JP5719576B2 - 気体製造装置および気体製造方法 - Google Patents

気体製造装置および気体製造方法 Download PDF

Info

Publication number
JP5719576B2
JP5719576B2 JP2010264026A JP2010264026A JP5719576B2 JP 5719576 B2 JP5719576 B2 JP 5719576B2 JP 2010264026 A JP2010264026 A JP 2010264026A JP 2010264026 A JP2010264026 A JP 2010264026A JP 5719576 B2 JP5719576 B2 JP 5719576B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
electrode
electrolysis
electrolysis electrode
conversion unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010264026A
Other languages
English (en)
Other versions
JP2012112023A (ja
JP2012112023A5 (ja
Inventor
吉田 章人
章人 吉田
俊輔 佐多
俊輔 佐多
正樹 加賀
正樹 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010264026A priority Critical patent/JP5719576B2/ja
Priority to PCT/JP2011/070865 priority patent/WO2012070296A1/ja
Publication of JP2012112023A publication Critical patent/JP2012112023A/ja
Publication of JP2012112023A5 publication Critical patent/JP2012112023A5/ja
Application granted granted Critical
Publication of JP5719576B2 publication Critical patent/JP5719576B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、気体製造装置および気体製造方法に関する。
近年、化石燃料資源の枯渇および地球温暖化ガス排出抑制などの観点から、再生可能エネルギーの利用が望まれている。再生可能エネルギー源としては太陽光、水力、風力、地熱、潮力、バイオマスなど多岐にわたるが、その中でも、太陽光は利用可能なエネルギー量が大きいこと、他の再生可能エネルギーに対し地理的制約が比較的少ないことから、太陽光から効率よく利用可能なエネルギーを生み出す技術の早期な開発と普及が望まれている。
太陽光から生み出される利用可能なエネルギーの形態としては、太陽電池や太陽光熱タービンを用いて製造される電気エネルギー、太陽光エネルギーを熱媒体に集めることによる熱エネルギー、その他にも太陽光を用いた物質還元による液体燃料や水素などの貯蔵可能な燃料エネルギー等が挙げられる。太陽電池技術および太陽熱利用技術については、すでに実用化されている技術が多いものの、エネルギー利用効率が未だ低いことと、電気および熱を作り出す際のコストが依然高いことから、これらの改善に向けた技術開発が行われている。さらに、これら電気や熱というエネルギー形態は、短期のエネルギー変動を補完するような使用法は実現できるものの、例えば季節変動などの長期での変動を補完することは極めて困難であることや、エネルギー量の増加により発電設備の稼働率低下を招く可能性があることが課題である。これに対し、液体燃料や水素など、エネルギーを物質として蓄えておくことは、長期変動を効率よく補完するとともに発電設備の稼働率を高める技術として極めて有力であり、今後エネルギー利用効率を最大限に高め、二酸化炭素の排出量を徹底的に削減するためには必要不可欠な技術である。
貯蔵可能な燃料の形態としては、炭化水素などの液体燃料や、バイオガス、水素などの気体燃料、バイオマス由来の木材ペレットや太陽光で還元された金属などの固体燃料などに大別することができる。インフラ整備の容易性、エネルギー密度の観点では液体燃料、燃料電池などとのトータルの利用効率向上の観点では水素をはじめとする気体燃料、貯蔵可能性とエネルギー密度の観点では固体燃料というように、各形態において長所短所を有するが、原料として容易に入手可能な水を利用できる観点から、太陽光により水を分解することによる水素製造技術が特に注目されている。
水を原料として太陽光エネルギーを利用し水素を製造する方法としては、酸化チタン等の光触媒に白金を担持させ、この物質を水中に入れ光照射することにより半導体中で電荷分離を行い、電解液中のプロトンを還元、水を酸化することによる光分解法や、高温ガス炉などの熱エネルギーを利用して水を高温で直接分解する、あるいは金属等の酸化還元と共役させて間接的に分解する熱分解法、藻類など光を利用する微生物の代謝を利用した生物法、太陽電池で発電した電気と水の電気分解水素製造装置を組み合わせた水電気分解法、太陽電池に使用される光電変換材料に水素発生触媒、酸素発生触媒を担持することにより、光電変換で得られる電子と正孔を水素生成触媒、酸素発生触媒で反応に利用する光起電力法等が挙げられる。この中で、光電変換部と水素生成部を一体化することにより、小型の水素製造装置を作製することの可能性を有するものは光分解法、生物法、光起電力法と考えられるが、太陽光エネルギーの変換効率の観点から、光起電力法は実用化に最も近い技術の一つと考えられる。
これまでに、光分解法や光起電力法による光電変換と水素発生を一体化した水素製造装置の例が開示されている。光分解法では例えば、特許文献1によると、ルテニウム錯体を吸着させた酸化チタンの光触媒電極と、白金電極、ヨウ素もしくは鉄の酸化還元を利用した装置が開示されている。また、特許文献2、3によると、2層の光触媒をタンデム接続し、白金カウンター電極を接続、間にイオン交換膜を挟むことにより一体化構造を採用している。一方、光起電力法では、光電変換部と水素生成部、酸素生成部を一体化した水素製造装置のコンセプトが発表されている(非特許文献1)。これによると、電荷分離は光電変換部、水素生成と酸素生成はそれぞれに対応する触媒を用いることにより行われる。光電変換部は太陽電池に利用される材料が用いられている。例えば、非特許文献2の場合、3層のシリコンp−i−n層で電荷分離を行った上で、水素発生は白金触媒が担い、酸素発生は酸化ルテニウムが担っている。また、非特許文献3では、異なる波長の光を吸収する多接合光電変換材料を、水素発生触媒にPt、酸素発生触媒にRuO2を用い、高効率化を図っている。また特許文献4や非特許文献3では、基盤上に、水素発生触媒(NiFeO)と、3層のシリコンp−i−nを並列に積層、シリコン層の上にさらに酸素発生触媒(Co−Mo)を担持することにより、一体化水素製造装置を作製している。
また、光電変換部と水電解電極とを組み合わせた水素製造装置では、光電変換部などが電解液により侵食されるおそれがあるため、光電変換部などを電解液と接触させないために保護部材を設ける必要がある。
特開2006−89336号公報 特表2003−504799号公報 特表2004−504934号公報 特開2003−288955号公報
Proceedings of the National Academy of Sciences of the United States of America、2006年、43巻、15729−15735頁 Applied Physics Letters、1989年、55巻、386−387頁 Journal of Physical Chemistry,2009年、113巻、14575−14581頁 International Journal of Hydrogen Energy、2003年、28巻、1167−1169頁
しかし、従来の光電変換部が受光することにより生じる起電力を利用した気体製造装置では、電解用電極を電解液に接触させると光電変換部も電解液に接触してしまうため、光電変換部全体に電解液接触防止のための保護部材を設ける必要があった。
本発明は、このような事情に鑑みてなされたものであり、電解液接触防止のための保護部材を設ける部分をより少なくすることができ、製造コストを低減することができる気体製造装置を提供する。
本発明は、受光面およびその裏面を有する光電変換部と、前記裏面の上に並べて設けられた第1電解用電極および第2電解用電極と、第1または第2電解用電極の周縁部上に設けられたシール部とを備え、第1および第2電解用電極が電解液と接触するとき、第1および第2電解用電極は、前記光電変換部が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体が発生するように設けられ、前記シール部は、電解液に対する耐食性を有し、かつ、第1または第2電解用電極と前記光電変換部との間に電解液が流入しないように設けられたことを特徴とする気体製造装置を提供する。
本発明によれば、第1および第2電解用電極は、光電変換部が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体が発生するように設けられているため、第1電解用電極の表面で第1気体を発生させることができ、第2電解用電極の表面で第2気体を発生させることができる。
本発明によれば、光電変換部の裏面上に第1電解用電極および第2電解用電極を設けるため、光電変換部の受光面に電解液を介さず光を入射させることができ、電解液による入射光の吸収や入射光の散乱を防止することができる。このことにより、光電変換部へ入射光の量を多くすることができ、光利用効率を高くすることができる。
本発明によれば、光電変換部の裏面上に第1電解用電極および第2電解用電極を設けるため、受光面に入射する光が、第1および第2電解用電極、ならびにそこからそれぞれ発生する第1気体及び第2気体により吸収や散乱されることはない。このことにより、光電変換部へ入射光の量を多くすることができ、光利用効率を高くすることができる。
本発明によれば、光電変換部の裏面上に第1電解用電極と第2電解用電極とを並べて設けるため、光電変換部と電解液とが接触することを防止するためのシール部を設ける部分をより少なくすることができる。このことにより、原材料および製造工程における低コスト化を図ることができる。
