WO2011145406A1 - 太陽電池一体型気体製造装置 - Google Patents

太陽電池一体型気体製造装置 Download PDF

Info

Publication number
WO2011145406A1
WO2011145406A1 PCT/JP2011/058811 JP2011058811W WO2011145406A1 WO 2011145406 A1 WO2011145406 A1 WO 2011145406A1 JP 2011058811 W JP2011058811 W JP 2011058811W WO 2011145406 A1 WO2011145406 A1 WO 2011145406A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
electrode
conversion unit
electrolysis electrode
electrolysis
Prior art date
Application number
PCT/JP2011/058811
Other languages
English (en)
French (fr)
Inventor
吉田 章人
正樹 加賀
俊輔 佐多
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/698,774 priority Critical patent/US9029691B2/en
Priority to CN201180024700.9A priority patent/CN102985597B/zh
Priority to EP11783343.4A priority patent/EP2573209B1/en
Publication of WO2011145406A1 publication Critical patent/WO2011145406A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S136/00Batteries: thermoelectric and photoelectric
    • Y10S136/291Applications
    • Y10S136/293Circuits

Definitions

  • the present invention relates to a solar cell integrated gas production apparatus.
  • Patent Document 1 a thin-film solar cell and an electrocatalyst layer are formed in parallel on a transparent electrode film formed on a substrate, and the electrolyte is electrolyzed by irradiating the thin-film solar cell with light.
  • An enabling hydrogen production apparatus is disclosed.
  • Patent Document 2 discloses an electrolysis system that outputs an optimized electromotive force of a solar cell to an electrolytic cell to generate hydrogen and oxygen.
  • the present invention relates to a photoelectric conversion unit having a light receiving surface and a back surface thereof, a first electrolysis electrode provided on the back side of the photoelectric conversion unit and provided so as to be immersed in an electrolytic solution, and the photoelectric conversion unit.
  • a second electrolysis electrode provided on the back side and provided so as to be immersed in the electrolytic solution; and a switching unit.
  • the photoelectric conversion unit receives the first electrolysis electrode and the second electrolysis electrode.
  • the electrolysis solution is electrolyzed by the electrolysis solution, and is provided so that the first gas and the second gas can be generated, respectively, and the switching unit generates the electromotive force generated by the photoelectric conversion unit receiving light.
  • a solar cell integrated gas characterized by switching between a circuit to be output to an external circuit and a circuit to output an electromotive force generated by receiving light from the photoelectric converter to the first electrolysis electrode and the second electrolysis electrode. Providing manufacturing equipment That.
  • the electromotive force generated when the photoelectric conversion unit receives light can be output to the first electrolysis electrode and the second electrolysis electrode, the first electrolysis electrode that can be immersed in the electrolytic solution In the second electrolysis electrode, the first gas and the second gas can be produced from the electrolytic solution.
  • an electromotive force generated when the photoelectric conversion unit receives light can be output to the first external circuit via the switching unit, and power can be supplied to the first external circuit.
  • the switching unit outputs the electromotive force generated when the photoelectric conversion unit receives light to the first external circuit, the electromotive force generated when the photoelectric conversion unit receives light, and the first electrolysis electrode and Since the circuit to be output to the second electrolysis electrode can be switched, the power supply and the first gas are determined according to the amount of solar radiation applied to the photoelectric conversion unit or the power demand of the facility where the apparatus of the present invention is installed. And the production of the second gas can be switched. Thereby, the electromotive force generated when the photoelectric conversion unit receives light can be used more efficiently.
  • the first electrolysis electrode and the second electrolysis electrode are provided on the back surface side of the photoelectric conversion unit, light can be incident on the light receiving surface of the photoelectric conversion unit without using the electrolyte solution. It is possible to prevent absorption of incident light and scattering of incident light. As a result, the amount of light incident on the photoelectric conversion unit can be increased, and the light utilization efficiency can be increased.
  • the first electrolysis electrode and the second electrolysis electrode are provided on the back surface side of the photoelectric conversion unit, the light incident on the light receiving surface is reflected by the first electrolysis electrode, the second electrolysis electrode, and Are not absorbed or scattered by the first gas and the second gas respectively generated from the gas. As a result, the amount of light incident on the photoelectric conversion unit can be increased, and the light utilization efficiency can be increased.
  • the first electrolysis electrode and the second electrolysis electrode are provided on the back side of the photoelectric conversion unit, the first gas and the second gas can be produced on the back side of the photoelectric conversion unit. For this reason, wiring resistance between a photoelectric conversion part and the electrode for electrolysis can be made low, and 1st gas and 2nd gas can be manufactured efficiently.
  • the solar cell and the gas production device are integrated, a more compact device can be obtained, and the installation area can be reduced. A common part can be utilized for a solar cell and a gas manufacturing apparatus, and manufacturing cost can be lowered.
  • FIG. 2 is a schematic cross-sectional view of the solar cell integrated gas production apparatus taken along a dotted line AA in FIG. It is a schematic back view of the solar cell integrated gas manufacturing apparatus of one Embodiment of this invention.
  • FIG. 2 is a schematic cross-sectional view of the solar cell integrated gas manufacturing apparatus along dotted line BB in FIG. 1.
  • It is a schematic sectional drawing of the solar cell integrated gas manufacturing apparatus of one Embodiment of this invention.
  • the solar cell integrated gas manufacturing apparatus of the present invention is for a first electrolysis that is provided on a back surface side of a photoelectric conversion unit having a light receiving surface and a back surface thereof, and that can be immersed in an electrolytic solution.
  • the electrolysis solution is electrolyzed by the electromotive force generated by the photoelectric conversion unit receiving light, and the first gas and the second gas can be generated by electrolysis.
  • the switching unit is received by the photoelectric conversion unit.
  • the solar cell integrated gas production apparatus is an apparatus having a function of a solar cell and a function of a gas production apparatus.
  • the solar cell integrated gas manufacturing apparatus of the present invention it is preferable that one of the first gas and the second gas is hydrogen and the other is oxygen. According to such a configuration, hydrogen and oxygen can be produced from the electrolytic solution in the first electrolysis electrode and the second electrolysis electrode.
  • the solar cell integrated gas production apparatus further includes an insulating part provided on the back surface of the photoelectric conversion part, and the first electrolysis electrode and the second electrolysis electrode are provided on the insulating part, And it is preferable to electrically connect with the said switching part, respectively.
  • the electromotive force generated when the photoelectric conversion unit receives light can be output to the first external circuit via the switching unit, and the electromotive force generated when the photoelectric conversion unit receives light can be output. It can output to the electrode for 1st electrolysis or the electrode for 2nd electrolysis. Further, when an electromotive force is output to the first external circuit or the first and second electrolysis electrodes, it is possible to prevent a leakage current from flowing.
  • the solar cell integrated gas production apparatus further includes an insulating part provided on the back surface of the photoelectric conversion part, and the second electrolysis electrode is provided on the insulating part, and the switching part and It is preferable that the first electrode for electrolysis is provided on the back surface of the photoelectric conversion unit and is electrically connected to the back surface of the photoelectric conversion unit. According to such a configuration, the electromotive force generated when the photoelectric conversion unit receives light can be output to the first external circuit via the switching unit, and the electromotive force generated when the photoelectric conversion unit receives light can be output. It can output to the electrode for 1st electrolysis or the electrode for 2nd electrolysis.
  • the solar cell integrated gas manufacturing apparatus of the present invention further includes a first electrode provided on a light receiving surface of the photoelectric conversion unit, and an insulating unit provided on a back surface of the photoelectric conversion unit, and a second electrolysis.
  • the electrode for use is provided on the insulating part and electrically connected to the first electrode
  • the first electrode for electrolysis is provided on the insulating part and electrically connected to the switching part. It is preferable.
  • the electromotive force generated when the photoelectric conversion unit receives light can be output to the first external circuit via the switching unit, and the electromotive force generated when the photoelectric conversion unit receives light can be output. It can output to the electrode for 1st electrolysis or the electrode for 2nd electrolysis. Further, when an electromotive force is output to the first external circuit or the first and second electrolysis electrodes, it is possible to prevent a leakage current from flowing.
  • the solar cell integrated gas manufacturing apparatus of the present invention further includes a first electrode provided on a light receiving surface of the photoelectric conversion unit, and an insulating unit provided on a back surface of the photoelectric conversion unit, and a second electrolysis.
  • the electrode for use is provided on the insulating part and is electrically connected to the first electrode
  • the electrode for first electrolysis is provided on the back face of the photoelectric conversion part
  • the back face of the photoelectric conversion part It is preferable to be electrically connected. According to such a configuration, an electromotive force generated when the photoelectric conversion unit receives light can be output to the first electrolysis electrode or the second electrolysis electrode.
  • the electromotive force generated by the photoelectric conversion unit receiving light does not reach the electrolytic voltage of the electrolytic solution, the electromotive force generated by the photoelectric conversion unit receiving light is output to the first external circuit via the switching unit. can do.
  • the first conductive portion is provided in a contact hole that penetrates the photoelectric conversion portion. According to such a configuration, the second electrolysis electrode and the first electrode can be electrically connected, and the second electrolysis electrode and the first electrode can be set to substantially the same potential.
  • the insulating portion is provided so as to cover a side surface of the photoelectric conversion portion, and the first conductive portion is a portion of the insulating portion that covers the side surface of the photoelectric conversion portion.
  • the insulating portion is provided so as to cover a side surface of the photoelectric conversion portion, and the second electrolysis electrode is a portion that covers the side surface of the photoelectric conversion portion of the insulating portion.
  • the first electrode is provided on the first electrode and is in contact with the first electrode. According to such a configuration, an electromotive force generated when the photoelectric conversion unit receives light can be efficiently output to the second electrolysis electrode.
  • the solar cell integrated gas manufacturing apparatus of the present invention further includes a first electrode provided on the light receiving surface of the photoelectric conversion unit and a second electrode provided on the back surface of the photoelectric conversion unit, The electrode and the second electrode are preferably electrically connected to the switching unit. According to such a configuration, an electromotive force generated when the photoelectric conversion unit receives light can be output to the first external circuit or the first electrolysis electrode and the second electrolysis electrode.
  • the photoelectric conversion unit receives a light to generate a potential difference between the first and second areas on the back surface, and the first area is electrically connected to the first electrolysis electrode. It is preferable that the second area is electrically connected to the second electrolysis electrode.
  • the photoelectric conversion part is made of at least one semiconductor material having an n-type semiconductor part and a p-type semiconductor part, and one of the first and second areas is the n It is preferable that the other part is a part of the p-type semiconductor part. According to such a configuration, a potential difference can be generated between the first and second areas on the back surface of the photoelectric conversion unit.
  • a first electrolysis electrode and a second electrolysis electrode are electrically connected to the n-type semiconductor portion or the p-type semiconductor portion via first and second areas where the insulating portion is not provided, respectively. It is preferable to connect to. According to such a configuration, electrons and holes formed by receiving light by the photoelectric conversion unit can be efficiently separated, and the photoelectric conversion efficiency can be further increased.
  • the first zone and the second zone are electrically connected to the switching unit.
  • the solar cell integrated gas manufacturing apparatus may further include a second conductive portion provided between the insulating portion and the first electrolysis electrode or between the insulating portion and the second electrolysis electrode. preferable. According to such a configuration, the internal resistance generated in the first electrolysis electrode or the second electrolysis electrode can be further reduced.
  • the solar cell integrated gas production apparatus further includes a translucent substrate, and the photoelectric conversion unit is provided on the translucent substrate such that the light receiving surface is on the translucent substrate side. Is preferred. According to such a structure, since a photoelectric conversion part can be formed on a translucent board
  • a back substrate is further provided on the back side of the photoelectric conversion unit, and the second electrolysis electrode is provided on the back substrate and is electrically connected to the switching unit.
  • the first electrode for electrolysis is provided on the back surface of the photoelectric conversion unit and is electrically connected to the back surface of the photoelectric conversion unit.
  • the solar cell integrated gas manufacturing apparatus of the present invention it is preferable to further include an electrolytic solution chamber capable of storing an electrolytic solution in which the first electrolytic electrode or the second electrolytic electrode is immersed. According to such a configuration, the first electrolysis electrode and the second electrolysis electrode can be immersed in the electrolytic solution.
  • a back substrate is provided, and the electrolyte chamber is provided between the back surface of the photoelectric conversion unit and the back substrate.
  • an electrolytic solution chamber capable of storing an electrolytic solution in which the first electrolytic electrode or the second electrolytic electrode is immersed can be easily provided.
  • an electrolyte chamber capable of storing an electrolyte solution immersed in a first electrolysis electrode, and an electrolyte chamber capable of storing an electrolyte solution immersed in a second electrolysis electrode
  • the partition preferably includes an ion exchanger.
  • the ion concentration between the electrolyte introduced into the electrolyte chamber above the first electrolysis electrode and the electrolyte introduced into the electrolyte chamber above the second electrolysis electrode is increased.
  • the imbalance can be eliminated, and the first gas and the second gas can be generated stably.
  • the photoelectric conversion unit has a photoelectric conversion layer including a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer.
  • the photoelectric conversion unit can have a pin structure, and photoelectric conversion can be performed efficiently.
  • the electromotive force generated in the photoelectric conversion unit can be increased, and the electrolytic solution can be electrolyzed more efficiently.
  • the photoelectric conversion unit includes a plurality of photoelectric conversion layers connected in series, and the plurality of photoelectric conversion layers generate an electromotive force generated by receiving light in the first electrolysis electrode. And it is preferable to supply to the electrode for 2nd electrolysis. According to such a configuration, the potential difference generated when the photoelectric conversion unit receives light can be further increased, and the first gas and the second gas can be generated efficiently.
  • each photoelectric conversion layer is preferably connected in series by a third conductive portion. According to such a configuration, the photoelectric conversion layers arranged in parallel can be connected in series.
  • the third conductive portion includes a translucent electrode provided on the light receiving surface side of the photoelectric conversion layer, and a back electrode provided on the back surface side of the photoelectric conversion layer. It is preferable to contain. According to such a configuration, the photoelectric conversion layers arranged in parallel can be connected in series.
  • one of the first electrolysis electrode and the second electrolysis electrode is a hydrogen generation unit that generates H 2 from the electrolytic solution, and the other is the O 2 from the electrolytic solution.
  • 2 is an oxygen generating unit for generating the hydrogen generation part and the oxygen generation unit preferably includes a reaction catalyst O 2 from the catalyst and the electrolyte reactions H 2 is generated from each of the electrolytic solution occurs .
  • the hydrogen used as a fuel of a fuel cell can be manufactured with the solar cell integrated gas manufacturing apparatus of this invention.
  • the rate at which the electrolysis reaction of the electrolytic solution proceeds can be increased by including each catalyst.
  • the produced hydrogen can be used as a heat source in addition to the fuel for the fuel cell.
  • At least one of the hydrogen generation unit and the oxygen generation unit is formed of a porous conductor carrying a catalyst.
  • the surface area of at least one of the hydrogen generation part and the oxygen generation part can be increased, and oxygen or hydrogen can be generated more efficiently.
  • a change in potential due to a current flowing between the photoelectric conversion unit and the catalyst can be suppressed, and hydrogen or oxygen can be generated more efficiently.
  • the switching unit can be electrically connected to the second external circuit, and the electromotive force input from the second external circuit is converted to the first electrolysis electrode and It is preferable that the circuit can be switched to a circuit that outputs to the second electrolysis electrode and generates a first gas and a second gas from the electrolyte.
  • the solar cell integrated gas manufacturing device of the present invention and a device that generates an electromotive force such as a solar cell panel are installed side by side, the first gas and the first gas are generated using the electromotive force generated by the device. Two gases can be produced.
  • the switching unit further includes a switching selection unit that selects a circuit to be switched and outputs a selection result to the switching unit, and the switching unit is configured to input the switching selection unit. It is preferable to switch the circuit based on the result of selection. According to such a configuration, the power supply and the first gas according to the status of the device such as the amount of solar radiation irradiated to the photoelectric conversion unit and the demand status such as the power demand of the facility where the device of the present invention is installed. And the production of the second gas can be switched.
  • the switching selection unit is configured such that the switching unit is based on at least one of prediction of the amount of solar radiation irradiated to the device, precipitation probability, date and time, temperature, and power demand prediction. It is preferable to select a circuit to be switched. According to such a configuration, based on at least one of the prediction of the amount of solar radiation irradiated to the device, the probability of precipitation, the date and time, the temperature, and the power demand prediction, the first by the solar cell integrated gas production device of the present invention. The supply of electrodes to the external circuit and the production of the first gas and the second gas can be switched. Thereby, the electromotive force generated in the photoelectric conversion unit can be effectively utilized without waste.
  • an embodiment of the present invention will be described with reference to the drawings. The configurations shown in the drawings and the following description are merely examples, and the scope of the present invention is not limited to those shown in the drawings and the following description.
  • the solar cell integrated gas production device 25 of this embodiment is provided on the back side of the photoelectric conversion unit 2 having the light receiving surface and the back surface thereof, and electrolysis.
  • a first electrolysis electrode 8 provided so as to be immersed in the liquid
  • a second electrolysis electrode 7 provided on the back side of the photoelectric conversion unit 2 and provided so as to be immersed in the electrolytic solution
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 are capable of electrolyzing the electrolytic solution by electromotive force generated by the photoelectric conversion unit 2 receiving light to generate the first gas and the second gas, respectively.
  • the switching unit 10 includes a circuit that outputs an electromotive force generated when the photoelectric conversion unit 2 receives light to the first external circuit, and an electromotive force generated when the photoelectric conversion unit 2 receives light.
  • the solar cell integrated gas manufacturing apparatus 25 of the present embodiment includes a translucent substrate 1, a second electrode 5, a first conductive portion 9, an insulating portion 11, a partition wall 13, a back substrate 14, an electrolyte chamber 15, and a seal. You may further have the material 16 and the switch selection part 21.
  • FIG. Hereinafter, the solar cell integrated gas manufacturing apparatus 25 of this embodiment will be described.
  • the solar cell integrated gas manufacturing apparatus 25 of this embodiment may have a cross section as shown in FIG. 2, and has a cross section as shown in FIG. 5, 6, 7, 8, 9, 10, 11, or 12. You may have. 5 to 8 correspond to the cross-sectional view taken along the dotted line AA in FIG. 9 to 12 correspond to the cross-sectional view taken along the dotted line AA in FIG. 1, but the positions of the partition walls 13 and the like are different.
  • substrate 1 The translucent board
  • a material of the translucent substrate 1 for example, a transparent rigid material such as soda glass, quartz glass, Pyrex (registered trademark), or a synthetic quartz plate, or a transparent resin plate or a film material is preferably used. In view of chemical and physical stability, it is preferable to use a glass substrate.
  • RIE reactive ion etching
  • the 1st electrode 4 can be provided on the translucent board
  • the first electrode 4 can be electrically connected to the switching unit 10. Further, the first electrode 4 may be electrically connected to the second electrolysis electrode 7 through the first conductive portion 9 as shown in FIGS. 6, 7, and 9, and the second electrolysis electrode as shown in FIG. 8. It may be in direct contact with the electrode 7. Moreover, the 1st electrode 4 may have translucency. Moreover, when the solar cell integrated gas manufacturing apparatus 25 of this embodiment has a cross section as shown in FIG. 11 or FIG. 12, the first electrode 4 can be omitted.
  • the first electrode 4 By providing the first electrode 4, the current flowing between the light receiving surface of the photoelectric conversion unit 2 and the switching unit 10 can be increased. Moreover, when the 1st electrode 4 is electrically connected with the electrode 7 for 2nd electrolysis via the 1st electroconductive part 9 like FIG.6,7,9, the electromotive force which generate
  • the first electrode 4 may be made of a transparent conductive film such as ITO or SnO 2, or may be made of a metal finger electrode such as Ag or Au. Moreover, the electrode which combined the transparent conductive film and the metal finger electrode may be sufficient.
  • the transparent conductive film is used to facilitate contact between the light receiving surface of the photoelectric conversion unit 2 and the switching unit 10 or the like. What is generally used as a transparent electrode can be used. Specifically, In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, SnO 2 and the like can be given.
  • the transparent conductive film preferably has a sunlight transmittance of 85% or more, particularly 90% or more, and particularly 92% or more. This is because the photoelectric conversion unit 2 can absorb light efficiently.
  • a known method can be used, and examples thereof include sputtering, vacuum deposition, sol-gel method, cluster beam deposition method, and PLD (Pulse Laser Deposition) method.
  • the photoelectric conversion unit 2 can be provided on the translucent substrate 1 and generates a potential difference by receiving light.
  • the photoelectric conversion unit 2 may have a potential difference between the light receiving surface and the back surface thereof as shown in FIGS. 2 and 5 to 10, and the first and second areas on the back surface as shown in FIGS. A potential difference may be generated between the two.
  • the photoelectric conversion unit 2 is, for example, a photoelectric conversion unit using a silicon-based semiconductor, a photoelectric conversion unit using a compound semiconductor, a photoelectric conversion unit using a dye sensitizer, or a photoelectric conversion unit using an organic thin film.
  • the photoelectric conversion unit 2 When the light receiving surface and the back surface of the photoelectric conversion unit 2 are electrically connected to the first electrolysis electrode 8 and the second electrolysis electrode 7 via the switching unit 10, the photoelectric conversion unit 2 receives the first light by receiving light.
  • produce 1st gas and 2nd gas needs to arise, respectively.
  • the first gas and the second gas are hydrogen and oxygen
  • the photoelectric conversion unit 2 decomposes water contained in the electrolytic solution in the first electrolysis electrode 8 and the second electrolysis electrode 7 to generate hydrogen and oxygen. Therefore, it is necessary to generate an electromotive force necessary for this.
