WO2011129035A1 - アイスリンクの冷却設備 - Google Patents

アイスリンクの冷却設備 Download PDF

Info

Publication number
WO2011129035A1
WO2011129035A1 PCT/JP2010/073791 JP2010073791W WO2011129035A1 WO 2011129035 A1 WO2011129035 A1 WO 2011129035A1 JP 2010073791 W JP2010073791 W JP 2010073791W WO 2011129035 A1 WO2011129035 A1 WO 2011129035A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
brine
ice
cooling pipe
ice rink
Prior art date
Application number
PCT/JP2010/073791
Other languages
English (en)
French (fr)
Inventor
美則 福岡
田中 義昭
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Priority to JP2011529405A priority Critical patent/JP5237457B2/ja
Priority to CA2746445A priority patent/CA2746445C/en
Priority to US13/145,303 priority patent/US8720214B2/en
Publication of WO2011129035A1 publication Critical patent/WO2011129035A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C3/00Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow
    • F25C3/02Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow for ice rinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a cooling system for an ice rink used for cooling an ice rink having a large area to be cooled.
  • an ice rink used for ice skating and the like is provided with a cooling facility used for ice making or ice temperature adjustment at the time of link formation.
  • a cooling facility for ice rink has a plurality of cooling pipes laid on a floor serving as a base of ice rink, and a brine cooler The system cools the brine cooled by a refrigeration unit or the like to cool the inside of the ice rink, and performs ice making or ice temperature control.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 62-19668
  • a pipe serving as a cold storage material containing a cold storage agent is disposed between cooling pipes adjacent to each other to make a latent heat of the cold storage agent
  • An arrangement is disclosed that is utilized to maintain an icing condition. As a result, the number of cooling pipes can be reduced, and running costs such as the operation of the refrigerator accompanying the circulation of the cooling medium can be reduced.
  • the cooling pipes disposed in the ice rink are disposed at intervals of 100 mm along the longitudinal direction of the ice rink without being disposed in the width direction of the ice rink from the viewpoint that the number of cooling pipes increases.
  • the cooling facility disclosed in Patent Document 2 can improve the economic efficiency because the operation of the refrigerator can be stopped for a long time by utilizing the latent heat of the cold storage agent when maintaining the icing condition after freezing the ice rink.
  • the formation of ice becomes uneven due to the difference of latent heat around the cooling pipe and the surrounding of the cold storage when freezing first, and it is also difficult to control the ice temperature.
  • it is possible to reduce the number of cooling pipes by setting the distance between the cooling pipes at 100 mm or more it is necessary to arrange a pipe serving as a cold insulator containing a cold storage agent between the cooling pipes. Because of this, it is expected that the cost of installing the cooling pipe will increase.
  • an object of the present invention to provide an ice rink cooling facility which facilitates ice temperature management and enables uniform cooling of the ice rink regardless of the installation interval of the cooling pipes.
  • a cooling pipe group having a plurality of cooling pipes is disposed at the bottom of the ice rink, and the cooling pipe groups flow through CO 2 brine in the cooling equipment of the ice rink cooling the ice rink by the which has a flat heat conductor on the upper surface of the cooling tube, a CO 2 circulation circuit connected to said cooling pipe the CO 2 brine circulates, ammonia
  • the system is characterized by comprising: an ammonia refrigeration cycle in which a refrigerant circulates; and a cascade condenser which exchanges heat between the CO 2 brine and the ammonia refrigerant, cools the CO 2 brine by the ammonia refrigerant, and reliquefaction.
  • the heat transfer area can be enlarged, and the ice link is substantially uniform.
  • the to-be-cooled area can be substantially uniformly cooled as a flat temperature distribution with a flat plate-like heat conductor, the ice layer thickness of the ice link can be made uniform.
  • the re-liquefied CO 2 brine solution with ammonia refrigerating cycle flows through the cooling tubes primarily has to generate cold heat in latent heat of vaporization of CO 2 brine solution, a feed line for CO 2 circulation circuit Since a temperature difference with the return line hardly occurs, it is possible to make the entire cooling pipe group have a uniform temperature, and temperature control becomes easy. Furthermore, since the ammonia refrigeration cycle can increase the evaporation temperature, highly efficient operation is possible.
  • the ammonia refrigeration cycle preferably includes a main refrigerator for ice making of the ice ring, and an auxiliary refrigerator for preventing CO 2 brine pressure increase connected in parallel with the main refrigerator.
  • an air-cooled CO 2 reliquefier that cools the CO 2 brine using external air. Since this air-cooled CO 2 reliquefier is configured to cool and naturally circulate the CO 2 brine, the running cost of the cooling equipment can be reduced. Furthermore, since it is possible to switch between the main refrigerator and the air-cooled CO 2 reliquefier appropriately and utilize it, it is possible to achieve high efficiency of the motive energy.
  • a first reliquefaction line including the ammonia refrigeration cycle and a second reliquefaction line including the air-cooled CO 2 reliquefier are connected in parallel to the CO 2 circulation circuit, and the first reliquefaction line includes: It is preferable to provide a three-way valve that selectively switches between the reliquefaction line and the second reliquefaction line, which makes it possible to select the most efficient reliquefaction means depending on the situation.
  • control means for performing switching control of the three-way valve is provided, and the control means is configured to control the second reliquefaction of the CO 2 brine when the outside air temperature is equal to or lower than a preset first temperature threshold.
  • the three-way valve is controlled to circulate in a line, and the CO 2 brine is used as the first one when the outside air temperature exceeds a second temperature threshold set above the first temperature threshold.
  • the three-way valve is controlled to circulate in the reliquefaction line of
  • the second reliquefaction line is used, and if the air-cooled CO 2 reliquefier is not applicable, the first reliquefaction line is used.
  • the first temperature threshold and the second temperature threshold may be the same.
  • the flat plate-like heat conductor is constituted by a separate member from the cooling pipe, and the flat plate-like heat conductor is disposed in contact with the upper surface of the cooling pipe group and has a plurality of holes. Is preferred.
  • the floor portion of the ice link can be reinforced. It becomes.
  • reinforcing bars and the like were laid for the purpose of reinforcing the floor, but the reinforcing structure such as reinforcing bars can be omitted by arranging the flat heat conductor of the present invention.
  • cold heat of CO 2 brine is transferred from the cooling pipe group to the flat heat conductor, and the ice link is cooled via the heat conductor, the cooling heat is more uniformly cooled between the cooling pipe and the cooling pipe. Will be able to communicate.
  • the concrete is poured from the upper part of the flat plate-like heat conductor to pass the hole through the hole It is possible to spread the concrete to the gap between the two and make the construction easy. Furthermore, air can be removed by the holes when embedding with concrete. Furthermore, it is preferable that the flat plate-like heat conductor is a punching metal, whereby high strength can be maintained.
  • the flat heat conductor has a gap larger than the hole of the flat heat conductor, and is bound to the cooling pipe with the flat heat conductor interposed therebetween, and the heat conductor is cooled from above the heat conductor.
  • a pressure plate is provided to press the tube.
  • the flat heat conductor is constituted by the upper pipe wall of the cooling pipe, and the cooling pipe is formed of a flat shape of the upper pipe wall, and a plurality of minute through which the CO 2 brine flows It is preferable to have a microchannel structure provided with a refrigerant flow path.
  • the flat heat conductor is constituted by the upper tube wall of the cooling pipe, and the cooling pipe has a microchannel structure formed into a flat shape, the cooling pipe as a heat conductor and CO The heat transfer area with the two brines is increased, and the cooling efficiency can be improved.
  • the cooling pipe has a subheader to which a plurality of cooling pipes are connected, and a main header to which a plurality of subheaders are connected, and the cooling pipe is connected to the CO 2 circulation circuit through the subheader and the main header. It is preferable that it is connected.
  • the plurality of cooling pipes are not directly connected to the main header, but the plurality of cooling pipes are divided and connected to the subheader to unitize the cooling pipe group.
  • cooling pipe is generally joined to the header by welding, welding a large number of cooling pipes to the main header may cause welding deformation and the main header to bend, but according to this configuration, it is shorter than the main header Since the cooling pipe is welded to the subheader, welding deformation can be reduced. Furthermore, the construction is facilitated by connecting the cooling pipe to the subheader.
  • an air supply duct which ejects cooling air upward to form an air curtain at least on the outer periphery of the ice ring. Since the air curtain formed from the floor around the ice rink to a certain height does not obstruct the view from the spectator seat, it is possible to maintain the ice rink ice plate temperature uniformly without disturbing the athlete and the spectator.
  • the invention can be suitably applied to an ice rink without an enclosure such as a curling ice rink.
  • the heat transfer area can be increased. It becomes possible to transfer cold heat to the ice rink substantially uniformly, and it becomes possible to make the arrangement interval of the cooling tubes wider than before. Furthermore, since the to-be-cooled area can be substantially uniformly cooled as a flat temperature distribution with a flat plate-like heat conductor, the ice layer thickness of the ice link can be made uniform.
  • the re-liquefied CO 2 brine solution with ammonia refrigerating cycle flows through the cooling tubes primarily has to generate cold heat in latent heat of vaporization of CO 2 brine solution, a feed line for CO 2 circulation circuit Since a temperature difference with the return line hardly occurs, it is possible to make the entire cooling pipe group have a uniform temperature, and temperature control becomes easy. Furthermore, since the ammonia refrigeration cycle can increase the evaporation temperature, highly efficient operation is possible.
  • FIG. It is a perspective view which shows the modification of the cooling pipe structure of the ice rink shown in FIG. It is a perspective view which shows the 2nd structural example of the cooling pipe structure of an ice rink. It is sectional drawing which shows the cooling pipe which has a microchannel structure. It is a perspective view which shows the modification of the cooling pipe structure of the ice rink shown in FIG. It is a perspective view which shows the other modification of the cooling pipe structure of the ice rink shown in FIG. It is a figure which shows the 1st structural example of the header structure of an ice rink, (A) is a top view, (B) is a side view.
  • FIG. 2 is an overview of an analysis model of Example 1; 5 is a table showing analysis conditions of Example 1; 7 is a table showing the thermal conductivity in each layer in Example 1.
  • FIG. 7 is a diagram showing analysis results of steady state under each condition in Example 1.
  • 6 is a table showing heights of asperities under each condition in Example 1.
  • FIG. 7 is a diagram showing analysis results of a non-steady state under each condition in Example 1.
  • FIG. 6 is an overview of an analysis model of Example 2; 7 is a table showing analysis conditions of Example 2.
  • 10 is a table showing the thermal conductivity in each layer in Example 2.
  • FIG. 16 is a diagram showing an analysis result of a steady state under condition 1 in Example 2.
  • FIG. 16 is a diagram showing an analysis result of a steady state under condition 4 in Example 2.
  • FIG. 18 is a diagram showing the analysis results of the steady state under condition 5 in Example 2.
  • FIG. 16 is a table showing heights of asperities in each condition in Example 2.
  • FIG. FIG. 16 is a diagram showing an analysis result of a non-steady state under condition 1 in Example 2.
  • FIG. 16 is a table showing the time until the end temperature reaches ⁇ 4
  • FIG. 1 is a whole block diagram of the ice rink cooling installation which concerns on 1st Embodiment of this invention.
  • the ice rink cooling facility 100 mainly includes a cooling pipe group 1 including a plurality of cooling pipes 11, and a refrigeration system 2 including a CO 2 circulation circuit 3 and an ammonia refrigeration cycle.
  • the ice rink 10 applicable to the present embodiment is all ice rinks such as a skating rink, a curling link, and an ice hockey rink.
  • the cooling pipe group 1 includes a plurality of cooling pipes 11 disposed on the bottom (floor) of the ice link 10 and having a flat heat conductor on the upper surface, and the cooling pipes 11 contain CO 2 brine solution as a cooling medium. Flow through.
  • the ice rink 10 is cooled using the latent heat of evaporation of the CO 2 brine solution flowing in the cooling pipe group 1, and the water of the ice rink 10 is frozen to form ice, or the temperature control of the frozen ice Do. Specific configurations of the cooling pipe group 1 and the flat heat conductor will be described later.
  • the refrigeration system 2 is connected to the cooling pipe 11 and includes a CO 2 circulation circuit 3 in which a CO 2 brine circulates, a main refrigerator 212 and an auxiliary refrigerator 223, and an ammonia refrigeration cycle in which an ammonia refrigerant circulates, CO 2 It has heat exchange between the brine and the ammonia refrigerant, and has a cascade condenser 211 for cooling and reliquefying the CO 2 brine by the ammonia refrigerant.
  • CO 2 circulation circuit 3, and CO 2 feed line 3A sends the CO 2 brine liquid from CO 2 receiver 20 to the cooling pipe bank 1, the CO 2 brine gas-liquid mixture discharged from the cooling pipe group 1 CO 2 A CO 2 return line 3 B to be returned to the liquid receiver 20. Furthermore, on the CO 2 feed line 3A, a CO 2 liquid pump 21P for pressure-feeding the CO 2 brine liquid is provided.
  • CO 2 brine liquid from CO 2 receiver 20 through the CO 2 feed line 3A cooling pipe group 1 are fed to The CO 2 brine that has been partially gasified into a gas-liquid mixture through the cooling pipe group 1 is sent to the CO 2 receiver 20 via the CO 2 return line 3 B connected to the top of the CO 2 receiver 20.
  • a reliquefaction line 29 is connected to the upper part of the CO 2 receiver 20. The CO 2 brine gas from the CO 2 receiver 20 is reliquefied through the reliquefaction line 29 and the CO 2 brine solution returns to the CO 2 receiver 20.
  • the reliquefaction line 29 returns to the CO 2 receiver 20 after the CO 2 brine from the CO 2 receiver 20 is introduced into the cascade condenser 211 and the CO 2 brine is cooled by the ammonia refrigerant in the cascade condenser 211.
  • the main refrigerator 212 and the auxiliary refrigerator 223 are connected in parallel between the cascade condenser 211 and the condenser 214, and these are switched to switch ammonia refrigerant by either one of the refrigerators. It is supposed to be cooled.
  • a cascade condenser 211, a main refrigerator 212 and an auxiliary refrigerator 223 which are compressors, a condenser 214, an ammonia high pressure receiver 215, and an expansion valve 216 are arranged in order Is configured to form a closed circuit.
  • the ammonia refrigerant gas evaporated by the heat of the CO 2 brine in the cascade condenser 211 is compressed by the main refrigerator 212 or the auxiliary refrigerator 223, and the high temperature / high pressure ammonia refrigerant gas is cooled by the condenser 214 to be condensed and liquefied ammonia refrigerant
  • the liquid is stored in the ammonia high pressure receiver 215, and the ammonia refrigerant liquid of the ammonia high pressure receiver 215 is appropriately sent to the expansion valve 216 where it is expanded and the low pressure ammonia refrigerant liquid is sent to the cascade condenser 211 to be CO 2 Used for cooling of brine gas.
  • the warm brine cooled in the closed cooling tower 217 is circulated by the pump 218.
  • the main refrigerator 212 is a refrigerator mainly used for ice making of the ice ring 10, and is a refrigerator that can cope with a large load.
  • the main refrigerator 212 is also used at the time of ice-cooling and kneading in the initial stage when using an ice rink after ice making.
  • the auxiliary refrigerator 223 is a refrigerator that operates when the operation of the main refrigerator 212 is stopped, and is mainly used for preventing a pressure rise of CO 2 brine, and is a refrigerator that can cope with a small load.
  • a high pressure control valve 225 is provided in the discharge gas line of the auxiliary refrigerator 223.
  • the ice temperature of the ice rink 10 is always detected by the temperature detecting means, and when the ice temperature of the ice rink is equal to or higher than a preset switching temperature threshold, the main refrigerator 212 is operated to The refrigerator 223 is stopped, and when it is less than the switching temperature threshold value, the main refrigerator 212 is stopped and the auxiliary refrigerator 223 is operated.
  • a heating pipe 30 be laid under the ground of the ice rink 10.
  • the heating pipe 30 is installed in order to prevent freezing of the ground below the floor due to the cold heat of the cooling pipe group 1 and raising of the floor (prevention of freezing).
  • a warm brine heated by using the waste heat of the main refrigerator 212 flows through the heating pipe 30.
  • the warm brine is stored in the warm brine tank 31 and circulates through the heating pipe 20.
  • the warm brine in the warm brine tank 31 is sent to the heating pipe 30 via the warm brine circulation line 32 by the warm brine circulation pump 33 and returns to the warm brine tank 31 via the circulation line 32.
  • the ammonia refrigerant gas evaporated by heat exchange with the CO 2 brine in the cascade condenser 211 is compressed by the main refrigerator 212.
  • the high temperature and high pressure ammonia refrigerant gas is cooled by the condenser 214 and condensed.
  • the ammonia refrigerant liquid liquefied by condensation is sent to the expansion valve 216 via the ammonia high pressure receiver 215, and is expanded by the expansion valve 216 to be a low pressure ammonia refrigerant liquid.
  • the low pressure ammonia refrigerant liquid is sent to the cascade condenser 211 and used to cool the CO 2 brine gas.
  • the CO 2 brine solution cooled and reliquefied by the ammonia refrigerant in the cascade condenser 211 is stored in the CO 2 receiver 20.
  • -8 ° C. of about CO 2 brine solution CO 2 receiver 20 is fed through a CO 2 feed line 3A to the cooling pipe group 1 arranged on ice rink 10 by CO 2 pump 21P.
  • the CO 2 brine liquid sent to the cooling tube group 1 cools the ice and is a liquid containing a gas at a part of the temperature of about -8 ° C., that is, a CO 2 return line as a gas-liquid mixture of CO 2 brine. Return to the CO 2 receiver 20 through 3B.
  • the ammonia refrigerant gas is compressed by the auxiliary refrigerator 223 in the ammonia refrigeration cycle. Then, the CO 2 brine is reliquefied by the ammonia refrigerant in the same manner as in the above-described ice making, and the cooling tube group 1 is cooled by the CO 2 brine to maintain the ice temperature.
  • the cooling pipe group 1 in the cooling pipe group 1, the CO 2 brine solution fed through the CO 2 feed line 3A in order to cool the ice using the latent heat of vaporization of the CO 2 brine solution. and temperature, CO 2 return line 3B hardly temperature difference occurs in the temperature of the return to the CO 2 receiver 20 CO 2 brine gas-liquid mixture through, the entire cooling pipe group 1 and uniform temperature Stable temperature control can be easily performed. Furthermore, since the ammonia refrigeration cycle can increase the evaporation temperature, highly efficient operation is possible.
