JP2004092614A - エアフローセンサ故障判定装置 - Google Patents
エアフローセンサ故障判定装置 Download PDFInfo
- Publication number
- JP2004092614A JP2004092614A JP2002258589A JP2002258589A JP2004092614A JP 2004092614 A JP2004092614 A JP 2004092614A JP 2002258589 A JP2002258589 A JP 2002258589A JP 2002258589 A JP2002258589 A JP 2002258589A JP 2004092614 A JP2004092614 A JP 2004092614A
- Authority
- JP
- Japan
- Prior art keywords
- failure
- intake air
- air flow
- air amount
- determination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
- G01F25/13—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters using a reference counter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/222—Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/06—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/10—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with axial admission
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/20—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
- G01F1/32—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
- G01F1/3209—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/696—Circuits therefor, e.g. constant-current flow meters
- G01F1/6965—Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/02—Compensating or correcting for variations in pressure, density or temperature
- G01F15/04—Compensating or correcting for variations in pressure, density or temperature of gases to be measured
- G01F15/043—Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means
- G01F15/046—Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means involving digital counting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D2041/228—Warning displays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0406—Intake manifold pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
【課題】AFSの故障検知を行うための運転領域の制限を緩め、故障検知の頻度を増やすことのできる故障検知手法を提供する。
【解決手段】吸入空気通路にエアフローセンサ、スロットルおよび該スロットルの下流に配置された圧力センサを備えた内燃機関の該エアフローセンサの故障を検出する装置であり、前記エアフローセンサ出力信号に基づいて第1の吸入空気量を算出する第1の算出部と、前記圧力センサの出力に基づいて第2の吸入空気量を算出する第2の算出部と、前記第1の吸入空気量と前記第2の吸入空気量との比較に基づいて前記エアフローセンサの故障を判定する判定部と、を備える。故障判定は、エアフローセンサ出力に基づいて算出される第1の吸入空気量と、吸気通路のスロットル下流に配置された圧力センサの出力に基づいて算出される第2の吸入空気量との比較に基づいて行われる。
【選択図】図1
【解決手段】吸入空気通路にエアフローセンサ、スロットルおよび該スロットルの下流に配置された圧力センサを備えた内燃機関の該エアフローセンサの故障を検出する装置であり、前記エアフローセンサ出力信号に基づいて第1の吸入空気量を算出する第1の算出部と、前記圧力センサの出力に基づいて第2の吸入空気量を算出する第2の算出部と、前記第1の吸入空気量と前記第2の吸入空気量との比較に基づいて前記エアフローセンサの故障を判定する判定部と、を備える。故障判定は、エアフローセンサ出力に基づいて算出される第1の吸入空気量と、吸気通路のスロットル下流に配置された圧力センサの出力に基づいて算出される第2の吸入空気量との比較に基づいて行われる。
【選択図】図1
Description
【0001】
【発明の属する技術分野】
この発明は、内燃機関の吸気系の故障を判定する装置に関する。
【0002】
【従来の技術】
内燃機関(エンジン)の吸入空気量を検出する装置として、エアフローセンサ(AFS)がある。エアフローセンサに回路の断線その他の特性異常として故障が生じると吸入空気量の検出に誤りを生じ、エミッション(排気)を悪化させる原因となるので、その故障の有無をモニタする必要がある。
【0003】
特公平02−55616号公報には、エアフローセンサの出力から算出吸気量を、スロットルの開度に対応して設定された故障判定値と比較してAFSの故障を判定することが記載されている。また、特許3047589号公報にはエンジン回転数と吸気管圧力との対応によって故障診断領域を設定することが記載されている。
【0004】
【発明が解決しようとする課題】
これらの従来のAFS故障検知手法は、エンジンの負荷変動がなく、回転数の変動がない状態などの特別な運転領域を利用するものであるため、検知頻度が低くなるという問題を含んでいる。この発明は、AFSの故障検知を行うための運転領域の制限を緩め、故障検知の頻度を増やすことのできる故障検知手法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の課題を解決するため、この発明の故障判定装置(請求項1)は、吸入空気通路にエアフローセンサ、スロットルおよび該スロットルの下流に配置された圧力センサを備えた内燃機関の該エアフローセンサの故障を検出する装置であり、次の構成を備える。すなわち、故障判定装置は、前記エアフローセンサ出力信号に基づいて第1の吸入空気量を算出する第1の算出部と、前記圧力センサの出力に基づいて第2の吸入空気量を算出する第2の算出部と、前記第1の吸入空気量と前記第2の吸入空気量との比較に基づいて前記エアフローセンサの故障を判定する判定部と、を備える。
