WO2011126066A1 - 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物 - Google Patents

光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物 Download PDF

Info

Publication number
WO2011126066A1
WO2011126066A1 PCT/JP2011/058762 JP2011058762W WO2011126066A1 WO 2011126066 A1 WO2011126066 A1 WO 2011126066A1 JP 2011058762 W JP2011058762 W JP 2011058762W WO 2011126066 A1 WO2011126066 A1 WO 2011126066A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
resin composition
epoxy
curable resin
Prior art date
Application number
PCT/JP2011/058762
Other languages
English (en)
French (fr)
Inventor
貴文 水口
清柳 典子
聡 小木
伸彦 内藤
淳子 市川
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to KR1020127025944A priority Critical patent/KR20130054241A/ko
Priority to JP2012509694A priority patent/JP5744847B2/ja
Priority to CN2011800181707A priority patent/CN102858823A/zh
Publication of WO2011126066A1 publication Critical patent/WO2011126066A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the present invention relates to an energy beam curable resin composition and a cured product thereof. More specifically, the present invention relates to an energy ray curable resin composition and a cured product particularly suitable for lenses such as a lenticular lens, a prism lens, and a microlens.
  • this type of lens has been molded by a pressing method, a casting method, or the like.
  • the former pressing method was poor in productivity because it was manufactured by heating, pressing and cooling cycles.
  • the latter casting method has a problem in that a monomer is poured into a mold for polymerization, which requires a long manufacturing time and requires many molds, resulting in an increase in manufacturing cost.
  • Patent Document 1 Patent Document 2, etc.
  • these ultraviolet curable resin compositions By using these ultraviolet curable resin compositions, a method for producing a transmission screen has been somewhat successful.
  • these conventional resin compositions have a problem of poor adhesion to the substrate and releasability. If the adhesion is poor, the types of substrates that can be used are limited, and it becomes difficult to obtain the intended optical properties. If the releasability is poor, the resin remains in the mold at the time of mold release and the mold cannot be used. Moreover, since the resin composition with good adhesiveness also improves the adhesion to the mold, the releasability is likely to deteriorate. On the other hand, the resin composition with good releasability also has a problem that the adhesiveness tends to deteriorate.
  • composition for lenses used for these optical lens sheets and the like has been desired to have a high refractive index along with recent high-definition images and thinner final products (Patent Document 3).
  • Patent Document 3 There exists a tendency for the thing of shape transferability and a good mold release property to be calculated
  • an epoxy acrylate compound obtained by addition reaction of acrylic acid or the like with an epoxy resin and a polycarboxylic acid obtained by addition reaction of a polybasic acid anhydride with this epoxy acrylate compound are conventionally used.
  • Acid compounds have been widely used because they are excellent in hardness of cured products, adhesion to substrates, high thermal stability, and dimensional stability.
  • Patent Document 4 an epoxy acrylate compound derived from an epoxy resin having a biphenol structure is known to have a high thermal stability and provide a tough cured product (Patent Document 4, Patent Document 5, etc.).
  • Patent Document 4 and Patent Document 5 do not describe optical applications based on high refractive index.
  • Patent Document 6 and Patent Document 7 disclose a resin composition having a high refractive index, but no mention is made of adhesion and releasability, and a high refractive index in which adhesion and releasability are balanced.
  • the resin composition for an optical lens sheet having a fine structure is not described in any patent document.
  • JP 63-167301 A JP-A 63-199302 Japanese Patent No. 3209554 JP-A-9-21860 JP-A-11-140144 International Publication No. 2008/001722 Pamphlet JP 2005-298665 A
  • An object of the present invention is a resin composition having a good stability at room temperature, suitable for continuously processing optical lens sheets such as a lenticular lens, a prism lens, a microlens, and the like, releasability and mold reproducibility.
  • An object of the present invention is to provide a resin composition that is excellent in adhesion, has no blocking, and can provide a cured product having a high refractive index.
  • an active energy ray-curable resin composition having a specific composition can solve the above problems, and have completed the present invention.
  • the present invention relates to the following (1) to (9).
  • An active energy ray-curable resin for an optical lens sheet comprising (poly) carboxylic acid compound (B) obtained by reacting a polybasic acid anhydride (c) with the hydroxyl group of (A), and a photopolymerization initiator (D) Composition.
  • R1 may be the same or different and each represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 4 carbon atoms, m is an integer of 0 to 4, and n is a positive value of 1 to 6 on average. Each represents a number.
  • the active energy ray-curable resin composition according to (1) further including a monoacrylate monomer (C) having a phenyl ether group.
  • Monoacrylate monomer (C) having a phenyl ether group is o-phenylphenol (poly) ethoxy (meth) acrylate, p-phenylphenol (poly) ethoxy (meth) acrylate, o-phenylphenol epoxy (meth) acrylate
  • the active energy ray-curable resin composition according to the above (2) which is at least one compound selected from the group consisting of p-phenylphenol epoxy (meth) acrylates.
  • a (meth) acrylate compound (F) is a phosphine oxide compound obtained from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, a (meth) acrylate having a binaphthol skeleton, a fluorene skeleton (6) comprising one or more compounds selected from the group consisting of (meth) acrylates having (meth) acrylate, (meth) acrylates having a carbazole skeleton, and urethane acrylates obtained by reacting phenylphenol epoxy acrylate and aromatic organic polyisocyanate.
  • a cured product obtained by curing the active energy ray-curable resin composition according to any one of (1) to (7).
  • the resin composition of the present invention has good stability, and its cured product is excellent in releasability, mold reproducibility and adhesion to the substrate, has no blocking, and has a high refractive index. Therefore, it is particularly suitable for use on optical lens sheets such as lenticular lenses, prism lenses, and micro lenses.
  • the active energy ray-curable resin composition for an optical lens sheet of the present invention has the general formula (1) (wherein R1 may be the same or different and is a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms).
  • M represents an integer of 0 to 4, and n represents an average positive number of 1 to 6)
  • n represents an average positive number of 1 to 6
  • Poly carboxylic acid obtained by reacting polybasic acid anhydride (c) with the hydroxyl group of epoxycarboxylate compound (A) and / or epoxycarboxylate compound (A) obtained by reacting with (b)
  • a compound (B) and a photoinitiator (D) are included.
  • R1 can be appropriately selected according to the intended use.
  • methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s A linear or branched saturated hydrocarbon group having 1 to 4 carbon atoms such as a butyl group; a halogen atom such as a chlorine atom, a bromine atom or an iodine atom.
  • R1 is a halogen atom such as a chlorine atom, a bromine atom or an iodine atom, a cured product having a higher refractive index can be obtained.
  • n is an average value and is preferably a positive number of 1 to 6, more preferably a positive number of 1 to 3.
  • epoxy resin (a) which is a phenol biphenylmethyl type epoxy resin represented by the general formula (1)
  • a resin in which a biphenylmethyl group is bonded to an ortho position or a para position with respect to a glycidyl ether group is preferable.
  • the manufacturing method of the epoxy resin (a) represented by the general formula (1) is described in Patent Document 5, for example, and can be manufactured according to the method. Also, commercially available products (trade names: NC-3000, NC-3000P, NC-3000S, NC-3000H, NC-3100, etc., a resin in which m in the general formula (1) is 0; manufactured by Nippon Kayaku Co., Ltd.) Can also be obtained.
  • the epoxy carboxylate compound (A) in the active energy ray-curable resin composition for an optical lens sheet of the present invention includes an epoxy resin (a) represented by the general formula (1) and an ethylenically unsaturated group-containing monocarboxylic acid ( obtained by reacting with b). This reaction is referred to herein as an epoxy carboxylation step.
  • the (poly) carboxylic acid compound (B) in the active energy ray-curable resin composition for an optical lens sheet of the present invention is obtained by reacting the hydroxyl group of the epoxycarboxylate compound (A) with a polybasic acid anhydride (c). can get. In this specification, this reaction is referred to as an acid addition step.
  • the epoxy carboxylate-forming step will be described.
  • the purpose of the epoxycarboxylation step is to react an epoxy group with a carboxyl group to introduce an ethylenically unsaturated group that is a reactive group of an active energy ray into the skeleton of the epoxy resin.
  • Examples of the ethylenically unsaturated group-containing monocarboxylic acid (b) include (meth) acrylic acids, crotonic acid, ⁇ -cyanocinnamic acid, cinnamic acid, and compounds having both an ethylenically unsaturated group and a hydroxyl group. Or the compound etc. which reacted the unsaturated dibasic acid are mentioned.