  • energy saving can be realized by operating the main refrigerator 212 at the time of ice making of the ice link 10 and switching to the auxiliary refrigerator 223 at the time of ice making and switching.
  • a further energy saving effect can be obtained. This is because, when only the main refrigerator 212 is connected to the ammonia refrigeration cycle, even if the ice temperature is satisfied, the pressure of the CO 2 brine gas rises while the main refrigerator 212 is stopped, so only by pressure recovery. The main refrigerator 212 will be operated. Therefore, wasteful power is consumed when the large motor of the main refrigerator 212 rotates.
  • the auxiliary refrigerator 223 is newly provided, and the cascade condenser 211 is cooled by the auxiliary refrigerator 223 to reliquefy the CO 2 brine gas, thereby the main refrigerator Energy saving can be achieved because it is not necessary to turn the large motor 212. Furthermore, by recovering the pressurized CO 2 brine gas with the auxiliary refrigerator 223, the temperature of the CO 2 brine solution in the cooling pipe 11 of the ice ring 10 can be lowered, and as a result, the ice temperature rise can be delayed. Since the operation interval of the main refrigerator 212 can be extended, further energy saving effects can be expected.
  • the sensible heat recovery heat exchanger 224 in the discharge gas line of the auxiliary refrigerator 223.
  • the heat exchanger 224 exchanges heat between the discharge gas of the auxiliary refrigerator 223 and the hot water for maintenance on ice.
  • the hot water for ice maintenance is stored in the hot water tank 226, circulated by the heat exchanger 224 by the pump 227, and heated using exhaust heat of the discharge gas of the auxiliary refrigerator 223. Since the operation time of the auxiliary refrigerator 223 is relatively long, it is possible to stably recover even a small amount of warm water heated by this exhaust heat.
  • the cooling system 100 may have a configuration for recovering waste heat from the oil cooler 240 of the main refrigerator 212.
  • the oil cooler 240 is for circulating refrigerator oil to the main refrigerator 212.
  • the oil cooler 240 exchanges heat between the high temperature refrigerator oil returned from the main refrigerator 212 and the low temperature warm brine to recover waste heat.
  • the oil cooler 240 is connected to a warm brine circulation line having a warm brine feed line 244 and a warm brine return line 245.
  • the warm brine feed line 244 is a line for feeding warm brine from the warm brine tank 31 to the oil cooler 240.
  • Warm brine return line 245 is a line that returns warm brine from oil cooler 240 to warm brine tank 31.
  • the warm brine introduced from the warm brine tank 31 to the oil cooler 240 through the warm brine feed line 244 is warmed by the waste heat of the refrigerator oil and then passes through the warm brine return line 245 to the warm brine tank 31. Will be returned.
  • the warm brine stored in the warm brine tank 31 is sent to the heating pipe 30 via the warm brine circulation line 32 and used here to prevent freezing of the ice rink 10.
  • warm brine circulating in the condenser 214 can also be used for waste heat recovery of the main refrigerator 212.
  • the warm brine feed line 244 is connected via the three-way valve 241 to the warm brine return line 217 b which returns the warm brine from the closed cooling tower 217 to the condenser 214.
  • the warm brine return line 245 is connected via a three-way valve 242 to the warm brine feed line 217 a that sends warm brine from the condenser 214 to the closed cooling tower 217.
  • a check valve 243 for flowing the warm brine only in the direction from the three-way valve 242 toward the warm brine feed line 217a.
  • a heat exchanger for recovery of sensible heat from the discharge gas of the main refrigerator 212, but as described above, it is configured to recover warm water from the oil cooler 240 of the main refrigerator 212 By doing this, it is not necessary to newly install a heat exchanger, and heat can be recovered only by attaching a three-way valve, so cost can be reduced.
  • a heat exchanger instead of the waste heat recovery by the oil cooler 240, a heat exchanger may be provided which heats the warm brine by using sensible heat of the discharge gas of the main refrigerator 212. This configuration will be described in detail in the second embodiment.
  • FIG. 2 is a whole block diagram of the ice rink cooling installation which concerns on 2nd Embodiment of this invention.
  • the ice rink cooling facility 100 mainly includes a cooling pipe group 1 including a plurality of cooling pipes 11, and a refrigeration system 2 including a CO 2 circulation circuit 3 and an ammonia refrigeration cycle.
  • CO 2 circulation circuit 3 CO 2 receiver 20 is connected. At the bottom of the CO 2 receiver 20 is connected to CO 2 feed line 3A of the CO 2 circulation circuit 3, CO 2 brine liquid from CO 2 receiver 20 through the CO 2 feed line 3A cooling pipe group 1 Are fed to The CO 2 brine that has been partially gasified into a gas-liquid mixture through the cooling pipe group 1 is sent to the CO 2 receiver 20 via the CO 2 return line 3 B connected to the top of the CO 2 receiver 20. Return.
  • CO 2 the upper part of the receiver 20 first re-liquefaction line 21 and the second re-liquefaction line 22 is connected in parallel, CO 2 from the receiver 20 CO 2 brine gas of these re-liquefaction line
  • the CO 2 brine solution is returned to the CO 2 receiver 20, reliquefied through 21, 22 respectively.
  • the first reliquefaction line 21 is provided with a cascade condenser 211 that cools the CO 2 brine by the ammonia refrigerant cooled in the ammonia refrigeration cycle including the main refrigerator 212.
  • the ammonia refrigeration cycle forms a closed circuit in which a cascade condenser 211, a main refrigerator 212 which is a compressor, a water-cooled condenser 214, an ammonia high pressure receiver 215, and an expansion valve 216 are arranged in order. Is configured.
  • the ammonia refrigerant gas evaporated by the heat of CO 2 brine in the cascade condenser 211 is compressed by the main refrigerator 212, the high temperature and high pressure ammonia refrigerant gas is cooled and condensed by the condenser 214, and the liquefied ammonia refrigerant liquid is ammonia high pressure received.
  • the ammonia refrigerant in the ammonia high pressure receiver 215 stored in the liquid container 215 is appropriately sent to the expansion valve 216 where it is expanded, and the low pressure ammonia refrigerant is sent to the cascade condenser 211 to cool the CO 2 brine gas Used for
  • the cooling water cooled by the cooling tower 217 is circulated by the cooling water pump 218 to the water-cooled condenser 214.
  • the ammonia refrigeration cycle preferably includes a heat exchanger 213 that heats the warm brine using sensible heat of the discharge gas of the main refrigerator 212.
  • the heat exchanger 213 will be described later.
  • the second reliquefaction line 22 is installed outdoors, and includes an air-cooled CO 2 reliquefier 221 that cools the CO 2 brine using outside air.
  • Air-cooled CO 2 re-liquefaction unit 221 a pipe CO 2 brine flowing, cooled by the outside air of the air flow formed by the fan cools the CO 2 brine, a device for re-liquefaction. Since the air-cooled CO 2 reliquefier 221 aims to reliquefy the CO 2 brine gas, it is used when the outside air temperature is below the temperature at which the CO 2 brine gas is reliquefied. Preferably, it is used when the outside air temperature is ⁇ 10 ° C. or less.
  • the first reliquefaction line 21 and the second reliquefaction line 22 described above are connected in parallel to the CO 2 receiver 20, and the first reliquefaction line 21 and the second reliquefaction line 22 are connected by the three-way valve 24. It is preferable to be configured to switch selectively.
  • the first reliquefaction line 21 is connected to the upper portion of the CO 2 receiver 20 and branched from the reliquefaction feeder main line 23 to which the CO 2 brine gas is fed, and the main line 23.
  • the reliquefaction branch first line 21a connected to the cascade condenser 211 and the reliquefaction return first line 21b connected to the CO 2 receiver 20 from the cascade condenser 211 are included.
  • the second reliquefaction line 22 includes the reliquefaction feeder main line 23, a reliquefaction branch second line 22a branched from the main line 23 and connected to the air-cooled CO 2 reliquefier 221, and air-cooled composed of the re-liquefaction return second line 22b from CO 2 re-liquefaction unit 221 is connected to the CO 2 receiver.
  • a three-way valve 24 is interposed between the main line 23 and the branch first line 21a and the branch second line 22a. Switching between the branch first line 21 a and the branch second line 22 a is controlled by the controller 25. At this time, the controller 25 causes the CO 2 brine to circulate in the second reliquefaction line 22 when the outside air temperature measured by the temperature measurement means 27 is less than or equal to the preset first temperature threshold value. Control the three-way valve 24 and CO 2 brine circulates through the first reliquefaction line 21 when the outside temperature exceeds the second temperature threshold set above the first temperature threshold. Preferably, the three-way valve 24 is controlled to The first temperature threshold and the second temperature threshold may be the same. More preferably, the first temperature threshold may be set to ⁇ 10 ° C. or less, whereby the CO 2 brine gas can be appropriately reliquefied.
  • the main refrigerator 212 may have a configuration in which operation and stop of the main refrigerator 212 can be switched by the ice temperature.
  • the ice temperature of the ice rink 10 is always detected by the temperature detection means, and when the ice temperature of the ice rink 10 is equal to or higher than a preset switching temperature threshold, the main refrigerator 212 is operated. If it is less than the switching temperature threshold, the main refrigerator 212 is stopped. This can reduce the power cost.
  • the outside air temperature measured by the temperature measuring means 27 is input to the controller 25, and if the outside air temperature exceeds a second temperature threshold (for example, -10 ° C) preset in the controller 25, the CO 2 brine is The controller 25 controls the three-way valve 24 to circulate the first reliquefaction line 21.
  • a second temperature threshold for example, -10 ° C
  • the CO 2 brine solution of about -8 ° C. fed from the refrigeration system 2 by the CO 2 fluid pump 21P passes through the CO 2 delivery line 3A.
  • the cooling pipe group 1 disposed in the ice rink 10 is sent.
  • the CO 2 brine liquid sent to the cooling tube group 1 cools the ice and is a liquid containing a gas at a part of the temperature of about -8 ° C., ie, a CO 2 return line as a gas-liquid mixture of CO 2 brine. Return to the CO 2 receiver 20 through 3B.
  • the temperature of the CO 2 brine solution fed through the CO 2 feed line 3A and the CO 2 return line 3B Almost no temperature difference occurs in the temperature of the CO 2 brine gas-liquid mixture returned to the CO 2 receiver 20, and the temperature adjustment of ice can be stably performed.
  • CO 2 brine gas is sent to the cascade condenser 211 through the reliquefaction feeder main line 23, the reliquefaction branch first line 21a, Here, it is cooled by the ammonia refrigerant cooled by the ammonia refrigeration cycle and reliquefied.
  • the reliquefied CO 2 brine solution returns to the CO 2 receiver 20 through the reliquefaction return first line 21 b.
  • the CO 2 brine is reliquefied by circulating the first reliquefaction line 21.
  • a three-way valve 24 by the controller 25 as CO 2 brine circulates a second re-liquefaction line 22 Switch control.
  • the main refrigerator 212 ammonia refrigeration cycle is stopped, CO 2 brine solution reliquefaction sender line 23 from CO 2 receiver 20, re-liquefaction branch second line 22a to an air-cooled CO 2 reliquefier 221.
  • the air-cooled CO 2 reliquefier 221 cools by the outside air, and the reliquefied CO 2 brine solution returns to the CO 2 receiver 20 by natural circulation through the reliquefaction return second line 22 b.
  • the CO 2 brine is cooled by the open air and naturally circulated, so the drive power and pump power of the refrigerator become unnecessary, and the ice making or ice temperature maintenance of the ice ring 10 is maintained. Running costs can be reduced.
  • the CO 2 brine solution reliquefied in the first and second reliquefaction lines 21 and 22 is allowed to flow through the cooling pipe group 1, and cold heat is generated mainly by the latent heat of vaporization of the CO 2 brine solution. Since the temperature difference between the feed line 3A and the return line 3B of the CO 2 circulation circuit 3 hardly occurs, the entire cooling pipe group 1 can be made to have a uniform temperature, and the temperature adjustment is easy. Become. Furthermore, since the ammonia refrigeration cycle used in the first reliquefaction line 21 can increase the evaporation temperature, highly efficient operation is possible. Furthermore, since the air-cooled CO 2 reliquefier 221 interposed in the second reliquefaction line 22 is reliquefied by naturally cooling the CO 2 brine by natural circulation and natural circulation, the running cost Can be reduced.
  • the three-way valve 24 that selectively switches the first reliquefaction line 21 and the second reliquefaction line 22, it is possible to select the most efficient reliquefaction means according to the situation. Furthermore, depending on the outside air temperature, when air-cooled CO 2 re-liquefaction apparatus 221 is applicable by using the second re-liquefaction line 22, when the air-cooling type CO 2 re-liquefaction unit 221 can not be applied first By utilizing the reliquefaction line 21 of 1, it is possible to maximize the outside air temperature and to minimize the power cost.
  • the heating pipe 30 be laid in the under-floor ground of the ice rink 10.
  • the heating pipe 30 is installed in order to prevent freezing of the ground below the floor due to the cold heat of the cooling pipe group 1 and raising of the floor portion (freeze prevention).
  • a warm brine heated in the heat exchanger 213 using the sensible heat of the discharge gas of the main refrigerator 212 is allowed to flow.
  • the warm brine warmed by the heat exchanger 213 is stored in the warm brine tank 31, sent to the heating pipe 30 by the warm brine circulation pump 33 via the warm brine circulation line 32, and the circulation line
  • the heat is returned to the heat exchanger 213 via 32, where it is warmed again and the warm brine is stored in the warm brine tank 31.
  • the sensible heat of the discharge gas of the main refrigerator 212 for heating the warm brine of the heating pipe 30, it is possible to improve the energy efficiency and reduce the running cost.
  • a small-sized CO 2 reliquefaction refrigerator 28 may be connected to the second reliquefaction line 22.
  • the CO 2 reliquefaction refrigerator 28 is a refrigerator additionally used to reliquefy the CO 2 brine when the ice rink 10 is closed or off the season. Since there is no heat load due to skaters, athletes, lighting, etc. on ice rink 10 holidays, the load to maintain the temperature of the ice is small, and the refrigeration system 2 including the ammonia refrigeration cycle and the air-cooled CO 2 reliquefier 221 stopped, it can be maintained only by ice floes running the CO 2 re-liquefaction refrigerator 28 and CO 2 pump 21P.
  • FIG. 3 is a whole block diagram of the cooling installation of the ice rink which concerns on the modification of 2nd Embodiment of this invention.
  • an evaporative condenser 230 is used as a substitute for the water-cooled condenser 214 in the first reliquefaction line 21.
  • the evaporative condenser 230 is installed between the main refrigerator 212 of the ammonia refrigeration cycle and the ammonia high pressure receiver 215, and is preferably installed outdoors.
  • the evaporative condenser 230 has a fan 232 installed at the upper part of the vertically disposed duct 231, and is configured to take in outside air from the air suction port 233 formed at the lower part and discharge it from the upper part.
  • a refrigerant pipe coil 235 through which the ammonia refrigerant flows is disposed inside the duct 231, and a water spray nozzle 234 is installed above the refrigerant pipe coil 235.
  • the ammonia refrigerant flowing in the refrigerant tube coil 235 exchanges heat with the outside air as a cooling medium to cool and condense the refrigerant, and water with which the outer surface of the refrigerant tube coil 235 is sprayed from the water spray nozzle 234
  • the latent heat of evaporation of water is utilized to promote cooling of the refrigerant by wetting it and exposing it to the external air flow.
  • the evaporative condenser 230 and the air-cooled CO 2 reliquefier may be integrated.
  • a pipe 236 through which a CO 2 brine solution flows is installed at the air suction port 233 of the evaporative condenser 230, and the pipe 236 is connected to the second reliquefaction line 22.
  • FIG. 4 is a view showing a first configuration example of a cooling pipe structure of an ice rink
  • (A) is a perspective view
  • (B-1) is a side sectional view
  • (B-2) is another configuration example It is a side sectional view showing.
  • the flat heat conductor 16 installed on the upper surface of the cooling pipe group 1A is partially omitted.
  • a cooling pipe group 1A is laid on the floor of the ice ring 10.
  • the cooling pipe group 1A connects the plurality of linear cooling pipes (hereinafter referred to as straight pipes) 11A disposed along the long side direction of the ice link 10 and the adjacent straight pipes 11A at one side end. And a bending tube 12.
  • the straight pipes 11A are arranged in parallel at predetermined intervals.
  • a CO 2 feed pipe (header) 13 connected to the plurality of straight pipes 11A and a CO 2 return pipe (header) 14 are disposed at an end on the side different from the bent pipe 12.
  • the CO 2 feed pipe 13 is connected to the above-described CO 2 liquid feed line 3A, and the CO 2 return pipe 14 is connected to the CO 2 liquid return line 3B.
  • the plurality of straight pipes 11A constituting the cooling pipe group 1A are arranged such that at least the tops thereof are planar, and the flat plate-shaped heat conductor 16 is in contact with the upper surface of the cooling pipe group 1A. Is arranged.
  • the flat heat conductor 16 is disposed on the upper surface of the cooling pipe group 1A in a state of being in contact with the cooling pipe group 1A.
  • the flat heat conductor 16 is formed of a material having a high thermal conductivity and a high strength.
  • a metal material such as copper or aluminum is used.
  • the several hole part 16a is formed in the flat heat conductor 16, for example, a punching metal and mesh-like metal are used. This is because, when installing the cooling pipe structure, when installing the cooling pipe group 1A and the flat heat conductor 16 and placing concrete, pouring the concrete from the upper portion of the flat heat conductor 16 allows the hole portion 16a to be formed.
  • the concrete passes through to the gap of the cooling pipe group 1A to facilitate the construction, and the hole 16a plays a role of air removal at the time of embedding with concrete.
  • the flat heat conductor 16 may be disposed in contact with the upper surface (top portion) of the cooling pipe group 1A, and in particular, the heat conductor 16 and the cooling pipe group 1A need to be fixed. However, in order to prevent them from being separated at the time of construction, the heat conductor 16 and the cooling pipe group 1A may be formed in advance integrally, or these may be bound and fixed with a binding member (not shown). May be
  • the cooling pipe 11A and the cooling pipe 11A can be uniformly transmitted also in the interval, and the arrangement interval of the cooling pipes 11A can be made wider than in the past. For example, by applying to a conventional ice rink in which the distance between the cooling pipes is about 100 mm, it is possible to extend the distance between the cooling pipes to about 200 mm, which is twice the conventional distance. Furthermore, since the to-be-cooled area can be substantially uniformly cooled by the flat heat conductor 16 as a smooth temperature distribution in a planar shape, the ice layer thickness of the ice link 10 can be made uniform.
  • the flat heat conductor 16 is disposed on the upper surface of the cooling pipe group 1A, it is possible to reinforce the floor portion of the ice link 10.
  • reinforcing bars were laid for the purpose of reinforcing the floor, but by arranging the flat heat conductor 16 of this embodiment, it is possible to omit this reinforcing structure such as reinforcing bars .
  • FIG. 4 (B-2) is a cooling pipe structure showing a configuration example different from the above.
  • a pressing plate 17 having a gap 17 a larger than the hole 16 a of the flat thermal conductor 16 is disposed on the upper surface of the flat thermal conductor 16, and the flat thermal conductor 16 is sandwiched by the binding member 18.
