opening increases. That is, the fuel injection amount (and hence the fuel consumption amount) increases according to the accelerator opening degree.
  • the treading force changing mechanism is composed of a variable friction plate 37 having a pair of friction members 37a and 37b facing each other for applying friction to the rotation of the rotation shaft 33.
  • One friction member 7a is an end of the rotation shaft 3
  • the other friction member 7b is axially movably and non-rotatably supported by the fixed shaft 38 via splines or the like.
  • the fixed shaft 38 is fixed to and supported by the vehicle body 31.
  • an actuator (for example, an electromagnetic solenoid) 39 that biases the friction member 37 b toward the friction member 37 a is fixed to the vehicle body 31.
  • variable friction plate 37 moves the friction member 37b in the axial direction (direction of arrow A1 in FIG. 4) by the operation of the actuator 39, thereby variably controlling the friction force between the friction member 37a and the friction member 37b.
  • the operation of the actuator 39 is controlled by the engine controller 21 based on a command from the integrated controller 20. Therefore, by controlling the operation of the actuator 39 by the engine controller 21, it is possible to change the frictional force applied to the rotary shaft 33 and hence the pedaling force when the accelerator pedal 32 is depressed.
  • FIG. 6 schematically shows the characteristics of the accelerator pedal depression force in the above embodiment, and the basic pedal depression force, that is, the base pedal depression force, has appropriate hysteresis in the opening degree increasing direction and the opening degree decreasing direction. It increases almost proportionally to the opening degree. Then, when the accelerator opening degree becomes larger than a predetermined accelerator opening degree threshold (symbol SL in FIG. 6) at the time of operation in the opening degree increasing direction, that is, when stepping on, the accelerator pedal depression force increases stepwise than the base depression force. As the accelerator pedal effort increases stepwise in this manner, further depression of the accelerator pedal 32 by the driver is naturally suppressed.
  • a predetermined accelerator opening degree threshold symbol SL in FIG. 6
  • the increase in the depression force of the accelerator pedal 32 in the direction of increasing the accelerator opening is canceled when the accelerator opening decreases below the predetermined opening, but the operation of the accelerator pedal 32 is When the direction reverses in the accelerator opening decrease direction, it may be released immediately.
  • a second accelerator opening based on the accelerator opening which is a constant speed equal opening on a flat road in other words, a so-called R / L line (road road line necessary to drive the vehicle without acceleration or deceleration on a flat road surface ) Is set by the second accelerator opening degree set based on the upper accelerator opening degree.
  • FIG. 7 is an explanatory view showing an example of the characteristic of the accelerator opening threshold, and FIG. 7 (a) shows an example of the characteristic when the battery SOC is high, and FIG. 7 (b) is a characteristic when the battery SOC is low An example is shown.
  • the first accelerator opening degree (dotted line in FIG. 7) is an accelerator opening degree on the engine start line (solid line in FIG. 7), which is a threshold value for switching from EV travel to HEV travel, It is an opening degree.
  • the accelerator opening amount ⁇ is set in consideration of the opening degree which is depressed before the accelerator pedal 32 is stopped by feeling the pedal reaction force.
  • the second accelerator opening degree (two-dot chain line in FIG. 7) is constant at an accelerator opening degree at constant speed on a flat road at each vehicle speed (accelerator opening degree on R / L line, one-dot chain line in FIG. 7)
  • the accelerator opening degree is obtained by adding an accelerator opening degree ⁇ capable of securing an accelerating driving force.
  • the engine start line changes in the direction (lower in FIG. 7) in which the accelerator opening decreases when the SOC of the battery 9 decreases. It decreases when it decreases.
  • the accelerator opening threshold is set only with the first accelerator opening, the accelerator opening threshold relatively decreases as the SOC of the battery 9 decreases. Therefore, the accelerator pedal 32 is used when the driver wants to depress the accelerator pedal 32. It may be difficult to step into.
  • the accelerator opening threshold is switched to the second accelerator opening. That is, in the present embodiment, the accelerator opening threshold (thick solid line in FIG. 7) is set as a larger value of the first accelerator opening and the second accelerator opening at each vehicle speed.
  • the accelerator opening threshold is basically set as the first accelerator opening, but the lower limit defined by the second accelerator opening is set as the first accelerator opening.
  • the first accelerator opening degree is set based on the engine start line, and the lower limit value defined by the second accelerator opening degree is further set with respect to the thus set first accelerator opening degree.
  • the second accelerator opening which is the lower limit value of the first accelerator opening, is an accelerator opening amount ⁇ capable of securing a driving force capable of constantly accelerating to a flat road constant speed equilibrium opening capable of traveling at a constant speed at each vehicle speed. Since the accelerator opening degree is added, the driving force necessary for acceleration can be reliably secured for each vehicle speed.
  • the accelerator opening which becomes flat road fixed speed balance opening degree becomes so large that a vehicle speed increases
  • a 2nd accelerator opening degree also becomes so large that a vehicle speed increases.
  • the transmission gear ratio decreases and the vehicle driving force decreases, and acceleration more than necessary is not easily generated.
  • the second accelerator opening degree which becomes the lower limit value of the first accelerator opening degree increases the vehicle speed. As a result, the acceleration of the vehicle can be secured even when the vehicle speed is high.
  • the first accelerator opening degree is variable according to the SOC of the battery 9, the first accelerator opening degree is selected as the accelerator opening degree threshold, and the second accelerator opening degree is not selected.
  • the driver Before switching to the HEV mode, it is possible to notify the driver that the pedal effort of the accelerator pedal 32 increases more than the base pedal effort and switches from the EV mode to the HEV mode.
  • the first accelerator opening is selected as the accelerator opening threshold, It is possible to notify the driver that the depression force of the accelerator pedal 32 increases more than the base depression force before switching from the EV mode to the HEV mode, and switches from the EV mode to the HEV mode.
  • FIG. 8 is a flow chart showing a flow of control when the depression force of the accelerator pedal 32 is increased more than the base depression force.
  • an engine start line is calculated from the SOC of the battery 9 and the vehicle speed, and a first accelerator opening degree is calculated from the engine start line.
  • the second accelerator opening degree is calculated from the accelerator opening degree capable of traveling on a flat road at constant speed for each vehicle speed calculated in advance.
  • the larger one of the first accelerator opening and the second accelerator opening is used as the accelerator opening threshold.
  • step S6 the depression force of the accelerator pedal 32 is increased more than the base depression force.
  • the first accelerator opening degree is a value obtained by subtracting a predetermined accelerator opening degree ⁇ from the accelerator opening degree on the engine starting line, but the accelerator opening degree on the engine starting line is the same It is also possible to set the first accelerator opening degree. That is, it is also possible to set the engine start line to the first accelerator opening degree.
  • the hybrid vehicle of the embodiment described above is configured to transmit the driving force of both the engine 1 and the motor generator 2 to the wheels, but the present invention is not only applied to such hybrid vehicles, for example, The present invention is applicable to various hybrid vehicles such as a hybrid vehicle configured to use an engine only for power generation, and a hybrid vehicle configured to distribute power from the engine to a generator and a motor by a power split mechanism.
  • the automatic transmission 3 is used as the transmission, but it is also possible to use a continuously variable transmission in which the gear ratio changes continuously, instead of the automatic transmission 3.
  • a continuously variable transmission it is possible to obtain a transmission ratio as a ratio of rotational speeds on the input shaft side and the output shaft side.
  • the engine start line and the engine stop line are changed according to the SOC of the battery 9, but the temperature of the battery 9, the deterioration state of the battery 9, or an operation mode such as a sport running mode It may be changed accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

