WO2011132678A1 - エアフローメータの故障診断装置 - Google Patents

エアフローメータの故障診断装置 Download PDF

Info

Publication number
WO2011132678A1
WO2011132678A1 PCT/JP2011/059639 JP2011059639W WO2011132678A1 WO 2011132678 A1 WO2011132678 A1 WO 2011132678A1 JP 2011059639 W JP2011059639 W JP 2011059639W WO 2011132678 A1 WO2011132678 A1 WO 2011132678A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow meter
air flow
intake air
air amount
internal combustion
Prior art date
Application number
PCT/JP2011/059639
Other languages
English (en)
French (fr)
Inventor
聡史 関根
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201180019146.5A priority Critical patent/CN102844554B/zh
Priority to US13/642,360 priority patent/US9200582B2/en
Priority to BR112012026879-1A priority patent/BR112012026879B1/pt
Priority to RU2012149278/07A priority patent/RU2517197C1/ru
Priority to EP11772013.6A priority patent/EP2562404B1/en
Priority to MX2012011820A priority patent/MX2012011820A/es
Priority to JP2012511670A priority patent/JP5333660B2/ja
Publication of WO2011132678A1 publication Critical patent/WO2011132678A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F9/00Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine
    • G01F9/02Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine wherein the other variable is the speed of a vehicle
    • G01F9/023Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine wherein the other variable is the speed of a vehicle with electric, electro-mechanic or electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an air flow meter failure diagnosis apparatus that performs air flow meter failure diagnosis in all operating regions of an internal combustion engine.
  • the intake air amount sensor includes an error due to a malfunction of the intake air amount sensor, inappropriate fuel injection is performed, resulting in discharge of harmful substances into the atmosphere.
  • the absolute value of the difference between the actual intake air flow rate measured by the intake air flow rate estimating means and the air flow sensor is usually based on a value that cannot be taken by this absolute value, or on the engine speed and engine load.
  • a failure diagnosis device for diagnosing that a failure has occurred in the airflow sensor when the value is larger than a predetermined value G0, which is a set value, is disclosed.
  • an object of the present invention is to provide a failure diagnosis device for an air flow meter capable of determining failure of the air flow meter even when the amount of intake air is small.
  • the present invention determines that the air flow meter is in failure when the deviation value of the estimated intake air amount from the actual intake air amount obtained by the air flow meter is greater than a failure determination reference value determined in accordance with the rotational speed of the internal combustion engine.
  • the failure diagnosis apparatus for an air flow meter is characterized in that, as the rotational speed of the internal combustion engine is lower, a failure determination reference value for determining the air flow meter as a failure is increased, and a region for determining the air flow meter as a failure is set narrower. .
  • the region where the air flow meter is determined to be faulty is set relatively narrow.
  • FIG. 1 is an explanatory diagram schematically showing a system configuration of an internal combustion engine to which the present invention is applied.
  • an air cleaner 5 In the intake passage 4, an air cleaner 5, a throttle valve 6, and a collector 7 are interposed in order from the upstream side. Air is introduced into the combustion chamber 2 through the intake port 8 for each cylinder located downstream of the collector 7.
  • the air cleaner 5 is provided with an atmospheric pressure sensor 9 for detecting atmospheric pressure. Between the air cleaner 5 and the throttle valve 6, there is provided an air flow meter 11 which is a thermal flow meter such as a hot wire or a thermal film type incorporating an intake air temperature sensor 10.
  • the collector 7 is provided with an intake pressure sensor 12 that detects the intake pressure (collector pressure) in the collector 7.
  • a fuel injection valve 13 is provided so as to inject and supply fuel for each cylinder, and an intake valve 14 is provided at the downstream end thereof.
  • An exhaust valve 16 is provided at the upstream end of the exhaust port 15 connected to the combustion chamber 2.
  • valve mechanism on the side of the intake valve that drives the intake valve 14 is a variable valve mechanism (not shown) that can change the valve timing of the intake valve 14, and changes the opening and closing timing of the intake valve 14. By (delaying), the valve overlap amount of the intake valve 14 and the exhaust valve 16 can be controlled.
  • the variable valve mechanism include a phase variable mechanism that delays the phase of the lift center angle of the intake valve 14, a lift operation angle variable mechanism that changes the valve lift amount and operating angle of the intake valve 14, or the phase variable mechanism.
  • the lift operating angle variable mechanism may be combined.
  • the valve mechanism on the exhaust valve side that drives the exhaust valve 16 is a valve mechanism (not shown) that uses a general direct-acting cam (the phase of the lift / operating angle and lift center angle is fixed). Yes. Note that a variable valve mechanism may be adopted as the valve mechanism on the exhaust valve side, similarly to the intake valve side.
  • the ECU 17 incorporates a microcomputer and performs various controls of the internal combustion engine 1, and performs processing based on signals from various sensors.
  • these various sensors in addition to the atmospheric pressure sensor 9, the intake air temperature sensor 10, the air flow meter 11, and the intake pressure sensor 12, the crank angle sensor 18 that can detect the engine rotational speed together with the crank angle, and the throttle valve 6.
  • Signals from a throttle sensor 19 that detects the opening, a vehicle speed sensor 20 that detects the vehicle speed, and the like are input.
  • the ECU 17 based on these detection signals, the injection amount and injection timing of the fuel injection valve 13, the ignition timing by the ignition plug (not shown), the valve lift characteristic by the variable valve mechanism (not shown), the throttle The opening degree of the valve 6 is controlled.
  • the ECU 17 realizes calculation for estimating the intake air amount without using the detection value of the air flow meter 11 and failure diagnosis of the air flow meter 11.
  • the deviation value of the estimated intake air amount estimated by the ECU 17 with respect to the actual intake air amount, which is a detected value detected by the air flow meter 11, is predetermined according to the engine speed.
  • the air flow meter 11 is determined to be out of order.
  • a divergence rate obtained by dividing the actual intake air amount by the estimated intake air amount is used as the divergence value described above, and as shown in FIG. 2, upper and lower limit fault diagnosis in which this divergence rate is a failure determination reference value.
  • the air flow meter 11 is determined to be faulty when it is outside the region sandwiched by the criteria (characteristic lines A and B in FIG. 2).
  • a characteristic line A in FIG. 2 is an upper limit failure diagnosis criterion that is an upper limit failure determination reference value
  • a characteristic line B in FIG. 2 is a lower limit failure diagnosis criterion that is a lower limit failure determination reference value.
  • the upper and lower limit failure diagnosis criteria that are failure determination reference values are, for example, the upper and lower limit values (see characteristic lines a and b in FIG. 2) that can be taken by the deviation rate even with a normal air flow meter. This is a value added with a margin of component variation of intake system components.
  • the ECU 17 calculates the intake air amount (actual intake air amount) detected by the air flow meter 11 even if the air flow meter 11 has not failed due to the influence of intake pulsation or the like. Therefore, the upper limit side failure diagnosis criterion is set larger and the lower limit side failure diagnosis criterion is set smaller as the engine speed is lower.
  • the air flow meter 11 when the divergence rate is larger than the upper limit side failure diagnosis criteria, or when the divergence rate is smaller than the lower limit side failure diagnosis criteria, it is determined that the air flow meter 11 has failed.
  • a warning light provided on a position visible from the driver's seat, for example, an instrument panel of the driver's seat is turned on to indicate that the driver has an abnormality in the air flow meter 11. Sense.
  • the deviation rate is equal to or lower than the upper limit failure diagnosis criteria and equal to or higher than the lower limit failure diagnosis criteria, and the engine speed is set to a predetermined rotation speed (for example, 3000 rpm) or higher. In this case, it is determined that the air flow meter 11 is normal.
  • the intake air amount (actual intake air amount) detected by the air flow meter 11 is calculated by the ECU 17. There is no risk that the estimated intake air amount will deviate greatly.
  • the engine speed is higher than the predetermined speed, it can be accurately diagnosed that the air flow meter is normal, so even if there was a history of a failure diagnosed from the engine start until now, Assuming that the diagnosis of the failure was an error, the diagnosis result is switched to normal. Thereby, it is possible to improve the accuracy of the failure diagnosis and prevent the air flow meter 11 from being replaced when the failure is not necessarily a failure.
  • the diagnosis of the air flow meter cannot always be performed with high accuracy, so the existing diagnostic result is maintained as it is.
  • the diagnosis result of the failure is maintained when there is a history of diagnosis from the engine start until now, and the diagnosis result of normal is maintained when the history of diagnosis is normal. From the engine start until now, the deviation rate remains below the upper limit failure diagnosis criteria and above the lower limit failure diagnosis criteria, and further, the engine rotation speed is less than a predetermined rotation speed (for example, 3000 rpm). If it continues to exist, it will continue to maintain a state where there is no diagnostic result.
  • a predetermined rotation speed for example, 3000 rpm
  • the driver is not always necessary to directly inform the driver as to whether or not the air flow meter 11 is normal. For example, when the air flow meter 11 is normal, the driver is not allowed to turn on the lamp to detect it. May be. However, it is determined that the air flow meter 11 has failed, and an operator who replaces the air flow meter 11 that has been determined to have failed at a maintenance shop or the like connects a predetermined service tool to the ECU 17 to It can be confirmed whether or not the air flow meter 11 is normal by operating the engine speed at a predetermined speed or higher.
  • upper and lower limit fail-safe diagnosis criteria are set on the outer side of the upper and lower limit failure diagnosis criteria in FIG. 2, and the deviation rate is the upper limit fail-safe diagnosis criteria (characteristics in FIG. 2). If it is larger than the line C), or if the deviation rate is smaller than the lower limit fail-safe diagnosis criteria (characteristic line D in FIG. 2), the fuel injection valve 13 is based on the intake air amount detected by the air flow meter 11.
  • the control value such as the injection amount, the injection timing, and the ignition timing by the spark plug (not shown) is calculated, and from the normal control for controlling the internal combustion engine 1 based on the calculated value, the rotational speed and throttle opening of the internal combustion engine are calculated.
  • the control value similar to the normal control is calculated using the intake air amount calculated from the above, and the internal combustion engine 1 is controlled based on the calculated value.
  • the upper limit side failsafe diagnostic criteria is a divergence rate of 150%
  • the lower limit side failsafe diagnostic criteria is a divergence rate of 50%. That is, the fail-safe control in the present embodiment is set to be performed when the actual intake air amount detected by the air flow meter 11 and the estimated intake air amount estimated by the ECU 17 deviate by 50% or more. .
  • the air flow meter 11 No fault diagnosis will be performed.
  • FIG. 3 is a block diagram illustrating a failure diagnosis method for the air flow meter 11.
  • an upper limit side failure diagnosis criterion (THhigh) is calculated from the engine speed.
  • a lower limit side failure diagnosis criterion (THlow) is calculated from the engine speed.
  • the upper limit side failure diagnosis criteria (THhigh) and the lower limit side failure diagnosis criteria (THlow) are respectively calculated by searching a table (not shown) created experimentally in advance.
  • the combustion efficiency coefficient is calculated from a table (not shown) created experimentally in advance using the engine rotation speed and the valve overlap amount of the intake valve 14 and the exhaust valve 16. .
  • the valve overlap amount can be calculated by detecting the valve timing of the engine valve (intake valve 14 or exhaust valve 16) with a sensor (not shown) provided in the variable valve mechanism.
  • the base estimated intake air amount (Qesb) is calculated from a table (not shown) created experimentally in advance using the engine rotation speed and the throttle opening area.
  • the throttle opening area can be calculated using the detection signal of the throttle sensor 19.
  • an estimated intake air amount (Qest) is calculated by multiplying the combustion efficiency coefficient (ITAFV) calculated in S3 by the base estimated intake air amount (Qesb) calculated in S4.
  • the estimated intake air amount (Qest) can also be estimated using the intake pressure, and the estimated intake air amount (Qest) estimated based on the intake pressure detected by the intake pressure sensor 12 can also be used. Is possible.
  • the actual intake air amount detected by the air flow meter 11 is divided by the estimated intake air amount (Qest) calculated in S5, and a deviation rate (deviation value of the estimated intake air amount with respect to the actual intake air amount ( AFMDG) is calculated.
  • the lower limit throttle opening area that can be diagnosed is calculated from a table (not shown) created experimentally in advance using the engine speed.
  • the diagnosis permission condition is a condition for determining whether the driving state of the vehicle is a state in which the failure diagnosis of the air flow meter 11 can be performed, and the failure diagnosis of the air flow meter 11 is performed when it is established.
  • the throttle opening area is equal to or greater than the diagnosable lower limit throttle opening area and the change amount of the throttle opening area is equal to or smaller than a predetermined value, it is determined that the diagnosis permission condition is satisfied.
  • the throttle opening area is smaller than the diagnosable lower limit throttle opening area, it is determined that the internal combustion engine 1 is not generating torque, and it is determined that the diagnosis permission condition is not satisfied. Further, when the change amount of the throttle opening area is larger than a predetermined value set in advance, it is determined that the vehicle is rapidly accelerating, and it is determined that the diagnosis permission condition is not satisfied.
  • the value of the deviation rate (AFMDG) is equal to or lower than the upper limit failure diagnosis criterion (THhigh) and equal to or higher than the lower limit failure diagnosis criterion (THlow), and the rotation speed of the internal combustion engine 1 Is equal to or higher than the predetermined rotational speed, it is determined that the air flow meter 11 is normal.
  • FIG. 4 is a flowchart showing a control flow of the failure diagnosis method of the air flow meter 11.
  • S22 it is determined whether or not the opening area of the throttle valve 6 is equal to or larger than a predetermined value. If the opening area of the throttle valve 6 is equal to or larger than the predetermined value, the process proceeds to S23, and the opening area of the throttle valve 6 is equal to or larger than the predetermined value. If not, the current routine is terminated. In addition, these S21 and S22 each determine whether one of the diagnosis permission conditions is satisfied.
  • the upper limit side failure diagnosis criteria (THhigh) and the lower limit side failure diagnosis criteria (THlow) are calculated from the rotation speed of the internal combustion engine 1.
  • the divergence rate is within the range of the fail-safe diagnosis criteria, that is, the divergence rate (AFMDG) is larger than the upper limit side fail-safe diagnosis criteria described above, or the divergence rate (AFMDG) is the lower limit side. Determine if it is less than the failsafe diagnostic criteria.
  • the process proceeds to S27, and if the deviation rate (AFMDG) is within the range of the fail-safe diagnostic criteria, the current routine is terminated.
  • S28 it is determined whether or not the rotational speed of the internal combustion engine 1 is equal to or higher than a predetermined rotational speed (for example, 3000 rpm). If the rotational speed of the internal combustion engine 1 is equal to or higher than the predetermined rotational speed, the process proceeds to S29 and the air flow meter 11 is reached. Is determined to be normal, and if the rotational speed of the internal combustion engine 1 is less than a predetermined rotational speed (for example, 3000 rpm), the current diagnosis result is maintained as it is, and the current routine is immediately terminated.
  • a predetermined rotational speed for example, 3000 rpm
  • the control of the internal combustion engine 1 when the control routine of FIG. 4 is terminated without passing through S27 is a normal control. That is, the intake air amount control shifts to fail-safe control only when the process proceeds from S26 to S27.
  • the air flow meter 11 Even if 11 is normal, it is possible to remove a region where there is a variation from a region where the air flow meter 11 is diagnosed as a failure. That is, even if the air flow meter 11 is normal, the intake air amount (actual intake air amount) detected by the air flow meter 11 may greatly deviate from the estimated intake air amount calculated by the ECU 17. In a region where the intake air amount is small, a region where the air flow meter 11 is determined to be faulty (in FIG.
  • a region above the upper limit side failure determination criteria and a region below the lower limit side failure determination criteria is relatively narrow. Therefore, it is possible to perform failure diagnosis of the air flow meter 11 in the entire engine speed range, that is, all operating regions of the internal combustion engine 1 while avoiding erroneous diagnosis, and exhaust performance due to the failure of the air flow meter 11 is set. It becomes possible to prevent the deterioration of the problem.
  • the warning light is turned on so that the occupant can sense that the air flow meter 11 is abnormal. This prompts the driver to promptly inspect and repair the vehicle. It is possible to prevent the air pollution from proceeding by continuing the operation in a state where the exhaust performance is deteriorated.
  • the divergence value is a fail-safe on the upper and lower limit side.
  • the normal control based on the intake air amount detected by the air flow meter 11 is shifted to the fail-safe control based on the intake air amount calculated from the rotational speed of the internal combustion engine 1 and the throttle opening.
  • the deviation rate may deviate greatly from the reference value (100%). For example, when air is leaking from the intake passage or when the air cleaner 5 is clogged, even if the detected value of the air flow meter 11 is accurate, the amount of intake air detected by the air flow meter 11 The deviation value from the estimated intake air amount becomes large.
  • the air flow meter 11 is determined to be normal with respect to the deviation rate (deviation value) (the deviation rate is within the area between the characteristic line A and the characteristic line B, and the engine If the region where the rotational speed is equal to or higher than the predetermined rotational speed) is set, it is determined that the air flow meter 11 has failed. When the divergence rate exceeds the speed and does not fall within the region sandwiched between the characteristic line A and the characteristic line B, it can be determined that there is a problem in the intake system other than the replaced new air flow meter 11.
  • the actual intake air amount is divided by the estimated intake air amount as a deviation value of the estimated intake air amount estimated by the ECU 17 with respect to the actual intake air amount that is a detection value detected by the air flow meter 11.
  • this divergence value is not limited to the above-mentioned divergence rate, and the difference between the actual intake air amount and the estimated intake air amount, or the degree of divergence of the estimated intake air amount with respect to the actual intake air amount. It is also possible to perform a failure diagnosis of the air flow meter 11 using, for example, as a deviation value.
  • the threshold value of the engine rotation speed when the air flow meter 11 is determined to be normal is appropriately set according to the actual machine.
  • the diagnosis permission condition for determining whether the failure diagnosis of the air flow meter 11 is possible is that the engine is not rapidly accelerated and that the internal combustion engine 1 is generating torque.
  • this diagnosis permission condition at least 10 seconds after the start (the air flow meter 11 is activated), the intake air temperature is minus 10 ° C. or more, and the atmospheric pressure is 50 kPa or more. It is also possible to add the fact that it is not when the fuel is cut, etc., to the diagnosis permission condition, and perform the failure diagnosis of the air flow meter 11 only when all of these diagnosis permission conditions are satisfied.

Abstract

エアフローメータ(11)により得られた実吸入空気量に対する推定吸入空気量の乖離値で ある乖離率が、内燃機関(1)の回転速度に応じて定められる故障判定基準値より大きい場合にエアフローメータ(11)を故障と判定する。すなわち、内燃機関の回転速度が低いほど、故障判定基準値である上限側診断クライテリアを大きく、下限側診断クライテリアを小さくし、エアフローメータ(11)を故障と判定する領域を狭く設定する。これによって、機関回転速度全域、つまり内燃機関(1)の全ての運転領域でエアフローメータ(11)の故障診断を実施することが可能となり、エアフローメータ(11)の故障による排気性能の悪化をより未然に防止可能となる。

Description

エアフローメータの故障診断装置
 本発明は、内燃機関の全ての運転領域でエアフローメータの故障診断を行うエアフローメータの故障診断装置に関する。
 吸入空気量センサが故障により吸入空気量が誤差を含むときには、不適切な燃料噴射が行われる結果、大気中への有害物質排出へと至ってしまう。
 例えば、特許文献1においては、吸入空気流量推定手段とエアフローセンサにより測定された実吸入空気流量との差の絶対値が、通常この絶対値がとりえない値あるいはエンジン回転速度及びエンジン負荷に基づいて設定された値である所定値G0より大きいときに、エアフローセンサに故障が発生していると診断する故障診断装置が開示されている。
 しかしながら、スロットル開度が低開度のときや内燃機関の回転速度が低回転のとき(低吸入空気量時)は、吸気脈動等の影響により、故障していないエアフローメータであっても、実吸入空気量が推定吸入空気量に対して、多い側又は少ない側へ大きく乖離してしまう虞がある。
 すなわち、特許文献1に開示されるようなエアフローメータの故障診断装置においては、吸入空気量が少ない時のエアフローメータの検出値のばらつきを考慮していないため、故障診断の精度を上げるために前記所定値G0を小さく設定すると、吸入空気量が少ない運転領域で誤判定を起こしやすく、誤判定防止のためには吸入空気量が少ない運転領域でエアフローメータの故障診断を中止しなければならないという問題がある。
特開2006-329138号公報
 そこで、本発明は、エアフローメータの故障診断を、吸入空気量が少ないときであってもエアフローメータの故障判定が可能なエアフローメータの故障診断装置を提供することを目的とする。
 本発明は、エアフローメータにより得られた実吸入空気量に対する推定吸入空気量の乖離値が、内燃機関の回転速度に応じて定められる故障判定基準値より大きい場合に前記エアフローメータを故障と判定するエアフローメータの故障診断装置において、内燃機関の回転速度が低いほど、エアフローメータを故障と判定する故障判定基準値を大きくし、当該エアフローメータを故障と判定する領域を狭く設定することを特徴としている。
 本発明によれば、正常なエアフローメータであっても検出値のばらつきが大きくなる吸入空気量が少ない領域では、エアフローメータを故障と判定する領域が相対的に狭く設定されるので、誤診断を回避した上で、機関回転速度全域、つまり内燃機関の全ての運転領域でエアフローメータの故障診断を実施することが可能となり、エアフローメータの故障による排気性能の悪化をより未然に防止可能となる。
本発明が適用された内燃機関のシステム構成を模式的に示した説明図。 本発明に係るエアフローメータの故障判定の概略を示す説明図。 エアフローメータの故障診断方法を示すブロック図。 故障診断方法の制御の流れを示フローチャート。
 以下、本発明の一実施形態を図面に基づいて詳細に説明する。
 図1は、本発明が適用された内燃機関のシステム構成を模式的に示した説明図である。
 内燃機関1の燃焼室2には、大気開放された吸気取入口3から取り入れられた空気が吸気通路4を介して導入されている。
 吸気通路4には、上流側から順に、エアクリーナ5、スロットル弁6、コレクタ7が介装されている。そして、コレクタ7の下流側に位置する各気筒毎の吸気ポート8を介して、燃焼室2に空気が導入されている。
 エアクリーナ5には、大気圧を検出する大気圧センサ9が設けられている。エアクリーナ5とスロットル弁6との間には、吸気温度センサ10を内蔵した熱線または熱フィルム式など熱式流量計であるエアフローメータ11が設けられている。コレクタ7には、コレクタ7内の吸気圧(コレクタ圧)を検出する吸気圧センサ12が設けられている。
 各気筒の吸気ポート8には、各気筒毎に燃料を噴射供給するように燃料噴射弁13が設けられていると共に、その下流端に吸気弁14が設けられている。また、燃焼室2に接続された排気ポート15の上流端には、排気弁16が設けられている。
 ここで、吸気弁14を駆動する吸気弁側の動弁機構は、吸気弁14のバルブタイミングを変更可能な可変動弁機構(図示せず)となっており、吸気弁14の開閉時期を変更(遅進)することで、吸気弁14と排気弁16のバルブオーバーラップ量が制御可能となっている。この可変動弁機構としては、吸気弁14のリフト中心角の位相を遅進させる位相可変機構、吸気弁14のバルブリフト量と作動角を変更するリフト作動角可変機構、あるいは前記位相可変機構と前記リフト作動角可変機構を組み合わせたものであってもよい。
 排気弁16を駆動する排気弁側の動弁機構は、一般的な直動式カム(リフト・作動角及びリフト中心角の位相が固定)を用いた動弁機構(図示せず)となっている。尚、排気弁側の動弁機構に、吸気弁側と同様に、可変動弁機構を採用してもよい。
 大気圧センサ9、吸気温度センサ10、エアフローメータ11及び吸気圧センサ12で検出されて検出信号は、ECU(エンジンコントロールユニット)17に入力されてる。
 ECU17は、マイクロコンピュータを内蔵し、内燃機関1の種々の制御を行うものであって、各種のセンサからの信号を基に処理を行うようになっている。これら各種のセンサとしては、前述の大気圧センサ9、吸気温度センサ10、エアフローメータ11及び吸気圧センサ12のほかに、クランク角度と共に機関回転速度を検出可能なクランク角センサ18、スロットル弁6の開度を検出するスロットルセンサ19、車両速度を検出する車速センサ20等からの信号が入力されている。
 そして、ECU17では、これらの検出信号に基づいて、燃料噴射弁13の噴射量や噴射時期、点火プラグ(図示せず)による点火時期、可変動弁機構(図示せず)によるバルブリフト特性、スロットル弁6の開度などを制御する。尚、このECU17によって、エアフローメータ11の検出値を用いずに吸入空気量を推定する演算や、エアフローメータ11の故障診断が実現される。
 エアフローメータ11の故障診断では、エアフローメータ11で検出された検出値である実吸入空気量に対するECU17で推定された推定吸入空気量の乖離値が、機関回転速度に応じて予め定められている故障判定基準値よりも大きい場合に、エアフローメータ11を故障と判定する。
 本実施形態では、前述の乖離値として実吸入空気量を推定吸入空気量で除した乖離率を使用し、図2に示すように、この乖離率が故障判定基準値である上下限の故障診断クライテリア(図2中の特性線A及びB)で挟まれる領域外となったときに、エアフローメータ11の故障と判定する。図2中の特性線Aは上限側の故障判定基準値である上限側故障診断クライテリアであり、図2中の特性線Bは下限側の故障判定基準値である下限側故障診断クライテリアである。
 故障判定基準値である上下限の故障診断クライテリアは、例えば、正常なエアフローメータであっても前記乖離率が取り得る値の上下限値(図2における特性線a、bを参照)に対して、吸気系部品の部品バラツキのマージンを上乗せした値である。
 吸入空気量が少ない状況では、吸気脈動等の影響により、エアフローメータ11が故障していない場合であっても、エアフローメータ11で検知される吸入空気量(実吸入空気量)がECU17にて演算される推定吸入空気量に対して大きく乖離してしまう虞があるので、機関回転速度が小さいほど上限側故障診断クライテリアは大きく、下限側故障診断クライテリアは小さくなるよう設定されている。
 本実施形態においては、前記乖離率が、上限側故障診断クライテリアよりも大きい場合、あるいは前記乖離率が下限側故障診断クライテリアよりも小さい場合、エアフローメータ11が故障していると判定する。エアフローメータ11が故障していると判定した場合には、運転席から視認できる位置、例えば運転席のインストルメントパネル等に設けた警告灯を点灯させ運転者にエアフローメータ11に異常があることを感知させる。
 そして、本実施形態においては、前記乖離率が、上限側故障診断クライテリア以下で下限側故障診断クライテリア以上の範囲内にあり、さらに機関回転速度が予め設定された所定回転速度(例えば、3000rpm)以上の場合には、エアフローメータ11が正常であると判定する。
 吸入空気量が多くなれば、吸気脈動等の影響をうけにくくなるので、エアフローメータ11が故障していなければ、エアフローメータ11で検知される吸入空気量(実吸入空気量)がECU17にて演算される推定吸入空気量に対して大きく乖離してしまう虞はない。すなわち、機関回転速度が所定回転速度より高い場合、エアフローメータが正常であることを精度良く診断することができるので、仮に、エンジン始動から今までに故障と診断された経緯があったとしても、故障の診断が誤りであったとみなして診断結果を正常に切り替える。これにより、故障診断の精度を向上させて、誤診断により必ずしも故障でなかった場合にエアフローメータ11が交換されてしまうことを防ぐことができる。
 一方、機関回転速度が所定回転速度より低い場合、エアフローメータの診断は必ずしも精度良く行なえないので、今ある診断結果をそのまま維持することとする。例えば、エンジン始動から今までに故障と診断された経緯があった場合には故障との診断結果を維持し、正常と診断された経緯があった場合には正常との診断結果を維持する。もし、エンジン始動から今まで、乖離率が上限側故障診断クライテリア以下で下限側故障診断クライテリア以上の範囲内にあり続け、さらに機関回転速度が予め設定された所定回転速度(例えば、3000rpm)未満にあり続けた場合には、診断結果が存在しない状態を維持し続けることになる。
 このようにして、機関回転速度に応じて正常と診断するか、現状の診断結果を維持するかを切り替えるようにしたので、故障診断の精度を向上させることができるようになり、例えば誤診断により必ずしも故障でなかった場合に、エアフローメータ11が交換されてしまうことを防ぐことができる。
 尚、エアフローメータ11が正常であると否かについては、必ずしも直接運転者に知らせる必要性はないので、例えばエアフローメータ11が正常である場合にランプを点灯させて運転者に感知させるようにしなくてもよい。但し、エアフローメータ11が故障していると判定され、整備工場等にて故障と判定されたエアフローメータ11の交換を実施する作業者は、ECU17に所定のサービスツールを接続し、内燃機関1の機関回転速度を予め設定された所定回転速度以上で運転することで、エアフローメータ11が正常であるか否かを確認できる。
 そして、本実施形態においては、図2における上下限の故障診断クライテリアのさらに外側に、上下限のフェイルセーフ診断クライテリアが設定されており、前記乖離率が上限側フェイルセーフ診断クライテリア(図2における特性線C)よりも大きい場合、もしくは前記乖離率が下限側フェイルセーフ診断クライテリア(図2における特性線D)よりも小さい場合には、エアフローメータ11で検出した吸入空気量に基づき、燃料噴射弁13の噴射量や噴射時期、点火プラグ(図示せず)による点火時期などの制御値を算出し、算出された値に基づき内燃機関1を制御する通常制御から、内燃機関の回転速度とスロットル開度から演算した吸入空気量を用いて、通常制御と同様の制御値を算出し、算出された値に基づき内燃機関1を制御するフェイルセーフ制御に移行する。
 本実施形態においては、上限側フェイルセーフ診断クライテリアは乖離率150%であり、下限側フェイルセーフ診断クライテリアは乖離率50%である。
つまり、本実施形態におけるフェイルセーフ制御は、エアフローメータ11で検出された実吸入空気量と、ECU17で推定された推定吸入空気量とが50%以上ずれた場合に実施されるよう設定されている。
 但し、急加速中や、内燃機関1がトルクを発生していない状態(例えば、エンジンブレーキを使用している状態や、惰性で走行している状態)のとき等、エアフローメータ11で検知される吸入空気量(実吸入空気量)がECU17にて演算される推定吸入空気量に対して大きく乖離してしまう虞がある状況では(後述する診断許可条件が成立していないとき)、エアフローメータ11の故障診断を実施しないこととする。
 図3は、エアフローメータ11の故障診断方法を示すブロック図である。
 S1では、機関回転速度から上限側故障診断クライテリア(THhigh)を算出する。S2では、機関回転速度から下限側故障診断クライテリア(THlow)を算出する。上限側故障診断クライテリア(THhigh)及び下限側故障診断クライテリア(THlow)は、それぞれ予め実験的に作成しておいたテーブル(図示せず)を検索することで算出される。
 S3では、機関回転速度と、吸気弁14と排気弁16のバルブオーバーラップ量とを用いて、予め実験的に作成しておいたテーブル(図示せず)から燃焼効率係数(ITAFV)を算出する。尚、バルブオーバーラップ量は、可変動弁機構に設けられたセンサ(図示せず)により機関弁(吸気弁14または排気弁16)のバルブタイミングを検知することによって算出可能である。
 S4では、機関回転速度と、スロットル開口面積とを用いて、予め実験的に作成しておいたテーブル(図示せず)からベース推定吸入空気量(Qesb)を算出する。スロットル開口面積は、スロットルセンサ19の検出信号を用いて算出可能である。
 S5では、S3で算出された燃焼効率係数(ITAFV)に、S4で算出されたベース推定吸入空気量(Qesb)を乗じて、推定吸入空気量(Qest)を算出する。尚、推定吸入空気量(Qest)は、吸気圧を用いて推定することも可能であり、吸気圧センサ12で検出した吸気圧に基づいて推定された推定吸入空気量(Qest)を用いることも可能である。
 S6では、エアフローメータ11の検出値である実吸入空気量をS5で算出された推定吸入空気量(Qest)で除して、実吸入空気量に対する推定吸入空気量の乖離値である乖離率(AFMDG)を算出する。
 S7では、機関回転速度を用いて、予め実験的に作成しておいたテーブル(図示せず)から診断可能下限スロットル開口面積を算出する。
 S8では、診断許可条件を算出する。診断許可条件とは、車両の運転状態が、エアフローメータ11の故障診断を実施可能な状態であるか判定する条件であり、成立時においてエアフローメータ11の故障診断が実施される。
 本実施形態においては、スロットル開口面積が診断可能下限スロットル開口面積以上で、かつスロットル開口面積の変化量が予め設定された所定値以下の場合に、診断許可条件が成立していると判定する。
 つまり、スロットル開口面積が診断可能下限スロットル開口面積よりも小さい場合には、内燃機関1がトルクを発生していない状態であると判定し、診断許可条件が成立していない判定する。また、スロットル開口面積の変化量が予め設定された所定値よりも大きい場合には、車両が急加速中であると判定し、診断許可条件が成立していない判定する。
 S9では、診断許可条件が成立し、S1で算出された上限側故障診断クライテリア(THhigh)よりもS6で算出された乖離率(AFMDG)の値が大きい場合、もしくはS2で算出された下限側故障診断クライテリア(THlow)よりもS6で算出された乖離率(AFMDG)の値が小さい場合、エアフローメータ11の故障と判定する。
 また、診断許可条件が成立している時に、乖離率(AFMDG)の値が上限側故障診断クライテリア(THhigh)以下で、下限側故障診断クライテリア(THlow)以上であり、さらに内燃機関1の回転速度が所定回転速度以上の場合には、エアフローメータ11が正常であると判定する。
 図4は、エアフローメータ11の故障診断方法の制御の流れを示すフローチャートである。
 S21では、車両が急加速中であるか否かを判定し、急加速中でなければS22へ進み、急加速中であれば故障診断を実施することなく今回のルーチンを終了する。
 S22では、スロットル弁6の開口面積が所定値以上であるか否かを判定し、スロットル弁6の開口面積が所定値以上ある場合にはS23へ進み、スロットル弁6の開口面積が所定値以上ない場合には今回のルーチンを終了する。尚、これらS21、S22は、それぞれ診断許可条件のうちの一つが成立しているかどうかを判定しているものである。
 S23では、内燃機関1の回転速度から上限側故障診断クライテリア(THhigh)と下限側故障診断クライテリア(THlow)を算出する。
 S24では、乖離率(AFMDG)がS23で算出した上下限の故障診断クライテリアの範囲内であるか、すなわちTHlow≦AFMDG≦THhighであるか否かを判定し、THlow≦AFMDG≦THhighであればS28へ進み、そうでなければS25へ進む。
 S25では、エアフローメータ11が故障していると判定し、S26へ進む。尚、S25でエアフローメータ11が故障していると判定されると警告灯が点灯する。
 S26では、乖離率(AFMDG)が、フェイルセーフ診断クライテリアの範囲内であるか、すなわち乖離率(AFMDG)が上述した上限側フェイルセーフ診断クライテリアよりも大きいか、あるいは乖離率(AFMDG)が下限側フェイルセーフ診断クライテリアよりも小さいかを判定する。
 乖離率(AFMDG)がフェイルセーフ診断クライテリアの範囲内になければS27へ進み、乖離率(AFMDG)がフェイルセーフ診断クライテリアの範囲内にあれば今回のルーチンを終了する。
 S27では、エアフローメータ11で検出した吸入空気量に基づく通常制御から、内燃機関1の回転速度とスロットル開度から演算した吸入空気量に基づくフェイルセーフ制御に移行する。
 S28では、内燃機関1の回転速度が所定回転速度(例えば3000rpm)以上であるか否かを判定し、内燃機関1の回転速度が所定回転速度以上の場合には、S29へ進んでエアフローメータ11が正常であると判定し、内燃機関1の回転速度が所定回転速度(例えば3000rpm)未満の場合には、今ある診断結果をそのまま維持するのでそのまま今回のルーチンを終了する。
 尚、S27を経ずに図4の制御ルーチンを終了する場合の内燃機関1の制御は、通常制御である。つまり、吸気量制御は、S26からS27へ進んだ場合のみ、フェイルセーフ制御に移行する。
 以上説明してきたように、本実施形態においては、吸入空気量が比較的少ない内燃機関1の回転速度が低い領域であっても、エアフローメータ11を故障と判定する領域を狭めることで、エアフローメータ11が正常であってもばらつきのある領域を、エアフローメータ11を故障と診断する領域から外すことが可能となる。すなわち、正常なエアフローメータ11であっても、エアフローメータ11で検知される吸入空気量(実吸入空気量)がECU17にて演算される推定吸入空気量に対して大きく乖離してしまう虞がある吸入空気量が少ない領域では、エアフローメータ11を故障と判定する領域(図2において、上限側故障判定クライテリアよりも上方の領域と、下限側故障判定クライテリアよりも下方の領域)が相対的に狭く設定されるので、誤診断を回避した上で、機関回転速度全域、つまり内燃機関1の全ての運転領域でエアフローメータ11の故障診断を実施することが可能となり、エアフローメータ11の故障による排気性能の悪化をより未然に防止可能となる。
 そして、エアフローメータ11を故障と判定した際に警告灯を点灯することによって乗員にエアフローメータ11が異常であることを感知させることができるので、運転者に速やかな車両の点検修理を促すことができ、排気性能悪化の状態で運転を続けることによって大気汚染が進むことを防止することができる。
 また、エアフローメータ11で検知される吸入空気量(実吸入空気量)がECU17にて演算される推定吸入空気量に対して著しく大きく乖離するような場合、すなわち乖離値が上下限側のフェイルセーフ診断クライテリアを超えるような場合には、エアフローメータ11で検出した吸入空気量に基づく通常制御から、内燃機関1の回転速度とスロットル開度から演算した吸入空気量に基づくフェイルセーフ制御に移行することで、排気性能が著しく悪化した状態で運転を続けることを防止することができる。
 そして、エアフローメータ11が正常であっても、エアフローメータ11以外の吸気系に何らかの不具合があると、前記乖離率が基準値(100%)から大きく乖離してしまう場合がある。例えば、吸気通路から空気が漏れ出ている場合や、エアクリーナ5の詰まりがあるような場合には、エアフローメータ11の検出値が正確であっても、エアフローメータ11で検出された吸入空気量と推定される吸入空気量との乖離値が大きくなってしまう。しかしながら、本実施形態のように、乖離率(乖離値)に対してエアフローメータ11を正常と判定する領域(乖離率が、特性線Aと特性線Bに挟まれた領域内にあり、さらに機関回転速度が所定回転速度以上の領域)が設定されていれば、エアフローメータ11の故障と判定され、当該エアフローメータ11を不具合のない新しいエアフローメータ11に交換した際に、機関回転速度を所定回転速度以上として前記乖離率が特性線Aと特性線Bに挟まれた領域内とならない場合に、交換された新たなエアフローメータ11以外の吸気系に不具合があると判定することが可能となる。
 尚、本実施形態においては、エアフローメータ11で検出された検出値である実吸入空気量に対するECU17で推定された推定吸入空気量の乖離値として、実吸入空気量を推定吸入空気量で除した乖離率を用いているが、この乖離値は前述の乖離率に限定されるものではなく、実吸入空気量と推定吸入空気量との差分や、実吸入空気量に対する推定吸入空気量の乖離度合等を乖離値として用いてエアフローメータ11の故障診断を行うことも可能である。
 また、本実施形態においては、エアフローメータ11を正常と判定する際の機関回転速度の閾値は実機に応じて、適宜設定されるものである。
 そして、本実施形態においては、急加速中でないこと、内燃機関1がトルクを発生している状態であること、をエアフローメータ11の故障診断を実施可能な状態であるか判定する診断許可条件としたが、この診断許可条件に加え、始動後10秒後以上経過していること(エアフローメータ11が活性化していること)、吸気温がマイナス10℃以上であること、大気圧の50kPa以上であること、燃料カット時以外であること等を診断許可条件に加え、これらの診断許可条件の全てが成立した場合にのみエアフローメータ11の故障診断の実施をするようにしてもよい。

Claims (3)

  1.  内燃機関の回転速度を検出する手段と、吸入空気量を検出するエアフローメータと、吸入空気量を推定する手段と、を備え、エアフローメータにより得られた実吸入空気量に対する前記吸入空気量推定手段により算出された推定吸入空気量の乖離値が、前記内燃機関の回転速度に応じて定められる故障判定基準値より大きい場合に前記エアフローメータを故障と判定するエアフローメータの故障診断装置において、
     前記内燃機関の回転速度が低いほど、前記エアフローメータを故障と判定する故障判定基準値を大きくし、当該エアフローメータを故障と判定する領域を狭く設定するエアフローメータの故障診断装置。
  2.  前記実吸入空気量に対する前記推定吸入空気量の乖離値が、前記故障判定基準値以下の場合であって、
     前記内燃機関の回転速度が所定の機関回転速度以上の場合には、前記エアフローメータを正常と判定し、前記所定の機関回転速度よりも小さい場合に、判定結果を維持する請求項1に記載のエアフローメータの故障診断装置。
  3.  前記実吸入空気量と推定吸入空気量との乖離値が、前記故障判定基準値よりも大きい値に設定されるフェールセーフ判定基準値よりも大きい場合には、前記内燃機関の回転速度とスロットル開度から演算した吸入空気量を用いて前記内燃機関を制御し、前記実吸入空気量と推定吸入空気量との乖離値が、前記フェールセーフ判定基準値以内の場合には、前記実吸入空気量を用いて前記内燃機関を制御する請求項1または2に記載のエアフローメータの故障診断装置。
PCT/JP2011/059639 2010-04-20 2011-04-19 エアフローメータの故障診断装置 WO2011132678A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201180019146.5A CN102844554B (zh) 2010-04-20 2011-04-19 空气流量计的故障诊断装置
US13/642,360 US9200582B2 (en) 2010-04-20 2011-04-19 Fault diagnosis apparatus for airflow meter
BR112012026879-1A BR112012026879B1 (pt) 2010-04-20 2011-04-19 aparelho de diagnóstico de falha para medidor de fluxo de ar
RU2012149278/07A RU2517197C1 (ru) 2010-04-20 2011-04-19 Устройство для диагностики неисправностей расходомера воздуха
EP11772013.6A EP2562404B1 (en) 2010-04-20 2011-04-19 Fault diagnosis apparatus for airflow meter
MX2012011820A MX2012011820A (es) 2010-04-20 2011-04-19 Aparato para diagnostico de fallas en un medidor de flujo de aire.
JP2012511670A JP5333660B2 (ja) 2010-04-20 2011-04-19 エアフローメータの故障診断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-096582 2010-04-20
JP2010096582 2010-04-20

Publications (1)

Publication Number Publication Date
WO2011132678A1 true WO2011132678A1 (ja) 2011-10-27

Family

ID=44834196

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/059639 WO2011132678A1 (ja) 2010-04-20 2011-04-19 エアフローメータの故障診断装置
PCT/JP2011/059638 WO2011132677A1 (ja) 2010-04-20 2011-04-19 エアフローメータの故障診断装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059638 WO2011132677A1 (ja) 2010-04-20 2011-04-19 エアフローメータの故障診断装置

Country Status (8)

Country Link
US (2) US9200582B2 (ja)
EP (2) EP2562404B1 (ja)
JP (2) JP5273298B2 (ja)
CN (2) CN102844554B (ja)
BR (2) BR112012026879B1 (ja)
MX (2) MX2012011820A (ja)
RU (2) RU2517197C1 (ja)
WO (2) WO2011132678A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203431A (ja) * 2016-05-12 2017-11-16 トヨタ自動車株式会社 内燃機関の吸気系異常診断装置
EP3505746A1 (en) 2017-12-26 2019-07-03 Toyota Jidosha Kabushiki Kaisha Anomaly diagnosing apparatus and method for air flowmeter

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494492B2 (en) * 2013-03-15 2016-11-15 United Technologies Corporation Use of SS data trends in fault resolution process
MX357144B (es) * 2014-04-11 2018-06-28 Nissan Motor Dispositivo de control y método de control para controlar motor de combustión interna.
CN106032774B (zh) * 2015-03-10 2019-10-01 上海汽车集团股份有限公司 发动机管理系统的控制方法及装置
JP2016176431A (ja) * 2015-03-20 2016-10-06 三菱自動車工業株式会社 温度センサの診断装置
US10026241B1 (en) * 2017-08-24 2018-07-17 GM Global Technologies Operations LLC Combustion engine airflow management systems and methods
CN112145325B (zh) * 2019-06-28 2022-04-05 联合汽车电子有限公司 发动机进气系统管路诊断方法
JP7268533B2 (ja) * 2019-08-23 2023-05-08 トヨタ自動車株式会社 エンジン制御装置
CN112523886A (zh) * 2020-12-31 2021-03-19 潍柴动力扬州柴油机有限责任公司 保证进气流量精度的控制方法
CN113915014B (zh) * 2021-09-22 2023-08-18 潍柴动力股份有限公司 发动机的进气量maf的检测方法和发动机的控制器
CN115450772B (zh) * 2022-09-27 2023-10-10 东风商用车有限公司 用于控制发动机NOx排放的策略

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301641A (ja) * 1989-05-17 1990-12-13 Japan Electron Control Syst Co Ltd 内燃機関の制御装置におけるフエイルセーフ装置
JP2004019450A (ja) * 2002-06-12 2004-01-22 Toyota Motor Corp 内燃機関の吸入空気量検出装置
JP2004092614A (ja) * 2002-09-04 2004-03-25 Honda Motor Co Ltd エアフローセンサ故障判定装置
JP2006329138A (ja) 2005-05-30 2006-12-07 Nissan Diesel Motor Co Ltd エアフローセンサの故障診断装置
JP2010048133A (ja) * 2008-08-20 2010-03-04 Toyota Motor Corp エアフロメータの異常検出装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262031A (ja) * 1991-01-22 1992-09-17 Mitsubishi Electric Corp 内燃機関の燃料制御装置
US5594180A (en) * 1994-08-12 1997-01-14 Micro Motion, Inc. Method and apparatus for fault detection and correction in Coriolis effect mass flowmeters
US7010459B2 (en) * 1999-06-25 2006-03-07 Rosemount Inc. Process device diagnostics using process variable sensor signal
JP3747700B2 (ja) * 1999-08-06 2006-02-22 日産自動車株式会社 可変動弁エンジンの吸入空気量算出装置
DE19945813A1 (de) * 1999-09-24 2001-03-29 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
US6851409B2 (en) 2001-10-12 2005-02-08 Hitachi Unisia Automotive, Ltd. Apparatus and method for controlling intake air amount of internal combustion engine
DE10242233B3 (de) * 2002-09-12 2004-01-22 Daimlerchrysler Ag Verfahren zur Bestimmung einer Luftaufwandsänderung für einen Verbrennungsmotor
JP2005201172A (ja) * 2004-01-16 2005-07-28 Toyota Motor Corp 吸気流制御装置の故障診断装置
US7047938B2 (en) * 2004-02-03 2006-05-23 General Electric Company Diesel engine control system with optimized fuel delivery
JP2006350707A (ja) * 2005-06-16 2006-12-28 Hitachi Ltd 検出手段の故障診断装置
JP2007231844A (ja) * 2006-03-01 2007-09-13 Mitsubishi Electric Corp 内燃機関の制御装置
US7444234B2 (en) * 2007-01-31 2008-10-28 Gm Global Technology Operations, Inc. Method and apparatus for monitoring an intake air filter
JP4715766B2 (ja) * 2007-02-13 2011-07-06 トヨタ自動車株式会社 昇圧システムの故障診断装置、昇圧回路の制御装置および車両
JP2008274836A (ja) * 2007-04-27 2008-11-13 Mitsubishi Fuso Truck & Bus Corp 吸気流量センサの故障診断装置
US7584742B2 (en) * 2007-05-14 2009-09-08 Gm Global Technology Operations, Inc. Electronic throttle control remedial action desensitization
RU71162U1 (ru) * 2007-11-06 2008-02-27 Рязанский военный автомобильный институт имени генерала армии В.П. ДУБЫНИНА Устройство для измерения расхода топлива дизелем
EP2058493A1 (en) * 2007-11-12 2009-05-13 Iveco Motorenforschung AG A diagnostic method for a vehicle engine apparatus, provided with sensors
JP2009264327A (ja) * 2008-04-28 2009-11-12 Toyota Motor Corp 内燃機関の制御装置
DE102010003199B4 (de) * 2010-03-24 2024-04-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Überprüfen der Funktion eines Motorsystems
US8706381B2 (en) * 2011-05-31 2014-04-22 GM Global Technology Operations LLC System and method for detection failures of mass airflow sensors in a parallel intake engine
US9086025B2 (en) * 2011-11-21 2015-07-21 Cummins Inc. Systems and methods for correcting mass airflow sensor drift
US8843296B2 (en) * 2012-03-21 2014-09-23 Ford Global Technologies, Llc Method and system for engine air control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301641A (ja) * 1989-05-17 1990-12-13 Japan Electron Control Syst Co Ltd 内燃機関の制御装置におけるフエイルセーフ装置
JP2004019450A (ja) * 2002-06-12 2004-01-22 Toyota Motor Corp 内燃機関の吸入空気量検出装置
JP2004092614A (ja) * 2002-09-04 2004-03-25 Honda Motor Co Ltd エアフローセンサ故障判定装置
JP2006329138A (ja) 2005-05-30 2006-12-07 Nissan Diesel Motor Co Ltd エアフローセンサの故障診断装置
JP2010048133A (ja) * 2008-08-20 2010-03-04 Toyota Motor Corp エアフロメータの異常検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203431A (ja) * 2016-05-12 2017-11-16 トヨタ自動車株式会社 内燃機関の吸気系異常診断装置
EP3505746A1 (en) 2017-12-26 2019-07-03 Toyota Jidosha Kabushiki Kaisha Anomaly diagnosing apparatus and method for air flowmeter

Also Published As

Publication number Publication date
CN102844554B (zh) 2015-08-26
BR112012026747B1 (pt) 2020-11-03
EP2562404A4 (en) 2018-03-28
CN102844554A (zh) 2012-12-26
EP2562403A1 (en) 2013-02-27
US20130041570A1 (en) 2013-02-14
CN102884301A (zh) 2013-01-16
WO2011132677A1 (ja) 2011-10-27
RU2012149278A (ru) 2014-05-27
RU2517197C1 (ru) 2014-05-27
US9020736B2 (en) 2015-04-28
JPWO2011132678A1 (ja) 2013-07-18
US9200582B2 (en) 2015-12-01
RU2513991C1 (ru) 2014-04-27
EP2562403A4 (en) 2018-03-28
JP5333660B2 (ja) 2013-11-06
MX2012011820A (es) 2012-11-09
JP5273298B2 (ja) 2013-08-28
US20130036788A1 (en) 2013-02-14
BR112012026879B1 (pt) 2020-11-03
JPWO2011132677A1 (ja) 2013-07-18
BR112012026879A2 (pt) 2016-07-19
BR112012026747A2 (pt) 2016-07-12
EP2562404B1 (en) 2020-01-15
CN102884301B (zh) 2015-06-24
EP2562403B1 (en) 2020-06-24
EP2562404A1 (en) 2013-02-27
MX2012011819A (es) 2012-11-09

Similar Documents

Publication Publication Date Title
JP5273298B2 (ja) エアフローメータの故障診断装置
JP4207994B2 (ja) 負圧発生装置の故障判定装置
JP5707967B2 (ja) 内燃機関の過給圧診断装置
WO2015118766A1 (ja) 車載制御装置
JP3097491B2 (ja) 排気ガス還流装置の故障診断装置
JP6614351B2 (ja) エンジンの制御方法および制御装置
JP2009270492A (ja) 気筒休止システムの故障診断装置。
JP6431813B2 (ja) 内燃機関の制御装置
JP2010127162A (ja) スロットル制御システムのフェールセーフ装置
JP2010151038A (ja) 内燃機関の制御装置
JP5603825B2 (ja) 空燃比センサの診断装置
JP4657170B2 (ja) エンジンの燃料供給装置
JP2009002258A (ja) 内燃機関の可変バルブタイミング制御装置
JP3911949B2 (ja) スワール制御弁の故障診断装置
JP2008069693A (ja) 内燃機関の故障診断システム
JP4532516B2 (ja) エンジン制御装置
JP2015113759A (ja) エンジン制御装置
JP2005090242A (ja) エンジンの失火検出制御装置
JP2017106387A (ja) 電子制御スロットル装置およびスロットル制御方法
JP2010255593A (ja) 可変バルブタイミング機構の故障診断装置
JP2016056753A (ja) 内燃機関の空燃比センサ診断装置
JP5836816B2 (ja) 内燃機関の制御装置
JP2000192845A (ja) 診断装置を備えたエンジンの吸入空気量制御装置
JP2016151210A (ja) Egrクーラ診断装置
JPS63143345A (ja) 内燃機関のスロツトルバルブ制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019146.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772013

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511670

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/011820

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 13642360

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3542/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2012149278

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011772013

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012026879

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012026879

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121019