  • the plate 17 and the cooling pipe 11A are united. As described above, by installing the pressing plate 17, the adhesion between the flat heat conductor 16 and the cooling pipe 11A is improved, and the heat conduction efficiency can be maintained high, and these are united.
  • the flat heat conductor 16 and the cooling pipe 11A can be securely fixed. In particular, when casting concrete, it is possible to prevent the cooling pipe 11A from floating and the heat conductivity being impaired.
  • the gap 17a which is larger than the hole 16a, is provided for passing concrete to the bottom during concrete placement and for removing air after concrete placement, as in the case of the hole 16a.
  • FIG. 5 is a perspective view showing a modification of the cooling pipe structure of the ice rink shown in FIG.
  • a CO 2 feed pipe 13a is connected to one side of the plurality of straight pipes 11A
  • a CO 2 return pipe 14a is connected to the other side of the plurality of straight pipes 11A
  • a CO 2 feed pipe 13b is connected to one side of the plurality of straight pipes 11A
  • a CO 2 return pipe 14b is connected to the other side of the plurality of other straight pipes 11A.
  • the CO 2 feed pipe 13 a and the CO 2 return pipe 14 b, and the CO 2 feed pipe 13 b and the CO 2 return pipe 14 a are disposed on the same side.
  • FIG. 6 is a perspective view showing a second configuration example of the ice rink cooling pipe structure.
  • a cooling pipe group 1B is laid on the floor of the ice ring 10.
  • the cooling pipe group 1B is disposed along the long side direction of the ice link 10, and a plurality of cooling pipes 11B are arranged in parallel at predetermined intervals.
  • a CO 2 feed pipe 51a is connected to one side of the plurality of cooling pipes 11B, and a CO 2 return pipe 52a is connected to the other side of the plurality of cooling pipes 11B.
  • a CO 2 feed pipe 51 b is connected to one side of the plurality of cooling pipes 11 B, and a CO 2 return pipe 52 b is connected to the other side of the plurality of cooling pipes 11 B.
  • CO 2 feed pipe 51a and CO 2 return pipe 52 b, and, CO 2 feed pipe 51b and CO 2 return pipe 52a is disposed on the same side respectively.
  • CO 2 brine fed from CO 2 circulation circuit 3 CO 2 feed pipe 51a, is introduced from 51b to the cooling tube 11B, CO 2 return pipe 52a through the cooling tube 11B, via a 52 b CO 2 Returned to circulation circuit 3
  • FIG. 7 is a cross-sectional view showing a cooling pipe having a microchannel structure.
  • the cooling pipe 11B has a microchannel structure in which the upper pipe wall is formed in a flat shape in a flat plate shape, and a plurality of micro refrigerant flow paths through which the CO 2 brine flows are provided.
  • a flat heat conductor is configured by the upper tube wall.
  • a material having high thermal conductivity is used as the material of the cooling pipe 11B, and an aluminum material is preferably used.
  • the cooling pipe 11B is preferably manufactured, for example, by extrusion molding, and is preferably subjected to surface treatment for corrosion prevention.
  • the cooling pipe 11B-1 shown in FIG. 7A has a flat outer shape, and has a plurality of minute refrigerant channels 111 inside.
  • the minute refrigerant flow passage 111 has a circular cross section.
  • a plurality of the minute refrigerant flow paths 111 are provided in parallel in the cooling pipe 11B-1 at predetermined intervals.
  • the cooling pipe 11B-2 shown in FIG. 7B has a flat outer shape, and has a plurality of minute refrigerant channels 112 inside.
  • the minute refrigerant flow path 112 is formed to have a circular cross section.
  • the cooling pipe 11B-2 is provided with a larger number of micro refrigerant channels 112 each having a smaller diameter than the cooling pipe 11B-1 of FIG. 7A described above.
  • the cross sections of the minute refrigerant flow paths 111 and 112 are formed in a circular shape, so the pressure resistance is higher. can do.
  • the cooling pipe 11B-3 shown in FIG. 7C has a flat outer shape, and has a plurality of minute refrigerant channels 113 inside.
  • the minute refrigerant flow path 113 is formed to have a substantially square cross section.
  • a plurality of minute refrigerant flow paths 113 are provided in parallel in the cooling pipe 11B-3 at predetermined intervals.
  • the cross section of the minute refrigerant flow path 113 is formed in a substantially square shape, the heat transfer area can be increased, and the cooling efficiency can be further enhanced. it can.
  • the flat heat conductor is constituted by the upper tube wall of the cooling pipe 11B, and the cooling pipe 11B has a microchannel structure formed in a flat shape, so that heat conduction is achieved.
  • the heat transfer area between the body cooling pipe 11B and the CO 2 brine is increased, and the cooling efficiency can be improved.
  • FIG. 8 is a perspective view showing a modification of the cooling pipe structure of the ice ring shown in FIG.
  • a CO 2 feed pipe 53 and a CO 2 return pipe 54 are provided on one side, and an intermediate header 55 is provided on the other side.
  • a cooling pipe 11B is connected between the CO 2 feed pipe 53 and the middle header 55, and another cooling pipe 11B is connected between the middle header 55 and the CO 2 return pipe 54.
  • the CO 2 brine is fed from the CO 2 feed pipe 53 to the intermediate header 55 through the cooling pipe 11 B, and is folded back by the intermediate header 55 and returned to the CO 2 return pipe 54 through the other cooling pipe 11 B. There is.
  • FIG. 9 is a perspective view showing another modification of the cooling pipe structure of the ice rink shown in FIG.
  • the flat heat conductor 16 installed on the upper surface of the cooling pipe group 1B is partially omitted.
  • This cooling pipe structure has a flat heat conductor 16 as a flat heat conductor separately from the upper tube wall of the cooling pipe 11B.
  • the flat heat conductor 16 is configured by a separate member from the cooling pipe 11B.
  • the specific configuration of the flat heat conductor 16 is the same as the configuration shown in FIGS. 4 and 5.
  • the cooling efficiency can be further improved by having the upper side tube wall of the cooling pipe 11B as the flat plate-like heat conductor and the flat plate-like heat conductor 16 as well.
  • This header structure is the CO 2 feed piping 13 shown in FIG. 4, the CO 2 return piping 14, the CO 2 feed piping 13a, 13b shown in FIG. 5, the CO 2 return piping 14a, 14b, the CO 2 shown in FIG.
  • the present invention can be applied to the feed pipes 51a and 51b, the CO 2 return pipes 52a and 52b, and the CO 2 feed pipe 53 and the CO 2 return pipe 54 shown in FIG.
  • FIG. 10 is a view showing a first configuration example of the header structure of the ice rink, (A) is a plan view, and (B) is a side view.
  • the header structure 60 in the first configuration example has subheaders 61 and 65 to which the plurality of cooling pipes 11B are connected, and main headers 81 and 82 to which the plurality of subheaders 61 and 65 are connected.
  • the cooling pipe 11B is connected to the CO 2 circulation circuit via the subheaders 61 and 65 and the main headers 81 and 82.
  • the header structure 60 returns the CO 2 brine returned from the cooling pipe 11B side back to the CO 2 circulation circuit, and the feed side main header 81 for sending the CO 2 brine from the CO 2 circulation circuit to the cooling pipe 11B side.
  • It has a side main header 82, a feed side subheader 61 connecting the feed side main header 81 and the cooling pipe 11B, and a return side subheader 65 connecting the cooling pipe 11B and the return side main header 82.
  • the feed side main header 81 and the return side main header 82 are adjacently arranged in parallel.
  • the feed side subheader 61 and the return side subheader 65 are arranged adjacent to and in parallel with each other.
  • a flexible pipe 63 is connected to the feed side main header 81 via a nozzle 64, and a feed side subheader 61 is connected to the flexible pipe 63.
  • the feed subheader 61 is provided with a plurality of sockets 62 at predetermined intervals.
  • the upstream end of the cooling pipe 11B is attached to the socket 62 and fixed by welding.
  • the return side subheader 65 is provided with a plurality of sockets 66 at predetermined intervals.
  • the downstream end of the cooling pipe 11B is attached to the socket 66 and fixed by welding.
  • the flexible pipe 67 is connected to the return side subheader 65, and the flexible pipe 67 is connected to the return side main header 82 via the nozzle 68.
  • the configuration of the ice link is, for example, that the waterproof layer 94, the heat insulating layer 93 and the concrete layer 92 are sequentially provided on the foundation concrete 95, and the cooling pipe 11B is disposed on the concrete layer 92. It will be set up. An ice plate 91 is formed above the cooling pipe 11B.
  • FIG. 11 is a view showing a second configuration example of the header structure of the ice rink
  • (A) is a front view
  • (B) is a plan sectional view
  • FIG. 12 is an overall view showing a second configuration example of the ice rink header structure.
  • the header structure 70 in the second configuration example has subheaders 71 and 75 to which the plurality of cooling pipes 11B are connected, and main headers 81 and 82 to which the plurality of subheaders 71 and 75 are connected.
  • the cooling pipe is connected to the CO 2 circulation circuit via 11 B, subheaders 71 and 75 and main headers 81 and 82.
  • the header structure 70 returns the CO 2 brine returned from the cooling pipe 11B side back to the CO 2 circulation circuit, and the feed side main header 81 that sends the CO 2 brine from the CO 2 circulation circuit to the cooling pipe 11B side. It has a side main header 82, a feed side subheader 71 connecting the feed side main header 81 and the cooling pipe 11B, and a return side subheader 75 connecting the cooling pipe 11B and the return side main header 82.
  • the feed side main header 81 and the return side main header 82 are adjacently arranged in parallel.
  • the feed side subheader 71 and the return side subheader 75 are arranged adjacent to and in parallel with each other.
  • the feed subheader 71 is provided with sockets 72 at predetermined intervals.
  • the cooling pipe 11B is attached to the socket 72 and fixed by welding.
  • the subheader 71 is provided with a connection pipe 73 for connecting to the main header 81.
  • the connection pipe 73 is formed of, for example, a flexible pipe, a nozzle, or the like.
  • the return side subheader 75 is provided with a socket 76 and a connection pipe 77.
  • a plurality of feed side subheaders 71 are connected to the feed side main header 81 via a connection pipe 73.
  • a plurality of feed side subheaders 75 are connected to the return side main header 82 via the connection pipe 77.
  • the plurality of cooling pipes 11B are not directly connected to the main headers 81 and 82, but the plurality of cooling pipes 11B are divided and connected to the subheaders 61, 65 or 71, 75.
  • the cooling pipe group is unitized by As a result, since it is only necessary to stop one cooling pipe unit without stopping the use of all the cooling pipes 11B when a failure occurs in the cooling pipes 11B, the operation of the refrigeration equipment can be continued. Further, at this time, only the cooling pipe unit in which the failure has occurred needs to be replaced, which facilitates maintenance and repair work.
  • cooling pipe 11B since the cooling pipe 11B is generally joined to the header by welding, welding a large number of cooling pipes 11B to the main headers 81, 82 may result in welding distortion and bending of the main headers 81, 82. According to this, since the cooling pipe 11B is welded to the subheaders 61, 65 or 71, 75 shorter than the main headers 81, 82, welding deformation can be suppressed to a small level. Further, by connecting the cooling pipe 11B to the subheaders 61, 65 or 71, 75, the construction becomes easy.
  • FIG. 13 is a view showing a bobbin for a cooling pipe, (A) is a plan view, and (B) is a side view.
  • the bobbin 85 for a cooling pipe is used when transporting the cooling pipe 11B of the microtube structure shown in FIGS.
  • the cooling tube bobbin 85 has a cylindrical winding body 86 and flanges 87 provided on both sides of the winding body 86.
  • the width of the winding barrel 86 is set to correspond to the major diameter of the cooling pipe 11B.
  • one cooling pipe 11B is wound around the winding drum 86 and transported.
  • the width of the winding drum 86 is set according to the width of the cooling pipe unit in which the plurality of cooling pipes 11B are connected to the subheaders 61 and 65, and the plurality of cooling pipes 11B are connected to the subheaders 61 and 65. It may be wound around the winding body 86 and transported.
  • FIG. 14 is a view showing an ice rink for curling which is an example of an ice rink to which the present embodiment is applied, (A) is a plan view, and (B) is a cross-sectional view taken along the line AA.
  • the ice ring 10A for curling does not have an enclosure such as speed skates, figure skates and ice hockey around the seat 41 where the competition takes place, and a divider 42 between the sheets 41 so that the stone does not jump onto the next seat. Is provided.
  • a wall (air curtain) 48 is formed around the ice rink 10A by the air flow of the lower blowing. ing.
  • an air supply duct 47 is disposed around the ice link 10A, and a blower 45 for supplying air to the air supply duct 47 and a heat exchanger 46 for cooling the air supplied from the blower 45 are provided. It is provided. At the top of the air supply duct 47, a slit 47a for ejecting an air flow is provided, and an air curtain 48 is formed around the ice link 30.
  • the air curtain 48 formed from the floor around the ice rink 10A to a certain height does not disturb the view from the spectator seat, so that the temperature of the ice plate 40 of the curling can be maintained uniform without disturbing the athlete and the spectator Is possible.
  • Example 1 thermal analysis is performed on the ice rink for skate provided with the cooling equipment according to the present embodiment, and the influence of the cooling pipe structure on the state of the ice sheet is verified.
  • thermal analysis was performed using thermal fluid analysis software SCRYU / Tetra for Windows Version 8 (manufactured by Cradle Co., Ltd., Windows is a registered trademark).
  • SCRYU thermal fluid analysis software
  • Tetra for Windows Version 8
  • FIG. 15 shows an overview of the analysis model.
  • the analysis model of condition 1 is shown on the left and the analysis model of condition 3 is shown on the right.
  • the analysis target is 100 mm in width, and assuming the same shape in the depth direction, the pseudo two-dimensional analysis was performed ignoring the thickness in the depth direction.
  • the analysis results show the cross-sectional view shown in FIG.
  • FIG. 16 shows a table of analysis conditions.
  • analysis conditions as shown in the table of FIG. 16, room temperature 15 ° C., underground temperature 10 ° C., cooling pipe temperature ⁇ 12 ° C. are set.
  • the heat conductivity in each layer is shown in FIG.
  • the punching metal a 100 mm pitch punching metal is installed so that holes are formed on both sides of the cooling pipe. Therefore, since there is no hole in the upper 50 mm of the cooling pipe, the heat conductivity of aluminum is set, and since the concrete enters the hole portion on both sides 25 mm with holes, the heat conductivity of aluminum and concrete is opened. We decided to set a value according to the ratio.
  • FIG. 18 shows the analysis result in the steady state.
  • the temperature of the water surface is 0 ° C. or higher (does not freeze) in any analysis result.
  • the temperature range of 0 ° C. which is the surface of ice in the steady state, is almost horizontal.
  • the condition 1 shows considerable unevenness, but as the condition 3 is reached, the temperature range becomes smooth. From the above, condition 1 is more likely to cause unevenness.
  • FIG. 19 compares how the 0 ° C. position (the position where ice is generated) has a difference (the height of unevenness) between the end and the center. The analysis result at that time is shown in FIG.
  • condition 1> condition 2> condition 3 it becomes difficult to make the unevenness of the ice. It is considered that this is because heat is uniformly diffused as the thermal conductivity of the member at the top of the cooling pipe is higher.
  • condition 3 that is a cooling pipe structure having a punching metal. Therefore, it became clear that it is possible to form a uniform ice disc by employ
  • the cooling pipe structure of the second configuration example in the present embodiment the cooling pipe has almost the same function as the first configuration example by having the microchannel structure, so it is possible to form a uniform ice plate also It is.
  • Example 2 thermal analysis is performed on the curling ice link provided with the cooling equipment according to the present embodiment, and the influence of the cooling pipe structure on the state of the ice sheet is verified.
  • thermal analysis was performed using thermal fluid analysis software SCRYU / Tetra for Windows Version 8 (manufactured by Software Inc., Cradle; Windows is a registered trademark).
  • SCRYU thermal fluid analysis software
  • Tetra for Windows Version 8 (manufactured by Software Inc., Cradle; Windows is a registered trademark).
  • the cooling pipe structure of the first configuration example shown in FIG. 4 is used.
  • a copper pipe is used for the cooling pipe
  • a punching metal made of an aluminum material is used for the flat heat conductor.
  • FIG. 21 shows an overview of the analysis model.
  • the analysis model of condition 1 is shown on the left, and the enlarged analysis model of conditions 4 and 5 is shown on the right.
  • condition 4 and condition 5 two conditions for analysis in which a punching metal is newly laid are described as condition 4 and condition 5.
  • the condition 4 is a condition in which a punching metal is laid on the sand and water layer in the condition 1
  • the condition 5 is a condition in which the cooling pipe pitch is changed from 100 mm to 200 mm in the condition 4.
  • the analysis targets of conditions 1 and 4 have a width of 100 mm and the analysis target of condition 5 has a width of 200 mm.
  • the depth direction has exactly the same shape, a quasi two-dimensional analysis in which the thickness in the depth direction is ignored is performed.
  • FIG. 22 shows a table of analysis conditions.
  • analysis conditions as shown in the table of FIG. 22, room temperature 15 ° C., underground temperature 10 ° C., cooling pipe temperature ⁇ 12 ° C. are set.
  • the thermal conductivity in each layer is shown in FIG.
  • 100 mm pitch punching metal is installed so that holes are provided on both sides of the cooling pipe. Therefore, since there is no hole in the upper 50 mm of the cooling pipe, the thermal conductivity of aluminum is set, and since the concrete enters the hole portion on both sides 25 mm with holes, the thermal conductivity of aluminum and concrete is opened. We decided to set a value according to the ratio.
  • the analysis results are shown below.
  • the analysis results in the steady state are shown in FIG. 24 to FIG. From the figure, it can be confirmed that the analysis result of the condition 4 is the lowest temperature, and subsequently, the condition 1 and the condition 5 have the same degree of cooling.
  • FIG. 27 shows the result of comparison of how much difference (height of unevenness) between the 0 ° C. position (the position where ice is generated) is at the end and the center. Further, FIG. 28 shows an analysis result of the condition 1. From the table of FIG. 27, it was found that the unevenness of the ice is hard to occur in the order of condition 4> condition 5> condition 1.
  • FIG. 29 shows the time until the temperature at the end of the analysis model reaches -4 ° C. From the table of FIG. It was confirmed that Condition 1 ⁇ Condition 5 was met.
  • condition 4 in the order of condition 4> condition 5> condition 1, it becomes difficult to make the unevenness of the ice. Also, it can be seen that freezing is performed rapidly in the order of condition 4> condition 1> condition 5. That is, condition 4 is the best, because heat is diffused more uniformly and quickly as the thermal conductivity of the member in the upper portion of the cooling pipe is higher. Even if it is doubled, it can maintain almost the same cooling rate as the condition (condition 1) in which the punching metal is not laid.
  • condition 4 In the cooling pipe structure of the second configuration example according to the present embodiment, the cooling pipe has almost the same function as the first configuration example by having the microchannel structure, so that the cooling rate can be kept high even if the pitch is expanded. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