【0006】
この発明によると、故障判定は、エアフローセンサ出力に基づいて算出される第1の吸入空気量と、吸気通路のスロットル下流に配置された圧力センサの出力に基づいて算出される第2の吸入空気量との比較に基づいて行われる。第1の吸入空気量および第2の吸入空気量は、通常の運転領域において信頼性が高いので、これらを用いて故障判定を行うことにより、相対的に広い運転領域においてAFSの故障判定を行うことができる。
【0007】
一形態によると、この発明の故障判定装置(請求項2)は、さらに、前記スロットルの開度が変化する際に該スロットルの下流に充填される空気量の変化分に基づいて前記第2の吸入空気量を補正する手段を備え、前記判定部は、前記補正する手段によって補正された前記第2の吸入空気量と前記第1の吸入空気量との比較に基づいて前記エアフローセンサの故障を判定する。
【0008】
AFSを用いて吸入空気量を算出する場合、スロットルの開度が変化する過渡時に、算出値にオーバーシュートを生じることが知られている。この発明の形態では、このオーバーシュートに対応して第2の吸入空気量を補正する。つまり第1の吸入空気量に生じたオーバーシュートに相当するオーバーシュートを第2の吸入空気量に足し、両者の比較に基づいてAFSの故障を判定するので、オーバーシュートの影響を相殺して故障判定を行うことができる。
【0009】
この発明のもう一つの形態による故障判定装置(請求項3)においては、前記第1の算出部、前記第2の算出部および前記判定部は、コンピュータで構成されており、該コンピュータは、前記エアフローセンサの故障履歴を記憶するメモリを備えている。また、前記判定部は、前記エアフローセンサの特性が正常領域にあるか、故障領域にあるかを判定し、正常領域にあり、前記エアフローセンサに故障履歴があるときは、該故障が判定された時の運転領域と現在の運転領域が重なっているときは正常判定を許可し、重なっていないときは正常判定を不許可にするようプログラムされている。
【0010】
なんらかの原因でAFSの故障が特定の運転領域で発生し、他の運転領域では発生しないことがある。発明のこの形態では、AFSの特性が正常領域にあっても、その運転領域が故障履歴の運転領域と重なっていないときは、正常判定を不許可とし、重なっているときに正常判定を許可する。これにより、特定の運転領域で発生するAFSの故障を適切に取り扱うことができる。
【0011】
さらにこの発明の一形態の故障判定装置(請求項4)の前記判定部は、エアフローセンサの出力が所定のモニタ時間の間に所定値以上変化するかどうか判定し、変化しないときはエアフローセンサの正常判定を許可しないようプログラムされている。
【0012】
AFSの出力が所定のモニタ時間の間変化しないときは、AFSが故障している可能性があるので、AFSの出力が変化することを確認してから、正常判定を許可するのである。
【0013】
この発明のさらに一形態の故障判定装置(請求項5)においは、前記第1の算出部、前記第2の算出部および前記判定部は、コンピュータで構成されており、該コンピュータは、前記エアフローセンサの故障履歴を記憶するメモリを備えている。前記判定部は、前記エアフローセンサの特性が正常領域にあるか、故障領域にあるかを判定し、故障領域にあるならば、前記エアフローセンサに故障履歴があるときは、故障警告灯を点灯させ、故障履歴がないときは前記メモリに故障履歴を入力するようプログラムされている。
【0014】
この発明によると、AFSの故障判定の頻度を従来より高めることができるので、故障が検知されたとき、故障履歴がないとき、すなわち単発的な故障検知であるときは、それを故障履歴として記録し、次回以降の判定で故障が検知されたとき、故障警告灯を点灯させる。こうすることにより、故障警告灯点灯の信頼性を高めることができる。
【0015】
この発明の一形態(請求項6)においては、前記判定部は、所定の運転サイクル連続して前記正常判定がなされることに応答して前記警告灯を消灯し前記故障履歴を消すようプログラムされている。
【0016】
この発明によると、故障検知の結果、警告灯を点灯させたときであって、所定の運転サイクル連続して正常判定がなされるときは、AFSの故障が一時的なものであったか、または故障判定が一時的に誤っていたことになるので、警告灯を消灯する。こうして、AFSの一時的な故障、または一時的な判定誤りに対応することができる。
【0017】
この発明の一形態(請求項7)では、少なくとも前記圧力センサが正常であるとき、前記エアフローセンサの故障の判定を行う。適正な故障判定を行うためである。
【0018】
【発明の実施の形態】
次に図面を参照してこの発明の一実施例を説明する。図1は、エンジン系統全体の概念図である。吸入空気は、吸気管11を通り、スロットル15の開度に応じて気筒(以下、シリンダ)10に供給される。シリンダ10で燃焼したガスは、排気管23を通り大気中に排気される。
【0019】
シリンダ10の近くの吸気管には燃料を噴射するためのインジェクタ21が設けられている。スロットル15の上流には空気流量を検出するエアフローセンサ13が設けられている。エアフローセンサは、空気流量計であり、ベーン式エアフローセンサ、カルマン渦式エアフローセンサ、および熱線式エアフローセンサが知られている。この発明は、これらのどのエアフローセンサについても使用することができる。
【0020】
図には示していないが、エンジンのクランクシャフトにはエンジンの回転に応じて、一定角度ごとに基準角度信号を出すクランク角センサが設けられている。
【0021】
クランク角センサの出力、エンジン水温を検出する水温センサの出力、エアフローセンサの出力、空燃比センサその他エンジンの各部に設けられたセンサからの出力がマイクロコンピュータで構成される電子制御ユニット(Electronic Control Unit)30の入力インターフェイス31に入力される。入力インターフェイス31は、入力信号を処理し、その出力を運転状態判定部37に渡す。運転状態判定部は、入力信号から車両の運転状態を判断し、その出力を制御演算部39に渡す。制御演算部39は、運転状態に応じた空燃比制御を行うための演算を行い、インジェクタ21、点火プラグ、その他の構成要素を駆動する信号を出力する。
【0022】
燃料噴射量の制御に必要な吸入空気量は、エアフローセンサ13による空気流量の計測出力に基づいて算出される。エアフローセンサ13の出力はECU30の入力インターフェイス31で波形処理されアナログ・ディジタル変換器(ADC)33に送られる。ADC33は、エアフローセンサ13の計測出力をサンプリングし、吸入空気量算出部35にサンプリング値を順次転送する。
【0023】
エアフローセンサ13の出力は、エンジンの吸気工程(TDC)を周期Tとする脈動を含むことが知られている。空気量算出部35は、ADC33から送られてくるサンプル値を処理して、脈動周波数成分を取り除いた値を出力するディジタル・フィルタを含んでいる。一般にディジタル・フィルタは、フィルタリングする周波数成分を任意に設定することができる。吸入空気量算出部35に含まれるディジタル・フィルタは、たとえば、エアフローセンサ出力の脈動周波数で著しい減衰特性を示す「くし形フィルタ」として構成する。ディジタル・フィルタは、サンプリング周波数、タップ数などを変更することにより、いろいろな特性をもたせることができる。これを用いてGair−afsが検出される。