  • Examples of (meth) acrylic acids include (meth) acrylic acid, ⁇ -styrylacrylic acid, ⁇ -furfurylacrylic acid, (meth) acrylic acid dimer, and (meth) acrylic acid and ⁇ -caprolactone reaction. Product etc. are mentioned.
  • a compound obtained by reacting a compound having both an ethylenically unsaturated group and a hydroxyl group with a saturated or unsaturated dibasic acid for example, a (meth) acrylate derivative having one hydroxyl group in one molecule and a saturated or unsaturated dibasic acid are used.
  • the half ester obtained by making equimolar reaction with a basic acid anhydride is mentioned.
  • hydroxyalkyl (meth) acrylate such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, maleic anhydride, succinic anhydride, phthalic anhydride, anhydrous
  • hydroxyalkyl (meth) acrylate such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate
  • maleic anhydride succinic anhydride, phthalic anhydride
  • anhydrous examples thereof include compounds obtained by reacting a saturated or unsaturated dibasic acid such as a partial or total hydrogenated compound of phthalic acid, trimellitic anhydride, and pyromellitic anhydride.
  • the ethylenically unsaturated group-containing monocarboxylic acid (b) is preferably (meth) acrylic acid or cinnamic acid from the viewpoint of sensitivity to active energy rays when an active energy ray-curable resin composition is used.
  • the charge ratio of the epoxy resin (a) and the ethylenically unsaturated group-containing monocarboxylic acid (b) in this reaction can be appropriately changed depending on the application. That is, when all the epoxy groups are carboxylated, unreacted epoxy groups do not remain, so that the storage stability as the epoxy carboxylate compound (A) is high. In this case, only the reactivity due to the introduced double bond is used for the curing reaction.
  • the charge ratio of the epoxy resin (a) and the ethylenically unsaturated group-containing monocarboxylic acid (b) is 1 equivalent of epoxy group.
  • the carboxyl group of the compound (b) is preferably 0.9 to 1.2 equivalents. When less than this range, an epoxy group will remain
  • the amount of the carboxyl group of the ethylenically unsaturated group-containing monocarboxylic acid (b) is set to 0. 1 with respect to 1 equivalent of the epoxy group of the epoxy resin (a). It is preferably 2 to 0.9 equivalent. When deviating from this range, the effect of the composite curing is weakened. When leaving an epoxy group, it is necessary to pay attention to the gelation during the subsequent reaction and the storage stability of the epoxycarboxylate compound (A).
  • the epoxycarboxylation step can be performed without solvent or diluted with solvent.
  • the solvent is not particularly limited as long as the reaction is not affected.
  • the solvent examples include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and tetramethylbenzene, aliphatic hydrocarbon solvents such as hexane, octane and decane, or petroleum ether which is a composition thereof, white Examples include gasoline and solvent naphtha.
  • ester solvent can be used as the solvent.
  • alkyl acetates such as ethyl acetate, propyl acetate and butyl acetate, cyclic esters such as ⁇ -butyrolactone, ethylene glycol monomethyl ether monoacetate, diethylene glycol monomethyl ether monoacetate, diethylene glycol monoethyl ether monoacetate, triethylene Mono- or polyalkylene glycol monoalkyl ether monoacetates such as glycol monoethyl ether monoacetate, diethylene glycol monobutyl ether monoacetate, propylene glycol monomethyl ether monoacetate, butylene glycol monomethyl ether monoacetate, dialkyl glutarate (for example, dimethyl glutarate, etc.
  • Dialkyl succinate e.g. di-succinate
  • dialkyl adipate e.g., polycarboxylic acid polyalkyl esters of dimethyl adipate, etc.
  • an ether solvent can be used as the solvent.
  • ether solvents alkyl ethers such as diethyl ether and ethyl butyl ether, glycol dialkyls such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, and triethylene glycol diethyl ether
  • alkyl ethers such as diethyl ether and ethyl butyl ether
  • glycol dialkyls such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, and triethylene glycol diethyl ether
  • examples include ethers and cyclic ethers such as tetrahydrofuran.
  • a ketone solvent can be used as the solvent.
  • the ketone solvent include acetone, methyl ethyl ketone, cyclohexanone, isophorone and the like.
  • a (meth) acrylate compound described later can also be used as a solvent, and these can be used alone or in combination.
  • a (meth) acrylate compound or the like is used as a solvent, the product of the epoxycarboxylation step is preferable because it can be used as it is as the resin composition of the present invention.
  • a catalyst in order to promote the reaction.
  • the amount of the catalyst used is preferably about 0.1 to 10% by weight based on the total amount of the reactants.
  • the catalyst include tertiary amines such as triethylamine and benzyldimethylamine, quaternary ammonium salts such as triethylammonium chloride, benzyltrimethylammonium bromide and benzyltrimethylammonium iodide, chromium octoate, zirconium octoate and the like.
  • Examples include basic catalysts such as organic metal salts, triphenylphosphine, and triphenylstibine.
  • the reaction temperature is usually 60 to 150 ° C., and the reaction time is preferably 5 to 60 hours.
  • thermal polymerization inhibitors include polymerization inhibitors such as hydroquinone monomethyl ether (methoquinone), 2-methylhydroquinone, hydroquinone, diphenylpicrylhydrazine, diphenylamine, and 3,5-di-tert-butyl-4-hydroxytoluene. Is preferred.
  • polymerization inhibitors such as hydroquinone monomethyl ether (methoquinone), 2-methylhydroquinone, hydroquinone, diphenylpicrylhydrazine, diphenylamine, and 3,5-di-tert-butyl-4-hydroxytoluene. Is preferred.
  • the sample has an acid value (measured in accordance with JIS K5601-2-1: 1999) of 1 mg ⁇ KOH / g or less, preferably 0.5 mg ⁇ KOH / g or less, with appropriate sampling.
  • the point of time is the end point.
  • the acid addition step is intended to introduce a carboxyl group through an ester bond by reacting the polybasic acid anhydride (c) with the hydroxyl group produced in the epoxycarboxylation step.
  • the polybasic acid anhydride (c) is not particularly limited as long as it is a compound having an acid anhydride structure in the molecule. For example, it gives a product excellent in alkaline aqueous solution developability, heat resistance, hydrolysis resistance and the like.
  • succinic anhydride phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, itaconic anhydride, 3-methyl-tetrahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, trimellitic anhydride or maleic anhydride Is preferred.
  • the acid addition step can also be performed by adding a polybasic acid anhydride (c) to the reaction solution of the epoxy carboxylation step.
  • the addition amount of the polybasic acid anhydride (c) should be appropriately changed according to the use.
  • a catalyst in order to promote the reaction.
  • the amount of the catalyst used is preferably about 0.1 to 10% by weight based on the total amount of the reactants.
  • the catalyst include tertiary amines such as triethylamine and benzyldimethylamine, quaternary ammonium salts such as triethylammonium chloride, benzyltrimethylammonium bromide and benzyltrimethylammonium iodide, chromium octoate, zirconium octoate and the like.
  • Examples include basic catalysts such as organic metal salts, triphenylphosphine, and triphenylstibine.
  • the reaction temperature is usually 60 to 150 ° C., and the reaction time is preferably 5 to 60 hours.
  • the acid addition step can be performed without a solvent or diluted with a solvent.
  • the solvent is not particularly limited as long as it does not affect the reaction.
  • it manufactures using a solvent in the epoxy carboxylate conversion process which is a previous process as long as it is a solvent which does not have an influence on an acid addition process, you may use for an acid addition process, without removing a solvent.
  • Examples of the solvent include the same solvents as those described in the description of the epoxy carboxylate formation step.
  • thermal polymerization inhibitor the same compounds as in the epoxy carboxylation step can be used.
  • the acid addition step is terminated when the acid value of the reaction product is within a range of ⁇ 10% of the acid value set according to the intended use while appropriately sampling.
  • Examples of the photopolymerization initiator (D) contained in the active energy ray-curable resin composition for an optical lens sheet of the present invention include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether.
  • Benzoins acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, di Ethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, oligo [2-hydroxy-2-methyl-1- [4- (1 -Methyl vinyl) Acetophenones such as 2-ethylanthraquinone, 2-tert-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone; 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2-chloro Thioxanthones such as thioxanthone; ketals such as ace
  • the photopolymerization initiator (D) may be used singly or as a mixture of a plurality of types, but 2,4,6-trimethylbenzoyldiphenylphosphine oxide, It is preferable to use at least one phosphine oxide such as bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide.