本発明によれば、第1または第2電解用電極の周縁部上に設けられたシール部が第1または第2電解用電極と前記光電変換部との間に電解液が流入しないように設けられるため、このシール部により、第1または第2電解用電極と下地層(例えば、絶縁部、電極、導電部など)との界面に電解液が流入することを防止することができる。このことにより、電解用電極が下地層から剥離することを防止することができ、気体製造装置の耐久性および信頼性を向上させることができる。また、第1または第2電解用電極と下地層との界面を介して電解液が光電変換部と接触することを防止することができる。
本発明の一実施形態の気体製造装置の構成を示す概略平面図である。 図1の点線A−Aにおける気体製造装置の概略断面図である。 本発明の一実施形態の気体製造装置の構成を示す概略裏面図である。 本発明の一実施形態の気体製造装置の構成を示す概略断面図である。 本発明の一実施形態の気体製造装置の構成を示す概略断面図である。 本発明の一実施形態の気体製造装置の構成を示す概略断面図である。 本発明の一実施形態の気体製造装置の構成を示す概略断面図である。 本発明の一実施形態の気体製造装置の構成を示す概略断面図である。 本発明の一実施形態の気体製造装置の構成を示す概略平面図である。 図9の一点鎖線B−Bにおける気体製造装置の概略断面図である。 本発明の一実施形態の気体製造装置の構成を示す概略裏面図である。 本発明の一実施形態の気体製造装置の構成を示す概略断面図である。 本発明の一実施形態の気体製造装置の構成を示す概略断面図である。
本発明の気体製造装置は、受光面およびその裏面を有する光電変換部と、前記裏面の上に並べて設けられた第1電解用電極および第2電解用電極と、第1または第2電解用電極の周縁部上に設けられたシール部とを備え、第1および第2電解用電極が電解液と接触するとき、第1および第2電解用電極は、前記光電変換部が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体が発生するように設けられ、前記シール部は、電解液に対する耐食性を有し、かつ、第1または第2電解用電極と前記光電変換部との間に電解液が流入しないように設けられたことを特徴とする。
本発明の気体製造装置において、前記光電変換部は、受光することによりその受光面と裏面との間に起電力が生じ、第1電解用電極は、前記光電変換部の裏面と電気的に接続するように設けられ、第2電解用電極は、前記光電変換部の受光面と電気的に接続するように設けられたことが好ましい。
このような構成によれば、光電変換部に積層構造のものを利用することができる。
本発明の気体製造装置において、第2電解用電極と前記光電変換部の裏面との間に設けられた絶縁部をさらに備えたことが好ましい。
このような構成によれば、第2電解用電極と光電変換部の裏面との間にリーク電流が発生するのを防止することができる。
本発明の気体製造装置において、前記シール部は、第2電解用電極と前記絶縁部との間の界面に電解液が流入しないように設けられたことが好ましい。
このような構成によれば、第2電解用電極と絶縁部との間に電解液が流入することに起因する第2電解用電極の剥離を防止することができる。
本発明の気体製造装置において、前記光電変換部の受光面に接触する第1電極をさらに備えることが好ましい。
このような構成によれば、内部抵抗を小さくすることができる。
本発明の気体製造装置において、第1電極と第2電解用電極とを電気的に接続する第1導電部をさらに備えることが好ましい。
このような構成によれば、光電変換部の受光面と第2電解用電極とを電気的に接続することができる。
本発明の気体製造装置において、第1導電部は、前記光電変換部を貫通するコンタクトホールに設けられたことが好ましい。
このような構成によれば、光電変換部の受光面と第2電解用電極との間の配線距離を短くすることができ、内部抵抗を小さくすることができる。
本発明の気体製造装置において、前記絶縁部は、前記光電変換部の側面を覆うように設けられ、第1導電部は、前記絶縁部の一部であり前記光電変換部の側面を覆う部分の上に設けられたことが好ましい。
このような構成によれば、第1導電部を少ない工程で設けることができ、製造コストを低減することができる。
本発明の気体製造装置において、前記絶縁部は、前記光電変換部の側面を覆うように設けられ、第2電解用電極は、前記絶縁部の一部であり前記光電変換部の側面を覆う部分の上に設けられ、かつ、第1電極と接触することが好ましい。
このような構成によれば、第1導電部を設けることなく、第1電極と第2電解用電極とを電気的に接続することができる。
本発明の気体製造装置において、前記絶縁部と第2電解用電極との間に第2導電部をさらに備え、前記シール部は、第2電解用電極と第2導電部との間の界面に電解液が流入しないように設けられたことが好ましい。
このような構成によれば、第2電解用電極と第2導電部との間に電解液が流入することに起因する第2電解用電極の剥離を防止することができる。
本発明の気体製造装置において、前記光電変換部の裏面と第1電解用電極との間、および前記光電変換部の裏面と前記絶縁部との間に設けられた第2電極をさらに備え、前記シール部は、第1電解用電極と第2電極との間の界面に電解液が流入しないように設けられたことが好ましい。
このような構成によれば、第1電解用電極と第2電極との間に電解液が流入することに起因する第1電解用電極の剥離を防止することができる。
本発明の気体製造装置において、前記光電変換部は、p型半導体層、i型半導体層およびn型半導体層からなる光電変換層を有することが好ましい。
このような構成によれば、光電変換部に光を入射させることにより起電力を生じさせることができる。
本発明の気体製造装置において、前記光電変換部は、受光することにより前記光電変換部の裏面の第1および第2区域間に電位差が生じ、第1区域は、第1電解用電極と電気的に接続するように設けられ、第2区域は、第2電解用電極と電気的に接続するように設けられたことが好ましい。
このような構成によれば、光電変換部の第1区域と第2区域との間生じた起電力を第1電解用電極と第2電解用電極とに出力することができる。
本発明の気体製造装置において、第1および第2電解用電極と前記光電変換部の裏面に設けられ、かつ、第1区域上および第2区域上に開口を有する絶縁部をさらに備えることが好ましい。
このような構成によれば、第1区域と第2区域との間に、光電変換部が受光することにより生じる起電力を効率よく発生させることができる。
本発明の気体製造装置において、前記シール部は、第1電解用電極と前記絶縁部との間の界面、または第2電解用電極と前記絶縁部との間の界面に電解液が流入しないように設けられたことが好ましい。
このような構成によれば、第1電解用電極と絶縁部との間に電解液が流入することに起因する第1電解用電極の剥離を防止することができ、第2電解用電極と絶縁部との間に電解液が流入することに起因する第2電解用電極の剥離を防止することができる。
本発明の気体製造装置において、第1電解用電極と前記絶縁部との間に設けられた第3導電部、および第2電解用電極と前記絶縁部との間に設けられた第2導電部をさらに備え、前記シール部は、第1電解用電極と第3導電部との間の界面、または第2電解用電極と第2導電部との間の界面に電解液が流入しないように設けられたことが好ましい。
このような構成によれば、光電変換部が受光することにより生じる起電力を第1電解用電極と第2電解用電極とに出力するときのオーミックロスを低減することができる。また、第1電解用電極と第3導電部との間に電解液が流入することに起因する第1電解用電極の剥離を防止することができ、第2電解用電極と第2導電部との間に電解液が流入することに起因する第2電解用電極の剥離を防止することができる。
本発明の気体製造装置において、第1区域は、第3導電部を介して第1電解用電極と電気的に接続するように設けられ、第2区域は、第2導電部を介して第2電解用電極と電気的に接続するように設けられたことが好ましい。
このような構成によれば、光電変換部が受光することにより生じる起電力を第1電解用電極と第2電解用電極とに出力するときのオーミックロスを低減することができる。
本発明の気体製造装置において、前記光電変換部は、n型半導体部およびp型半導体部を有する少なくとも1つの半導体材料からなり、第1および第2区域のうち、一方は前記n型半導体部の一部であり、他方は前記p型半導体部の一部であることが好ましい。
このような構成によれば、光電変換部が受光することにより、光電変換部の裏面の第1および第2区域間に起電力を生じさせることができる。
本発明の気体製造装置において、透光性基板をさらに備え、前記光電変換部は、前記透光性基板の上に設けられたことが好ましい。
このような構成によれば、光電変換部を透光性基板の上に形成することができる。
本発明の気体製造装置において、前記光電変換部は、直列接続した複数の光電変換層を含み、前記複数の光電変換層は、受光することにより生じる起電力を第1電解用電極および第2電解用電極に供給するように設けられたことが好ましい。
このような構成によれば、容易に高電圧の起電力を第1および第2電解用電極に出力することができる。
本発明の気体製造装置において、各光電変換層は、第4導電部により直列接続されたことが好ましい。
このような構成によれば、各光電変換層を並べて設けることができる。
本発明の気体製造装置において、第4導電部は、前記光電変換層の受光面側に設けられた透光性電極と、前記光電変換層の裏面側に設けられた裏面電極とを含むことが好ましい。
このような構成によれば、各光電変換層を並べて設けることができる。
本発明の気体製造装置において、第1電解用電極および第2電解用電極のうち、一方は電解液からH2を発生させる水素発生部であり、他方は電解液からO2を発生させる酸素発生部であり、前記水素発生部および前記酸素発生部は、それぞれ電解液からH2が発生する反応の触媒である水素発生触媒および電解液からO2が発生する反応の触媒である酸素発生触媒を含むことが好ましい。
このような構成によれば、燃料電池の燃料となる水素を製造することができる。
本発明の気体製造装置において、前記水素発生部および前記酸素発生部のうち少なくとも一方は、前記受光面の面積より大きい触媒表面積を有することが好ましい。
このような構成によれば、より効率的に水素および酸素を製造することができる。
本発明の気体製造装置において、前記水素発生部および前記酸素発生部のうち少なくとも一方は、触媒が担持された多孔質の導電体であることが好ましい。
このような構成によれば、水素または酸素が発生する反応の触媒面積を広くすることができる。
本発明の気体製造装置において、前記水素発生触媒は、Pt、Ir、Ru、Pd、Rh、Au、Fe、NiおよびSeのうち少なくとも1つを含むことが好ましい。
このような構成によれば、電解液から水素を効率よく発生させることができる。
本発明の気体製造装置において、前記酸素発生触媒は、Mn、Ca、Zn、CoおよびIrのうち少なくとも1つを含むことが好ましい。