  • the potential difference between the first electrolysis electrode 8 and the second electrolysis electrode 7 needs to be larger than the theoretical voltage (1.23 V) for water decomposition, and for this purpose, a sufficiently large potential difference needs to be generated in the photoelectric conversion unit 2.
  • the photoelectric conversion part 2 connects two or more junctions (photoelectric conversion layer 28) which generate electromotive force, such as a pn junction, in series.
  • the method of connecting the photoelectric conversion layers 28 in series is not particularly limited, but the photoelectric conversion layers 28 may be stacked and connected in series, and the photoelectric conversion layers 28 provided in parallel as shown in FIGS. You may connect in series by the electroconductive part 33.
  • the third conductive portion 33 may include a translucent electrode 30 and a back electrode 31 as shown in FIG.
  • Examples of materials that perform photoelectric conversion include silicon-based semiconductors, compound semiconductors, and materials based on organic materials, and any photoelectric conversion material can be used. In order to increase the electromotive force, these photoelectric conversion materials can be stacked. In the case of stacking, it is possible to form a multi-junction structure with the same material, but stacking multiple photoelectric conversion layers with different optical band gaps and complementing the low sensitivity wavelength region of each photoelectric conversion layer mutually By doing so, incident light can be efficiently absorbed over a wide wavelength region.
  • the photoelectric conversion unit 2 may be a combination of these.
  • Photoelectric conversion part using a silicon-based semiconductor examples include a single crystal type, a polycrystalline type, an amorphous type, a spherical silicon type, and combinations thereof. Any of them can have a pn junction in which a p-type semiconductor and an n-type semiconductor are joined. Further, a pin junction in which an i-type semiconductor is provided between a p-type semiconductor and an n-type semiconductor may be provided. Further, it may have a plurality of pn junctions, a plurality of pin junctions, or a pn junction and a pin junction.
  • the silicon-based semiconductor is a semiconductor containing silicon, such as silicon, silicon carbide, or silicon germanium.
  • the photoelectric conversion unit 2 using a silicon-based semiconductor may be a thin film or a thick photoelectric conversion layer formed on the substrate 1, and a pn junction or a pin junction is formed on a wafer such as a silicon wafer.
  • a thin film photoelectric conversion layer may be formed on a wafer on which a pn junction or a pin junction is formed.
  • a first conductivity type semiconductor layer is formed on the first electrode 4 laminated on the translucent substrate 1 by a method such as a plasma CVD method.
  • a method such as a plasma CVD method.
  • As the first conductive type semiconductor layer a p + type or n + type amorphous Si thin film doped with a conductivity type determining impurity atom concentration of about 1 ⁇ 10 18 to 5 ⁇ 10 21 / cm 3 , A crystalline or microcrystalline Si thin film is used.
  • the material of the first conductivity type semiconductor layer is not limited to Si, and it is also possible to use a compound such as SiC, SiGe, or Si x O 1-x .
  • a polycrystalline or microcrystalline crystalline Si thin film is formed as a crystalline Si photoactive layer by a method such as plasma CVD.
  • the conductivity type is the first conductivity type having a lower doping concentration than the first conductivity type semiconductor, or the i conductivity type.
  • the material for the crystalline Si-based photoactive layer is not limited to Si, and it is also possible to use a compound such as SiC, SiGe, or Si x O 1-x .
  • a second conductivity type semiconductor layer having a conductivity type opposite to the first conductivity type semiconductor layer is formed by a method such as plasma CVD.
  • a method such as plasma CVD.
  • the material of the second conductivity type semiconductor layer is not limited to Si, and it is also possible to use a compound such as SiC, SiGe, or Si x O 1-x .
  • the second photoelectric conversion layer is composed of a first conductivity type semiconductor layer, a crystalline Si-based photoactive layer, and a second conductivity type semiconductor layer, each layer corresponding to the first photoelectric conversion layer.
  • the first conductive type semiconductor layer, the crystalline Si-based photoactive layer, and the second conductive type semiconductor layer are formed.
  • the volume crystallization fraction of the crystalline Si photoactive layer of the second photoelectric conversion layer is preferably higher than that of the first crystalline Si photoactive layer.
  • the volume crystallization fraction as compared with the lower layer. This increases the absorption in the long wavelength region, shifts the spectral sensitivity to the long wavelength side, and can improve the sensitivity in a wide wavelength region even when the photoactive layer is configured using the same Si material. It is because it becomes. That is, by using a tandem structure with Si having different crystallization rates, the spectral sensitivity is widened, and light can be used with high efficiency. At this time, if the low crystallization rate material is not on the light receiving surface side, high efficiency cannot be achieved. Further, when the crystallization rate is lowered to 40% or less, the amorphous component increases and deterioration occurs.
  • the photoelectric conversion unit 2 using a compound semiconductor includes, for example, GaP, GaAs, InP, InAs, and II-VI group elements composed of III-V group elements. And a pn junction formed using CIGS (Copper Indium Gallium DiSelenide) composed of I-III-VI group.
  • CIGS Copper Indium Gallium DiSelenide
  • An example of a manufacturing method of the photoelectric conversion unit 2 using a compound semiconductor is shown below.
  • MOCVD metal organic chemical vapor deposition
  • group III element material for example, an organic metal such as trimethylgallium, trimethylaluminum, or trimethylindium is supplied to the growth apparatus using hydrogen as a carrier gas.
  • a gas such as arsine (AsH 3 ), phosphine (PH 3 ), and stibine (SbH 3 ) is used as the material of the group V element.
  • Examples of p-type or n-type impurity dopants include diethyl zinc for p-type conversion, monosilane (SiH 4 ), disilane (Si 2 H 6 ), and hydrogen selenide (H 2 Se) for n-type conversion. Etc. are used. These source gases can be thermally decomposed by supplying them onto a substrate heated to, for example, 700 ° C., and a desired compound semiconductor material film can be epitaxially grown. The composition of these growth layers can be controlled by the gas composition to be introduced, and the film thickness can be controlled by the gas introduction time. When multi-junction laminating these photoelectric conversion parts, it is possible to form a growth layer with excellent crystallinity by adjusting the lattice constant between layers as much as possible, and to improve the photoelectric conversion efficiency. Become.
  • a known window layer on the light receiving surface side or a known electric field layer on the non-light receiving surface side may be provided to improve carrier collection efficiency.
  • a buffer layer for preventing diffusion of impurities may be provided.
  • the photoelectric conversion part using a dye sensitizer is mainly composed of, for example, a porous semiconductor, a dye sensitizer, an electrolyte, a solvent, and the like.
  • a material constituting the porous semiconductor for example, one or more kinds of known semiconductors such as titanium oxide, tungsten oxide, zinc oxide, barium titanate, strontium titanate, cadmium sulfide can be selected.
  • a paste containing semiconductor particles is applied by a screen printing method, an ink jet method and the like, dried or baked, a method of forming a film by a CVD method using a raw material gas, etc. , PVD method, vapor deposition method, sputtering method, sol-gel method, method using electrochemical oxidation-reduction reaction, and the like.
  • the dye sensitizer adsorbed on the porous semiconductor various dyes having absorption in the visible light region and the infrared light region can be used.
  • the carboxylic acid group, carboxylic anhydride group, alkoxy group, sulfonic acid group, hydroxyl group, hydroxylalkyl group, ester group, mercapto group, phosphonyl in the dye molecule It is preferable that a group or the like is present.
  • These functional groups provide an electrical bond that facilitates electron transfer between the excited state dye and the conduction band of the porous semiconductor.
  • dyes containing these functional groups include ruthenium bipyridine dyes, quinone dyes, quinone imine dyes, azo dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, and triphenylmethane dyes.
  • ruthenium bipyridine dyes quinone dyes, quinone imine dyes, azo dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, and triphenylmethane dyes.
  • Xanthene dyes porphyrin dyes, phthalocyanine dyes, berylene dyes, indigo dyes, naphthalocyanine dyes, and the like.
  • Examples of the method of adsorbing the dye to the porous semiconductor include a method of immersing the porous semiconductor in a solution in which the dye is dissolved (dye adsorption solution).
  • the solvent used in the dye adsorption solution is not particularly limited as long as it dissolves the dye, and specifically, alcohols such as ethanol and methanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran.
  • Nitrogen compounds such as acetonitrile, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene, esters such as ethyl acetate, water, and the like.
  • the electrolyte is composed of a redox pair and a solid medium such as a liquid or polymer gel holding the redox pair.
  • a redox pair iron- and cobalt-based metals and halogen substances such as chlorine, bromine, and iodine are preferably used as the redox pair, and metal iodides such as lithium iodide, sodium iodide, and potassium iodide and iodine are used.
  • the combination of is preferably used.
  • imidazole salts such as dimethylpropylimidazole iodide can also be mixed.
  • carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol and methanol, water, aprotic polar substances, and the like are used. Of these, carbonate compounds and nitrile compounds are preferred. Used.
  • a photoelectric conversion part using an organic thin film comprises an electron hole transport layer composed of an organic semiconductor material having electron donating properties and electron accepting properties, or an electron transport layer having electron accepting properties. It may be a laminate of a hole transport layer having an electron donating property.
  • the electron-donating organic semiconductor material is not particularly limited as long as it has a function as an electron donor, but it is preferable that a film can be formed by a coating method, and among them, an electron-donating conductive polymer is preferably used.
  • the conductive polymer refers to a ⁇ -conjugated polymer, which is composed of a ⁇ -conjugated system in which double bonds or triple bonds containing carbon-carbon or hetero atoms are alternately connected to single bonds, and exhibits semiconducting properties. Point.
  • Examples of the electron-donating conductive polymer material include polyphenylene, polyphenylene vinylene, polythiophene, polycarbazole, polyvinyl carbazole, polysilane, polyacetylene, polypyrrole, polyaniline, polyfluorene, polyvinyl pyrene, polyvinyl anthracene, and derivatives, Examples thereof include a polymer, a phthalocyanine-containing polymer, a carbazole-containing polymer, and an organometallic polymer.
  • thiophene-fluorene copolymer polyalkylthiophene, phenylene ethynylene-phenylene vinylene copolymer, fluorene-phenylene vinylene copolymer, thiophene-phenylene vinylene copolymer and the like are preferably used.
  • the electron-accepting organic semiconductor material is not particularly limited as long as it has a function as an electron acceptor. However, it is preferable that a film can be formed by a coating method, and among them, an electron-donating conductive polymer is preferably used.
  • the electron-accepting conductive polymer include polyphenylene vinylene, polyfluorene, and derivatives and copolymers thereof, or carbon nanotubes, fullerene and derivatives thereof, CN group or CF 3 group-containing polymers, and —CF Examples thereof include 3- substituted polymers.
  • an electron-accepting organic semiconductor material doped with an electron-donating compound an electron-donating organic semiconductor material doped with an electron-accepting compound, or the like can be used.
  • the electron-accepting conductive polymer material doped with the electron-donating compound include the above-described electron-accepting conductive polymer material.
  • a Lewis base such as an alkali metal such as Li, K, Ca, or Cs or an alkaline earth metal can be used. The Lewis base acts as an electron donor.
  • the electron-donating conductive polymer material doped with the electron-accepting compound include the above-described electron-donating conductive polymer material.
  • a Lewis acid such as FeCl 3 , AlCl 3 , AlBr 3 , AsF 6 or a halogen compound can be used.
  • Lewis acid acts as an electron acceptor.
  • Photoelectric conversion part in which an electromotive force is generated between the first and second areas on the back side As a method of forming the photoelectric conversion part 2 in which an electromotive force is generated between the first and second areas on the back side, for example, as shown in FIGS.
  • the p-type semiconductor unit 36 and the n-type semiconductor unit 37 are formed using a semiconductor wafer as a material so that a part of the p-type semiconductor unit 36 and a part of the n-type semiconductor unit 37 are formed on the back surface of the semiconductor wafer. Forming.
  • a pn junction can be formed in the photoelectric conversion part 2.
  • the photoelectric conversion part 2 having an npp + junction can be formed.
  • the photoelectric conversion part 2 having a pnn + junction can be formed. it can.
  • the p-type semiconductor part 36 and the n-type semiconductor part 37 may be formed on the semiconductor wafer one by one as shown in FIG.
  • a plurality of p-type semiconductor portions 36 and n-type semiconductor portions 37 may be formed on the semiconductor wafer, and one of the p-type semiconductor portion 36 and the n-type semiconductor portion 37 is formed on the semiconductor wafer, The other may be formed at two locations on both sides.
  • photoelectric conversion unit 2 In the photoelectric conversion unit 2 shown above, it is assumed that sunlight is received and photoelectric conversion is primarily performed. However, it is emitted from a fluorescent lamp, an incandescent lamp, an LED, or a specific heat source depending on the application. It is also possible to perform photoelectric conversion by irradiating artificial light such as light.
  • the second electrode 5 can be provided on the back surface of the photoelectric conversion unit 2 and can be electrically connected to the switching unit 10.
  • the second electrode 5 can be electrically connected to the first electrolysis electrode 8 as shown in FIGS.
  • the second electrode 5 is the same as the second electrode 5 when the first electrolysis electrode 8 is provided on the back surface of the photoelectric conversion unit 2 as shown in FIGS. Therefore, the second electrode 5 can be omitted.
  • the current between the back surface of the photoelectric conversion unit 2 and the switching unit 10 can be increased.
  • the second electrode 5 is electrically connected to the first electrolysis electrode 8 as shown in FIGS.
  • the electromotive force generated in the photoelectric conversion unit 2 is efficiently transferred to the first electrolysis electrode 8 and the first electrolysis electrode 8. 2 to the electrode 7 for electrolysis.
  • the 2nd electrode 5 has electroconductivity
  • it is a metal thin film, for example, is thin films, such as Al, Ag, Au. These can be formed by, for example, sputtering.
  • a transparent conductive film such as In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, and SnO 2 is used.
  • Insulating part 11 can be provided between the second electrode 5 and the first electrolysis electrode 8 and the second electrolysis electrode 7 as shown in FIGS.
  • the insulating portion 11 By providing the insulating portion 11, it is possible to prevent the second electrode 5, the first electrolysis electrode 8, and the second electrolysis electrode 7 from being electrically connected without passing through the switching portion 10. This prevents leakage current from flowing through the first electrolysis electrode 8 and the second electrolysis electrode 7 when the electromotive force generated by the photoelectric conversion unit 2 receiving light is output to the first external circuit. it can. Further, the insulating portion 11 can be provided between the second electrode 5 and the second electrolysis electrode 7 as shown in FIGS.
  • the insulating part 11 may be provided between the photoelectric conversion layer 28 and the second electrolysis electrode 7 connected in series as shown in FIG. 9, and the first electrolysis electrode 8 as shown in FIGS. And the first electrolysis electrode 8 and the second electrolysis electrode 7 other than the portion where the first section is electrically connected and the portion where the second electrolysis electrode 7 and the second section are electrically connected; You may provide between the photoelectric conversion parts 2.
  • FIG. Moreover, the insulation part 11 can be formed so that the side surface of the photoelectric conversion part 2 may be covered like FIG.
  • the second electrolysis electrode 7 or the first conductive part 9 can be formed on the insulating part 11 covering the side surface of the photoelectric conversion part 2, and the second electrolysis electrode 7 or the first conductive part 9 can be formed. Even if it is provided so as to be in contact with the first electrode 4, it is possible to prevent leakage current from being generated.
  • the insulating part 11 can be used regardless of an organic material or an inorganic material.
  • organic polymers and inorganic materials include metal oxides such as Al 2 O 3 , SiO 2 such as porous silica films, fluorine-added silicon oxide films (FSG), SiOC, HSQ (Hydrogen Silsesquioxane) films, SiN x , silanol (Si (OH) 4 ) or the like can be used.
  • a film containing a paste containing an insulating material is applied by a screen printing method, an ink jet method, a spin coating method, etc., dried or baked, or a CVD method using a source gas is used. And a method using a PVD method, a vapor deposition method, a sputtering method, a sol-gel method, and the like.
  • the first conductive part 9 can electrically connect the second electrolysis electrode 7 and the first electrode 4 as shown in FIGS.
  • the second electrolysis electrode 7 can be formed on the back surface of the photoelectric conversion unit 2, and the second electrolysis electrode 7 can be electrically connected to the first electrode 4.
  • the 1st electroconductive part 9 can contact the 1st electrode 4 which contacted the light-receiving surface of the photoelectric conversion part 2, and the 2nd electrode 7 for electrolysis provided on the back surface of the photoelectric conversion part 2, a photoelectric conversion part If the cross-sectional area of the first conductive portion 9 parallel to the second light receiving surface is too large, the area of the light receiving surface of the photoelectric conversion portion 2 may be reduced. Further, if the cross-sectional area of the first conductive part 9 parallel to the light receiving surface of the photoelectric conversion unit 2 is made too small, a difference occurs between the potential of the light receiving surface of the photoelectric conversion unit 2 and the potential of the second electrolysis electrode 7.
  • the cross-sectional area of the first conductive unit 9 parallel to the light receiving surface of the photoelectric conversion unit 2 needs to be within a certain range.
  • the cross-sectional area of the first conductive part 9 parallel to the light-receiving surface of the photoelectric conversion unit 2 (when there are a plurality of first conductive parts, the total cross-sectional area) is 100% of the area of the light-receiving surface of the photoelectric conversion unit 2 In this case, it can be 0.1% or more and 10% or less, preferably 0.5% or more and 8% or less, and more preferably 1% or more and 6% or less.
  • the first conductive part 9 may be provided in a contact hole that penetrates the photoelectric conversion part 2.
  • the reduction in the area of the light receiving surface of the photoelectric conversion unit 2 due to the provision of the first conductive unit 9 can be further reduced.
  • the electric current path between the light-receiving surface of the photoelectric conversion part 2 and the 2nd electrode 7 for electrolysis can be shortened, and 1st gas or 2nd gas can be generated more efficiently.
  • this makes it possible to easily adjust the cross-sectional area of the first conductive portion 9 parallel to the light receiving surface of the photoelectric conversion portion 2.
  • the second electrolysis electrode 7 and the first electrode 4 are provided in a contact hole penetrating the photoelectric conversion unit 2 as shown in the cross-sectional view of the solar cell integrated gas production apparatus 25 of the present embodiment shown in FIGS.
  • the first conductive part 9 can be electrically connected.
  • the contact hole provided with the 1st electroconductive part 9 may have one or more, and may have a circular cross section.
  • the cross-sectional area of the contact hole parallel to the light-receiving surface of the photoelectric conversion unit 2 (the sum of the cross-sectional areas when there are a plurality of contact holes) is 0 when the area of the light-receiving surface of the photoelectric conversion unit 2 is 100%.
  • the 1st electroconductive part 9 may be provided on the insulating part 11 which covers the side surface of the photoelectric conversion part 2 like FIG.
  • the material of the first conductive portion 9 is not particularly limited as long as it has conductivity.
  • a paste containing conductive particles for example, a carbon paste, an Ag paste or the like applied by screen printing, an inkjet method, etc., dried or baked, a method of forming a film by a CVD method using a raw material gas, a PVD method, Examples thereof include a vapor deposition method, a sputtering method, a sol-gel method, and a method using an electrochemical redox reaction.
  • the second conductive part 29 may be provided between the insulating part 11 and the first electrolysis electrode 8 or between the insulating part 11 and the second electrolysis electrode 7.
  • the second conductive portion 29 even when the electrical conductivity of the first electrolysis electrode 8 or the second electrolysis electrode 7 is relatively low, the electromotive force generated when the photoelectric conversion portion 2 receives light is efficiently reduced. It can output to the electrode 8 for 1 electrolysis and the electrode 7 for 2nd electrolysis.
  • the first electrolysis electrode 8 may be electrically connected to the switching unit 10 via the second conductive portion 29.
  • the second electrolysis electrode 7 may connect the second conductive portion 29 as shown in FIG.
  • the switching unit 10 or the first electrode 4 may be electrically connected.
  • the electrode 8 for 1st electrolysis and the electrode 7 for 2nd electrolysis are respectively The first area and the second area may be electrically connected via the second conductive portion 29.
  • the material of the second conductive portion 29 is not particularly limited as long as it has conductivity.
  • a paste containing conductive particles for example, a carbon paste, an Ag paste or the like applied by screen printing, an inkjet method, etc., dried or baked, a method of forming a film by a CVD method using a raw material gas, a PVD method, Examples thereof include a vapor deposition method, a sputtering method, a sol-gel method, and a method using an electrochemical redox reaction.
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 are provided on the back surface side of the photoelectric conversion unit 2. Thus, the first electrolysis electrode 8 and the second electrolysis electrode 7 do not block light incident on the photoelectric conversion unit 2.
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 can be electrically connected to the switching unit 10.
  • the solar cell integrated gas manufacturing apparatus 25 of the present embodiment has a cross section as shown in FIG. 2 and an electric circuit as shown in FIG. 13, the first electrode 4 and the second electrode via the switching unit 10.
  • the electrode 5 can be electrically connected to the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 can be electrically connected to the light receiving surface or the back surface of the photoelectric conversion unit 2 via the switching unit 10.
  • the electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • one of the first electrolysis electrode 8 and the second electrolysis electrode 7 and the switching unit 10 can be electrically joined.
  • the solar cell integrated gas manufacturing apparatus 25 of this embodiment has a cross section as shown in FIGS. 5 and 10 and an electric circuit as shown in FIG. 14, or the solar cell integrated gas manufacturing of this embodiment.
  • the device 25 has a cross section as shown in FIG. 6 and an electric circuit as shown in FIG. 15, the light receiving surface and back surface of the photoelectric conversion unit 2, the first electrolysis electrode 8 and the second electrolysis electrode 7 Can be electrically connected.
  • the electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the second electrode 5 can be omitted and an electric circuit as shown in FIG. 17 can be provided.
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 can be electrically connected to the second electrode 5 and the first electrode 4, respectively.
  • the solar cell integrated gas manufacturing apparatus 25 of the present embodiment has a cross section as shown in FIGS. 7, 8, and 9 and an electric circuit as shown in FIG. 16, the light receiving surface and the back surface of the photoelectric conversion unit 2.
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 can be electrically connected.
  • the electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the solar cell integrated gas manufacturing apparatus 25 has a cross section as shown in FIGS. 11 and 12
  • the first electrode shown in FIG. 16 is provided between the second electrolysis electrode 7 and the photoelectric conversion unit 2.
  • the second conductive portion 29 is an electric circuit having the second electrode shown in FIG. 16 as the second conductive portion 29 provided between the first electrolysis electrode 8 and the photoelectric conversion portion 2. Also good.
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 are provided so as to be immersed in the electrolytic solution.
  • the electrolysis reaction of electrolyte solution can be advanced on the surface of the electrode 8 for 1st electrolysis and the electrode 7 for 2nd electrolysis, and 1st gas and 2nd gas can be generated.
  • One of the first gas and the second gas can be hydrogen and the other can be oxygen.
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 can be provided so as not to contact each other. As a result, it is possible to prevent leakage current from flowing between the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • One of the first electrolysis electrode 8 and the second electrolysis electrode 7 may be a hydrogen generation unit that generates H 2 from the electrolytic solution, and the other is an oxygen generation unit that generates O 2 from the electrolytic solution. It may be.
  • the solar cell integrated gas production apparatus of the present embodiment can decompose water contained in the electrolyte and produce hydrogen and oxygen as fuel for the fuel cell.
  • the hydrogen generating part is a part that generates H 2 from the electrolytic solution, and can be one of the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the hydrogen generation unit may include a catalyst for a reaction in which H 2 is generated from the electrolytic solution. Thereby, the reaction rate of the reaction in which H 2 is generated from the electrolytic solution can be increased.