【課題】氷の温度管理が容易で且つ冷却管の設置間隔に関わらずアイスリンクの均一な冷却が可能であるアイスリンクの冷却設備を提供する。 【解決手段】アイスリンク10の底部に複数の冷却管11を有する冷却管群1が配設され、該冷却管群1にCOブラインを通流させてアイスリンク10を冷却するアイスリンクの冷却設備100において、冷却管11の上面に平板状熱伝導体を有するとともに、冷却管1に接続されCOブラインが循環するCO循環回路3と、アンモニア冷媒が循環するアンモニア冷凍サイクルと、COブラインとアンモニア冷媒とを熱交換し、アンモニア冷媒によりCOブラインを冷却して再液化するカスケードコンデンサ211とを有する。

Description

アイスリンクの冷却設備
 本発明は、広い面積の被冷却エリアを擁するアイスリンクの冷却に用いられるアイスリンクの冷却設備に関する。
 一般に、アイススケートなどに利用されるアイスリンクには、リンク形成時の製氷又は氷温調整に用いられる冷却設備が併設されている。アイスリンクの冷却設備は、特許文献1(特開平09-303920号公報)等に開示されるように、アイスリンクの基盤となる床部に複数の冷却管を敷設し、この冷却管にブラインクーラ等の冷凍装置で冷却したブラインを循環させてアイスリンク内を冷却し、製氷又は氷温調整を行うようになっている。
 アイスリンクは広い面積の被冷却エリアを擁するため、アイスリンクの氷結状態を維持するには多数の冷却管を互いに近接して配置し、冷凍装置を常時駆動させ冷却管にブラインを循環させる必要があった。
 そこで、特許文献2(特開昭62-19668号公報)には、隣り合う冷却管同士の間に、内部に蓄冷剤が収容された保冷具なるパイプを配設して、蓄冷剤の潜熱を利用して氷結状態を維持するようにした構成が開示されている。これにより冷却管本数を低減でき、且つ冷却媒体の循環に伴う冷凍機の運転等のランニングコストを低減させることが可能となる。
 一般的にアイスリンクに配設される冷却管は、冷却管本数が多くなるなどの点からアイスリンクの幅方向に配設せずにアイスリンクの長さ方向に沿って100mm間隔で配設されることが多いが、上記した特許文献2のように隣り合う冷却管同士の間に蓄冷剤を使用する場合は、冷却管の間隔を100mm間隔以上にすることも可能である。
特開平09-303920号公報 特開昭62-19668号公報
 しかしながら、特許文献1に示される冷却設備では、例えば-9℃の~-12℃のブラインを冷却管に送り、顕熱を利用して氷の温度を-1℃~-5℃に保持する場合、冷却管へのブライン送り温度と還り温度の差として2℃程度の温度差が生じるため、冷却管温度を安定して保持することが難しく、アイスリンクの均一な製氷及び温度調整が困難であった。
 また、特許文献2に開示される冷却設備は、アイスリンクを氷結させた後で氷結状態を維持する場合に蓄冷剤の潜熱を利用して冷凍機の運転を長時間停止でき経済性を向上させているが、最初に氷結する場合に冷却管の周囲と蓄冷剤の周囲で潜熱の相違から氷の形成が不均一になる問題があり、また氷温調整も困難である。
 さらに、冷却管の間隔を100mm間隔以上に設定することで冷却管の本数を削減することも可能であるが、冷却管の間に蓄冷剤が収容された保冷具なるパイプを配設する必要があるため、冷却管の配設にはコストの増大が見込まれる。
 したがって本発明はかかる従来技術の課題に鑑み、氷の温度管理が容易で且つ冷却管の設置間隔に関わらずアイスリンクの均一な冷却が可能であるアイスリンクの冷却設備を提供することを目的とする。
 上記の課題を解決するために、本発明に係るアイスリンクの冷却設備は、アイスリンクの底部に複数の冷却管を有する冷却管群が配設され、該冷却管群にCOブラインを通流させて前記アイスリンクを冷却するアイスリンクの冷却設備において、前記冷却管の上面に平板状熱伝導体を有するとともに、前記冷却管に接続され前記COブラインが循環するCO循環回路と、アンモニア冷媒が循環するアンモニア冷凍サイクルと、前記COブラインと前記アンモニア冷媒とを熱交換し、前記アンモニア冷媒により前記COブラインを冷却して再液化するカスケードコンデンサとを有することを特徴とする。
 本発明によれば、冷却管内部を通流するCOブラインの冷熱が平板状熱伝導体を介してアイスリンクに伝わる構成としたため、伝熱面積を大きくすることができ、アイスリンクに略均一に冷熱を伝えることができるようになり、冷却管の配列間隔を従来より広くすることが可能となる。さらに、平板状熱伝導体により平面状になだらかな温度分布として被冷却領域を略均一に冷却できるため、アイスリンクの氷層厚さを均一にすることができる。
 また、本発明では、アンモニア冷凍サイクルにより再液化したCOブライン液を冷却管に通流し、主としてCOブライン液の蒸発潜熱で冷熱を生成するようにしており、CO循環回路の送りラインと戻りラインとの温度差がほとんど発生しないため、冷却管群全体を均一な温度とすることが可能で、温度調整が容易となる。
 さらに、アンモニア冷凍サイクルは蒸発温度を高くできるため、高効率な運転が可能となる。
 また、前記アンモニア冷凍サイクルは、前記アイスリンクの製氷用の主冷凍機と、前記主冷凍機と並列に接続されるCOブライン圧力上昇防止用の補助冷凍機とを含むことが好ましい。
 これは、アンモニア冷凍サイクルに主冷凍機のみが接続されている場合、氷温を満足していても、主冷凍機の停止中にCO循環回路でCOブラインガスの圧力が上昇するため圧力回収のみで主冷凍機を運転することになる。よって主冷凍機の大きなモーターが回ることで無駄な電力を消費することになる。
 そこで、新たに補助冷凍機を設け、この補助冷凍機によりCOブラインガスを再液化する構成とすることで、主冷凍機の大きなモータを回さずに済むため省エネルギー化が図れる。さらに、昇圧するCOブラインガスを補助冷凍機で回収することにより、アイスリンクの冷却管内のCOブライン液の温度を下げることができ、結果として氷温の上昇を遅らせることが可能となり、主冷凍機の運転間隔を延ばすことができるため、さらなる省エネルギー効果が期待できる。
 また、外気を利用して前記COブラインを冷却する空冷式CO再液化器を有することが好ましい。
 この空冷式CO再液化器は、COブラインを外気により冷却し且つ自然循環させる構成であるため、冷却設備のランニングコストを低減できる。さらにまた、主冷凍機と空冷式CO再液化器とを適宜切り替えて利用することが可能であるため、動力エネルギーの高効率化が図れる。
 また、前記アンモニア冷凍サイクルを含む第1の再液化ラインと、前記空冷式CO再液化器を含む第2の再液化ラインとが前記CO循環回路に並列に接続されており、前記第1の再液化ラインと前記第2の再液化ラインとを選択的に切り替える三方弁を備えることが好ましく、これにより状況に応じて最も効率的な再液化手段を選択可能となる。
 さらに、前記三方弁の切り替え制御を行う制御手段を備え、前記制御手段は、外気温度が予め設定された第1の温度しきい値以下である場合に前記COブラインが前記第2の再液化ラインを循環するように前記三方弁を制御し、外気温度が前記第1の温度しきい値以上に設定された第2の温度しきい値を超えた場合に、前記COブラインが前記第1の再液化ラインを循環するように前記三方弁を制御することが好ましい。
 このように、外気温度に応じて、空冷式CO再液化器が適用可能である場合には第2の再液化ラインを利用し、空冷式CO再液化器が適用できない場合には第1の再液化ラインを利用することによって、外気温度を最大限に利用し、動力コストを最小限に抑えることを可能とした。なお、第1の温度しきい値と第2の温度しきい値は同一であってもよい。
 また、前記平板状熱伝導体が前記冷却管とは別部材で構成され、前記平板状熱伝導体は、前記冷却管群の上面に接触した状態で配置されているとともに複数の孔部を有していることが好ましい。
 このように、冷却管とは別部材で構成される平板状熱伝導体が該冷却管群の上面に接触した状態で配置されている構成としたため、アイスリンクの床部を補強することが可能となる。特に、従来は床部の補強を目的として鉄筋等を敷設する場合があったが、本発明の平板状熱伝導体を配設することによりこの鉄筋等の補強構造を省略することもできる。
 さらに、冷却管群から平板状熱伝導体にCOブラインの冷熱が熱伝達され、熱伝導体を介してアイスリンクを冷却する構成としたため、冷却管と冷却管の間に、より均一に冷熱を伝えることができるようになる。
 また、冷却管構造の施工に際して、冷却管群と平板状熱伝導体を設置後コンクリートを打設する場合に、平板状熱伝導体の上部よりコンクリートを流し込むことで孔部を通って冷却管群の隙間までコンクリートが行き渡り、施工を容易にすることが可能である。さらにまたコンクリートによる埋設時に孔部により空気抜きを行なうことができる。
 さらに、前記平板状熱伝導体がパンチングメタルであることが好ましく、これにより強度を高く維持できる。
 さらにまた、前記平板状熱伝導体の孔部より大なる隙間を有し、前記平板状熱伝導体を挟んで前記冷却管に結束され、前記熱伝導体の上方から該熱伝導体を前記冷却管に向けて押圧する押さえ板を備えることが好ましい。
 これにより、平板状熱伝導体と冷却管との密着性が向上し、熱伝導効率を高く維持することができるとともに、これらを結束しているため平板状熱伝導体と冷却管とを確実に固定できる。特に、コンクリートを打設する場合に、冷却管が浮いて熱伝導性が損なわれることを防止できる。
 また、前記平板状熱伝導体が前記冷却管の上側管壁で構成され、前記冷却管は、前記上側管壁が平板状の扁平形状に形成され、前記COブラインが通流する複数の微小冷媒流路が設けられたマイクロチャンネル構造を有していることが好ましい。
 このように、平板状熱伝導体が冷却管の上側管壁で構成され、該冷却管が扁平形状に形成されたマイクロチャンネル構造を有していることにより、熱伝導体である冷却管とCOブラインとの伝熱面積が大きくなり、冷却効率を向上させることができる。
 さらに、複数の前記冷却管が接続されるサブヘッダと、複数の前記サブヘッダが接続されるメインヘッダとを有し、前記冷却管は、前記サブヘッダと前記メインヘッダとを介して前記CO循環回路に接続されていることが好ましい。
 本構成では、複数の冷却管を直接メインヘッダに接続せず、複数の冷却管を分割してサブヘッダに接続することにより冷却管群をユニット化している。これにより冷却管に不具合が生じた場合に、全ての冷却管の使用を停止することなく一つの冷却管ユニットを停止するのみでよいため、冷凍設備の運転を続行することができる。またこのとき、不具合が生じた冷却管ユニットのみを交換すればよいため、メンテナンスや補修作業が容易となる。
 また、一般に冷却管は溶接によりヘッダに接合されるため、メインヘッダに多数の冷却管を溶接すると溶接変形が積み重なりメインヘッダが曲がってしまう場合があるが、本構成によればメインヘッダよりも短いサブヘッダに冷却管を溶接するため溶接変形を小さく抑えることができる。さらに、サブヘッダに冷却管を接続する構成とすることにより、施工が容易となる。
 また、前記アイスリンクの少なくとも外周に、上方に向けて冷却空気を噴出してエアカーテンを形成する送気ダクトを設けることが好ましい。
 アイスリンク周囲の床部からある程度の高さまで形成されるエアカーテンは観客席からの視界を妨げることないので、競技者及び観客に支障なくアイスリンク氷盤の温度を均一に維持することが可能となり、特にカーリング用アイスリンクのように囲いがないアイスリンクに好適に適用できる。
 以上記載のように本発明によれば、冷却管内部を通流するCOブラインの冷熱が平板状熱伝導体を介してアイスリンクに伝わる構成としたため、伝熱面積を大きくすることができ、アイスリンクに略均一に冷熱を伝えることができるようになり、冷却管の配列間隔を従来より広くすることが可能となる。さらに、平板状熱伝導体により平面状になだらかな温度分布として被冷却領域を略均一に冷却できるため、アイスリンクの氷層厚さを均一にすることができる。
 また、本発明では、アンモニア冷凍サイクルにより再液化したCOブライン液を冷却管に通流し、主としてCOブライン液の蒸発潜熱で冷熱を生成するようにしており、CO循環回路の送りラインと戻りラインとの温度差がほとんど発生しないため、冷却管群全体を均一な温度とすることが可能で、温度調整が容易となる。
 さらに、アンモニア冷凍サイクルは蒸発温度を高くできるため、高効率な運転が可能となる。
本発明の第1実施形態に係るアイスリンクの冷却設備の全体構成図である。 本発明の第2実施形態に係るアイスリンクの冷却設備の全体構成図である。 本発明の第2実施形態の変形例に係るアイスリンクの冷却設備の全体構成図である。 アイスリンクの冷却管構造の第1構成例を示す図であり、(A)は斜視図で、(B-1)は側断面図で、(B-2)は別の構成例を示す側断面図である。 図4に示すアイスリンクの冷却管構造の変形例を示す斜視図である。 アイスリンクの冷却管構造の第2構成例を示す斜視図である。 マイクロチャンネル構造を有する冷却管を示す断面図である。 図6に示すアイスリンクの冷却管構造の変形例を示す斜視図である。 図6に示すアイスリンクの冷却管構造の他の変形例を示す斜視図である。 アイスリンクのヘッダ構造の第1構成例を示す図であり、(A)は平面図で、(B)は側面図である。 アイスリンクのヘッダ構造の第2構成例を示す図であり、(A)は正面図で、(B)は平断面図である。 アイスリンクのヘッダ構造の第2構成例を示す全体図である。 冷却管用ボビンを示す図であり、(A)は平面図で、(B)は側面図である。 カーリング用アイスリンクを示す図であり、(A)は平面図で、(B)はA-A矢視の断面図である。 実施例1の解析モデル概観図である。 実施例1の解析条件を示す表である。 実施例1における各層での熱伝導率を示す表である。 実施例1における各条件での定常状態の解析結果を示す図である。 実施例1における各条件の凹凸の高さを示す表である。 実施例1における各条件での非定常状態の解析結果を示す図である。 実施例2の解析モデル概観図である。 実施例2の解析条件を示す表である。 実施例2における各層での熱伝導率を示す表である。 実施例2における条件1での定常状態の解析結果を示す図である。 実施例2における条件4での定常状態の解析結果を示す図である。 実施例2における条件5での定常状態の解析結果を示す図である。 実施例2における各条件の凹凸の高さを示す表である。 実施例2における条件1での非定常状態の解析結果を示す図である。 実施例2において端の温度が-4℃となるまでの時間を示す表である。
 以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
(冷却設備の第1実施形態)
 図1は本発明の第1実施形態に係るアイスリンクの冷却設備の全体構成図である。
 本第1実施形態に係るアイスリンクの冷却設備100は、主に、複数の冷却管11を含む冷却管群1と、CO循環回路3およびアンモニア冷凍サイクルを含む冷凍装置2とを備える。なお、本実施形態に適用できるアイスリンク10は、スケートリンク、カーリング用リンク、アイスホッケー用リンク等のアイスリンク全般である。
 冷却管群1は、アイスリンク10の底部(床部)に複数配設され、上面に平板状熱伝導体を有する冷却管11を含み、冷却管11内を冷却媒体であるCOブライン液が通流する。該冷却管群1内を通流するCOブライン液の蒸発潜熱を利用してアイスリンク10を冷却し、アイスリンク10の水を氷結させて氷を形成したり、氷結した氷の温度調整を行う。この冷却管群1および平板状熱伝導体の具体的な構成は後述する。
 冷凍装置2は、前記冷却管11に接続され、COブラインが循環するCO循環回路3と、主冷凍機212および補助冷凍機223を含み、アンモニア冷媒が循環するアンモニア冷凍サイクルと、COブラインとアンモニア冷媒とを熱交換し、アンモニア冷媒によりCOブラインを冷却して再液化するカスケードコンデンサ211とを有する。