【0024】
次に図2を参照すると、スロットル開度が大きく変化すると、エアフローセンサによる空気量計測に基づく吸入空気量Gair−afsにオーバーシュートを生じることが知られている。この現象は、スロットル下流の吸気マニホールド19(図1)に充填される空気量GBの変化によって発生することが知られている。ここで、Gair−afs(g/sec)をシリンダ当たりの吸入空気量Gair−th(g/TDC)に変換し、以下の処理を行う。たとえば、4シリンダでは、Gair−th = Gair−afs*60/(NE*2)となり、6シリンダであれば、Gair−th = Gair−afs*60/(NE*3)となる。
【0025】
また、次の式によりこの過渡現象を補正し、シリンダ10に吸入される空気量Gair−cylを算出することが知られている。
【0026】
【数1】
Gair−cyl = Gair−th − ΔPB・V/(R・T)
【0027】
ここで、ΔPBは吸気管に設けられた圧力センサ17(図1)によって検出される吸気管の圧力、Vはマニホールドの容積、Rは気体定数、Tは吸気温度である。
【0028】
図1に示す補正部36は、このような補正を行う手段である。制御演算部39は、こうして補正された吸入空気量に基づいて燃料噴射量を算出し、制御信号をインジェクタ21に送る。一方、図1に示す実施例では、AFS出力に基づいて空気量算出部35で算出された空気量について上記のような補正を行わない値が故障判定部47に送られる。
【0029】
図1を参照すると、ECU30は、もう一つの吸入空気量算出部43を備えている。空気量算出部43は、吸気管に備えられる圧力センサ17によって検知される吸気管圧力PBに基づいて次の式に従って推定される吸入空気量GAIRPB(g/TDC)を算出する。
【0030】
【数2】
GAIRPB = PB × Vcyl/(R × T)
【0031】
ここで、Vcylはシリンダ容積、Rは気体定数、Tは吸気温度である。
【0032】
このGAIRPBがΔGB補正部45に送られ、次の式にしたがってGAIRMAPSが算出される。
【0033】
【数3】
GAIRMAPS = (GAIRPB + ΔGB) × K × NE/60
【0034】
ここで、ΔGBは、吸気マニホールドの空気変化量(g/TDC)、Kは1rpm当たりの吸入工程TDCの数、NEは、エンジン回転数(rpm)である。図2を参照して説明したように、スロットル開度が変化するときに、AFSセンサ出力に基づいて算出部35で算出される吸入空気量Gair−afsにオーバーシュートが生じる。この実施例では、AFS故障判定部47は、このオーバーシュートに対する補正を受けていない吸入空気量Gair−afsを受け取る。ΔGB補正部45は、PBに基づいて推定される吸入空気量にこのオーバーシュートを加えるためのものである。つまり、Gair−afsからオーバーシュートを取り除く代わりに、GAIRPBにオーバーシートを加えて両者を対応させる。
【0035】
もちろん、補正部36でオーバーシュート補正された吸入空気量Gair−th(図2のGair−cylに相当する)をAFS故障判定部の一方の入力とし、ΔGB補正を行わないPBに基づく推定吸入空気量を他方の入力として、故障判定をすることもできる。
AFS故障判定部47は、PBに基づく推定空気量とAFSに基づいて計測された空気量との対応関係に基づいて、図3に従ってAFSの故障を判定する。すなわち、両者の関係が図3の中央部の「正常範囲」にあれば、AFSは正常であると判定し、その上または下の「故障判定ゾーン」にあるときは、故障と判定する。AFS故障判定部47は、ECU30のROMに格納されているプログラムによって実現される。
【0036】
次に図4を参照して、故障判定のプロセスを説明する。上述した手法によりAFSセンサ出力に基づいて吸入空気量を算出し(S101)、また圧力センサの出力PBに基づいて吸入空気量を算出する(S103)。エンジン回転数、エンジン冷却水温、始動後タイマ、PBセンサ正常判定フラグなど状態を点検してAFSの故障検知のためのモニタを実施する条件が満たされているかどうか判定する(S105)。たとえば、エンジン回転数(NE)が600rpmから5000rpmの間にあること、エンジン水温TWが70゜C以上であること、エンジン始動から3秒経過後であること、PBセンサが正常である(出力に変化がある)ことなどがモニタ実施条件となる。
【0037】
こうして、エンジンが通常の運転状態にあるときにモニタを実施する。さらに、ステップS107でモニタを一時停止すべき運転状態にあるかどうかを判定する。たとえばエンジン負荷が通常よりも大きいときは、モニタ一時停止(NG)とする。
【0038】
次いで、図3に関連して説明した手法によりAFSの特性にずれがあるかどうか、すなわちAFSが正常領域で機能しているかどうかを判定する(S109)。AFSが正常(OK)にあるときは、今回のモニタ中の運転領域を示すパラメータとして圧力センサ出力PBに基づいて算出された吸入空気量をメモリに記憶する(S111)。OKタイマの現在値をメモリに記憶し、NGタイマをホールドして(S113)、ステップS115に進む。
【0039】
ステップS115では、過去の故障履歴があるかどうか判定し、あるときはステップS117に進み、今回の運転領域(S111で記憶)が過去の故障履歴の運転領域と重なっているかどうか判定する。これらが重なっているときはAFSの正常判定が許可され(S119)、重なっていないときはAFSの正常判定が不許可にされる(S121)。過去にAFSの故障判定がなされ故障履歴があるときは、過去に故障判定がなされたときと同等の運転領域でAFSが正常領域にあるときに限り、正常判定を許可する。運転領域が異なると判定が異なる可能性があるからである。
【0040】
次にステップS123で、AFSの出力値が所定範囲以上変化するかどうか判定する。AFSの出力が変化しないときは、AFSが故障している可能性があるからである。AFSの出力が変化しないときは、処理を終了する。AFSの出力が所定範囲以上変化するときは、ステップS127に進み、予め定めたモニタ時間が経過したかどうか判定し、モニタ時間が経過しており、且つ正常判定許可フラグ(S119でセット)がセットされていれば(S129)、AFSが正常であるとの判定を行う(S131)。S129において正常判定が許可されていない(S121で不許可)ときは、処理を終了する。
【0041】
S131で正常判定がなされると、S133で警告灯が点灯しているかどうかを判定する。警告灯は、車のダッシュボードまたは運転者の近くの車体に設けられたランプで車両に異常があるときに点灯する。警告灯が点灯していなければ、故障履歴を消して(S137)処理を終了する。警告灯が点灯しているときは、直ちに警告灯を消すのではなく、3回の運転サイクル(ドライビングサイクル、D/C)連続して正常判定がなされたとき、消灯する。一度故障と判定されたAFSが正常にもどったことを確認するためである。
【0042】
ステップS105 でモニタ実施条件が成立しないときは、過去の故障履歴がないときは、不要な運転領域の記憶をリセットし(S141)、モニタ時間のタイマを初期化して(S143)処理を終了する。