  • the hydrogen generation part may consist only of a catalyst for the reaction in which H 2 is generated from the electrolytic solution, or this catalyst may be supported on a support. Further, the hydrogen generation unit may have a catalyst surface area larger than the area of the light receiving surface of the photoelectric conversion unit 2. Thereby, the reaction in which H 2 is generated from the electrolytic solution can be set to a faster reaction rate.
  • the hydrogen generation part may be a porous conductor carrying a catalyst. This can increase the catalyst surface area. In addition, a change in potential due to a current flowing between the light receiving surface or the back surface of the photoelectric conversion unit 2 and the catalyst included in the hydrogen generation unit can be suppressed. Furthermore, the hydrogen generation unit may include at least one of Pt, Ir, Ru, Pd, Rh, Au, Fe, Ni, and Se as a hydrogen generation catalyst.
  • the catalyst for the reaction of generating H 2 from the electrolyte is a catalyst that promotes the conversion of two protons and two electrons into one molecule of hydrogen, is chemically stable, and generates hydrogen overvoltage.
  • platinum group metals such as Pt, Ir, Ru, Pd, Rh, and Au, which have catalytic activity for hydrogen, and alloys or compounds thereof, Fe, Ni, and Se that constitute the active center of hydrogenase that is a hydrogen-producing enzyme.
  • An alloy or a compound, a combination thereof, or the like can be preferably used.
  • a nanostructure containing Pt and Pt has a small hydrogen generation overvoltage and can be suitably used.
  • Materials such as CdS, CdSe, ZnS, and ZrO 2 whose hydrogen generation reaction is confirmed by light irradiation can also be used.
  • a hydrogen generating catalyst can be supported on a conductor.
  • the conductor carrying the catalyst include metal materials, carbonaceous materials, and conductive inorganic materials.
  • the metal material a material having electronic conductivity and resistance to corrosion in an acidic atmosphere is preferable.
  • noble metals such as Au, Pt, Pd, metals such as Ti, Ta, W, Nb, Ni, Al, Cr, Ag, Cu, Zn, Su, Si, and nitrides and carbides of these metals
  • the alloy include stainless steel, Cu—Cr, Ni—Cr, and Ti—Pt.
  • the metal material contains at least one element selected from the group consisting of Pt, Ti, Au, Ag, Cu, Ni, and W from the viewpoint that there are few other chemical side reactions. These metal materials have a relatively small electric resistance, and can suppress a decrease in voltage even when a current is extracted in the surface direction.
  • a metal surface having poor corrosion resistance may be coated with a conductive polymer, a conductive nitride, a conductive carbide, a conductive oxide, or the like.
  • the carbonaceous material a chemically stable and conductive material is preferable.
  • examples thereof include carbon powders and carbon fibers such as acetylene black, vulcan, ketjen black, furnace black, VGCF, carbon nanotube, carbon nanohorn, and fullerene.
  • Examples of the inorganic material having conductivity include In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, SnO 2 , and antimony oxide-doped tin oxide. .
  • examples of the conductive polymer include polyacetylene, polythiophene, polyaniline, polypyrrole, polyparaphenylene, polyparaphenylene vinylene, and the like
  • examples of the conductive nitride include carbon nitride, silicon nitride, gallium nitride, indium nitride, and nitride. Germanium, titanium nitride, zirconium nitride, thallium nitride, etc.
  • conductive carbides include tantalum carbide, silicon carbide, zirconium carbide, titanium carbide, molybdenum carbide, niobium carbide, iron carbide, nickel carbide, hafnium carbide, tungsten carbide. , Vanadium carbide, chromium carbide, and the like.
  • conductive oxide include tin oxide, indium tin oxide (ITO), and antimony oxide-doped tin oxide.
  • the structure of the conductor supporting the hydrogen generation catalyst includes a plate shape, a foil shape, a rod shape, a mesh shape, a lath plate shape, a porous plate shape, a porous rod shape, a woven fabric shape, a nonwoven fabric shape, a fiber shape, and a felt shape. It can be used suitably. Further, a grooved conductor in which the surface of the felt-like electrode is pressure-bonded in a groove shape is preferable because the electric resistance and the flow resistance of the electrode liquid can be reduced.
  • the oxygen generating portion is a portion that generates O 2 from the electrolytic solution, and can be one of the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the oxygen generation unit may include a catalyst for a reaction in which O 2 is generated from the electrolytic solution. Thereby, the reaction rate of the reaction in which O 2 is generated from the electrolytic solution can be increased.
  • the oxygen generation part may consist only of a catalyst for the reaction that generates O 2 from the electrolytic solution, or the catalyst may be supported on a carrier.
  • the oxygen generation unit may have a catalyst surface area larger than the area of the light receiving surface of the photoelectric conversion unit 2. Thereby, the reaction in which O 2 is generated from the electrolytic solution can be set to a faster reaction rate.
  • the oxygen generation part may be a porous conductor carrying a catalyst. This can increase the catalyst surface area. In addition, a change in potential due to a current flowing between the light receiving surface or the back surface of the photoelectric conversion unit 2 and the catalyst included in the oxygen generation unit can be suppressed. Furthermore, the oxygen generation unit may include at least one of Mn, Ca, Zn, Co, and Ir as an oxygen generation catalyst.
  • the catalyst for the reaction of generating O 2 from the electrolyte is a catalyst that promotes the conversion of two water molecules into one molecule of oxygen, four protons, and four electrons, and is chemically stable.
  • a material having a small oxygen generation overvoltage can be used.
  • oxides or compounds containing Mn, Ca, Zn, Co, which are active centers of Photosystem II, which is an enzyme that catalyzes the reaction of generating oxygen from water using light and platinum such as Pt, RuO 2 , IrO 2
  • compounds containing group metals, oxides or compounds containing transition metals such as Ti, Zr, Nb, Ta, W, Ce, Fe, Ni, and combinations of the above materials.
  • iridium oxide, manganese oxide, cobalt oxide, and cobalt phosphate can be suitably used because they have low overvoltage and high oxygen generation efficiency.
  • an oxygen generating catalyst can be supported on the conductor.
  • the conductor carrying the oxygen generating catalyst include metal materials, carbonaceous materials, and conductive inorganic materials.
  • a promoter When the catalytic activity of the hydrogen generating catalyst and the oxygen generating catalyst alone is small, a promoter can be used. Examples thereof include oxides or compounds of Ni, Cr, Rh, Mo, Co, and Se.
  • the method for supporting the hydrogen generating catalyst and the oxygen generating catalyst can be applied directly to a conductor or semiconductor, PVD methods such as vacuum deposition, sputtering, and ion plating, dry coating methods such as CVD,
  • the method can be appropriately changed depending on the material such as an analysis method.
  • the reaction surface area is increased by supporting it on porous materials such as metals and carbon, fibrous materials, nanoparticles, etc., and the hydrogen and oxygen generation rates are improved. It is possible to make it.
  • the switching unit 10 includes a circuit that outputs an electromotive force generated when the photoelectric conversion unit 2 receives light to the first external circuit, and an electromotive force generated when the photoelectric conversion unit 2 receives light. It is possible to switch between circuits that output to the second electrolysis electrode 7 and generate the first gas and the second gas from the electrolyte, respectively. As a result, the electromotive force generated when the photoelectric conversion unit 2 receives light can be supplied as power to the first external circuit, and the first gas and the second gas are generated using the electromotive force generated when the photoelectric conversion unit 2 receives light. A gas can be produced.
  • a method for electrically connecting the switching unit 10 to the first external circuit is not particularly limited.
  • the switching unit 10 includes the output terminal 22 and is electrically connected to the first external circuit via the output terminal 22. May be.
  • the switching unit 10 can be electrically connected to the second external circuit, and outputs an electromotive force input from the second external circuit to the first electrolysis electrode 8 and the second electrolysis electrode 7. It can switch to the circuit which produces
  • the first gas and the second gas can be produced from the electrolyte using the electromotive force input from the second external circuit.
  • the method of electrically connecting the switching unit 10 to the second external circuit is not particularly limited.
  • the switching unit 10 includes the input terminal 23 and is electrically connected to the second external circuit via the input terminal 23. Also good.
  • the solar cell integrated gas manufacturing apparatus 25 of this embodiment has a cross section as shown in FIG. 2 and an electric circuit as shown in FIG. 13, for example, SW (switch) 1 and SW2 are in an ON state.
  • SW switch
  • the electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit.
  • SW1, SW2, SW5, and SW6 are in the OFF state and SW3 and SW4 are in the ON state, the electromotive force generated when the photoelectric conversion unit 2 receives light is used as the first electrolysis electrode 8 and the second electrolysis electrode. 7 can be output.
  • the solar cell integrated gas manufacturing apparatus 25 of the present embodiment has a cross section as shown in FIGS. 5 and 10 and an electric circuit as shown in FIG. 14 or an electric circuit as shown in FIG.
  • the electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit.
  • the electromotive force generated by the photoelectric conversion unit 2 receiving light is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output.
  • the solar cell integrated gas manufacturing apparatus 25 of this embodiment has a cross section as shown in FIG. 6 and an electric circuit as shown in FIG. 15, for example, SW1 and SW2 are in an ON state, and SW3 and SW4 When is in the OFF state, the electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit. Further, when SW1, SW2, SW3, and SW5 are in the OFF state and SW4 is in the ON state, the electromotive force generated by the photoelectric conversion unit 2 receiving light is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output.
  • the solar cell integrated gas manufacturing apparatus 25 of the present embodiment has cross sections as shown in FIGS. 7, 8, and 9 and an electric circuit as shown in FIG. 16, for example, SW1 and SW2 are in an ON state. , SW3, SW4 are in the OFF state, and when the electromotive force generated by the photoelectric conversion unit receiving light does not reach the electrolytic voltage of the electrolyte, the electromotive force generated by the photoelectric conversion unit 2 receiving the light is first 1 It is possible to output to an external circuit.
  • SW1, SW2, SW3, and SW4 are in the OFF state, and the electromotive force generated by the photoelectric conversion unit receiving light reaches the electrolytic voltage of the electrolytic solution, the photoelectric conversion unit 2 receives the light.
  • the electromotive force can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7. Therefore, even when the electric circuit as shown in FIG. 16 is provided, the switching unit 10 causes the photoelectric conversion unit 2 to receive the electromotive force generated by the photoelectric conversion unit 2 receiving light and the photoelectric conversion unit 2 to receive light. It is possible to switch between the circuit that outputs the electromotive force generated by the above to the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • SW3 and SW4 are in the ON state and SW1 and SW2 are in the OFF state, the electromotive force input from the second external circuit or the electromotive force input from the second external circuit and the photoelectric conversion unit 2 receive light.
  • both the electromotive forces generated by this can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the first electrode shown in FIG. 16 is connected to the second electrolysis electrode 7 and the photoelectric conversion unit 2.
  • the second conductive portion 29 provided between them, and the second electrode shown in FIG. 16 as the second conductive portion 29 provided between the first electrolysis electrode 8 and the photoelectric conversion portion 2 is included. Can do.
  • the switching unit 10 can input the result selected by the switching selection unit 21 and can switch circuits based on the input selection result. Thereby, the switching unit 10 can switch to the circuit selected by the switching selection unit 21.
  • the switching unit 10 can also switch circuits based on the magnitude of the electromotive force generated when the photoelectric conversion unit 2 receives light. As a result, when the electric power output to the first external circuit is generated in the photoelectric conversion unit 2, the electromotive force generated in the photoelectric conversion unit 2 can be output to the first external circuit and output to the first external circuit. When the power to be generated is not generated in the photoelectric conversion unit 2, the electromotive force generated in the photoelectric conversion unit 2 can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the switching unit 10 can also switch the circuit based on the magnitude of the electromotive force of the second external circuit. Therefore, when the electric power supplied from the second external circuit is larger than the electric demand, the first gas and the second gas can be produced using the electric power supplied from the second external circuit.
  • the switching selection unit 21 can select a circuit to be switched by the switching unit 10 and output the selected result to the switching unit 10. As a result, a signal for switching the circuit of the switching unit 10 according to the situation can be output. Further, the switching selection unit 21 selects a circuit to be switched by the switching unit 10 based on at least one of prediction of the amount of solar radiation irradiated to the solar cell integrated gas production device 25, the probability of precipitation, date and time, temperature, and power demand prediction. can do. The switching selection unit 21 can select a circuit to be switched by the switching unit 10 based on the magnitude of the electromotive force generated when the photoelectric conversion unit 2 receives light or the magnitude of the electromotive force of the second external circuit. As a result, the circuit to be switched by the switching unit 10 can be selected so as to be most suitable for the situation at that time.
  • the switch selection unit 21 selects a circuit that outputs the electromotive force generated in the photoelectric conversion unit 2 to the first electrolysis electrode 8 and the second electrolysis electrode 7, so that the solar cell integrated gas production apparatus 25 performs electrolysis.
  • the liquid can be decomposed to produce hydrogen and the like.
  • the switching selection unit 21 when the heat demand of a facility where the solar cell integrated gas production device 25 is installed is large due to low temperature or a large amount of hot water used, the switching selection unit 21 generates an electromotive force generated in the photoelectric conversion unit 2.
  • a circuit to be output to the first electrolysis electrode 8 and the second electrolysis electrode 7 can be selected.
  • the solar cell integrated gas production apparatus 25 can decompose the electrolyte solution to produce hydrogen and the like, and heat can be used in the facility using a heat source using hydrogen or the like as fuel.
  • the solar cell integrated gas production apparatus 25 when the power demand of the facility where the solar cell integrated gas production apparatus 25 is installed is small, the electromotive force generated by the switching selection unit 21 in the photoelectric conversion unit 2 is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. A circuit to output can be selected.
  • the solar cell integrated gas production device 25 can decompose the electrolyte solution to produce hydrogen or the like, and can store energy as hydrogen or the like.
  • the switching selection unit 21 receives, for example, a signal transmitted from a home smart meter, a signal transmitted from an electric power company, a signal provided through an information network such as the Internet, and selects a circuit to be switched by the switching unit 10 based on the signal. can do. Further, the signal received by the switching selection unit 21 can be received by wire or wirelessly.
  • Electrolyte Chamber The electrolyte chamber 15 is provided so as to be able to store an electrolyte in which the first electrolysis electrode 8 or the second electrolysis electrode 7 is immersed. Thus, the first electrolysis electrode 8 or the second electrolysis electrode 7 can be immersed in the electrolytic solution, and the electrolytic reaction of the electrolytic solution is performed on the surfaces of the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be advanced.
  • the electrolyte chamber 15 can be, for example, a space formed between the first electrolysis electrode 8 and the second electrolysis electrode 7 and the back substrate 14.
  • the electrolyte chamber 15 can be a flow path for collecting the first gas generated from the first electrolysis electrode 8 and the second gas generated from the second electrolysis electrode 7.
  • the back substrate 14 can be provided on the first electrolysis electrode 8 and the second electrolysis electrode 7 so as to face the translucent substrate 1.
  • the back substrate 14 can be provided such that a space is provided between the first electrolysis electrode 8 or the second electrolysis electrode 7 and the back substrate 14. This space can be used as the electrolytic solution chamber 15.
  • the back substrate 14 may be a part of the outer box that can accommodate the photoelectric conversion unit 2, the first electrolysis electrode 8, and the second electrolysis electrode 7 and can form the electrolytic solution chamber 15.
  • the back substrate 14 can constitute the electrolyte chamber 15 for storing the electrolyte solution and confining the generated first gas and second gas, a substance with high confidentiality is required.
  • the back substrate 14 is not particularly limited, whether it is transparent or opaque.
  • Examples of the back substrate 14 include transparent rigid materials such as quartz glass, Pyrex (registered trademark), and synthetic quartz plates, or transparent resin plates and transparent resin films. Among them, it is preferable to use a glass material because it is a gas that is not chemically permeable and is chemically and physically stable.
  • the outer box is made of, for example, a steel material such as stainless steel or a synthetic resin such as a ceramic such as zirconia or alumina, a phenol resin, a melamine resin (MF), or a glass fiber reinforced polyamide resin. Is preferred.
  • the partition wall 13 is provided so as to partition the electrolyte chamber 15 between the first electrolysis electrode 8 and the back substrate 14 and the electrolyte chamber 15 between the second electrolysis electrode 7 and the back substrate 14. it can. As a result, the first gas and the second gas generated by the first electrolysis electrode 8 and the second electrolysis electrode 7 can be prevented from mixing, and the first gas and the second gas can be separated. It can be recovered.
  • the partition wall 13 may include an ion exchanger. As a result, the electrolyte in the electrolyte chamber 15 between the first electrolysis electrode 8 and the back substrate 14 and the electrolyte in the electrolyte chamber 15 between the second electrolysis electrode 7 and the back substrate 14 are unbalanced. Thus, the ion concentration can be kept constant.
  • the ion concentration imbalance caused by the electrolysis reaction in the first electrolysis electrode 8 and the second electrolysis electrode 7 can be eliminated by the movement of ions through the partition walls 9.
  • the partition wall 13 contains an ion exchanger, thereby eliminating the proton concentration imbalance. can do.
  • the ratio of the hydrogen generation amount and the oxygen generation amount from the electrolytic solution is a molar ratio of 2: 1, and the first electrolysis electrode 8 and the second electrolysis are used.
  • the amount of gas generated varies depending on the electrode 7.
  • the partition wall 13 for example, an inorganic film such as porous glass, porous zirconia, or porous alumina or an ion exchanger can be used.
  • the ion exchanger any ion exchanger known in the art can be used, and a proton conductive membrane, a cation exchange membrane, an anion exchange membrane, or the like can be used.
  • the material of the proton conductive membrane is not particularly limited as long as it is a material having proton conductivity and electrical insulation, and a polymer membrane, an inorganic membrane, or a composite membrane can be used.
  • polymer membrane examples include Nafion (registered trademark) manufactured by DuPont, Aciplex (registered trademark) manufactured by Asahi Kasei Co., and Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., which are perfluorosulfonic acid electrolyte membranes.
  • membranes and hydrocarbon electrolyte membranes such as polystyrene sulfonic acid and sulfonated polyether ether ketone.
  • Examples of the inorganic film include films made of phosphate glass, cesium hydrogen sulfate, polytungstophosphoric acid, ammonium polyphosphate, and the like.
  • Examples of the composite membrane include a membrane made of a sulfonated polyimide polymer, a composite of an inorganic material such as tungstic acid and an organic material such as polyimide, and specifically, Gore Select membrane (registered trademark) or pores manufactured by Gore. Examples thereof include a filling electrolyte membrane.
  • a high temperature environment for example, 100 ° C.
  • sulfonated polyimide 2-acrylamido-2-methylpropanesulfonic acid (AMPS)
  • APMS 2-acrylamido-2-methylpropanesulfonic acid
  • sulfonated polybenzimidazole phosphonated polybenzimidazole
  • sulfuric acid examples include cesium hydrogen and ammonium polyphosphate.
  • the cation exchange membrane may be any solid polymer electrolyte that can move cations.
  • fluorine ion exchange membranes such as perfluorocarbon sulfonic acid membranes and perfluorocarbon carboxylic acid membranes, polybenzimidazole membranes impregnated with phosphoric acid, polystyrene sulfonic acid membranes, sulfonated styrene / vinylbenzene copolymers Examples include membranes.
  • an anion exchange membrane When the anion transport number of the supporting electrolyte solution is high, it is preferable to use an anion exchange membrane.
  • a solid polymer electrolyte capable of transferring anions can be used. Specifically, a polyorthophenylenediamine film, a fluorine-based ion exchange film having an ammonium salt derivative group, a vinylbenzene polymer film having an ammonium salt derivative group, a film obtained by aminating a chloromethylstyrene / vinylbenzene copolymer, etc. Can be mentioned.
  • the sealing material 16 is a material for adhering the translucent substrate 1 and the back substrate 14 to form the electrolytic solution chamber 15. Moreover, when a box-shaped thing is used for the back substrate 14, the sealing material 16 is a material for adhere
  • an ultraviolet curable adhesive, a thermosetting adhesive, or the like is preferably used, but the type thereof is not limited. UV curable adhesives are resins that undergo polymerization when irradiated with light having a wavelength of 200 to 400 nm and undergo a curing reaction within a few seconds after light irradiation, and are classified into radical polymerization type and cationic polymerization type.
  • thermosetting polymer adhesive examples include organic resins such as phenol resin, epoxy resin, melamine resin, urea resin, and thermosetting polyimide. The thermosetting polymer adhesive is heated and polymerized in a state where pressure is applied at the time of thermocompression bonding, and then cooled to room temperature while being pressurized. I don't need it.
  • a hybrid material having high adhesion to the glass substrate can be used. By using a hybrid material, mechanical properties such as elastic modulus and hardness are improved, and heat resistance and chemical resistance are dramatically improved.
  • the hybrid material is composed of inorganic colloidal particles and an organic binder resin.
  • inorganic colloidal particles such as a silica
  • organic binder resin such as an epoxy resin, a polyurethane acrylate resin, and a polyester acrylate resin
  • the sealing material 16 is described, but it is not limited as long as it has a function of adhering the substrate 1 and the back substrate 14, and a member such as a screw is used from the outside using a resin or metal gasket. It is also possible to appropriately use a method of physically applying pressure to increase confidentiality.
  • the water supply port 18 can be provided by making opening in a part of sealing material 16 contained in the solar cell integrated gas manufacturing apparatus 25, for example.
  • the water supply port 18 is installed to supply the electrolytic solution to the electrolytic solution chamber 15, and the arrangement location and shape thereof are particularly limited as long as the electrolytic solution is efficiently supplied to the solar cell integrated gas production device 25.
  • it is preferably provided at the lower part of the solar cell integrated gas production apparatus 25 installed at an inclination.
  • first gas discharge port 20 and the second gas discharge port 19 are provided in the sealing material 16 in the upper part of the solar cell integrated gas production device 25 when the solar cell integrated gas production device 25 is installed at an inclination. It can be provided by making an opening.
  • the 1st gas exhaust port 20 and the 2nd gas exhaust port 19 can be provided in the electrode side for 1st electrolysis and the electrode side for 2nd electrolysis, respectively, on both sides of the partition 13.
  • the solar cell integrated gas manufacturing device 25 is connected to the light receiving surface of the photoelectric conversion unit 2 as shown in the cross-sectional view of FIG. 4. Can be installed so that the water supply port 18 is on the lower side and the first gas discharge port 20 and the second gas discharge port 19 are on the upper side.
  • the electrolytic solution can be introduced into the solar cell integrated gas production device 25 from the water supply port 18, and the electrolytic solution chamber 15 can be filled with the electrolytic solution 27.
  • the switching unit 10 outputs the electromotive force of the photoelectric conversion unit 2 to the first electrolysis electrode 8 and the second electrolysis electrode 7, thereby
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 can continuously generate the first gas and the second gas, respectively.
  • the generated first gas and second gas can be separated by the partition wall 13, and the first gas and the second gas rise to the upper part of the solar cell integrated gas manufacturing apparatus 25, and the first gas discharge port 20 and It can be recovered from the second gas outlet 19.
  • Electrolytic solution is an aqueous solution containing an electrolyte, for example, an electrolytic solution containing 0.1 M H 2 SO 4 , 0.1 M potassium phosphate buffer, etc. If it happens, the type of electrolyte is not limited, and the electrolyte concentration is not limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