 CO循環回路3は、CO受液器20から冷却管群1にCOブライン液を送るCO送りライン3Aと、冷却管群1から排出されるCOブラインの気液混合体をCO受液器20に戻すCO戻りライン3Bとから構成される。さらに、CO送りライン3A上には、COブライン液を圧送するCO液ポンプ21Pが設けられている。
 CO受液器20の下部にはCO循環回路3のCO送りライン3Aが接続され、該CO送りライン3Aを介してCO受液器20からCOブライン液が冷却管群1に給送される。冷却管群1を通り一部ガス化され気液混合体となったCOブラインは、CO受液器20の上部に接続されたCO戻りライン3Bを介してCO受液器20に戻る。
 また、CO受液器20の上部には再液化ライン29が接続されている。CO受液器20からのCOブラインガスは再液化ライン29を通って再液化され、COブライン液はCO受液器20に戻る。
 再液化ライン29は、CO受液器20からのCOブラインがカスケードコンデンサ211に導入され、カスケードコンデンサ211にてCOブラインがアンモニア冷媒により冷却された後CO受液器20に戻る。
 アンモニア冷凍サイクルは、カスケードコンデンサ211と凝縮器214との間に、主冷凍機212と補助冷凍機223とが並列に接続されており、これらが切り替えられていずれか一方の冷凍機によってアンモニア冷媒を冷却するようになっている。
 具体的には、アンモニア冷凍サイクルは、カスケードコンデンサ211と、圧縮機である主冷凍機212および補助冷凍機223と、凝縮器214と、アンモニア高圧受液器215と、膨張弁216とが順に配置された閉回路を形成して構成されている。
 カスケードコンデンサ211でCOブラインの熱により蒸発したアンモニア冷媒ガスは主冷凍機212または補助冷凍機223で圧縮され、高温高圧のアンモニア冷媒ガスは凝縮器214で冷却されて凝縮し、液化したアンモニア冷媒液はアンモニア高圧受液器215に貯留され、アンモニア高圧受液器215のアンモニア冷媒液は適宜膨張弁216に送られてここで膨張され、低圧のアンモニア冷媒液はカスケードコンデンサ211に送られてCOブラインガスの冷却に用いられる。なお、凝縮器214には、密閉式冷却塔217で冷却された温ブラインがポンプ218により循環するようになっている。
 ここで、主冷凍機212は、主にアイスリンク10の製氷に用いられる冷凍機であり、大負荷に対応可能な冷凍機である。なお、主冷凍機212は、製氷後のアイスリンク使用時初期の氷冷やし込みの際にも用いられる。
 一方、補助冷凍機223は、主冷凍機212の運転停止時に作動し、主にCOブラインの圧力上昇防止に用いられる冷凍機であり、小負荷に対応可能な冷凍機である。この補助冷凍機223の吐出ガスラインには、高圧圧力調整弁225が設けられている。
 また、氷温によって主冷凍機212及び補助冷凍機223の作動と停止が切り替えられる構成を有していてもよい。この場合、常時アイスリンク10の氷温を温度検出手段で検出しておき、アイスリンクの氷温が予め設定された切替温度しきい値以上である場合には主冷凍機212を作動させて補助冷凍機223を停止し、切替温度しきい値未満である場合には主冷凍機212を停止して補助冷凍機223を作動させる。
 さらに、アイスリンク10の床下地盤にはヒーティングパイプ30が敷設されていることが好ましい。ヒーティングパイプ30は、冷却管群1の冷熱により床下地盤が凍結して床部が隆起することを防止する(凍上防止)ために設置される。ヒーティングパイプ30には、主冷凍機212の廃熱を利用して加温された温ブラインが通流するようになっている。この温ブラインは温ブラインタンク31に貯留され、ヒーティングパイプ20を循環する。温ブラインタンク31内の温ブラインは、温ブライン循環ポンプ33により温ブライン循環ライン32を介してヒーティングパイプ30に送られ、該循環ライン32を介して温ブラインタンク31に戻る。
 次に、上記した構成を備えるアイスリンクの冷却設備100の作用を説明する。
 アイスリンク10の製氷時、アンモニア冷凍サイクルにおいては、カスケードコンデンサ211でCOブラインと熱交換して蒸発したアンモニア冷媒ガスは主冷凍機212で圧縮される。そして高温高圧のアンモニア冷媒ガスは凝縮器214で冷却されて凝縮する。凝縮により液化したアンモニア冷媒液はアンモニア高圧受液器215を介して膨張弁216に送られ、膨張弁216で膨張して低圧のアンモニア冷媒液となる。この低圧のアンモニア冷媒液はカスケードコンデンサ211に送られてCOブラインガスの冷却に用いられる。
 カスケードコンデンサ211でアンモニア冷媒により冷却され再液化したCOブライン液は、CO受液器20に貯留される。CO受液器20の-8℃程度のCOブライン液は、CO液ポンプ21PによりCO送りライン3Aを通ってアイスリンク10に配設された冷却管群1に送られる。冷却管群1に送られたCOブライン液は、氷を冷却して、ほぼ-8℃程度の温度の一部に気体を含む液、すなわちCOブラインの気液混合体としてCO戻りライン3Bを通ってCO受液器20に戻る。
 一方、アイスリンク製氷後の氷維持に際しては、アンモニア冷凍サイクルにおいては、アンモニア冷媒ガスは補助冷凍機223で圧縮される。そして、上記の製氷時と同様にアンモニア冷媒によりCOブラインを再液化し、このCOブラインにより冷却管群1を冷却して氷温度を維持する。
 このように本第1実施形態によれば、冷却管群1ではCOブライン液の蒸発潜熱を利用して氷を冷却するため、CO送りライン3Aを通って給送されたCOブライン液の温度と、CO戻りライン3Bを通ってCO受液器20に戻るCOブライン気液混合体の温度にはほとんど温度差が発生せず、冷却管群1全体を均一な温度とすることが可能で、安定した温度調整が容易に行える。
 さらに、アンモニア冷凍サイクルは蒸発温度を高くできるため、高効率な運転が可能となる。
 また、アイスリンク10の製氷時には主冷凍機212を運転し、製氷時以外には補助冷凍機223に切り替えて運転することにより、省エネルギー化が可能となる。
 特に、上記したように氷温によって主冷凍機212及び補助冷凍機223の作動と停止が切り替えられる構成とすることにより、さらなる省エネルギー効果が得られる。これは、アンモニア冷凍サイクルに主冷凍機212のみが接続されている場合、氷温を満足していても、主冷凍機212の停止中にCOブラインガスの圧力が上昇するため圧力回収のみで主冷凍機212を運転することになる。よって主冷凍機212の大きなモーターが回ることで無駄な電力を消費することになる。
 そこで、本第1実施形態に示すように新たに補助冷凍機223を設け、この補助冷凍機223によりカスケードコンデンサ211を冷却し、COブラインガスを再液化する構成とすることで、主冷凍機212の大きなモータを回さずに済むため省エネルギー化が図れる。さらに、昇圧するCOブラインガスを補助冷凍機223で回収することにより、アイスリンク10の冷却管11内のCOブライン液の温度を下げることができ、結果として氷温の上昇を遅らせることが可能となり、主冷凍機212の運転間隔を延ばすことができるため、さらなる省エネルギー効果が期待できる。
 また、補助冷凍機223の吐出ガスラインに、顕熱回収用熱交換器224を設けることが好ましい。この熱交換器224は、補助冷凍機223の吐出ガスと氷上整備用の温水とを熱交換するものである。氷上整備用の温水は、温水タンク226に貯留されており、ポンプ227により熱交換器224を循環し、補助冷凍機223の吐出ガスの排熱を用いて加温されるようになっている。補助冷凍機223は運転時間が比較的長くなることから、この排熱で加温される温水は少量であっても安定して回収することが可能となる。
 さらにまた、本第1実施形態に係る冷却設備100は、主冷凍機212の油冷却器240から廃熱回収を行う構成を有していてもよい。
 油冷却器240は、主冷凍機212に冷凍機油を循環させるものである。さらに本構成では、この油冷却器240にて、主冷凍機212から返送される高温の冷凍機油と低温の温ブラインとを熱交換して廃熱を回収する。
 具体的に油冷却器240には、温ブライン送りライン244と温ブライン戻りライン245とを有する温ブライン循環ラインが接続されている。温ブライン送りライン244は、温ブラインタンク31から油冷却器240に温ブラインを送るラインである。温ブライン戻りライン245は、油冷却器240から温ブラインタンク31に温ブラインを戻すラインである。温ブラインタンク31から温ブライン送りライン244を通って油冷却器240に導入された温ブラインは、冷凍機油の廃熱により加温された後、温ブライン戻りライン245を通って温ブラインタンク31に戻される。なお、温ブラインタンク31に貯留される温ブラインは、温ブライン循環ライン32を介してヒーティングパイプ30に送られ、ここで、アイスリンク10の凍上防止に用いられる。
 さらに、上記構成に加えて、凝縮器214を循環する温ブラインも主冷凍機212の廃熱回収に用いることができる。この場合、温ブライン送りライン244は、三方弁241を介して、密閉式冷却塔217から凝縮器214に温ブラインを返送する温ブライン戻りライン217bに接続されている。一方、温ブライン戻りライン245は、三方弁242を介して、凝縮器214から密閉式冷却塔217に温ブラインを送る温ブライン送りライン217aに接続されている。三方弁242と温ブライン送りライン217aとの間には、三方弁242から温ブライン送りライン217aに向かう方向のみ温ブラインを流す逆止弁243が設けられている。この構成では、三方弁241、242を切り替えることにより、油冷却器240を循環する温ブラインの供給源が、温ブラインタンク31から密閉式冷却塔217に切り替わることとなる。
 一般に、主冷凍機212の吐出ガスからの顕熱回収には新たに熱交換器を設置する必要があるが、上記したように、主冷凍機212の油冷却器240から温水回収を行う構成とすることにより、新たに熱交換器を設置する必要がなく、三方弁を取り付けるだけで熱回収が可能となるため、コストの低減が可能である。
 なお、アンモニア冷凍サイクルでは、油冷却器240による廃熱回収の替わりに、主冷凍機212の吐出ガスの顕熱を利用して温ブラインを加温する熱交換器を有していてもよい。この構成については第2実施形態で詳述する。
(冷却設備の第2実施形態)
 図2は本発明の第2実施形態に係るアイスリンクの冷却設備の全体構成図である。なお、本第2実施形態において、上記の第1実施形態と同一の構成についてはその詳細な説明を省略する。
 本第2実施形態に係るアイスリンクの冷却設備100は、主に、複数の冷却管11を含む冷却管群1と、CO循環回路3およびアンモニア冷凍サイクルを含む冷凍装置2とを備える。
 CO循環回路3には、CO受液器20が接続されている。
 CO受液器20の下部にはCO循環回路3のCO送りライン3Aが接続され、該CO送りライン3Aを介してCO受液器20からCOブライン液が冷却管群1に給送される。冷却管群1を通り一部ガス化され気液混合体となったCOブラインは、CO受液器20の上部に接続されたCO戻りライン3Bを介してCO受液器20に戻る。
 また、CO受液器20の上部には第1の再液化ライン21及び第2の再液化ライン22が並列に接続され、CO受液器20からCOブラインガスがこれらの再液化ライン21、22を通ってそれぞれ再液化され、COブライン液はCO受液器20に戻る。
 第1の再液化ライン21は、主冷凍機212を含むアンモニア冷凍サイクルで冷却されたアンモニア冷媒によりCOブラインを冷却するカスケードコンデンサ211が介装されている。
 ここでアンモニア冷凍サイクルは、カスケードコンデンサ211と、圧縮機である主冷凍機212と、水冷式凝縮器214と、アンモニア高圧受液器215と、膨張弁216とが順に配置された閉回路を形成して構成されている。カスケードコンデンサ211でCOブラインの熱により蒸発したアンモニア冷媒ガスは主冷凍機212で圧縮され、高温高圧のアンモニア冷媒ガスは凝縮器214で冷却されて凝縮し、液化したアンモニア冷媒液はアンモニア高圧受液器215に貯留され、アンモニア高圧受液器215のアンモニア冷媒液は適宜膨張弁216に送られてここで膨張され、低圧のアンモニア冷媒液はカスケードコンデンサ211に送られてCOブラインガスの冷却に用いられる。
 なお、水冷式凝縮器214には、冷却塔217で冷却された冷却水が冷却水ポンプ218により循環するようになっている。
 また、アンモニア冷凍サイクルは、主冷凍機212の吐出ガスの顕熱を利用して温ブラインを加温する熱交換器213を有していることが好ましい。この熱交換器213については後述する。
 第2の再液化ライン22は、屋外に設置されており、外気を利用してCOブラインを冷却する空冷式CO再液化器221が介装されている。空冷式CO再液化器221は、COブラインが通流する配管を、ファンにより形成した外気の空気流にて冷却してCOブラインを冷却、再液化する装置である。この空冷式CO再液化器221はCOブラインガスを再液化することを目的としているため、外気温度がCOブラインガスを再液化する温度以下である場合に用いられる。好適には、外気温度が-10℃以下であるときに用いられる。
 上記した第1の再液化ライン21と第2の再液化ライン22とはCO受液器20に並列に接続され、三方弁24により第1の再液化ライン21と第2の再液化ライン22とを選択的に切り替えるように構成することが好ましい。
 具体的には、第1の再液化ライン21は、CO受液器20の上部に接続され、COブラインガスが送給される再液化送り主ライン23と、該主ライン23から分岐してカスケードコンデンサ211に接続される再液化分岐第1ライン21aと、カスケードコンデンサ211からCO受液器20に接続される再液化戻り第1ライン21bとから構成される。一方、第2の再液化ライン22は、前記再液化送り主ライン23と、該主ライン23から分岐して空冷式CO再液化器221に接続される再液化分岐第2ライン22aと、空冷式CO再液化器221からCO受液器に接続される再液化戻り第2ライン22bとから構成される。
 そして、主ライン23と、分岐第1ライン21a及び分岐第2ライン22aとの間に三方弁24が介装されている。
 分岐第1ライン21aと分岐第2ライン22aとの切り替えは、コントローラ25により制御される。このとき、コントローラ25は、温度測定手段27で測定された外気温度が予め設定された第1の温度しきい値以下である場合に、COブラインが第2の再液化ライン22を循環するように三方弁24を制御し、外気温度が前記第1の温度しきい値以上に設定された第2の温度しきい値を超えた場合に、COブラインが第1の再液化ライン21を循環するように三方弁24を制御することが好ましい。なお、第1の温度しきい値と第2の温度しきい値とは同一であってもよい。さらに好ましくは、第1の温度しきい値を-10℃以下に設定するとよく、これによりCOブラインガスを適切に再液化することができる。
 また、上記した構成に加えて、氷温によって主冷凍機212の作動と停止が切り替えられる構成を有していてもよい。この場合、常時アイスリンク10の氷温を温度検出手段で検出しておき、アイスリンク10の氷温が予め設定された切替温度しきい値以上である場合には主冷凍機212を作動させ、切替温度しきい値未満である場合には主冷凍機212を停止させる。これにより動力コストを抑えることができる。
 次に、上記した構成を備えるアイスリンクの冷却設備100の作用を説明する。なお、以下に示す温度は一例である。
 温度測定手段27で測定された外気温度はコントローラ25に入力され、外気温度がコントローラ25に予め設定されている第2の温度しきい値(例えば-10℃)を超える場合は、COブラインが第1の再液化ライン21を循環するようにコントローラ25により三方弁24を制御する。
