WO2011142452A1 - A/d変換器 - Google Patents
A/d変換器 Download PDFInfo
- Publication number
- WO2011142452A1 WO2011142452A1 PCT/JP2011/061040 JP2011061040W WO2011142452A1 WO 2011142452 A1 WO2011142452 A1 WO 2011142452A1 JP 2011061040 W JP2011061040 W JP 2011061040W WO 2011142452 A1 WO2011142452 A1 WO 2011142452A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conversion
- circuit
- conversion circuit
- cyclic
- converter
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 436
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 154
- 239000003990 capacitor Substances 0.000 claims description 97
- 238000005070 sampling Methods 0.000 claims description 30
- 230000002596 correlated effect Effects 0.000 claims description 19
- 230000004044 response Effects 0.000 claims description 17
- 230000003321 amplification Effects 0.000 claims description 14
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 14
- 230000010354 integration Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 18
- 238000010586 diagram Methods 0.000 description 22
- 230000000875 corresponding effect Effects 0.000 description 6
- 239000008186 active pharmaceutical agent Substances 0.000 description 5
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 5
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
- H03M1/145—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in series-connected stages
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/50—Control of the SSIS exposure
- H04N25/57—Control of the dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/616—Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/75—Circuitry for providing, modifying or processing image signals from the pixel array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/78—Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
- H03M1/16—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
- H03M1/162—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in a single stage, i.e. recirculation type
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/40—Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type
- H03M1/403—Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type using switched capacitors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/50—Analogue/digital converters with intermediate conversion to time interval
- H03M1/56—Input signal compared with linear ramp
Definitions
- the present invention relates to an A / D converter that converts a signal from an image sensor into a digital value of N + M bits (N ⁇ 2, M ⁇ 2).
- Patent Document 1 describes a two-stage A / D converter for an image sensor.
- Patent Document 2 describes a one-stage cyclic A / D converter arranged in a column of an image sensor.
- Patent Document 3 a digital value of the above bit is obtained using a parallel A / D converter at the first stage, and a parallel type A at a subsequent stage that performs D / A conversion of the digital value to generate a digital value of a lower bit.
- Patent Document 4 discloses a parallel A / D converter and a 1-bit cell for obtaining a lower bit by A / D converting a subtraction result obtained by performing D / A conversion on a parallel A / D conversion result and subtracting from an input signal.
- Non-Patent Document 1 describes a cyclic A / D converter.
- Non-Patent Document 2 describes a SA (Successive Application) -A / D converter applied to a CMOS image sensor.
- Non-Patent Document 3 describes a single slope A / D converter applied to a CMOS image sensor.
- JP 2004-304413 A Patent 4069203
- JP 2005-136540 A Patent No. 396788
- JP-A 64-67034 Japanese Patent Application Laid-Open No. 07-202700
- Patent Document 1 an amplifier is used to reduce noise of an image sensor and an A / D conversion function is provided.
- this circuit in order to exhibit the effect sufficiently, it is necessary to increase the gain of the amplifier and to have a necessary A / D conversion resolution corresponding to the gain (for example, 16 bits of gain and 4 bits). is there. This complicates the circuit scale.
- Patent Documents 3 and 4 a serial-parallel A / D converter is used in the first stage, and the residual value is provided from the first stage A / D converter to the A / D converter in the subsequent stage.
- Non-patent documents 2 and 3 do not disclose a cyclic A / D converter circuit.
- the cyclic A / D conversion circuit can provide low noise and a wide dynamic range by a single conversion circuit.
- a single cyclic A / D conversion is achieved by connecting a cyclic A / D conversion circuit in series with another A / D conversion circuit or another cyclic A / D conversion circuit. Further advantages can be gained along with circuit features.
- the present invention has been made for such a background, and uses an A / D conversion circuit for the upper and lower digits of the A / D conversion and adopts a cyclic A / D conversion system for the upper digits.
- Another object of the present invention is to provide an A / D converter capable of reducing A / D conversion accuracy in an A / D conversion circuit of a lower digit.
- One aspect of the present invention is an A / D converter that provides a signal from an image sensor to a digital value of N + M bits (N ⁇ 2, M ⁇ 2).
- the A / D converter is arranged in the column of the image sensor.
- the A / D converter includes: (a) a first cyclic A / D conversion circuit that receives an analog value and generates an upper N-bit first digital value and residual value indicating the analog value; (B) an A / D conversion circuit that receives the residual value and generates a second M-bit second digital value indicating the residual value.
- the first cyclic A / D conversion circuit includes a sub A / D conversion circuit, a logic circuit, a D / A conversion circuit, and an arithmetic unit.
- the sub A / D conversion circuit generates a part of the first digital value of N bits of N1 bits (N1 ⁇ N) for each cycle.
- the logic circuit receives the digital value from the sub A / D conversion circuit.
- the D / A conversion circuit generates a D / A conversion value in response to a signal from the logic circuit.
- the arithmetic unit includes an input, an output providing the residual value, and a feedback path for cyclic A / D conversion by connecting the output and the input.
- the arithmetic unit amplifies an input value received at the input, generates a difference between the amplified input value and the D / A conversion value, and provides the difference to the output.
- the upper N bits are generated by L cycles (L is 2 or more) in the first cyclic A / D converter circuit.
- the first stage A / D conversion circuit can provide a residual component amplified by 2 L times by L cyclic operations in the cyclic A / D conversion. This amplified residual component is provided to the A / D conversion circuit for the lower bits. Therefore, the conversion accuracy in the second-stage A / D conversion circuit can be relaxed to 1/2 L compared to the conversion accuracy in the first-stage A / D conversion circuit. Therefore, an A / D conversion circuit with lower accuracy than that of the first stage A / D conversion circuit can be applied to the second stage A / D conversion circuit.
- the A / D conversion circuit may perform any one of a cyclic A / D conversion, an integral A / D conversion, and a successive approximation A / D conversion. it can.
- the first stage A / D conversion circuit performs cyclic A / D conversion, so the accuracy required for the second stage A / D conversion is higher than that of the first stage. Can be lowered.
- the A / D conversion circuit includes an integration type A / D conversion such as a single scope type A / D conversion circuit.
- an integration type A / D conversion such as a single scope type A / D conversion circuit.
- this A / D converter when the A / D conversion circuit at the second stage performs single slope A / D conversion, it is possible to provide A / D conversion with good linearity. While this circuit has the advantage that the circuit configuration is very simple, a long conversion time is required to obtain high resolution. Since the first-stage A / D conversion circuit performs cyclic A / D conversion, the accuracy required for the second-stage A / D conversion can be lower than that of the first stage. Therefore, the second stage A / D conversion circuit can be operated at high speed, and the advantage of the single slope type A / D conversion can be utilized.
- the A / D conversion circuit preferably includes a successive approximation A / D conversion circuit.
- the A / D conversion circuit at the second stage performs the successive approximation type A / D conversion
- the number of parts (for example, resistors and capacitors) constituting the / D conversion circuit increases exponentially.
- the second-stage A / D conversion circuit performs the successive approximation A / D conversion, the accuracy required for the successive approximation A / D conversion circuit is not high. Therefore, the circuit scale of the second stage A / D conversion circuit can be reduced, and the advantage of successive approximation can be utilized.
- the A / D conversion circuit includes a cyclic A / D conversion circuit.
- the second-stage cyclic A / D conversion circuit since the first-stage A / D conversion circuit performs cyclic A / D conversion, the second-stage cyclic A / D conversion circuit does not require high conversion accuracy. Therefore, the second-stage cyclic A / D converter circuit can be configured with a smaller capacitor and / or a smaller-sized transistor than the first-stage cyclic A / D converter circuit. The power consumption in the / D conversion circuit can also be greatly reduced.
- the A / D conversion circuit holds the residual value and performs A / D conversion for generating the second digital value.
- the first cyclic A / D converter circuit provides the residual value to the A / D converter circuit, and then performs a cyclic A / D conversion of the next analog signal.
- the second-stage A / D conversion circuit holds the residual value, so that after the holding, the first-stage A / D conversion circuit processes the next signal from the image sensor.
- the integration type A / D conversion circuit and the successive approximation type A / D conversion circuit in the second stage A / D conversion circuit may include, for example, a sample / hold circuit.
- the first cyclic A / D converter circuit may convert each of the N bits into a digital value in each cycle for A / D conversion processing.
- a redundant code can be generated.
- the output value of the sub A / D converter circuit is not affected by the offset in the sub A / D converter circuit in the first stage A / D converter circuit.
- the first cyclic A / D conversion circuit generates a non-redundant code having a binary digital value in each cycle for A / D conversion processing.
- the input range of the A / D conversion circuit is preferably larger than the voltage range of the input range of the first cyclic A / D conversion circuit.
- the second stage A / D converter circuit has an overrange characteristic, and therefore the offset in the sub A / D converter circuit of the first cyclic A / D converter circuit is N + M bits. The influence on the A / D conversion value can be reduced.
- the A / D converter may further include a correlated double sampling circuit connected between the image sensor and the first cyclic A / D conversion circuit.
- the pixel circuit of the image sensor generates a first signal level including a noise component and a second signal level including a signal component superimposed on the noise component, and the correlated double sampling circuit includes the first and second correlated double sampling circuits.
- the analog signal is generated in response to the signal level, and the analog signal indicates a difference between the first signal level and the second signal level.
- the correlated double sampling circuit can receive a signal from another pixel circuit of the image sensor after providing the analog signal to the first cyclic A / D converter circuit.