モータジェネレータ2のみを駆動して車両を走行するEVモードからエンジン1を駆動するHEV走行モードに切り替わるアクセル開度である第1アクセル開度を設定し、アクセル開度が第1アクセル開度を越えて大きくなると、アクセルペダル32の踏力をベース踏力よりも増加させる。第1アクセル開度は、バッテリ9のSOCが低くなるほど小さくなるよう設定されと共に、平坦路一定速釣り合い開度となるアクセル開度に基づいた第2アクセル開度で規定される下限値が設定されている。これによって、アクセルペダル32を一定以上踏み込むことが可能となり、車両の加速性を確保することができる。

Description

ハイブリッド車両のアクセルペダル踏力制御装置
 本発明は、ハイブリッド車両のアクセルペダル踏力制御装置に関する。
 特許文献1には、車両の駆動源として、モータと内燃機関とを備えたハイブリッド車両において、モータ単独で車両を走行させる第1の走行モードからモータ及び内燃機関の併用により車両を走行させる第2の走行モードへの移行時に、アクセルペダルの踏力特性を変化させ、アクセルペダルの踏み込みに対する抵抗力を増加させることで、運転者に意に反して走行モードが移行して内燃機関が始動して燃費が悪化しないようにした技術が開示されている。
 この特許文献1においては、アクセルペダルの踏み込みに対する抵抗力を増加させるアクセル開度が可変設定可能となっているが、アクセルペダルの踏み込みに対する抵抗力を増加させるアクセル開度が小さくなると、アクセルペダルが踏み込みにくくなり、車両が加速しにくくなるという問題がある。
特開2006-180626号公報
 そこで、本発明は、アクセル開度が所定のアクセル開度閾値を越えて大きくなると、アクセルペダルの踏力をベース踏力よりも増加させるハイブリッド車両のアクセルペダル踏力制御装置において、前記所定のアクセル開度閾値は、前記電動機のみを駆動して車両を走行する第1の走行モードから前記内燃機関を駆動する第2の走行モードに切り替わるモード切り換えアクセル開度に基づいて設定された第1アクセル開度であって、この第1アクセル開度には、所定の下限値が設定されていることを特徴としている。
 本発明によれば、第1アクセル開度に下限値を設けることによって、アクセルペダルを一定以上踏み込むことが可能となり、車両の加速性を確保することができる。
本発明が適用されるハイブリッド車両のパワートレイン系の概略構成を模式的に示した説明図。 本発明が適用されるハイブリッド車両のシステム構成図。 エンジン始動停止線マップの特性例を示す説明図。 本発明に係るアクセルペダル踏力制御装置のシステム構成を踏力変更機構の概略とともに模式的に示した説明図。 本発明における踏力変更機構の一実施例を模式的に示す説明図。 本発明におけるアクセルペダル踏力の特性を示す特性図。 アクセル開度閾値の特性例を示す説明図であって、(a)はバッテリのSOCが高い場合の特性例を示し、(b)はバッテリのSOCが低い場合の特性例を示す。 本発明に係るハイブリッド車両のアクセルペダル踏力制御装置の制御の流れを示すフローチャート。
 以下、本発明の一実施例を図面に基づいて詳細に説明する。
 図1は、本発明が適用されるハイブリッド車両のパワートレイン系の概略構成を模式的に示した説明図である。
 内燃機関であるエンジン1の出力軸と発電機としても機能する電動機としてのモータジェネレータ2(MG)の入力軸とが、トルク容量可変の第1クラッチ4(CL1)を介して連結されている。モータジェネレータ2の出力軸は、自動変速機3(AT)の入力軸とが連結され、自動変速機3の出力軸にはディファレンシャルギア6を介してタイヤ7が連結されている。
 自動変速機3は、例えば、前進5速後退1速や前進6速後退1速等の有段階の変速比を車速やアクセル開度等に応じて自動的に切り換える(変速制御を行う)ものである。
 そして、シフト状態に応じて異なる自動変速機3内の動力伝達を担っているトルク容量可変のクラッチのうち1つが、第2クラッチ5(CL2)として用いられている。換言すれば、第2クラッチ5は、自動変速機3の変速要素として設けられている複数の摩擦締結要素のうち、各変速段の動力伝達経路に存在する摩擦締結要素を流用したものであって、実質的に自動変速機3の内部に構成されたものである。
 自動変速機3は、第1クラッチ4を介して入力されるエンジン1の動力と、モータジェネレータ2から入力される動力を合成してタイヤ7へ出力する。尚、第1クラッチ4と第2クラッチ5とには、例えば比例ソレノイドで作動油の流量及び油圧を連続的に制御できる湿式多板クラッチが用いられる。
 このパワートレイン系には、第1クラッチ4の接続状態に応じて2つの運転モードがある。すなわち、第1クラッチ4が切断された状態では、モータジェネレータ2の動力のみで走行するEVモードとなり、第1クラッチ4が接続された状態では、エンジン1とモータジェネレータ2の動力で走行するHEVモードとなる。
