WO2011142437A1 - バイオマス粉砕装置及びバイオマス・石炭混焼システム - Google Patents

バイオマス粉砕装置及びバイオマス・石炭混焼システム Download PDF

Info

Publication number
WO2011142437A1
WO2011142437A1 PCT/JP2011/060997 JP2011060997W WO2011142437A1 WO 2011142437 A1 WO2011142437 A1 WO 2011142437A1 JP 2011060997 W JP2011060997 W JP 2011060997W WO 2011142437 A1 WO2011142437 A1 WO 2011142437A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
groove
roller
raw material
coal
Prior art date
Application number
PCT/JP2011/060997
Other languages
English (en)
French (fr)
Inventor
竹内 和広
卓一郎 大丸
木下 正昭
啓樹 山口
甲斐 徳親
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/697,618 priority Critical patent/US20130055935A1/en
Priority to CN2011800236108A priority patent/CN102892509A/zh
Publication of WO2011142437A1 publication Critical patent/WO2011142437A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/003Shape or construction of discs or rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/004Shape or construction of rollers or balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/007Mills with rollers pressed against a rotary horizontal disc
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/366Powders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/033Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment comminuting or crushing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • F23K1/04Heating fuel prior to delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/01001Co-combustion of biomass with coal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/60Separating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/60Separating
    • F23G2201/602Separating different sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/70Blending
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing
    • F23K2201/103Pulverizing with hot gas supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/30Separating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/50Blending
    • F23K2201/501Blending with other fuels or combustible waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a biomass pulverizing apparatus and a biomass / coal mixed combustion system for pulverizing and pulverizing biomass solids.
  • Biomass is an organic substance resulting from photosynthesis, and includes biomass such as wood, vegetation, crops, and moss. By converting this biomass into a fuel, the biomass can be effectively used as an energy source or an industrial raw material.
  • biomass is used as fuel.
  • One of the methods used as fuel is a method in which biomass solids are pulverized and pulverized and supplied to a pulverized coal-fired boiler for use as fuel. This is known as a single pulverization method in which coal and biomass are separately pulverized, and a mixed pulverization method in which coal and biomass are mixed and then pulverized. In any method, a biomass pulverization apparatus for pulverizing biomass solids is required.
  • an existing mill used in a conventional coal-fired boiler due to capacity limitations of the existing mill, The mixed firing rate remained at about 3 cal% at the maximum.
  • a coal pulverizer In order to pulverize conventional biomass to a particle size for a coal-fired boiler, a coal pulverizer is used. For example, biomass raw material is put into a pulverization table in a pulverizer and rotated in conjunction with the pulverization table. It is crushed and dried by a pulverizing roller to be classified. And the finely pulverized biomass is air-flow conveyed to the burner side (see Patent Document 1 and Patent Document 2).
  • the biomass raw material has a high moisture content and is fibrous, when it is sandwiched between a crushing roller and a crushing table and crushed, the pulverized biomass powder (fine powder) is entangled with each other. It is difficult to separate.
  • the average particle size in order to float and burn the woody biomass raw material with a conventional coal-fired boiler, the average particle size must be pulverized to about 0.5 mm to 1 mm. For example, a large amount of this size can be obtained with a hammer mill or a cutter mill. There is a problem that grinding is inefficient.
  • the woody biomass powder (coarse particles) that is not sufficiently crushed has an irregular shape and tends to get entangled with each other.
  • the separation of coarse particles and fine powder is not easy, and there is a problem that the ratio of being excessively pulverized beyond the particle size required for burning out increases and the pulverization efficiency increases.
  • an object of the present invention is to provide a biomass pulverization apparatus and a biomass-coal mixed combustion system that can efficiently and stably pulverize biomass raw materials.
  • the first invention of the present invention for solving the above-described problems includes a pulverizer body having a raw material supply pipe for supplying biomass raw material from above in the vertical axis direction, and a table liner on which the supplied biomass raw material is placed.
  • a blasting means for forming a rising flow toward the air and ejecting a carrier gas for air-carrying the pulverized biomass powder, and a classification for classifying the biomass fine particles entrained in the carrier gas provided on the top side of the pulverizer body
  • a plurality of radial table grooves are formed on the surface of the table liner of the grinding table from the inner periphery to the outer edge.
  • the second invention is the biomass pulverization apparatus according to the first invention, wherein the table groove is inclined at a tip side toward a rotation direction of the pulverization table.
  • the table groove gradually decreases in width from the inner peripheral portion to the central portion, and the depth gradually decreases.
  • the cross-sectional shape of the table groove is such that the slope in the moving direction of the pulverizing table is gently inclined and the opposing surface is a substantially vertical surface. It exists in the biomass grinding
  • a radial roller groove is formed on a surface of the crushing roller from a tip corresponding to the table liner as a base point to a central portion of the roller.
  • the present invention provides a biomass crusher characterized in that the table groove and the inclination direction of the groove are different.
  • the sixth aspect of the present invention is the biomass pulverizing apparatus according to the fifth aspect, wherein the roller groove is inclined toward the direction opposite to the rotation direction of the pulverizing roller.
  • a seventh invention is the biomass pulverizing apparatus according to the fifth or sixth invention, wherein the roller groove gradually decreases in width from the inner peripheral portion to the central portion and decreases in depth. is there.
  • the cross-sectional shape of the roller groove is such that the inclined surface in the rotational direction of the grinding roller is gently inclined and the opposing surface is a substantially vertical surface. It exists in the biomass grinding
  • the biomass pulverization apparatus according to any one of the first to eighth aspects, the coal pulverization apparatus that pulverizes the coal raw material, the biomass powder pulverized by the biomass pulverization apparatus, and the coal pulverized by the coal pulverization apparatus.
  • a biomass-coal co-firing system comprising a boiler furnace to which powder is supplied.
  • the biomass raw material when the biomass raw material is supplied, the raw material of large particles easily enters the table groove, and the shearing action of both acts together with the pressing force by the pulverizing roller, so that the pulverization is good Therefore, the biomass raw material can be efficiently and stably pulverized.
  • FIG. 1 is a schematic diagram of a biomass crusher according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the biomass crusher according to the first embodiment.
  • FIG. 3A is a plan view of the table liner.
  • FIG. 3-2 is a perspective view thereof.
  • FIG. 3-3 is a partial cross-sectional view of the groove of FIG. 3-2.
  • FIG. 3-4 is a perspective view of another groove shape.
  • FIG. 4 is a schematic configuration diagram of a table liner and a grinding roller of the biomass grinding apparatus according to the first embodiment.