- correlated double sampling can be performed on an analog signal before A / D conversion.
- the correlated double sampling circuit receives the signal from another pixel circuit of the image sensor after providing the analog signal to the first cyclic A / D conversion circuit. Therefore, pipeline processing can be applied to the signal from the image sensor.
- the A / D conversion circuit may include a second cyclic A / D conversion circuit.
- the first cyclic A / D conversion circuit includes a first capacitor, a second capacitor, and a first operational amplifier circuit for sampling an input signal to the first cyclic A / D conversion circuit.
- the ratio of the capacitance of the first capacitor to the capacitance of the second capacitor defines an amplification factor in amplification using the first operational amplifier circuit.
- the second cyclic A / D converter circuit includes a third capacitor, a fourth capacitor, and a second operational amplifier circuit for sampling an input signal to the second cyclic A / D converter circuit.
- the ratio of the capacitance of the third capacitor to the capacitance of the fourth capacitor defines an amplification factor in amplification by the second operational amplifier circuit. At least one of the following is satisfied: the size of the third and fourth capacitors is smaller than the size of the first and second capacitors, respectively; and the size of the first operational amplifier circuit is the second operation Smaller than the size of the amplifier circuit.
- the conversion accuracy of the second cyclic A / D conversion circuit may be lower than the conversion accuracy of the first cyclic A / D conversion circuit, and accordingly the second cyclic A / D conversion circuit
- the circuit configuration of the type A / D conversion circuit can be simplified.
- the A / D conversion circuit is used for the upper and lower digits of the A / D conversion, and the cyclic A / D conversion method is adopted for the upper digits.
- an A / D converter capable of reducing the A / D conversion accuracy in the A / D conversion circuit of the lower digit is provided.
- FIG. 1 is a diagram schematically showing an A / D converter for converting a signal from an image sensor into a digital value of N + M bits according to the present embodiment.
- FIG. 2 is a diagram schematically showing an example of a circuit block of the CMOS image sensor circuit including the A / D converter shown in FIG. 1 and an A / D conversion characteristic at the first stage.
- FIG. 3 is a diagram illustrating an example of a first cyclic A / D conversion circuit.
- FIG. 4 is a diagram schematically showing circuit connections in main operation steps of the cyclic A / D converter shown in FIG.
- FIG. 5 schematically shows a comparator of a single scope type A / D conversion circuit.
- FIG. 1 is a diagram schematically showing an A / D converter for converting a signal from an image sensor into a digital value of N + M bits according to the present embodiment.
- FIG. 2 is a diagram schematically showing an example of a circuit block of the CMOS image sensor circuit including the A /
- FIG. 6 is a drawing schematically showing a timing chart of an A / D converter including a combination of a cyclic A / D conversion circuit and a single scope A / D conversion circuit.
- FIG. 7 is a diagram schematically showing a cyclic A / D conversion circuit that generates a partial A / D conversion value using a single comparator.
- FIG. 8 is a diagram showing conversion characteristics (with offset and without offset) in a cyclic A / D conversion circuit that generates a partial A / D conversion value using a single comparator.
- FIG. 9 is a diagram schematically showing a data conversion circuit.
- FIG. 10 is a diagram showing a circuit connection for analog processing of correlated double sampling and a timing chart for analog processing of correlated double sampling in the first-stage cyclic A / D conversion circuit.
- FIG. 11 shows a second-stage successive approximation A / D conversion circuit.
- FIG. 12 is a diagram showing two cyclic A / D conversion circuits connected in series.
- FIG. 13 is a diagram showing the analog CDS operation and the operation of the first-stage cyclic A / D conversion circuit.
- FIG. 14 shows the operation of the second-stage cyclic A / D converter circuit.
- FIG. 15 is a timing chart showing the operation of two cyclic A / D converter circuits connected in series.
- FIG. 16 is a diagram showing pipeline processing in the operation of two cyclic A / D conversion circuits connected in series.
- FIG. 1 is a diagram schematically showing an A / D converter for converting a signal from an image sensor into a digital value of N + M bits (N is 2 or more and M is 2 or more) according to the present embodiment.
- a one-dimensional array of the A / D converter 101 is arranged in the column of the image sensor.
- the A / D converter 101 in the array is connected to the column line COL of the image sensor, and processes a signal from a pixel circuit connected to the column line COL.
- the A / D converter 101 includes a first cyclic A / D conversion circuit 103 and an A / D conversion circuit 105.
- the A / D converter 101 can include a recording circuit 107 that stores the conversion results from the A / D conversion circuits 103 and 105.
- the recording circuit 107 includes, for example, an upper bit storage circuit 107a that stores upper bits and a lower bit storage circuit 107b that stores lower bits.
- the cyclic A / D conversion circuit 103 receives the analog value SA, and generates an upper N-bit first digital value SD1 and a residual value RD indicating the analog value SA.
- the A / D conversion circuit 105 receives the residual value RD and generates a lower M-bit second digital value SD2 indicating the residual value RD.
- the first cyclic A / D conversion circuit 103 includes a sub A / D conversion circuit 27, a logic circuit 29, a D / A conversion circuit 21, and an arithmetic unit 35.
- the sub A / D conversion circuit 27 generates a part of the first digital value of N bits, that is, the digital value D of N1 bits (N1 ⁇ N) for each cycle.
- FIG. 1 shows functional blocks for the first cyclic A / D conversion circuit 103.
- the logic circuit 29 receives the digital value D from the sub A / D conversion circuit 27.
- the D / A conversion circuit 33 generates a D / A conversion value SDA in response to the signal from the logic circuit 29.
- the calculation unit 35 includes an input 35a, an output 35b, and a calculation unit 35c.
- the output 35b is connected to the input 35a by a feedback path FB for cyclic A / D conversion. In the computing unit 35, the output 35b provides the final residual value RD.
- Input 35a receives the current residual value RD or analog value SA for the next cycle.
- the analog value SA is provided to the input 35a via the switch ⁇ s.
- Current residual value RD is provided to the input 35a via a switch phi 3 on the feedback path FB.
- Switch ⁇ s and phi 3 are never conducting simultaneously.
- the switch in the A / D converter 101 is configured by, for example, a MIS transistor.
- the arithmetic unit 35 amplifies the input value at the input 35a, generates a difference between the amplified input value and the D / A converted value SDA, and provides the difference to the output 35b and the feedback path FB.
- the arithmetic unit 35 performs an operation for cyclic A / D conversion, that is, amplification, difference generation according to the D / A conversion value SDA, and a sample / hold operation.
- the upper N bits are generated by L cycles in the first cyclic A / D conversion circuit 103.
- the first-stage A / D conversion circuit 103 can provide a residual component amplified by 2 L times by L cyclic operations in the cyclic A / D conversion. This amplified residual component is provided to the A / D conversion circuit 105 for the lower bits. Therefore, the conversion accuracy in the second-stage A / D conversion circuit 105 can be reduced to 1/2 L compared to the conversion accuracy in the first-stage A / D conversion circuit 103. Therefore, an A / D conversion circuit with lower accuracy than the A / D conversion circuit 103 in the first stage can be applied to the A / D conversion circuit 105 in the second stage.
- the A / D conversion circuit 105 can perform any of integral A / D conversion, cyclic A / D conversion, and successive approximation A / D conversion. According to the A / D converter 101, since the first-stage A / D conversion circuit 103 performs cyclic A / D conversion, the accuracy required for the second-stage A / D conversion is compared with that in the first stage. Can be lowered.
- the second-stage A / D conversion circuit 105 holds the residual value RD and generates an M-bit second digital value SD2.
- the first cyclic A / D conversion circuit 103 provides the residual value RD to the A / D conversion circuit 105
- the first cyclic A / D conversion of the next analog signal can be performed.
- the A / D converter 101 since the A / D conversion circuit 105 on the second stage surface holds the residual value RD, after the holding, the A / D conversion circuit 103 on the first stage receives from the image sensor.
- the following signal processing can be performed to provide pipeline processing.
- the integration type A / D conversion circuit and the successive approximation type A / D conversion circuit in the A / D conversion circuit 105 in the second stage can include, for example, a sample / hold circuit.
- the N-bit partial bit string of the upper A / D conversion circuit 103 and the M bit partial bit string of the lower A / D conversion circuit 105 are obtained.
- the data conversion circuit 109 generates an M + N-bit digital signal from these bit strings.
- FIG. 2 is a diagram schematically showing a circuit block of a CMOS image sensor circuit including the A / D converter shown in FIG.
- the vertical shift register 11 supplies control signals Ri, Si, and TXi supplied to the pixels 13 constituting the image array 12, and the signals based on the photocharges obtained in the pixels 13 are arrayed in the cyclic A / D converter 103. 14 for transmission.
- the array 14 includes a plurality of basic circuits shown in FIG. 1, and can process signals from the respective pixels 13 in parallel.
- the A / D conversion result for each IH in the A / D conversion is stored in the data register 15 and is read out after A / D conversion by horizontal scanning by a control signal from the horizontal shift register 16.
- the digital value is an expression having three values, that is, a redundant expression
- the digital value of the redundant expression is converted into a binary number of the non-redundant expression by the redundant expression-non-redundant expression conversion circuit 17 after being read by horizontal scanning.
- the A / D converter 101 is used in an image sensor circuit including pixels arranged in an array.
- the pixel 13 includes a sensor circuit 13a including a photodiode PDi and an amplifier circuit 13b that amplifies a sensor signal from the sensor circuit 13a.