  • Examples of the monoacrylate monomer (C) having a phenyl ether group include phenoxyethyl (meth) acrylate, phenyl (poly) ethoxy (meth) acrylate, p-cumylphenoxyethyl (meth) acrylate, and tribromophenyloxyethyl.
  • phenylphenol (poly) ethoxy (meth) acrylate a compound having an average number of repeating ethoxy structure moieties of 1 to 3 is preferable, and a reaction product of phenylphenol and ethylene oxide as a raw material (meta ) It can be obtained by reacting acrylic acid.
  • Phenylphenol is ortho-form o-phenylphenol and para-form p-phenylphenol can be obtained and used as commercial products (for example, O-PP and P-PP, both Sanko ) Available as a product).
  • a reaction product of phenylphenol and ethylene oxide can be obtained by a known method, and a commercially available product can also be used.
  • the reaction product of phenylphenol and ethylene oxide is preferably a solvent (for example, toluene, cyclohexane, n- Phenylphenol polyethoxy (meth) acrylate is obtained by reacting with (meth) acrylic acid in the presence of hexane, n-heptane, etc., preferably at 70 to 150 ° C.
  • a solvent for example, toluene, cyclohexane, n- Phenylphenol polyethoxy (meth) acrylate is obtained by reacting with (meth) acrylic acid in the presence of hexane, n-heptane, etc., preferably at 70 to 150 ° C.
  • the proportion of (meth) acrylic acid used is 1 to 5 mol, preferably 1.05 to 2 mol, per mol of the reaction product of phenylphenol and ethylene oxide.
  • the esterification catalyst is 0.1 to 15 mol%, preferably 1 to 6 mol%, based on (meth) acrylic acid to be used.
  • the polyfunctional (meth) acrylate compound (E) having 3 or more (meth) acryloyl groups in the molecule that may be contained in the active energy ray-curable resin composition for an optical lens sheet of the present invention will be described.
  • the polyfunctional (meth) acrylate compound (E) tris (acryloxyethyl) isocyanurate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) are used as monomer components.
  • the (meth) acrylate compound (E) includes tris (acryloxyethyl) isocyanurate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, Trifunctional or higher functional (meth) acrylate monomers such as dipentaerythritol hexaacrylate and trimethylolpropane tri (meth) acrylate are preferred.
  • the (meth) acrylate compound (F) include (meth) acrylate monomers and (meth) acrylate oligomers.
  • Examples of (meth) acrylate monomers include monofunctional (meth) acrylate monomers and bifunctional (meth) acrylate monomers.
  • Examples of the monofunctional (meth) acrylate monomer include acryloylmorpholine, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexane-1,4-dimethanol mono (meth) acrylate, and tetrahydrofurfuryl.
  • bifunctional (meth) acrylate monomers include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and tricyclodecanedi.
  • di (meth) acrylates of ⁇ -caprolactone adducts of neopentyl glycol phosphate for example, KAYARAD HX-220, HX-620, etc., manufactured by Nippon Kayaku Co., Ltd.
  • Examples of (meth) acrylate oligomers include urethane (meth) acrylate, epoxy (meth) acrylate, and polyester (meth) acrylate.
  • urethane (meth) acrylate examples include diol compounds (for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,4-butanediol, neopentyl glycol, 1,6- Hexanediol, 1,8-octanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentane Diol, 2-butyl-2-ethyl-1,3-propanediol, cyclohexane-1,4-dimethanol, polyethylene glycol, polypropylene glycol, bisphenol A polyethoxydiol, bisphenol A polypropoxydiol Etc.) or polyesters that are the reaction products of these diol compounds
  • Epoxy (meth) acrylates include bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenol novolac type epoxy resins, terminal glycidyl ethers of bisphenol A propylene oxide adducts, fluorene epoxy resins, and (meth) )
  • a reaction product with acrylic acid can be mentioned.
  • polyester (meth) acrylate examples include a reaction product of the polyester diol, which is a reaction product of the diol compound and the dibasic acid or anhydride thereof, and (meth) acrylic acid.
  • the (meth) acrylate compound (F) that can be used in the resin composition of the present invention a compound having a structure containing a bisphenol A skeleton is preferable in consideration of the refractive index, for example, bisphenol A polyethoxydi (meth) acrylate.
  • (Meth) acrylate monomers such as bisphenol A polypropoxy di (meth) acrylate, urethane (meth) acrylate oligomers having a bisphenol A skeleton (diol compounds such as bisphenol A polyethoxydiol and bisphenol A polypropoxydiol, or these diols)
  • a polyester diol which is a reaction product of a compound with a dibasic acid or an anhydride thereof, an organic polyisocyanate, and a hydroxyl group-containing (meth) acrylate), and a bisphenol A skeleton.
  • One epoxy (meth) acrylate oligomer bisphenol A type epoxy resin, epoxy resins such as terminal glycidyl ethers of a propylene oxide adduct of bisphenol A with (meth) reaction products of acrylic acid
  • bisphenol A type epoxy resin epoxy resins such as terminal glycidyl ethers of a propylene oxide adduct of bisphenol A with (meth) reaction products of acrylic acid
  • a phosphine oxide compound obtained from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, a (meth) acrylate having a binaphthol skeleton, a (meth) acrylate having a fluorene skeleton, and a carbazole skeleton (Meth) acrylate or urethane acrylate obtained by reacting phenylphenol epoxy acrylate and aromatic organic polyisocyanate is also preferable.
  • monofunctional or bifunctional (meth) acrylate monomers are suitable as the (meth) acrylate compound (F), and among them, acryloylmorpholine, tetrahydrofurfuryl (meth).
  • the content ratio of each component of the active energy ray-curable resin composition for an optical lens sheet of the present invention is determined in consideration of a desired refractive index, glass transition temperature, viscosity, adhesion, and the like, but the entire resin composition
  • the component (A) and / or the component (B) is usually 1 to 50% by mass, preferably 5 to 40% by mass.
  • the content is usually 5 to 80% by mass, preferably 10 to 75% by mass in the resin composition.
  • the component (E) is contained, the content thereof is usually 1 to 30% by mass, preferably 1 to 20% by mass in the resin composition.
  • the content of the component (F) is usually 0 to 50% by mass, preferably 0 to 40% by mass in the resin composition.
  • Component (D) is usually 0.1 to 10% by mass, preferably 0.3 to 7% by mass in the resin composition.
  • the energy ray curable resin composition of the present invention is provided with a mold release agent, an antifoaming agent, a leveling agent, a light stabilizer, an antioxidant, and a polymerization inhibitor in order to improve convenience during handling in addition to the above components.
  • Antistatic agents, ultraviolet absorbers, pigments, and the like can be used in combination depending on the situation.
  • polymers such as acrylic polymer, polyester elastomer, urethane polymer and nitrile rubber, inorganic or organic light diffusing filler, and the like can be added as necessary.
  • a solvent can also be added, what does not add a solvent is preferable.
  • the resin composition of the present invention can be prepared by mixing and dissolving each component according to a conventional method.
  • each component can be charged into a round bottom flask equipped with a stirrer and a thermometer and stirred at 40 to 80 ° C. for 0.5 to 6 hours.
  • the viscosity of the resin composition of the present invention is a viscosity suitable for producing optical lens sheets, and the viscosity measured using an E-type viscometer (TV-200: manufactured by Toki Sangyo Co., Ltd.) is 200 mPa ⁇ It is preferably s or more and 4000 mPa ⁇ s or less.
  • a cured product obtained by curing the active energy ray-curable resin composition for optical lens sheets of the present invention by irradiating active energy rays such as ultraviolet rays according to a conventional method is also included in the present invention.
  • the cured product is obtained by applying the resin composition of the present invention on a stamper having a shape of, for example, a Fresnel lens, a lenticular lens, or a prism lens to form a layer of the resin composition, and a hard transparent substrate on the layer.
  • a back sheet (for example, a substrate or film made of polymethacrylic resin, polycarbonate resin, polystyrene resin, polyester resin, or a blend of these polymers) is adhered, and then ultraviolet light is emitted from the hard transparent substrate side by a high-pressure mercury lamp or the like. After the resin composition is cured by irradiation, the cured product can be peeled off from the stamper. As these applications, it can also be manufactured continuously.
  • an optical lens sheet can be obtained in which optical lens parts such as Fresnel lenses, lenticular lenses, prism lenses, and micro lenses having excellent releasability, mold reproducibility, and adhesion are formed. It is included in the present invention.