太陽電池の起電力を利用して気体を発生させることができ、かつ、同じ太陽電池を利用して電力を外部回路に供給できる太陽電池一体型気体製造装置を提供する。 本発明の太陽電池一体型気体製造装置は、受光面とその裏面を有する光電変換部と、前記光電変換部の裏面側に設けられ、かつ、電解液に浸漬可能に設けられた第1電解用電極と、前記光電変換部の裏面側に設けられ、かつ、電解液に浸漬可能に設けられた第2電解用電極と、切換部とを備え、第1電解用電極および第2電解用電極は、前記光電変換部が受光することより生じる起電力により電解液を電気分解しそれぞれ第1気体及び第2気体を発生させられるように設けられ、前記切換部は、前記光電変換部が受光することにより生じる起電力を第1外部回路へ出力させる回路と、前記光電変換部が受光することにより生じる起電力を第1電解用電極および第2電解用電極に出力させる回路とを切り換えることを特徴とする。

Description

太陽電池一体型気体製造装置
 本発明は、太陽電池一体型気体製造装置に関する。
 近年、地球温暖化の懸念から発電に伴いCO2が発生しない太陽電池が普及しつつある。しかし、太陽電池を用いた発電は、時間帯により発電量が変動し、また、季節によっても発電量が変動するという課題がある。この課題を解決するために、太陽電池により発電した電力を水の電気分解により生じる水素として貯蔵し、この水素を燃料とする燃料電池の発電により発電量の変動を解消する発電システムが考えられている。このため、太陽電池と電解槽を組み合わせた様々な技術が提案されている。
 例えば、特許文献1では、基板上に形成した透明電極膜の上に薄膜太陽電池と電解触媒層を並列に形成し、薄膜太陽電池に光を照射することにより、電解液を電気分解することを可能とする水素製造装置が開示されている。
 また、特許文献2では、最適化された太陽電池の起電力を電解槽に出力し、水素および酸素を発生させる電解システムが開示されている。
特開2003-288955号公報 特表2007-524762号公報
 しかし、従来技術では、太陽電池の起電力を利用して水素を発生させるものであり、同じ太陽電池を利用して電力を外部回路に供給することはできない。
 本発明は、このような事情に鑑みてなされたものであり、太陽電池の起電力を利用して第1気体および第2気体を発生させることができ、かつ、同じ太陽電池を利用して電力を外部回路に供給できる太陽電池一体型気体製造装置を提供する。
 本発明は、受光面とその裏面を有する光電変換部と、前記光電変換部の裏面側に設けられ、かつ、電解液に浸漬可能に設けられた第1電解用電極と、前記光電変換部の裏面側に設けられ、かつ、電解液に浸漬可能に設けられた第2電解用電極と、切換部とを備え、第1電解用電極および第2電解用電極は、前記光電変換部が受光することより生じる起電力により電解液を電気分解しそれぞれ第1気体及び第2気体を発生させることができるように設けられ、前記切換部は、前記光電変換部が受光することにより生じる起電力を第1外部回路へ出力させる回路と、前記光電変換部が受光することにより生じる起電力を第1電解用電極および第2電解用電極に出力させる回路とを切り換えることを特徴とする太陽電池一体型気体製造装置を提供する。
 本発明によれば、光電変換部が受光することにより生じる起電力を第1電解用電極と第2電解用電極に出力することができるため、電解液に浸漬することができる第1電解用電極と第2電解用電極において、電解液から第1気体および第2気体を製造することができる。
 本発明によれば、光電変換部が受光することにより生じる起電力を切換部を介して第1外部回路に出力することができ、第1外部回路に電力を供給することができる。
 本発明によれば、切換部により、光電変換部が受光することにより生じる起電力を第1外部回路へ出力させる回路と、光電変換部が受光することにより生じる起電力を第1電解用電極および第2電解用電極に出力させる回路とを切り換えることができるため、光電変換部に照射される日射量や本発明の装置を設置した施設などの電力需要などに応じて、電力供給と第1気体および第2気体の製造を切り換えることができる。このことにより、光電変換部が受光することにより生じる起電力をより効率的に利用することができる。
 本発明によれば、光電変換部の裏面側に第1電解用電極と第2電解用電極を設けるため、光電変換部の受光面に電解液を介さず光を入射させることができ、電解液による入射光の吸収や入射光の散乱を防止することができる。このことにより、光電変換部への入射光の量を多くすることができ、光利用効率を高くすることができる。
 本発明によれば、光電変換部の裏面側に第1電解用電極および第2電解用電極を設けるため、受光面に入射する光が、第1電解用電極および第2電解用電極、ならびにそこからそれぞれ発生する第1気体及び第2気体により吸収や散乱されることはない。このことにより、光電変換部への入射光の量を多くすることができ、光利用効率を高くすることができる。
 本発明によれば、光電変換部の裏面側に第1電解用電極と第2電解用電極を設けるため、第1気体および第2気体の製造を光電変換部の裏面側において行うことができる。このため、光電変換部と電解用電極との間の配線抵抗を低くすることができ、効率よく第1気体および第2気体を製造することができる。
 本発明によれば、太陽電池と気体製造装置が一体化しているため、よりコンパクトな装置とすることができ、設置面積を少なくすることができる。太陽電池と気体製造装置に共通部分を利用することができ、製造コストを低くすることができる。
本発明の一実施形態の太陽電池一体型気体製造装置の概略平面図である。 図1の点線A-Aにおける太陽電池一体型気体製造装置の概略断面図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略裏面図である。 図1の点線B-Bにおける太陽電池一体型気体製造装置の概略断面図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略断面図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略断面図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略断面図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略断面図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略断面図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略断面図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略断面図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略断面図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略回路図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略回路図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略回路図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略回路図である。 本発明の一実施形態の太陽電池一体型気体製造装置の概略回路図である。
 本発明の太陽電池一体型気体製造装置は、受光面とその裏面を有する光電変換部と、前記光電変換部の裏面側に設けられ、かつ、電解液に浸漬可能に設けられた第1電解用電極と、前記光電変換部の裏面側に設けられ、かつ、電解液に浸漬可能に設けられた第2電解用電極と、切換部とを備え、第1電解用電極および第2電解用電極は、前記光電変換部が受光することより生じる起電力により電解液を電気分解しそれぞれ第1気体及び第2気体を発生させることができるように設けられ、前記切換部は、前記光電変換部が受光することにより生じる起電力を第1外部回路へ出力させる回路と、前記光電変換部が受光することにより生じる起電力を第1電解用電極および第2電解用電極に出力させる回路とを切り換えることを特徴とする。
 太陽電池一体型気体製造装置とは、太陽電池の機能と気体製造装置の機能を有する装置である。
 本発明の太陽電池一体型気体製造装置において、第1気体および第2気体のうち一方は、水素であり、他方は、酸素であることが好ましい。
 このような構成によれば、第1電解用電極と第2電解用電極において、電解液から水素および酸素を製造することができる。
 本発明の太陽電池一体型気体製造装置において、前記光電変換部の裏面上に設けられた絶縁部をさらに備え、第1電解用電極および第2電解用電極は、前記絶縁部上に設けられ、かつ、それぞれ前記切換部と電気的に接続することが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる起電力を切換部を介して第1外部回路に出力することができ、また、光電変換部が受光することにより生じる起電力を第1電解用電極または第2電解用電極に出力することができる。また、第1外部回路または第1、第2電解用電極に起電力を出力する場合、リーク電流が流れることを防止することができる。
 本発明の太陽電池一体型気体製造装置において、前記光電変換部の裏面上に設けられた絶縁部をさらに備え、第2電解用電極は、前記絶縁部上に設けられ、かつ、前記切換部と電気的に接続し、第1電解用電極は、前記光電変換部の裏面上に設けられ、かつ、前記光電変換部の裏面と電気的に接続することが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる起電力を切換部を介して第1外部回路に出力することができ、また、光電変換部が受光することにより生じる起電力を第1電解用電極または第2電解用電極に出力することができる。また、第1外部回路または第1、第2電解用電極に起電力を出力する場合、リーク電流が流れることを防止することができる。
 本発明の太陽電池一体型気体製造装置において、前記光電変換部の受光面上に設けられた第1電極と、前記光電変換部の裏面上に設けられた絶縁部とをさらに備え、第2電解用電極は、前記絶縁部上に設けられ、かつ、第1電極と電気的に接続し、第1電解用電極は、前記絶縁部上に設けられ、かつ、前記切換部と電気的に接続することが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる起電力を切換部を介して第1外部回路に出力することができ、また、光電変換部が受光することにより生じる起電力を第1電解用電極または第2電解用電極に出力することができる。また、第1外部回路または第1、第2電解用電極に起電力を出力する場合、リーク電流が流れることを防止することができる。
 本発明の太陽電池一体型気体製造装置において、前記光電変換部の受光面上に設けられた第1電極と、前記光電変換部の裏面上に設けられた絶縁部とをさらに備え、第2電解用電極は、前記絶縁部上に設けられ、かつ、第1電極と電気的に接続し、第1電解用電極は、前記光電変換部の裏面上に設けられ、かつ、前記光電変換部の裏面と電気的に接続することが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる起電力を第1電解用電極または第2電解用電極に出力することができる。また、光電変換部が受光することにより生じる起電力が、電解液の電解電圧に達しない場合には、光電変換部が受光することにより生じる起電力を切換部を介して第1外部回路に出力することができる。
 本発明の太陽電池一体型気体製造装置において、第2電解用電極と第1電極とを電気的に接続する第1導電部をさらに備えることが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる起電力を効率よく第2電解用電極に出力することができる。
 本発明の太陽電池一体型気体製造装置において、第1導電部は、前記光電変換部を貫通するコンタクトホールに設けられることが好ましい。
 このような構成によれば、第2電解用電極と第1電極とを電気的に接続することができ、第2電解用電極と第1電極とをほぼ同じ電位とすることができる。
 本発明の太陽電池一体型気体製造装置において、前記絶縁部は、前記光電変換部の側面を覆うように設けられ、第1導電部は、前記絶縁部の前記光電変換部の側面を覆う部分の上に設けられたことが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる起電力を効率よく第2電解用電極に出力することができる。
 本発明の太陽電池一体型気体製造装置において、前記絶縁部は、前記光電変換部の側面を覆うように設けられ、第2電解用電極は、前記絶縁部の前記光電変換部の側面を覆う部分の上に設けられ、かつ、第1電極と接触することが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる起電力を効率よく第2電解用電極に出力することができる。
 本発明の太陽電池一体型気体製造装置において、前記光電変換部の受光面上に設けられた第1電極と、前記光電変換部の裏面上に設けられた第2電極とをさらに備え、第1電極および第2電極は、前記切換部と電気的に接続することが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる起電力を第1外部回路または第1電解用電極と第2電解用電極とに出力することができる。
 本発明の太陽電池一体型気体製造装置において、前記光電変換部は、受光することにより前記裏面の第1および第2区域間に電位差が生じ、第1区域は、第1電解用電極と電気的に接続し、第2区域は、第2電解用電極と電気的に接続することが好ましい。
 このような構成によれば、第1および第2区域と第1電解用電極および第2電解用電極とを容易に電気的に接続することができ、製造コストを低減することができる。
 本発明の太陽電池一体型気体製造装置において、前記光電変換部は、n型半導体部およびp型半導体部を有する少なくとも1つの半導体材料からなり、第1および第2区域のうち、一方は前記n型半導体部の一部であり、他方は前記p型半導体部の一部であることが好ましい。
 このような構成によれば、光電変換部の裏面の第1および第2区域間に電位差が生じさせることができる。
 本発明の太陽電池一体型気体製造装置において、前記光電変換部の裏面と第1電解用電極との間の一部および前記裏面と第2電解用電極との間の一部に設けられた絶縁部をさらに備え、第1電解用電極および第2電解用電極は、それぞれ前記絶縁部が設けられていない第1および第2区域を介して前記n型半導体部または前記p型半導体部と電気的に接続することが好ましい。
 このような構成によれば、光電変換部が受光することにより形成される電子およびホールを効率よく分離することができ、光電変換効率をより高くすることができる。
 本発明の太陽電池一体型気体製造装置において、第1区域および第2区域は、それぞれ前記切換部と電気的に接続することが好ましい。
 このような構成によれば、光電変換部が受光することにより第1および第2区域間に生じる起電力を第1外部回路へ出力することができる。
 本発明の太陽電池一体型気体製造装置において、前記絶縁部と第1電解用電極との間または前記絶縁部と第2電解用電極との間に設けられた第2導電部をさらに備えることが好ましい。
 このような構成によれば、第1電解用電極または第2電解用電極で生じる内部抵抗をより小さくすることができる。
 本発明の太陽電池一体型気体製造装置において、透光性基板をさらに備え、前記光電変換部は、前記受光面が前記透光性基板側となるように前記透光性基板上に設けられることが好ましい。
 このような構成によれば、透光性基板の上に光電変換部を形成することができるため、光電変換部をより形成しやすくなる。
 本発明の太陽電池一体型気体製造装置において、前記光電変換部の裏面側に背面基板をさらに備え、第2電解用電極は、前記背面基板上に設けられ、かつ、前記切換部と電気的に接続し、第1電解用電極は、前記光電変換部の裏面上に設けられ、かつ、前記光電変換部の裏面と電気的に接続することが好ましい。
 このような構成によれば、第1電解用電極および第2電解用電極を設ける領域を広くすることができ、電解液の電気分解反応が進行する第1電解用電極の表面および第2電解用電極の表面を広くすることができる。
 本発明の太陽電池一体型気体製造装置において、第1電解用電極または第2電解用電極を浸漬させる電解液を貯留可能な電解液室をさらに備えることが好ましい。
 このような構成によれば、第1電解用電極および第2電解用電極を電解液に浸漬させることができる。
 本発明の太陽電池一体型気体製造装置において、背面基板を備え、前記電解液室は、前記光電変換部の裏面と前記背面基板との間に設けられることが好ましい。
 このような構成によれば、第1電解用電極または第2電解用電極を浸漬させる電解液を貯留可能な電解液室を容易に設けることができる。
 本発明の太陽電池一体型気体製造装置において、第1電解用電極が浸漬する電解液を貯留可能な電解液室と、第2電解用電極が浸漬する電解液を貯留可能な電解液室とを仕切る隔壁をさらに備えることが好ましい。
 このような構成によれば、第1電解用電極および第2電解用電極でそれぞれ発生した第1気体および第2気体を分離することができ、第1気体および第2気体をより効率的に回収することができる。
 本発明の太陽電池一体型気体製造装置において、前記隔壁は、イオン交換体を含むことが好ましい。
 このような構成によれば、第1電解用電極の上部の電解液室に導入された電解液と第2電解用電極の上部の電解液室に導入された電解液との間のイオン濃度の不均衡を解消することができ、安定して第1気体および第2気体を発生させることができる。
 本発明の太陽電池一体型気体製造装置において、前記光電変換部は、p型半導体層、i型半導体層およびn型半導体層を備える光電変換層を有することが好ましい。
 このような構成によれば、光電変換部がpin構造を有することができ、効率よく光電変換をすることができる。また、光電変換部で生じる起電力をより大きくすることができ、電解液をより効率的に電気分解することができる。
 本発明の太陽電池一体型気体製造装置において、前記光電変換部は、直列接続した複数の光電変換層を含み、前記複数の光電変換層は、受光することにより生じる起電力を第1電解用電極および第2電解用電極に供給することが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる電位差をより大きくすることができ、効率よく第1気体および第2気体を発生させることができる。
 本発明の太陽電池一体型気体製造装置において、各光電変換層は、第3導電部により直列接続されたことが好ましい。
 このような構成によれば、並列に並べられた各光電変換層を直列接続することができる。
 本発明の太陽電池一体型気体製造装置において、第3導電部は、前記光電変換層の受光面側に設けられた透光性電極と、前記光電変換層の裏面側に設けられた裏面電極とを含むことが好ましい。
 このような構成によれば、並列に並べられた各光電変換層を直列接続することができる。
 本発明の太陽電池一体型気体製造装置において、第1電解用電極および第2電解用電極のうち、一方は、電解液からH2を発生させる水素発生部であり、他方は、電解液からO2を発生させる酸素発生部であり、前記水素発生部および前記酸素発生部は、それぞれ電解液からH2が発生する反応の触媒および電解液からO2が発生する反応の触媒を含むことが好ましい。
 このような構成によれば、本発明の太陽電池一体型気体製造装置により燃料電池の燃料となる水素を製造することができる。また、各触媒を含むことにより、電解液の電気分解反応が進行する速度を速くすることができる。さらに、製造した水素は、燃料電池の燃料とする他、熱源として利用することもできる。
 本発明の太陽電池一体型気体製造装置において、前記水素発生部および前記酸素発生部のうち少なくとも一方は、触媒が担持された多孔質の導電体から形成されることが好ましい。
 このような構成によれば、水素発生部および酸素発生部のうち少なくとも一方の触媒表面積を大きくすることができ、より効率的に酸素または水素を発生させることができる。また、多孔質の導電体を用いることにより、光電変換部と触媒との間の電流が流れることによる電位の変化を抑制することができ、より効率的に水素または酸素を発生させることができる。
 本発明の太陽電池一体型気体製造装置において、前記切換部は、第2外部回路と電気的に接続することができ、かつ、第2外部回路から入力される起電力を第1電解用電極および第2電解用電極に出力し電解液からそれぞれ第1気体および第2気体を発生させる回路に切り換えることができることが好ましい。