【0043】
ステップS109でAFSが特性ずれ領域、すなわち故障領域にあるときは、モニタ中の運転領域をメモリに記憶し(S147)、NGタイマの現在値をメモリに記憶し(S149)、モニタ時間が経過すると(S151)、AFSの異常判定を行う(S153)。モニタ時間が経過していなければ処理を終了し、再度次の処理サイクルにおいてプロセスを繰り返す。
【0044】
以上にこの発明を特定の実施例について記述したが、この発明はこのような実施例に限定されるものではない。
【図面の簡単な説明】
【図1】この発明の一実施例の全体的な構成を示すブロック図。
【図2】スロットル開度に大きな変化があったときに算出されるスロットル通過空気量Gair−thとシリンダ吸入空気量Gair−cylの関係を示す図。
【図3】エアフローセンサの正常範囲を故障範囲とを示す図。
【図4】この発明の一実施例の処理プロセスを示すフローチャート。
【符号の説明】
30 電子制御ユニット(ECU)
35 AFSに基づく吸入空気量算出部
43 圧力センサ出力PBに基づく吸入空気量算出部
47 AFS故障判定部
【発明の属する技術分野】
この発明は、内燃機関の吸気系の故障を判定する装置に関する。
【0002】
【従来の技術】
内燃機関(エンジン)の吸入空気量を検出する装置として、エアフローセンサ(AFS)がある。エアフローセンサに回路の断線その他の特性異常として故障が生じると吸入空気量の検出に誤りを生じ、エミッション(排気)を悪化させる原因となるので、その故障の有無をモニタする必要がある。
【0003】
特公平02−55616号公報には、エアフローセンサの出力から算出吸気量を、スロットルの開度に対応して設定された故障判定値と比較してAFSの故障を判定することが記載されている。また、特許3047589号公報にはエンジン回転数と吸気管圧力との対応によって故障診断領域を設定することが記載されている。
【0004】
【発明が解決しようとする課題】
これらの従来のAFS故障検知手法は、エンジンの負荷変動がなく、回転数の変動がない状態などの特別な運転領域を利用するものであるため、検知頻度が低くなるという問題を含んでいる。この発明は、AFSの故障検知を行うための運転領域の制限を緩め、故障検知の頻度を増やすことのできる故障検知手法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の課題を解決するため、この発明の故障判定装置(請求項1)は、吸入空気通路にエアフローセンサ、スロットルおよび該スロットルの下流に配置された圧力センサを備えた内燃機関の該エアフローセンサの故障を検出する装置であり、次の構成を備える。すなわち、故障判定装置は、前記エアフローセンサ出力信号に基づいて第1の吸入空気量を算出する第1の算出部と、前記圧力センサの出力に基づいて第2の吸入空気量を算出する第2の算出部と、前記第1の吸入空気量と前記第2の吸入空気量との比較に基づいて前記エアフローセンサの故障を判定する判定部と、を備える。
【0006】
この発明によると、故障判定は、エアフローセンサ出力に基づいて算出される第1の吸入空気量と、吸気通路のスロットル下流に配置された圧力センサの出力に基づいて算出される第2の吸入空気量との比較に基づいて行われる。第1の吸入空気量および第2の吸入空気量は、通常の運転領域において信頼性が高いので、これらを用いて故障判定を行うことにより、相対的に広い運転領域においてAFSの故障判定を行うことができる。
【0007】
一形態によると、この発明の故障判定装置(請求項2)は、さらに、前記スロットルの開度が変化する際に該スロットルの下流に充填される空気量の変化分に基づいて前記第2の吸入空気量を補正する手段を備え、前記判定部は、前記補正する手段によって補正された前記第2の吸入空気量と前記第1の吸入空気量との比較に基づいて前記エアフローセンサの故障を判定する。
【0008】
AFSを用いて吸入空気量を算出する場合、スロットルの開度が変化する過渡時に、算出値にオーバーシュートを生じることが知られている。この発明の形態では、このオーバーシュートに対応して第2の吸入空気量を補正する。つまり第1の吸入空気量に生じたオーバーシュートに相当するオーバーシュートを第2の吸入空気量に足し、両者の比較に基づいてAFSの故障を判定するので、オーバーシュートの影響を相殺して故障判定を行うことができる。
【0009】
この発明のもう一つの形態による故障判定装置(請求項3)においては、前記第1の算出部、前記第2の算出部および前記判定部は、コンピュータで構成されており、該コンピュータは、前記エアフローセンサの故障履歴を記憶するメモリを備えている。また、前記判定部は、前記エアフローセンサの特性が正常領域にあるか、故障領域にあるかを判定し、正常領域にあり、前記エアフローセンサに故障履歴があるときは、該故障が判定された時の運転領域と現在の運転領域が重なっているときは正常判定を許可し、重なっていないときは正常判定を不許可にするようプログラムされている。
【0010】
なんらかの原因でAFSの故障が特定の運転領域で発生し、他の運転領域では発生しないことがある。発明のこの形態では、AFSの特性が正常領域にあっても、その運転領域が故障履歴の運転領域と重なっていないときは、正常判定を不許可とし、重なっているときに正常判定を許可する。これにより、特定の運転領域で発生するAFSの故障を適切に取り扱うことができる。
【0011】
さらにこの発明の一形態の故障判定装置(請求項4)の前記判定部は、エアフローセンサの出力が所定のモニタ時間の間に所定値以上変化するかどうか判定し、変化しないときはエアフローセンサの正常判定を許可しないようプログラムされている。
【0012】
AFSの出力が所定のモニタ時間の間変化しないときは、AFSが故障している可能性があるので、AFSの出力が変化することを確認してから、正常判定を許可するのである。
【0013】
この発明のさらに一形態の故障判定装置(請求項5)においは、前記第1の算出部、前記第2の算出部および前記判定部は、コンピュータで構成されており、該コンピュータは、前記エアフローセンサの故障履歴を記憶するメモリを備えている。前記判定部は、前記エアフローセンサの特性が正常領域にあるか、故障領域にあるかを判定し、故障領域にあるならば、前記エアフローセンサに故障履歴があるときは、故障警告灯を点灯させ、故障履歴がないときは前記メモリに故障履歴を入力するようプログラムされている。
【0014】
この発明によると、AFSの故障判定の頻度を従来より高めることができるので、故障が検知されたとき、故障履歴がないとき、すなわち単発的な故障検知であるときは、それを故障履歴として記録し、次回以降の判定で故障が検知されたとき、故障警告灯を点灯させる。こうすることにより、故障警告灯点灯の信頼性を高めることができる。
【0015】
この発明の一形態(請求項6)においては、前記判定部は、所定の運転サイクル連続して前記正常判定がなされることに応答して前記警告灯を消灯し前記故障履歴を消すようプログラムされている。
【0016】
この発明によると、故障検知の結果、警告灯を点灯させたときであって、所定の運転サイクル連続して正常判定がなされるときは、AFSの故障が一時的なものであったか、または故障判定が一時的に誤っていたことになるので、警告灯を消灯する。こうして、AFSの一時的な故障、または一時的な判定誤りに対応することができる。
【0017】