  • the refractive index of the cured product of the present invention can be measured with an Abbe refractometer (DR-M2: manufactured by Atago Co., Ltd.) or the like, and the active energy ray-curable resin composition for an optical lens sheet of the present invention can be measured.
  • the cured product is preferably about 1.58 to 1.61.
  • the cured product is useful as an optical lens sheet, but other applications include various coating agents and adhesives.
  • the adhesion to the base material is enhanced by the carboxyl group, so that the plastic base material or the metal base material is coated. It can also be used as a purpose.
  • AA acrylic acid
  • b ethylenically unsaturated group-containing monocarboxylic acid
  • triphenylphosphine triphenylphosphine
  • Synthesis Examples 2-1 and 2-2 Synthesis of (poly) carboxylic acid compound (B) Tetrahydrophthalic anhydride as polybasic acid anhydride (c) was added to the epoxycarboxylate compound (A) obtained in Synthesis Example 1-1. The amount of acid described in Table 1 was added, and propylene glycol monomethyl ether monoacetate as a solvent was added so that the solid content would be 70% by weight. ) The carboxylic acid compound (B) was obtained.
  • Synthesis Example 3 Synthesis of polyfunctional urethane (meth) acrylate (E) 1020 parts of pentaerythritol triacrylate, 0.6 part of di-n-butyltin dilaurate and 0.6 part of methoquinone were placed in a dry container up to 80 ° C. Stir with superheat. To this was added 177.8 parts of isophorone diisocyanate (abbreviation: IPDI) over 1 hour, the isocyanate value after stirring for 1 to 2 hours was 0.3 or less, indicating that the reaction was almost quantitatively completed. Urethane (meth) acrylate (E) was obtained.
  • IPDI isophorone diisocyanate
  • Synthesis Example 4 Synthesis of (meth) acrylate compound (F) ((RS) -1,1′-bi-2-naphtholdiethoxydiacrylate) In a flask equipped with a stirrer, a reflux tube and a thermometer, (RS) -1,1′-bi-2-naphthol 286.3 g (1.0 mol), ethylene carbonate 264.2 g (3.0 mol), potassium carbonate 41.5 g (0.3 mol), toluene 2000 ml And reacted at 110 ° C. for 12 hours. After the reaction, the resulting reaction solution was washed with water and 1% NaOH aqueous solution, and then washed with water until the washing water became neutral.
  • (RS) -1,1′-bi-2-naphtholdiethoxydiacrylate) In a flask equipped with a stirrer, a reflux tube and a thermometer, (RS) -1,1′-bi-2-n
  • Synthesis Example 5 Synthesis of (meth) acrylate compound (F) (N- (2-acryloyloxyethyl) carbazole) In an autoclave, 167.2 g (1.0 mol) of carbazole, 114.5 g of toluene, potassium hydroxide Then, 48.5 g (1.1 mol) of ethylene oxide was added dropwise in the range of 120 ° C. to 140 ° C. and a reaction pressure of 0.2 MPa or less, and reacted for 6 hours. After the reaction, unreacted ethylene oxide and toluene were distilled off under reduced pressure.
  • N- (2-hydroxyethyl) carbazole 105.6 g (0.5 mol), acrylic acid 54.1 g (0.7 mol), 1.44 g of paratoluenesulfonic acid, 0.54 g of hydroquinone, 517.6 g of toluene and 221.8 g of cyclohexane were charged and reacted at a reaction temperature of 95 to 105 ° C. while azeotropically distilling the produced water with the solvent. After the reaction, the solution was neutralized with 25% NaOH aqueous solution and then washed with 200 g of 15% by mass saline solution three times. The solvent was distilled off under reduced pressure to obtain 130.0 g of a product of the following structural formula (3) as a pale yellow solid.
  • the resin composition of the present invention was obtained with the composition as shown in the following examples (numerical values indicate parts by mass), and then irradiated with active energy rays to obtain a cured product. Moreover, the evaluation method and evaluation criteria for the resin composition and the cured film were as follows.
  • Viscosity Viscosity was measured at 25 ° C. using an E-type viscometer (TV-200: manufactured by Toki Sangyo Co., Ltd.).
  • Releasability The degree of difficulty when releasing the cured resin from the mold was measured. The difficulty is classified as follows. ⁇ ⁇ Good release from the mold. ⁇ ⁇ Releasing is somewhat difficult or there is peeling sound when releasing. X ⁇ Released or difficult to release (3) Mold reproducibility: The surface shape of the cured ultraviolet curable resin layer and the surface shape of the mold were observed. ⁇ ... Good reproducibility. ⁇ ⁇ Reproducibility is poor.
  • a test piece was prepared by applying a resin composition on a substrate to a film thickness of about 50 ⁇ m and then irradiating it with a high-pressure mercury lamp (80 W / cm, ozone-less) at 1000 mJ / cm 2.
  • the adhesion was evaluated according to JIS K5600-5-6. The evaluation results were 0 (good) for 0-2 and x (bad) for 3-5.
  • Refractive index (25 ° C.) The refractive index (25 ° C.) of the cured ultraviolet curable resin layer was measured with an Abbe refractometer (DR-M2: manufactured by Atago Co., Ltd.).
  • DMS-6000 viscoelasticity measurement system
  • Scratch resistance A glass rod was placed on the prism sheet, and the scratch was observed and evaluated when dragged in the lateral direction with respect to the prism shape. ⁇ ⁇ ⁇ ⁇ ⁇ Scratchless and usable as a prism sheet ⁇ ⁇ ⁇ ⁇ ⁇ Slightly scratched, but no performance problems ⁇ ⁇ ⁇ ⁇ ⁇ Scratched and cannot be used as a prism sheet
  • Example 1 As component (A), 22.5 parts of the compound obtained in Synthesis Example 1-1, as component (C), 67.5 parts of o-phenylphenol monoethoxy acrylate, as component (D), 1-hydroxy-cyclohexyl phenyl ketone 3 And 0.1 part of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, 8 parts of tris (acryloxyethyl) isocyanurate as component (E), 1,4-butanediol diacrylate 2 as component (F) The parts were mixed and heated to 60 ° C. to obtain the resin composition of the present invention. The viscosity of this resin composition was 1756 mPa ⁇ s.
  • the refractive index (25 degreeC) of the 200-micrometer-thick ultraviolet curable resin layer which hardened this resin composition by irradiating 600 mJ / cm ⁇ 2 > with a high pressure mercury lamp (80 W / cm, ozone-less) is 1.606.
  • the glass transition temperature (Tg) was 57 ° C.
  • the obtained resin composition was applied onto a prism lens mold so that the film thickness was 50 ⁇ m, and an easy-adhesion PET film (Toyobo Cosmo Shine A4300, 100 ⁇ m thickness) was adhered thereon as a base material.
  • Example 2 As component (B), 25 parts of the compound obtained in Synthesis Example 2-1, as component (C), 25 parts of o-phenylphenol monoethoxy acrylate, 20 parts of phenoxyethyl acrylate, as component (D), 1-hydroxy-cyclohexylphenyl 3 parts of ketone and 0.1 part of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, 10 parts of tris (acryloxyethyl) isocyanurate as component (E), bisphenol A tetraethoxydiacrylate 20 as component (F) The parts were mixed and heated to 60 ° C. to obtain the resin composition of the present invention.
  • the resin composition had a viscosity of 1675 mPa ⁇ s. Moreover, the refractive index (25 degreeC) of the 200-micrometer-thick ultraviolet curable resin layer which hardened this resin composition by irradiating 600 mJ / cm ⁇ 2 > with a high pressure mercury lamp (80 W / cm, ozone-less) is 1.589. The glass transition temperature (Tg) was 59 ° C. Further, the obtained resin composition was applied onto a prism lens mold so that the film thickness was 50 ⁇ m, and an easy-adhesion PET film (Toyobo Cosmo Shine A4300, 100 ⁇ m thickness) was adhered thereon as a base material.
  • Tg glass transition temperature
  • Example 3 As component (B), 10 parts of the compound obtained in Synthesis Example 2-2, 62 parts of o-phenylphenol monoethoxyacrylate and 10 parts of phenoxyethyl acrylate as component (C), and 1-hydroxy-cyclohexylphenyl as component (D) 3 parts of ketone and 0.1 part of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, 3 parts of pentaerythritol triacrylate as component (E), 15 parts of bisphenol A tetraethoxydiacrylate as component (F) at 60 ° C. was mixed and heated to obtain the resin composition of the present invention. The viscosity of this resin composition was 511 mPa ⁇ s.