このような構成によれば、電解液から酸素を効率よく発生させることができる。
本発明の気体製造装置において、透光性基板と電解液室とをさらに備え、前記光電変換部は、前記透光性基板の上に設けられ、第1電解用電極および第2電解用電極の上に天板をさらに備え、前記電解液室は、第1電解用電極および第2電解用電極と前記天板との間に設けられたことが好ましい。
このような構成によれば、第1電解用電極の電解液に接触可能な面と、第2電解用電極の電解液に接触可能な面とを電解液室に面して設けることができ、第1および第2電解用電極を電解液に接触させることができる。
本発明の気体製造装置において、第1電解用電極と前記天板との間の電解液室および第2電解用電極と天板との間の電解液室とを仕切る隔壁をさらに備えることが好ましい。
このような構成によれば、隔壁により第1気体と第2気体を分離することができる。
本発明の気体製造装置において、前記隔壁は、イオン交換体を含むことが好ましい。
このような構成によれば、電解液中で生じるイオン濃度の不均衡を容易に解消することができる。
本発明の気体製造装置において、前記隔壁は、前記シール部の一部であることが好ましい。
このような構成によれば、隔壁とシール部とを同一部材で形成することができ、製造コストを低減することができる。
また、本発明は、本発明の気体製造装置を前記光電変換部の受光面が水平面に対し傾斜するように設置し、前記気体製造装置の下部から前記気体製造装置に電解液を導入し、太陽光を前記光電変換部の受光面に入射させることにより第1電解用電極および第2電解用電極からそれぞれ第1気体および第2気体を発生させ、前記気体製造装置の上部から第1気体および第2気体を排出する気体製造方法も提供する。
本発明の気体製造方法によれば、光電変換部の受光面に光を入射させることにより、第1気体および第2気体を製造することができる。
以下、本発明の一実施形態を図面を用いて説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。
気体製造装置の構成
図1は本発明の一実施形態の気体製造装置の構成を示す概略平面図である。図2は、図1の点線A−Aにおける気体製造装置の概略断面図である。図3は本発明の一実施形態の気体製造装置の構成を示す概略裏面図である。また図4〜8はそれぞれ本発明の一実施形態の気体製造装置の構成を示す概略断面図であり、図1の点線A−Aにおける気体製造装置の概略断面図に対応する。
また、図9は本発明の一実施形態の気体製造装置の構成を示す概略平面図である。図10は、図9の点線B−Bにおける気体製造装置の概略断面図である。図11は本発明の一実施形態の気体製造装置の構成を示す概略裏面図である。また図12、13はそれぞれ本発明の一実施形態の気体製造装置の構成を示す概略断面図であり、図9の点線B−Bにおける気体製造装置の概略断面図に対応する。
本実施形態の気体製造装置23は、受光面およびその裏面を有する光電変換部2と、前記裏面の上に並べて設けられた第1電解用電極8および第2電解用電極7と、第1または第2電解用電極8、7の周縁部上に設けられたシール部9とを備え、第1および第2電解用電極8、7が電解液と接触するとき、第1および第2電解用電極8、7は、光電変換部2が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体が発生するように設けられ、シール部9は、電解液に対する耐食性を有し、かつ、第1または第2電解用電極8、7と光電変換部2との間に電解液が流入しないように設けられたことを特徴とする。
また、本実施形態の気体製造装置23は、透光性基板1を備えてもよい。
以下、本実施形態の気体製造装置23について説明する。
1.透光性基板
透光性基板1は、本実施形態の気体製造装置23が備えてもよい。また、光電変換部2は、受光面が透光性基板1側となるように透光性基板1の上に設けられてもよい。なお、光電変換部2が、半導体基板などからなり一定の強度を有する場合、透光性基板1は省略することが可能である。また、光電変換部2が樹脂フィルムなど柔軟性を有する材料の上に形成可能な場合、透光性基板1は省略することができる。
また、透光性基板1は、本気体製造装置を構成するための土台となる部材である。また、太陽光を光電変換部2の受光面で受光するためには、透明であり光透過率が高いことが好ましいが、光電変換部2へ効率的な光の入射が可能な構造であれば、光透過率に制限はない。
光透過率が高い基板材料として、例えば、ソーダガラス、石英ガラス、パイレックス(登録商標)、合成石英板等の透明なリジッド材、あるいは透明樹脂板やフィルム材等が好適に用いられる。化学的および物理的安定性を備える点より、ガラス基板を用いることが好ましい。
透光性基板1の光電変換部2側の表面には、入射した光が光電変換部2の表面で有効に乱反射されるように、微細な凹凸構造に形成することができる。この微細な凹凸構造は、例えば反応性イオンエッチング(RIE)処理もしくはブラスト処理等の公知の方法により形成することが可能である。
2.第1電極、第1導電部
第1電極4は、透光性基板1の上に設けることができ、光電変換部2の受光面と接触するように設けることができる。また、第1電極4は透光性を有してもよい。また、第1電極4は、透光性基板1を省略可能の場合、光電変換部2の受光面に直接設けられてもよい。第1電極4は、第2電解用電極7と電気的に接続することができる。第1電極4を設けることにより、光電変換部2の受光面と第2電解用電極7との間に流れる電流を大きくすることができる。また、光電変換部2が図7、8、13のように光電変換部2の裏面の第1区域と第2区域との間に起電力が生じるものである場合、第1電極4は不要である。
第1電極4は、図2、4、12のように第1導電部10を介して第2電解用電極7と電気的に接続してもよく、図5、6、10のように第2電解用電極7と接触してもよい。
第1電極4は、例えば、ITO、SnO2などの透明導電膜からなってもよく、Ag、Auなどの金属のフィンガー電極からなってもよい。
以下に第1電極4を透明導電膜とした場合について説明する。
透明導電膜は、光電変換部2の受光面と第2電解用電極7とのコンタクトを取りやすくするために用いている。
一般に透明電極として使用されているものを用いることが可能である。具体的にはIn−Zn−O(IZO)、In−Sn−O(ITO)、ZnO−Al、Zn−Sn−O、SnO2等を挙げることができる。なお本透明導電膜は、太陽光の光線透過率が85%以上、中でも90%以上、特に92%以上であることが好ましい。このことにより光電変換部2が光を効率的に吸収することができるためである。
透明導電膜の作成方法としては公知の方法を用いることができ、スパッタリング、真空蒸着、ゾルゲル法、クラスタービーム蒸着法、PLD(Pulse Laser Deposition)法などが挙げられる。
第1導電部10は、第1電極4と第2電解用電極7とにそれぞれ接触するように設けることができる。第1導電部10を設けることにより、容易に光電変換部2の受光面に接触した第1電極4と第2電解用電極7とを電気的に接続することができる。
また、第1導電部10は、図2、4のように光電変換部2を貫通するコンタクトホールに設けられてもよい。このことにより、光電変換部2の受光面と第2電解用電極7との間の電流経路を短くすることができ、より効率的に第1気体および第2気体を発生させることができる。また、第1導電部10が設けられたコンタクトホールは、1つまたは複数でもよく、円形の断面を有してもよい。
また、第1導電部10は、図12のように光電変換部2の側面を覆うように設けられてもよい。
第1導電部10の材料は、導電性を有しているものであれば特に制限されない。導電性粒子を含有するペースト、例えばカーボンペースト、Agペースト等をスクリーン印刷法、インクジェット法等で塗布し乾燥もしくは焼成する方法や、原料ガスを用いたCVD法等により製膜する方法、PVD法、蒸着法、スパッタ法、ゾルゲル法、電気化学的な酸化還元反応を利用した方法等が挙げられる。
3.光電変換部
光電変換部2は、受光面およびその裏面を有し、光電変換部2の裏面の上に第1電解用電極8と第2電解用電極7が設けられる。なお、受光面とは、光電変換するための光を受光する面であり、裏面とは、受光面の裏の面である。また、光電変換部2は、第1電極4が設けられた透光性基板1の上に受光面を下にして設けることができる。光電変換部2は、例えば、図2、4〜6、10、12のように受光面と裏面との間に起電力が生じるものであってもよく、図7、8、13のように光電変換部2の裏面の第1区域と第2区域との間に起電力が生じるものであってもよい。図7、8、13のような光電変換部2は、n型半導体領域37とp型半導体領域36を形成した半導体基板などにより形成することができる。
光電変換部2の形は、特に限定されないが、例えば、方形状とすることができる。
光電変換部2は、入射光により電荷分離することができ、起電力が生じるものであれば、特に限定されないが、例えば、シリコン系半導体を用いた光電変換部、化合物半導体を用いた光電変換部、色素増感剤を利用した光電変換部、有機薄膜を用いた光電変換部などである。
第1気体および第2気体のうちどちらか一方が水素であり、他方が酸素の場合、光電変換部2は、光を受光することにより、第1電解用電極8および第2電解用電極7において水素と酸素が発生するために必要な起電力が生じる材料を使用する必要がある。第1電解用電極8と第2電解用電極7の電位差は、水分解のための理論電圧(1.23V)より大きくする必要があり、そのためには光電変換部2で十分大きな電位差を生み出す必要がある。そのため光電変換部2は、pn接合など起電力を生じさせる部分を二接合以上直列に接続することが好ましい。例えば、図6、8、12のように並べて設けられた光電変換層を第4導電部33により直列接続した構造を有することができる。
光電変換を行う材料は、シリコン系半導体、化合物半導体、有機材料をベースとしたものなどが挙げられるが、いずれの光電変換材料も使用することが可能である。また、起電力を大きくするために、これらの光電変換材料を積層することが可能である。積層する場合には同一材料で多接合構造を形成することが可能であるが、光学的バンドギャップの異なる複数の光電変換層を積層し、各々の光電変換層の低感度波長領域を相互に補完することにより、広い波長領域にわたり入射光を効率よく吸収することが可能となる。これらの複数の光電変換層は、それぞれ異なるバンドギャップを有することが好ましい。このような構成によれば、光電変換部2で生じる起電力をより大きくすることができ、電解液をより効率的に電気分解することができる。