  • FIG. 5 is a schematic configuration diagram of the table liner and the crushing roller of the biomass crushing apparatus according to the second embodiment.
  • FIG. 6A is a front view of the grinding roller.
  • FIG. 6B is a plan view thereof.
  • FIG. 6-3 is a partial cross-sectional view of the groove of FIG. 6-2.
  • FIG. 7-1 is a perspective view of a groove shape of another roller groove according to the second embodiment.
  • FIG. 7B is a perspective view of the groove shape of another roller groove according to the second embodiment.
  • FIG. 8 is a schematic diagram of a biomass / coal mixed combustion system including a boiler furnace according to a third embodiment.
  • FIG. 1 is a schematic diagram of a biomass crusher according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view of the biomass crusher according to the first embodiment.
  • the biomass crushing apparatus 10 which concerns on a present Example is the pulverization apparatus main body 13 which has the raw material supply pipe
  • a driving table 15 that rotationally drives the crushing table 14, a crushing roller 16 that operates in conjunction with the rotation of the crushing table 14, and crushes the biomass raw material 11 with a pressing force.
  • a blowing means (not shown) for forming an upward flow from the lower peripheral side of the pulverizing table 14 upward and blowing the carrier gas 18 for air-carrying the pulverized biomass powder 17; And a classifier 19 for classifying the biomass powder 17 entrained by the carrier gas 18, and a table for the crushing table 14.
  • the pulverizing table 14 is formed in a substantially circular trapezoidal shape, and the upper surface of the pulverizing table 14 is formed in a concave shape so that biomass solid matter placed on the table does not spill out, and a dam is formed on the outer peripheral side thereof. 14a is provided. In order to prevent the grinding table 14 from being worn, a replaceable table liner 14b is provided.
  • the crushing table 14 is connected to a drive shaft (not shown) extending from the lower side of the table, and a motor (not shown) is connected to rotate the crushing table 14 by the motor.
  • the crushing roller 16 is provided above a position shifted outward from the center of the crushing table 14.
  • the crushing roller 16 crushes the biomass raw material 11 placed on the table liner 14 b of the crushing table 14 by applying a pressing force while rotating in conjunction with the rotation of the crushing table 14.
  • a speed reducer is connected to the motor, and a variable hydraulic power source or a spring for changing the grinding load is connected to the grinding roller 16, and the grinding load of the grinding roller 16 is increased steplessly or stepwise.
  • the pulverization power is configured to be controllable by a control device (not shown) so that the pulverization power is within a rated range, preferably substantially constant.
  • the raw material supply pipe 12 is inserted into the top plate 13 a of the apparatus main body 13 in the vertical axis direction, and is installed so as to drop the biomass raw material 11 onto the crushing table 14.
  • the classifier 19 secondary classifies slightly fine particles after passing through the air classification (primary classification) by the carrier gas (primary air) 18, and is either a fixed classifier (cyclone separator) or rotating. A type classifier (rotary separator) or the like is used.
  • a funnel classifier is used, and coarse particles and fine particles are classified by a classifying blade provided in an opening (not shown). The classified coarse particles fall to the pulverizing table 14 side and are pulverized again.
  • the blowing means for supplying the carrier gas (primary air) 18 supplies primary air at a predetermined flow rate and a predetermined temperature from the periphery of the crushing table 14 into the apparatus main body 13, and a damper is used to adjust the air flow rate. Etc. are used. Moreover, a temperature adjustment means is provided as needed.
  • the air flow rate or temperature is appropriately controlled by a control device (not shown).
  • a gap D is provided between the outer peripheral edge of the pulverizing table 14 and the inner peripheral surface of the apparatus body 13, and the carrier gas (primary air) 18 supplied from the blower means passes through the gap D. It blows out above the crushing table 14.
  • a drift vane (not shown) may be provided in the gap D. The drift vane adjusts the blowing direction of the primary air, and the angle of the drift vane may be arbitrarily controlled.
  • a funnel-shaped rectifying member 23 having substantially the same shape as the classifier 19 is fixed to the upper side of the apparatus body 13 with a predetermined distance from the classifier 19 and extends downward.
  • the funnel-shaped rectifying member 23 drops the biomass powder (coarse particles) classified by the classifier 19 onto the crushing table 14 again.
  • the funnel-shaped rectifying member 23 has a predetermined distance from the funnel portion 23a that receives the classified biomass powder (coarse particles) that expands and contracts from the upper portion toward the lower portion, and the biomass powder ( And a cylindrical portion 23b for dropping coarse particles).
  • the diameter of the lower end part of the cylindrical part 23b of the funnel-shaped rectifying member 23 is reduced, and the diffusion of the biomass powder (coarse particles) falling after being classified is prevented.
  • FIGS. 3-1 to 3-4 are conceptual views showing an example of the table groove.
  • FIG. 3-1 is a plan view of the table liner
  • FIG. 3-2 is a perspective view thereof
  • FIG. It is a fragmentary sectional view of 2 slots.
  • FIG. 3-4 is a perspective view of another groove shape.
  • FIG. 4 is a schematic configuration diagram of the table liner and the crushing roller of the biomass crushing apparatus according to the present embodiment.
  • a radial table groove 31 is formed on the surface of the table liner 14b of the pulverizing table 14 from the inner periphery to the center. Forming.
  • the table groove 31 extends on the upper surface of the table liner 14b toward the weir 14a at the outer edge, and the tip 31a of the table groove 31 is formed at the center of the table liner 14b. Up to. This is because the table groove 31 is formed from the groove base point 31b to the tip 31a to the middle part of the table liner 14b, so that the groove forming portion forms the coarsely pulverized region 24A and the groove is not formed. The portion forms the fine pulverization region 24B, and the fine pulverization of the biomass is ensured by sufficiently securing the fine pulverization region as compared with the case where grooves are formed on the entire surface.
  • the relationship between the groove forming distance R 1 defining the pulverized region and the groove non-forming distance R 2 is that the length of the table liner 14b in the radial direction is R.
  • the following relationship is preferable. However, it may change depending on the biomass properties. 1 / 2R ⁇ R 1 ⁇ R 2 > 1 / 3R
  • the table groove 31 gradually decreases in width from the groove base point (inner peripheral part) 31b to the tip (outer peripheral part) 31a and the cutting depth becomes shallower. I am doing so.
  • the groove of the A 1 -A 1 cross section is the deepest and widest groove
  • the groove of the A 2 -A 2 cross section is a medium depth and width groove.
  • a 3 -A 3 cross-sectional groove is the shallowest and narrowest groove.
  • the radially extending table grooves 31 are inclined gently in the rotation direction of the table with respect to the radiation of the table with an inclination angle ⁇ .
  • the table groove 31 has a shape in which the groove surface 31c in the table moving direction is gently inclined, and the groove surface 31d on the opposite side is inclined to a substantially vertical surface, which is substantially the same as the table surface.
  • the shape is close to a right triangle.
  • the cross-sectional shape of the table groove 31 is not substantially a right triangle, but the groove cross-sectional shape is not V-shaped on the groove base point 31b side, and a groove bottom 31e is provided.
  • the acceptability may be increased, and a larger biomass material 11 may be pulverized.