 尚、図1において、10はエンジン1の回転数を検出するエンジン回転センサ、11はモータジェネレータ2の回転数を検出するMG回転センサ、12は自動変速機3の入力軸回転数を検出するAT入力回転センサ、13は自動変速機2の出力軸回転数を検出するAT出力回転センサであり、これら各センサの検出信号は、後述する統合コントローラ20に入力されている。
 図2は、本発明が適用されるハイブリッド車両のシステム構成図を示している。 このハイブリッド車両は、車両を統合制御する統合コントローラ20と、エンジン1を制御するエンジンコントローラ21と、モータジェネレータ2を制御するMGコントローラ22と、を有している。
 統合コントローラ20は、互いに情報交換が可能な通信線18を介して、エンジンコントローラ21及びMGコントローラ22に接続されている。
 この統合コントローラ20には、上述したエンジン回転センサ10、MG回転センサ11、AT入力回転センサ12及びAT出力回転センサ13からの検出信号の他にも、車速を検出する車速センサ15、モータジェネレータ2に電力を供給するバッテリ9の充電状態(SOC)を検出するSOCセンサ16、アクセル開度(APO)を検出するアクセル開度センサ17、ブレーキ油圧を検出するブレーキ油圧センサ23等の各種センサからの検出信号が入力されている。
 そして、統合コントローラ20は、アクセル開度とバッテリ9のSOCと、車速に応じて、運転者が望む駆動力を実現できる運転モードを選択し、MGコントローラ22に目標MGトルクもしくは目標MG回転数を指令し、エンジンコントローラ21に目標エンジントルクを指令する。尚、第1クラッチ4及び第2クラッチ5は、統合コントローラ20からの指令に基づいて、締結及び開放が制御されている。
 さらに、統合コントローラ20では、車速とアクセル開度を用いて、エンジン1の運転モードを演算する。すなわち、図3に示すようなエンジン始動停止線マップを用いて、エンジン始動すべき運転状態であるのか、エンジン停止すべき運転状態であるのかを判定する。エンジン始動線及びエンジン停止線は、バッテリ9のSOCが低くなるにつれて、アクセル開度が小さくなる方向(図3における下方)に変化する。また、バッテリ9のSOCが同じ状態であれば、エンジン停止線はエンジン始動線よりもアクセル開度が小さくなる方向に設定されている。つまり、バッテリ9のSOCが同じ状態で同一車速あれば、エンジン1を始動するアクセル開度(エンジン始動線上のアクセル開度)に比べ、エンジン1を停止するアクセル開度(エンジン停止線上のアクセル開度)が小さくなるよう設定されている。
 エンジン1を始動する始動処理では、EV走行状態で図3に示すエンジン始動線をアクセル開度が越えた時点で、第2クラッチ5を半クラッチ状態にスリップさせるように第2クラッチ5のトルク容量を制御し、第2クラッチ5がスリップ開始したと判断した後に第1クラッチ4の締結を開始してエンジン回転数を上昇させる。そして、エンジン回転数が初爆可能な回転数に達成したらエンジン1を作動させてMG回転数とエンジン回転数が近くなったところで第1クラッチ4を完全に締結し、その後第2クラッチ5をロックアップさせてHEVモードに遷移させる。
 エンジンコントローラ21は、統合コントローラ20からの指令に応じて、エンジン1を制御している。
 MGコントローラ22は、統合コントローラ20からの指令に応じて、モータジェネレータ2を駆動するインバータ8を制御している。モータジェネレータ2は、バッテリ9から供給された電力が印加された力行運転と、発電機として機能してバッテリ9を充電する回生運転と、起動及び停止の切り換えと、がMGコントローラ22によって制御されている。尚、モータジェネレータ2の出力(電流値)は、MGコントローラ22で監視されている。
 次に、図4及び図5を用いて、上述のハイブリッド車両に適用されるアクセルペダル踏力制御装置について説明する。
 図4はアクセルペダル踏力制御装置のシステム構成を踏力変更機構の概略とともに模式的に示した説明図であり、図5は踏力変更機構の一実施例を模式的に示した説明図である。
 このアクセルペダル踏力制御装置は、基本的には、図示しない車両の車体31に設けられたアクセルペダル32の踏力(操作反力)を可変的に制御するものであって、アクセルペダル32の開度が所定のアクセル開度閾値よりも大きい領域ではアクセルペダル32の踏力をベース踏力よりも増加させるものである。
 アクセルペダル32は、図4、図5に示すように、回転軸33上に設けられて該回転軸33を支点として揺動するように構成され、一端が車体31に固定されるとともに他端が回転軸33に固定された種々の形態のリターンスプリング34によって、アクセル閉方向への反力が与えられている。また、回転軸33の一端が車体31に軸受35を介して回転自在に支持されている一方、回転軸33の他端付近に、アクセル開度検知手段として前述のアクセル開度センサ17が設けられている。