また、光電変換層間の直列接続特性の改善や、光電変換部2で発生する光電流の整合のために、層間に透明導電膜等の導電体を介在させることが可能である。これにより光電変換部2の劣化を抑制することが可能となる。
光電変換部2の例を以下に具体的に説明する。また、光電変換部2は、これらを組み合わせたものでもよい。また、以下の光電変換部2の例は、矛盾しない限り光電変換層とすることもできる。
3−1.シリコン系半導体を用いた光電変換部
シリコン系半導体を用いた光電変換部2は、例えば、単結晶型、多結晶型、アモルファス型、球状シリコン型、及びこれらを組み合わせたもの等が挙げられる。いずれもp型半導体とn型半導体が接合したpn接合を有することができる。また、p型半導体とn型半導体との間にi型半導体を設けたpin接合を有するものとすることもできる。また、pn接合を複数有するもの、pin接合を複数有するもの、pn接合とpin接合を有するものとすることもできる。
シリコン系半導体とは、シリコンを含む半導体であり、例えば、シリコン、シリコンカーバイド、シリコンゲルマニウムなどである。また、シリコンなどにn型不純物またはp型不純物が添加されたものも含み、また、結晶質、非晶質、微結晶のものも含む。
また、シリコン系半導体を用いた光電変換部2は、透光性基板1の上に形成された薄膜または厚膜の光電変換層であってもよく、また、シリコンウェハなどのウェハにpn接合またはpin接合を形成したものでもよく、また、pn接合またはpin接合を形成したウェハの上に薄膜の光電変換層を形成したものでもよい。
シリコン系半導体を用いた光電変換部2の形成例を以下に示す。
透光性基板1上に積層した第1電極4上に、第1導電型半導体層をプラズマCVD法等の方法で形成する。この第1導電型半導体層としては、導電型決定不純物原子濃度が1×1018〜5×1021/cm3程度ドープされた、p+型またはn+型の非晶質Si薄膜、または多結晶あるいは微結晶Si薄膜とする。第1導電型半導体層の材料としては、Siに限らず、SiCあるいはSiGe,Six1-x等の化合物を用いることも可能である。
このように形成された第1導電型半導体層上に、結晶質Si系光活性層として多結晶あるいは微結晶の結晶質Si薄膜をプラズマCVD法等の方法で形成する。なお、導電型は第1導電型半導体よりドーピング濃度が低い第1導電型とするか、あるいはi型とする。結晶質Si系光活性層の材料としては、Siに限らず、SiCあるいはSiGe,Six1-x等の化合物を用いることも可能である。
次に、結晶質Si系光活性層上に半導体接合を形成するため、第1導電型半導体層とは反対導電型である第2導電型半導体層をプラズマCVD等の方法で形成する。この第2導電型半導体層としては、導電型決定不純物原子が1×1018〜5×1021/cm3程度ドープされた、n+型またはp+型の非晶質Si薄膜、または多結晶あるいは微結晶Si薄膜とする。第2導電型半導体層の材料としては、Siに限らず、SiCあるいはSiGe,Six1-x等の化合物を用いることも可能である。また接合特性をより改善するために、結晶質Si系光活性層と第2導電型半導体層との間に、実質的にi型の非単結晶Si系薄膜を挿入することも可能である。このようにして、受光面に最も近い光電変換層を一層積層することができる。
続けて第二層目の光電変換層を形成する。第二層目の光電変換層は、第1導電型半導体層、結晶質Si系光活性層、第2導電型半導体層からなり、それぞれの層は、第一層目の光電変換層中の対応する第1導電型半導体層、結晶質Si系光活性層、第2導電型半導体層と同様に形成する。二層のタンデムで水分解に十分な電位を得ることができない場合は、三層あるいはそれ以上の層状構造を取ることが好ましい。ただし第二層目の光電変換層の結晶質Si系光活性層の体積結晶化分率は、第一層目の結晶質Si系光活性層と比較すると高くすることが好ましい。三層以上積層する場合も同様に下層と比較すると体積結晶化分率を高くすることが好ましい。これは、長波長域での吸収が大きくなり、分光感度が長波長側にシフトし、同じSi材料を用いて光活性層を構成した場合においても、広い波長域で感度を向上させることが可能となるためである。すなわち、結晶化率の異なるSiでタンデム構造にすることにより、分光感度が広くなり、光の高効率利用が可能となる。このとき低結晶化率材料を受光面側にしないと高効率とならない。また結晶化率が40%以下に下がるとアモルファス成分が増え、劣化が生じてしまう。
次に、シリコン基板を用いた光電変換部2の形成例を以下に示す。
シリコン基板としては、単結晶シリコン基板または多結晶シリコン基板などを用いることができ、p型であっても、n型であっても、i型であってもよい。このシリコン基板の一部にPなどのn型不純物を熱拡散またはイオン注入などによりドープすることによりn型半導体部37を形成し、シリコン基板のほかの一部にBなどのp型不純物を熱拡散またはイオン注入などによりドープすることによりp型半導体部36を形成することができる。このことにより、シリコン基板にpn接合、pin接合、npp+接合またはpnn+接合などを形成することができ、光電変換部2を形成することができる。
n型半導体部37およびp型半導体部36は、図7、8のようにシリコン基板にそれぞれ1つの領域を形成することができ、図13のようにn型半導体領域37およびp型半導体領域36のうちどちらか一方を複数形成することもできる。また、図8のようにn型半導体領域37およびp型半導体領域36を形成したシリコン基板を並べて設置し、第4導電部33により直列接続することにより光電変換部2を形成することもできる。
なお、ここではシリコン基板を用いて説明したが、pn接合、pin接合、npp+接合またはpnn+接合などを形成することができる他の半導体基板を用いてもよい。また、n型半導体部37およびp型半導体部36を形成することができれば、半導体基板に限定されず、基板上に形成された半導体層であってもよい。
3−2.化合物半導体を用いた光電変換部
化合物半導体を用いた光電変換部は、例えば、III−V族元素で構成されるGaP、GaAsやInP、InAs、II−VI族元素で構成されるCdTe/CdS、I−III−VI族で構成されるCIGS(Copper Indium Gallium DiSelenide)などを用いpn接合を形成したものが挙げられる。
化合物半導体を用いた光電変換部の製造方法の一例を以下に示すが、本製造方法では、製膜処理等はすべて有機金属気相成長法(MOCVD;Metal Organic Chemical Vapor Deposition)装置を使って連続して行われる。III族元素の材料としては、例えばトリメチルガリウム、トリメチルアルミニウム、トリメチルインジウムなどの有機金属が水素をキャリアガスとして成長装置に供給される。V族元素の材料としては、例えばアルシン(AsH3)、ホスフィン(PH3)、スチビン(SbH3)等のガスが使われる。p型不純物またはn型不純物のドーパントとしては、例えばp型化にはジエチルジンク、またはn型化には、モノシラン(SiH4)やジシラン(Si26)、セレン化水素(H2Se)等が利用される。これらの原料ガスを、例えば700℃に加熱された基板上に供給することにより熱分解させ、所望の化合物半導体材料膜をエピタキシャル成長させることが可能である。これら成長層の組成は導入するガス組成により、また膜厚はガスの導入時間によって制御することが可能である。これらの光電変換部を多接合積層する場合は、層間での格子定数を可能な限り合わせることにより、結晶性に優れた成長層を形成することができ、光電変換効率を向上することが可能となる。
pn接合を形成した部分以外にも、例えば受光面側に公知の窓層や、非受光面側に公知の電界層等を設けることによりキャリア収集効率を高める工夫を有してもよい。また不純物の拡散を防止するためのバッファ層を有していてもよい。
3−3.色素増感剤を利用した光電変換部
色素増感剤を利用した光電変換部は、例えば、主に多孔質半導体、色素増感剤、電解質、溶媒などにより構成される。
多孔質半導体を構成する材料としては、例えば、酸化チタン、酸化タングステン、酸化亜鉛、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウム等公知の半導体から1種類以上を選択することが可能である。多孔質半導体を基板上に形成する方法としては、半導体粒子を含有するペーストをスクリーン印刷法、インクジェット法等で塗布し乾燥もしくは焼成する方法や、原料ガスを用いたCVD法等により製膜する方法、PVD法、蒸着法、スパッタ法、ゾルゲル法、電気化学的な酸化還元反応を利用した方法等が挙げられる。
多孔質半導体に吸着する色素増感剤としては、可視光領域および赤外光領域に吸収を持つ種々の色素を用いることが可能である。ここで、多孔質半導体に色素を強固に吸着させるには、色素分子中にカルボン酸基、カルボン酸無水基、アルコキシ基、スルホン酸基、ヒドロキシル基、ヒドロキシルアルキル基、エステル基、メルカプト基、ホスホニル基等が存在することが好ましい。これらの官能基は、励起状態の色素と多孔質半導体の伝導帯との間の電子移動を容易にする電気的結合を提供する。
これらの官能基を含有する色素として、例えば、ルテニウムビピリジン系色素、キノン系色素、キノンイミン系色素、アゾ系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、フタロシアニン系色素、ベリレン系色素、インジゴ系色素、ナフタロシアニン系色素等が挙げられる。
多孔質半導体への色素の吸着方法としては、例えば多孔質半導体を、色素を溶解した溶液(色素吸着用溶液)に浸漬する方法が挙げられる。色素吸着用溶液に用いられる溶媒としては、色素を溶解するものであれば特に制限されず、具体的には、エタノール、メタノール等のアルコール類、アセトン等のケトン類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、アセトニトリル等の窒素化合物類、ヘキサン等の脂肪族炭化水素、ベンゼン等の芳香族炭化水素、酢酸エチル等のエステル類、水等を挙げることができる。
電解質は、酸化還元対とこれを保持する液体または高分子ゲル等固体の媒体からなる。
酸化還元対としては一般に、鉄系、コバルト系等の金属類や塩素、臭素、ヨウ素等のハロゲン物質が好適に用いられ、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム等の金属ヨウ化物とヨウ素の組み合わせが好ましく用いられる。さらに、ジメチルプロピルイミダゾールアイオダイド等のイミダゾール塩等を混入することもできる。
また、溶媒としては、プロピレンカーボネート等のカーボネート化合物、アセトニトリル等のニトリル化合物、エタノール、メタノール等のアルコール、その他、水や非プロトン極性物質等が用いられるが、中でも、カーボネート化合物やニトリル化合物が好適に用いられる。