- the pixel 13 receives the reset signal and initializes the internal state. After this initialization, the pixel 13 provides an electrical signal corresponding to the light received by the photodiode PDi.
- the electrical signal includes not only significant signal components but also noise components such as reset noise.
- Each pixel 13 includes a photodiode PDi for converting light into electric charge and several MOS transistors T1 to T4.
- the movement of charge is controlled by the transistor T1 responding to the control signal TXi
- the initialization of the charge is controlled by the transistor T2 responding to the control signal Ri
- the selection of the pixel is controlled by the transistor T3 responding to the control signal Si.
- the Transistor T4 responds to the potential at node J1 between transistors T1 and T2.
- reset noise is generated in response to the reset operation.
- the voltage output from each pixel 13 includes fixed pattern noise unique to each pixel. Random noise is generated by an element connected to the input of the A / D converter 101.
- Each pixel 13 is arranged in a matrix, and a signal from the pixel 13 includes a first signal level signal including a noise component and a second signal level signal including a signal component superimposed on the noise component (see FIG. 6). Are transmitted to the array 14 of the A / D converter 101 via a signal line connected to the amplifier circuit 13b.
- FIG. 3 is a diagram illustrating an example of a circuit that provides the first cyclic A / D conversion circuit 103.
- FIG. 4 is a diagram schematically showing circuit connections in main operation steps of the cyclic A / D converter shown in FIG.
- the cyclic A / D converter 103 includes a gain stage 25, a sub A / D conversion circuit 27, a logic circuit 29, and a D / A conversion circuit 21.
- the gain stage 25 includes an input 25a for receiving the analog signal V IN to be converted to a digital value, and an output 25b to provide one cyclic every calculation value (residual value for each cyclic) V OP.
- the gain stage 25 includes a single-ended operational amplifier circuit 23 and first to third capacitors 26, 28, and 30.
- the operational amplifier circuit 23 has a first input 23a, an output 23b, and a second input 23c, and the phase of the signal of the output 23b is inverted from the phase of the signal applied to the first input 23a.
- the first and second inputs 23a and 23c are an inverting input terminal and a non-inverting input terminal, respectively, and the output 23b is a non-inverting output terminal.
- a second input 23c of the operational amplifier circuit 23 is connected to a reference potential line L COM, also receives a reference voltage V COM.
- the sub A / D conversion circuit 27 generates a digital signal D in accordance with the signal V OP from the output 25b of the gain stage 25.
- the A / D conversion circuit 27 can include, for example, two comparators 27a and 27b.
- the comparators 27a and 27b respectively compare the input analog signal with respective predetermined reference signals V RCL and V RCH and provide comparison result signals DP0 and DP1 as shown in FIG.
- the reference signals V RCH and V RCL in the A / D conversion circuit 27 are provided by voltage sources 37a and 37b, respectively.
- the digital signal D indicates an A / D conversion value for each round.
- the digital signal D has, for example, 2 bits (DP0, DP1), and each bit (DP0, DP1) can take “1” or “0”.
- the logic circuit 29 generates a control signal V CONT (for example, ⁇ DH , ⁇ DL , ⁇ DS ) corresponding to the digital signal D. If necessary, in sub A / D converter circuit 27, for example using one comparator a time-sharing, the operation value V OP while compared with the reference signal, it can provide a signal DP0, DP1 indicating the comparison result.
- the gain stage 25 can include a calculation operation and a holding operation.
- the calculation operation the calculation value V OP is generated by the calculation amplifier circuit 23 and the first to third capacitors 26, 28, and 30.
- the holding operation the calculated value V OP is held in the first and second capacitors 26 and 28.
- the first and second capacitors 26 and 28 are connected to the first and second outputs 21a and 21b of the D / A conversion circuit 21, respectively.
- the switch circuit 31 of the D / A conversion circuit 21 can provide at least one of the voltage signals V RH and V RL to the first output 21a in response to the control signal V CONT , and the voltage signal V RH , At least one of the V RL can be provided to the second output 21b. Therefore, in the calculation operation, the gain stage 25 is switched from the D / A conversion circuit 21 to three types by switching and applying the voltage signals V RH and V RL to one end of the capacitors 26 and 28 using the switch circuit 31. Operates like receiving a voltage signal.
- a voltage signal VRH is provided.
- D / A conversion circuit 21, in response to a third value of the digital signal (DP0, DP1) (D 0), provides a voltage signal V RL to the capacitor 26.
- the cyclic A / D conversion circuit 103 when the first and second voltage signals of the D / A conversion circuit are provided to the capacitors 26 and 28, respectively, two kinds of voltage signals are passed through the capacitors 26 and 28. Are synthesized.
- Part (b) of FIG. 2 is a diagram showing conversion characteristics between the calculated value VOP and the digital value for each round. Range of digital signal operation value VOP .
- V RCL V OP .
- D 1, V RCH ⁇ V OP ⁇ V RCL .
- D 2
- V OP V RCH (1). It becomes.
- the sub A / D conversion circuit 27 compares the calculated value VOP from the gain stage 25 with two predetermined reference signals to generate a redundant code (a ternary digital signal).
- the D / A conversion circuit 21 provides the gain stage 25 with at least one of the first and second voltage signals V RH and V RL in response to the control signal V CONT .
- the D / A conversion circuit 21 includes first and second outputs 21 a and 21 b and a switch circuit 31.
- the switch circuit 31 provides either the first or second voltage signal V RH or V RL to the first output 21 a and the first and second voltages to the second output 21 b.
- One of the two voltage signals V RH and V RL is provided.
- the voltage signals V RH and V RL are provided by the first and second voltage sources 33 and 34.
- the first voltage source 33 provides a voltage VRH .
- the second voltage source 34 provides the voltage VRL .
- the output 33 a of the first voltage source 33 is connected to the output 21 a through the switch 31 a in the switch circuit 31 and is connected to the output 21 b through the switches 31 a and 31 c in the switch circuit 31.
- the output 34 a of the second voltage source 34 is connected to the output 21 a via the switches 31 b and 31 c in the switch circuit 31 and is connected to the output 21 b via the switch 31 b in the switch circuit 31.
- the first and second outputs 21a and 21b of the D / A conversion circuit 21 are connected to one ends 26a and 28a of the first and second capacitors 26 and 28, respectively. Opening and closing of the switches 31a to 31c is controlled by control signals ⁇ DH , ⁇ DS , ⁇ DL from the logic circuit 29, respectively, so that the values of the digital signals DP0, DP1 are control signals ⁇ DH , ⁇ DS , ⁇ DL Determine which of these will be active.
- the D / A conversion circuit 21 provides a value as shown in FIG. Relationship (2).
- the gain stage 25 includes a plurality of switches for connecting the capacitors 26, 28 and 30 and the operational amplifier circuit 23. Although these switches are shown in FIG. 3, the arrangement of the switches 43, 47, 49, 51, 53, 55 is an example. These switches 43, 47, 49, 51, 53, 55 are controlled by the clock generator 41.
- an initial storage operation is performed.
- the analog signal VIN is stored in the capacitors 26, 28, and 30. Capacitors 26, 28, 30 are connected in parallel to each other for storage. Further, the initial analog signal VIN is provided to the sub A / D conversion circuit 27.
- the cyclic A / D converter 103 includes first switch means for storing the analog signal VIN in the capacitors 26, 28 and 30. The first analog signal VIN is supplied to the A / D conversion circuit 27 by the first switch means.
- the A / D conversion circuit 27 generates a digital signal D. This signal D is provided to the logic circuit 29, and the logic circuit 29 generates a control signal V CONT for controlling the D / A conversion circuit 21.
- the terminal 26a of the capacitor 26 is connected to the input 25a via the switch 43, and the terminal 28a of the capacitor 28 is connected to the input 25a via the switches 31c and 43.
- the terminal 30a of the capacitor 30 is connected to the input 25a via the switches 43 and 51, and the reference potential is supplied to the terminals 26b and 28b of the capacitors 26 and 28 via the switches 49 and 53.
- a reference potential is supplied to 30b via a switch 53.
- the terminal 30a and the output 23b of the capacitor 30 are separated by the switch 55, and the output 23b is separated from the input 25a by the switch 55.
- the gain stage 25 connects the input 23 a and the output 23 b of the operational amplifier circuit 23 to each other, the reference potential V COM is generated at the output 23 b of the operational amplifier circuit 23.
- the sub A / D conversion circuit 27 receives the original analog signal VIN and generates a digital signal D in response to the clock ⁇ c.
- the terminal 26a of the capacitor 26 and the terminal 28a of the capacitor 28 are connected via a switch 31c, a separate switch can be provided for this connection.
- step S102 of part (b) and part (c) of FIG. 4 an arithmetic operation is performed.
- the gain stage 25 generates the arithmetic value V OP by the operational amplifier circuit 23 and the capacitors 26, 28 and 30.
- the capacitor 30 is connected between the output 23b and the input 23a of the operational amplifier circuit 23, and the capacitors 26 and 28 are connected between the D / A conversion circuit 21 and the input 23a.
- Cyclic A / D converter 101 includes second switch means for arithmetic operations. Depending on the value of the control signal V CONT , the D / A conversion circuit 21 provides the voltage signal V DA1 and / or V DA2 to the gain stage 25.
- V OP (1 + C 1 / C 2 ) ⁇ V IN ⁇ V R (3).
- C 1 C 1a + C 1b (4). It is.
- V R (C 1a ⁇ V RH + C 1b ⁇ V RL ) / C 2 .