  • FIG. 5 is a schematic configuration diagram of the table liner and the crushing roller of the biomass crushing apparatus according to the present embodiment.
  • FIGS. 6-1 to 6-3 are conceptual diagrams showing examples of roller grooves, FIG. 6-1 is a front view of a grinding roller, FIG. 6-2 is a plan view thereof, and FIG. 6-3 is a plan view of FIG. It is a fragmentary sectional view of 2 slots.
  • the grinding roller 16A applied to the biomass grinding apparatus according to the present embodiment has a plurality of roller grooves 41 formed on the outer surface thereof.
  • the roller groove 41 has an end of a roller small-diameter portion corresponding to the inner peripheral surface of the table liner 14b as a base point 41a, and the tip 41b of the groove extends to the vicinity of the center portion of the roller.
  • the roller groove 41 gradually decreases in width from the base point (inner peripheral portion) 41a to the tip (outer peripheral portion) 41b, and the cutting depth becomes shallower. I have to.
  • the groove of the B 1 -B 1 cross section is the deepest and widest groove
  • the groove of the B 2 -B 2 cross section is the medium depth and width groove.
  • B 3 -B 3 cross-sectional grooves are the shallowest and narrowest.
  • the width and depth on the inlet side of the roller groove 41 may be changed depending on the size of the raw material.
  • the number and length of the grooves may be appropriately changed depending on the difficulty of cutting the raw material.
  • the shape of the groove can be changed depending on the shape, size, and material type of the grinding roller 16A.
  • the radially extending roller groove 41 is more preferably inclined with a tilt angle ⁇ in a direction different from the rotation direction of the grinding roller 16 with respect to the radiation of the roller.
  • the inclination angle ⁇ is preferably larger than the inclination angle ⁇ of the table liner 14b because the shearing force is improved.
  • the shape of the roller groove 41 is different from the groove shape of the table liner 14b as shown in FIG. 6-3. That is, the biting direction of the biomass raw material is a gentle inclined surface 41c, and the opposite surface is a substantially vertical 41d that is nearly vertical. As a result, the inclined surface 41c promotes the movement of the cut raw material toward the outer peripheral side of the table.
  • the inclination angle of the groove can be changed depending on the material type and properties.
  • the outer peripheral portion of the table is smooth so that it can be cut by the shearing action by the groove in the coarse pulverization region 24A (inner peripheral portion) of the pulverizing table 14, and then pulverized by the compressive force of the pulverizing roller 16 and the table liner 14b. Therefore, since an efficient force works when pulverizing biomass, the tissue of woody biomass is divided.
  • the pulverization in the biomass pulverizing apparatus in which the table groove 31 is formed in the table liner 14b of the pulverizing table 14 and the roller groove 41 is formed on the pulverizing roller 16 side will be described.
  • the supplied biomass raw material 11 is put into the central portion of the crushing table 14.
  • the biomass raw material 11 is mixed with a coarse stream that is separated by the classifier 19 and needs to be further atomized.
  • the raw material moves to the table by the centrifugal force generated by the rotation of the table, and the large raw material enters the table groove 31 formed in the table liner 14b.
  • the crushing roller 16 and the table liner 14b are not formed with a groove, and the gap between the two is set to be small so that a compressive force is generated in the bitten raw material and the powder is finely pulverized to a desired particle size. It becomes.
  • FIGS. 7A and 7B are perspective views of groove shapes of other roller grooves according to the present embodiment.
  • the cross-sectional shape of the roller groove 41 is not a substantially right triangle, but the groove cross-sectional shape is not V-shaped on the base point 41a side, and a groove bottom 41e is provided. It may be possible to pulverize a larger biomass raw material 11 with a large acceptance tolerance.
  • the roller groove 41A shown in FIG. 7-1 has a small groove pitch
  • the roller groove 41B shown in FIG. 7-2 has a large groove pitch width.
  • the biomass raw material 11 is favorably sheared when the grinding roller 16 is pressed against the table liner 14b of the grinding table 14.
  • Woody biomass is compressible and contains a lot of moisture, and the pulverization ability of a normal coal mill is significantly reduced.
  • the table groove 31 is formed on the inner peripheral portion of the table liner 14b
  • the roller groove 41 is formed on the front end side of the outer periphery of the crushing roller 16, and the width and depth of the groove are excluded. Since the introduced woody biomass has a large size, the raw material is captured by the groove and cut at the sharp end of the groove of the table liner 14b and the crushing roller 16 and moved to the outer periphery while being finely divided. Part is micronized. As a result, the woody biomass can be crushed more efficiently.
  • FIG. 8 is a schematic view of a biomass / coal mixed combustion system including a boiler furnace according to the present embodiment.
  • the biomass pulverization apparatus 10 described above is applied to a biomass / coal mixed combustion system including a boiler furnace according to the present embodiment.
  • the biomass / coal co-firing system according to the present embodiment stores a biomass raw material 11 that is a primary crushing (coarse crushing) and dried biomass solids to a predetermined particle size or less as necessary.
  • the biomass crusher 10 Obtained by the biomass storage equipment 40, the biomass crusher 10 provided with the hopper 40a to which the biomass raw material 11 is supplied, the coal crushers 52a and 52b provided with the hoppers 51a and 51b for receiving the coal 50, and the biomass crusher 10 A boiler furnace 60 to which the obtained biomass powder 17 and the coal powder 53 obtained by the coal pulverizers 52a and 52b are supplied.
  • the biomass raw material 11 such as wood chips is sized to some extent and stored in the biomass storage facility 40 as a biomass chip, and then supplied to the biomass hopper 40a.
  • the biomass chip is supplied from the biomass hopper 40 a to the biomass crusher 10 and is crushed by the crushing table 14 and the crushing roller 16.
  • the pulverized biomass pulverized product and coal pulverized product are supplied to the boiler furnace 60, and the biomass powder and the coal powder are mixed and burned in the boiler furnace 60.
  • the furnace body of the boiler furnace 60 is provided with a fuel supply nozzle and a burner that cooperates therewith.
  • the combustion exhaust gas generated by the combustion heats the heat transfer tube 61 arranged in the furnace and is sent to the flue.
  • An air heater (AH) 62 is disposed in the middle of the flue provided at the furnace outlet of the furnace body, and the combustion exhaust gas that has passed through the air heater 62 is exhaust gas treatment equipment such as an ash collector (not shown). After that, it is released into the atmosphere.
  • the high-temperature air 64 generated by heating the outside air 63 with the air heater 62 is supplied to the coal pulverizers 52a and 52b and used for drying the coal. Further, a part 65 of the combustion exhaust gas is supplied to the biomass crusher 10 by the induction fan 66 and used for classification and drying of the biomass.
  • the biomass pulverization apparatus since the biomass pulverization apparatus according to the present invention is provided with the system, the biomass pulverization becomes good. Therefore, even when the pulverized product is directly introduced into the combustion apparatus and burned, the combustion performance is lowered. And stable combustion is possible. In addition, since the total amount of the pushed-in gas does not change from the conventional amount, there is no fluctuation in the primary air, and the biomass pulverizer can be operated stably within the range of the air amount required in the combustion facility. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Crushing And Grinding (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