 なお、本実施例では、アクセルペダル32の踏込量(アクセル開度)とエンジン1のスロットルバルブ(図示せず)の開度とが互いに連動し、アクセルペダル32の踏込量に応じてエンジン1のスロットルバルブ開度が増大する。つまり、アクセル開度に応じて燃料噴射量(ひいては燃料消費量)が増大する。
 そして、踏力変更機構としては、回転軸33の回転に摩擦力を与える互いに対向した一対の摩擦部材37a,37bを備えた可変フリクションプレート37からなり、一方の摩擦部材7aは、回転軸3の端部に機械的に結合して設けられ、他方の摩擦部材7bは、スプライン等を介して、固定軸38に、軸方向移動自在かつ非回転に支持されている。固定軸38は、車体31に固定支持されている。さらに、摩擦部材37bを摩擦部材37aへ向けて付勢するアクチュエータ(例えば電磁ソレノイド)39が車体31に固定されている。
 可変フリクションプレート37は、アクチュエータ39の作動により摩擦部材37bを軸方向(図4における矢印A1方向)へ移動させ、これにより、摩擦部材37aと摩擦部材37bとの間の摩擦力を可変的に制御する。このアクチュエータ39の作動は、統合コントローラ20からの指令に基づきエンジンコントローラ21によって制御されている。従って、アクチュエータ39の作動を、エンジンコントローラ21が制御することで、回転軸33に付与される摩擦力ひいてはアクセルペダル32の踏込時の踏力を変更することができる。
 図6は、上記実施例におけるアクセルペダル踏力の特性を概略的に示しており、基本的な踏力つまりベース踏力は、開度増加方向と開度減少方向とで適度なヒステリシスを有しつつ、アクセル開度に対しほぼ比例的に増加する。そして、開度増加方向への操作時つまり踏込時に所定のアクセル開度閾値(図6の符号SL)よりもアクセル開度が大きくなると、アクセルペダル踏力はベース踏力よりもステップ的に増加する。このようにアクセルペダル踏力がステップ的に増大することで、運転者によるアクセルペダル32のそれ以上の踏込が自然に抑制される。
 尚、本実施例では、上記のアクセル開度増加方向でのアクセルペダル32の踏力増加は、アクセル開度が上記の所定開度以下に減少したときに解除されているが、アクセルペダル32の操作方向がアクセル開度減少方向に反転したときに直ちに解除するようにしてもよい。
 そして、本実施例では、アクセルペダル32の踏力をベース踏力よりも増加させるアクセル開度閾値が、図3に示したエンジン始動線に対応したアクセル開度に基づいて設定された第1アクセル開度と、平坦路一定速釣り合い開度となるアクセル開度に基づいた第2アクセル開度、換言すれば平坦路面で加減速なしに車両を走行させるのに必要ないわゆるR/L線(ロードロード線)上のアクセル開度に基づいて設定された第2アクセル開度と、によって設定されている。
 図7はアクセル開度閾値の特性例を示す説明図であって、図7(a)はバッテリのSOCが高い場合の特性例を示し、図7(b)はバッテリのSOCが低い場合の特性例を示している。
 第1アクセル開度(図7中の破線)は、EV走行からHEV走行に切り替わる閾値であるエンジン始動線(図7中の実線)上のアクセル開度から所定のアクセル開度量αを減じたアクセル開度である。このアクセル開度量αはペダル反力を感じてアクセルペダル32の踏み込みを止めるまでに踏み込む開度を考慮して設定する。第2アクセル開度(図7中の2点鎖線)は、各車速で平坦路での一定速可能なアクセル開度(R/L線上のアクセル開度であり図7中の一点鎖線)に一定加速可能な駆動力を確保可能なアクセル開度量βを上乗せしたアクセル開度である。
 図7を用いて詳述すると、エンジン始動線は、バッテリ9のSOCが低下するとアクセル開度が低下する方向(図7における下方)に変化するため、第1アクセル開度もバッテリ9のSOCが低下すると小さくなる。第1アクセル開度のみでアクセル開度閾値を設定すると、バッテリ9のSOCが低下するほどアクセル開度閾値も相対的に小さくなるため、運転者がアクセルペダル32を踏み込みたい場面でアクセルペダル32を踏み込みにくくなる可能性がある。しかしながら、本実施例では、第1アクセル開度が第2アクセル開度よりも小さくなる場合には、アクセル開度閾値が第2アクセル開度に切り替えられる。つまり、本実施例では、アクセル開度閾値(図7における太実線)が、各車速において、第1アクセル開度と第2アクセル開度のうちの大きい値として設定されている。換言すれば、アクセル開度閾値は、第1アクセル開度として基本的には設定されるが、第1アクセル開度には第2アクセル開度で規定される下限値が設定されている。