  • the refractive index (25 degreeC) of the 200-micrometer-thick ultraviolet curable resin layer which hardened this resin composition by irradiating 600 mJ / cm ⁇ 2 > with a high pressure mercury lamp (80 W / cm, ozone-less) is 1.595.
  • the glass transition temperature (Tg) was 44 ° C.
  • the obtained resin composition was applied onto a prism lens mold so that the film thickness was 50 ⁇ m, and an easy-adhesion PET film (Toyobo Cosmo Shine A4300, 100 ⁇ m thickness) was adhered thereon as a base material.
  • Example 4 As component (A), 9 parts of the compound obtained in Synthesis Example 1-1, as component (B), 10 parts of the compound obtained in Synthesis Example 2-2, as component (C), 51 parts of o-phenylphenol monoethoxyacrylate And 15 parts of phenoxyethyl acrylate, 3 parts of 1-hydroxy-cyclohexylphenyl ketone as component (D), 0.1 part of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, obtained in Synthesis Example 3 as component (E) 3 parts of polyfunctional urethane (meth) acrylate and 17 parts of bisphenol A tetraethoxydiacrylate as component (F) were mixed and heated to 60 ° C.
  • the viscosity of this resin composition was 1123 mPa ⁇ s.
  • the refractive index (25 degreeC) of the 200-micrometer-thick ultraviolet curable resin layer which hardened this resin composition by irradiating 600 mJ / cm ⁇ 2 > with a high pressure mercury lamp (80 W / cm, ozone-less) is 1.594.
  • the glass transition temperature (Tg) was 48 ° C.
  • the obtained resin composition was applied onto a prism lens mold so that the film thickness was 50 ⁇ m, and an easy-adhesion PET film (Toyobo Cosmo Shine A4300, 100 ⁇ m thickness) was adhered thereon as a base material.
  • Example 5 As component (A), 20 parts of the compound obtained in Synthesis Example 1-2, 31 parts of o-phenylphenol monoethoxy acrylate as component (C), 3 parts of 1-hydroxy-cyclohexyl phenyl ketone as component (D), diphenyl ( 2,4,6-trimethylbenzoyl) phosphine oxide 0.01 parts, component (E) 18 parts tris (acryloxyethyl) isocyanurate, component (F) 20 parts bisphenol A tetraethoxydiacrylate, acryloylmorpholine 7 4 parts of KAYARAD EF-053 (manufactured by Nippon Kayaku Co., Ltd., epoxy acrylate of bisphenol A type epoxy resin (epoxy equivalent: 180-194)) is mixed and heated to 60 ° C., and the resin composition of the present invention Got.
  • component (A) 20 parts of the compound obtained in Synthesis Example 1-2, 31 parts of o-phenylphenol monoethoxy acrylate as component
  • the viscosity of this resin composition was 2354 mPa ⁇ s.
  • the refractive index (25 degreeC) of the 200-micrometer-thick ultraviolet curable resin layer which hardened this resin composition by irradiating 600 mJ / cm ⁇ 2 > with a high pressure mercury lamp (80 W / cm, ozone-less) is 1.582.
  • the glass transition temperature (Tg) was 73 ° C.
  • the obtained resin composition was applied onto a prism lens mold so that the film thickness was 50 ⁇ m, and an easy-adhesion PET film (Toyobo Cosmo Shine A4300, 100 ⁇ m thickness) was adhered thereon as a base material.
  • the resin composition had a viscosity of 568 mPa ⁇ s.
  • the refractive index (25 degreeC) of the 200-micrometer-thick ultraviolet curable resin layer which hardened this resin composition by irradiating 600 mJ / cm ⁇ 2 > with a high pressure mercury lamp (80 W / cm, ozoneless) is 1.587.
  • the glass transition temperature (Tg) was 25 ° C.
  • the obtained resin composition was applied onto a prism lens mold so that the film thickness was 50 ⁇ m, and an easy-adhesion PET film (Toyobo Cosmo Shine A4300, 100 ⁇ m thickness) was adhered thereon as a base material.
  • the viscosity of this resin composition was 314 mPa ⁇ s.
  • the refractive index (25 degreeC) of the 200-micrometer-thick ultraviolet curable resin layer which hardened this resin composition by irradiating 600 mJ / cm ⁇ 2 > with a high pressure mercury lamp (80 W / cm, ozone-less) is 1.576.
  • the glass transition temperature (Tg) was 20 ° C.
  • the obtained resin composition was applied onto a prism lens mold so that the film thickness was 50 ⁇ m, and an easy-adhesion PET film (Toyobo Cosmo Shine A4300, 100 ⁇ m thickness) was adhered thereon as a base material.
  • the resin composition of the present invention Obtained.
  • the viscosity of this resin composition was 2834 mPa ⁇ s.
  • the refractive index (25 degreeC) of the 200-micrometer-thick ultraviolet curable resin layer which hardened this resin composition by irradiating 600 mJ / cm ⁇ 2 > with a high pressure mercury lamp (80 W / cm, ozone-less) is 1.604.
  • the glass transition temperature (Tg) was 44 ° C.
  • the obtained resin composition was applied onto a prism lens mold so that the film thickness was 50 ⁇ m, and an easy-adhesion PET film (Toyobo Cosmo Shine A4300, 100 ⁇ m thickness) was adhered thereon as a base material.
  • Example 9 As component (B), 15 parts of the compound obtained in Synthesis Example 2-1, as component (C) 55 parts of o-phenylphenol ethoxy acrylate and 4 parts of phenoxydiethylene glycol acrylate, as component (D) 1-hydroxy-cyclohexyl phenyl ketone 3 parts and 0.1 part of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, 2 parts of KAYARAD DPHA (manufactured by Nippon Kayaku: dipentaerythritol hexaacrylate) as component (E), BPE- as component (F) 10 parts (Daiichi Kogyo Seiyaku: bisphenol A polyethoxydiacrylate) and 20 parts of the compound obtained in Synthesis Example 5 (N- (2-acryloyloxyethyl) carbazole) were mixed and heated to 60 ° C.
  • component (C) 55 parts of o-phenylphenol ethoxy acrylate
  • the viscosity of this resin composition was 1231 mPa ⁇ s.
  • the refractive index (25 degreeC) of the 200-micrometer-thick ultraviolet curable resin layer which hardened this resin composition by irradiating 600 mJ / cm ⁇ 2 > with a high pressure mercury lamp (80 W / cm, ozone-less) is 1.612.
  • the glass transition temperature (Tg) was 52 ° C.
  • this resin composition was applied onto a prism lens mold so that the film thickness was 50 ⁇ m, and an easy-adhesion PET film (Toyobo Cosmo Shine A4300, 100 ⁇ m thickness) was adhered thereon as a base material.
  • Example 10 As component (B), 15 parts of the compound obtained in Synthesis Example 2-1, 63 parts of o-phenylphenol ethoxyacrylate as component (C), 3 parts of 1-hydroxy-cyclohexyl phenyl ketone and diphenyl (2 , 4,6-Trimethylbenzoyl) phosphine oxide, 0.1 part of KAYARAD TMPTA (Nippon Kayaku: Trimethylolpropane triacrylate) as component (E), BPE-10 (Daiichi Kogyo Seiyaku Co., Ltd.) as component (F) 4 parts of bisphenol A polyethoxydiacrylate), 12 parts of A-BPEF (manufactured by Shin-Nakamura Chemical Co., Ltd .: bisphenoxyethanol full orange acrylate) and 4 parts of tetrahydrofurfuryl acrylate were mixed and heated to 60 ° C.
  • KAYARAD TMPTA Nippon Kayaku: Trimethylolpropane triacrylate
  • a resin composition was obtained.
  • the viscosity of this resin composition was 1236 mPa ⁇ s.
  • the refractive index (25 degreeC) of the 200-micrometer-thick ultraviolet curable resin layer which hardened this resin composition by irradiating 600 mJ / cm ⁇ 2 > with a high pressure mercury lamp (80 W / cm, ozone-less) is 1.602.
  • the glass transition temperature (Tg) was 54 ° C.
  • the obtained resin composition was applied onto a prism lens mold so that the film thickness was 50 ⁇ m, and an easy-adhesion PET film (Toyobo Cosmo Shine A4300, 100 ⁇ m thickness) was adhered thereon as a base material.