 このような構成によれば、本発明の太陽電池一体型気体製造装置と太陽電池パネルなどの起電力が生じる装置とを並べて設置した場合、前記装置で生じる起電力を用いて第1気体および第2気体を製造することができる。
 本発明の太陽電池一体型気体製造装置において、前記切換部が切り換える回路を選択し、選択した結果を前記切換部に出力する切換選択部をさらに備え、前記切換部は、入力した前記切換選択部が選択した結果に基づき回路の切り換えを行うことが好ましい。
 このような構成によれば、光電変換部に照射される日射量などの前記装置の状況や本発明の装置を設置した施設などの電力需要などの需要状況に応じて、電力供給と第1気体および第2気体の製造を切り換えることができる。
 本発明の太陽電池一体型気体製造装置において、前記切換選択部は、前記装置に照射される日射量の予測、降水確率、日時、気温および電力需要予測のうち少なくとも1つに基づき前記切換部が切り換える回路を選択することが好ましい。
 このような構成によれば、前記装置に照射される日射量の予測、降水確率、日時、気温および電力需要予測のうち少なくとも1つに基づき、本発明の太陽電池一体型気体製造装置による第1外部回路への電極の供給と、第1気体および第2気体の製造を切り換えることができる。このことにより、光電変換部で生じた起電力を無駄なく有効に活用することができる。
 以下、本発明の一実施形態を図面を用いて説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。
太陽電池一体型気体製造装置の構成
 本実施形態の太陽電池一体型気体製造装置25は、受光面とその裏面を有する光電変換部2と、光電変換部2の裏面側に設けられ、かつ、電解液に浸漬可能に設けられた第1電解用電極8と、光電変換部2の裏面側に設けられ、かつ、電解液に浸漬可能に設けられた第2電解用電極7と、切換部10とを備え、第1電解用電極8および第2電解用電極7は、光電変換部2が受光することより生じる起電力により電解液を電気分解しそれぞれ第1気体及び第2気体を発生させることができるように設けられ、切換部10は、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力させる回路と、光電変換部2が受光することにより生じる起電力を第1電解用電極8および第2電解用電極7に出力させる回路とを切り換えることを特徴とする。
 また、本実施形態の太陽電池一体型気体製造装置25は、透光性基板1、第2電極5、第1導電部9、絶縁部11、隔壁13、背面基板14、電解液室15、シール材16、切換選択部21をさらに有してもよい。
 以下、本実施形態の太陽電池一体型気体製造装置25について説明する。
 なお、本実施形態の太陽電池一体型気体製造装置25は、図2のような断面を有してもよく、図5、6、7、8、9、10、11または12のような断面を有してもよい。なお、図5~8は、図1の点線A-Aの断面図に対応している。また、図9~12は、図1の点線A-Aの断面図に対応しているが、隔壁13などの位置が異なっている。
1.透光性基板
 透光性基板1は、透光性を有する基板であれば特に限定されない。透光性基板1の材料としては、例えば、ソーダガラス、石英ガラス、パイレックス(登録商標)、合成石英板等の透明なリジッド材、あるいは透明樹脂板やフィルム材等が好適に用いられる。化学的および物理的安定性を備える点より、ガラス基板を用いることが好ましい。
 透光性基板1の光電変換部2側の表面には、入射した光が光電変換部2の表面で有効に乱反射されるように、微細な凹凸構造に形成することができる。この微細な凹凸構造は、例えば反応性イオンエッチング(RIE)処理もしくはブラスト処理等の公知の方法により形成することが可能である。
2.第1電極
 第1電極4は、透光性基板1の上に設けることができ、光電変換部2の受光面と接触するように設けることができる。また、第1電極4は、切換部10に電気的に接続することができる。また、第1電極4は、図6、7、9のように第1導電部9を介して第2電解用電極7と電気的に接続してもよく、図8のように第2電解用電極7と直接接触してもよい。また、第1電極4は透光性を有してもよい。
 また、本実施形態の太陽電池一体型気体製造装置25が図11または図12のような断面を有する場合、第1電極4は省略することができる。
 第1電極4を設けることにより、光電変換部2の受光面と切換部10との間に流れる電流を大きくすることができる。また、図6、7、9のように第1電極4が第1導電部9を介して第2電解用電極7と電気的に接続する場合、光電変換部2で生じた起電力を効率よく第1電解用電極8と第2電解用電極7とに出力することができる。
 第1電極4は、例えば、ITO、SnO2などの透明導電膜からなってもよく、Ag、Auなどの金属のフィンガー電極からなってもよい。また、透明導電膜と金属のフィンガー電極とを組み合わせた電極であってもよい。
 以下に第1電極4を透明導電膜とした場合について説明する。
 透明導電膜は、光電変換部2の受光面と切換部10などとのコンタクトを取りやすくするために用いている。
 一般に透明電極として使用されているものを用いることが可能である。具体的にはIn-Zn-O(IZO)、In-Sn-O(ITO)、ZnO-Al、Zn-Sn-O、SnO2等を挙げることができる。なお本透明導電膜は、太陽光の光線透過率が85%以上、中でも90%以上、特に92%以上であることが好ましい。このことにより光電変換部2が光を効率的に吸収することができるためである。
 透明導電膜の作成方法としては公知の方法を用いることができ、スパッタリング、真空蒸着、ゾルゲル法、クラスタービーム蒸着法、PLD(Pulse Laser Deposition)法などが挙げられる。
3.光電変換部
 光電変換部2は、透光性基板1上に設けることができ、かつ、受光することにより電位差が生じる。光電変換部2は、図2、5~10のように受光面とその裏面との間に電位差が生じるものであってもよく、図11、12のように裏面の第1区域と第2区域との間に電位差が生じるものであってもよい。光電変換部2は、例えば、シリコン系半導体を用いた光電変換部、化合物半導体を用いた光電変換部、色素増感剤を利用した光電変換部、有機薄膜を用いた光電変換部などである。
 光電変換部2の受光面および裏面が切換部10を介して第1電解用電極8および第2電解用電極7に電気的に接続する場合、光電変換部2は、受光することにより、第1電解用電極8および第2電解用電極7においてそれぞれ第1気体と第2気体を発生させるために必要な起電力が生じる必要がある。
 第1気体および第2気体が水素および酸素である場合、光電変換部2は、第1電解用電極8および第2電解用電極7において電解液に含まれる水を分解し水素と酸素が発生させるために必要な起電力が生じる必要がある。第1電解用電極8と第2電解用電極7の電位差は、水分解のための理論電圧(1.23V)より大きくする必要があり、そのためには光電変換部2で十分大きな電位差を生み出す必要がある。そのため光電変換部2は、pn接合など起電力を生じさせる部分(光電変換層28)を二接合以上直列に接続することが好ましい。光電変換層28を直列接続させる方法は、特に限定されないが、光電変換層28を積層させて直列接続させてもよく、図9、12のように並列に設けられた光電変換層28を第3導電部33により直列接続してもよい。なお、第3導電部33は、図9のように透光性電極30と裏面電極31を含んでもよい。
 光電変換を行う材料は、シリコン系半導体、化合物半導体、有機材料をベースとしたものなどが挙げられるが、いずれの光電変換材料も使用することが可能である。また、起電力を大きくするために、これらの光電変換材料を積層することが可能である。積層する場合には同一材料で多接合構造を形成することが可能であるが、光学的バンドギャップの異なる複数の光電変換層を積層し、各々の光電変換層の低感度波長領域を相互に補完することにより、広い波長領域にわたり入射光を効率よく吸収することが可能となる。
 また、光電変換層間の直列接続特性の改善や、光電変換部2で発生する光電流の整合のために、層間に透明導電膜等の導電体を介在させることが可能である。これにより光電変換部2の劣化を抑制することが可能となる。
 光電変換部2の例を以下に具体的に説明する。また、光電変換部2は、これらを組み合わせたものでもよい。
3-1.シリコン系半導体を用いた光電変換部
 シリコン系半導体を用いた光電変換部2は、例えば、単結晶型、多結晶型、アモルファス型、球状シリコン型、及びこれらを組み合わせたもの等が挙げられる。いずれもp型半導体とn型半導体が接合したpn接合を有することができる。また、p型半導体とn型半導体との間にi型半導体を設けたpin接合を有するものとすることもできる。また、pn接合を複数有するもの、pin接合を複数有するもの、pn接合とpin接合を有するものとすることもできる。
 シリコン系半導体とは、シリコンを含む半導体であり、例えば、シリコン、シリコンカーバイド、シリコンゲルマニウムなどである。また、シリコンなどにn型不純物またはp型不純物が添加されたものも含み、また、結晶質、非晶質、微結晶のものも含む。
 また、シリコン系半導体を用いた光電変換部2は、基板1の上に形成された薄膜または厚膜の光電変換層であってもよく、また、シリコンウェハなどのウェハにpn接合またはpin接合を形成したものでもよく、また、pn接合またはpin接合を形成したウェハの上に薄膜の光電変換層を形成したものでもよい。
 シリコン系半導体を用いた光電変換部2の形成例を以下に示す。
 透光性基板1上に積層した第1電極4上に、第1導電型半導体層をプラズマCVD法等の方法で形成する。この第1導電型半導体層としては、導電型決定不純物原子濃度が1×1018~5×1021/cm3程度ドープされた、p+型またはn+型の非晶質Si薄膜、または多結晶あるいは微結晶Si薄膜とする。第1導電型半導体層の材料としては、Siに限らず、SiCあるいはSiGe,Six1-x等の化合物を用いることも可能である。
 このように形成された第1導電型半導体層上に、結晶質Si系光活性層として多結晶あるいは微結晶の結晶質Si薄膜をプラズマCVD法等の方法で形成する。なお、導電型は第1導電型半導体よりドーピング濃度が低い第1導電型とするか、あるいはi型とする。結晶質Si系光活性層の材料としては、Siに限らず、SiCあるいはSiGe,Six1-x等の化合物を用いることも可能である。
 次に、結晶質Si系光活性層上に半導体接合を形成するため、第1導電型半導体層とは反対導電型である第2導電型半導体層をプラズマCVD等の方法で形成する。この第2導電型半導体層としては、導電型決定不純物原子が1×1018~5×1021/cm3程度ドープされた、n+型またはp+型の非晶質Si薄膜、または多結晶あるいは微結晶Si薄膜とする。第2導電型半導体層の材料としては、Siに限らず、SiCあるいはSiGe,Six1-x等の化合物を用いることも可能である。また接合特性をより改善するために、結晶質Si系光活性層と第2導電型半導体層との間に、実質的にi型の非単結晶Si系薄膜を挿入することも可能である。このようにして、受光面に最も近い光電変換層を一層積層することができる。
 続けて第二層目の光電変換層を形成する。第二層目の光電変換層は、第1導電型半導体層、結晶質Si系光活性層、第2導電型半導体層からなり、それぞれの層は、第一層目の光電変換層中の対応する第1導電型半導体層、結晶質Si系光活性層、第2導電型半導体層と同様に形成する。二層のタンデムで水分解に十分な電位を得ることができない場合は、三層あるいはそれ以上の層状構造を取ることが好ましい。ただし第二層目の光電変換層の結晶質Si系光活性層の体積結晶化分率は、第一層目の結晶質Si系光活性層と比較すると高くすることが好ましい。三層以上積層する場合も同様に下層と比較すると体積結晶化分率を高くすることが好ましい。これは、長波長域での吸収が大きくなり、分光感度が長波長側にシフトし、同じSi材料を用いて光活性層を構成した場合においても、広い波長域で感度を向上させることが可能となるためである。すなわち、結晶化率の異なるSiでタンデム構造にすることにより、分光感度が広くなり、光の高効率利用が可能となる。このとき低結晶化率材料を受光面側にしないと高効率とならない。また結晶化率が40%以下に下がるとアモルファス成分が増え、劣化が生じてしまう。
3-2.化合物半導体を用いた光電変換部
 化合物半導体を用いた光電変換部2は、例えば、III-V族元素で構成されるGaP、GaAsやInP、InAs、II-VI族元素で構成されるCdTe/CdS、I-III-VI族で構成されるCIGS(Copper Indium Gallium DiSelenide)などを用いpn接合を形成したものが挙げられる。
 化合物半導体を用いた光電変換部2の製造方法の一例を以下に示すが、本製造方法では、製膜処理等はすべて有機金属気相成長法(MOCVD;Metal Organic Chemical Vapor Deposition)装置を使って連続して行われる。III族元素の材料としては、例えばトリメチルガリウム、トリメチルアルミニウム、トリメチルインジウムなどの有機金属が水素をキャリアガスとして成長装置に供給される。V族元素の材料としては、例えばアルシン(AsH3)、ホスフィン(PH3)、スチビン(SbH3)等のガスが使われる。p型不純物またはn型不純物のドーパントとしては、例えばp型化にはジエチルジンク、またはn型化には、モノシラン(SiH4)やジシラン(Si26)、セレン化水素(H2Se)等が利用される。これらの原料ガスを、例えば700℃に加熱された基板上に供給することにより熱分解させ、所望の化合物半導体材料膜をエピタキシャル成長させることが可能である。これら成長層の組成は導入するガス組成により、また膜厚はガスの導入時間によって制御することが可能である。これらの光電変換部を多接合積層する場合は、層間での格子定数を可能な限り合わせることにより、結晶性に優れた成長層を形成することができ、光電変換効率を向上することが可能となる。
 pn接合を形成した部分以外にも、例えば受光面側に公知の窓層や、非受光面側に公知の電界層等を設けることによりキャリア収集効率を高める工夫を有してもよい。また不純物の拡散を防止するためのバッファ層を有していてもよい。
3-3.色素増感剤を利用した光電変換部
 色素増感剤を利用した光電変換部は、例えば、主に多孔質半導体、色素増感剤、電解質、溶媒などにより構成される。
 多孔質半導体を構成する材料としては、例えば、酸化チタン、酸化タングステン、酸化亜鉛、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウム等公知の半導体から1種類以上を選択することが可能である。多孔質半導体を基板上に形成する方法としては、半導体粒子を含有するペーストをスクリーン印刷法、インクジェット法等で塗布し乾燥もしくは焼成する方法や、原料ガスを用いたCVD法等により製膜する方法、PVD法、蒸着法、スパッタ法、ゾルゲル法、電気化学的な酸化還元反応を利用した方法等が挙げられる。
 多孔質半導体に吸着する色素増感剤としては、可視光領域および赤外光領域に吸収を持つ種々の色素を用いることが可能である。ここで、多孔質半導体に色素を強固に吸着させるには、色素分子中にカルボン酸基、カルボン酸無水基、アルコキシ基、スルホン酸基、ヒドロキシル基、ヒドロキシルアルキル基、エステル基、メルカプト基、ホスホニル基等が存在することが好ましい。これらの官能基は、励起状態の色素と多孔質半導体の伝導帯との間の電子移動を容易にする電気的結合を提供する。
 これらの官能基を含有する色素として、例えば、ルテニウムビピリジン系色素、キノン系色素、キノンイミン系色素、アゾ系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、フタロシアニン系色素、ベリレン系色素、インジゴ系色素、ナフタロシアニン系色素等が挙げられる。
 多孔質半導体への色素の吸着方法としては、例えば多孔質半導体を、色素を溶解した溶液(色素吸着用溶液)に浸漬する方法が挙げられる。色素吸着用溶液に用いられる溶媒としては、色素を溶解するものであれば特に制限されず、具体的には、エタノール、メタノール等のアルコール類、アセトン等のケトン類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、アセトニトリル等の窒素化合物類、ヘキサン等の脂肪族炭化水素、ベンゼン等の芳香族炭化水素、酢酸エチル等のエステル類、水等を挙げることができる。
 電解質は、酸化還元対とこれを保持する液体または高分子ゲル等固体の媒体からなる。
 酸化還元対としては一般に、鉄系、コバルト系等の金属類や塩素、臭素、ヨウ素等のハロゲン物質が好適に用いられ、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム等の金属ヨウ化物とヨウ素の組み合わせが好ましく用いられる。さらに、ジメチルプロピルイミダゾールアイオダイド等のイミダゾール塩等を混入することもできる。
 また、溶媒としては、プロピレンカーボネート等のカーボネート化合物、アセトニトリル等のニトリル化合物、エタノール、メタノール等のアルコール、その他、水や非プロトン極性物質等が用いられるが、中でも、カーボネート化合物やニトリル化合物が好適に用いられる。
3-4.有機薄膜を用いた光電変換部
 有機薄膜を用いた光電変換部は、電子供与性および電子受容性を持つ有機半導体材料で構成される電子正孔輸送層、または電子受容性を有する電子輸送層と電子供与性を有する正孔輸送層とが積層されたものであってもよい。
 電子供与性の有機半導体材料としては、電子供与体としての機能を有するものであれば特に限定されないが、塗布法により製膜できることが好ましく、中でも電子供与性の導電性高分子が好適に使用される。
 ここで導電性高分子とはπ共役高分子を示し、炭素-炭素またはヘテロ原子を含む二重結合または三重結合が、単結合と交互に連なったπ共役系からなり、半導体的性質を示すものをさす。
 電子供与性の導電性高分子材料としては、例えばポリフェニレン、ポリフェニレンビニレン、ポリチオフェン、ポリカルバゾール、ポリビニルカルバゾール、ポリシラン、ポリアセチレン、ポリピロール、ポリアニリン、ポリフルオレン、ポリビニルピレン、ポリビニルアントラセン、およびこれらの誘導体、共重合体、あるいはフタロシアニン含有ポリマー、カルバゾール含有ポリマー、有機金属ポリマー等が挙げられる。中でも、チオフェン-フルオレン共重合体、ポリアルキルチオフェン、フェニレンエチニレン-フェニレンビニレン共重合体、フルオレン-フェニレンビニレン共重合体、チオフェン-フェニレンビニレン共重合体等が好適に利用される。
 電子受容性の有機半導体材料としては、電子受容体としての機能を有するものであれば特に限定されないが、塗布法により製膜できることが好ましく、中でも電子供与性の導電性高分子が好適に使用される。
 電子受容性の導電性高分子としては、例えばポリフェニレンビニレン、ポリフルオレン、およびこれらの誘導体、共重合体、あるいはカーボンナノチューブ、フラーレンおよびこれらの誘導体、CN基またはCF3基含有ポリマーおよびそれらの-CF3置換ポリマー等が挙げられる。
 また、電子供与性化合物がドープされた電子受容性の有機半導体材料や、電子受容性化合物がドープされた電子供与性の有機半導体材料等を用いることが可能である。電子供与性化合物がドープされる電子受容性の導電性高分子材料としては、上述の電子受容性の導電性高分子材料を挙げることができる。ドープされる電子供与性化合物としては、例えばLi、K、Ca、Cs等のアルカリ金属やアルカリ土類金属のようなルイス塩基を用いることができる。なお、ルイス塩基は電子供与体として作用する。また、電子受容性化合物がドープされる電子供与性の導電性高分子材料としては、上述した電子供与性の導電性高分子材料を挙げることができる。ドープされる電子受容性化合物としては、例えばFeCl3、AlCl3、AlBr3、AsF6やハロゲン化合物のようなルイス酸を用いることができる。なお、ルイス酸は電子受容体として作用する。
3-5.裏面の第1および第2区域間に起電力が生じる光電変換部
 裏面の第1および第2区域間に起電力が生じる光電変換部2を形成する方法としては、例えば、図11、12のように、半導体ウェハを材料として用い、p型半導体部36の一部およびn型半導体部37の一部が半導体ウェハの裏面にそれぞれ形成されるようにp型半導体部36およびn型半導体部37を形成することが挙げられる。このように形成した光電変換部2の受光面から光を入射させると、光電変換部の裏面のp型半導体部36が形成された区域とn型半導体部37が形成された区域との間に電位差を生じさせることができる。