- V R (C 1a + C 1b ) ⁇ V RL / C 2 .
- V OP 2 ⁇ V IN ⁇ V R (6).
- the relationship (3) is also rewritten as the relationship (7) as follows.
- V R V RH .
- V R (V RH + V RL ) / 2.
- V R V RL . That is, the D / A conversion circuit 21 generates three values of V RH , V RL, or a voltage at the midpoint (V RH + V RL ) / 2 with respect to the ternary A / D conversion value.
- the deviation of the absolute values of the reference voltages V RH and V RL does not affect the linearity of the A / D conversion characteristics, and only the accuracy of generating the midpoint voltage affects the linearity.
- the capacitance ratio accuracy of the capacitor defines this midpoint voltage. In the semiconductor integrated circuit, the accuracy of the capacitance ratio is much higher than the accuracy of the resistance ratio, and a highly accurate A / D converter 103 can be provided.
- step S103 of part (d) of FIG. 4 a storing operation is performed.
- the calculated value V OP on the output 23 b of the operational amplifier circuit 23 is stored in the first and second capacitors 26 and 28.
- Capacitors 26, 28 are connected in parallel to each other for storage.
- Cyclic A / D conversion circuit 103 includes third switch means for storing operation value VOP . Further, the operation value V OP is provided to the A / D conversion circuit 27 as an analog signal by the third switch means.
- the terminal 26a of the capacitor 26 is connected to the output 23b via the switches 51 and 55, and the terminal 28a of the capacitor 28 is output via the switches 31c, 51 and 55.
- the reference potential is supplied to the terminals 26b and 28b of the capacitors 26 and 28 through the switch 47.
- Terminals 26a, 28a of capacitors 26, 28 are separated from input 25a by switch 43, and terminals 26b, 28b of capacitors 26, 28 are separated from input 23a by switch 49.
- the input 23a of the operational amplifier circuit 23 becomes the reference potential VCOM .
- the calculated value V OP is provided to the sub A / D conversion circuit 27 by the third switch means (switch 55 in this embodiment).
- step S104 of FIG. 4E steps S102 and S103 are repeated to generate a digital signal sequence. This repetition is performed until an A / D conversion result having a predetermined number of bits is obtained. For example, if L cycles are performed, a resolution corresponding to approximately L + 1 bits can be obtained.
- a subsequent A / D conversion circuit will be described.
- the A / D conversion circuit 105 can include integral A / D conversion.
- the A / D conversion circuit (in this embodiment, a single scope type A / D conversion circuit) 105 will be described.
- the single scope type A / D conversion circuit includes a ramp signal generation circuit 61, a comparator 63, a Gray code counter 65, and a data latch 67.
- the data latch 67 receives the count value of the Gray code counter 65.
- the comparator 63 compares an input 63a that receives the final residual value RD of the first stage A / D conversion circuit 103 and an input 63b that receives the ramp signal V RAMP from the ramp signal generation circuit 61, and compares these signals. It has an output 63c that provides the result. Comparator 63 compares residual value RD with ramp signal V RAMP and provides a decision signal to storage control input LOAD of data latch 67. In response to this latch signal, the data latch 67 latches the gray code count value at that time. The latched gray code count value indicates the lower A / D conversion value.
- the comparator 63 includes a capacitor 71, an inverting amplifier 72, a capacitor 73, an inverting amplifier 74, and an inverting amplifier 75, and these circuit elements 71 to 75 are connected in series.
- the switch S3 is connected to the input 72a and the output 72b of the inverting amplifier 72
- the switch S4 is connected to the input 73a and the output 73b of the inverting amplifier 73.
- One end of the capacitor 71 is connected to the input 63a via the switch S1, and the output 75b of the inverting amplifier 75 is connected to the output 63c.
- the input 75a of the inverting amplifier 75 is connected to the output 74b.
- One end of the capacitor 71 is connected to the ramp signal generation circuit 61 via the switch S2, and receives signals V RH and V RL via the switches S5 and S6, respectively.
- MIS type transistors can be used as these switches.
- the switch S1 is turned on, the final residual value RD is received from the input 63a of the comparator 63, and the comparison level of the comparator is sampled. This sample is performed by first turning on the switches S3 and S4 and then turning off the switches S3 and S4. However, in order to reduce an error caused by charge injection by the switch S3, the switch S3 is turned off first and the switch S4 is turned off. It is better to turn it off after a slight delay. Thereafter, the switch S2 is turned on and connected to the ramp signal generator 61.
- the comparator output 63c is inverted, and the time is measured using a counter to obtain a lower-order A / D conversion value.
- the Gray code counter 65 is operated, and the content of the data latch 67 changes according to the output of the counter. Since the output 63c of the comparator 63 is connected to the control input LOAD of the data latch, the output of the counter 65 is stored in the data latch by the inversion of the output value of the comparator 63.
- a reference signal V RH is provided via the switch S5 and a reference signal V RL is provided via the switch S6 to the comparator 63 in order.
- a / D conversion is performed. These A / D conversions may be performed during a period when the image sensor is not operated or during a vertical blanking period of the image sensor.
- Codes NS, NH, and NL are generated for the residual value RD, the reference signal V RH , and the reference signal V RL , respectively.
- NF (NS-NL) / (NH-NS). Represents a standardized A / D conversion value. Since this NF ideally takes a value from 0 to 1, a high resolution can be obtained by combining the lower A / D conversion value represented by M bits and the upper cyclic A / D conversion value. Get the output.
- the second-stage A / D conversion circuit 105 When the second-stage A / D conversion circuit 105 performs single slope A / D conversion, it is possible to provide A / D conversion with good linearity.
- the single slope type A / D conversion circuit has an advantage that the circuit configuration is very simple, but a long conversion time is required to obtain high resolution.
- the first stage A / D conversion circuit 103 performs cyclic A / D conversion. Therefore, the resolution required for the second stage A / D conversion can be made lower than that of the first stage. Therefore, the second stage A / D conversion circuit can be operated at high speed, and the advantages of the single slope type A / D conversion can be utilized.
- a ramp signal generation circuit 61 may be provided for each column of the image sensor. According to this A / D converter, the ramp waveform can be prevented from being temporally shifted at the right end and the left end of the column in time. Alternatively, the ramp signal generation circuit 61 may be provided in common for all columns of the image sensor. This A / D converter can be realized with a small area.
- FIG. 6 is a drawing schematically showing a timing chart of an A / D converter including a combination of a cyclic A / D converter circuit and a single scope A / D converter circuit.
- four cycles are performed in the cyclic A / D conversion.
- the switch is turned on by the control signal ⁇ s and the reset level VR is sampled (S1 in FIG. 6).
- the sampling signal is A / D converted (A1 in FIG. 6) to generate a partial A / D conversion value and a first residual value.
- the switch is turned on by the control signal ⁇ 3 to sample the first residual value (S2 in FIG. 6).
- sampling signal is subjected to A / D conversion (A2 in FIG. 6) to generate a partial A / D conversion value and a second residual value. Subsequently, sampling (S3 and S4 in FIG. 6) and A / D conversion (A3 and A4 in FIG. 6) are performed to obtain a total of four high-order bits.
- the residual value in the final cycle (A4) is sampled by the single slope type A / D conversion circuit 105 during the sampling period SP for the lower A / D conversion circuit. Thereafter, the single slope type A / D conversion on the lower side is performed in the period ADC. An interval is provided between the period SP and the period ADC to avoid performing A / D conversion on the lower side during the period in which the pixel transfer gate signal TX changes. If not necessary, A / D conversion on the lower side can be started without this period.
- the residual value from the cyclic A / D conversion circuit 103 is once sampled in the comparator of the single slope A / D conversion circuit, it is used for the cyclic operation for the next signal VS in the higher-order A / D conversion circuit. Sampling can begin.
- the A / D conversion circuit 105 on the lower side is performing single slope type A / D conversion for the reset level VR, the transfer transistor T1 in the pixel 13 is operated, and the signal level VS is applied to the column line.
- this signal is sampled to the A / D conversion circuit 103 on the upper side in parallel. Thereafter, cyclic A / D conversion of the signal level VS is performed.
- the single slope A / D conversion of the reset level VR has been completed. Therefore, the residual value of the signal level VS is sampled during the single slope A / D conversion period SP. This A / D conversion is performed in a period during which the reset level VR of the next pixel circuit is sampled by the cyclic A / D conversion circuit in the next cycle.
- the two A / D converter circuits 103 and 105 can be operated in parallel at the same time. High-speed conversion can be realized.
- the lower side A / D conversion is performed in the period after the A / D conversion A1 period in addition to the period S1 of the cyclic A / D conversion. You may go.
- the cyclic A / D conversion circuit shown in FIG. 3 generates a ternary redundant code for each cyclic A / D conversion output.
- a ternary redundant code for each cyclic A / D conversion output.
- the cyclic A / D conversion circuit 103 a shown in FIG. 7 can be used in place of the cyclic A / D conversion circuit 103.
- the cyclic A / D conversion circuit 103a has the conversion characteristics shown in part (a) of FIG. 8 when the comparator 27c has no offset.
- the cyclic A / D conversion circuit 103a receives a sub-A / D conversion circuit including a single comparator 27c, a D / A conversion circuit 22c, and a control signal for the D / A conversion circuit 22c as a 1-bit partial conversion value. And a logic circuit 29c generated from the above.
- the circuit configuration of the cyclic A / D converter used in this method is simpler than the circuit configuration shown in FIG.