  • Comparative Example 1 In Example 2, in place of component (B), KAYARAD EF-075 (manufactured by Nippon Kayaku Co., Ltd., bisphenol A type epoxy resin (epoxy equivalent: 900 to 1000) epoxy acrylate) was used except that 25 parts were used.
  • a comparative resin composition was obtained in the same manner as in Example 2. The viscosity of this resin composition was 8420 mPa ⁇ s. Further, the refractive index (25 ° C.) of an ultraviolet curable resin layer having a film thickness of 200 ⁇ m obtained by curing this resin composition by irradiation with 600 mJ / cm 2 with a high pressure mercury lamp (80 W / cm, ozoneless). The glass transition temperature (Tg) was 1.585.
  • the composition of Comparative Example 1 has a refractive index comparable to that of the composition of the present invention, but has a high viscosity and is inferior in processability and inferior in releasability and mold reproducibility.
  • the resin composition of the present invention has a low viscosity, and the cured product of the present invention has a mold release property, mold reproducibility, and adhesion to a substrate. Excellent, high refractive index and high glass transition temperature (Tg). Furthermore, it was excellent in scratch resistance. Therefore, it is suitable for an optical lens sheet having a fine structure, such as a Fresnel lens, a lenticular lens, a prism lens, and a microlens. In particular, it is suitable for applications that require fine processing and manufacturing that includes processes that require continuous processing. Examples 2 to 10 and Comparative Example 1 are shown in Table 2.
  • the ultraviolet curable resin composition of the present invention and the cured product thereof are particularly suitable mainly for optical lens sheets such as Fresnel lenses, lenticular lenses, prism lenses, and micro lenses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

 一般式(1)で表わされるエポキシ樹脂(a)にエチレン性不飽和基含有モノカルボン酸(b)を反応させて得られるエポキシカルボキシレート化合物(A)及び/又はエポキシカルボキシレート化合物(A)の水酸基に多塩基酸無水物(c)を反応させて得られる(ポリ)カルボン酸化合物(B)、並びに光重合開始剤(D)を含む光学レンズシート用活性エネルギー線硬化型樹脂組成物。(式中、R1は同一でも異なっていてもよく、水素原子、ハロゲン原子又は炭素数1~4のアルキル基を表し、mは0~4の整数を、nは平均値で1~6の正数をそれぞれ表す。)

Description

光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
 本発明は、エネルギー線硬化型樹脂組成物及びその硬化物に関する。更に詳しくは、レンチキュラーレンズ、プリズムレンズ、マイクロレンズ等のレンズ類に特に適するエネルギー線硬化型樹脂組成物及び硬化物に関するものである。
 従来、この種のレンズ類はプレス法、キャスト法等により成形されていた。しかし、前者のプレス法は加熱、加圧、冷却サイクルで製造するため生産性が悪かった。また、後者のキャスト法は金型にモノマーを流し込んで重合するため製造時間が長くかかるとともに金型が多数個必要なため、製造コストが上がるという問題があった。このような問題を解決するために、紫外線硬化性樹脂組成物を使用することについて種々の提案がなされている(特許文献1、特許文献2等)。
 これら紫外線硬化型樹脂組成物を使用することによって、透過型スクリーンを製造する方法はある程度成功している。しかしながら、これら従来の樹脂組成物は基板との密着性、及び離型性が悪いという課題があった。密着性が悪いと、使用可能な基板の種類が限られ、意図する光学物性を得ることが難しくなる。離型性が悪いと、離型時に型に樹脂が残り、型が使用できなくなる。また、密着性の良い樹脂組成物は型への密着も良くなるため離型性が悪くなり易く、一方、離型性の良い樹脂組成物は密着性が悪くなり易いという課題もある。さらに、数万メートルの連続加工をすると、金型の表面状態が変化してしまい、離型性が悪くなるという課題もある。そのため、基板との密着性と、型からの離型性との両性能を満足できる樹脂組成物は依然として求められている。
 これら光学レンズシート等に用いられるレンズ類用組成物は、近年の画像の高精細化や最終製品の薄型化等に伴い高屈折率のものが望まれており(特許文献3)、より微細で複雑な形状への加工や、より薄くする加工や、ロール状のシート又はフィルムの連続加工のために、形状転写性や離型性の良いものが求められる傾向がある。
 光学レンズ類用樹脂組成物の原料として、従来から、例えばエポキシ樹脂にアクリル酸等を付加反応させたエポキシアクリレート化合物、及びこのエポキシアクリレート化合物に多塩基酸無水物を付加反応させて得られるポリカルボン酸化合物は、硬化物の硬さや基材への密着性、高い熱安定性、寸法安定性に優れるため広く用いられてきた。
 中でも、ビフェノール構造を有するエポキシ樹脂から誘導されるエポキシアクリレート化合物は、高い熱安定性を有し、強靭な硬化物を提供する事が知られている(特許文献4、特許文献5等)。しかしながら、特許文献4及び特許文献5には高屈折率性に基づく光学用途についての記載は無い。
 特許文献6及び特許文献7では高屈折率の樹脂組成物が開示されているが密着性及び離型性については言及されておらず、密着性と離型性のバランスの取れた、高屈折率で微細な構造を持つ光学レンズシート用樹脂組成物については何れの特許文献にも記載されていない。
 さらに、光学レンズシートを高温環境下で使用しても物性の変化が少ないように、なるべくガラス転移点温度(Tg)の高い硬化物を与えるものが求められる傾向にある。しかしながら、高い屈折率、高いTg点、離型性、密着性を兼ね備える事は難しく、全てを満足できるものは得られていなかった。
特開昭63-167301号公報 特開昭63-199302号公報 特許第3209554号 特開平9-211860号公報 特開平11-140144号公報 国際公開第2008/001722号パンフレット 特開2005-298665号公報
 本発明の目的は、常温での安定性が良好な樹脂組成物であって、レンチキュラーレンズ、プリズムレンズ、マイクロレンズなどの光学レンズシート類を連続加工するのに適し、離型性、型再現性、密着性に優れ、ブロッキングが無く、高屈折率な硬化物を提供することができる樹脂組成物を提供することを目的とする。
 本発明者らは、前記課題を解決するため鋭意研究の結果、特定の組成を有する活性エネルギー線硬化型樹脂組成物が前記課題を解決することを見いだし、本発明を完成させた。
 即ち、本発明は、以下の(1)~(9)に関する。
(1)一般式(1)で表わされるエポキシ樹脂(a)にエチレン性不飽和基含有モノカルボン酸(b)を反応させて得られるエポキシカルボキシレート化合物(A)及び/又は、エポキシカルボキシレート化合物(A)の水酸基に多塩基酸無水物(c)を反応させて得られる(ポリ)カルボン酸化合物(B)、並びに光重合開始剤(D)を含む光学レンズシート用活性エネルギー線硬化型樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