3−4.有機薄膜を用いた光電変換部
有機薄膜を用いた光電変換部2は、電子供与性および電子受容性を持つ有機半導体材料で構成される電子正孔輸送層、または電子受容性を有する電子輸送層と電子供与性を有する正孔輸送層とが積層されたものであってもよい。
電子供与性の有機半導体材料としては、電子供与体としての機能を有するものであれば特に限定されないが、塗布法により製膜できることが好ましく、中でも電子供与性の導電性高分子が好適に使用される。
ここで導電性高分子とはπ共役高分子を示し、炭素−炭素またはヘテロ原子を含む二重結合または三重結合が、単結合と交互に連なったπ共役系からなり、半導体的性質を示すものをさす。
電子供与性の導電性高分子材料としては、例えばポリフェニレン、ポリフェニレンビニレン、ポリチオフェン、ポリカルバゾール、ポリビニルカルバゾール、ポリシラン、ポリアセチレン、ポリピロール、ポリアニリン、ポリフルオレン、ポリビニルピレン、ポリビニルアントラセン、およびこれらの誘導体、共重合体、あるいはフタロシアニン含有ポリマー、カルバゾール含有ポリマー、有機金属ポリマー等が挙げられる。中でも、チオフェン−フルオレン共重合体、ポリアルキルチオフェン、フェニレンエチニレン−フェニレンビニレン共重合体、フルオレン−フェニレンビニレン共重合体、チオフェン−フェニレンビニレン共重合体等が好適に利用される。
電子受容性の有機半導体材料としては、電子受容体としての機能を有するものであれば特に限定されないが、塗布法により製膜できることが好ましく、中でも電子供与性の導電性高分子が好適に使用される。
電子受容性の導電性高分子としては、例えばポリフェニレンビニレン、ポリフルオレン、およびこれらの誘導体、共重合体、あるいはカーボンナノチューブ、フラーレンおよびこれらの誘導体、CN基またはCF3基含有ポリマーおよびそれらの−CF3置換ポリマー等が挙げられる。
また、電子供与性化合物がドープされた電子受容性の有機半導体材料や、電子受容性化合物がドープされた電子供与性の有機半導体材料等を用いることが可能である。電子供与性化合物がドープされる電子受容性の導電性高分子材料としては、上述の電子受容性の導電性高分子材料を挙げることができる。ドープされる電子供与性化合物としては、例えばLi、K、Ca、Cs等のアルカリ金属やアルカリ土類金属のようなルイス塩基を用いることができる。なお、ルイス塩基は電子供与体として作用する。また、電子受容性化合物がドープされる電子供与性の導電性高分子材料としては、上述した電子供与性の導電性高分子材料を挙げることができる。ドープされる電子受容性化合物としては、例えばFeCl3、AlCl3、AlBr3、AsF6やハロゲン化合物のようなルイス酸を用いることができる。なお、ルイス酸は電子受容体として作用する。
上記にて示した光電変換部2においては、第一義的には太陽光を受光させ光電変換を行うことを想定しているが、用途により蛍光灯や白熱灯、LED、特定の熱源から発せられる光等の人工光を照射し光電変換を行うことも可能である。
4.第2電極
第2電極5は、光電変換部2の裏面と第1電解用電極8との間および光電変換部2の裏面と絶縁部11との間に設けることができる。また、第2電極5は、第1電解用電極8と電気的に接続することができる。第2電極5を設けることにより、光電変換部2の裏面と第1電解用電極8との間のオーミックロスを低減することができる。また、第2電極5は、第1電解用電極8と接触してもよい。また、第2電極5は、電解液に対する耐食性および電解液に対する遮液性を有することが好ましい。このことにより、電解液による光電変換部2の腐食を防止することができる。
第2電極5は、導電性を有すれば特に限定されないが、例えば、金属薄膜であり、また、例えば、Al、Ag、Auなどの薄膜である。これらは、例えば、スパッタリングなどにより形成することができる。また、例えば、In−Zn−O(IZO)、In−Sn−O(ITO)、ZnO−Al、Zn−Sn−O、SnO2等の透明導電膜である。
5.絶縁部
絶縁部11は、リーク電流の発生を防止するために設けることができる。例えば、図2、4のように第1導電部10を光電変換部2を貫通するコンタクトホール内に設ける場合、コンタクトホールの側壁に絶縁部11を設けることができる。
また、絶縁部11は、例えば、図2、4〜6、10、12のように第2電解用電極7と光電変換部2の裏面との間に設けることができる。このことにより、第2電解用電極7と光電変換部2の裏面との間でリーク電流が生じるのを防止することができる。また、光電変換部2が図7、8、13のように受光することにより光電変換部2の裏面の第1区域と第2区域との間に電位差を生じるものである場合、絶縁部11は、第1電解用電極8と光電変換部2の裏面との間、および第2電解用電極7と光電変換部2の裏面との間に設けられ、絶縁部11は、第1区域上および第2区域上に開口を有してもよい。このことにより、光電変換部2が受光することにより形成される電子およびホールを効率よく分離することができ、光電変換効率をより高くすることができる。
また、絶縁部11は、電解液に対する耐食性および電解液に対する遮液性を有することが好ましい。このことにより、リーク電流の発生を防止することができ、また、電解液による光電変換部2の腐食を防止することができる。
絶縁部11としては、有機材料、無機材料を問わず用いることが可能であり、例えば、ポリアミド、ポリイミド、ポリアリーレン、芳香族ビニル化合物、フッ素系重合体、アクリル系重合体、ビニルアミド系重合体等の有機ポリマー、無機系材料としては、Al23等の金属酸化物、多孔質性シリカ膜等のSiO2や、フッ素添加シリコン酸化膜(FSG)、SiOC、HSQ(Hydrogen Silsesquioxane)膜、SiNx、シラノール(Si(OH)4)をアルコール等の溶媒に溶かし塗布・加熱することにより製膜する方法を用いることが可能である。
絶縁部11を形成する方法としては、絶縁性材料を含有するペーストをスクリーン印刷法、インクジェット法、スピンコーティング法等で塗布し乾燥もしくは焼成する方法や、原料ガスを用いたCVD法等により製膜する方法、PVD法、蒸着法、スパッタ法、ゾルゲル法を利用した方法等が挙げられる。
6.第2導電部、第3導電部
第2導電部24は、絶縁部11と第2電解用電極7との間に設けることができ、第3導電部25は、絶縁部11と第1電解用電極8との間に設けることができる。第2導電部24または第3導電部25を設けることにより、光電変換部2が受光することにより生じた起電力を効率よく第1電解用電極8および第2電解用電極7に出力することができ、オーミックロスを低減することができる。第2導電部24、第3導電部25は、例えば、図12、13に示すように設けることができる。
第2導電部24または第3導電部25は、電解液に対する耐食性および電解液に対する遮液性を有することが好ましい。このことにより、オーミック抵抗の上昇を防止することができ、また、電解液による光電変換部2の腐食を防止することができる。
第2導電部24または第3導電部25は、導電性を有すれば特に限定されないが、例えば、金属薄膜であり、また、例えば、Al、Ag、Auなどの薄膜である。これらは、例えば、スパッタリングなどにより形成することができる。また、例えば、In−Zn−O(IZO)、In−Sn−O(ITO)、ZnO−Al、Zn−Sn−O、SnO2等の透明導電膜である。
7.第1電解用電極、第2電解用電極
第1電解用電極8および第2電解用電極7は、光電変換部2の裏面上にそれぞれ設けられる。また、第1電解用電極8および第2電解用電極7は、光電変換部2の裏面側の面とその裏面であり電解液に接触可能な面をそれぞれ有することができる。このことにより、第1電解用電極8および第2電解用電極7は光電変換部2に入射する光を遮ることはない。
また、第1電解用電極8および第2電解用電極7は、電解液と接触するとき、光電変換部2が受光することにより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体を発生するように設けられる。例えば、光電変換部2が受光することにより受光面とその裏面との間に起電力が生じる場合、図2、4〜6、10、12のように、第1電解用電極8は、光電変換部2の裏面と電気的に接続することができ、第2電解用電極7は、光電変換部2の受光面と電気的に接続することができる。また、光電変換部2が受光することによりその裏面の第1区域と第2区域との間に起電力が生じる場合、図7、8、13のように第1電解用電極8は第1区域と第2区域のうちどちらか一方と電気的に接続し、第2電解用電極7は第1区域と第2区域のうち他方と電気的に接続することができる。
第1電解用電極8および第2電解用電極7は、少なくとも一方が複数であり、かつ、それぞれ帯状の電解液に接触可能な面を有し、かつ、その面の長辺が隣接するように交互に設けられてもよい。例えば、第1電解用電極8および第2電解用電極7は、図9〜13のように設けることができる。このように、第1電解用電極8および第2電解用電極7を設けることにより、第1気体が発生する反応が生じる部分と、第2気体が発生する反応が生じる部分との間の距離を短くすることができ、電解液中で生じるイオン濃度の不均衡をより少なくすることができる。また、電解液に接触可能な面を帯状とすることにより、第1気体および第2気体を容易に回収することができる。
第1電解用電極8および第2電解用電極7は、電解液に対する耐食性および電解液に対する遮液性を有することが好ましい。このことにより、安定して第1気体および第2気体を発生させることができ、また、電解液による光電変換部2の腐食を防止することができる。例えば、第1電解用電極8および第2電解用電極7に電解液に対する耐食性を有する金属板または金属膜を用いることができる。
また、第1電解用電極8および第2電解用電極7のうち少なくとも一方は、光電変換部2の受光面の面積より大きい触媒表面積を有することが好ましい。このような構成によれば、光電変換部2で生じる起電力により、より効率的に第1気体または第2気体を発生させることができる。
また、第1電解用電極8および第2電解用電極7のうち少なくとも一方は、触媒が担持された多孔質の導電体であることが好ましい。このような構成によれば、第1電解用電極8および第2電解用電極7のうち少なくとも一方の触媒表面積を大きくすることができ、より効率的に第1気体または第2気体を発生させることができる。また、多孔質の導電体を用いることにより、光電変換部2と触媒との間の電流が流れることによる電位の変化を抑制することができ、より効率的に第1気体または第2気体を発生させることができる。また、この場合、第1電解用電極8または第2電解用電極7を電解液に対する遮液性を有する部分と多孔質からなる部分の二層構造とすることもできる。