 このように、第1アクセル開度をエンジン始動線に基づいて設定し、かつこのように設定された第1アクセル開度に対して、第2アクセル開度で規定される下限値をさらに設定することによって、運転者がアクセルペダル32を踏み込みたい場面で、アクセルペダル32が踏み込みにくくなることを防止することができ、アクセルペダル32を一定以上踏み込むことが可能となるので、車両の良好な加速性を確保することができる。
 特に、第1アクセル開度の下限値である第2アクセル開度が、各車速で一定速走行可能な平坦路一定速釣り合い開度に一定加速可能な駆動力を確保可能なアクセル開度量βを上乗せしたアクセル開度であるので、各車速毎に加速に必要な駆動力を確実に確保することができる。
 また、平坦路一定速釣り合い開度となるアクセル開度は車速が増加するほど大きくなるため、第2アクセル開度も車速が増加するほど大きくなる。車速が増加すると、変速比が低くなり、車両駆動力が減少し必要以上の加速は生じにくくなるので、このように第1アクセル開度の下限値となる第2アクセル開度が車速の増加にともなって大きくなることで、車速が速い場合でも車両の加速性を確保することができる。
 また、バッテリ9のSOCが低下すると、モータジェネレータ2が発生できる最大トルクが低下するので、EVモードの運転領域を小さくする必要があるが、第1アクセル開度は、エンジン始動線に基づいて設定されているため、バッテリ9のSOCが低下するほど小さくなる。つまり、第1アクセル開度は、バッテリ9のSOCに応じて可変するため、アクセル開度閾値として第1アクセル開度が選択され、第2アクセル開度が選択されない運転状態においては、EVモードからHEVモードに切り替わる手前で、アクセルペダル32の踏力がベース踏力よりも増加し、EVモードからHEVモードに切り替わることを運転者に知らせることができる。
 換言すれば、図7に示すように、第1アクセル開度が第2アクセル開度よりも大きい、車速が低い状態では、アクセル開度閾値として第1アクセル開度が選択されることになり、EVモードからHEVモードに切り替わる手前で、アクセルペダル32の踏力がベース踏力よりも増加し、EVモードからHEVモードに切り替わることを運転者に知らせることができる。
 図8は、アクセルペダル32の踏力をベース踏力よりも増加させる際の制御の流れを示すフローチャートを示している。
 S1では、車速とアクセル開度とバッテリ9のSOCを算出する。
 S2では、バッテリ9のSOCと車速からエンジン始動線を算出し、エンジン始動線から第1アクセル開度を算出する。
 S3では、予め計算された車速毎の平坦路一定速走行可能なアクセル開度から第2アクセル開度を算出する。
 S4では、第1アクセル開度と第2アクセル開度のうち、大きい方をアクセル開度閾値とする。S5ではアクセル開度がアクセル開度閾値以上であるか否かを判定し、アクセル開度がアクセル開度閾値以上となればS6へ進み、そうでない場合はS7へ進む。
 S6では、アクセルペダル32の踏力をベース踏力よりも増加させる。
 S7では、ベース踏力に対して踏力が増加された状態であるか否かを判定し、踏力が増加された状態であればS8へ進み、そうでない場合は今回のルーチンを終了する。
 S8では、アクセル開度がアクセル開度閾値よりも小さい所定の解除閾値以下であるか否かを判定し、解除閾値以下であればS9へ進み、そうでない場合は今回のルーチンを終了する。
 S9では、アクセルペダル32が戻された状態になっているにもかかわらず、アクセルペダル32の踏力がベース踏力よりも増加した状態となっているので、踏力の増加分を減少させる。
 尚、上述した実施例において、第1アクセル開度は、エンジン始動線上のアクセル開度に対して所定のアクセル開度量αを減じた値となっているが、エンジン始動線上のアクセル開度をそのまま第1アクセル開度と設定することも可能である。つまり、エンジン始動線を、第1アクセル開度と設定することも可能である。
 上述した実施例のハイブリット車両は、エンジン1及びモータジェネレータ2双方の駆動力が車輪に伝達される構成となっているが、本願発明はこのようなハイブリット車両にのみ適用されるものではなく、例えば、エンジンを発電のみに使用するような構成のハイブリッド車両や、エンジンからの動力を動力分割機構により発電機とモータに振り分けるような構成のハイブリッド車両等、種々のハイブリッド車両に適用可能である。
 また、上述した実施例においては、変速機として自動変速機3が用いられているが、自動変速機3に替えて変速比が連続的に変化する無段変速機を用いることも可能である。無段変速機の場合は、入力軸側及び出力軸側の回転速度の比として変速比を求めることが可能である。
 また、上述した実施例においては、バッテリ9のSOCに応じてエンジン始動線及びエンジン停止線を変化させたが、バッテリ9の温度、バッテリ9の劣化状態、あるいはスポーツ走行モード等の運転モード等に応じて変化させても構わない。