(式中、R1は同一でも異なっていてもよく、水素原子、ハロゲン原子又は炭素数1~4のアルキル基を表し、mは0~4の整数を、nは平均値で1~6の正数をそれぞれ表す。)
(2)フェニルエーテル基を有するモノアクリレートモノマー(C)を更に含む前記(1)に記載の活性エネルギー線硬化型樹脂組成物。
(3)フェニルエーテル基を有するモノアクリレートモノマー(C)がo-フェニルフェノール(ポリ)エトキシ(メタ)アクリレート、p-フェニルフェノール(ポリ)エトキシ(メタ)アクリレート、o-フェニルフェノールエポキシ(メタ)アクリレート及びp-フェニルフェノールエポキシ(メタ)アクリレートからなる群から選択される1種以上の化合物である前記(2)に記載の活性エネルギー線硬化型樹脂組成物。
(4)一般式(1)のmが0である前記(1)乃至(3)のいずれか一つに記載の活性エネルギー線硬化型樹脂組成物。
(5)分子内に3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート化合物(E)を更に含む前記(1)乃至(4)のいずれか一つに記載の活性エネルギー線硬化型樹脂組成物。
(6)成分(A)、成分(B)、成分(C)及び成分(E)以外の(メタ)アクリレート化合物(F)を更に含む前記(1)乃至(5)のいずれか一つに記載の活性エネルギー線硬化型樹脂組成物。
(7)(メタ)アクリレート化合物(F)が、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドから得られるホスフィンオキサイド化合物、ビナフトール骨格を有する(メタ)アクリレート、フルオレン骨格を有する(メタ)アクリレート、カルバゾール骨格を有する(メタ)アクリレート、及びフェニルフェノールエポキシアクリレートと芳香族有機ポリイソシアネートを反応させたウレタンアクリレートからなる群から選ばれる1つ以上の化合物を含む前記(6)に記載の活性エネルギー線硬化型樹脂組成物。
(8)前記(1)乃至(7)のいずれか一つに記載の活性エネルギー線硬化型樹脂組成物を硬化して得られる硬化物。
(9)前記(8)に記載の硬化物を用いる光学レンズシート。
 本発明の樹脂組成物は、安定性が良く、その硬化物は離型性、型再現性、基板との密着性に優れ、ブロッキングが無く、高屈折率である。そのため特にレンチキュラーレンズ、プリズムレンズ、マイクロレンズ等の光学レンズシートへの使用に適している。
 本発明の光学レンズシート用活性エネルギー線硬化樹脂組成物は、前記一般式(1)(式中、R1は同一でも異なっていてもよく、水素原子、ハロゲン原子又は炭素数1~4のアルキル基を表し、mは0~4の整数を、nは平均値で1~6の正数をそれぞれ表す。)で表されるエポキシ樹脂(a)と分子中にエチレン性不飽和基含有モノカルボン酸(b)とを反応させて得られるエポキシカルボキシレート化合物(A)及び/又は、エポキシカルボキシレート化合物(A)の水酸基に多塩基酸無水物(c)を反応させて得られる(ポリ)カルボン酸化合物(B)、並びに光重合開始剤(D)を含む。
 一般式(1)においてR1としては、使用される用途に応じて適宜選択でき、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基等の炭素数が1~4の直鎖若しくは分岐鎖状の飽和炭化水素基;塩素原子、臭素原子、ヨウ素原子等のハロゲン原子が挙げられる。R1が塩素原子、臭素原子、ヨウ素原子等のハロゲン原子である場合には、より高い屈折率の硬化物が得られる。
 mは0~4の整数が好ましく、0~2の整数がより好ましい。なお、mが0は水素原子であることを示す。これらのうち、mが0、即ち、置換基を有しない化合物が材料の入手しやすい等の観点から最も好ましい。
 nは平均値で1~6の正数が好ましく、1~3の正数がより好ましい。
 一般式(1)で表されるフェノールビフェニルメチル型エポキシ樹脂であるエポキシ樹脂(a)において、グリシジルエーテル基に対してビフェニルメチル基がオルト位又はパラ位に結合している樹脂が好ましい。
 一般式(1)で表されるエポキシ樹脂(a)は、例えば特許文献5にその製造方法が記載されており、その方法に準じて製造する事が可能である。また、市販品(商品名:NC-3000、NC-3000P、NC-3000S、NC-3000H、NC-3100等の一般式(1)のmが0である樹脂;日本化薬(株)製)を入手することも可能である。
 本発明の光学レンズシート用活性エネルギー線硬化型樹脂組成物におけるエポキシカルボキシレート化合物(A)は、一般式(1)で表されるエポキシ樹脂(a)とエチレン性不飽和基含有モノカルボン酸(b)とを反応させて得られる。本明細書ではこの反応は、エポキシカルボキシレート化工程と称することにする。
 本発明の光学レンズシート用活性エネルギー線硬化型樹脂組成物における(ポリ)カルボン酸化合物(B)は、前記エポキシカルボキシレート化合物(A)の水酸基に多塩基酸無水物(c)を反応させて得られる。本明細書ではこの反応は、酸付加工程と称することにする。
(i)エポキシカルボキシレート化工程について説明する。
 エポキシカルボキシレート化工程はエポキシ基とカルボキシル基とを反応させ、エポキシ樹脂の骨格に活性エネルギー線の反応性基であるエチレン性不飽和基を導入する事を目的とするものである。
 該エチレン性不飽和基含有モノカルボン酸(b)としては、例えば、(メタ)アクリル酸類、クロトン酸、α-シアノ桂皮酸、桂皮酸、及びエチレン性不飽和基と水酸基とを併せ持つ化合物に飽和若しくは不飽和二塩基酸を反応させた化合物等が挙げられる。
 (メタ)アクリル酸類としては、例えば、(メタ)アクリル酸、β-スチリルアクリル酸、β-フルフリルアクリル酸、(メタ)アクリル酸二量体、(メタ)アクリル酸とε-カプロラクトンとの反応生成物等が挙げられる。
 エチレン性不飽和基と水酸基とを併せ持つ化合物に飽和若しくは不飽和二塩基酸を反応させた化合物としては、例えば、1分子中に1個の水酸基を有する(メタ)アクリレート誘導体と飽和若しくは不飽和二塩基酸無水物とを等モル反応させて得られる半エステル類が挙げられる。具体的には、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートに、無水マレイン酸、無水コハク酸、無水フタル酸、無水フタル酸の部分若しくは全水添化合物、無水トリメリット酸、無水ピロメリット酸等の飽和若しくは不飽和二塩基酸を反応させた化合物が挙げられる。
 エチレン性不飽和基含有モノカルボン酸(b)として好ましくは、活性エネルギー線硬化型樹脂組成物としたときの活性エネルギー線に対する感度の点から(メタ)アクリル酸又は桂皮酸が挙げられる。
 この反応におけるエポキシ樹脂(a)と、エチレン性不飽和基含有モノカルボン酸(b)との仕込み割合は、用途に応じて適宜変更をすることができる。即ち、全てのエポキシ基をカルボキシレート化した場合は、未反応のエポキシ基が残存しないために、エポキシカルボキシレート化合物(A)としての保存安定性は高い。この場合、硬化反応には導入した二重結合による反応性のみを利用する事になる。
 エポキシカルボキシレート化工程において、エポキシ基を残存させないようにするためには、エポキシ樹脂(a)と、エチレン性不飽和基含有モノカルボン酸(b)との仕込み割合としては、エポキシ基1当量に対し、化合物(b)のカルボキシル基を0.9~1.2当量とするのが好ましい。この範囲を下回る場合、エポキシ基が残存し、酸付加工程においてゲル化したり、樹脂の保存安定性が悪くなったりすることがある。逆に化合物(b)の仕込み量がこの範囲より多い場合には、過剰の化合物(b)が残存し好ましくない。
 一方、エチレン性不飽和基含有モノカルボン酸(b)の仕込み量を減量して未反応のエポキシ基を残す事により、導入したエチレン性不飽和基による反応と残存するエポキシ基による反応(例えば、光カチオン触媒による重合反応や熱重合反応等)を複合的に利用する事も可能となる。
 エポキシカルボキシレート化工程において、エポキシ基を残す場合には、仕込み量として、エポキシ樹脂(a)のエポキシ基1当量に対し、エチレン性不飽和基含有モノカルボン酸(b)のカルボキシル基を0.2~0.9当量とするのが好ましい。この範囲を逸脱する場合には前記の複合的硬化による効果が弱まる。エポキシ基を残す場合には続く反応中のゲル化やエポキシカルボキシレート化合物(A)の保存安定性に注意を払う必要がある。
 更に、後記の酸付加工程を経てポリカルボン酸化合物(B)として使用する場合には、エポキシカルボキシレート化合物(A)にはエポキシ基を残存させないのが好ましい。即ち、エポキシ基が多く残存する場合には、導入されたカルボキシル基と反応してしまい、保存安定性等が特に悪化する。
 エポキシカルボキシレート化工程は無溶剤で若しくは溶剤で希釈して行なうことができる。溶剤を使用する場合、該溶剤としては反応に影響が無ければ特に限定されない。
 該溶剤としては、例えば、トルエン、キシレン、エチルベンゼン、テトラメチルベンゼン等の芳香族系炭化水素溶剤、ヘキサン、オクタン、デカン等の脂肪族系炭化水素溶剤、又はそれらの組成物である石油エーテル、ホワイトガソリン、ソルベントナフサ等が挙げられる。