この発明の一形態(請求項7)では、少なくとも前記圧力センサが正常であるとき、前記エアフローセンサの故障の判定を行う。適正な故障判定を行うためである。
【0018】
【発明の実施の形態】
次に図面を参照してこの発明の一実施例を説明する。図1は、エンジン系統全体の概念図である。吸入空気は、吸気管11を通り、スロットル15の開度に応じて気筒(以下、シリンダ)10に供給される。シリンダ10で燃焼したガスは、排気管23を通り大気中に排気される。
【0019】
シリンダ10の近くの吸気管には燃料を噴射するためのインジェクタ21が設けられている。スロットル15の上流には空気流量を検出するエアフローセンサ13が設けられている。エアフローセンサは、空気流量計であり、ベーン式エアフローセンサ、カルマン渦式エアフローセンサ、および熱線式エアフローセンサが知られている。この発明は、これらのどのエアフローセンサについても使用することができる。
【0020】
図には示していないが、エンジンのクランクシャフトにはエンジンの回転に応じて、一定角度ごとに基準角度信号を出すクランク角センサが設けられている。
【0021】
クランク角センサの出力、エンジン水温を検出する水温センサの出力、エアフローセンサの出力、空燃比センサその他エンジンの各部に設けられたセンサからの出力がマイクロコンピュータで構成される電子制御ユニット(Electronic Control Unit)30の入力インターフェイス31に入力される。入力インターフェイス31は、入力信号を処理し、その出力を運転状態判定部37に渡す。運転状態判定部は、入力信号から車両の運転状態を判断し、その出力を制御演算部39に渡す。制御演算部39は、運転状態に応じた空燃比制御を行うための演算を行い、インジェクタ21、点火プラグ、その他の構成要素を駆動する信号を出力する。
【0022】
燃料噴射量の制御に必要な吸入空気量は、エアフローセンサ13による空気流量の計測出力に基づいて算出される。エアフローセンサ13の出力はECU30の入力インターフェイス31で波形処理されアナログ・ディジタル変換器(ADC)33に送られる。ADC33は、エアフローセンサ13の計測出力をサンプリングし、吸入空気量算出部35にサンプリング値を順次転送する。
【0023】
エアフローセンサ13の出力は、エンジンの吸気工程(TDC)を周期Tとする脈動を含むことが知られている。空気量算出部35は、ADC33から送られてくるサンプル値を処理して、脈動周波数成分を取り除いた値を出力するディジタル・フィルタを含んでいる。一般にディジタル・フィルタは、フィルタリングする周波数成分を任意に設定することができる。吸入空気量算出部35に含まれるディジタル・フィルタは、たとえば、エアフローセンサ出力の脈動周波数で著しい減衰特性を示す「くし形フィルタ」として構成する。ディジタル・フィルタは、サンプリング周波数、タップ数などを変更することにより、いろいろな特性をもたせることができる。これを用いてGair−afsが検出される。
【0024】
次に図2を参照すると、スロットル開度が大きく変化すると、エアフローセンサによる空気量計測に基づく吸入空気量Gair−afsにオーバーシュートを生じることが知られている。この現象は、スロットル下流の吸気マニホールド19(図1)に充填される空気量GBの変化によって発生することが知られている。ここで、Gair−afs(g/sec)をシリンダ当たりの吸入空気量Gair−th(g/TDC)に変換し、以下の処理を行う。たとえば、4シリンダでは、Gair−th = Gair−afs*60/(NE*2)となり、6シリンダであれば、Gair−th = Gair−afs*60/(NE*3)となる。
【0025】
また、次の式によりこの過渡現象を補正し、シリンダ10に吸入される空気量Gair−cylを算出することが知られている。
【0026】
【数1】
Gair−cyl = Gair−th − ΔPB・V/(R・T)
【0027】
ここで、ΔPBは吸気管に設けられた圧力センサ17(図1)によって検出される吸気管の圧力、Vはマニホールドの容積、Rは気体定数、Tは吸気温度である。
【0028】
図1に示す補正部36は、このような補正を行う手段である。制御演算部39は、こうして補正された吸入空気量に基づいて燃料噴射量を算出し、制御信号をインジェクタ21に送る。一方、図1に示す実施例では、AFS出力に基づいて空気量算出部35で算出された空気量について上記のような補正を行わない値が故障判定部47に送られる。
【0029】
図1を参照すると、ECU30は、もう一つの吸入空気量算出部43を備えている。空気量算出部43は、吸気管に備えられる圧力センサ17によって検知される吸気管圧力PBに基づいて次の式に従って推定される吸入空気量GAIRPB(g/TDC)を算出する。
【0030】
【数2】
GAIRPB = PB × Vcyl/(R × T)
【0031】
ここで、Vcylはシリンダ容積、Rは気体定数、Tは吸気温度である。
【0032】
このGAIRPBがΔGB補正部45に送られ、次の式にしたがってGAIRMAPSが算出される。
【0033】
【数3】
GAIRMAPS = (GAIRPB + ΔGB) × K × NE/60
【0034】
ここで、ΔGBは、吸気マニホールドの空気変化量(g/TDC)、Kは1rpm当たりの吸入工程TDCの数、NEは、エンジン回転数(rpm)である。図2を参照して説明したように、スロットル開度が変化するときに、AFSセンサ出力に基づいて算出部35で算出される吸入空気量Gair−afsにオーバーシュートが生じる。この実施例では、AFS故障判定部47は、このオーバーシュートに対する補正を受けていない吸入空気量Gair−afsを受け取る。ΔGB補正部45は、PBに基づいて推定される吸入空気量にこのオーバーシュートを加えるためのものである。つまり、Gair−afsからオーバーシュートを取り除く代わりに、GAIRPBにオーバーシートを加えて両者を対応させる。
【0035】
もちろん、補正部36でオーバーシュート補正された吸入空気量Gair−th(図2のGair−cylに相当する)をAFS故障判定部の一方の入力とし、ΔGB補正を行わないPBに基づく推定吸入空気量を他方の入力として、故障判定をすることもできる。
AFS故障判定部47は、PBに基づく推定空気量とAFSに基づいて計測された空気量との対応関係に基づいて、図3に従ってAFSの故障を判定する。すなわち、両者の関係が図3の中央部の「正常範囲」にあれば、AFSは正常であると判定し、その上または下の「故障判定ゾーン」にあるときは、故障と判定する。AFS故障判定部47は、ECU30のROMに格納されているプログラムによって実現される。
【0036】
次に図4を参照して、故障判定のプロセスを説明する。上述した手法によりAFSセンサ出力に基づいて吸入空気量を算出し(S101)、また圧力センサの出力PBに基づいて吸入空気量を算出する(S103)。エンジン回転数、エンジン冷却水温、始動後タイマ、PBセンサ正常判定フラグなど状態を点検してAFSの故障検知のためのモニタを実施する条件が満たされているかどうか判定する(S105)。たとえば、エンジン回転数(NE)が600rpmから5000rpmの間にあること、エンジン水温TWが70゜C以上であること、エンジン始動から3秒経過後であること、PBセンサが正常である(出力に変化がある)ことなどがモニタ実施条件となる。
【0037】