- the comparator 27c of the sub A / D conversion circuit Even when there is a slight offset, it is possible to prevent an error (offset error) caused by the offset from affecting the lower-order A / D conversion value.
- the offset error is amplified at an amplification factor of the capacitor ratio (twice) each time the cycle in the upper A / D conversion is repeated.
- the data conversion circuit 109 receives a bit string from the storage circuit 107.
- the N bit partial bit string of the upper A / D conversion circuit 103 and the M bit partial bit string of the lower A / D conversion circuit 105 are provided to the data conversion circuit 109.
- 9A shows a data conversion circuit 109a that generates an M + N-bit digital signal from an N-bit redundant partial bit string and an M-bit partial bit string. It is expressed as follows as the input analog value N + M digital values X 0 bits.
- X 0 D 0 ⁇ 2 ⁇ 1 + D 1 ⁇ 2 ⁇ 2 + D 2 ⁇ 2 ⁇ 3 + ..
- D i 1, 2, 3,... N ⁇ 1).
- the array of full adders generates signals (A 0 , A 1 , A 2 , A 3 to A N-1 ) indicating the converted bit string.
- the full adder 81a generates a bit string (A 0 , A 1 ). Bit A 0 is the output of the carry c, and bit A 1 is the output of the added value s.
- the carry signal propagates from the full adder 81n to the arrangement direction of the full adder 81a.
- the full adder 81n is augend D1 (N-1), subjected to D2 (N-1) and the carry input B 0.
- the bit strings B 1 , B 2 to B M ⁇ 1 from the lower A / D conversion circuit are not substantially processed by the data conversion circuit 109a, and the bit strings A N ⁇ 2 , A N ⁇ 3 to A N + M Provided as -1 .
- FIG. 9B shows a data conversion circuit 109b that generates an M + N-bit digital signal from an N-bit non-redundant partial bit string and an over-range M-bit partial bit string.
- a single slope type A / D conversion is performed on the residual value after N cyclic operations and a normalization process is performed on the output value to obtain an M-bit A / D conversion value.
- the residual value X N is in the range from -0.5 to +1.5, when performing A / D conversion process to the value of this range, it is expressed as: it can.
- X 0 D 0 ⁇ 2 ⁇ 1 + D 1 ⁇ 2 ⁇ 2 + D 2 ⁇ 2 ⁇ 3 +... + X N ⁇ 2 ⁇ (N ⁇ 1) .
- X N ⁇ B 0 + (1 + B 1 ) ⁇ 2 ⁇ 1 + B 2 ⁇ 2 ⁇ 2 +... + B M ⁇ 1 ⁇ 2 ⁇ (M ⁇ 1) .
- the data conversion circuit 109b includes n full adders 82a, 82b, 82c to 82n, and a half adder 83.
- Each full adder 82a to 82n generates an addition value s and a carry c.
- the array of full adders generates signals (A 0 , A 1 , A 2 , A 3 to A N-1 ) indicating the converted bit string.
- the half adder 83 receives the fixed input 1 and the lower partial bit value B 1 and generates an added value A N ⁇ 2 .
- the remaining bit strings B 2 to B M ⁇ 1 from the A / D conversion circuit on the lower side are provided as bit strings A N ⁇ 3 to A N + M ⁇ 1 without being substantially processed by the data conversion circuit 109b.
- the cyclic A / D conversion circuit 103 can perform correlated double sampling using an analog signal. By the correlated double sampling, the component of the reset level VR can be removed from the signal level VS from the pixel 13.
- FIG. 10 is a diagram showing a circuit connection and timing chart for analog processing of correlated double sampling.
- the reset level VR is applied to the capacitors 26 and 28 for the period SR (CDS ).
- the signal levels VS are sampled in the capacitors 26 and 28 in the period SS (CDS).
- a difference value VR ⁇ VS
- This difference value can be A / D converted by a 1-bit method or a 1.5-bit method.
- the cyclic A / D conversion circuit 103 on the upper side performs four cyclic operations (S1, A1, S2, A2, S3, A3, S4). , A4) and the residual value in the fourth round is provided to the lower A / D conversion circuit 105 in the period SP.
- the lower A / D conversion circuit 105 performs lower A / D conversion in the period ADC.
- FIG. 11 is a diagram showing a successive approximation A / D conversion circuit for A / D conversion at the second stage.
- the successive approximation A / D conversion circuit 91 receives the residual RD from the first-stage cyclic A / D conversion circuit 103.
- the successive approximation A / D conversion circuit 91 performs 4-bit A / D conversion.
- the successive approximation A / D conversion circuit 91 includes an array of capacitors 92a, 92b, 92c, 92d, and 92e for sampling the residual value RD from the first-stage cyclic A / D conversion circuit 103.
- the capacitor 92e has the same capacitance as the capacitor 92d. Sampling is performed by switches 93a, 93b, 93c, 93d, and 93e connected between the input line connected to the cyclic A / D converter circuit 103 and one ends of the capacitors 92a, 92b, 92c, 92d, and 92e, respectively.
- switches 93a to 93e are controlled by a control signal ⁇ sd.
- Capacitors 92a, 92b, 92c, to one end of the 92d, the switch 94a, 94b, 94c, are connected to the reference signal V RH through 94d.
- Capacitors 92a, 92b, 92c, 92d, to one end of the 92e, switches 95a, 95b, 95c, 95d, are connected to the reference signal V RL through 95e. Opening and closing of the switches 95a to 95e is controlled by an inverted signal (denoted as _ ⁇ sd) of the control signal ⁇ sd.
- Opening and closing of the switches 94a to 94d is controlled by the successive approximation register 96.
- the other ends of the capacitors 92a to 92e are connected to an input 97a (for example, an inverting input) of an amplifier (comparator) 97, and the other input 97b (for example, a non-inverting input) is connected to a virtual ground (for example, GND).
- the output 97c (for example, non-inverted output) of the amplifier 97 is connected to the input 96a of the successive approximation register 96 and controls the successive approximation register 96.
- a switch 98 is connected between an input 97a and an output 97c of the amplifier 97, and is controlled by a control signal ⁇ s.
- the amplifier 97 operates in response to the clock ⁇ c.
- the switches 93a to 93e are closed, and the residual value RD is sampled into an array of capacitors 92a to 92e.
- the input 97a of the amplifier 97 is grounded or is short-circuited using the switch 98 to set the virtual contact potential.
- this virtual ground potential is set to 0 volts.
- the switches 98, 93a to 93e (clocks ⁇ s, ⁇ sd) are opened, and a 4-bit code is set in the 4-bit successive approximation register 96.
- the capacitor array D / A converter is operated by this 4-bit code.
- DD3 “1”
- D3L Set to “0”.
- D3H "0”
- D3L "1”.
- the net charge on the input 97a of the amplifier 97 when the residual value RD is sampled into the capacitor array is the net charge on the input 97a of the amplifier 97 when the capacitor array is connected to the reference power sources VRH and VRL under the control of the register 96.
- This charge is referred to as Q NET ).
- the second-stage A / D conversion circuit 105 When the second-stage A / D conversion circuit 105 performs successive approximation A / D conversion, the resolution required for the successive approximation A / D conversion circuit is not high. Therefore, the second-stage A / D conversion circuit can have a small circuit scale, and the advantage of successive approximation can be utilized. In general, in order to obtain high resolution in a successive approximation A / D converter circuit, the number of parts (for example, resistors and capacitors) constituting the A / D converter circuit increases exponentially. The second-stage A / D conversion circuit 105 performs successive approximation A / D conversion, but an A / D conversion circuit with high resolution is not required.
- the overrange method can also be applied when the second-stage A / D conversion circuit 105 performs successive approximation A / D conversion.
- cyclic A / D conversion circuits are provided for the upper digit and the lower digit, respectively, and a pipeline operation is performed, thereby increasing the conversion speed and reducing the power consumption.
- the second-stage A / D conversion circuit performs cyclic A / D conversion
- the first-stage A / D conversion circuit performs cyclic A / D conversion
- the second-stage cyclic A / D conversion The circuit does not require high conversion accuracy. Therefore, the second-stage cyclic A / D converter circuit is smaller than the first-stage cyclic A / D converter circuit, for example, a 1/2 L size capacitor and / or a smaller size. The power consumption in the second stage A / D conversion circuit can be greatly reduced.
- FIG. 12 is a drawing showing two cyclic A / D conversion circuits connected in series.
- the two cyclic A / D conversion circuits 103 and 104 have the same circuit connection with each other except that the element sizes are different.
- the circuit elements 121, 123, 126, 127, 128, 129, and 130 are used corresponding to the circuit elements 21, 23, 26, 27, 28, 29, and 30 in the first-stage A / D conversion circuit.
- a correlated double sampling circuit (CDS circuit) 102 including an analog correlated double sampling (CDS) capacitor and a buffer circuit is connected to the input of the cyclic A / D conversion circuit 103.
- CDS circuit correlated double sampling circuit
- FIG. 13 is a diagram showing an analog CDS operation and an operation of the first-stage cyclic A / D conversion circuit.
- FIG. 14 shows the operation of the second-stage cyclic A / D converter circuit.
- FIG. 15 is a diagram showing timing for operating the array of A / D converters shown in FIG. 11 in a column of a CMOS image sensor.
- the reset level VR from the pixel is sampled in the CDS capacitor CCDS .
- FIG. 13B after the CDS capacitor CCDS is connected to the operational amplifier circuit 23, the signal level VS from the pixel is sampled.
- V O (VR ⁇ VS) ⁇ C CDS / C 2 .