第1電解用電極8および第2電解用電極7のうち、一方は水素発生部であってもよく、他方が酸素発生部であってもよい。この場合、第1気体および第2気体のうち一方は水素であり、他方は酸素である。
8.水素発生部
水素発生部は、電解液からH2を発生させる部分であり、第1電解用電極8および第2電解用電極7のうちどちらか一方である。
また、水素発生部は、電解液からH2が発生する反応の触媒を含んでもよい。このことにより、電解液からH2が発生する反応の反応速度を大きくすることができる。水素発生部は、電解液からH2が発生する反応の触媒のみからなってもよく、この触媒が担持体に担持されたものであってもよい。また、水素発生部は、光電変換部2の受光面の面積より大きい触媒表面積を有してもよい。このことにより、電解液からH2が発生する反応をより速い反応速度とすることができる。また、水素発生部は、触媒が担持された多孔質の導電体であってもよい。このことにより、触媒表面積を大きくすることができる。また、光電変換部2の受光面または裏面と水素発生部に含まれる触媒との間に電流が流れることによる電位の変化を抑制することができる。さらに、水素発生部は、水素発生触媒を含んでよく、水素発生触媒は、Pt、Ir、Ru、Pd、Rh、Au、Fe、NiおよびSeのうち少なくとも1つを含んでもよい。このような構成によれば、光電変換部2で生じる起電力により、より速い反応速度で水素を発生させることができる。
電解液からH2が発生する反応の触媒(水素発生触媒)は、2つのプロトンと2つの電子から1分子の水素への変換を促進する触媒であり、化学的に安定であり、水素生成過電圧が小さい材料を用いることができる。例えば、水素に対して触媒活性を有するPt,Ir,Ru,Pd,Rh,Au等の白金族金属およびその合金あるいは化合物、水素生成酵素であるヒドロゲナーゼの活性中心を構成するFe,Ni,Seの合金あるいは化合物、およびこれらの組み合わせ等を好適に用いることが可能である。中でもPtおよびPtを含有するナノ構造体は水素発生過電圧が小さく好適に用いることが可能である。光照射により水素発生反応が確認されるCdS,CdSe,ZnS,ZrO2などの材料を用いることもできる。
水素発生触媒を導電体に担持することができる。触媒を担持する導電体としては、金属材料、炭素質材料、導電性を有する無機材料等が挙げられる。
金属材料としては、電子伝導性を有し、酸性雰囲気下で耐腐食性を有する材料が好ましい。具体的には、Au、Pt、Pd等の貴金属、Ti、Ta、W、Nb、Ni、Al、Cr、Ag、Cu、Zn、Su、Si等の金属並びにこれらの金属の窒化物および炭化物、ステンレス鋼、Cu−Cr、Ni−Cr、Ti−Pt等の合金が挙げられる。金属材料には、Pt、Ti、Au、Ag、Cu、Ni、Wからなる群より選ばれる少なくとも一つの元素を含むことが、他の化学的な副反応が少ないという観点から、より好ましい。これら金属材料は、比較的電気抵抗が小さく、面方向に電流を取り出しても電圧の低下を抑制することができる。また、Cu、Ag、Zn等の酸性雰囲気下での耐腐食性に乏しい金属材料を用いる場合には、Au、Pt、Pd等の耐腐食性を有する貴金属および金属、カーボン、グラファイト、グラッシーカーボン、導電性高分子、導電性窒化物、導電性炭化物、導電性酸化物等によって耐腐食性に乏しい金属の表面をコーティングしてもよい。
炭素質材料としては、化学的に安定で導電性を有する材料が好ましい。例えば、アセチレンブラック、バルカン、ケッチェンブラック、ファーネスブラック、VGCF、カーボンナノチューブ、カーボンナノホーン、フラーレン等の炭素粉末や炭素繊維が挙げられる。
導電性を有する無機材料としては、例えば、In−Zn−O(IZO)、In−Sn−O(ITO)、ZnO−Al、Zn−Sn−O、SnO2、酸化アンチモンドープ酸化スズが挙げられる。
なお、導電性高分子としては、ポリアセチレン、ポリチオフェン、ポリアニリン、ポリピロール、ポリパラフェニレン、ポリパラフェニレンビニレン等が挙げられ、導電性窒化物としては、窒化炭素、窒化ケイ素、窒化ガリウム、窒化インジウム、窒化ゲルマニウム、窒化チタニウム、窒化ジルコニウム、窒化タリウム等が挙げられ、導電性炭化物としては、炭化タンタル、炭化ケイ素、炭化ジルコニウム、炭化チタニウム、炭化モリブデン、炭化ニオブ、炭化鉄、炭化ニッケル、炭化ハフニウム、炭化タングステン、炭化バナジウム、炭化クロム等が挙げられ、導電性酸化物としては、酸化スズ、酸化インジウムスズ(ITO)、酸化アンチモンドープ酸化スズ等が挙げられる。
水素発生触媒を担持する導電体の構造としては、板状、箔状、棒状、メッシュ状、ラス板状、多孔質板状、多孔質棒状、織布状、不織布状、繊維状、フェルト状が好適に使用できる。また、フェルト状電極の表面を溝状に圧着した溝付き導電体は、電気抵抗と電極液の流動抵抗を低減できるので好適である。
9.酸素発生部
酸素発生部は、電解液からO2を発生させる部分であり、第1電解用電極8および第2電解用電極7のうちどちらか一方である。
また、酸素発生部は、電解液からO2が発生する反応の触媒を含んでもよい。このことにより、電解液からO2が発生する反応の反応速度を大きくすることができる。また、酸素発生部は、電解液からO2が発生する反応の触媒のみからなってもよく、この触媒が担持体に担持されたものであってもよい。また、酸素発生部は、光電変換部2の受光面の面積より大きい触媒表面積を有してもよい。このことにより、電解液からO2が発生する反応をより速い反応速度とすることができる。また、酸素発生部は、触媒が担持された多孔質の導電体であってもよい。このことにより、触媒表面積を大きくすることができる。また、光電変換部2の受光面または裏面と酸素発生部に含まれる触媒との間に電流が流れることによる電位の変化を抑制することができる。さらに、酸素発生部は、酸素発生触媒を含んでもよく、酸素発生触媒は、Mn、Ca、Zn、CoおよびIrのうち少なくとも1つを含んでもよい。このような構成によれば、光電変換部で生じる起電力により、より速い反応速度で酸素を発生させることができる。
電解液からO2が発生する反応の触媒(酸素発生触媒)は、2つの水分子から1分子の酸素および4つのプロトンと4つの電子への変換を促進する触媒であり、化学的に安定であり、酸素発生過電圧が小さい材料を用いることができる。例えば、光を用い水から酸素発生を行う反応を触媒する酵素であるPhotosystem IIの活性中心を担うMn,Ca,Zn,Coを含む酸化物あるいは化合物や、Pt,RuO2,IrO2等の白金族金属を含む化合物や、Ti,Zr,Nb,Ta,W,Ce,Fe,Ni等の遷移金属を含む酸化物あるいは化合物、および上記材料の組み合わせ等を用いることが可能である。中でも酸化イリジウム、酸化マンガン、酸化コバルト、リン酸コバルトは、過電圧が小さく酸素発生効率が高いことから好適に用いることができる。
酸素発生触媒を導電体に担持することができる。触媒を担持する導電体としては、金属材料、炭素質材料、導電性を有する無機材料等が挙げられる。これらの説明は、「8.水素発生部」に記載した水素発生触媒についての説明が矛盾がない限り当てはまる。
水素発生触媒および酸素発生触媒の単独の触媒活性が小さい場合、助触媒を用いることも可能である。例えば、Ni,Cr,Rh,Mo,Co,Seの酸化物あるいは化合物などが挙げられる。
なお、水素発生触媒、酸素発生触媒の担持方法は、導電体もしくは半導体に直接塗布する方法や、真空蒸着法、スパッタ法、イオンプレーティング法等のPVD法、CVD法等の乾式塗工法、電析法など、材料により適宜その手法を変え作製ことが可能である。光電変換部と触媒の間に適宜導電物質を担持することが可能である。また水素発生および酸素発生のための触媒活性が十分でない場合、金属やカーボン等の多孔質体や繊維状物質、ナノ粒子等に担持することにより反応表面積を大きくし、水素及び酸素発生速度を向上させることが可能である。
10.シール部
シール部9は、第1電解用電極8の周縁部上または第2電解用電極7の周縁部上に設けられる。また、シール部9は、電解液に対する耐食性、遮液性を有し、かつ、第1または第2電解用電極と前記光電変換部との間に電解液が流入しないように設けられる。例えば、シール部9は、図2、4〜8、10、12、13のように第1電解用電極8の周縁部上および第2電解用電極7の周縁部上に設けることができ、図3、11のように第1電解用電極8および第2電解用電極7を囲むように周設することができる。シール部9により光電変換部2が電解液と接触することを防止することができる。また、シール部9により、第1または第2電解用電極と下地層(例えば、絶縁部11、第2電極5、第2導電部24、第3導電部25など)との界面に電解液が流入することを防止することができる。このことにより、電解用電極が下地層から剥離することを防止することができ、気体製造装置の耐久性および信頼性を向上させることができる。
また、シール部9は、例えば、図13のように第1電解用電極8または第2電解用電極7の側面を覆うように設けることもできる。
例えば、第1電解用電極8が、図2、4〜6、10のように第2電極5上に設けられている場合、シール部9は第1電解用電極8と第2電極5との間の界面に電解液が流入しないように設けることができる。また、第1電解用電極8が、図7、8のように絶縁部11の上に設けられている場合、シール部9は第1電解用電極8と絶縁部11との界面に電解液が流入しないように設けることができる。さらに第1電解用電極8が、第3導電部25の上に設けられている場合、シール部9は、第1電解用電極8と第3導電部25との界面に電解液が流入しないように設けることができる。これらのことにより、電解液に起因する第1電解用電極8の剥離を防止することができる。
例えば、第2電解用電極7が、図2、4〜8、10のように絶縁部11の上に設けられている場合、シール部9は、第2電解用電極7と絶縁部11との間の界面に電解液が流入しないように設けることができる。また、第2電解用電極7が図12、13のように第2導電部24の上に設けられている場合、シール部9は、第2電解用電極7と第2導電部24との界面に電解液が流入しないように設けることができる。これらのことにより、電解液に起因する第2電解用電極7の剥離を防止することができる。
また、シール部9は、図4のように第1電解用電極8と天板14との間の電解液室15と第2電解用電極7と天板14との間の電解液室15とを仕切るように設けることもできる。このことにより、シール部9により第1気体と第2気体とを分離することが可能となり、シール部9を隔壁13とすることができる。このことにより、部材点数および部材コストの低減、製造プロセスの簡略化を図ることができる。