こうして、エンジンが通常の運転状態にあるときにモニタを実施する。さらに、ステップS107でモニタを一時停止すべき運転状態にあるかどうかを判定する。たとえばエンジン負荷が通常よりも大きいときは、モニタ一時停止(NG)とする。
【0038】
次いで、図3に関連して説明した手法によりAFSの特性にずれがあるかどうか、すなわちAFSが正常領域で機能しているかどうかを判定する(S109)。AFSが正常(OK)にあるときは、今回のモニタ中の運転領域を示すパラメータとして圧力センサ出力PBに基づいて算出された吸入空気量をメモリに記憶する(S111)。OKタイマの現在値をメモリに記憶し、NGタイマをホールドして(S113)、ステップS115に進む。
【0039】
ステップS115では、過去の故障履歴があるかどうか判定し、あるときはステップS117に進み、今回の運転領域(S111で記憶)が過去の故障履歴の運転領域と重なっているかどうか判定する。これらが重なっているときはAFSの正常判定が許可され(S119)、重なっていないときはAFSの正常判定が不許可にされる(S121)。過去にAFSの故障判定がなされ故障履歴があるときは、過去に故障判定がなされたときと同等の運転領域でAFSが正常領域にあるときに限り、正常判定を許可する。運転領域が異なると判定が異なる可能性があるからである。
【0040】
次にステップS123で、AFSの出力値が所定範囲以上変化するかどうか判定する。AFSの出力が変化しないときは、AFSが故障している可能性があるからである。AFSの出力が変化しないときは、処理を終了する。AFSの出力が所定範囲以上変化するときは、ステップS127に進み、予め定めたモニタ時間が経過したかどうか判定し、モニタ時間が経過しており、且つ正常判定許可フラグ(S119でセット)がセットされていれば(S129)、AFSが正常であるとの判定を行う(S131)。S129において正常判定が許可されていない(S121で不許可)ときは、処理を終了する。
【0041】
S131で正常判定がなされると、S133で警告灯が点灯しているかどうかを判定する。警告灯は、車のダッシュボードまたは運転者の近くの車体に設けられたランプで車両に異常があるときに点灯する。警告灯が点灯していなければ、故障履歴を消して(S137)処理を終了する。警告灯が点灯しているときは、直ちに警告灯を消すのではなく、3回の運転サイクル(ドライビングサイクル、D/C)連続して正常判定がなされたとき、消灯する。一度故障と判定されたAFSが正常にもどったことを確認するためである。
【0042】
ステップS105 でモニタ実施条件が成立しないときは、過去の故障履歴がないときは、不要な運転領域の記憶をリセットし(S141)、モニタ時間のタイマを初期化して(S143)処理を終了する。
【0043】
ステップS109でAFSが特性ずれ領域、すなわち故障領域にあるときは、モニタ中の運転領域をメモリに記憶し(S147)、NGタイマの現在値をメモリに記憶し(S149)、モニタ時間が経過すると(S151)、AFSの異常判定を行う(S153)。モニタ時間が経過していなければ処理を終了し、再度次の処理サイクルにおいてプロセスを繰り返す。
【0044】
以上にこの発明を特定の実施例について記述したが、この発明はこのような実施例に限定されるものではない。
【図面の簡単な説明】
【図1】この発明の一実施例の全体的な構成を示すブロック図。
【図2】スロットル開度に大きな変化があったときに算出されるスロットル通過空気量Gair−thとシリンダ吸入空気量Gair−cylの関係を示す図。
【図3】エアフローセンサの正常範囲を故障範囲とを示す図。
【図4】この発明の一実施例の処理プロセスを示すフローチャート。
【符号の説明】
30 電子制御ユニット(ECU)
35 AFSに基づく吸入空気量算出部
43 圧力センサ出力PBに基づく吸入空気量算出部
47 AFS故障判定部
Claims (7)
- 吸入空気通路にエアフローセンサ、スロットルおよび該スロットルの下流に配置された圧力センサを備えた内燃機関の該エアフローセンサの故障を判定する装置であって、
前記エアフローセンサ出力信号に基づいて第1の吸入空気量を算出する第1の算出部と、
前記圧力センサの出力に基づいて第2の吸入空気量を算出する第2の算出部と、
前記第1の吸入空気量と前記第2の吸入空気量との比較に基づいて前記エアフローセンサの故障を判定する判定部と、
を備えるエアフローセンサの故障判定装置。 - 前記スロットルの開度が変化する際に該スロットルの下流に充填される空気量の変化分に基づいて前記第2の吸入空気量を補正する手段を備え、
前記判定部は、前記補正する手段によって補正された前記第2の吸入空気量と前記第1の吸入空気量との比較に基づいて前記エアフローセンサの故障を判定する、請求項1に記載の故障判定装置。 - 前記第1の算出部、前記第2の算出部および前記判定部は、コンピュータで構成されており、該コンピュータは、前記エアフローセンサの故障履歴を記憶するメモリを備えており、前記判定部は、前記エアフローセンサの特性が正常領域にあるか、故障領域にあるかを判定し、正常領域にあり、前記エアフローセンサに故障履歴があるときは、該故障が判定された時の運転領域と現在の運転領域が重なっているときは正常判定を許可し、重なっていないときは正常判定を不許可にするようプログラムされている、請求項1に記載の故障判定装置。
- 前記判定部は、前記エアフローセンサの出力が所定のモニタ時間の間に所定値以上変化するかどうか判定し、変化しないときは前記エアフローセンサの正常判定を許可しないようプログラムされている請求項3に記載の故障判定装置。
- 前記第1の算出部、前記第2の算出部および前記判定部は、コンピュータで構成されており、該コンピュータは、前記エアフローセンサの故障履歴を記憶するメモリを備えており、前記判定部は、前記エアフローセンサの特性が正常領域にあるか、故障領域にあるかを判定し、故障領域にあるならば、前記エアフローセンサに故障履歴があるときは、故障警告灯を点灯させ、故障履歴がないときは前記メモリに故障履歴を入力するようプログラムされている、請求項1に記載の故障判定装置。
- 前記判定部は、前記所定の運転サイクル連続して前記正常判定がなされることに応答して前記警告灯を消灯し前記故障履歴を消すようプログラムされている、請求項5に記載の故障判定装置。
- 少なくとも前記圧力センサが正常であるとき、前記エアフローセンサの故障の判定を行う請求項1に記載の故障判定装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002258589A JP2004092614A (ja) | 2002-09-04 | 2002-09-04 | エアフローセンサ故障判定装置 |
US10/653,465 US6944531B2 (en) | 2002-09-04 | 2003-09-03 | Air flow sensor failure determination apparatus and method |
CNB031562159A CN1297738C (zh) | 2002-09-04 | 2003-09-04 | 空气流量传感器故障判定装置及方法 |
DE10340844A DE10340844B4 (de) | 2002-09-04 | 2003-09-04 | Vorrichtung und Verfahren zur Fehlerbestimmung bei einem Luftströmungssensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002258589A JP2004092614A (ja) | 2002-09-04 | 2002-09-04 | エアフローセンサ故障判定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004092614A true JP2004092614A (ja) | 2004-03-25 |
Family
ID=31944456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002258589A Pending JP2004092614A (ja) | 2002-09-04 | 2002-09-04 | エアフローセンサ故障判定装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US6944531B2 (ja) |
JP (1) | JP2004092614A (ja) |
CN (1) | CN1297738C (ja) |
DE (1) | DE10340844B4 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011132677A1 (ja) * | 2010-04-20 | 2011-10-27 | 日産自動車株式会社 | エアフローメータの故障診断装置 |
KR102171503B1 (ko) * | 2020-07-30 | 2020-10-29 | (주)대명아이티 | 시트형 센서를 사용하여 고장유무 판별이 용이한 전자식 가스계량기 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3842709B2 (ja) * | 2002-09-06 | 2006-11-08 | 本田技研工業株式会社 | 内燃機関の吸入空気量算出装置 |
DE102004038733A1 (de) * | 2004-08-10 | 2006-02-23 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine |
DE102005010785A1 (de) * | 2005-03-01 | 2006-09-07 | Daimlerchrysler Ag | Verfahren zur Korrektur eines Luftmassenmessfehlers bei einem Verbrennungsmotor eines Kraftfahrzeuges |
JP4377907B2 (ja) * | 2006-11-22 | 2009-12-02 | 株式会社日立製作所 | 内燃機関の空気量演算装置および燃料制御装置 |
US7660662B2 (en) * | 2006-12-28 | 2010-02-09 | Detroit Diesel Corporation | Fault code memory administrator with a driving cycle state machine concept |
US8447456B2 (en) * | 2008-01-17 | 2013-05-21 | GM Global Technology Operations LLC | Detection of engine intake manifold air-leaks |
JP2009275643A (ja) * | 2008-05-16 | 2009-11-26 | Honda Motor Co Ltd | 空気流量検出器の故障判定装置 |
DE102010044164B4 (de) * | 2010-11-19 | 2022-07-14 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
US9206747B2 (en) * | 2012-05-30 | 2015-12-08 | Ford Global Technologies, Llc | Method and system for adjusting engine throttles |
CN104949725A (zh) * | 2015-06-25 | 2015-09-30 | 苏州市英富美欣科技有限公司 | 基于温度和压强补偿的燃气流量采集装置 |
CN106593709B (zh) * | 2017-01-22 | 2019-06-04 | 山东大学 | 一种诊断hfm测量发动机进气量准确性的系统及方法 |
CN109405935B (zh) * | 2018-12-18 | 2023-12-05 | 东北林业大学 | 一种空气流量传感器检测装置及检测方法 |
CN112145325B (zh) * | 2019-06-28 | 2022-04-05 | 联合汽车电子有限公司 | 发动机进气系统管路诊断方法 |
JP7268533B2 (ja) * | 2019-08-23 | 2023-05-08 | トヨタ自動車株式会社 | エンジン制御装置 |
CN111075586A (zh) * | 2019-12-24 | 2020-04-28 | 潍柴动力股份有限公司 | 一种进气流量传感器检验方法 |
JP7222363B2 (ja) * | 2020-01-07 | 2023-02-15 | トヨタ自動車株式会社 | エアフロメータの異常診断装置 |
CN113915014B (zh) * | 2021-09-22 | 2023-08-18 | 潍柴动力股份有限公司 | 发动机的进气量maf的检测方法和发动机的控制器 |
CN114235099A (zh) * | 2021-12-16 | 2022-03-25 | 潍柴动力股份有限公司 | 发动机进气系统及其maf传感器的标定值验证方法、装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6158945A (ja) * | 1984-08-29 | 1986-03-26 | Nissan Motor Co Ltd | 内燃機関の燃料噴射制御装置 |
US4873641A (en) * | 1986-07-03 | 1989-10-10 | Nissan Motor Company, Limited | Induction volume sensing arrangement for an internal combustion engine or the like |
SE461447B (sv) | 1988-07-15 | 1990-02-19 | Wictor Carl Olof Lindstroem | Anordning foer rullformning av plaatmaterial foer framstaellning av stolpar |
US5029569A (en) * | 1990-09-12 | 1991-07-09 | Ford Motor Company | Method and apparatus for controlling an internal combustion engine |
JPH04262031A (ja) * | 1991-01-22 | 1992-09-17 | Mitsubishi Electric Corp | 内燃機関の燃料制御装置 |