- the sub A / D conversion circuit 27 converts the partial A / D conversion value to this CDS value, as shown in the part (c) of FIG. Generate.
- the D / A conversion value is added to one end of the capacitors 26 and 28 in accordance with the partial A / D conversion value to perform amplification and residual generation. After the necessary number of cyclic operations are performed in the first-stage A / D conversion circuit, the residual value is provided to the second-stage cyclic A / D conversion circuit 104.
- FIG. 14 shows the operation
- the D / A conversion value is added to one end of the capacitors 126 and 128 according to the partial A / D conversion value as shown in FIG. 14B by the same operation as the first stage. Amplification and residual generation.
- the second-stage cyclic A / D conversion circuit 104 samples the residual value, and generates the partial A / D converted value of the residual value. Indicates. The necessary number of cyclic operations are performed in the second-stage A / D conversion circuit.
- FIG. 16 is a diagram showing the timing of pipeline processing in the operation of two cyclic A / D conversion circuits connected in series.
- the pipeline operation shown in the timing diagrams of FIGS. 15 and 16 exceeds the horizontal readout period (1H) of the image sensor, A / D conversion can be performed. In addition, the conversion speed can be increased.
- the second-stage cyclic A / D conversion circuit 104 the requirements for conversion accuracy and noise are greatly eased. For example, in the first-stage cyclic A / D converter circuit, if four cycles (that is, amplification) are performed, the conversion operation at the second stage is 1/16 the conversion accuracy compared to the operation at the first stage. And the requirement for noise is relaxed. Therefore, the size of the capacitor used in the second-stage circuit can be reduced, and the bias current and transistor size of the amplifier can be reduced. Can be relaxed.
- the overrange method can also be applied when the second-stage A / D conversion circuit 104 performs cyclic A / D conversion.
- the A / D conversion circuit is used for the upper and lower digits of the A / D conversion, and the cyclic A / D conversion method is adopted for the upper digits.
- An A / D converter capable of reducing A / D conversion accuracy in a digit A / D conversion circuit is provided.
- Successive comparison type A / D conversion circuit 92a to 92d Capacitor 93a to 93e Switch 94a to 94d Switch 95a to 95e Switch 97 ...
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
デジタル信号 演算値VOPの範囲。
D=0のとき、VRCL>VOP。
D=1のとき、VRCH≧VOP≧VRCL。
D=2のとき、VOP>VRCH、 (1)。
となる。サブA/D変換回路27がゲインステージ25からの演算値VOPを所定の2つの基準信号と比較することによって冗長コード(3値のデジタル信号)を生成している。
関係(2)。
条件D=2が満たされるとき、VDA1=VDA2=VRHを提供する。
条件D=1が満たされるとき、VDA1=VRH、VDA2=VRLを提供する。
条件D=0が満たされるとき、VDA1=VDA2=VRLを提供する。
演算値VOPは以下の式で表される。
VOP=(1+C1/C2)×VIN-VR (3)。
C1=C1a+C1b (4)。
である。また、値VRはD/A変換回路21からの電圧信号VDA1、VDA2によって規定されており、以下のように表される。
関係(5)。
条件D=2が満たされるとき、VR=(C1a+C1b)×VRH/C2である。
条件D=1が満たされるとき、VR=(C1a×VRH+C1b×VRL)/C2である。
条件D=0が満たされるとき、VR=(C1a+C1b)×VRL/C2である。
VOP=2×VIN-VR (6)。
また、関係(3)も以下のように関係(7)として書き換えられる。
条件D=2が満たされるとき、VR=VRHである。
条件D=1が満たされるとき、VR=(VRH+VRL)/2である。
条件D=0が満たされるとき、VR=VRLである。
すなわち、D/A変換回路21は、3値のA/D変換値に対してVRH、VRL又はその中点の電圧(VRH+VRL)/2の3値を生成する。
NF=(NS―NL)/(NH-NS)。
が規格化されたA/D変換値を表す。このNFは、理想的には0から1までの値をとるので、これをMビットで表した下位側のA/D変換値と上位側の巡回A/D変換値とを組み合わせて高分解能の出力を得る。
ABS(VOFF)=(R2-R1)/2N+1、ここで絶対値を「ABS」で表す。
例えば(R2-R1)=0.5ボルトであるとき、4回の巡回動作ではオフセット電圧の許容値は15.5mV以下にする必要がある。
X0=D0×2-1+D1×2-2+D2×2-3+・・+DN-1×2-(N-1)+
XN×2-(N-1)。
XN=B0+B1×2-1+B2×2-2+・・・+BM-1×2-(M-1)。
Xi(i=1、2、3・・・N-1)は0から2までの範囲の値を取る。前段の各巡回において生成された値を「Di」(i=1、2、3・・・N-1)と記す。Di(i=1、2、3・・・N-1)は0、1、2のいずれかの値を取る。後段のA/D変換により得られ値を「Bj」(j=1、2、3・・・M-1)と記す。Bj(j=1、2、3・・・M-1)は0、1のいずれかの値を取る。2ビットの信号D0=(D1(0)、D2(0))、D1=(D1(1)、D2(1))~、DN-1=(D1(N-1)、D2(N-1))は部分変換値を示す。データ変換回路109aは、n個の全加算器81a、81b、81c~81nを含む。全加算器81a~81nの各々における2つの入力は、各巡回の部分ビット列D1(i)、D2(i)(i=0~N-1)を受け、各全加算器は、2つの被加算値及び桁上がり入力を受けて、加算値s及び桁上がりcを生成する。全加算器のアレイは、変換されたビット列を示す信号(A0、A1、A2、A3~AN-1)を生成する。全加算器81aはビット列(A0、A1)を生成する。ビットA0は桁上がりcの出力であり、ビットA1は加算値sの出力である。桁上がり信号は、全加算器81nから全加算器81aの配列方向に伝搬する。また、全加算器81nは被加算値D1(N-1)、D2(N-1)及び桁上がり入力B0を受ける。下位側のA/D変換回路からのビット列B1、B2~BM-1は、データ変換回路109aでは実質的に処理されることなく、ビット列AN-2、AN-3~AN+M-1として提供される。
X0=D0×2-1+D1×2-2+D2×2-3+・・・+XN×2-(N-1)。
XN=-B0+(1+B1)×2-1+B2×2-2+・・・+BM-1×2-(M-1)。
Di(i=1、2、3・・・N-1)は0、1のいずれかの値を取る。Xi(i=1、2、3・・・N-1)は0から1までの範囲の値を取る。Bj(j=1、2、3・・・M-1)は0、1のいずれかの値を取る。1ビットの成分D(0)、D(1)、D(2)~D(N-1)は上位側の部分変換値を示す。データ変換回路109bは、n個の全加算器82a、82b、82c~82n及び半加算器83を含む。全加算器82a、82b、82c~82nの各々における2つの入力の一方は、各巡回の部分ビット列D(i)(i=0~N-1)を受け、2つの入力の他方は下位側の部分ビット値B0を受ける。各全加算器82aから82nは加算値s及び桁上がりcを生成する。全加算器のアレイは、変換されたビット列を示す信号(A0、A1、A2、A3~AN-1)を生成する。半加算器83は、固定入力1と下位側の部分ビット値B1を受けて、加算値AN-2を生成する。下位側のA/D変換回路からの残りのビット列B2~BM-1は、データ変換回路109bでは実質的に処理されずに、ビット列AN-3~AN+M-1として提供される。
QNET=2×C×(0-RD)。
=C×(VS-VRL)/8+C×(VS-DD3×△VR-VRL)/8+C×(VS-DD2×△VR-VRL)/4+C×(VS-DD1×△VR-VRL)/2+C×(VS-DD0×△VR-VRL)、ここで、△VR=VRH-VRLである。
この値は以下のように表される。
QNET=VRL+(DD0×2-1+DD1×2-2+DD2×2-3+DD3×2-4)×△VR-RD。
これは、入力電圧RDと4ビットのキャパシタアレイD/A変換回路の出力と差によって、アンプ97の入力上の電位VSが規定されることを示す。逐次比較レジスタ96は、動作を進めるに従って分解能が1ビットずつ向上するように設定される。例えば、第1のステップでは、(DD0、DD1、DD2、DD3)=(1、0、0、0)とする。このときは、入力値Vin(例えばRD)をVRL+0.5×△VR=(VRL+VRH)/2と比較する。つまり、A/D変換範囲を参照値VRHからVRLまでとして、その中央の値と入力値Vinを比較する。もし、入力値が(VRL+VRH)/2よりも大きければ、D0=”1”が確定する。逆に、小さければD0=”0”としてD0が確定する。次いで、もしD0=”1”であるとき、第2のステップでは、(DD0、DD1、DD2、DD3)=(1、1、0、0)とする。これによって、入力値をVRL+0.75×△VR=(0.25×VRL+0.75×VRH)と比較して、2ビット目を確定する。このような動作を繰り返すことで、4ビットの分解能をもった逐次比較A/D変換が行われる。
VO=(VR-VS)×CCDS/C2。
次いで、図4を参照しながら既に説明したように、このCDS値に対して、図13の(c)部に示されるように、サブA/D変換回路27において、部分A/D変換値を生成する。図13の(d)部に示されるように、この部分A/D変換値に応じてD/A変換値をキャパシタ26及び28の一端に加えて、増幅及び残差生成を行う。必要な回数の巡回動作を第1段目のA/D変換回路において行った後に、残差値を2段目の巡回型A/D変換回路104に提供される。
Claims (8)
- イメージセンサからの信号をN+Mビット(N≧2、M≧2)のデジタル値に変換するA/D変換器であって、該A/D変換器は前記イメージセンサのカラムに配置されており、
アナログ値を受けると共に、前記アナログ値を示す上位のNビットの第1デジタル値及び残差値を生成する第1の巡回型A/D変換回路と、
前記残差値を受けると共に、前記残差値を示す下位のMビットの第2デジタル値を生成するA/D変換回路と、を備え、
前記第1の巡回型A/D変換回路は、サブA/D変換回路、論理回路、D/A変換回路及び演算部を含み、