 半導体ウェハにp型半導体部36およびn型半導体部37をこれらが接するように形成すると、光電変換部2にpn接合を形成することができる。また、i型半導体からなる半導体ウェハにp型半導体部36およびn型半導体部37をこれらが接しないように形成すると、光電変換部にpin接合を形成することができる。また、p型半導体の半導体ウェハを用いるとnpp+接合を有する光電変換部2を形成することができ、n型半導体の半導体ウェハを用いるとpnn+接合を有する光電変換部2を形成することができる。
 p型半導体部36およびn型半導体部37は、図11のように半導体ウェハにそれぞれ一箇所ずつ形成してもよい。また、半導体ウェハにp型半導体部36およびn型半導体部37をそれぞれ複数形成してもよく、半導体ウェハにp型半導体部36およびn型半導体部37のうちどちらか一方を一箇所形成し、他方をその両側に二箇所形成してもよい。
 上記にて示した光電変換部2においては、第一義的には太陽光を受光させ光電変換を行うことを想定しているが、用途により蛍光灯や白熱灯、LED、特定の熱源から発せられる光等の人工光を照射し光電変換を行うことも可能である。
4.第2電極
 第2電極5は、光電変換部2の裏面上に設けることができ、かつ、切換部10と電気的に接続することができる。また、第2電極5は、図5、7~10のように第1電解用電極8と電気的に接続することができる。また、第2電極5は、図5、7、8、10のように第1電解用電極8を光電変換部2の裏面上に設ける場合、第1電解用電極8が第2電極5と同様の機能を有することができるため、第2電極5を省略することができる。
 第2電極5を設けることにより、光電変換部2の裏面と切換部10との間の電流を大きくすることができる。また、図5、7~10のように第2電極5を第1電解用電極8と電気的に接続した場合、光電変換部2で生じた起電力を効率よく第1電解用電極8と第2電解用電極7とに出力することができる。
 第2電極5は、導電性を有すれば特に限定されないが、例えば、金属薄膜であり、また、例えば、Al、Ag、Auなどの薄膜である。これらは、例えば、スパッタリングなどにより形成することができる。また、例えば、In-Zn-O(IZO)、In-Sn-O(ITO)、ZnO-Al、Zn-Sn-O、SnO2等の透明導電膜である。
5.絶縁部
 絶縁部11は、図2、図6のように第2電極5と第1電解用電極8および第2電解用電極7との間に設けることができる。
 絶縁部11を設けることにより、第2電極5と第1電解用電極8および第2電解用電極7とが切換部10を介さずに電気的に接続することを防止することができる。このことにより、光電変換部2が受光することにより生じる起電力を第1外部回路に出力する場合、第1電解用電極8および第2電解用電極7にリーク電流が流れることを防止することができる。
 また、絶縁部11は、図5、7、8のように第2電極5と第2電解用電極7との間に設けることができる。このことにより、第2電解用電極7が切換部10を介さずに第2電極5と電気的に接続することを防止することができ、リーク電流が流れることを防止することができる。
 また、絶縁部11は、図9のように直列接続された光電変換層28と第2電解用電極7との間に設けられてもよく、図11、12のように第1電解用電極8と第1区間とが電気的に接続する部分および第2電解用電極7と第2区域とが電気的に接続する部分以外の、第1電解用電8極および第2電解用電極7と、光電変換部2との間に設けられてもよい。
 また、絶縁部11は、図8,9のように光電変換部2の側面を覆うように形成することができる。このことにより、光電変換部2の側面を覆った絶縁部11の上に第2電解用電極7または第1導電部9を形成することができ、第2電解用電極7または第1導電部9を第1電極4と接触するように設けても、リーク電流が発生することを防止することができる。
 絶縁部11としては、有機材料、無機材料を問わず用いることが可能であり、例えば、ポリアミド、ポリイミド、ポリアリーレン、芳香族ビニル化合物、フッ素系重合体、アクリル系重合体、ビニルアミド系重合体等の有機ポリマー、無機系材料としては、Al23等の金属酸化物、多孔質性シリカ膜等のSiO2や、フッ素添加シリコン酸化膜(FSG)、SiOC、HSQ(Hydrogen Silsesquioxane)膜、SiNx、シラノール(Si(OH)4)などを用いて形成することができる。
 絶縁部11を形成する方法としては、絶縁性材料を含有するペーストをスクリーン印刷法、インクジェット法、スピンコーティング法等で塗布し乾燥もしくは焼成する方法や、原料ガスを用いたCVD法等により製膜する方法、PVD法、蒸着法、スパッタ法、ゾルゲル法を利用した方法等が挙げられる。
6.第1導電部
 第1導電部9は、図6、7、9のように第2電解用電極7と第1電極4とを電気的接続することができる。このことにより、第2電解用電極7を光電変換部2の裏面上に形成することができ、かつ、第2電解用電極7を第1電極4と電気的に接続することができる。
 第1導電部9は光電変換部2の受光面と接触した第1電極4と光電変換部2の裏面上に設けられた第2電解用電極7とに接触することができるため、光電変換部2の受光面と平行な第1導電部9の断面積を大きくしすぎると、光電変換部2の受光面の面積を小さくすることにつながる場合がある。また、光電変換部2の受光面に平行な第1導電部9の断面積を小さくしすぎると光電変換部2の受光面の電位と第2電解用電極7の電位との間に差が生じ、電解液を分解する電位差が得られなくなる場合もあり、第1気体または第2気体の発生効率の減少につながる場合もある。従って、光電変換部2の受光面と平行な第1導電部9の断面積は、一定の範囲である必要がある。例えば、光電変換部2の受光面と平行な第1導電部9の断面積(第1導電部が複数の場合、その断面積の総計)は、光電変換部2の受光面の面積を100%としたとき、0.1%以上10%以下とすることができ、好ましくは、0.5%以上8%以下、さらに好ましくは、1%以上6%以下とすることができる。
 また、第1導電部9は、光電変換部2を貫通するコンタクトホールに設けられてもよい。このことにより、第1導電部9を設けることによる光電変換部2の受光面の面積の減少をより小さくすることができる。また、このことにより、光電変換部2の受光面と第2電解用電極7との間の電流経路を短くすることができ、より効率的に第1気体または第2気体を発生させることができる。また、このことにより、光電変換部2の受光面と平行な第1導電部9の断面積を容易に調節することができる。例えば、図6、7に示す本実施形態の太陽電池一体型気体製造装置25の断面図のように第2電解用電極7と第1電極4とを光電変換部2を貫通するコンタクトホールに設けられた第1導電部9により電気的に接続することができる。
 また、第1導電部9が設けられたコンタクトホールは、1つまたは複数でもよく、円形の断面を有してもよい。また、光電変換部2の受光面と平行なコンタクトホールの断面積(コンタクトホールが複数の場合、その断面積の総計)は、光電変換部2の受光面の面積を100%としたとき、0.1%以上10%以下とすることができ、好ましくは、0.5%以上8%以下、さらに好ましくは、1%以上6%以下とすることができる。
 また、第1導電部9は、図9のように光電変換部2の側面を覆う絶縁部11の上に設けられてもよい。
 第1導電部9の材料は、導電性を有しているものであれば特に制限されない。導電性粒子を含有するペースト、例えばカーボンペースト、Agペースト等をスクリーン印刷法、インクジェット法等で塗布し乾燥もしくは焼成する方法や、原料ガスを用いたCVD法等により製膜する方法、PVD法、蒸着法、スパッタ法、ゾルゲル法、電気化学的な酸化還元反応を利用した方法等が挙げられる。
7.第2導電部
 第2導電部29は、絶縁部11と第1電解用電極8との間または絶縁部11と第2電解用電極7との間に設けられてもよい。第2導電部29を設けることにより、第1電解用電極8または第2電解用電極7の電気伝導率が比較的低い場合でも、光電変換部2が受光することにより生じる起電力を効率よく第1電解用電極8および第2電解用電極7に出力することができる。また、第1電解用電極8は第2導電部29を介して切換部10と電気的に接続してもよく、例えば、図9のように第2電解用電極7は第2導電部29を介して切換部10または第1電極4と電気的に接続してもよい。また、光電変換部2が図11、12のようにその裏面の第1および第2区域間に起電力が生じるものである場合、第1電解用電極8および第2電解用電極7は、それぞれ第2導電部29を介して第1区域および第2区域と電気的に接続してもよい。
 第2導電部29の材料は、導電性を有しているものであれば特に制限されない。導電性粒子を含有するペースト、例えばカーボンペースト、Agペースト等をスクリーン印刷法、インクジェット法等で塗布し乾燥もしくは焼成する方法や、原料ガスを用いたCVD法等により製膜する方法、PVD法、蒸着法、スパッタ法、ゾルゲル法、電気化学的な酸化還元反応を利用した方法等が挙げられる。
8.第1電解用電極、第2電解用電極
 第1電解用電極8および第2電解用電極7は、光電変換部2の裏面側に設けられる。このことにより、第1電解用電極8および第2電解用電極7は光電変換部2に入射する光を遮ることはない。
 また、第1電解用電極8および第2電解用電極7は、切換部10と電気的に接続することができる。例えば、本実施形態の太陽電池一体型気体製造装置25が、図2のような断面を有し、図13のような電気回路を有する場合、切換部10を介して第1電極4および第2電極5と、第1電解用電極8および第2電解用電極7とを電気的に接続することができる。このことにより、第1電解用電極8および第2電解用電極7は、切換部10を介して光電変換部2の受光面または裏面と電気的に接続することができる。このことにより、光電変換部2が受光することにより生じる起電力を第1電解用電極8および第2電解用電極7に出力することができる。
 また、第1電解用電極8および第2電解用電極7のうち一方と切換部10を電気的に接合することができる。例えば、本実施形態の太陽電池一体型気体製造装置25が、図5、10のような断面を有し、図14のような電気回路を有する場合、または本実施形態の太陽電池一体型気体製造装置25が、図6のような断面を有し、図15のような電気回路を有する場合、光電変換部2の受光面および裏面と、第1電解用電極8および第2電解用電極7とを電気的に接続することができる。このことにより、光電変換部2が受光することにより生じる起電力を第1電解用電極8および第2電解用電極7に出力することができる。また、図10のような断面を有する場合、第2電極5を省略し、図17のような電気回路を有することができる。
 また、第1電解用電極8および第2電解用電極7は、それぞれ第2電極5および第1電極4に電気的に接続することができる。例えば、本実施形態の太陽電池一体型気体製造装置25が、図7、8、9のような断面を有し、図16のような電気回路を有する場合、光電変換部2の受光面および裏面と、第1電解用電極8および第2電解用電極7とを電気的に接続することができる。このことにより、光電変換部2が受光することにより生じる起電力を第1電解用電極8および第2電解用電極7に出力することができる。また、太陽電池一体型気体製造装置25が、図11、12のような断面を有する場合、図16に示した第1電極を、第2電解用電極7と光電変換部2との間に設けられた第2導電部29とし、図16に示した第2電極を、第1電解用電極8と光電変換部2との間に設けられた第2導電部29とした電気回路を有してもよい。
 また、第1電解用電極8および第2電解用電極7は、電解液に浸漬可能に設けられる。これらのことにより、第1電解用電極8および第2電解用電極7の表面において、電解液の電気分解反応を進行させることができ、第1気体および第2気体を発生させることができる。また、第1気体および第2気体のうち一方は、水素であり、他方は酸素とすることができる。
 また、第1電解用電極8と第2電解用電極7とは、接触しないように設けることができる。このことにより、第1電解用電極8と第2電解用電極7との間にリーク電流が流れるのを防止することとができる。
 第1電解用電極8および第2電解用電極7のうち、一方は、電解液からH2を発生させる水素発生部であってもよく、他方は、電解液からO2を発生させる酸素発生部であってもよい。このことにより、本実施形態の太陽電池一体型気体製造装置により、電解液に含まれる水を分解し、燃料電池の燃料となる水素および酸素を製造することができる。
9.水素発生部
 水素発生部は、電解液からH2を発生させる部分であり、第1電解用電極8および第2電解用電極7のうち一方とすることができる。また、水素発生部は、電解液からH2が発生する反応の触媒を含んでもよい。このことにより、電解液からH2が発生する反応の反応速度を大きくすることができる。水素発生部は、電解液からH2が発生する反応の触媒のみからなってもよく、この触媒が担持体に担持されたものであってもよい。また、水素発生部は、光電変換部2の受光面の面積より大きい触媒表面積を有してもよい。このことにより、電解液からH2が発生する反応をより速い反応速度とすることができる。また、水素発生部は、触媒が担持された多孔質の導電体であってもよい。このことにより、触媒表面積を大きくすることができる。また、光電変換部2の受光面または裏面と水素発生部に含まれる触媒との間に電流が流れることによる電位の変化を抑制することができる。さらに、水素発生部は、水素発生触媒としてPt、Ir、Ru、Pd、Rh、Au、Fe、NiおよびSeのうち少なくとも1つを含んでもよい。
 電解液からH2が発生する反応の触媒(水素発生触媒)は、2つのプロトンと2つの電子から1分子の水素への変換を促進する触媒であり、化学的に安定であり、水素生成過電圧が小さい材料を用いることができる。例えば、水素に対して触媒活性を有するPt,Ir,Ru,Pd,Rh,Au等の白金族金属およびその合金あるいは化合物、水素生成酵素であるヒドロゲナーゼの活性中心を構成するFe,Ni,Seの合金あるいは化合物、およびこれらの組み合わせ等を好適に用いることが可能である。中でもPtおよびPtを含有するナノ構造体は水素発生過電圧が小さく好適に用いることが可能である。光照射により水素発生反応が確認されるCdS,CdSe,ZnS,ZrO2などの材料を用いることもできる。
 反応面積をより大きくし気体生成速度を向上させるために、水素発生触媒を導電体に担持することができる。触媒を担持する導電体としては、金属材料、炭素質材料、導電性を有する無機材料等が挙げられる。
 金属材料としては、電子伝導性を有し、酸性雰囲気下で耐腐食性を有する材料が好ましい。具体的には、Au、Pt、Pd等の貴金属、Ti、Ta、W、Nb、Ni、Al、Cr、Ag、Cu、Zn、Su、Si等の金属並びにこれらの金属の窒化物および炭化物、ステンレス鋼、Cu-Cr、Ni-Cr、Ti-Pt等の合金が挙げられる。金属材料には、Pt、Ti、Au、Ag、Cu、Ni、Wからなる群より選ばれる少なくとも一つの元素を含むことが、他の化学的な副反応が少ないという観点から、より好ましい。これら金属材料は、比較的電気抵抗が小さく、面方向に電流を取り出しても電圧の低下を抑制することができる。また、Cu、Ag、Zn等の酸性雰囲気下での耐腐食性に乏しい金属材料を用いる場合には、Au、Pt、Pd等の耐腐食性を有する貴金属および金属、カーボン、グラファイト、グラッシーカーボン、導電性高分子、導電性窒化物、導電性炭化物、導電性酸化物等によって耐腐食性に乏しい金属の表面をコーティングしてもよい。
 炭素質材料としては、化学的に安定で導電性を有する材料が好ましい。例えば、アセチレンブラック、バルカン、ケッチェンブラック、ファーネスブラック、VGCF、カーボンナノチューブ、カーボンナノホーン、フラーレン等の炭素粉末や炭素繊維が挙げられる。
 導電性を有する無機材料としては、例えば、In-Zn-O(IZO)、In-Sn-O(ITO)、ZnO-Al、Zn-Sn-O、SnO2、酸化アンチモンドープ酸化スズが挙げられる。
 なお、導電性高分子としては、ポリアセチレン、ポリチオフェン、ポリアニリン、ポリピロール、ポリパラフェニレン、ポリパラフェニレンビニレン等が挙げられ、導電性窒化物としては、窒化炭素、窒化ケイ素、窒化ガリウム、窒化インジウム、窒化ゲルマニウム、窒化チタニウム、窒化ジルコニウム、窒化タリウム等が挙げられ、導電性炭化物としては、炭化タンタル、炭化ケイ素、炭化ジルコニウム、炭化チタニウム、炭化モリブデン、炭化ニオブ、炭化鉄、炭化ニッケル、炭化ハフニウム、炭化タングステン、炭化バナジウム、炭化クロム等が挙げられ、導電性酸化物としては、酸化スズ、酸化インジウムスズ(ITO)、酸化アンチモンドープ酸化スズ等が挙げられる。
 水素発生触媒を担持する導電体の構造としては、板状、箔状、棒状、メッシュ状、ラス板状、多孔質板状、多孔質棒状、織布状、不織布状、繊維状、フェルト状が好適に使用できる。また、フェルト状電極の表面を溝状に圧着した溝付き導電体は、電気抵抗と電極液の流動抵抗を低減できるので好適である。
10.酸素発生部
 酸素発生部は、電解液からO2を発生させる部分であり、第1電解用電極8および第2電解用電極7のうち一方とすることができる。また、酸素発生部は、電解液からO2が発生する反応の触媒を含んでもよい。このことにより、電解液からO2が発生する反応の反応速度を大きくすることができる。また、酸素発生部は、電解液からO2が発生する反応の触媒のみからなってもよく、この触媒が担持体に担持されたものであってもよい。また、酸素発生部は、光電変換部2の受光面の面積より大きい触媒表面積を有してもよい。このことにより、電解液からO2が発生する反応をより速い反応速度とすることができる。また、酸素発生部は、触媒が担持された多孔質の導電体であってもよい。このことにより、触媒表面積を大きくすることができる。また、光電変換部2の受光面または裏面と酸素発生部に含まれる触媒との間に電流が流れることによる電位の変化を抑制することができる。さらに、酸素発生部は、酸素発生触媒としてMn、Ca、Zn、CoおよびIrのうち少なくとも1つを含んでもよい。
 電解液からO2が発生する反応の触媒(酸素発生触媒)は、2つの水分子から1分子の酸素および4つのプロトンと4つの電子への変換を促進する触媒であり、化学的に安定であり、酸素発生過電圧が小さい材料を用いることができる。例えば、光を用い水から酸素発生を行う反応を触媒する酵素であるPhotosystem IIの活性中心を担うMn,Ca,Zn,Coを含む酸化物あるいは化合物や、Pt,RuO2,IrO2等の白金族金属を含む化合物や、Ti,Zr,Nb,Ta,W,Ce,Fe,Ni等の遷移金属を含む酸化物あるいは化合物、および上記材料の組み合わせ等を用いることが可能である。中でも酸化イリジウム、酸化マンガン、酸化コバルト、リン酸コバルトは、過電圧が小さく酸素発生効率が高いことから好適に用いることができる。
 反応面積をより大きくし気体生成速度を向上させるために、酸素発生触媒を導電体に担持することができる。酸素発生触媒を担持する導電体としては、金属材料、炭素質材料、導電性を有する無機材料等が挙げられる。これらの説明は、「9.水素発生部」に記載した水素発生触媒についての説明が矛盾がない限り当てはまる。
 水素発生触媒および酸素発生触媒の単独の触媒活性が小さい場合、助触媒を用いることも可能である。例えば、Ni,Cr,Rh,Mo,Co,Seの酸化物あるいは化合物などが挙げられる。
 なお、水素発生触媒、酸素発生触媒の担持方法は、導電体もしくは半導体に直接塗布する方法や、真空蒸着法、スパッタ法、イオンプレーティング法等のPVD法、CVD法等の乾式塗工法、電析法など、材料により適宜その手法を変え作製ことが可能である。また水素発生および酸素発生のための触媒活性が十分でない場合、金属やカーボン等の多孔質体や繊維状物質、ナノ粒子等に担持することにより反応表面積を大きくし、水素及び酸素発生速度を向上させることが可能である。
11.切換部
 切換部10は、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力させる回路と、光電変換部2が受光することにより生じる起電力を第1電解用電極8および第2電解用電極7に出力し電解液からそれぞれ第1気体および第2気体を発生させる回路とを切り換えることができる。このことにより、光電変換部2が受光することにより生じる起電力を第1外部回路へ電力として供給でき、また、光電変換部2が受光することにより生じる起電力を用いて第1気体および第2気体を製造することができる。