 第1の再液化ライン21に設定された冷凍装置2では、該冷凍装置2からCO液ポンプ21Pにより給送された-8℃程度のCOブライン液は、CO送りライン3Aを通ってアイスリンク10に配設された冷却管群1に送られる。冷却管群1に送られたCOブライン液は、氷を冷却して、ほぼ-8℃程度の温度の一部に気体を含む液、すなわちCOブラインの気液混合体としてCO戻りライン3Bを通ってCO受液器20に戻る。冷却管群1ではCOブライン液の蒸発潜熱を利用して氷を冷却するため、CO送りライン3Aを通って給送されたCOブライン液の温度と、CO戻りライン3Bを通ってCO受液器20に戻るCOブライン気液混合体の温度にはほとんど温度差が発生せず、氷の温度調整を安定して行なえる。
 CO受液器20に戻ってきたCOブライン気液混合体のうち、主にCOブラインガスは再液化送り主ライン23、再液化分岐第1ライン21aを通ってカスケードコンデンサ211に送られ、ここでアンモニア冷凍サイクルにより冷却されたアンモニア冷媒によって冷却され、再液化する。再液化したCOブライン液は再液化戻り第1ライン21bを通ってCO受液器20に戻る。このように、COブラインは第1の再液化ライン21を循環することによって再液化される。
 コントローラ25に入力される外気温度が第1の温度しきい値(例えば-10℃)以下となったら、COブラインが第2の再液化ライン22を循環するようにコントローラ25により三方弁24を切り替え制御する。
 第2の再液化ライン22に設定されたら、アンモニア冷凍サイクルの主冷凍機212を停止して、CO受液器20からのCOブライン液を再液化送り主ライン23、再液化分岐第2ライン22aを介して空冷式CO再液化器221に送る。空冷式CO再液化器221で外気により冷却され、再液化したCOブライン液は再液化戻り第2ライン22bを通って自然循環によりCO受液器20に戻る。このように、第2の再液化ライン22では、COブラインを外気により冷却し且つ自然循環させているため、冷凍機の駆動動力やポンプ動力が不要となり、アイスリンク10の製氷又は氷温度維持におけるランニングコストを低減できる。
 また、本第2実施形態では、第1、第2の再液化ライン21、22で再液化したCOブライン液を冷却管群1に通流し、主としてCOブライン液の蒸発潜熱で冷熱を生成するようにしており、CO循環回路3の送りライン3Aと戻りライン3Bとの温度差がほとんど発生しないため、冷却管群1全体を均一な温度とすることが可能で、温度調整が容易となる。
 さらに、第1の再液化ライン21に用いられるアンモニア冷凍サイクルは蒸発温度を高くできるため、高効率な運転が可能となる。
 さらにまた、第2の再液化ライン22に介装された空冷式CO再液化器221は、自然循環によりCOブラインを外気により冷却し且つ自然循環することによって再液化されるため、ランニングコストを低減できる。
 また、第1の再液化ライン21と前記第2の再液化ライン22とを選択的に切り替える三方弁24を備えることにより、状況に応じて最も効率的な再液化手段を選択可能となる。
 さらに、外気温度に応じて、空冷式CO再液化器221が適用可能である場合には第2の再液化ライン22を利用し、空冷式CO再液化器221が適用できない場合には第1の再液化ライン21を利用することによって、外気温度を最大限に利用し、動力コストを最小限に抑えることを可能とした。
 また、アイスリンク10の床下地盤にはヒーティングパイプ30が敷設されていることが好ましい。ヒーティングパイプ30は、前記冷却管群1の冷熱により床下地盤が凍結して床部が隆起することを防止する(凍上防止)ために設置される。ヒーティングパイプ30には、熱交換器213にて主冷凍機212の吐出ガスの顕熱を利用して加温された温ブラインが通流するようになっている。具体的には、熱交換器213で加温された温ブラインは温ブラインタンク31に貯留され、温ブライン循環ポンプ33により温ブライン循環ライン32を介してヒーティングパイプ30に送られ、該循環ライン32を介して熱交換器213に戻り、ここで再び加温されて温ブラインは温ブラインタンク31に貯留される。このように、ヒーティングパイプ30の温ブラインの加温に主冷凍機212の吐出ガスの顕熱を利用することにより、エネルギ効率を向上させランニングコストを削減することが可能となる。
 また、第2の再液化ライン22に、小型のCO再液化冷凍機28を接続してもよい。該CO再液化冷凍機28は補助的に用いられる冷凍機であって、アイスリンク10の休業日またはシーズンオフのときにCOブラインの再液化を行なう。アイスリンク10の休業日においては、スケーターや競技者及び照明等による熱負荷がないので氷の温度を維持する負荷も小さく、アンモニア冷凍サイクルや空冷式CO再液化器221を含む冷凍装置2を停止して、このCO再液化冷凍機28及びCO液ポンプ21Pを稼動するだけで氷盤を維持することができる。
 シーズンオフにおいては、冷凍装置2を稼動してカスケードコンデンサ211で液化することによりアイスリンク10の冷却管群1に残留するCOブラインのほとんどをCO受液器20に回収する。シーズンオフ中は、CO再液化冷凍機28のみを稼動してCO受液器20の圧力を一定の圧力以下に保持する。
 図3は、本発明の第2実施形態の変形例に係るアイスリンクの冷却設備の全体構成図である。この変形例では、第1の再液化ライン21における水冷式凝縮器214の代替として蒸発式凝縮器230を用いた構成としている。
 蒸発式凝縮器230は、アンモニア冷凍サイクルの主冷凍機212とアンモニア高圧受液器215の間に設置され、好適には屋外に設置される。
 この蒸発式凝縮器230は、縦置きダクト231の上部にファン232が設置され、下部に形成した空気吸込口233より外気を取り込み、上部より排出するように構成されている。ダクト231内部にはアンモニア冷媒が通流する冷媒管コイル235が配設され、該冷媒管コイル235の上部には水噴霧ノズル234が設置されている。冷媒管コイル235内を通流するアンモニア冷媒は、冷却媒体である外気との間で熱交換を行い冷媒を冷却凝縮させるとともに、冷媒管コイル235の外側表面を水噴霧ノズル234から噴霧する水で濡らしこれを外気流にさらすことにより水の蒸発潜熱を利用して冷媒の冷却を促進するようにしている。
 さらに好適には、蒸発式凝縮器230と空冷式CO再液化器とを一体化した構成とするとよい。具体的には、蒸発式凝縮器230の空気吸込口233に、COブライン液が通流する配管236を設置し、該配管236を第2の再液化ライン22に接続する。これにより、装置の設置面積を削減できるとともに、第1の再液化ライン21と第2の再液化ライン22とを同時に駆動する場合には、ファン232を共通化できるため動力コストを削減できる。
(冷却管構造の構成例)
 図4は、アイスリンクの冷却管構造の第1構成例を示す図であり、(A)は斜視図で、(B-1)は側断面図で、(B-2)は別の構成例を示す側断面図である。なお、図4(A)において、冷却管11Aの形状、配置をわかりやすくするため、冷却管群1Aの上面に設置される平板状熱伝導体16は一部省略して図示している。
 図4(A)に示すように、アイスリンク10の床部には冷却管群1Aが敷設されている。冷却管群1Aは、アイスリンク10の長辺方向に沿って配置された複数の直線状冷却管(以下、直管と称する)11Aと、隣り合う直管11A同士を一側端部で連結する屈曲管12とを有する。直管11Aは、所定間隔を隔ててそれぞれ平行に配列されている。
 また、屈曲管12とは異なる側の端部には、複数の直管11Aに接続されるCO送り配管(ヘッダ)13と、CO戻り配管(ヘッダ)14とが配設されている。CO送り配管13は、上記したCO液送りライン3Aに接続され、CO戻り配管14はCO液戻りライン3Bに接続されている。
 そして、冷却管群1Aを構成する複数の直管11Aは、少なくともその天部が平面状になるように配列されており、この冷却管群1Aの上面に接触した状態で平板状熱伝導体16が配置されている。
 図4(B-1)に示すように、冷却管群1Aの上面には、該冷却管群1Aに接触した状態で平板状熱伝導体16が配置されている。この平板状熱伝導体16は、熱伝導率が高く且つ強度が高い材質で形成されており、例えば、銅、アルミ等の金属材料が用いられる。
 また、平板状熱伝導体16は、複数の孔部16aが形成されていることが好ましく、例えば、パンチングメタル、メッシュ状メタルが用いられる。これは、冷却管構造の施工に際して、冷却管群1Aと平板状熱伝導体16を設置後コンクリートを打設する場合に、平板状熱伝導体16の上部よりコンクリートを流し込むことで孔部16aを通って冷却管群1Aの隙間までコンクリートが行き渡り、施工を容易にするためであるとともに、コンクリートによる埋設時に孔部16aが空気抜きの役割を担う。
 なお、平板状熱伝導体16は、冷却管群1Aの上面(天部)に接触した状態で配置されていればよく、特に熱伝導体16と冷却管群1Aとが固定されている必要はないが、施工時にこれらが離れてしまうことを防止するため、予め熱伝導体16と冷却管群1Aを一体に形成してもよいし、結束部材(図示略)でこれらを結束して固定してもよい。
 このように、冷却管群1Aから平板状熱伝導体16にCOブラインの冷熱が熱伝達され、熱伝導体を介してアイスリンク10を冷却する構成としたため、冷却管11Aと冷却管11Aの間にも均一に冷熱を伝えることができるようになり、冷却管11Aの配列間隔を従来より広くすることが可能となる。例えば、冷却管の間隔が100mm程度であった従来のアイスリンクに適用することで、冷却管の間隔を従来の2倍の200mm程度まで拡げることが可能である。
 さらに、平板状熱伝導体16により平面状になだらかな温度分布として被冷却領域を略均一に冷却できるため、アイスリンク10の氷層厚さを均一にすることができる。また、冷却管群1A上面に平板状熱伝導体16を配設したため、アイスリンク10の床部を補強することが可能となる。特に、従来は床部の補強を目的として鉄筋等を敷設する場合があったが、本実施形態の平板状熱伝導体16を配設することによりこの鉄筋等の補強構造を省略することもできる。
 図4(B-2)は上記とは別の構成例を示す冷却管構造である。これは平板状熱伝導体16の上面に、平板状熱伝導体16の孔部16aより大なる隙間17aを有する押さえ板17を配置し、結束部材18により平板状熱伝導体16を挟んで押さえ板17と冷却管11Aとを結束した構成としている。
 このように、押さえ板17を設置することにより、平板状熱伝導体16と冷却管11Aとの密着性が向上し、熱伝導効率を高く維持することができるとともに、これらを結束しているため平板状熱伝導体16と冷却管11Aとを確実に固定できる。特に、コンクリートを打設する場合に、冷却管11Aが浮いて熱伝導性が損なわれることを防止できる。なお、孔部16aより大なる隙間17aは、孔部16aと同様に、コンクリート打設時にコンクリートを底部まで通過させるため、及びコンクリート打設後の空気抜きのために設けられているものである。
 図5は、図4に示すアイスリンクの冷却管構造の変形例を示す斜視図である。
 この冷却管構造では、複数の直管11Aの一側にはCO送り配管13aが接続され、これら複数の直管11Aの他側にはCO戻り配管14aが接続されている。また、他の複数の直管11Aの一側にはCO送り配管13bが接続され、これら他の複数の直管11Aの他側にはCO戻り配管14bが接続されている。ここで、CO送り配管13aとCO戻り配管14b、および、CO送り配管13bとCO戻り配管14aはそれぞれ同じ側に配置されている。
 そして、CO循環回路3から送給されるCOブラインは、CO送り配管13a、13bから直管11Aに導入され、該直管11Aを通ってCO戻り配管14a、14bを介してCO循環回路3に戻されるようになっている。
 なお、図5においても図4(B-1)、(B-2)と同様の構造を採用できることは勿論である。
 図6は、アイスリンクの冷却管構造の第2構成例を示す斜視図である。
 図6に示すように、アイスリンク10の床部には冷却管群1Bが敷設されている。冷却管群1Bは、アイスリンク10の長辺方向に沿って配置されており、複数の冷却管11Bが所定間隔を隔ててそれぞれ平行に配列されて構成されている。
 また、複数の冷却管11Bの一側にはCO送り配管51aが接続され、これら複数の冷却管11Bの他側にはCO戻り配管52aが接続されている。また、他の複数の冷却管11Bの一側にはCO送り配管51bが接続され、これら他の複数の冷却管11Bの他側にはCO戻り配管52bが接続されている。ここで、CO送り配管51aとCO戻り配管52b、および、CO送り配管51bとCO戻り配管52aはそれぞれ同じ側に配置されている。
 そして、CO循環回路3から送給されるCOブラインは、CO送り配管51a、51bから冷却管11Bに導入され、該冷却管11Bを通ってCO戻り配管52a、52bを介してCO循環回路3に戻されるようになっている。
 ここで、図7を用いて冷却管11Bの構成を詳細に説明する。図7は、マイクロチャンネル構造を有する冷却管を示す断面図である。
 冷却管11Bは、上側管壁が平板状の扁平形状に形成され、COブラインが通流する複数の微小冷媒流路が設けられたマイクロチャンネル構造を有している。この上側管壁により平板状熱伝導体が構成されている。冷却管11Bの材料には熱伝導性の高い材料が用いられ、好適にはアルミニウム材が用いられる。冷却管11Bは、例えば押し出し成形により作製され、さらに腐食防止用の表面処理を施していることが好ましい。
 図7(A)に示す冷却管11B-1は、外形が扁平形状に形成され、内部に複数の微小冷媒流路111を有している。微小冷媒流路111は、断面が円形状に形成されている。この微小冷媒流路111は、冷却管11B-1の内部に所定間隔で複数並列に設けられている。
 図7(B)に示す冷却管11B-2は、外形が扁平形状に形成され、内部に複数の微小冷媒流路112を有している。微小冷媒流路112は、断面が円形状に形成されている。この冷却管11B-2は、上記した図7(A)の冷却管11B-1より小径の微小冷媒流路112がより多数設けられている。
 図7(A)の冷却管11B-1および図7(B)の冷却管11B-2においては、微小冷媒流路111、112の断面が円形状に形成されているため、耐圧性をより高くすることができる。
 図7(C)に示す冷却管11B-3は、外形が扁平形状に形成され、内部に複数の微小冷媒流路113を有している。微小冷媒流路113は、断面が略方形状に形成されている。微小冷媒流路113は、冷却管11B-3の内部に所定間隔で複数並列に設けられている。図7(C)の冷却管11B-3においては、微小冷媒流路113の断面が略方形状に形成されているため、伝熱面積を大きくすることができ、冷却効率をより高くすることができる。
 本第2構成例によれば、平板状熱伝導体が冷却管11Bの上側管壁で構成され、該冷却管11Bが扁平形状に形成されたマイクロチャンネル構造を有していることにより、熱伝導体である冷却管11BとCOブラインとの伝熱面積が大きくなり、冷却効率を向上させることができる。
 図8及び図9を用いて、上記した第2構成例の変形例を以下に示す。
 図8は、図6に示すアイスリンクの冷却管構造の変形例を示す斜視図である。
 この冷却管構造は、一側にCO送り配管53とCO戻り配管54とが設けられ、他側に中間ヘッダ55が設けられている。CO送り配管53と中間ヘッダ55との間には冷却管11Bが接続されているとともに、中間ヘッダ55とCO戻り配管54との間には他の冷却管11Bが接続されている。
 COブラインは、CO送り配管53から冷却管11Bを通って中間ヘッダ55に送給され、中間ヘッダ55で折り返して他の冷却管11Bを通ってCO戻り配管54に戻るようになっている。
 図9は、図6に示すアイスリンクの冷却管構造の他の変形例を示す斜視図である。なお、図9において、冷却管11Bの形状、配置をわかりやすくするため、冷却管群1Bの上面に設置される平板状熱伝導体16は一部省略して図示している。
 この冷却管構造は、平板状熱伝導体として冷却管11Bの上側管壁とは別に、平板状熱伝導体16を有している。平板状熱伝導体16は、冷却管11Bとは別部材で構成されている。この平板状熱伝導体16の具体的な構成は、図4及び図5に示した構成と同一である。このように、平板状熱伝導体として冷却管11Bの上側管壁と、さらに平板状熱伝導体16とを有していることにより、より一層冷却効率を向上させることが可能となる。