 バイオマス原料(11)を粉砕する鉛直軸方向上方から供給する原料供給管(12)と、バイオマス原料(11)が載置される粉砕テーブル(14)と、粉砕テーブル(14)の回転と連動して作動し、バイオマス原料(11)を押圧力により粉砕する粉砕ローラ(16)と、上昇流を形成する送風手段と、粉砕したバイオマス粉体(17)を分級する分級機(19)と、を具備する粉砕装置(13)において、粉砕テーブル(14)のテーブルライナ(14b)の表面に、その内周部から外縁側に向けて放射状のテーブル溝(31)が複数形成されると共に、その溝(31)の先端がテーブルライナ中央部近傍までとした粉砕装置。

Description

バイオマス粉砕装置及びバイオマス・石炭混焼システム
 本発明は、バイオマス固形物を粉砕して微粉化するバイオマス粉砕装置及びバイオマス・石炭混焼システムに関する。
 近年、地球温暖化の観点からCO2排出の削減が推進されている。特に、発電用ボイラ等の燃焼設備においては、燃料として石炭や重油等の化石燃料が用いられることが多いが、この化石燃料は、CO2排出の問題から地球温暖化の原因となり、地球環境保全の見地からその使用が規制されつつある。また化石燃料の枯渇化の観点からもこれに代替するエネルギ資源の開発、実用化が求められている。そこで、化石燃料の代替として、バイオマスを用いた燃料の利用促進が図られている。バイオマスとは、光合成に起因する有機物であって、木質類、草木類、農作物類、厨芥類等のバイオマスがある。このバイオマスを燃料化処理することにより、バイオマスをエネルギ源又は工業原料として有効に利用することができる。
 再生可能エネルギであるバイオマスの高効率利用の観点から、バイオマスを燃料として用いることが行われている。燃料として用いる方法の一つに、バイオマス固形物を粉砕して微粉化し、微粉炭焚きボイラに供給して燃料として用いるものがある。これは、石炭とバイオマスとをそれぞれを単独で粉砕する単独粉砕方式と、石炭とバイオマスとを混合してから粉砕する混合粉砕方式とが知られている。何れの方式においても、バイオマス固形物を粉砕するためのバイオマス粉砕装置が必要であるが、従来の石炭焚きボイラで用いられている既設ミルを用いようとした場合、既設ミルの能力制約から石炭に対する混焼率は最大でも3cal%程度に留まっていた。
 従来のバイオマスを石炭焚きボイラ用の粒径に粉砕するには、石炭粉砕機を流用したものを用いており、例えばバイオマス原料を粉砕装置内の粉砕テーブルに投入し、粉砕テーブルに連動して回転される粉砕ローラにより粉砕・乾燥し、分級している。そして、微粉砕されたバイオマスをバーナ側へ気流搬送している(特許文献1、特許文献2参照)。
特開2004-347241号公報 特開2009-291692号公報
 しかしながら、従来技術の石炭粉砕装置を用いて木質系バイオマス原料を粉砕する場合、以下のような問題がある。
 1) 木質系バイオマス原料は、石炭と異なり圧縮性を有するので、粉砕ローラと粉砕テーブルとに噛み込まれて粉砕される場合、バイオマス原料に対して圧力が十分に伝わらず粉砕しにくい、という問題がある。
 また、バイオマス原料は、その水分含有量が高く、かつ繊維質であるため、粉砕ローラと粉砕テーブルとに挟まれ、押しつぶされた場合、粉砕されたバイオマス粉体(微粉)がお互いに絡みあって、分離しにくい性質がある。
 このため、従来技術の石炭粉砕装置で粉砕しても、粉砕されたバイオマス粉体の粗粒と微粉とが固まり、移動しにくくなる結果、過粉砕され、石炭粉砕の場合に対し、バイオマス原料の粉砕処理量が大幅に低下し、粉砕装置における消費動力が増加する、という問題がある。
 さらに、石炭と混粉砕した場合においても、一般的に5~10%を木質系バイオマス原料の混合限度までに混粉砕率を上げると、微粉粒度が低下し、バーナにおける燃焼効率が悪化する、という問題がある。
 また、粉砕装置の動力が増加するため、粉砕装置の容量を下げて運転する必要がある。
 2) また、木質系バイオマス原料を従来型石炭焚きボイラで浮遊燃焼させるには、平均粒径を0.5mm~1mm程度に粉砕する必要があるが、例えばハンマーミル又はカッターミルでこのサイズに大量粉砕するのは、効率が悪い、という問題がある。
 3) さらに、十分に粉砕されない木質系バイオマス粉体(粗粒)は、その形状が不定形であり、相互に絡まりやすいため、粉砕ローラ外周部から排出され、粉砕テーブル周りに設けた噴出空気流により上昇されても、粗粒と微粉の分離が容易でなく、燃え切りに必要な粒径以上に過粉砕される比率が増加し、粉砕効力が増加する、という問題がある。
 そこで、従来の石炭粉砕装置を単に流用する粉砕装置とは異なり、木質系バイオマス原料を効率的に且つ安定的に粉砕することができるバイオマス粉砕装置の出現が切望されている。
 本発明は、前記問題に鑑み、バイオマス原料を効率的に且つ安定的に粉砕することができるバイオマス粉砕装置及びバイオマス・石炭混焼システムを提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、バイオマス原料を鉛直軸方向上方から供給する原料供給管を有する粉砕装置本体と、供給されたバイオマス原料が載置されるテーブルライナを有する粉砕テーブルと、該粉砕テーブルを回転駆動する駆動部と、前記粉砕テーブルの回転と連動して作動し、前記バイオマス原料を押圧力により粉砕する粉砕ローラと、前記粉砕テーブルの外周側下方から上方に向けて上昇流を形成し、粉砕したバイオマス粉体を気流搬送する搬送ガスを噴出する送風手段と、粉砕装置本体の頂部側に設けられ、前記搬送ガスに同伴されたバイオマス微粒を分級する分級器とを具備すると共に、前記粉砕テーブルのテーブルライナの表面に、その内周部から外縁側に向けて放射状のテーブル溝が複数形成されると共に、その溝の先端がテーブルライナ中央部近傍までであることを特徴とするバイオマス粉砕装置にある。
 第2の発明は、第1の発明において、前記テーブル溝は、その先端側が粉砕テーブルの回転方向に向かって傾斜していることを特徴とするバイオマス粉砕装置にある。
 第3の発明は、第1又は2の発明において、前記テーブル溝は、内周部から中央部にかけて徐々にその幅が狭くなると共に、その深さが徐々に浅くなることを特徴とするバイオマス粉砕装置にある。
 第4の発明は、第1乃至3のいずれか一つの発明において、前記テーブル溝の断面形状は、粉砕テーブルの移動方向の斜面はなだらかに傾斜すると共に、その対向する面は略鉛直面であることを特徴とするバイオマス粉砕装置にある。
 第5の発明は、第1乃至4のいずれか一つの発明において、前記粉砕ローラの表面に、そのテーブルライナに対応する先端を基点とし、ローラ中央部に亙って放射状のローラ溝を形成すると共に、前記テーブル溝とその溝の傾斜方向が異なることを特徴とするバイオマス粉砕装置にある。
 第6の発明は、第5の発明において、前記ローラ溝は、その先端側が粉砕ローラの回転方向と逆方向に向かって傾斜していることを特徴とするバイオマス粉砕装置にある。
 第7の発明は、第5又は6の発明において、前記ローラ溝は、内周部から中央部にかけて徐々にその幅が狭くなると共に、その深さが浅くなることを特徴とするバイオマス粉砕装置にある。
 第8の発明は、第5乃至7のいずれか一つの発明において、前記ローラ溝の断面形状は、粉砕ローラの回転方向の斜面はなだらかに傾斜すると共に、その対向する面は略鉛直面であることを特徴とするバイオマス粉砕装置にある。
 第9の発明は、第1乃至8のいずれか一つのバイオマス粉砕装置と、石炭原料を粉砕する石炭粉砕装置と、バイオマス粉砕装置で粉砕されたバイオマス粉体と、石炭粉砕装置で粉砕された石炭粉体とが供給されるボイラ火炉とを具備することを特徴とするバイオマス・石炭混焼システムにある。
 本発明によれば、バイオマス原料が供給されると、該テーブル溝に対して、大きい粒子の原料が容易に入り込むこととなり、粉砕ローラによる押圧力と共に、両者の剪断作用が働く結果、粉砕が良好となるので、バイオマス原料を効率的に且つ安定的に粉砕することができる。
図1は、実施例1に係るバイオマス粉砕装置の概略図である。 図2は、実施例1に係るバイオマス粉砕装置の断面概略図である。 図3-1は、テーブルライナの平面図である。 図3-2は、その斜視図である。 図3-3は、図3-2の溝の部分断面図である。 図3-4は、他の溝形状の斜視図である。 図4は、実施例1に係るバイオマス粉砕装置のテーブルライナと粉砕ローラとの概略構成図である。 図5は、実施例2に係るバイオマス粉砕装置のテーブルライナと粉砕ローラとの概略構成図である。 図6-1は、粉砕ローラの正面図である。 図6-2は、その平面図である。 図6-3は、図6-2の溝の部分断面図である。 図7-1は、実施例2に係る他のローラ溝の溝形状の斜視図である。 図7-2は、実施例2に係る他のローラ溝の溝形状の斜視図である。 図8は、実施例3に係るボイラ火炉を備えたバイオマス・石炭混焼システムの概略図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明による実施例1に係るバイオマス粉砕装置について、図面を参照して説明する。図1は、本実施例に係るバイオマス粉砕装置の概略図である。図2は、実施例1に係るバイオマス粉砕装置の断面概略図である。
 図1及び図2に示すように、本実施例に係るバイオマス粉砕装置10は、バイオマス原料11を鉛直軸方向上方から供給する原料供給管12を有する粉砕装置本体13と、供給されたバイオマス原料11が載置される粉砕テーブル14と、該粉砕テーブル14を回転駆動する駆動部15と、前記粉砕テーブル14の回転と連動して作動し、前記バイオマス原料11を押圧力により粉砕する粉砕ローラ16と、前記粉砕テーブル14の外周側下方から上方に向けて上昇流を形成し、粉砕したバイオマス粉体17を気流搬送する搬送ガス18を噴出する送風手段(図示せず)と、粉砕装置本体13の頂部内側に設けられ、前記搬送ガス18に同伴されたバイオマス粉体17を分級する分級器19とを具備すると共に、前記粉砕テーブル14のテーブルライナ14bの表面に、その内周部から外縁側に向けて放射状のテーブル溝31が複数形成されると共に、その溝の先端31aがテーブルライナ中央部近傍までとしている。
 前記粉砕テーブル14は、略円形台状に形成され、該粉砕テーブル14の上面は、該テーブル上に載置されたバイオマス固形物がこぼれ落ちないように凹状に形成されると共に、その外周側に堰14aを設けている。また、粉砕テーブル14の摩耗を予防するために、交換自在なテーブルライナ14bが設けられている。
 なお、粉砕テーブル14は、テーブル下側から延設される駆動軸(図示せず)にモータ(図示せず)が接続され、該モータによって粉砕テーブル14を回転駆動するようになっている。
 前記粉砕ローラ16は、粉砕テーブル14の中心より外側にずれた位置の上方に設けられている。該粉砕ローラ16は、粉砕テーブル14の回転と連動して回転しながら、粉砕テーブル14のテーブルライナ14b上に載置されたバイオマス原料11に押圧力を作用せしめてこれを粉砕する。
 このとき、前記モータには、減速機が前記粉砕ローラ16には粉砕荷重を変化させる可変油圧源又はスプリングが接続されており、粉砕ローラ16の粉砕荷重を無段階若しくは段階的に減増させ、粉砕動力が定格範囲内、好ましくはほぼ一定になるように制御装置(不図示)で制御可能に構成されている。
 前記原料供給管12は、装置本体13の天板13aに鉛直軸方向に貫挿され、バイオマス原料11を粉砕テーブル14上に落下させるように設置されている。
 前記分級器19は、搬送ガス(一次空気)18により風力分級(一次分級)を通過した後のやや細かな粉粒体を二次分級するものであり、固定式分級器(サイクロンセパレータ)或いは回転式分級器(ロータリーセパレータ)等が用いられる。
 本実施例の分級器19では、漏斗状分級器としており、図示しない開口に設けた分級羽根により、粗粒と微粒とを分級している。分級された粗粒は粉砕テーブル14側に落下して、再度粉砕がなされる。
 前記搬送ガス(一次空気)18を供給する送風手段は、所定流量で且つ所定温度の一次空気を、装置本体13内に粉砕テーブル14の周囲から供給するものであり、空気流量の調整にはダンパ等が用いられる。また、必要に応じて温度調整手段を備える。空気流量或いは温度は、図示しない制御装置により適宜制御される。
 前記粉砕テーブル14の外周縁と装置本体13の内周面との間には隙間Dが設けられており、前記送風手段から供給された搬送ガス(一次空気)18は、この隙間Dを介して粉砕テーブル14の上方側に吹き抜けるようになっている。なお、前記隙間Dに偏流ベーン(図示せず)を設けるようにしてもよい。該偏流ベーンは、一次空気の吹き出し方向を調整するものであり、さらに、偏流ベーンの角度を任意に制御可能としてもよい。
 前記分級器19と略同一形状の漏斗状整流部材23は、装置本体13の上部側に、分級器19と所定間隔をもって固定され、下方に向けて延設されている。この漏斗状整流部材23は、分級器19で分級されたバイオマス粉体(粗粒)を再度粉砕テーブル14へ落下させるものである。漏斗状整流部材23は、その上部から下部に向けて拡縮している分級されたバイオマス粉体(粗粒)を受ける漏斗部23aと、原料供給管12と所定間隔を持って、バイオマス粉体(粗粒)を落下させる筒部23bとから形成されている。
 なお、該漏斗状整流部材23の筒部23bの下端部はその径が縮小されており、分級されて落下するバイオマス粉体(粗粒)の拡散を防止している。
 図3-1~図3-4は、テーブル溝の一例を示す概念図であり、図3-1はテーブルライナの平面図、図3-2はその斜視図、図3-3は図3-2の溝の部分断面図である。図3-4は他の溝形状の斜視図である。図4は、本実施例に係るバイオマス粉砕装置のテーブルライナと粉砕ローラとの概略構成図である。
 図3-1~3-3及び図4に示すように、本実施例では、前記粉砕テーブル14のテーブルライナ14bの表面に、その内周部から中央部に亙って放射状のテーブル溝31を形成している。
 このため、バイオマス原料11が供給されると、該テーブル溝31に対して、テーブルライナ14bの内周部の溝基点31bから溝中央部に亙って大きい粒子の原料が容易に入り込むこととなり、粉砕ローラ16による押圧力と共に、両者の剪断作用が働く結果、粉砕が良好となる。
 このテーブル溝31は、図3-1に示すように、テーブルライナ14bの上面にその外縁部の堰14aに向かって延びているが、該テーブル溝31の先端31aは、テーブルライナ14bの中央部までとしている。
 これは、テーブル溝31の形成を溝基点31bから先端31aをテーブルライナ14bの途中の中央部までとすることで、溝形成部分が粗粉砕領域24Aを形成すると共に、溝形成がなされていない平面部分が微粉砕領域24Bを形成することとなり、全面に溝が形成されるような場合に比べて、微粉砕領域を十分に確保することで、バイオマスの微粉砕を確実にしている。
 また、図3-1に示すように、この粉砕領域を確定する溝の形成距離R1と溝の形成されていない距離R2との関係は、テーブルライナ14bの半径方向の長さをRとした場合、以下のような関係とするのが好ましい。但し、バイオマス性状により変化することもある。
 1/2R≧R1≧R2>1/3R
 また、図3-2及び図3-3に示すように、このテーブル溝31は溝基点(内周部)31bから先端(外周部)31aにかけて徐々に幅が狭くなり且つ切り込み深さが浅くなるようにしている。
 図3-2及び図3-3において、A1-A1断面の溝が一番深く且つ幅が広い溝であり、A2-A2断面の溝が中位の深さと幅の溝であり、A3-A3断面の溝が一番浅く且つ幅が狭い溝である。
 また、図3-1に示すように、放射状に伸びるテーブル溝31は、傾斜角αをもって、テーブルの放射線に対しテーブルの回転方向になだらかに傾斜しているのがより好ましい。
 また、図3-3に示すように、このテーブル溝31の形状はテーブル移動方向の溝面31cはなだらかに傾斜し、反対側の溝面31dは略鉛直面に傾斜し、テーブル面に対し略直角三角形に近い形状としている。
 この結果、図4に示すように、粉砕ローラ16により押圧した場合における、バイオマス原料11の良好な剪断がなされることとなる。
 さらに、図3-4に示すように、このテーブル溝31の断面形状は略直角三角形以外に、溝基点31b側において溝断面形状をV字状とせず、溝底部31eを設けており、溝の受け入れ許容度を大として、より大きなバイオマス原料11の粉砕を可能としてもよい。
 本発明による実施例2に係るバイオマス粉砕装置について、図面を参照して説明する。図5は、本実施例に係るバイオマス粉砕装置のテーブルライナと粉砕ローラとの概略構成図である。図6-1~図6-3は、ローラ溝の一例を示す概念図であり、図6-1は粉砕ローラの正面図、図6-2はその平面図、図6-3は図6-2の溝の部分断面図である。
 図5及び図6-1~図6-3に示すように、本実施例に係るバイオマス粉砕装置に適用する粉砕ローラ16Aは、その外面に複数のローラ溝41が形成されている。
 このローラ溝41はテーブルライナ14bの内周面に対応するローラ小径部の端を基点41aとし、溝の先端41bは、ローラの中心部付近まで延びている。
 また、図6-2及び図6-3に示すように、このローラ溝41は基点(内周部)41aから先端(外周部)41bにかけて徐々に幅が狭くなり且つ切り込み深さが浅くなるようにしている。
 図6-2及び図6-3において、B1-B1断面の溝が一番深く且つ幅が広い溝であり、B2-B2断面の溝が中位の深さと幅の溝であり、B3-B3断面の溝が一番浅く且つ幅が狭い溝である。
 なお、ローラ溝41の入口側の幅および深さは原料の大きさで変更してよい。
 溝の本数、長さについては原料の切断の難易度等により適宜変更するようにしてよい。また、溝の形状については粉砕ローラ16Aの形状、寸法、材料種類により変更可能である。
 また、図6-1に示すように、放射状に伸びるローラ溝41は、傾斜角βをもって、ローラの放射線に対し粉砕ローラ16の回転方向と異なる方向に傾斜しているのがより好ましい。また、この傾斜角βは、テーブルライナ14bの傾斜角αより大きいほどその剪断力が向上するので好ましいものとなる。
 また、ローラ溝41の形状は、図6-3に示すようにテーブルライナ14bの溝形状とは異なるものとしている。
 すなわちバイオマス原料の噛み込み方向はなだらかな傾斜面41cとし反対側の面は垂直に近い略鉛直41dとしている。
 これにより、傾斜面41cは切断した原料がテーブル外周側に移動するのを促進することとなる。なお、溝の傾斜角については材料種類、性状により変更可能である。
 本発明では、粉砕テーブル14の粗粉砕領域24A(内周部)で溝による剪断作用によって切断され、その後粉砕ローラ16とテーブルライナ14bの圧縮力により粉砕可能なようにテーブル外周部は平滑な構造となっているので、バイオマスの微粉化に際して効率的な力が働くため、木質バイオマスの組織は分断されることとなる。
 このような、粉砕テーブル14のテーブルライナ14bにテーブル溝31を形成すると共に、粉砕ローラ16側にローラ溝41を形成したバイオマス粉砕装置での粉砕について説明する。
 先ず、供給されたバイオマス原料11は、粉砕テーブル14の中央部に投入される。
 このバイオマス原料11には、分級器19により分離され、更に微粒化する必要がある粗流が混在する。
 原料はテーブルの回転による遠心力によりテーブルに移動し大きい原料はテーブルライナ14bに形成されたテーブル溝31に入る。
 また、粉砕ローラ16の外周面に形成されたローラ溝41には、テーブル溝31の溝部に挟まれた大きい粒子は両者の溝の鋭角面同士に噛み込まれ切断されながら外周部に移動する。
 外周部に移動するに従いバイオマス原料11は細粒化するのでテーブル溝31及びローラ溝41の溝幅及び深さは徐々に減少させ、微粉化を促進させる。
 粗粒粉砕領域24Aで粗粉に分断された木質バイオマスは、微粉砕領域24Bの下流側(ミル外周部)に移動する。この部分は粉砕ローラ16とテーブルライナ14bとには溝が形成されておらず、しかも両者の隙間を小さく設定することで、噛み込んだ原料に圧縮力が生じ、所望粒径に微粉砕することとなる。
 図7-1及び図7-2は本実施例に係る他のローラ溝の溝形状の斜視図である。
 図7-1及び図7-2に示すように、ローラ溝41の断面形状は略直角三角形以外に、基点41a側において溝断面形状をV字状とせず、溝底部41eを設けており、溝の受け入れ許容度を大として、より大きなバイオマス原料11の粉砕を可能としてもよい。
 ここで、図7-1に示すローラ溝41Aは溝ピッチを小さくしており、図7-2に示すローラ溝41Bは溝ピッチの幅を大きくしている。
 この結果、粉砕テーブル14のテーブルライナ14bに対して粉砕ローラ16を押圧した場合における、バイオマス原料11の良好な剪断がなされることとなる。
 木質バイオマスは圧縮性があり且つ水分を多く含んでおり、通常の石炭ミルでは粉砕能力が著しく低下する。本発明のように、テーブルライナ14bの内周部にテーブル溝31を形成すると共に、粉砕ローラ16の外周の先端側にローラ溝41を形成し、さらに、溝の幅及び深さを除除に狭めるようにしているので、導入された木質バイオマスの大きいサイズの原料はこの溝により捕捉されテーブルライナ14bと粉砕ローラ16の溝部の鋭角端部で切断され細粒化されつつ外周部に移動し外周部で微粉化される。
 この結果、木質バイオマスはより効率的に粉砕できることとなる。
 本発明による実施例3に係るボイラ火炉を備えたバイオマス・石炭混焼システムについて、図面を参照して説明する。図8は、本実施例に係るボイラ火炉を備えたバイオマス・石炭混焼システムの概略図である。
 図8に示すように、本実施例に係るボイラ火炉を備えたバイオマス・石炭混焼システムに上述したバイオマス粉砕装置10を適用したものである。図8に示すように、本実施例に係るバイオマス・石炭混焼システムは、必要に応じて所定粒径以下まで一次破砕(粗破砕)、乾燥されたバイオマス固形物であるバイオマス原料11が貯蔵されるバイオマス貯蔵設備40と、バイオマス原料11が供給されるホッパ40aを備えたバイオマス粉砕装置10と、石炭50を受け入れるホッパ51a、51bを備えた石炭粉砕装置52a、52bと、バイオマス粉砕装置10にて得られたバイオマス粉体17及び石炭粉砕装置52a、52bにて得られた石炭粉体53が供給されるボイラ火炉60と、を備える。
 木屑等のバイオマス原料11はある程度大きさを揃えバイオマスチップとしてバイオマス貯蔵設備40に貯蔵され、その後、バイオマスホッパ40aに供給される。バイオマスチップは、バイオマスホッパ40aからバイオマス粉砕装置10に供給され、粉砕テーブル14と粉砕ローラ16とにより粉砕される。粉砕後のバイオマス粉砕物および石炭粉砕物はボイラ火炉60に供給され、ボイラ火炉60内でバイオマス粉体と石炭粉体が混合して燃焼するようになっている。
 ボイラ火炉60の炉本体には、燃料供給ノズルとこれに共働するバーナが配設されている。燃焼により発生した燃焼排ガスは、炉内に配設された伝熱管61を加熱して煙道へ送られる。炉本体の炉出口に設けた煙道の途中には空気加熱器(AH)62が配置され、空気加熱器62を通った燃焼排ガスは、灰捕集装置等の排ガス処理設備(図示せず)を経て大気放出される。
 空気加熱器62によって外気63を加熱して生成した高温空気64は石炭粉砕装置52a、52bに供給され、石炭の乾燥に用いられる。また燃焼排ガスの一部65は、誘引ファン66によりバイオマス粉砕装置10に供給され、バイオマスの分級、乾燥に用いられる。
 このように本発明に係るバイオマス粉砕装置を備えたシステムとすることで、バイオマス粉砕が良好となるので、その粉砕物を燃焼装置に直接導入して燃焼させる場合においても、燃焼性能を低下させることなく安定燃焼が可能である。
 また、押込みガスの全体量は従来と変化することがないので、一次空気の変動がなく、燃焼設備にて必要とされる空気量の範囲内で、バイオマス粉砕装置を安定して運転することが可能である。
 10 バイオマス粉砕装置
 11 バイオマス原料
 12 原料供給管
 13 粉砕装置本体
 14 粉砕テーブル
 15 駆動部
 16 粉砕ローラ
 17 バイオマス粉体
 18 搬送ガス
 19 分級器
 31 テーブル溝
 41 ローラ溝

Claims (9)

  1.  バイオマス原料を鉛直軸方向上方から供給する原料供給管を有する粉砕装置本体と、
     供給されたバイオマス原料が載置されるテーブルライナを有する粉砕テーブルと、
     該粉砕テーブルを回転駆動する駆動部と、
     前記粉砕テーブルの回転と連動して作動し、前記バイオマス原料を押圧力により粉砕する粉砕ローラと、
     前記粉砕テーブルの外周側下方から上方に向けて上昇流を形成し、粉砕したバイオマス粉体を気流搬送する搬送ガスを噴出する送風手段と、
     粉砕装置本体の頂部側に設けられ、前記搬送ガスに同伴されたバイオマス微粒を分級する分級器とを具備すると共に、
     前記粉砕テーブルのテーブルライナの表面に、その内周部から外縁側に向けて放射状のテーブル溝が複数形成されると共に、その溝の先端がテーブルライナ中央部近傍までであることを特徴とするバイオマス粉砕装置。
  2.  請求項1において、
     前記テーブル溝は、その先端側が粉砕テーブルの回転方向に向かって傾斜していることを特徴とするバイオマス粉砕装置。
  3.  請求項1又は2において、
     前記テーブル溝は、内周部から中央部にかけて徐々にその幅が狭くなると共に、その深さが徐々に浅くなることを特徴とするバイオマス粉砕装置。
  4.  請求項1乃至3のいずれか一つにおいて、
     前記テーブル溝の断面形状は、粉砕テーブルの移動方向の斜面はなだらかに傾斜すると共に、その対向する面は略鉛直面であることを特徴とするバイオマス粉砕装置。
  5.  請求項1乃至4のいずれか一つにおいて、
     前記粉砕ローラの表面に、そのテーブルライナに対応する先端を基点とし、ローラ中央部に亙って放射状のローラ溝を形成すると共に、前記テーブル溝とその溝の傾斜方向が異なることを特徴とするバイオマス粉砕装置。
  6.  請求項5において、
     前記ローラ溝は、その先端側が粉砕ローラの回転方向と逆方向に向かって傾斜していることを特徴とするバイオマス粉砕装置。
  7.  請求項5又は6において、
     前記ローラ溝は、内周部から中央部にかけて徐々にその幅が狭くなると共に、その深さが浅くなることを特徴とするバイオマス粉砕装置。
  8.  請求項5乃至7のいずれか一つにおいて、
     前記ローラ溝の断面形状は、粉砕ローラの回転方向の斜面はなだらかに傾斜すると共に、その対向する面は略鉛直面であることを特徴とするバイオマス粉砕装置。
  9.  請求項1乃至8のいずれか一つのバイオマス粉砕装置と、
     石炭原料を粉砕する石炭粉砕装置と、
     バイオマス粉砕装置で粉砕されたバイオマス粉体と、石炭粉砕装置で粉砕された石炭粉体とが供給されるボイラ火炉とを具備することを特徴とするバイオマス・石炭混焼システム。
PCT/JP2011/060997 2010-05-14 2011-05-12 バイオマス粉砕装置及びバイオマス・石炭混焼システム WO2011142437A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/697,618 US20130055935A1 (en) 2010-05-14 2011-05-12 Biomass pulverizing apparatus and biomass/coal mixed-combustion system
CN2011800236108A CN102892509A (zh) 2010-05-14 2011-05-12 生物质粉碎装置及生物质与煤混烧系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010112464A JP5645469B2 (ja) 2010-05-14 2010-05-14 バイオマス粉砕装置及びバイオマス・石炭混焼システム
JP2010-112464 2010-05-14

Publications (1)

Publication Number Publication Date
WO2011142437A1 true WO2011142437A1 (ja) 2011-11-17

Family

ID=44914489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060997 WO2011142437A1 (ja) 2010-05-14 2011-05-12 バイオマス粉砕装置及びバイオマス・石炭混焼システム

Country Status (4)

Country Link
US (1) US20130055935A1 (ja)
JP (1) JP5645469B2 (ja)
CN (1) CN102892509A (ja)
WO (1) WO2011142437A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125759A (ja) * 2010-11-22 2012-07-05 Ing Shoji Kk 破砕面部材
JP2018114481A (ja) * 2017-01-20 2018-07-26 三菱日立パワーシステムズ株式会社 竪型粉砕機

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108807A1 (ja) * 2012-01-20 2013-07-25 アイエヌジ商事株式会社 竪型ミルローラ
JP2016073946A (ja) * 2014-10-08 2016-05-12 株式会社Ihi 粉砕ローラ及びローラミル
US10744534B2 (en) * 2016-12-02 2020-08-18 General Electric Technology Gmbh Classifier and method for separating particles
CN109058980B (zh) * 2018-06-01 2023-06-02 西安交通大学 一种可用于生物质或煤粉可跨负荷调节的低NOx燃烧器
CN111530561A (zh) * 2018-08-20 2020-08-14 东莞市松研智达工业设计有限公司 一种应用于建筑工程的立式磨磨盘的使用方法
CN110898725A (zh) * 2019-12-05 2020-03-24 株洲蓝海包装有限公司 一种固体洁厕剂加工用配料装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1480767A (en) * 1924-01-15 Pulverizer
JP2007111604A (ja) * 2005-10-19 2007-05-10 Ing Shoji Kk 破砕面部材
WO2009157335A1 (ja) * 2008-06-23 2009-12-30 アイエヌジ商事株式会社 破砕ローラ
JP2010046658A (ja) * 2008-07-24 2010-03-04 Ing Shoji Kk 竪型ローラミル

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2356753A (en) * 1939-08-19 1944-08-29 Dotzer Leonard Grinding mill
CH595138A5 (ja) * 1974-07-18 1978-01-31 Schnitzer Johann G
GB2100617A (en) * 1981-06-26 1983-01-06 Smidth & Co As F L Edge-runner mill
JPS58153544A (ja) * 1982-03-10 1983-09-12 ホソカワミクロン株式会社 摩砕機
DE3602932A1 (de) * 1986-01-31 1987-08-06 Kloeckner Humboldt Deutz Ag Verfahren und vorrichtung zum zerkleinern von feststoffen
JPH0634935B2 (ja) * 1988-11-15 1994-05-11 石川島播磨重工業株式会社 竪形粉砕ミル用テーブルライナの硬化肉盛方法
US4981269A (en) * 1988-11-18 1991-01-01 Ube Industries, Ltd. Vertical mill
DE4423815C2 (de) * 1994-07-06 1996-09-26 Loesche Gmbh Mühlensichter
CN2129174Y (zh) * 1992-04-23 1993-04-07 武汉工业大学 内联多级分选装置高速冲击超细粉碎机
US5873156A (en) * 1993-10-13 1999-02-23 Sure Alloy Steel Corporation Coal pulverizer and method of improving flow therein
EP0775526B1 (en) * 1995-11-24 2002-01-09 Nisshin Seifun Group Inc. Mechanical grinding apparatus
US5976224A (en) * 1998-05-04 1999-11-02 Durant; James F. Separating carbon from ash
CN100352551C (zh) * 2005-01-10 2007-12-05 夏纪勇 一种立式磨
US8015932B2 (en) * 2007-09-24 2011-09-13 General Electric Company Method and apparatus for operating a fuel flexible furnace to reduce pollutants in emissions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1480767A (en) * 1924-01-15 Pulverizer
JP2007111604A (ja) * 2005-10-19 2007-05-10 Ing Shoji Kk 破砕面部材
WO2009157335A1 (ja) * 2008-06-23 2009-12-30 アイエヌジ商事株式会社 破砕ローラ
JP2010046658A (ja) * 2008-07-24 2010-03-04 Ing Shoji Kk 竪型ローラミル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125759A (ja) * 2010-11-22 2012-07-05 Ing Shoji Kk 破砕面部材
JP2018114481A (ja) * 2017-01-20 2018-07-26 三菱日立パワーシステムズ株式会社 竪型粉砕機

Also Published As

Publication number Publication date
JP5645469B2 (ja) 2014-12-24
CN102892509A (zh) 2013-01-23
JP2011240222A (ja) 2011-12-01
US20130055935A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5645468B2 (ja) バイオマス粉砕装置及びバイオマス・石炭混焼システム
JP5645469B2 (ja) バイオマス粉砕装置及びバイオマス・石炭混焼システム
WO2011145575A1 (ja) バイオマス粉砕装置及びバイオマス・石炭混焼システム
WO2013046422A1 (ja) バイオマス粉砕装置及びバイオマス・石炭混焼システム
JP5594941B2 (ja) バイオマス粉砕装置、及び該装置の制御方法
JP4576365B2 (ja) 石炭・バイオマス混焼システム及び混焼方法
JP5511619B2 (ja) バイオマス粉砕装置及びバイオマス・石炭混焼システム
JP5812668B2 (ja) 回転式分級機
JP4865865B2 (ja) 分級装置及びそれを備えた竪型粉砕装置ならびに石炭焚ボイラ装置
JP5566867B2 (ja) バイオマス・石炭混焼システムおよびバイオマス・石炭混焼方法
JP5645482B2 (ja) バイオマス粉砕装置及びバイオマス・石炭混焼システム
JP2012083016A (ja) バイオマス粉砕装置及びバイオマス・石炭混焼システム
CN104329660A (zh) 生物质粉碎装置及生物质/煤混烧系统
JP2014037897A (ja) バイオマス供給装置及びボイラシステム
JP2011251223A (ja) バイオマス粉砕装置及びバイオマス・石炭混焼システム
JP6503307B2 (ja) 粉砕装置、粉砕装置のスロート及び微粉炭焚きボイラ
KR102533816B1 (ko) 고체 연료 분쇄 장치 및 이것을 구비한 발전 플랜트 및 고체 연료 분쇄 방법
CN111558432B (zh) 固体燃料粉碎装置和具备它的发电设备以及固体燃料粉碎方法
JPH02115052A (ja) 回転分級式微粉砕機
JP2023107454A (ja) 固体燃料粉砕装置および固体燃料粉砕装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023610.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780694

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13697618

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 9617/CHENP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 11780694

Country of ref document: EP

Kind code of ref document: A1