Claims (7)

  1.  内燃機関と、車両走行時に駆動源として用いられる電動機と、アクセルペダルの踏力を変更する踏力変更手段と、を有し、前記電動機のみを駆動して車両を走行する第1の走行モードから前記内燃機関を駆動する第2の走行モードに切り替わるアクセル開度である第1アクセル開度を設定し、アクセル開度が第1アクセル開度を越えて大きくなると、アクセルペダルの踏力をベース踏力よりも増加させるハイブリッド車両のアクセルペダル踏力制御装置において、
     前記第1アクセル開度は、車両の状態に応じて可変するよう設定され、また所定の下限値が設定されているハイブリッド車両のアクセルペダル踏力制御装置。
  2.  前記第1アクセル開度の下限値は、車速が増加するほど大きくなるよう設定されている請求項1に記載のハイブリッド車両のアクセルペダル踏力制御装置。
  3.  前記第1アクセル開度の下限値は、各車速で一定速走行可能なアクセル開度に基づいた第2アクセル開度である請求項1または2に記載のハイブリッド車両のアクセルペダル踏力制御装置。
  4.  前記第1アクセル開度は、前記電動機の駆動源となるバッテリの状態に応じて可変するよう設定されている請求項1~3のいずれかに記載のハイブリッド車両のアクセルペダル踏力制御装置。
  5.  前記第1アクセル開度は、前記バッテリのSOCが低下するほど小さくなるよう設定されている請求項1~4のいずれかに記載のハイブリッド車両のアクセルペダル踏力制御装置。
  6.  前記第1アクセル開度は、前記第1の走行モードから前記第2の走行モードに切り替わる手前に設定される請求項1~5のいずれかに記載のハイブリッド車両のアクセルペダル踏力制御装置。
  7.  第1の走行モードから第2の走行モードに切り替わるアクセル開度は、前記第1アクセル開度の下限値よりも小さいアクセル開度にも設定される請求項1~6のいずれかに記載のハイブリッド車両のアクセルペダル踏力制御装置。
PCT/JP2011/060305 2010-05-25 2011-04-27 ハイブリッド車両のアクセルペダル踏力制御装置 WO2011148753A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11786453.8A EP2578432B1 (en) 2010-05-25 2011-04-27 Hybrid vehicle accelerator pedal depressing force control device
RU2012156160/11A RU2527652C2 (ru) 2010-05-25 2011-04-27 Устройство управления силой нажатия педали акселератора для гибридного транспортного средства
KR1020127030745A KR101420959B1 (ko) 2010-05-25 2011-04-27 하이브리드 차량의 액셀러레이터 페달 답력 제어 장치
US13/699,174 US8620566B2 (en) 2010-05-25 2011-04-27 Hybrid vehicle accelerator pedal depressing force control device
CN201180025688.3A CN102905927B (zh) 2010-05-25 2011-04-27 混合动力车辆的加速器踏板踏力控制装置
MX2012013367A MX2012013367A (es) 2010-05-25 2011-04-27 Dispositivo de control de accionamiento del pedal del acelerador en vehiculos hibridos.
BR112012030026A BR112012030026A2 (pt) 2010-05-25 2011-04-27 dispositivo de controle de pressão no pedal do acelerador de véiculo híbrido