 次いで、図10乃至図12を用いて、冷却管のヘッダ構造を説明する。
 このヘッダ構造は、図4に示したCO送り配管13、CO戻り配管14、図5に示したCO送り配管13a、13b、CO戻り配管14a、14b、図6に示したCO送り配管51a、51b、CO戻り配管52a、52b、図8に示したCO送り配管53、CO戻り配管54に適用することができる。
 図10は、アイスリンクのヘッダ構造の第1構成例を示す図であり、(A)は平面図で、(B)は側面図である。
 第1構成例におけるヘッダ構造60は、複数の冷却管11Bが接続されるサブヘッダ61、65と、複数のサブヘッダ61、65が接続されるメインヘッダ81、82とを有している。冷却管11Bは、サブヘッダ61、65とメインヘッダ81、82とを介してCO循環回路に接続されている。
 具体的に、ヘッダ構造60は、CO循環回路から冷却管11B側にCOブラインを送る送り側メインヘッダ81と、冷却管11B側から戻ってきたCOブラインをCO循環回路に戻す戻り側メインヘッダ82と、送り側メインヘッダ81と冷却管11Bとを接続する送り側サブヘッダ61と、冷却管11Bと戻り側メインヘッダ82とを接続する戻り側サブヘッダ65とを有している。送り側メインヘッダ81と戻り側メインヘッダ82とは隣り合って平行に配置されている。送り側サブヘッダ61と戻り側サブヘッダ65とは隣り合って平行に配置されている。
 送り側メインヘッダ81には、管台64を介してフレキシブル管63が接続されており、フレキシブル管63に送り側サブヘッダ61が接続されている。送り側サブヘッダ61には、所定間隔で複数のソケット62が設けられている。このソケット62に冷却管11Bの上流側端部が取り付けられ、溶接により固定される。
 同様に、戻り側サブヘッダ65には、所定間隔で複数のソケット66が設けられている。このソケット66に冷却管11Bの下流側端部が取り付けられ、溶接により固定される。戻り側サブヘッダ65にはフレキシブル管67が接続され、フレキシブル管67は管台68を介して戻り側メインヘッダ82に接続されている。
 なお、図に示すようにアイスリンクの構成は、一例として、下地コンクリート95の上に防水層94と断熱層93とコンクリート層92とが順に設けられ、コンクリート層92の上に冷却管11Bが配設される。冷却管11Bの上方には氷盤91が形成される。
 図11はアイスリンクのヘッダ構造の第2構成例を示す図であり、(A)は正面図で、(B)は平断面図である。図12はアイスリンクのヘッダ構造の第2構成例を示す全体図である。
 第2構成例におけるヘッダ構造70は、複数の冷却管11Bが接続されるサブヘッダ71、75と、複数のサブヘッダ71、75が接続されるメインヘッダ81、82とを有している。冷却管は11B、サブヘッダ71、75とメインヘッダ81、82とを介してCO循環回路に接続されている。
 具体的に、ヘッダ構造70は、CO循環回路から冷却管11B側にCOブラインを送る送り側メインヘッダ81と、冷却管11B側から戻ってきたCOブラインをCO循環回路に戻す戻り側メインヘッダ82と、送り側メインヘッダ81と冷却管11Bとを接続する送り側サブヘッダ71と、冷却管11Bと戻り側メインヘッダ82とを接続する戻り側サブヘッダ75とを有している。送り側メインヘッダ81と戻り側メインヘッダ82とは隣り合って平行に配置されている。送り側サブヘッダ71と戻り側サブヘッダ75とは隣り合って平行に配置されている。
 送り側サブヘッダ71には、所定間隔でソケット72が設けられている。このソケット72に冷却管11Bが取り付けられ、溶接により固定される。また、サブヘッダ71には、メインヘッダ81と接続するための接続管73が設けられている。接続管73は、例えば、フレキシブル管や管台等により構成される。同様に、戻り側サブヘッダ75には、ソケット76、接続管77が設けられている。
 送り側メインヘッダ81には、接続管73を介して複数の送り側サブヘッダ71が接続されている。同様に、戻り側メインヘッダ82には、接続管77を介して複数の送り側サブヘッダ75が接続されている。
 このように、上記したヘッダ構造においては、複数の冷却管11Bを直接メインヘッダ81、82には接続せず、複数の冷却管11Bを分割してサブヘッダ61、65又は71、75に接続することにより冷却管群をユニット化している。これにより冷却管11Bに不具合が生じた場合に、全ての冷却管11Bの使用を停止することなく一つの冷却管ユニットを停止するのみでよいため、冷凍設備の運転を続行することができる。またこのとき、不具合が生じた冷却管ユニットのみを交換すればよいため、メンテナンスや補修作業が容易となる。
 また、一般に冷却管11Bは溶接によりヘッダに接合されるため、メインヘッダ81、82に多数の冷却管11Bを溶接すると溶接変形が積み重なりメインヘッダ81、82が曲がってしまう場合があるが、本構成によればメインヘッダ81、82よりも短いサブヘッダ61、65又は71、75に冷却管11Bを溶接するため溶接変形を小さく抑えることができる。さらに、サブヘッダ61、65又は71、75に冷却管11Bを接続する構成とすることにより、施工が容易となる。
 図13は、冷却管用ボビンを示す図であり、(A)は平面図で、(B)は側面図である。冷却管用ボビン85は、図6乃至図9に示すマイクロチューブ構造の冷却管11Bを運搬する際に用いられる。この冷却管用ボビン85は、円筒形状の巻胴部86と、巻胴部86の両側に設けられる鍔部87とを有する。巻胴部86の幅は、冷却管11Bの長径に対応して設定されている。
 上記した冷却管用ボビン85において、一本の冷却管11Bを巻胴部86に巻き付けて運搬する。
 また、巻胴部86の幅を、サブヘッダ61、65に複数の冷却管11Bを接続した冷却管ユニットの幅に対応して設定し、複数の冷却管11Bをサブヘッダ61、65に接続した状態で巻胴部86に巻き付けて運搬してもよい。
 図14は、本実施形態が適用されるアイスリンクの一例であるカーリング用アイスリンクを示す図であり、(A)は平面図で、(B)はA-A矢視の断面図である。
 カーリング用アイスリンク10Aには、スピードスケート、フィギアスケート及びアイスホッケーのような囲いが競技の行われるシート41の周囲になく、ストーンが隣のシートに飛び出さないようにシート41間にはデバイダ42が設けられている。
 本実施形態では、シート41の氷盤40の氷面温度が観客席からの影響を受けるのを防止するためにアイスリンク10Aの周囲に下部吹き出しの空気流による壁(エアカーテン)48を形成させている。
 具体的には、アイスリンク10Aの周囲に送気ダクト47を配設し、該送気ダクト47に空気を供給するブロワ45と、該ブロワ45から供給する空気を冷却する熱交換器46とを設けている。送気ダクト47の頂部には、空気流を噴出するためのスリット47aが設けられており、アイスリンク30の周囲にエアカーテン48を形成するようになっている。アイスリンク10A周囲の床部からある程度の高さまで形成されるエアカーテン48は観客席からの視界を妨げることないので、競技者及び観客に支障なくカーリングの氷盤40の温度を均一に維持することが可能となる。
(実施例1)
 実施例1では、本実施形態に係る冷却設備を備えたスケート用アイスリンクにおいて熱解析を行い、冷却管構造が氷盤の状態に与える影響を検証する。なお、この解析では、熱流体解析ソフトSCRYU/Tetra for Windows Version8((株)ソフトウェア クレイドル製、Windowsは登録商標)を用いて、熱の解析を行った。
 また、本解析においては、図4に示す第1構成例の冷却管構造を用いている。ここで、冷却管には銅管を用い、平板状熱伝導体にはアルミニウム材で作製したパンチングメタルを用いている。
 図15に解析モデルの概観図を示す。図中、左側に条件1の解析モデル、右側に条件3の解析モデルを示している。本解析対象は、幅100mmとし、奥行き方向は同じ形と仮定して、奥行き方向の厚みを無視した擬似2次元の解析を行った。解析結果には、図15に示した断面図を示していく。
 図16に解析条件の表を示す。解析条件として、図16の表に示すように、室温15℃、地中温度10℃、冷却管温度-12℃と設定している。
 図17に各層での熱伝導率を示す。ここで、パンチングメタルに関しては、100mmピッチのパンチングメタルを冷却管の両サイドに孔がくるように設置する。そのため冷却管上部50mmには、孔がないためアルミニウムの熱伝導率を設定し、孔がある両サイド25mmずつには、孔の部分にコンクリートが入ることから、アルミニウムとコンクリートの熱伝導率に開口比率に応じた値を設定することとした。
 なお、本解析では、最上部に水(氷)があるが、解析ソフトの制約上、水は上部に盛り上がらない、すなわち常に一定の水平高さを保った設定になっている。このため、時間が立つほど氷が出来る部分(0℃の部分)の高さがなだらかになってしまう。そこで、解析結果としては、定常状態での比較のほかに、解析モデルの最端部(氷の高さが一番低くなると予想される部分)で、水面から高さ30mmの位置において水温が-2℃になった時に、0℃位置が最端部と中央部でどの程度高さに差があるか比較する。
 以下に解析結果を示す。
 図18は定常状態での解析結果である。図18に示すように、どの解析結果においても水表面では0℃以上(凍らない)となっている。また、上記したように定常状態において氷の表面である0℃の温度帯は、ほぼ水平となっている。しかしながら、-9℃の温度帯を見ると、条件1ではかなりの凹凸となっているが、条件3になるにつれ、温度帯がなだらかになっている。以上のことから、条件1の方が、凹凸ができやすい結果となっている。
 次いで、非定常状態において、解析モデルの最端部(氷の高さが一番低くなると予想される部分)で、水面から深さ30mmの位置(条件2と条件3は水とコンクリートが接触する面)において水温が-2℃になった時の解析結果を比較する。
 図19に0℃位置(氷が生成される位置)が最端部と中央部でどの程度の差(凹凸の高さ)があるか比較する。図20にその時の解析結果を示す。
 以上の結果より以下の事が明らかとなった。
 条件1>条件2>条件3の順番で氷の凹凸が出来にくくなる。これは、冷却管上部にある部材の熱伝導率が高いほど、熱が均一に拡散されるためだと考えられる。特に、パンチングメタルを有する冷却管構造である条件3では、上方の水(氷)をほぼ均一に冷却できることがわかる。したがって、本第1構成例に示す冷却管構造を採用することにより、均一な氷盤を形成することが可能であることが明らかとなった。
 なお、本実施形態における第2構成例の冷却管構造は、冷却管がマイクロチャンネル構造を有することにより第1構成例とほぼ同一の作用を有するため、やはり均一な氷盤を形成することが可能である。
(実施例2)
 実施例2では、本実施形態に係る冷却設備を備えたカーリング用アイスリンクにおいて熱解析を行い、冷却管構造が氷盤の状態に与える影響を検証する。なお、この解析では、実施例1と同様に、熱流体解析ソフトSCRYU/Tetra for Windows Version8((株)ソフトウェア クレイドル製、Windowsは登録商標)を用いて、熱の解析を行った。
 また、本解析においては、実施例1と同様に、図4に示す第1構成例の冷却管構造を用いている。ここで、冷却管には銅管を用い、平板状熱伝導体にはアルミニウム材で作製したパンチングメタルを用いている。
 図21に解析モデルの概観図を示す。図中、左側に条件1の解析モデル、右側に条件4及び条件5の拡大解析モデルを示している。なお、本第実施例2では、新たにパンチングメタルを敷設した解析を行った2条件を条件4、条件5と記載する。
 条件4は、条件1の砂+水の層にパンチングメタルを敷いた条件とし、条件5は、条件4に冷却管ピッチを100mmから200mmに変えた条件としている。本実施例2では、条件1、条件4の解析対象は、100mmピッチで冷却管が設置されているので、解析対象を幅100mm、条件5の解析対象は幅200mmとした。それ以外の条件、奥行き方向は全く同じ形と仮定して、奥行き方向の厚みを無視した擬似2次元の解析を行った。
 図22に解析条件の表を示す。解析条件として、図22の表に示すように、室温15℃、地中温度10℃、冷却管温度-12℃と設定している。
 図23に各層での熱伝導率を示す。ここでパンチングメタルに関しては、100mmピッチのパンチングメタルを冷却管の両サイドに孔が来るように設置する。そのため冷却管上部50mmには、孔がないためアルミニウムの熱伝導率を設定し、穴がある両サイド25mmずつには、孔の部分にコンクリートが入ることから、アルミニウムとコンクリートの熱伝導率に開口比率に応じた値を設定することとした。
 なお、本解析では、最上部に水(氷)があるが、解析ソフトの制約上、水は上部に盛り上がらない、すなわち常に一定の水平高さを保った設定になっている。このため、時間が立つほど氷が出来る部分(0℃の部分)の高さがなだらかになってしまう(氷が盛り上がることがなくなってしまう)。そこで、解析結果としては、定常状態での比較のほかに、上記の実施例1でも記載した氷の凹凸高さの比較とどのモデルが一番はやく冷却できるか検証するため、解析モデルの最端部(氷の高さが一番低くなると予想される部分。条件1と条件4は幅100mmの位置、条件5は幅200mmの位置)で、水面の水温が-4℃になった時の時間を計測した。
 以下に解析結果を示す。
 図24乃至図26に定常状態での解析結果を示す。図より、条件4の解析結果が一番低い温度となり、続いて条件1と条件5が同程度の冷却具合となっていることが確認できる。
 次いで、非定常状態において、解析モデルの最端部(氷の高さが一番低くなると予想される部分)で、水面から深さ30mmの位置(残りの水深が10mmの位置)において水温が-2℃になった時の解析結果を比較する。
 図27に0℃位置(氷が生成される位置)が最端部と中央部でどの程度の差(凹凸の高さ)があるか比較した結果を示す。また、図28に条件1の解析結果を示す。
 図27の表から、条件4>条件5>条件1の順番で氷の凹凸が出来にくいことが判明した。
 さらに、非定常状態において、解析モデルの最端部(氷の高さが一番低くなると予想される部分)で、水面の水温が-4℃になった時の時間を比較する。図29に解析モデル最端部の温度が-4℃となるまでの時間を示す。図29の表より、早く冷却できる順に条件4<
条件1<条件5となることが確認できた。
 以上の結果より以下の事が明らかとなった。
 条件4>条件5>条件1の順番で氷の凹凸が出来にくくなることがわかる。また、条件4>条件1>条件5の順番ですばやく凍結していくことがわかる。
 すなわち、条件4が一番優れており、これは、冷却管上部にある部材の熱伝導率が高いほど、熱が均一に素早く拡散されるためであり、パンチングメタルを敷いた場合、配管ピッチを2倍に広げても、パンチングメタルを敷かない条件(条件1)とほぼ同じ冷却速度を保てる。
 なお、本実施形態における第2構成例の冷却管構造は、冷却管がマイクロチャンネル構造を有することにより第1構成例とほぼ同一の作用を有するため、やはりピッチを広げても冷却速度を高く保てる。
1、1A、1B 冷却管群
2   冷凍装置
3   CO循環回路
3A  CO送りライン
3B  CO戻りライン
10  アイスリンク
11、11A、11B 冷却管
16  平板状熱伝導体
17  押さえ板
18  結束部材
20  CO受液器
21  第1の再液化ライン
21a 再液化分岐第1ライン
21b 再液化戻り第1ライン
22  第2の再液化ライン
22a 再液化分岐第2ライン
22b 再液化戻り第2ライン
23  再液化送り主ライン
24  三方弁
25  コントローラ(制御手段)
28  CO再液化冷凍機
60、70 ヘッダ構造
61、71 送り側サブヘッダ
65、75 戻り側サブヘッダ
81  送り側メインヘッダ
82  戻り側メインヘッダ
211 カスケードコンデンサ
221 空冷式CO再液化器
 