 切換部10が第1外部回路と電気的に接続する方法は、特に限定されないが、例えば、切換部10が出力端子22を備え、出力端子22を介して第1外部回路と電気的に接続してもよい。
 また、切換部10は、第2外部回路と電気的に接続することができ、かつ、第2外部回路から入力される起電力を第1電解用電極8および第2電解用電極7に出力し電解液からそれぞれ第1気体および第2気体を発生させる回路に切り換えることができる。このことにより、第2外部回路から入力される起電力を利用して、電解液から第1気体および第2気体を製造することができる。
 切換部10が第2外部回路と電気的に接続する方法は特に限定されないが、例えば、切換部10が入力端子23を備え、入力端子23を介して第2外部回路と電気的に接続してもよい。
 図面を用いて具体的に説明する。例えば、本実施形態の太陽電池一体型気体製造装置25が図2のような断面を有し、図13のような電気回路を有する場合、例えば、SW(スイッチ)1、SW2がON状態であり、SW3、SW4がOFF状態である場合、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力することができる。また、SW1、SW2、SW5、SW6がOFF状態であり、SW3、SW4がON状態である場合、光電変換部2が受光することにより生じる起電力を第1電解用電極8と第2電解用電極7に出力することができる。
 また、例えば、SW3、SW4がOFF状態であり、SW5、SW6がON状態である場合、第2外部回路から入力される起電力を第1電解用電極8および第2電解用電極7に出力することができる。また、SW1、SW2がOFF状態であり、SW3、SW4、SW5、SW6がON状態である場合、光電変換部2が受光することにより生じる起電力および第2外部回路から入力される起電力の両方を第1電解用電極8および第2電解用電極7に出力することができる。
 例えば、本実施形態の太陽電池一体型気体製造装置25が図5、10のような断面を有し、図14のような電気回路を有する場合、または図17のような電気回路を有する場合、例えば、SW1、SW2がON状態であり、SW3、SW4がOFF状態である場合、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力することができる。また、SW1、SW2、SW3、SW5がOFF状態であり、SW4がON状態である場合、光電変換部2が受光することにより生じる起電力を第1電解用電極8と第2電解用電極7に出力することができる。
 また、例えば、SW1、SW2、SW4がOFF状態であり、SW3、SW5がON状態である場合、第2外部回路から入力される起電力を第1電解用電極8および第2電解用電極7に出力することができる。また、SW1、SW2がOFF状態であり、SW3、SW4、SW5がON状態である場合、光電変換部2が受光することにより生じる起電力および第2外部回路から入力される起電力の両方を第1電解用電極8および第2電解用電極7に出力することができる。
 例えば、本実施形態の太陽電池一体型気体製造装置25が図6のような断面を有し、図15のような電気回路を有する場合、例えば、SW1、SW2がON状態であり、SW3、SW4がOFF状態である場合、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力することができる。また、SW1、SW2、SW3、SW5がOFF状態であり、SW4がON状態である場合、光電変換部2が受光することにより生じる起電力を第1電解用電極8と第2電解用電極7に出力することができる。
 また、例えば、SW1、SW2、SW4がOFF状態であり、SW3、SW5がON状態である場合、第2外部回路から入力される起電力を第1電解用電極8および第2電解用電極7に出力することができる。また、SW1、SW2がOFF状態であり、SW3、SW4、SW5がON状態である場合、光電変換部2が受光することにより生じる起電力および第2外部回路から入力される起電力の両方を第1電解用電極8および第2電解用電極7に出力することができる。
 例えば、本実施形態の太陽電池一体型気体製造装置25が図7、8、9のような断面を有し、図16のような電気回路を有する場合、例えば、SW1、SW2がON状態であり、SW3、SW4がOFF状態である場合であって、光電変換部が受光することにより生じる起電力が電解液の電解電圧に達しない場合、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力することができる。また、SW1、SW2、SW3、SW4がOFF状態である場合であって、光電変換部が受光することにより生じる起電力が電解液の電解電圧に達する場合、光電変換部2が受光することにより生じる起電力を第1電解用電極8および第2電解用電極7へ出力することができる。従って、図16のような電気回路を有する場合でも、切換部10により、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力させる回路と、光電変換部2が受光することにより生じる起電力を第1電解用電極8および第2電解用電極7に出力させる回路とを切り換えることができる。
 また、SW3、SW4がON状態であり、SW1,SW2がOFF状態の場合、第2外部回路から入力される起電力、または第2外部回路から入力される起電力と光電変換部2が受光することにより生じる起電力の両方を第1電解用電極8および第2電解用電極7に出力することができる。
 また、本実施形態の太陽電池一体型気体製造装置25が図11、12のような断面を有する場合、図16に示した第1電極を、第2電解用電極7と光電変換部2との間に設けた第2導電部29とし、図16に示した第2電極を、第1電解用電極8と光電変換部2との間に設けた第2導電部29とした電気回路を有することができる。
 また、切換部10は、切換選択部21が選択した結果を入力することができ、入力した選択結果に基づき回路の切換を行うことができる。このことにより、切換部10は、切換選択部21が選択した回路に切り換えることができる。
 また、切換部10は、光電変換部2が受光することにより生じる起電力の大きさに基づき回路の切換を行うこともできる。このことにより、第1外部回路に出力する電力が光電変換部2で生じている場合、第1外部回路に光電変換部2で生じた起電力を出力することができ、第1外部回路に出力する電力が光電変換部2で生じていない場合、第1電解用電極8および第2電解用電極7に光電変換部2で生じた起電力を出力することができる。
 さらに切換部10は、第2外部回路の起電力の大きさに基づき回路の切換を行うこともできる。このことにより、第2外部回路が供給する電力が電気需要より大きくなっている場合、第2外部回路が供給する電力を利用して第1気体および第2気体を製造することができる。
12.切換選択部
 切換選択部21は、切換部10が切り換える回路を選択し、選択した結果を切換部10に出力することができる。このことにより、状況に合わせて切換部10の回路を切換させるための信号を出力することができる。
 また、切換選択部21は、太陽電池一体型気体製造装置25に照射される日射量の予測、降水確率、日時、気温および電力需要予測のうち少なくとも1つに基づき切換部10が切り換える回路を選択することができる。また、切換選択部21は、光電変換部2が受光することにより生じる起電力の大きさ、または第2外部回路の起電力の大きさに基づき切換部10が切り換える回路を選択することができる。このことにより、その時の状況に最も適するように切換部10が切り換える回路を選択することができる。
 例えば、降水確率が高く、太陽電池一体型気体製造装置25に照射される日射量が少ないと予測される場合、光電変換部2で生じる起電力を電力として第1外部回路に供給したとしても、電力需要を満たす十分な電力を供給することができない。この場合、切換選択部21が光電変換部2で生じる起電力を第1電解用電極8および第2電解用電極7に出力する回路を選択することにより、太陽電池一体型気体製造装置25が電解液を分解し、水素などを製造することができる。このことにより、水素が十分に貯まった状態でこの水素を燃料として燃料電池で発電することにより、電力需要を十分に満たす電力を第1外部回路に供給することができる。
 例えば、気温が低い、湯の使用量が多いなどの理由により、太陽電池一体型気体製造装置25を設置した施設の熱需要が多い場合、切換選択部21が光電変換部2で生じる起電力を第1電解用電極8および第2電解用電極7に出力する回路を選択することができる。このことにより、太陽電池一体型気体製造装置25が電解液を分解し、水素などを製造することができ、水素などを燃料とする熱源を用いて前記施設などで熱を利用することができる。
 例えば、太陽電池一体型気体製造装置25を設置した施設の電力需要が、少ない場合、切換選択部21が光電変換部2で生じる起電力を第1電解用電極8および第2電解用電極7に出力する回路を選択することができる。このことにより、太陽電池一体型気体製造装置25が電解液を分解し、水素などを製造することができ、水素などとしてエネルギーを貯蔵することができる。
 以上のような切換選択部21が回路を選択するための判断要素は、複数であってもよく、複数の場合、複数の判断要素を総合勘案して切換選択部21は切り換える回路を判断することができる。
 切換選択部21は、例えば、家庭のスマートメータが発信する信号、電力会社が発信する信号、インターネットなどの情報網を通じて提供される信号を受信し、その信号に基づき切換部10が切り換える回路を選択することができる。
 また、切換選択部21が受信する信号は、有線または無線により受信することができる。
13.電解液室
 電解液室15は、第1電解用電極8または第2電解用電極7が浸漬する電解液を貯留可能に設けられる。このことにより、第1電解用電極8または第2電解用電極7を電解液に浸漬することができ、第1電解用電極8と第2電解用電極7の表面で電解液の電気分解反応を進行させることができる。電解液室15は、例えば、第1電解用電極8および第2電解用電極7と背面基板14との間に形成される空間とすることができる。
 また、電解液室15は、第1電解用電極8から発生させた第1気体および第2電解用電極7から発生させた第2気体を回収するための流路とすることができる。
14.背面基板
 背面基板14は、第1電解用電極8および第2電解用電極7の上に透光性基板1と対向するように設けることができる。また、背面基板14は、第1電解用電極8または第2電解用電極7と背面基板14との間に空間が設けられるように設けることができる。この空間を電解液室15とすることができる。
 また、背面基板14は、光電変換部2、第1電解用電極8および第2電解用電極7を収容でき、電解液室15を形成することができる外箱の一部であってもよい。
 また、背面基板14は、電解液を貯留し、生成した第1気体および第2気体を閉じ込めるための電解液室15を構成することができるため、機密性が高い物質が求められる。背面基板14は、透明なものであっても不透明なものであっても特に限定されるものではない。背面基板14としては、例えば石英ガラス、パイレックス(登録商標)、合成石英板等の透明なリジッド材、あるいは透明樹脂板、透明樹脂フィルムなどを挙げることができる。中でも、ガスの透過性がなく、化学的物理的に安定な物質である点でガラス材を用いることが好ましい。
 背面基板14に外箱を用いる場合、外箱は、例えばステンレス鋼等の鋼材または、ジルコニア、アルミナ等のセラミック、フェノール樹脂、メラミン樹脂(MF)、ガラス繊維強化ポリアミド樹脂等の合成樹脂からなることが好ましい。
15.隔壁
 隔壁13は、第1電解用電極8と背面基板14との間の電解液室15および第2電解用電極7と背面基板14との間の電解液室15とを仕切るように設けることができる。このことにより、第1電解用電極8および第2電解用電極7で発生させた第1気体および第2気体が混合することを防止することができ、第1気体および第2気体を分離して回収することができる。
 また、隔壁13は、イオン交換体を含んでもよい。このことにより、第1電解用電極8と背面基板14との間の電解液室15の電解液と第2電解用電極7と背面基板14との間の電解液室15の電解液でアンバランスとなったイオン濃度を一定に保つことができる。つまり、第1電解用電極8および第2電解用電極7における電気分解反応により生じたイオン濃度の不均衡が、イオンが隔壁9を介してイオンの移動が起こることにより解消することができる。なお、第1電解用電極8および第2電解用電極7においてH2Oの電気分解反応により水素と酸素を発生させる場合、隔壁13がイオン交換体を含むことにより、プロトン濃度の不均衡を解消することができる。
 電解液を電気分解し、水素および酸素を発生させる場合、電解液からの水素発生量および酸素発生量の割合は、2:1のモル比であり、第1電解用電極8と第2電解用電極7により、気体発生量が異なる。このため、装置内の含水量を一定量にする目的から、隔壁13は水を透過する材料であることが好ましい。
 隔壁13は、例えば、多孔質ガラス、多孔質ジルコニア、多孔質アルミナ等の無機膜あるいはイオン交換体を用いることが可能である。イオン交換体としては、当該分野で公知のイオン交換体をいずれも使用でき、プロトン伝導性膜、カチオン交換膜、アニオン交換膜等を使用できる。
 プロトン伝導性膜の材質としては、プロトン伝導性を有しかつ電気的絶縁性を有する材質であれば特に限定されず、高分子膜、無機膜又はコンポジット膜を用いることができる。
 高分子膜としては、例えば、パーフルオロスルホン酸系電解質膜である、デュポン社製のナフィオン(登録商標)、旭化成社製のアシプレックス(登録商標)、旭硝子社製のフレミオン(登録商標)等の膜や、ポリスチレンスルホン酸、スルホン化ポリエーテルエーテルケトン等の炭化水素系電解質膜等が挙げられる。
 無機膜としては、例えば、リン酸ガラス、硫酸水素セシウム、ポリタングストリン酸、ポリリン酸アンモニウム等からなる膜が挙げられる。コンポジット膜としては、スルホン化ポリイミド系ポリマー、タングステン酸等の無機物とポリイミド等の有機物とのコンポジット等からなる膜が挙げられ、具体的にはゴア社製のゴアセレクト膜(登録商標)や細孔フィリング電解質膜等が挙げられる。さらに、高温環境下(例えば、100℃以上)で使用する場合には、スルホン化ポリイミド、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)、スルホン化ポリベンゾイミダゾール、ホスホン化ポリベンゾイミダゾール、硫酸水素セシウム、ポリリン酸アンモニウム等が挙げられる。
 カチオン交換膜としては、カチオンを移動させることができる固体高分子電解質であればよい。具体的には、パーフルオロカーボンスルフォン酸膜や、パーフルオロカーボンカルボン酸膜等のフッ素系イオン交換膜、リン酸を含浸させたポリベンズイミダゾール膜、ポリスチレンスルホン酸膜、スルホン酸化スチレン・ビニルベンゼン共重合体膜等が挙げられる。
 支持電解質溶液のアニオン輸率が高い場合には、アニオン交換膜の使用が好ましい。アニオン交換膜としては、アニオンの移動可能な固体高分子電解質を使用できる。具体的には、ポリオルトフェニレンジアミン膜、アンモニウム塩誘導体基を有するフッ素系イオン交換膜、アンモニウム塩誘導体基を有するビニルベンゼンポリマー膜、クロロメチルスチレン・ビニルベンゼン共重合体をアミノ化した膜等が挙げられる。
 水素発生、酸素発生がそれぞれ水素発生触媒、酸素発生触媒にて選択的に行われ、これに伴うイオンの移動が起こる場合、必ずしもイオン交換のための特殊な膜等の部材を配置する必要はない。ガスを物理的に隔離することのみの目的であれば、後述のシール剤に記載の紫外線硬化性樹脂あるいは熱硬化性樹脂を用いることが可能である。
16.シール材
 シール材16は、透光性基板1と背面基板14を接着し、電解液室15を構成するための材料である。また、背面基板14に箱状のものを用いた場合、シール材16は、箱状のものと透光性基板1とを接着するための材料である。シール材16は、例えば、紫外線硬化性接着剤、熱硬化性接着剤等が好適に使用されるが、その種類は限定されるものではない。紫外線硬化性の接着剤としては、200~400nmの波長を持つ光を照射することにより重合が起こり光照射後数秒で硬化反応が起こる樹脂であり、ラジカル重合型とカチオン重合型に分けられ、ラジカル重合型樹脂としてはアクリルレート、不飽和ポリエステル、カチオン重合型としては、エポキシ、オキセタン、ビニルエーテル等が挙げられる。また熱硬化性の高分子接着剤としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、熱硬化性ポリイミド等の有機樹脂が挙げられる。熱硬化性の高分子接着剤は、熱圧着時に圧力を掛けた状態で加熱重合し、その後、加圧したまま、室温まで冷却することにより、各部材を良好に接合させるため、締め付け部材等を要しない。また、有機樹脂に加えて、ガラス基板に対して密着性の高いハイブリッド材料を用いることが可能である。ハイブリッド材料を用いることによって、弾性率や硬度等の力学的特性が向上し、耐熱性や耐薬品性が飛躍的に向上する。ハイブリッド材料は、無機コロイド粒子と有機バインダ樹脂とから構成される。例えば、シリカなどの無機コロイド粒子と、エポキシ樹脂、ポリウレタンアクリレート樹脂やポリエステルアクリレート樹脂などの有機バインダ樹脂とから構成されるものが挙げられる。
 ここではシール材16と記しているが、基板1と背面基板14などを接着させる機能を有するものであれば限定されず、樹脂製あるいは金属製のガスケットを用い外部からネジ等の部材を用いて物理的に圧力を加え機密性を高める方法等を適宜用いることも可能である。
17.給水口、第1気体排出口および第2気体排出口
 給水口18は、例えば、太陽電池一体型気体製造装置25に含まれるシール材16の一部に開口を作ることにより設けることができる。給水口18は、電解液室15に電解液を供給するために設置され、その配置箇所および形状は、電解液が効率よく太陽電池一体型気体製造装置25へ供給されさえすれば、特に限定されるものではないが、流動性および供給の容易性の観点から、傾斜して設置した太陽電池一体型気体製造装置25の下部に設けることが好ましい。
 また、第1気体排出口20および第2気体排出口19は、太陽電池一体型気体製造装置25を傾斜させて設置したとき、太陽電池一体型気体製造装置25の上側の部分のシール材16に開口を作ることにより設けることができる。また、第1気体排出口20と第2気体排出口19は、それぞれ隔壁13を挟んで第1電解用電極側と第2電解用電極側に設けることができる。
 このように給水口18、第1気体排出口20および第2気体排出口19を設けることにより、例えば、図4の断面図ように太陽電池一体型気体製造装置25を光電変換部2の受光面が上向きの状態で水平面に対し傾斜し、給水口18が下側になり第1気体排出口20および第2気体排出口19が上側になるように設置することができる。このように設置することにより、給水口18から電解液を太陽電池一体型気体製造装置25内に導入し、電解液室15を電解液27で満たすことができる。この状態で、太陽電池一体型気体製造装置25に光を入射させ、切換部10で光電変換部2の起電力を第1電解用電極8と第2電解用電極7に出力させることにより、第1電解用電極8および第2電解用電極7でそれぞれ、連続して第1気体および第2気体を発生させることができる。この発生した第1気体および第2気体は、隔壁13により分離することができ、第1気体及び第2気体は太陽電池一体型気体製造装置25の上部へ上昇し、第1気体排出口20および第2気体排出口19から回収することができる。
18.電解液
 電解液は、電解質を含む水溶液であり、例えば、0.1MのH2SO4を含む電解液、0.1Mリン酸カリウム緩衝液などであるが、気体発生反応のためのイオン移動が起これば電解質の種類は問われず、電解質濃度は限定されない。
  1: 透光性基板  2:光電変換部  4:第1電極  5:第2電極  7:第2電解用電極  8:第1電解用電極  9:第1導電部  10:切換部  11:絶縁部  13:隔壁  14:背面基板  15:電解液室  16:シール材  18:給水口  19:第2気体排出口  20:第1気体排出口  21:切換選択部  22:出力端子  23:入力端子  24a、24b、24c:配線  25:太陽電池一体型気体製造装置  27:電解液  28:光電変換層  29:第2導電部  30:透光性電極  31:裏面電極  33:第3導電部  35:半導体部  36:p型半導体部  37:n型半導体部  40:アイソレーション