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010118920A JP5471829B2 (ja) 2010-05-25 2010-05-25 ハイブリッド車両のアクセルペダル踏力制御装置
JP2010-118920 2010-05-25

Publications (1)

Publication Number Publication Date
WO2011148753A1 true WO2011148753A1 (ja) 2011-12-01

Family

ID=45003745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060305 WO2011148753A1 (ja) 2010-05-25 2011-04-27 ハイブリッド車両のアクセルペダル踏力制御装置

Country Status (9)

Country Link
US (1) US8620566B2 (ja)
EP (1) EP2578432B1 (ja)
JP (1) JP5471829B2 (ja)
KR (1) KR101420959B1 (ja)
CN (1) CN102905927B (ja)
BR (1) BR112012030026A2 (ja)
MX (1) MX2012013367A (ja)
RU (1) RU2527652C2 (ja)
WO (1) WO2011148753A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080468A1 (ja) * 2012-11-21 2014-05-30 本田技研工業株式会社 アクセルペダル反力制御装置及び車両
US20160221437A1 (en) * 2014-08-29 2016-08-04 Mazda Motor Corporation Vehicle accelerator pedal reaction force control device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381321B2 (ja) * 2008-07-31 2014-01-08 日産自動車株式会社 アクセルペダル踏力制御装置
US20120047087A1 (en) * 2009-03-25 2012-02-23 Waldeck Technology Llc Smart encounters
KR101406533B1 (ko) * 2013-04-16 2014-06-12 기아자동차주식회사 가속페달 장치의 답력 능동 조절방법
KR101406654B1 (ko) * 2013-04-23 2014-06-11 기아자동차주식회사 가속페달 장치의 답력 능동 조절방법
JP2015048052A (ja) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 ペダル装置の取付構造
US9162674B2 (en) 2013-10-24 2015-10-20 Ford Global Technologies, Llc Dynamic mapping of pedal position to wheel output demand in a hybrid vehicle
DE112013007563T5 (de) * 2013-10-30 2016-07-14 Honda Motor Co., Ltd. Gerät zum Steuern/Regeln einer Pedalauflagekraft
GB2523589B (en) * 2014-02-28 2020-04-22 Bentley Motors Ltd Hybrid drive system
US9381809B2 (en) 2014-04-01 2016-07-05 Atieva, Inc. Dual stage accelerator assembly with selectable stroke transition and pedal feedback system
FR3070945B1 (fr) * 2017-09-08 2019-09-13 Psa Automobiles Sa Controle de fourniture d’un couple complementaire par une machine motrice non-thermique d’un vehicule hybride en fonction du potentiel d’acceleration
JP6521491B1 (ja) * 2017-12-01 2019-05-29 マツダ株式会社 車両の制御装置
RU2681805C1 (ru) * 2018-04-10 2019-03-12 Сергей Николаевич Низов Узел акселератора для двигателя внутреннего сгорания с турбонаддувом
JP7447720B2 (ja) * 2020-07-20 2024-03-12 日産自動車株式会社 エンジン制御方法、及びエンジン制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132225A (ja) * 2003-10-30 2005-05-26 Nissan Motor Co Ltd アクセルペダル踏力制御装置
JP2006180626A (ja) 2004-12-22 2006-07-06 Toyota Motor Corp ハイブリッド車両の制御装置
JP2007182196A (ja) * 2006-01-10 2007-07-19 Toyota Motor Corp 車両用運転補助装置
JP2007261399A (ja) * 2006-03-28 2007-10-11 Toyota Motor Corp ハイブリッド車およびその制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU142540A1 (ru) * 1958-08-12 1960-11-30 В.К. Зорин Устройство, облегчающее управление автомобилем
SU1244653A1 (ru) * 1983-06-06 1986-07-15 Опытно-Механический Завод Главленстройматериалов Устройство управлени исполнительным органом
EP1541400B1 (en) * 2002-09-13 2006-08-16 Honda Giken Kogyo Kabushiki Kaisha Hybrid vehicle
US7053566B2 (en) * 2003-10-15 2006-05-30 Nissan Motor Co., Ltd. Drive train for hybrid electric vehicle
JP4135107B2 (ja) * 2004-11-04 2008-08-20 アイシン・エィ・ダブリュ株式会社 ハイブリッド車用駆動装置及びその制御方法
DE102008000577A1 (de) * 2008-03-10 2009-09-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges mit Hybridantrieb
JP5381321B2 (ja) * 2008-07-31 2014-01-08 日産自動車株式会社 アクセルペダル踏力制御装置
JP4553057B2 (ja) * 2008-07-31 2010-09-29 日産自動車株式会社 アクセルペダル踏力制御装置および方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132225A (ja) * 2003-10-30 2005-05-26 Nissan Motor Co Ltd アクセルペダル踏力制御装置
JP2006180626A (ja) 2004-12-22 2006-07-06 Toyota Motor Corp ハイブリッド車両の制御装置
JP2007182196A (ja) * 2006-01-10 2007-07-19 Toyota Motor Corp 車両用運転補助装置
JP2007261399A (ja) * 2006-03-28 2007-10-11 Toyota Motor Corp ハイブリッド車およびその制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080468A1 (ja) * 2012-11-21 2014-05-30 本田技研工業株式会社 アクセルペダル反力制御装置及び車両
JP5843412B2 (ja) * 2012-11-21 2016-01-13 本田技研工業株式会社 アクセルペダル反力制御装置及び車両
US9365112B2 (en) 2012-11-21 2016-06-14 Honda Motor Co., Ltd. Accelerator-pedal-counterforce control device and vehicle
DE112012007156B4 (de) 2012-11-21 2022-02-10 Honda Motor Co., Ltd. Gaspedalgegenkraft-Steuerungsvorrichtung und Fahrzeug
US20160221437A1 (en) * 2014-08-29 2016-08-04 Mazda Motor Corporation Vehicle accelerator pedal reaction force control device
US9908409B2 (en) * 2014-08-29 2018-03-06 Mazda Motor Corporation Vehicle accelerator pedal reaction force control device

Also Published As

Publication number Publication date
JP2011245919A (ja) 2011-12-08
EP2578432A4 (en) 2018-03-21
RU2527652C2 (ru) 2014-09-10
KR101420959B1 (ko) 2014-07-17
MX2012013367A (es) 2013-01-24
US8620566B2 (en) 2013-12-31
EP2578432A1 (en) 2013-04-10
KR20130004521A (ko) 2013-01-10
BR112012030026A2 (pt) 2016-08-02
JP5471829B2 (ja) 2014-04-16
CN102905927B (zh) 2015-09-30
RU2012156160A (ru) 2014-06-27
US20130066508A1 (en) 2013-03-14
CN102905927A (zh) 2013-01-30
EP2578432B1 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
WO2011148753A1 (ja) ハイブリッド車両のアクセルペダル踏力制御装置
US7498757B2 (en) Control device for a hybrid electric vehicle
JP5045431B2 (ja) ハイブリッド車両のエンジン始動制御装置
JP5832736B2 (ja) ハイブリッド車両のエンジン始動制御装置
US9540004B2 (en) Vehicle control system
US9440653B2 (en) Drive control device for vehicle
US20140136039A1 (en) Control device for hybrid vehicle
WO2012056855A1 (ja) ハイブリッド車両の制御装置
JP5251495B2 (ja) ハイブリッド車両の駆動制御装置および駆動制御方法
JP2008195143A (ja) ハイブリッド車両の協調回生制動制御装置
JP5715848B2 (ja) 車両の動力伝達制御装置
JP5462057B2 (ja) 車両の動力伝達制御装置
JP2006137332A (ja) ハイブリッド車用駆動装置及びその制御方法
JP3702897B2 (ja) ハイブリッド車両の制御装置
JP2012086710A (ja) ハイブリッド車両のアイドル制御装置
JP2004251452A (ja) ハイブリッド車両の制御装置
JP5803626B2 (ja) 車両の制御装置
KR101063218B1 (ko) 하이브리드 차량용 오일펌프 및 클러치간의 유압 제어 장치및 방법
JP2012091620A (ja) ハイブリッド車両のエンジン始動制御装置
JP5223903B2 (ja) ハイブリッド車両のアイドル制御装置
JP2013067265A (ja) 車両の制御装置
JP2023169919A (ja) 車両の制御装置
JP2022155289A (ja) 車両用駆動装置
WO2015019804A1 (ja) フライホイール回生システム及びその制御方法
JP2007261494A (ja) 車両用制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025688.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786453

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/013367

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 13699174

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127030745

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4040/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2012156160

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011786453

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012030026

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012030026

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121126