Claims (11)

  1.  アイスリンクの底部に複数の冷却管を有する冷却管群が配設され、該冷却管群にCOブラインを通流させて前記アイスリンクを冷却するアイスリンクの冷却設備において、
     前記冷却管の上面に平板状熱伝導体を有するとともに、
     前記冷却管に接続され前記COブラインが循環するCO循環回路と、
     アンモニア冷媒が循環するアンモニア冷凍サイクルと、
     前記COブラインと前記アンモニア冷媒とを熱交換し、前記アンモニア冷媒により前記COブラインを冷却して再液化するカスケードコンデンサとを有することを特徴とするアイスリンクの冷却設備。
  2.  前記アンモニア冷凍サイクルは、
     前記アイスリンクの製氷用の主冷凍機と、
     前記主冷凍機と並列に接続されるCOブライン圧力上昇防止用の補助冷凍機とを含むことを特徴とする請求項1に記載のアイスリンクの冷却設備。
  3.  外気を利用して前記COブラインを冷却する空冷式CO再液化器を有することを特徴とする請求項1に記載のアイスリンクの冷却設備。
  4.  前記アンモニア冷凍サイクルを含む第1の再液化ラインと、前記空冷式CO再液化器を含む第2の再液化ラインとが前記CO循環回路に並列に接続されており、
     前記第1の再液化ラインと前記第2の再液化ラインとを選択的に切り替える三方弁を備えることを特徴とする請求項3に記載のアイスリンクの冷却設備。
  5.  前記三方弁の切り替え制御を行う制御手段を備え、
     前記制御手段は、外気温度が予め設定された第1の温度しきい値以下である場合に前記COブラインが前記第2の再液化ラインを循環するように前記三方弁を制御し、外気温度が前記第1の温度しきい値以上に設定された第2の温度しきい値を超えた場合に、前記COブラインが前記第1の再液化ラインを循環するように前記三方弁を制御することを特徴とする請求項4に記載のアイスリンクの冷却設備。
  6.  前記平板状熱伝導体が前記冷却管とは別部材で構成され、
     前記平板状熱伝導体は、前記冷却管群の上面に接触した状態で配置されているとともに複数の孔部を有していることを特徴とする請求項1に記載のアイスリンクの冷却設備。
  7.  前記平板状熱伝導体がパンチングメタルであることを特徴とする請求項6に記載のアイスリンクの冷却設備。
  8.  前記平板状熱伝導体の孔部より大なる隙間を有し、前記平板状熱伝導体を挟んで前記冷却管に結束され、前記熱伝導体の上方から該熱伝導体を前記冷却管に向けて押圧する押さえ板を備えることを特徴とする請求項6に記載のアイスリンクの冷却設備。
  9.  前記平板状熱伝導体が前記冷却管の上側管壁で構成され、
     前記冷却管は、前記上側管壁が平板状の扁平形状に形成され、前記COブラインが通流する複数の微小冷媒流路が設けられたマイクロチャンネル構造を有していることを特徴とする請求項1に記載のアイスリンクの冷却設備。
  10.  複数の前記冷却管が接続されるサブヘッダと、複数の前記サブヘッダが接続されるメインヘッダとを有し、
     前記冷却管は、前記サブヘッダと前記メインヘッダとを介して前記CO循環回路に接続されていることを特徴とする請求項9に記載のアイスリンクの冷却設備。
  11.  前記アイスリンクの少なくとも外周に、上方に向けて冷却空気を噴出してエアカーテンを形成する送気ダクトを設けたことを特徴とする請求項1に記載のアイスリンクの冷却設備。
     
PCT/JP2010/073791 2010-04-14 2010-12-28 アイスリンクの冷却設備 WO2011129035A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011529405A JP5237457B2 (ja) 2010-04-14 2010-12-28 アイスリンクの冷却設備
CA2746445A CA2746445C (en) 2010-04-14 2010-12-28 Ice rink cooling facility
US13/145,303 US8720214B2 (en) 2010-04-14 2010-12-28 Ice rink cooling facility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-093214 2010-04-14
JP2010093214 2010-04-14

Publications (1)

Publication Number Publication Date
WO2011129035A1 true WO2011129035A1 (ja) 2011-10-20

Family

ID=44798425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073791 WO2011129035A1 (ja) 2010-04-14 2010-12-28 アイスリンクの冷却設備

Country Status (3)

Country Link
US (1) US8720214B2 (ja)
JP (1) JP5237457B2 (ja)
WO (1) WO2011129035A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000433A (ja) * 2013-06-18 2015-01-05 日本軽金属株式会社 耐気密性アルミニウム配管構造物の施工方法
JP2016017696A (ja) * 2014-07-08 2016-02-01 株式会社前川製作所 アイスリンクの冷却設備及び冷却方法
JP2016017697A (ja) * 2014-07-08 2016-02-01 株式会社前川製作所 アイスリンクの冷却設備及び冷却方法
JP2017227020A (ja) * 2016-06-22 2017-12-28 ケミカルグラウト株式会社 貼付凍結管及びその取付方法
JP2017227021A (ja) * 2016-06-22 2017-12-28 ケミカルグラウト株式会社 貼付凍結管及びその取付方法
KR102117571B1 (ko) * 2020-03-10 2020-06-01 김경란 빙상경기장의 냉매순환 배관장치
JP2020172858A (ja) * 2020-08-03 2020-10-22 鹿島建設株式会社 地盤凍結方法、及び、地盤凍結装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995509B2 (en) * 2013-03-15 2018-06-12 Trane International Inc. Cascading heat recovery using a cooling unit as a source
PL235695B1 (pl) * 2017-04-24 2020-10-05 Mar Bud Spolka Z Ograniczona Odpowiedzialnoscia Budownictwo Spolka Komandytowa Urządzenie do wytwarzania i magazynowania lodu
KR102180897B1 (ko) * 2018-12-04 2020-11-20 주식회사 삼화엔지니어링 아이스링크의 냉각 구조
KR102176422B1 (ko) * 2020-09-02 2020-11-09 신용탁 하천 결빙 방법
KR102224329B1 (ko) * 2020-09-02 2021-03-05 신용탁 하천 결빙 시스템
CN114739071B (zh) * 2022-04-13 2023-04-28 天津大学 一种冰场制冷设备及系统
CN114739072B (zh) * 2022-04-13 2023-04-28 天津大学 一种冰场制冷系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3307372A (en) * 1965-07-29 1967-03-07 Kenison Alphonse Skating rink
DE1256664B (de) * 1961-07-14 1967-12-21 Werner Deyle Vorrichtung fuer Kunsteisbahnen
JPS5021320Y1 (ja) * 1966-07-27 1975-06-27
JPS5279717U (ja) * 1975-12-12 1977-06-14
JPH06337188A (ja) * 1993-05-26 1994-12-06 Hitachi Plant Eng & Constr Co Ltd 仮設式アイススケートリンク作製装置
JPH10110993A (ja) * 1996-10-07 1998-04-28 Mitsubishi Heavy Ind Ltd 成層温空調システム
JP2000274848A (ja) * 1999-03-23 2000-10-06 Daikin Ind Ltd 二元冷凍装置
JP2005140444A (ja) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 空気調和機およびその制御方法
JP2008304148A (ja) * 2007-06-08 2008-12-18 Toyo Eng Works Ltd 冷却システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2538016A (en) * 1948-09-18 1951-01-16 Dole Refrigerating Co Liquid cooler
GB802602A (en) 1956-10-27 1958-10-08 Clifford Austin Meadows Artificial ice rink
US3307342A (en) * 1964-09-29 1967-03-07 Alfred W Vibber Apparatus for and method of plying strands
US3491547A (en) * 1968-12-13 1970-01-27 Cryo Cool Corp Refrigeration system employing liquefied gas
US3751935A (en) * 1971-12-02 1973-08-14 Calmac Manuf Corp Method and system for creating and maintaining an ice slab
US3893507A (en) * 1971-12-02 1975-07-08 Calmac Mfg Corp Apparatus for creating and maintaining an ice slab
JPS5021320A (ja) * 1973-06-27 1975-03-06
US3878694A (en) * 1974-05-08 1975-04-22 Richard B Holmsten Thermal energy system for ice rinks
CA1023960A (en) * 1974-10-11 1978-01-10 Richard W. Roberts Ice skating arena
JPS60128281U (ja) * 1984-02-03 1985-08-28 株式会社 パテイネ商会 アイスリンク
JPH0521320A (ja) 1991-07-16 1993-01-29 Toshiba Corp X線露光装置
JP3276978B2 (ja) 1992-03-31 2002-04-22 川崎炉材株式会社 熱風炉蓄熱室部分改修工事方法
JP3148436B2 (ja) 1993-01-22 2001-03-19 三菱電機株式会社 エレベータの制動装置
US5970734A (en) * 1995-09-29 1999-10-26 Stillwell; Robert Method and system for creating and maintaining a frozen surface
JP3503793B2 (ja) 1996-05-15 2004-03-08 株式会社前川製作所 アイススケートリンクの氷温度制御方法及び制御装置
US6006826A (en) * 1997-03-10 1999-12-28 Goddard; Ralph Spencer Ice rink installation having a polymer plastic heat transfer piping imbedded in a substrate
US6170278B1 (en) * 1999-06-04 2001-01-09 Greg S. Jorgensen Thermal storage reservoir for ice rink
US6477855B1 (en) * 2001-05-01 2002-11-12 Severn Trent Services - Water Purification Solutions, Inc Chiller tank system and method for chilling liquids
US7032398B2 (en) * 2004-02-27 2006-04-25 Toromont Industries Ltd. Energy management system, method, and apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1256664B (de) * 1961-07-14 1967-12-21 Werner Deyle Vorrichtung fuer Kunsteisbahnen
US3307372A (en) * 1965-07-29 1967-03-07 Kenison Alphonse Skating rink
JPS5021320Y1 (ja) * 1966-07-27 1975-06-27
JPS5279717U (ja) * 1975-12-12 1977-06-14
JPH06337188A (ja) * 1993-05-26 1994-12-06 Hitachi Plant Eng & Constr Co Ltd 仮設式アイススケートリンク作製装置
JPH10110993A (ja) * 1996-10-07 1998-04-28 Mitsubishi Heavy Ind Ltd 成層温空調システム
JP2000274848A (ja) * 1999-03-23 2000-10-06 Daikin Ind Ltd 二元冷凍装置
JP2005140444A (ja) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 空気調和機およびその制御方法
JP2008304148A (ja) * 2007-06-08 2008-12-18 Toyo Eng Works Ltd 冷却システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000433A (ja) * 2013-06-18 2015-01-05 日本軽金属株式会社 耐気密性アルミニウム配管構造物の施工方法
JP2016017696A (ja) * 2014-07-08 2016-02-01 株式会社前川製作所 アイスリンクの冷却設備及び冷却方法
JP2016017697A (ja) * 2014-07-08 2016-02-01 株式会社前川製作所 アイスリンクの冷却設備及び冷却方法
JP2017227020A (ja) * 2016-06-22 2017-12-28 ケミカルグラウト株式会社 貼付凍結管及びその取付方法
JP2017227021A (ja) * 2016-06-22 2017-12-28 ケミカルグラウト株式会社 貼付凍結管及びその取付方法
KR102117571B1 (ko) * 2020-03-10 2020-06-01 김경란 빙상경기장의 냉매순환 배관장치
JP2020172858A (ja) * 2020-08-03 2020-10-22 鹿島建設株式会社 地盤凍結方法、及び、地盤凍結装置
JP7011688B2 (ja) 2020-08-03 2022-01-27 鹿島建設株式会社 地盤凍結装置

Also Published As

Publication number Publication date
JP5237457B2 (ja) 2013-07-17
US8720214B2 (en) 2014-05-13
JPWO2011129035A1 (ja) 2013-07-11
US20130055745A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
WO2011129035A1 (ja) アイスリンクの冷却設備
US9010143B2 (en) Air conditioner
US7201015B2 (en) Micro-channel tubing evaporator
JP5405168B2 (ja) 流下式製氷機の製氷ユニット
JP2016156557A (ja) 冷凍サイクル装置
WO2020073989A1 (zh) 一种装配式制冷装置
JP4263086B2 (ja) 冷凍装置
CA2746445C (en) Ice rink cooling facility
CN208124708U (zh) 冷藏柜
JP6912673B2 (ja) デフロストシステム
CN109237644B (zh) 热泵机组及其控制方法
CN101187514A (zh) 空调柜机室外机除霜装置
JP2018048799A (ja) 冷蔵庫
JP2013007502A (ja) アイスリンクの冷却配管装置
US20070012050A1 (en) Thermal method for ice removal under ambient air cryogenic vaporizers
KR100907749B1 (ko) 에어컨
KR100418441B1 (ko) 실외기 일체형 축열식 냉방장치
KR200469079Y1 (ko) 냉방 시스템의 열교환 장치
KR200242411Y1 (ko) 축열식 냉방기기용 축열조구조
KR200478083Y1 (ko) 응축 폐열을 이용한 동파 방지 장치
JP2003307325A (ja) 氷蓄熱式空調システム
JP2023092140A (ja) 冷却装置
KR100767859B1 (ko) 축열식 공기조화 장치의 축열조
JPH0689918B2 (ja) 冷却又は冷却・加熱装置
JP2004190877A (ja) 空冷式冷房装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011529405

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2746445

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13145303

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849871

Country of ref document: EP

Kind code of ref document: A1