前記サブA/D変換回路は巡回毎にN1ビット(N1<N)のデジタル値を生成し、
前記論理回路は、前記サブA/D変換回路から前記デジタル値を受け、
前記D/A変換回路は、前記論理回路から信号に応答したD/A変換値を生成し、
前記演算部は、入力と、前記残差値を提供する出力と、前記出力と前記入力とを接続し巡回型A/D変換のための帰還経路とを有し、
前記演算部は、前記入力に受けた入力値を増幅すると共に、該増幅された入力値と前記D/A変換値との差分を生成する、A/D変換器。 - 前記A/D変換回路は、巡回型A/D変換、積分型A/D変換及び逐次比較型A/D変換のいずれかを行う、請求項1に記載されたA/D変換器。
- 前記A/D変換回路は、前記残差値を保持すると共に、前記第2デジタル値を生成するA/D変換を行い、
前記第1の巡回型A/D変換回路は前記残差値を前記A/D変換回路に提供した後に、パイプライン処理のために次のアナログ信号の巡回型A/D変換を行う、請求項1又は請求項2に記載されたA/D変換器。 - 前記第1の巡回型A/D変換回路は、前記Nビットの各々が2値のデジタル値を有する非冗長コードを生成し、
前記A/D変換回路の入力レンジは、前記第1の巡回型A/D変換回路の入力レンジの電圧範囲より大きい、請求項1~請求項3のいずれか一項に記載されたA/D変換器。 - 前記イメージセンサと前記第1の巡回型A/D変換回路との間に接続された相関二重サンプリング回路を更に備え、
前記イメージセンサの画素回路は、ノイズ成分を含む第1の信号レベルと該ノイズ成分に重畳した信号成分を含む第2の信号レベルとを生成し、
前記相関二重サンプリング回路は前記第1及び第2の信号レベルを受けて、前記アナログ信号を生成し、
前記アナログ信号は前記第1の信号レベルと前記第2の信号レベルとの差分を示し、
前記相関二重サンプリング回路は前記アナログ信号を前記第1の巡回型A/D変換回路に提供した後に、パイプライン処理のため前記イメージセンサの別の画素回路からの信号を受ける、請求項1~請求項4のいずれか一項に記載されたA/D変換器。 - 前記A/D変換回路は第2の巡回型A/D変換回路を含み、
前記第1の巡回型A/D変換回路は、当該第1の巡回型A/D変換回路への入力信号をサンプリングするための第1のキャパシタ、第2のキャパシタ及び第1の演算増幅回路を含み、前記第1のキャパシタのキャパシタンスと前記第2のキャパシタのキャパシタンスとの比は、前記第1の演算増幅回路による増幅における増幅率を規定し、
前記第2の巡回型A/D変換回路は、該第2の巡回型A/D変換回路への入力信号をサンプリングするための第3のキャパシタ、第4のキャパシタ及び第2の演算増幅回路を含み、前記第3のキャパシタのキャパシタンスと前記第4のキャパシタのキャパシタンスとの比は、前記第2の演算増幅回路による増幅における増幅率を規定し、
以下の少なくとも一方が満たされる:前記第3及び第4のキャパシタのサイズはそれぞれ前記第1及び第2のキャパシタのサイズより小さいこと;及び前記第1の演算増幅回路のサイズが前記第2の演算増幅回路のサイズより小さい、請求項1~請求項5のいずれか一項に記載されたA/D変換器。 - 前記A/D変換回路は逐次比較型A/D変換回路を含み、
前記A/D変換回路の変換精度は前記第1の巡回型A/D変換回路の変換精度より低い、請求項1~請求項5のいずれか一項に記載されたA/D変換器。 - 前記A/D変換回路はシングルスコープ型A/D変換回路を含み、
前記A/D変換回路の変換精度は前記第1の巡回型A/D変換回路の変換精度より低い、請求項1~請求項5のいずれか一項に記載されたA/D変換器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11780708.1A EP2571169B1 (en) | 2010-05-14 | 2011-05-13 | A/d converter |
JP2012514843A JP5769178B2 (ja) | 2010-05-14 | 2011-05-13 | A/d変換器 |
KR1020127029174A KR101689053B1 (ko) | 2010-05-14 | 2011-05-13 | A/d 변환기 |
US13/697,162 US8704694B2 (en) | 2010-05-14 | 2011-05-13 | A/D converter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010112440 | 2010-05-14 | ||
JP2010-112440 | 2010-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011142452A1 true WO2011142452A1 (ja) | 2011-11-17 |
Family
ID=44914503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/061040 WO2011142452A1 (ja) | 2010-05-14 | 2011-05-13 | A/d変換器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8704694B2 (ja) |
EP (1) | EP2571169B1 (ja) |
JP (1) | JP5769178B2 (ja) |
KR (1) | KR101689053B1 (ja) |
WO (1) | WO2011142452A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015231107A (ja) * | 2014-06-04 | 2015-12-21 | 日本放送協会 | イメージセンサ用ad変換回路 |
US9264064B2 (en) | 2014-03-07 | 2016-02-16 | Panasonic Intellectual Property Management Co., Ltd. | Analog-to-digital conversion apparatus and analog-to-digital conversion method |
JP2016129331A (ja) * | 2014-12-26 | 2016-07-14 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2016147523A1 (ja) * | 2015-03-19 | 2016-09-22 | パナソニックIpマネジメント株式会社 | イメージセンサおよびそれを備えた撮像装置 |
JP2017005332A (ja) * | 2015-06-05 | 2017-01-05 | 日本放送協会 | 巡回型ad変換器、並びに巡回型ad変換器用のデジタル補正器及びその方法 |
WO2017029984A1 (ja) * | 2015-08-19 | 2017-02-23 | 国立大学法人 鹿児島大学 | アナログデジタル変換器 |
JP2017135616A (ja) * | 2016-01-28 | 2017-08-03 | 日本放送協会 | アナログ・デジタル変換回路 |
WO2018070220A1 (ja) * | 2016-10-11 | 2018-04-19 | 学校法人東京理科大学 | A/d変換器 |
WO2018088476A1 (ja) * | 2016-11-11 | 2018-05-17 | 国立大学法人静岡大学 | A/d変換器 |
WO2020095393A1 (ja) * | 2018-11-07 | 2020-05-14 | 株式会社ブルックマンテクノロジ | A/d変換器、イメージセンサデバイス、及びアナログ信号からディジタル信号を生成する方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2696506A1 (en) * | 2012-08-09 | 2014-02-12 | Innovaciones Microelectronicas S.L. | Two-stage analog-to-digital converter for high-speed image sensor |
JP6037878B2 (ja) * | 2013-02-13 | 2016-12-07 | オリンパス株式会社 | 撮像装置 |
JP2014239289A (ja) * | 2013-06-06 | 2014-12-18 | ソニー株式会社 | Ad変換器、信号処理方法、固体撮像装置、および電子機器 |
JP5886806B2 (ja) | 2013-09-17 | 2016-03-16 | キヤノン株式会社 | 固体撮像装置 |
KR102170658B1 (ko) * | 2014-04-21 | 2020-10-27 | 삼성전자주식회사 | 축차근사형 아날로그-디지털 변환 장치 및 그 아날로그-디지털 변환 방법 |
JP6317622B2 (ja) * | 2014-05-13 | 2018-04-25 | 浜松ホトニクス株式会社 | 固体撮像装置 |
KR101710773B1 (ko) * | 2015-01-06 | 2017-02-27 | 한양대학교 산학협력단 | 아날로그-디지털 변환 제어 장치 및 그 제어 방법 |
US9357151B1 (en) | 2015-03-27 | 2016-05-31 | Teledyne Scientific & Imaging, Llc | Shared counter circuit with low-voltage signal output for a column-parallel single slope ADC |
US10979065B1 (en) * | 2020-04-01 | 2021-04-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Signal processing circuit, in-memory computing device and control method thereof |
DE102021108693B4 (de) | 2020-04-14 | 2022-02-03 | Ifm Electronic Gmbh | Vorrichtung und Verfahren zur Ermittlung von mindestens zwei referenzwertbezogenen Pixel-Signalwerten eines oder mehrerer LOFIC Pixel per korrelierter Doppelabtastung |
DE102022124675A1 (de) | 2022-09-26 | 2024-03-28 | Ifm Electronic Gmbh | PMD-Sensor mit mehreren Halbleiterebenen |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6467034A (en) | 1987-09-08 | 1989-03-13 | Toshiba Corp | Serial-parallel type a/d converting device |
JPH0469203B2 (ja) | 1988-07-21 | 1992-11-05 | Nippon Steel Corp | |
JPH07202700A (ja) | 1993-12-28 | 1995-08-04 | Nec Corp | A/d変換装置 |
JP2004304413A (ja) | 2003-03-31 | 2004-10-28 | Shoji Kawahito | イメージセンサ用2段階a/d変換器 |
JP2005109747A (ja) * | 2003-09-29 | 2005-04-21 | Sanyo Electric Co Ltd | アナログデジタル変換器 |
JP2005136540A (ja) | 2003-10-29 | 2005-05-26 | National Univ Corp Shizuoka Univ | A/d変換アレイ及びイメージセンサ |
JP2008028820A (ja) * | 2006-07-24 | 2008-02-07 | Sharp Corp | A/dコンバータ |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0527290A (ja) * | 1991-07-24 | 1993-02-05 | Ricoh Co Ltd | 光a/dコンバータ |
GB2333191A (en) * | 1998-01-08 | 1999-07-14 | Fujitsu Microelectronics Ltd | DAC current switch with reduced crossover noise |
US6195032B1 (en) * | 1999-08-12 | 2001-02-27 | Centillium Communications, Inc. | Two-stage pipelined recycling analog-to-digital converter (ADC) |
US7289055B2 (en) * | 2004-02-05 | 2007-10-30 | Sanyo Electric Co., Ltd. | Analog-digital converter with gain adjustment for high-speed operation |