シール部9は、電解液に対する耐食性、遮液性を有する材料から構成されれば、特に限定されないが、例えば、耐酸性を有する材料や耐アルカリ性を有する材料から構成することができる。耐酸性を有する材料としては、例えば、フッ素系樹脂などが挙げられる。また、耐アルカリ性を有する材料としては、例えば、SiO2などの酸化膜、SiNxなどの窒化膜、エポキシ系樹脂、フッ素系樹脂、ポリエチレン、ポリプロピレン、ナイロン、ポリ塩化ビニルなどが挙げられる。シール部9の形成方法は、特に限定されず、例えば塗布法などにより形成することができる。
11.天板
天板14は、第1電解用電極8および第2電解用電極7の上に透光性基板1と対向するように設けることができる。また、天板14は、第1電解用電極8および第2電解用電極7と天板14との間に空間が設けられるように設けることができる。この空間を電解液室15とすることができ、電解液室15に電解液を導入することにより、第1電解用電極8および第2電解用電極7を電解液に接触させることができる。また、天板に箱状のものを用いる場合、天板14は箱体の底の部分であってもよい。
また、天板14は、電解液室15を構成し、生成した第1気体および第2気体を閉じ込めるために構成される材料であり、機密性が高い物質が求められる。透明なものであっても不透明なものであっても特に限定されるものではないが、第1気体および第2気体が発生していることを視認できる点においては透明な材料であることが好ましい。透明な天板としては特に限定されず、例えば石英ガラス、パイレックス(登録商標)、合成石英板等の透明なリジッド材、あるいは透明樹脂板、透明樹脂フィルムなどを挙げることができる。中でも、ガスの透過性がなく、化学的物理的に安定な物質である点でガラス材を用いることが好ましい。
12.隔壁
隔壁13は、第1電解用電極8と天板14との間の空間である電解液室15および第2電解用電極7と天板14との間の空間である電解液室15とを仕切るように設けることができる。このことにより、第1電解用電極8および第2電解用電極7で発生させた第1気体および第2気体が混合することを防止することができ、第1気体および第2気体を分離して回収することができる。なお、隔壁13は、図4のようにシール部9と同一部材であってもよい。
また、隔壁13は、イオン交換体を含んでもよい。このことにより、第1電解用電極8と天板14との間の空間の電解液と第2電解用電極7と天板14との間の空間の電解液でアンバランスとなったイオン濃度を一定に保つことができる。
隔壁13は、例えば、多孔質ガラス、多孔質ジルコニア、多孔質アルミナ等の無機膜あるいはイオン交換体を用いることが可能である。
イオン交換体としては、当該分野で公知のイオン交換体をいずれも使用でき、プロトン伝導性膜、カチオン交換膜、アニオン交換膜等を使用できる。
プロトン伝導性膜の材質としては、プロトン伝導性を有しかつ電気的絶縁性を有する材質であれば特に限定されず、高分子膜、無機膜又はコンポジット膜を用いることができる。
高分子膜としては、例えば、パーフルオロスルホン酸系電解質膜である、デュポン社製のナフィオン(登録商標)、旭化成社製のアシプレックス(登録商標)、旭硝子社製のフレミオン(登録商標)等の膜や、ポリスチレンスルホン酸、スルホン化ポリエーテルエーテルケトン等の炭化水素系電解質膜等が挙げられる。
無機膜としては、例えば、リン酸ガラス、硫酸水素セシウム、ポリタングストリン酸、ポリリン酸アンモニウム等からなる膜が挙げられる。コンポジット膜としては、スルホン化ポリイミド系ポリマー、タングステン酸等の無機物とポリイミド等の有機物とのコンポジット等からなる膜が挙げられ、具体的にはゴア社製のゴアセレクト膜(登録商標)や細孔フィリング電解質膜等が挙げられる。さらに、高温環境下(例えば、100℃以上)で使用する場合には、スルホン化ポリイミド、2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)、スルホン化ポリベンゾイミダゾール、ホスホン化ポリベンゾイミダゾール、硫酸水素セシウム、ポリリン酸アンモニウム等が挙げられる。
カチオン交換膜としては、カチオンを移動させることができる固体高分子電解質であればよい。具体的には、パーフルオロカーボンスルフォン酸膜や、パーフルオロカーボンカルボン酸膜等のフッ素系イオン交換膜、リン酸を含浸させたポリベンズイミダゾール膜、ポリスチレンスルホン酸膜、スルホン酸化スチレン・ビニルベンゼン共重合体膜等が挙げられる。
支持電解質溶液のアニオン輸率が高い場合には、アニオン交換膜の使用が好ましい。アニオン交換膜としては、アニオンの移動可能な固体高分子電解質を使用できる。具体的には、ポリオルトフェニレンジアミン膜、アンモニウム塩誘導体基を有するフッ素系イオン交換膜、アンモニウム塩誘導体基を有するビニルベンゼンポリマー膜、クロロメチルスチレン・ビニルベンゼン共重合体をアミノ化した膜等が挙げられる。
13.シール材
シール材16は、透光性基板1と天板14を接着し、気体製造装置23内を流れる電解液および気体製造装置23内で生成した第1気体および第2気体を密閉するための材料である。天板14に箱状のものを用いる場合、この箱体と透光性基板1とを接着するためにシール材16が用いられる。シール材16は、例えば、紫外線硬化性接着剤、熱硬化性接着剤等が好適に使用されるが、その種類は限定されるものではない。紫外線硬化性の接着剤としては、200〜400nmの波長を持つ光を照射することにより重合が起こり光照射後数秒で硬化反応が起こる樹脂であり、ラジカル重合型とカチオン重合型に分けられ、ラジカル重合型樹脂としてはアクリルレート、不飽和ポリエステル、カチオン重合型としては、エポキシ、オキセタン、ビニルエーテル等が挙げられる。また熱硬化性の高分子接着剤としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、熱硬化性ポリイミド等の有機樹脂が挙げられる。熱硬化性の高分子接着剤は、熱圧着時に圧力を掛けた状態で加熱重合し、その後、加圧したまま、室温まで冷却することにより、各部材を良好に接合させるため、締め付け部材等を要しない。また、有機樹脂に加えて、ガラス基板に対して密着性の高いハイブリッド材料を用いることが可能である。ハイブリッド材料を用いることによって、弾性率や硬度等の力学的特性が向上し、耐熱性や耐薬品性が飛躍的に向上する。ハイブリッド材料は、無機コロイド粒子と有機バインダ樹脂とから構成される。例えば、シリカなどの無機コロイド粒子と、エポキシ樹脂、ポリウレタンアクリレート樹脂やポリエステルアクリレート樹脂などの有機バインダ樹脂とから構成されるものが挙げられる。
ここではシール材16と記しているが、透光性基板1と天板14を接着させる機能を有するものであれば限定されず、樹脂製あるいは金属製のガスケットを用い外部からネジ等の部材を用いて物理的に圧力を加え機密性を高める方法等を適宜用いることも可能である。
14.電解液室
電解液室15は、第1電解用電極8と天板14との間の空間および第2電解用電極7と天板14との間の空間とすることができる。また、電解液室15は、隔壁13により仕切ることができる。
生成した第1気体及び第2気体の気泡が効率よく第1電解用電極8または第2電解用電極7から離れるように、電解液室15の内部で電解液を循環させるような例えばポンプやファン、熱による対流発生装置などの簡易装置を備え付けることも可能である。
15.給水口、第1気体排出口、第2気体排出口、第1気体排出路および第2気体排出路
給水口18は、気体製造装置23に含まれるシール材16の一部、もしくは天板14の一部などに開口を作ることにより設けることができる。給水口18は、第1気体及び第2気体へと分解された電解液を補充するために配置され、その配置箇所および形状は、原料となる電解液が効率よく気体製造装置へ供給されさえすれば、特に限定されるものではない。
また、第1気体排出口20は、光電変換部2の受光面を水平面に対して傾斜するように気体製造装置を設置したとき、第1電解用電極8の電解液に接触可能な面の上端に近接して設けることができる。また、第2気体排出口19は、光電変換部2の受光面を水平面に対して傾斜するように気体製造装置を設置したとき、第2電解用電極7の電解液に接触可能な面の上端に近接して設けることができる。このことにより、気体製造装置23を光電変換部2の受光面が水平面に対して傾斜するように設置し、前記受光面に太陽光を入射させた場合に、第1電解用電極8で発生させた第1気体を気泡として電解液中を上昇させ第1気体排出口20から回収することができ、第2電解用電極7で発生させた第2気体を気泡として電解液中を上昇させ第2気体排出口19から回収することができる。
また、第1気体排出口20は、第1気体排出路と導通することができ、第2気体排出口19は第2気体排出路と導通することができる。また、第1気体排出路は、複数の第1気体排出口20と導通することができ、第2気体排出路は、複数の第2気体排出口19と導通することができる。このことにより、気体製造装置23で発生させた第1気体および第2気体を回収することができる。
16.電解液
電解液は、第1気体および第2気体の原料となるものであれば特に限定されないが、例えば、電解質を含む水溶液であり、例えば、0.1MのH2SO4を含む電解液、0.1Mリン酸カリウム緩衝液などである。この場合、電解液から第1気体および第2気体として水素および酸素を製造することができる。
気体製造方法
本実施形態の気体製造方法は、気体製造装置23を光電変換部2の受光面が水平面に対し傾斜するように設置し、電解液室15に電解液を導入し、太陽光を光電変換部2の受光面に入射させることにより第1電解用電極8および第2電解用電極7からそれぞれ第1気体および第2気体を発生させ、第1気体排出口20および第2気体排出口19からそれぞれ第1気体および第2気体を排出させることができる。
このことにより第1気体および第2気体を製造することができる。
1: 透光性基板 2:光電変換部 4:第1電極 5:第2電極 7:第2電解用電極 8:第1電解用電極 9:シール部 10:第1導電部 11:絶縁部 13:隔壁 14:天板 15:電解液室 16:シール材 18:給水口 19:第2気体排出口 20:第1気体排出口 23:気体製造装置 24:第2導電部 25:第3導電部 28:光電変換層 30:透光性電極 31:裏面電極 33:第4導電部 35:半導体部 36:p型半導体部 37:n型半導体部 40:アイソレーション

Claims (15)

  1. 受光面およびその裏面を有する光電変換部と、前記裏面の上に並べて設けられた第1電解用電極および第2電解用電極と、第1または第2電解用電極の周縁部上に設けられたシール部とを備え、
    第1および第2電解用電極が電解液と接触するとき、
    第1および第2電解用電極は、前記光電変換部が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体が発生するように設けられ、