JP3047589B2 (ja) * | 1992-01-14 | 2000-05-29 | 日産自動車株式会社 | エンジンの吸気系故障判定装置 |
US5682862A (en) * | 1993-03-12 | 1997-11-04 | Nissan Motor Co., Ltd. | Control of purge rate of evaporated fuel purging unit for internal combustion engine |
DE19946874A1 (de) * | 1999-09-30 | 2001-04-05 | Bosch Gmbh Robert | Diagnose von Stellgliedern und Sensoren in Verbindung mit der Gemischbildung bei Brennkraftmaschinen |
JP4134492B2 (ja) * | 2000-06-08 | 2008-08-20 | 三菱自動車工業株式会社 | 筒内噴射型内燃機関 |
-
2002
- 2002-09-04 JP JP2002258589A patent/JP2004092614A/ja active Pending
-
2003
- 2003-09-03 US US10/653,465 patent/US6944531B2/en not_active Expired - Fee Related
- 2003-09-04 DE DE10340844A patent/DE10340844B4/de not_active Expired - Fee Related
- 2003-09-04 CN CNB031562159A patent/CN1297738C/zh not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011132677A1 (ja) * | 2010-04-20 | 2011-10-27 | 日産自動車株式会社 | エアフローメータの故障診断装置 |
WO2011132678A1 (ja) * | 2010-04-20 | 2011-10-27 | 日産自動車株式会社 | エアフローメータの故障診断装置 |
JP5273298B2 (ja) * | 2010-04-20 | 2013-08-28 | 日産自動車株式会社 | エアフローメータの故障診断装置 |
JP5333660B2 (ja) * | 2010-04-20 | 2013-11-06 | 日産自動車株式会社 | エアフローメータの故障診断装置 |
RU2517197C1 (ru) * | 2010-04-20 | 2014-05-27 | Ниссан Мотор Ко., Лтд. | Устройство для диагностики неисправностей расходомера воздуха |
US9020736B2 (en) | 2010-04-20 | 2015-04-28 | Nissan Motor Co., Ltd. | Fault diagnosis apparatus for airflow meter |
US9200582B2 (en) | 2010-04-20 | 2015-12-01 | Nissan Motor Co., Ltd. | Fault diagnosis apparatus for airflow meter |
KR102171503B1 (ko) * | 2020-07-30 | 2020-10-29 | (주)대명아이티 | 시트형 센서를 사용하여 고장유무 판별이 용이한 전자식 가스계량기 |
Also Published As
Publication number | Publication date |
---|---|
US20040111211A1 (en) | 2004-06-10 |
DE10340844B4 (de) | 2010-07-08 |
US6944531B2 (en) | 2005-09-13 |
CN1490509A (zh) | 2004-04-21 |
CN1297738C (zh) | 2007-01-31 |
DE10340844A1 (de) | 2004-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004092614A (ja) | エアフローセンサ故障判定装置 | |
US8407983B2 (en) | Abnormality diagnosis device of internal combustion engine | |
US5727383A (en) | Catalyst deterioration detecting apparatus and exhaust emission control device failure detecting apparatus | |
JP4736058B2 (ja) | 内燃機関の空燃比制御装置 | |
JP4577211B2 (ja) | Wiebe関数パラメータの決定方法および決定装置 | |
JPH08338286A (ja) | 内燃機関の排気系故障診断装置 | |
JP2007170345A (ja) | 内燃機関の燃焼異常検出装置 | |
JP2008144639A (ja) | 内燃機関の制御装置 | |
JP2010174872A (ja) | 内燃機関の二次空気供給システムの異常診断装置 | |
JP2010163932A (ja) | 内燃機関の触媒劣化診断装置 | |
JP2006057523A (ja) | エンジン制御システムの異常診断装置 | |
JP2009185740A (ja) | 内燃機関の異常診断装置 | |
JP5056548B2 (ja) | 車載内燃機関の吸気系故障診断装置 | |
JP2007170363A (ja) | エンジンの制御装置 | |
JP2006177371A (ja) | 内燃機関の制御装置 | |
JP3855720B2 (ja) | 内燃機関の触媒早期暖機制御システムの異常診断装置 | |
JP3961745B2 (ja) | 内燃機関の失火検出装置 | |
JP3975491B2 (ja) | 空燃比フィードバック制御系の異常診断装置 | |
JPH07310585A (ja) | 筒内圧センサの診断装置 | |
JP5654514B2 (ja) | エンジンの吸入空気量測定装置 | |
JPH10169501A (ja) | 空燃比センサの異常診断装置 | |
JP3975436B2 (ja) | 排出ガスセンサの異常診断装置 | |
JP4037485B2 (ja) | エンジンの触媒劣化診断装置 | |
JP4417000B2 (ja) | 内燃機関の異常診断装置 | |
JP2000291485A (ja) | エンジンの失火検知装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051025 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051026 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060307 |