US7598896B2 (en) * | 2005-09-07 | 2009-10-06 | National University Corporation Shizuoka University | A/D converter with noise cancel function |
WO2007142327A1 (ja) * | 2006-06-08 | 2007-12-13 | National University Corporation Shizuoka University | 変換回路、アナログディジタル変換器、およびアナログ信号に対応したディジタル信号を生成する方法 |
WO2007142328A1 (ja) * | 2006-06-08 | 2007-12-13 | National University Corporation Shizuoka University | アナログディジタル変換器、a/d変換ステージ、アナログ信号に対応したディジタル信号を生成する方法、およびa/d変換ステージにおける変換誤差を示す信号を生成する方法 |
WO2009088041A1 (ja) * | 2008-01-09 | 2009-07-16 | National University Corporation Shizuoka University | 巡回型アナログ・ディジタル変換器 |
CN102187581B (zh) * | 2008-10-17 | 2014-05-14 | 国立大学法人静冈大学 | 循环型a/d转换器、图像传感器装置及从模拟信号生成数字信号的方法 |
-
2011
- 2011-05-13 WO PCT/JP2011/061040 patent/WO2011142452A1/ja active Application Filing
- 2011-05-13 EP EP11780708.1A patent/EP2571169B1/en active Active
- 2011-05-13 KR KR1020127029174A patent/KR101689053B1/ko active IP Right Grant
- 2011-05-13 US US13/697,162 patent/US8704694B2/en active Active
- 2011-05-13 JP JP2012514843A patent/JP5769178B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6467034A (en) | 1987-09-08 | 1989-03-13 | Toshiba Corp | Serial-parallel type a/d converting device |
JPH0469203B2 (ja) | 1988-07-21 | 1992-11-05 | Nippon Steel Corp | |
JPH07202700A (ja) | 1993-12-28 | 1995-08-04 | Nec Corp | A/d変換装置 |
JP2004304413A (ja) | 2003-03-31 | 2004-10-28 | Shoji Kawahito | イメージセンサ用2段階a/d変換器 |
JP2005109747A (ja) * | 2003-09-29 | 2005-04-21 | Sanyo Electric Co Ltd | アナログデジタル変換器 |
JP2005136540A (ja) | 2003-10-29 | 2005-05-26 | National Univ Corp Shizuoka Univ | A/d変換アレイ及びイメージセンサ |
JP3962788B2 (ja) | 2003-10-29 | 2007-08-22 | 国立大学法人静岡大学 | A/d変換アレイ及びイメージセンサ |
JP2008028820A (ja) * | 2006-07-24 | 2008-02-07 | Sharp Corp | A/dコンバータ |
Non-Patent Citations (4)
Title |
---|
F. SNOEIJ ET AL.: "A CMOS image sensor with a column-parallel multiple-ramp single-slope ADC", DIG. TECH. PAPERS, ISSCC, 2007, pages 506 - 506 |
K.NAGARAJ: "Efficient circuit configuration for algorithmic analog to digital converters", IEEE TRANS. CIRCUITS AND SYSTEMS II, vol. 40, no. 12, 1993, pages 777 - 785 |
S.MATSUO ET AL.: "A very low column FPN and row temporal noise 8.9M-Pixel,60fps CMOS image sensor with 14bit column parallel SA-ADC", DIG. TECH. PAPERS, SYMP. VLSI CIRCUITS, 2008, pages 138 - 139 |
See also references of EP2571169A4 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9264064B2 (en) | 2014-03-07 | 2016-02-16 | Panasonic Intellectual Property Management Co., Ltd. | Analog-to-digital conversion apparatus and analog-to-digital conversion method |
JP2015231107A (ja) * | 2014-06-04 | 2015-12-21 | 日本放送協会 | イメージセンサ用ad変換回路 |
JP2016129331A (ja) * | 2014-12-26 | 2016-07-14 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US9961288B2 (en) | 2015-03-19 | 2018-05-01 | Panasonic Intellectual Property Management Co., Ltd. | Image sensor and imaging device comprising oversampling AD converter and recursive AD converter |
WO2016147523A1 (ja) * | 2015-03-19 | 2016-09-22 | パナソニックIpマネジメント株式会社 | イメージセンサおよびそれを備えた撮像装置 |
JPWO2016147523A1 (ja) * | 2015-03-19 | 2018-03-01 | パナソニックIpマネジメント株式会社 | イメージセンサおよびそれを備えた撮像装置 |
JP2017005332A (ja) * | 2015-06-05 | 2017-01-05 | 日本放送協会 | 巡回型ad変換器、並びに巡回型ad変換器用のデジタル補正器及びその方法 |
WO2017029984A1 (ja) * | 2015-08-19 | 2017-02-23 | 国立大学法人 鹿児島大学 | アナログデジタル変換器 |
US10263634B2 (en) | 2015-08-19 | 2019-04-16 | Kagoshima University | Analog-digital converter |
JP2017135616A (ja) * | 2016-01-28 | 2017-08-03 | 日本放送協会 | アナログ・デジタル変換回路 |
JP2018064157A (ja) * | 2016-10-11 | 2018-04-19 | 学校法人東京理科大学 | A/d変換器 |
WO2018070220A1 (ja) * | 2016-10-11 | 2018-04-19 | 学校法人東京理科大学 | A/d変換器 |
WO2018088476A1 (ja) * | 2016-11-11 | 2018-05-17 | 国立大学法人静岡大学 | A/d変換器 |
US10715757B2 (en) | 2016-11-11 | 2020-07-14 | National University Corporation Shizuoka University | A/D converter |
WO2020095393A1 (ja) * | 2018-11-07 | 2020-05-14 | 株式会社ブルックマンテクノロジ | A/d変換器、イメージセンサデバイス、及びアナログ信号からディジタル信号を生成する方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2571169B1 (en) | 2019-07-03 |
KR101689053B1 (ko) | 2016-12-22 |
EP2571169A1 (en) | 2013-03-20 |
US8704694B2 (en) | 2014-04-22 |
JP5769178B2 (ja) | 2015-08-26 |
EP2571169A4 (en) | 2016-03-16 |
US20130120180A1 (en) | 2013-05-16 |
JPWO2011142452A1 (ja) | 2013-07-22 |
KR20130093489A (ko) | 2013-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5769178B2 (ja) | A/d変換器 | |
KR101148169B1 (ko) | 에이/디 변환 어레이 및 이미지 센서 | |
US5696511A (en) | Voltage comparator and pipeline type A/D converter | |
JP4897047B2 (ja) | 非同期電流モード循環比較を使用するアナログ/ディジタル変換 | |
WO2008016049A1 (fr) | Convertisseur a/n et circuit de lecture | |
US8223058B2 (en) | Switched-capacitor circuit having a capacitor array circuit, and analog-to-digital converter using said switched-capacitor circuit | |
US6229472B1 (en) | A/D converter | |
WO2009131018A1 (ja) | イメージセンサー用a/d変換器 | |
JP6830672B2 (ja) | A/d変換器 | |
US7764214B2 (en) | Analog-to-digital converter for converting input analog signal into digital signal through multiple conversion processings | |
JP3559534B2 (ja) | アナログ・ディジタル変換回路 | |
JP5187782B2 (ja) | 巡回型a/d変換器、イメージセンサデバイス、及びアナログ信号からディジタル信号を生成する方法 | |
WO2019092805A1 (ja) | 増幅回路及びそれを備えるアナログデジタル変換システム | |
JP5382885B2 (ja) | A/d変換集積回路 | |
JP4478798B2 (ja) | オフセット低減機能をもつ巡回型a/d変換器、およびオフセット電圧を低減する方法 | |
JP4328863B2 (ja) | 巡回型a/d変換器およびイメージセンサ | |
JP2812169B2 (ja) | A/d変換装置 | |
JP4858962B2 (ja) | 半導体集積回路装置 | |
Wang et al. | A 19-bit column-parallel folding-integration/cyclic cascaded ADC with a pre-charging technique for CMOS image sensors | |
JP5011538B2 (ja) | 巡回型アナログ・ディジタル変換器およびイメージセンサデバイス | |
Boonsobhak et al. | A pixel-level ADC with improved performance trade-off for high-speed CMOS imagers | |
JP2003032112A (ja) | アナログ−デジタル変換回路およびその直流バイアス電圧発生方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11780708 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012514843 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127029174 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011780708 Country of ref document: EP |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 13697162 Country of ref document: US |