    前記シール部は、電解液に対する耐食性を有し、かつ、第1または第2電解用電極と前記光電変換部との間に電解液が流入しないように設けられ
    前記光電変換部は、受光することによりその受光面と裏面との間に起電力が生じ、
    第1電解用電極は、前記光電変換部の裏面と電気的に接続するように設けられ、
    第2電解用電極は、前記光電変換部の受光面と電気的に接続するように設けられたことを特徴とする気体製造装置。
  2. 第2電解用電極と前記光電変換部の裏面との間に設けられた絶縁部をさらに備えた請求項に記載の装置。
  3. 前記シール部は、第2電解用電極と前記絶縁部との間の界面に電解液が流入しないように設けられた請求項に記載の装置。
  4. 前記光電変換部の受光面に接触する第1電極をさらに備える請求項またはに記載の装置。
  5. 第1電極と第2電解用電極とを電気的に接続する第1導電部をさらに備える請求項に記載の装置。
  6. 前記絶縁部は、前記光電変換部の側面を覆うように設けられ、
    第1導電部は、前記絶縁部の一部であり前記光電変換部の側面を覆う部分の上に設けられた請求項に記載の装置。
  7. 前記絶縁部は、前記光電変換部の側面を覆うように設けられ、
    第2電解用電極は、前記絶縁部の一部であり前記光電変換部の側面を覆う部分の上に設けられ、かつ、第1電極と接触する請求項に記載の装置。
  8. 前記絶縁部と第2電解用電極との間に第2導電部をさらに備え、
    前記シール部は、第2電解用電極と第2導電部との間の界面に電解液が流入しないように設けられた請求項に記載の装置。
  9. 前記光電変換部の裏面と第1電解用電極との間、および前記光電変換部の裏面と前記絶縁部との間に設けられた第2電極をさらに備え、
    前記シール部は、第1電解用電極と第2電極との間の界面に電解液が流入しないように設けられた請求項のいずれか1つに記載の装置。
  10. 受光面およびその裏面を有する光電変換部と、前記裏面の上に並べて設けられた第1電解用電極および第2電解用電極と、第1または第2電解用電極の周縁部上に設けられたシール部とを備え、
    第1および第2電解用電極が電解液と接触するとき、
    第1および第2電解用電極は、前記光電変換部が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体が発生するように設けられ、
    前記シール部は、電解液に対する耐食性を有し、かつ、第1または第2電解用電極と前記光電変換部との間に電解液が流入しないように設けられ、
    前記光電変換部は、受光することにより前記光電変換部の裏面の第1および第2区域間に電位差が生じ、
    第1区域は、第1電解用電極と電気的に接続するように設けられ、第2区域は、第2電解用電極と電気的に接続するように設けられ
    第1および第2電解用電極と前記光電変換部の裏面との間に設けられ、かつ、第1区域上および第2区域上に開口を有する絶縁部をさらに備えることを特徴とする気体製造装置。
  11. 透光性基板をさらに備え、
    前記光電変換部は、前記透光性基板の上に設けられた請求項1〜10のいずれか1つに記載の装置。
  12. 前記光電変換部は、直列接続した複数の光電変換層を含み、
    前記複数の光電変換層は、受光することにより生じる起電力を第1電解用電極および第2電解用電極に供給するように設けられた請求項1〜11のいずれか1つに記載の装置。
  13. 第1電解用電極および第2電解用電極のうち、一方は電解液からH 2 を発生させる水素発生部であり、他方は電解液からO 2 を発生させる酸素発生部であり、
    前記水素発生部および前記酸素発生部は、それぞれ電解液からH 2 が発生する反応の触媒である水素発生触媒および電解液からO 2 が発生する反応の触媒である酸素発生触媒を含む請求項1〜12のいずれか1つに記載の装置。
  14. 前記水素発生部および前記酸素発生部のうち少なくとも一方は、前記受光面の面積より大きい触媒表面積を有する請求項13に記載の装置。
  15. 請求項1〜14のいずれか1つに記載の気体製造装置を前記光電変換部の受光面が水平面に対し傾斜するように設置し、
    前記気体製造装置の下部から前記気体製造装置に電解液を導入し、太陽光を前記光電変換部の受光面に入射させることにより第1電解用電極および第2電解用電極からそれぞれ第1気体および第2気体を発生させ、前記気体製造装置の上部から第1気体および第2気体を排出する気体製造方法。
JP2010264026A 2010-11-26 2010-11-26 気体製造装置および気体製造方法 Expired - Fee Related JP5719576B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010264026A JP5719576B2 (ja) 2010-11-26 2010-11-26 気体製造装置および気体製造方法
PCT/JP2011/070865 WO2012070296A1 (ja) 2010-11-26 2011-09-13 気体製造装置および気体製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010264026A JP5719576B2 (ja) 2010-11-26 2010-11-26 気体製造装置および気体製造方法

Publications (3)

Publication Number Publication Date
JP2012112023A JP2012112023A (ja) 2012-06-14
JP2012112023A5 JP2012112023A5 (ja) 2014-01-16
JP5719576B2 true JP5719576B2 (ja) 2015-05-20

Family

ID=46145655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010264026A Expired - Fee Related JP5719576B2 (ja) 2010-11-26 2010-11-26 気体製造装置および気体製造方法

Country Status (2)

Country Link
JP (1) JP5719576B2 (ja)
WO (1) WO2012070296A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253270A (ja) * 2012-06-05 2013-12-19 Sharp Corp 二酸化炭素還元装置
WO2015178019A1 (ja) * 2014-05-20 2015-11-26 株式会社 東芝 光電気化学反応装置
JP7208685B2 (ja) * 2021-01-22 2023-01-19 国際先端技術総合研究所株式会社 酸素及び水素の製造用電極及び製造装置
JP7072931B1 (ja) * 2021-01-22 2022-05-23 国際先端技術総合研究所株式会社 酸素及び水素の水分解による製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192275A (ja) * 1998-12-25 2000-07-11 Toshiba Corp 水の電気分解装置
JP2002249031A (ja) * 2001-02-22 2002-09-03 Denaro:Kk 水素供給スタンド
JP2006508253A (ja) * 2002-11-27 2006-03-09 ザ・ユニバーシティ・オブ・トレド 液状電解物を有した集積型光電気化学とそのシステム
JP2004197167A (ja) * 2002-12-18 2004-07-15 Honda Motor Co Ltd 水素製造装置
AU2005245663A1 (en) * 2004-05-18 2005-12-01 Hydrogen Solar Limited Photoelectrochemical system
JP2005068007A (ja) * 2004-10-18 2005-03-17 National Institute Of Advanced Industrial & Technology ヨウ素化合物と半導体光触媒による水素及び酸素の製造方法
JP2009274891A (ja) * 2008-05-13 2009-11-26 Sharp Corp 半導体酸化物膜およびその製造方法、ならびに半導体酸化物膜を用いた水素発生装置

Also Published As

Publication number Publication date
WO2012070296A1 (ja) 2012-05-31
JP2012112023A (ja) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5663254B2 (ja) 水素製造装置および水素製造方法
JP4594438B1 (ja) 水素製造装置および水素製造方法
JP5802374B2 (ja) 太陽電池一体型気体製造装置
JP5792560B2 (ja) 発電システム
JP5676218B2 (ja) 気体製造装置、気体製造方法および気体製造装置アレイ
US9447508B2 (en) Hydrogen production device and method for producing hydrogen
JP5802403B2 (ja) 水素製造装置および水素製造方法
JP5860636B2 (ja) アニオン交換膜型燃料電池システム
JP5785736B2 (ja) 水素製造装置および水素製造方法
JP5427653B2 (ja) 気体製造装置および気体製造方法
JP5719576B2 (ja) 気体製造装置および気体製造方法
WO2013011843A1 (ja) 電解槽、気体製造装置および気体製造方法
JP2012041623A (ja) 水電解装置
WO2012114787A1 (ja) 水素製造装置および水素製造方法
JP2011116625A (ja) 水素製造装置および水素製造方法
JP2012021197A (ja) 気体製造装置
JP2012107278A (ja) 気体製造装置
JP2012094684A (ja) 太陽光発電システム
JP2011236466A (ja) 気体製造装置
JP2011162428A (ja) 水素製造装置および水素製造方法
JP2012094685A (ja) 太陽光発電システムおよび制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5719576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees