WO2011138389A1 - Verfahren zur abreicherung von magnesium und anreicherung von lithium in chloridisch geprägten salzlösungen - Google Patents

Verfahren zur abreicherung von magnesium und anreicherung von lithium in chloridisch geprägten salzlösungen Download PDF

Info

Publication number
WO2011138389A1
WO2011138389A1 PCT/EP2011/057194 EP2011057194W WO2011138389A1 WO 2011138389 A1 WO2011138389 A1 WO 2011138389A1 EP 2011057194 W EP2011057194 W EP 2011057194W WO 2011138389 A1 WO2011138389 A1 WO 2011138389A1
Authority
WO
WIPO (PCT)
Prior art keywords
kcl
carnallite
solution
lithium
separation
Prior art date
Application number
PCT/EP2011/057194
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2011138389A9 (de
Inventor
Wolfgang Voigt
Jaime T. CLAROS JIMÉNEZ
Heriberto Rizzo Morales
Luis Ferrufino Terceros
Original Assignee
Technische Universität Bergakademie Freiberg
Universidad Autónoma Tomas Frias
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44209945&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011138389(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Technische Universität Bergakademie Freiberg, Universidad Autónoma Tomas Frias filed Critical Technische Universität Bergakademie Freiberg
Priority to CN201180022561.6A priority Critical patent/CN103038170B/zh
Publication of WO2011138389A1 publication Critical patent/WO2011138389A1/de
Publication of WO2011138389A9 publication Critical patent/WO2011138389A9/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/1045Oxyacids
    • C01B35/1054Orthoboric acid
    • C01B35/1081Preparation by working up other natural sources, e.g. seawater
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/26Magnesium halides
    • C01F5/30Chlorides

Definitions

  • the present invention relates to a process for the enrichment of lithium with simultaneous depletion of magnesium from solutions of chloridic nature, which have high magnesium contents in relation to the lithium content.
  • the currently known, largest resources of lithium are in the form of aqueous solutions (brines) in dried or partially dried salt lakes in South America, Asia and Africa.
  • the solutions are mostly saturated NaCl solutions with varying concentrations of the ions K + , Mg ++ , Li + and SO 4 ⁇ as well as borate.
  • the concentration for Li + is usually in a range between 200-4000 ppm.
  • K + , Mg ++ and SO 4 ⁇ the concentrations reach into the tens of gram range.
  • the solutions are z.
  • evaporation basins or other technical equipment for fermentation (as in DE 10 2009 006 668.3).
  • most of the salts are usually separated in the approximate sequence NaCl, KCl and, depending on the specific composition of the brine, various sulfates of the alkali metal magnesium sulfates.
  • the most soluble salts LiCl and MgCl 2 continue to accumulate in the solution.
  • the last parts of K + are crystallized on further evaporation as carnallite until finally bischofite, MgCl2 * 6H 2 O is deposited.
  • magnesium hydroxide Mg (OH) 2
  • Mg (OH) 2 these magnesium hydroxide precipitates occurring both partially in the evaporation basins and in the processing tanks. could be done in the factory.
  • the solution for precipitating the magnesium hydroxide may also contain sodium carbonate.
  • Li + is tried directly from the solutions by specific adsorption or ion exchange on granules or tablets based on (Al (OH) 3 (US Pat. No. 5,389,349, US Pat. No. 6,280,693 B1), certain types of manganese oxides, such as ⁇ type [Sagara, F., Ning, WB, Yoshida, I., Ueno, K., Separately See Technol. 24 (1989), 1227-1243; Chitrakar, R., Kanoh, H., Miyai, Eng. Chem. Res. 40 (2001), 2054-2058] or titanic acids [Yawata, K., Res. Rep.
  • ⁇ type Sagara, F., Ning, WB, Yoshida, I., Ueno, K., Separately See Technol. 24 (1989), 1227-1243; Chitrakar, R., Kanoh, H., Miyai, Eng. Chem. Res. 40 (2001
  • Ion exchange resins for Li separation have also been proposed instead of the inorganic sorbents [Bauman, WC, "Structure and Operation of DOW's New Lithium Selective Ion-Exchange Resin", in “Lithium - Current Applications in Science, Medicine and Technology”, J. Wiley and Sons, 1985].
  • ion exchange resins can be better cut with respect to lithium ion selectivity, they are often more expensive than the abovementioned sorbents.
  • the object of the invention is therefore a method that allows the accumulation of lithium and the separation of companion salts without lithium loss.
  • the object is achieved by a process for the depletion of magnesium and enrichment of lithium in chloride salt solutions, in which the further evaporated solution is added with minimum contents of 4 g / L Li + and 60 g / L Mg 2+ KCl, which with the MgC of the solution is at least partially converted to carnallite (Kaliunncarnallit) and deposited in the form of Kaliunncarnallit, wherein the added KCI amount is such that the composition of the mother solution in the vicinity of the saturation of carnallite (Kaliunncarnallit) and KCl is adjusted and thus the formation of lithium carnallite is avoided.
  • composition of the mother solution sets in the vicinity of the saturation of Kaliunncarnallit and KCl, means that the mother solution has taken according to their temperature, the maximum amount of KCL and thus the preferred deposit Kaliunncarnallit is secured against lithium carnallite.
  • the solution in the presence of KCl, the solution can be further evaporated until a sufficiently high Li: Mg mass ratio is achieved.
  • Li: Mg mass ratios of up to 7: 1 can be achieved in this way.
  • the KCl is fed gradually or continuously to the evaporator.
  • the addition of the KCl can be carried out periodically or continuously, just as the carnallite can be separated off in one or more stages or can also be made continuous.
  • the actual design depends essentially on the mass ratio of potassium carnallite to be formed and the remaining volume of mother solution resulting for a desired Li: Mg ratio.
  • the KCl is added in solid form, as an aqueous suspension with optionally further dissolved salts such as NaCl or MgC or as a homogeneous saturated solution.
  • the KCl may be in solid form, preferably fine-grained, metered or in a thick aqueous suspension, which may contain besides water also other for LiCI separation less disturbing components such as NaCl, MgC or some sulfate.
  • a homogeneous saturated or nearly saturated aqueous solution of KCl is also applicable.
  • the time of KCI addition in the process can be chosen differently, but should be at least shortly before reaching saturation of lithium carnallite in the mother liquor.
  • KCl is added after the evaporation of the desired amount of water.
  • the evaporation can be carried out according to this variant, first at elevated temperature to the desired degree of concentration and then added KCl and cooled after a certain period of time for the Liereretress and as described above potassium carnallite are separated.
  • the potassium carnallite which forms is discharged stepwise or continuously from the solution to the evaporator by means of solid-liquid separation.
  • solid-liquid separation filtration with vacuum or overpressure or centrifugation or a combination of methods is used.
  • the potassium carnallite separation takes place at temperatures of 15 to 60 ° C, preferably at 15 to 40 ° C.
  • the suitable temperature for carnallite separation is preferably the ambient temperature.
  • the deposition of magnesium chloride in the form of potassium carnallite has the further advantage that the morphology of the carnallite crystals for a solid-liquid separation is more favorable than that of bishopite and less mother solution sticks to the solid-liquid separation.
  • solutions close to the compositions of simultaneous saturation of potassium carnallite and KCl, at a given LiCl concentration have higher vapor pressures and lower viscosities than solutions at higher MgC.sub.x concentrations necessary for bischofite deposition.
  • the precipitated and discharged potassium carnallite can be broken down into KCl and a concentrated MgC ⁇ solution by using water or a relatively dilute MgCl solution by known methods.
  • this carnallite decomposition will be carried out at ambient temperature.
  • the KCl used for MgC ⁇ enrichment recovered back and can be used again for the inventive method.
  • potassium carnallite precipitates on the basis of corresponding potassium contents of the starting solutions in upstream process steps, it can be included in the decomposition process of the KCI recovery and the excess KCl can be discharged from the process and further processed into a salable product.
  • KCl is recovered in the process step of Carnallitzermaschine on the recovery of the KCl by incurred from other process steps potassium carnallite and / or KCI-containing fractions are included.
  • the inventive method for depletion of magnesium and enrichment of lithium is an essential step in the production of concentrated lithium solutions of solutions of natural Li-containing salt deposits (Brines).
  • the solutions are mostly saturated NaCl solutions with varying concentrations of the ions K + , Mg ++ , Li + and SO 4 ⁇ as well as borate.
  • the concentration for Li + is usually in a range between 200-4000 ppm.
  • K + , Mg ++ and SO 4 ⁇ the concentrations reach into the tens of gram range.
  • Concentrated lithium solutions are prepared by the process according to the invention from such solutions with the following steps: a) separation of NaCl and KCl by evaporation,
  • a concentration is carried out by evaporation.
  • KCl can then be added in several stages, further evaporated and the crystallizing carnallite separated from the mother liquor by a suitable solid-liquid separation method (filtration, centrifugation).
  • the Li: Mg ratio has then typically increased to about 3: 1, with Li + concentrations in the range of 20-60 g / L.
  • the carnallite is washed with a small amount of water or a suitable process solution in order to remove most of the LiCI adhering to the mother liquor. before being sent to KCI recovery for decomposition. The washing solution is recycled in the process stages located further up.
  • the highly concentrated LiCl solution is then subjected to a fine cleaning, in particular to the remaining magnesium removal by adding NaOH, if appropriate also containing Na 2 CO 3, in order then to precipitate with soda U 2 CO 3.
  • the LiCl solution can be directly further evaporated to crystallize LiCl hydrate or LiCl.
PCT/EP2011/057194 2010-05-05 2011-05-05 Verfahren zur abreicherung von magnesium und anreicherung von lithium in chloridisch geprägten salzlösungen WO2011138389A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180022561.6A CN103038170B (zh) 2010-05-05 2011-05-05 在氯化物形成的盐溶液中贫化镁和富集锂的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010019554.5 2010-05-05
DE201010019554 DE102010019554B4 (de) 2010-05-05 2010-05-05 Verfahren zur Abreicherung von Magnesium und Anreicherung von Lithium in chloridisch geprägten Salzlösungen

Publications (2)

Publication Number Publication Date
WO2011138389A1 true WO2011138389A1 (de) 2011-11-10
WO2011138389A9 WO2011138389A9 (de) 2012-01-05

Family

ID=44209945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/057194 WO2011138389A1 (de) 2010-05-05 2011-05-05 Verfahren zur abreicherung von magnesium und anreicherung von lithium in chloridisch geprägten salzlösungen

Country Status (4)

Country Link
CN (1) CN103038170B (zh)
CL (1) CL2012003052A1 (zh)
DE (1) DE102010019554B4 (zh)
WO (1) WO2011138389A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487136A1 (en) * 2011-01-20 2012-08-15 Rockwood Lithium Inc. Production of high purity lithium compounds directly from lithium containing brines
US11180369B2 (en) 2019-07-30 2021-11-23 Qinghai Institute Of Salt Lakes, Chinese, Academy Of Sciences Renewable magnesium removing agent and its use in preparation of low-magnesium lithium-rich brine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015000872A1 (de) 2015-01-23 2016-07-28 K-Utec Ag Salt Technologies Methode zur Gewinnung von Lithiumchlorid
CN110342553B (zh) * 2019-07-24 2022-04-29 武汉工程大学 一种辅助结晶晒盐降低盐湖中镁锂比的方法
CN110745838A (zh) * 2019-10-25 2020-02-04 成都理工大学 一种CuB23纳米花的制备方法
CN113023751B (zh) * 2021-05-06 2022-11-08 神华准能资源综合开发有限公司 一种从氯化盐水中回收锂、钠、钾、镁、钙的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099528A (en) * 1962-01-10 1963-07-30 Standard Magnesium Corp Inc Recovery of values from natural lake and sea brines
US3268289A (en) 1962-12-11 1966-08-23 Signal Oil & Gas Co Recovery of lithium from brines
US4271131A (en) * 1979-04-11 1981-06-02 Foote Mineral Company Production of highly pure lithium chloride from impure brines
US4274834A (en) 1979-04-11 1981-06-23 Foote Mineral Company Process for purification of lithium chloride
US4287163A (en) 1979-05-29 1981-09-01 Saline Processors, Inc. Process for recovering lithium from brine by salting out lithium sulfate monohydrate
US4723962A (en) 1985-02-04 1988-02-09 Lithium Corporation Of America Process for recovering lithium from salt brines
US5389349A (en) 1993-05-24 1995-02-14 Bauman; William C. Recovery of lithium values from brines
US6143260A (en) 1998-07-16 2000-11-07 Chemetall Foote Corporation Method for removing magnesium from brine to yield lithium carbonate
US6280693B1 (en) 1993-05-24 2001-08-28 Fmc Corporation Composition for the recovery of lithium values from brine and process of making/using said composition
US6547836B1 (en) 1998-11-10 2003-04-15 Sqm Salar S.A. Process for obtaining monohydrated lithium sulfate from natural brines
WO2003037794A1 (de) 2001-10-25 2003-05-08 Eurosina Technology Consulting & Project Development Gmbh Verfahren zur gewinnung von lithiumchlorid aus salzlaugen und anlage zur durchführung des verfahrens
US7157065B2 (en) 1998-07-16 2007-01-02 Chemetall Foote Corporation Production of lithium compounds directly from lithium containing brines
DE102009006668A1 (de) 2009-01-29 2010-08-05 Technische Universität Bergakademie Freiberg Verfahren und Vorrichtung zur solaren Eindampfung von Salzlösungen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536444A (en) * 1969-06-13 1970-10-27 Minera Bayovar Sa Method for separating the components in brine
KR100732066B1 (ko) * 2006-07-25 2007-06-25 (주)블루오션월드 해양심층수로부터 저온진공결정법을 이용한 고순도미네랄의 효율적 추출방법
CN101003382A (zh) * 2006-10-19 2007-07-25 陈天强 盐湖废弃矿中氯化钾的回收方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099528A (en) * 1962-01-10 1963-07-30 Standard Magnesium Corp Inc Recovery of values from natural lake and sea brines
US3268289A (en) 1962-12-11 1966-08-23 Signal Oil & Gas Co Recovery of lithium from brines
US4271131A (en) * 1979-04-11 1981-06-02 Foote Mineral Company Production of highly pure lithium chloride from impure brines
US4274834A (en) 1979-04-11 1981-06-23 Foote Mineral Company Process for purification of lithium chloride
US4287163A (en) 1979-05-29 1981-09-01 Saline Processors, Inc. Process for recovering lithium from brine by salting out lithium sulfate monohydrate
US4723962A (en) 1985-02-04 1988-02-09 Lithium Corporation Of America Process for recovering lithium from salt brines
US5389349A (en) 1993-05-24 1995-02-14 Bauman; William C. Recovery of lithium values from brines
US6280693B1 (en) 1993-05-24 2001-08-28 Fmc Corporation Composition for the recovery of lithium values from brine and process of making/using said composition
US6143260A (en) 1998-07-16 2000-11-07 Chemetall Foote Corporation Method for removing magnesium from brine to yield lithium carbonate
US7157065B2 (en) 1998-07-16 2007-01-02 Chemetall Foote Corporation Production of lithium compounds directly from lithium containing brines
US6547836B1 (en) 1998-11-10 2003-04-15 Sqm Salar S.A. Process for obtaining monohydrated lithium sulfate from natural brines
WO2003037794A1 (de) 2001-10-25 2003-05-08 Eurosina Technology Consulting & Project Development Gmbh Verfahren zur gewinnung von lithiumchlorid aus salzlaugen und anlage zur durchführung des verfahrens
DE102009006668A1 (de) 2009-01-29 2010-08-05 Technische Universität Bergakademie Freiberg Verfahren und Vorrichtung zur solaren Eindampfung von Salzlösungen

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BAUMAN, W.C.: "Lithium - Current Applications in Science, Medicine and Technology", 1985, J. WILEY AND SONS, article "Structure and Operation of DOW's new Lithium Selective Ion-Exchange Resin"
BUKOWSKI, H., UHLEMANN, E., SEPAR. SCI. TECHNOL., vol. 28, 1993, pages 1357 - 1360
CHITRAKAR, R., KANOH, H., MIYAI, J., OOI, K., IND. ENG. CHEM. RES., vol. 40, 2001, pages 2054 - 2058
D.E. GARRETT: "Handbook of Lithium and Natural Calcium Chloride - their deposits, processing, uses and properties", 2004, ELSEVIER ACADEMIC PRESS
HAM ZAOUI, A.H. M'NIF, A., HAMMI, H., ROKBANI, R., DESALINATION, vol. 158, 2003, pages 221 - 224
HAMZAOUI, A.H., JAMOUSSI, B., M'NIF, A., HYDROMETALLURGY, vol. 9, 2008, pages 1 - 7
MARCUS, Y., HYDROMETALLURGY, vol. 6, 1981, pages 269 - 275
RONA, M., SCHMUCKLER, G., TALANTA, vol. 20, 1973, pages 237 - 240
SAGARA, F, NING, W.B., YOSHIDA, 1., UENO, K., SEPAR. SCI. TECHNOL., vol. 24, 1989, pages 1227 - 1243
YAWATA, K., RES. REP. OF THE TSURUOKA TECHNICAL COLLEGE, vol. 41, 2006, pages 53 - 56

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487136A1 (en) * 2011-01-20 2012-08-15 Rockwood Lithium Inc. Production of high purity lithium compounds directly from lithium containing brines
AU2011236094B2 (en) * 2011-01-20 2012-11-29 Rockwood Lithium Inc. Production of high purity lithium compounds directly from lithium containing brines
US9005557B2 (en) 2011-01-20 2015-04-14 Rockwood Lithium Inc. Production of high purity lithium compounds directly from lithium containing brines
US9988280B2 (en) 2011-01-20 2018-06-05 Rockwood Lithium Inc. Production of high purity lithium compounds directly from lithium containing brines
US11180369B2 (en) 2019-07-30 2021-11-23 Qinghai Institute Of Salt Lakes, Chinese, Academy Of Sciences Renewable magnesium removing agent and its use in preparation of low-magnesium lithium-rich brine

Also Published As

Publication number Publication date
CN103038170B (zh) 2015-01-21
DE102010019554A1 (de) 2011-11-10
CL2012003052A1 (es) 2013-05-31
WO2011138389A9 (de) 2012-01-05
CN103038170A (zh) 2013-04-10
DE102010019554B4 (de) 2012-11-29

Similar Documents

Publication Publication Date Title
US9255011B2 (en) Method for producing lithium carbonate
US8691169B2 (en) Method for the production of battery grade lithium carbonate from natural and industrial brines
DE102010019554B4 (de) Verfahren zur Abreicherung von Magnesium und Anreicherung von Lithium in chloridisch geprägten Salzlösungen
US9169125B2 (en) Method for producing high-purity lithium carbonate
DE2450259B2 (de) Verfahren zur Reinigung von Elektrolysesole
CN111057848A (zh) 一种溶剂萃取从含锂溶液中提取锂的方法
CN108862335B (zh) 一种用磷酸锂制备碳酸锂的方法
CN102963933B (zh) 一种仲钨酸铵的制备方法
DE102017221288A1 (de) Verfahren zur Herstellung von Lithiumhydroxid aus lithiumhaltigem Erz
US4980136A (en) Production of lithium metal grade lithium chloride from lithium-containing brine
CN102167369B (zh) 一种降低LiCl中NaCl含量的方法
DE19645315C1 (de) Verfahren zur Abtrennung von NaCl aus einer LiCl-Lösung
CN1335262A (zh) 高镁锂比盐湖卤水中制取碳酸锂的方法
DD153806A5 (de) Verfahren zur reinigung und konzentration von mgcl tief 2 sohlen
CN108439436B (zh) 一种一水硫酸锂的制备工艺
DE102017221268A1 (de) Verfahren zur Herstellung von Lithiumhydroxid aus lithiumhaltigem Erz mittels Chlorierung und Chloralkali-Prozess
CN111592017A (zh) 一种锂辉石压浸制备电池级氯化锂的方法
DE102009018956A1 (de) Verfahren zur Herstellung von Kaliumsulfat aus Bittern
DE1767815A1 (de) Selektive Gewinnung von Salzen aus gemischten Salzloesungen
DE1592052C3 (de) Verfahren zur Entfernung des Sulfatgehaltes aus wäßrigen alkalimetallhaltigen Salzlösungen
DE1567478A1 (de) Verfahren zur Herstellung von Chlordioxyd
DE102012003485B3 (de) Verfahren zur Herstellung von Natriumbicarbonat
US11802051B2 (en) Lithium recovery from borax dilute solutions
US20210246025A1 (en) Renewable magnesium removing agent and its use in preparation of low-magnesium lithium-rich brine
Lalasari et al. Effectiveness of the separation of Magnesium and Lithium from seawater with sodium silicate precipitation process

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022561.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11716966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012/12463

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11716966

Country of ref document: EP

Kind code of ref document: A1