Claims (32)

  1.  受光面とその裏面を有する光電変換部と、前記光電変換部の裏面側に設けられ、かつ、電解液に浸漬可能に設けられた第1電解用電極と、前記光電変換部の裏面側に設けられ、かつ、電解液に浸漬可能に設けられた第2電解用電極と、切換部とを備え、
    第1電解用電極および第2電解用電極は、前記光電変換部が受光することより生じる起電力により電解液を電気分解しそれぞれ第1気体および第2気体を発生させることができるように設けられ、
    前記切換部は、前記光電変換部が受光することにより生じる起電力を第1外部回路へ出力させる回路と、前記光電変換部が受光することにより生じる起電力を第1電解用電極および第2電解用電極に出力させる回路とを切り換えることを特徴とする太陽電池一体型気体製造装置。
  2.  第1気体および第2気体のうち一方は、水素であり、他方は、酸素である請求項1に記載の装置。
  3.  受光面とその裏面を有し、かつ、受光することにより前記受光面と前記裏面との間に電位差が生じる光電変換部と、前記受光面上に設けられた第1電極と、前記光電変換部の裏面側に設けられ、かつ、電解液に浸漬可能に設けられた第1電解用電極と、前記光電変換部の裏面側に設けられ、かつ、電解液に浸漬可能に設けられた第2電解用電極と、切換部とを備え、
    第1電解用電極および第2電解用電極は、前記光電変換部が受光することより生じる起電力により電解液を電気分解しそれぞれ第1気体及び第2気体を発生させることができるように設けられ、
    前記切換部は、前記光電変換部が受光することにより生じる起電力を第1外部回路へ出力させる回路と、前記光電変換部が受光することにより生じる起電力を第1電解用電極および第2電解用電極に出力させる回路とを切り換えることを特徴とする太陽電池一体型気体製造装置。
  4.  前記光電変換部の裏面上に設けられた絶縁部をさらに備え、
    第1電解用電極および第2電解用電極は、前記絶縁部上に設けられ、かつ、それぞれ前記切換部と電気的に接続する請求項1~3のいずれか1つに記載の装置。
  5.  前記光電変換部の裏面上に設けられた絶縁部をさらに備え、
    第2電解用電極は、前記絶縁部上に設けられ、かつ、前記切換部と電気的に接続し、
    第1電解用電極は、前記光電変換部の裏面上に設けられ、かつ、前記光電変換部の裏面と電気的に接続する請求項1~3のいずれか1つに記載の装置。
  6.  前記光電変換部の受光面上に設けられた第1電極と、前記光電変換部の裏面上に設けられた絶縁部とをさらに備え、
    第2電解用電極は、前記絶縁部上に設けられ、かつ、第1電極と電気的に接続し、
    第1電解用電極は、前記絶縁部上に設けられ、かつ、前記切換部と電気的に接続する1~3のいずれか1つに記載の装置。
  7.  前記光電変換部の受光面上に設けられた第1電極と、前記光電変換部の裏面上に設けられた絶縁部とをさらに備え、
    第2電解用電極は、前記絶縁部上に設けられ、かつ、第1電極と電気的に接続し、
    第1電解用電極は、前記光電変換部の裏面上に設けられ、かつ、前記光電変換部の裏面と電気的に接続する1~3のいずれか1つに記載の装置。
  8.  第2電解用電極と第1電極とを電気的に接続する第1導電部をさらに備える請求項6または7に記載の装置。
  9.  第1導電部は、前記光電変換部を貫通するコンタクトホールに設けられた請求項8に記載の装置。
  10.  前記絶縁部は、前記光電変換部の側面を覆うように設けられ、
    第1導電部は、前記絶縁部の前記光電変換部の側面を覆う部分の上に設けられた請求項8に記載の装置。
  11.  前記絶縁部は、前記光電変換部の側面を覆うように設けられ、
    第2電解用電極は、前記絶縁部の前記光電変換部の側面を覆う部分の上に設けられ、かつ、第1電極と接触する請求項6または7に記載の装置。
  12.  前記光電変換部の受光面上に設けられた第1電極と、前記光電変換部の裏面上に設けられた第2電極をさらに備え、
    第1電極および第2電極は、それぞれ前記切換部と電気的に接続する請求項1~11のいずれか1つに記載の装置。
  13.  前記光電変換部は、受光することにより前記裏面の第1および第2区域間に電位差が生じ、
    第1区域は、第1電解用電極と電気的に接続し、
    第2区域は、第2電解用電極と電気的に接続する請求項1または2に記載の装置。
  14.  前記光電変換部は、n型半導体部およびp型半導体部を有する少なくとも1つの半導体材料からなり、
    第1および第2区域のうち、一方は前記n型半導体部の一部であり、他方は前記p型半導体部の一部である請求項13に記載の装置。
  15.  前記光電変換部の裏面と第1電解用電極との間の一部および前記裏面と第2電解用電極との間の一部に設けられた絶縁部をさらに備え、
    第1電解用電極および第2電解用電極は、それぞれ前記絶縁部が設けられていない第1および第2区域を介して前記n型半導体部または前記p型半導体部と電気的に接続する請求項14に記載の装置。
  16.  第1区域および第2区域は、それぞれ前記切換部と電気的に接続する請求項13~15のいずれか1つに記載の装置。
  17.  前記絶縁部と第1電解用電極との間または前記絶縁部と第2電解用電極との間に設けられた第2導電部をさらに備える請求項4~12、15のいずれか1つに記載の装置。
  18.  透光性基板をさらに備え、
    前記光電変換部は、前記受光面が前記透光性基板側となるように前記透光性基板上に設けられた請求項1~17のいずれか1つに記載の装置。
  19.  前記光電変換部の裏面側に背面基板をさらに備え、
    第2電解用電極は、前記背面基板上に設けられ、かつ、前記切換部と電気的に接続し、
    第1電解用電極は、前記光電変換部の裏面上に設けられ、かつ、前記光電変換部の裏面と電気的に接続する請求項1~3のいずれか1つに記載の装置。
  20.  第1電解用電極または第2電解用電極を浸漬させる電解液を貯留可能な電解液室をさらに備える請求項1~19のいずれか1つに記載の装置。
  21.  背面基板を備え、
    前記電解液室は、前記光電変換部の裏面と前記背面基板との間に設けられた請求項20に記載の装置。
  22.  第1電解用電極が浸漬する電解液を貯留可能な電解液室と、第2電解用電極が浸漬する電解液を貯留可能な電解液室とを仕切る隔壁をさらに備える請求項20または21に記載の装置。
  23.  前記隔壁は、イオン交換体を含む請求項22に記載の装置。
  24.  前記光電変換部は、p型半導体層、i型半導体層およびn型半導体層を備える光電変換層を有する請求項1~23のいずれか1つに記載の装置。
  25.  前記光電変換部は、直列接続した複数の光電変換層を含み、
    前記複数の光電変換層は、受光することにより生じる起電力を第1電解用電極および第2電解用電極に供給する請求項1~24のいずれか1つに記載の装置。
  26.  各光電変換層は、第3導電部により直列接続された請求項25に記載の装置。
  27.  第3導電部は、前記光電変換層の受光面側に設けられた透光性電極と、前記光電変換層の裏面側に設けられた裏面電極とを含む請求項26に記載の装置。
  28.  第1電解用電極および第2電解用電極のうち、一方は、電解液からH2を発生させる水素発生部であり、他方は、電解液からO2を発生させる酸素発生部であり、
    前記水素発生部および前記酸素発生部は、それぞれ電解液からH2が発生する反応の触媒および電解液からO2が発生する反応の触媒を含む請求項1~27のいずれか1つに記載の装置。
  29.  前記水素発生部および前記酸素発生部のうち少なくとも一方は、触媒が担持された多孔質の導電体から形成された請求項28に記載の装置。
  30.  前記切換部は、第2外部回路と電気的に接続することができ、かつ、第2外部回路から入力される起電力を第1電解用電極および第2電解用電極に出力し電解液からそれぞれ第1気体および第2気体を発生させる回路に切り換えることができる請求項1~29のいずれか1つに記載の装置。
  31.  前記切換部が切り換える回路を選択し、選択した結果を前記切換部に出力する切換選択部をさらに備え、
    前記切換部は、入力した前記切換選択部が選択した結果に基づき回路の切り換えを行う請求項1~30のいずれか1つに記載の装置。
  32.  前記切換選択部は、前記装置に照射される日射量の予測、降水確率、日時、気温および電力需要予測のうち少なくとも1つに基づき前記切換部が切り換える回路を選択する請求項31に記載の装置。
PCT/JP2011/058811 2010-05-19 2011-04-07 太陽電池一体型気体製造装置 WO2011145406A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/698,774 US9029691B2 (en) 2010-05-19 2011-04-07 Solar-cell-integrated gas production device
CN201180024700.9A CN102985597B (zh) 2010-05-19 2011-04-07 太阳能电池集成的气体产生装置
EP11783343.4A EP2573209B1 (en) 2010-05-19 2011-04-07 Solar-cell-integrated gas production device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-115319 2010-05-19
JP2010115319 2010-05-19
JP2010-231710 2010-10-14
JP2010231710A JP5802374B2 (ja) 2010-05-19 2010-10-14 太陽電池一体型気体製造装置

Publications (1)

Publication Number Publication Date
WO2011145406A1 true WO2011145406A1 (ja) 2011-11-24

Family

ID=44991521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058811 WO2011145406A1 (ja) 2010-05-19 2011-04-07 太陽電池一体型気体製造装置

Country Status (5)

Country Link
US (1) US9029691B2 (ja)
EP (1) EP2573209B1 (ja)
JP (1) JP5802374B2 (ja)
CN (1) CN102985597B (ja)
WO (1) WO2011145406A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040988A1 (ja) * 2013-09-17 2015-03-26 株式会社 東芝 化学反応装置
JP2017218679A (ja) * 2017-09-20 2017-12-14 株式会社東芝 化学反応装置およびその動作方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5993768B2 (ja) * 2013-03-28 2016-09-14 富士フイルム株式会社 ガス製造装置
NL2011796C2 (en) * 2013-11-13 2015-05-19 Univ Delft Tech High efficiency photoelectrochemical device for splitting water.
JP6184312B2 (ja) * 2013-12-13 2017-08-23 富士フイルム株式会社 人工光合成アレイ
JP6230451B2 (ja) * 2014-03-11 2017-11-15 株式会社東芝 光化学反応装置および化学反応装置
JP6271311B2 (ja) * 2014-03-24 2018-01-31 株式会社東芝 電気化学反応装置
JP6316436B2 (ja) 2014-08-11 2018-04-25 富士フイルム株式会社 水素発生電極、および人工光合成モジュール
WO2016052002A1 (ja) * 2014-09-29 2016-04-07 富士フイルム株式会社 人工光合成モジュール
DK3184670T3 (da) 2015-12-23 2019-07-22 Repsol Sa Substratelektrode- (se) interface-illuminerede fotoelektroder og fotoelektrokemiske celler
CN105483745A (zh) * 2015-12-31 2016-04-13 深圳市昂特尔太阳能投资有限公司 一种高倍聚光太阳能光电氢气转换装置
CN107541747B (zh) * 2016-06-27 2019-02-19 中国科学院金属研究所 一种储能器件集成式光电化学水分解电池的设计方法
EP3500694B1 (en) * 2016-08-19 2021-12-29 Ecole Polytechnique Fédérale de Lausanne (EPFL) Integrated photo-electrochemical device for concentrated irradiation
US11447878B2 (en) * 2018-03-13 2022-09-20 James Bartkowiak Hydrogen generating cell
CN114318385B (zh) * 2021-12-30 2024-05-10 苏州光汇新能源科技有限公司 一体式光电化学制氢模组和光电化学制氢系统
FR3141947A1 (fr) 2022-11-10 2024-05-17 Engie Cellule d’électrolyse photo-assistée à boîtier conducteur et électrolyseur la comportant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192275A (ja) * 1998-12-25 2000-07-11 Toshiba Corp 水の電気分解装置
JP2003288955A (ja) 2002-03-27 2003-10-10 Research Institute Of Innovative Technology For The Earth 太陽光を利用した水素の製造方法及び太陽光を利用した水素の製造装置
JP2007524762A (ja) 2004-02-18 2007-08-30 ゼネラル・モーターズ・コーポレーション 水素発生の方法および装置
JP2008010593A (ja) * 2006-06-28 2008-01-17 National Institute Of Advanced Industrial & Technology 光電気化学エネルギー変換システム及び光電気化学水分解システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341607A (en) * 1980-12-08 1982-07-27 E:F Technology, Inc. Solar power system requiring no active control device
US4352722A (en) * 1981-03-12 1982-10-05 General Atomic Company Integrated photovoltaic electrolytic cell
JP2001338672A (ja) * 2000-05-26 2001-12-07 Shinko Pantec Co Ltd 家庭用電力供給システム
JP2002194579A (ja) * 2000-10-18 2002-07-10 Honda Motor Co Ltd 水電解システム
US20030006136A1 (en) 2001-07-03 2003-01-09 Yutaka Hiki Water electrolyzing system
JP2004197167A (ja) * 2002-12-18 2004-07-15 Honda Motor Co Ltd 水素製造装置
JP2005168101A (ja) * 2003-11-28 2005-06-23 Daiwa House Ind Co Ltd 自然エネルギーを利用した24時間換気システム
WO2005081326A1 (en) * 2004-02-19 2005-09-01 The University Of Toledo Interconnected photoelectrochemical cell
US20050183962A1 (en) 2004-02-24 2005-08-25 Oakes Thomas W. System and method for generating hydrogen gas using renewable energy
US20060088739A1 (en) * 2004-10-26 2006-04-27 Energy Conversion Devices, Inc. Power generation and supply system
CN101565832A (zh) * 2008-04-25 2009-10-28 清华大学 太阳能电池电解水制氢系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192275A (ja) * 1998-12-25 2000-07-11 Toshiba Corp 水の電気分解装置
JP2003288955A (ja) 2002-03-27 2003-10-10 Research Institute Of Innovative Technology For The Earth 太陽光を利用した水素の製造方法及び太陽光を利用した水素の製造装置
JP2007524762A (ja) 2004-02-18 2007-08-30 ゼネラル・モーターズ・コーポレーション 水素発生の方法および装置
JP2008010593A (ja) * 2006-06-28 2008-01-17 National Institute Of Advanced Industrial & Technology 光電気化学エネルギー変換システム及び光電気化学水分解システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2573209A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040988A1 (ja) * 2013-09-17 2015-03-26 株式会社 東芝 化学反応装置
JP2015059231A (ja) * 2013-09-17 2015-03-30 株式会社東芝 化学反応装置
US10472724B2 (en) 2013-09-17 2019-11-12 Kabushiki Kaisha Toshiba Chemical reaction device
JP2017218679A (ja) * 2017-09-20 2017-12-14 株式会社東芝 化学反応装置およびその動作方法

Also Published As

Publication number Publication date
EP2573209B1 (en) 2016-07-27
US9029691B2 (en) 2015-05-12
US20130068296A1 (en) 2013-03-21
CN102985597A (zh) 2013-03-20
EP2573209A4 (en) 2014-11-19
JP5802374B2 (ja) 2015-10-28
EP2573209A1 (en) 2013-03-27
JP2012001420A (ja) 2012-01-05
CN102985597B (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5802374B2 (ja) 太陽電池一体型気体製造装置
JP4594438B1 (ja) 水素製造装置および水素製造方法
JP5663254B2 (ja) 水素製造装置および水素製造方法
JP5792560B2 (ja) 発電システム
JP5676218B2 (ja) 気体製造装置、気体製造方法および気体製造装置アレイ
JP5860636B2 (ja) アニオン交換膜型燃料電池システム
JP5802403B2 (ja) 水素製造装置および水素製造方法
JP5785736B2 (ja) 水素製造装置および水素製造方法
JP5427653B2 (ja) 気体製造装置および気体製造方法
JP2013253294A (ja) 水電解装置
JP5719576B2 (ja) 気体製造装置および気体製造方法
JP2012041623A (ja) 水電解装置
WO2013011843A1 (ja) 電解槽、気体製造装置および気体製造方法
WO2013073271A1 (ja) 発電装置
WO2012056836A1 (ja) 太陽光発電システム
WO2012114787A1 (ja) 水素製造装置および水素製造方法
JP2012021197A (ja) 気体製造装置
JP2011116625A (ja) 水素製造装置および水素製造方法
JP2012094684A (ja) 太陽光発電システム
JP2012107278A (ja) 気体製造装置
JP2011236466A (ja) 気体製造装置
JP2012094686A (ja) 太陽光発電システム
JP2011162428A (ja) 水素製造装置および水素製造方法
JP2012094685A (ja) 太陽光発電システムおよび制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024700.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13698774

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011783343

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011783343

Country of ref document: EP