 また、該溶剤としてエステル系溶剤も使用することができる。エステル系溶剤として、酢酸エチル、酢酸プロピル、酢酸ブチル等のアルキルアセテート類、γ-ブチロラクトン等の環状エステル類、エチレングリコールモノメチルエーテルモノアセテート、ジエチレングリコールモノメチルエーテルモノアセテート、ジエチレングリコールモノエチルエーテルモノアセテート、トリエチレングリコールモノエチルエーテルモノアセテート、ジエチレングリコールモノブチルエーテルモノアセテート、プロピレングリコールモノメチルエーテルモノアセテート、ブチレングリコールモノメチルエーテルモノアセテート等のモノ若しくはポリアルキレングリコールモノアルキルエーテルモノアセテート類、グルタル酸ジアルキル(例えば、グルタル酸ジメチル等)、コハク酸ジアルキル(例えば、コハク酸ジメチル等)、アジピン酸ジアルキル(例えば、アジピン酸ジメチル等)等のポリカルボン酸ポリアルキルエステル類等が挙げられる。
 また、該溶剤としてエーテル系溶剤も使用することができる。エーテル系溶剤として、ジエチルエーテル、エチルブチルエーテル等のアルキルエーテル類、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等のグリコールジアルキルエーテル類、テトラヒドロフラン等の環状エーテル類等が挙げられる。
 また、該溶剤として、ケトン系溶剤も使用することができる。ケトン系溶剤として、アセトン、メチルエチルケトン、シクロヘキサノン、イソホロン等が挙げられる。
 この他にも、後記の(メタ)アクリレート化合物等を溶剤として使用することもでき、これらを単独又は混合して使用することができる。(メタ)アクリレート化合物等を溶剤として使用する場合、エポキシカルボキシレート化工程の生成物は本発明の樹脂組成物としてそのまま利用する事が出来るので好ましい。
 エポキシカルボキシレート化工程には、反応を促進させるために触媒を使用することが好ましい。該触媒の使用量は、反応物の総量に対して0.1~10重量%程度添加するのが好ましい。該触媒としては、例えば、トリエチルアミン、ベンジルジメチルアミン等の3級アミン類、塩化トリエチルアンモニウム、臭化ベンジルトリメチルアンモニウム、ヨウ化ベンジルトリメチルアンモニウム等の4級アンモニウム塩類、オクタン酸クロム、オクタン酸ジルコニウム等の有機金属塩類、トリフェニルホスフィン、トリフェニルスチビン等の塩基性触媒等が挙げられる。
 反応温度は通常60~150℃であり、また、反応時間は好ましくは5~60時間である。
 また、熱重合禁止剤として、例えば、ハイドロキノンモノメチルエーテル(メトキノン)、2-メチルハイドロキノン、ハイドロキノン、ジフェニルピクリルヒドラジン、ジフェニルアミン、3,5-ジ-tert-ブチル-4-ヒドロキシトルエン等の重合禁止剤の使用が好ましい。
 エポキシカルボキシレート化工程は、適宜サンプリングしながら、サンプルの酸価(JIS K5601-2-1:1999に準拠して測定)が1mg・KOH/g以下、好ましくは0.5mg・KOH/g以下となった時点を終点とする。
(ii)次に、(B)を製造する上での酸付加工程について説明する。
 酸付加工程は、エポキシカルボキシレート化工程によって生じた水酸基に多塩基酸無水物(c)を反応させ、エステル結合を介してカルボキシル基の導入を目的とする。
 多塩基酸無水物(c)とは、分子中に酸無水物構造を有する化合物であれば特に限定されないが、例えばアルカリ水溶液現像性、耐熱性、加水分解耐性等に優れた生成物を与える事から、無水コハク酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水イタコン酸、3-メチル-テトラヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、無水トリメリット酸又は無水マレイン酸が好ましい。
 酸付加工程は、前記エポキシカルボキシレート化工程の反応液に多塩基酸無水物(c)を加える事により行なう事もできる。多塩基酸無水物(c)の添加量は用途に応じて適宜変更されるべきものである。
 酸付加工程には反応を促進させるために触媒を使用することが好ましい。該触媒の使用量は、反応物の総量に対して0.1~10重量%程度添加するのが好ましい。該触媒としては、例えば、トリエチルアミン、ベンジルジメチルアミン等の3級アミン類、塩化トリエチルアンモニウム、臭化ベンジルトリメチルアンモニウム、ヨウ化ベンジルトリメチルアンモニウム等の4級アンモニウム塩類、オクタン酸クロム、オクタン酸ジルコニウム等の有機金属塩類、トリフェニルホスフィン、トリフェニルスチビン等の塩基性触媒等が挙げられる。
 反応温度は通常60~150℃であり、また、反応時間は好ましくは5~60時間である。
 酸付加工程は無溶剤で行うか又は溶剤で希釈して行うことができる。溶剤を使用する場合、該溶剤は反応に影響が無ければ特に限定されない。また、前工程であるエポキシカルボキシレート化工程で溶剤を用いて製造した場合には、酸付加工程に影響が無い溶剤であれば溶剤を除くことなく酸付加工程に供してもよい。
 該溶剤としては前記エポキシカルボキシレート化工程の説明に記載した溶剤と同様な溶剤が挙げられる。
 また、熱重合禁止剤としては、前記エポキシカルボキシレート化工程におけるのと同様の化合物を使用することができる。
 酸付加工程は、適宜サンプリングしながら、反応物の酸価が目的とする用途に応じて設定した酸価の±10%の範囲になった時点で終了とする。
 本発明の光学レンズシート用活性エネルギー線硬化型樹脂組成物に含有される光重合開始剤(D)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、オリゴ[2-ヒドロキシー2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン]等のアセトフェノン類;2-エチルアントラキノン、2-tert-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノン等のアントラキノン類;2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノン等のベンゾフェノン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド等のホスフィンオキサイド類等を挙げることができる。好ましくは、アセトフェノン類であり、さらに好ましくは2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトンを挙げることができる。
 なお、本発明の樹脂組成物においては、光重合開始剤(D)は単独で用いてもよいし複数種を混合して用いてもよいが、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド等のホスフィンオキサイド類の少なくとも1種を用いるのが好ましい。
 次に、本発明の光学レンズシート用活性エネルギー線硬化型樹脂組成物に含有してもよいフェニルエーテル基を有するモノアクリレートモノマー(C)について説明する。
 該フェニルエーテル基を有するモノアクリレートモノマー(C)としては、例えば、フェノキシエチル(メタ)アクリレート、フェニル(ポリ)エトキシ(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレート、フェニルチオエチル(メタ)アクリレート、2-ヒドロキシ-3-フェニルオキシプロピル(メタ)アクリレート、フェニルフェノール(ポリ)エトキシ(メタ)アクリレート、フェニルフェノールエポキシ(メタ)アクリレート(フェニルフェノールグリシジルエーテルのエポキシ(メタ)アクリレート)等を挙げることができ、フェニルフェノール(ポリ)エトキシ(メタ)アクリレート又はフェニルフェノールエポキシ(メタ)アクリレートが好ましく、なかでもo-フェニルフェノール(ポリ)エトキシ(メタ)アクリレート、p-フェニルフェノール(ポリ)エトキシ(メタ)アクリレート、o-フェニルフェノールエポキシ(メタ)アクリレート、p-フェニルフェノールエポキシ(メタ)アクリレートが好ましい。また特にo-フェニルフェノール(ポリ)エトキシ(メタ)アクリレートが耐擦傷性の点からは好ましい。
 該フェニルフェノール(ポリ)エトキシ(メタ)アクリレートとしては、エトキシ構造部分の繰り返し数が平均で1~3の正数である化合物が好ましく、原料であるフェニルフェノールとエチレンオキサイドとの反応物と(メタ)アクリル酸を反応させることにより得ることができる。フェニルフェノールはオルト体であるo-フェニルフェノール、パラ体であるp-フェニルフェノールが市販品として入手して、使用することができる(例えば、O-PP、P-PPとして、何れも三光(株)製として入手可能)。フェニルフェノールとエチレンオキサイドとの反応物は公知の方法により得ることができ、また、市販品も使用することができる。フェニルフェノールとエチレンオキサイドとの反応物を、p-トルエンスルホン酸又は硫酸等のエステル化触媒、ハイドロキノンやフェノチアジン等の重合禁止剤の存在下で、好ましくは溶剤類(例えば、トルエン、シクロヘキサン、n-ヘキサン、n-ヘプタン等)の存在下で、好ましくは70~150℃で(メタ)アクリル酸と反応させることによりフェニルフェノールポリエトキシ(メタ)アクリレートが得られる。(メタ)アクリル酸の使用割合は、フェニルフェノールとエチレンオキサイドとの反応物1モルに対して1~5モル、好ましくは1.05~2モルである。エステル化触媒は使用する(メタ)アクリル酸に対して0.1~15モル%、好ましくは1~6モル%である。
 本発明の光学レンズシート用活性エネルギー線硬化型樹脂組成物に含有してもよい分子内に3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート化合物(E)について説明する。
 該多官能(メタ)アクリレート化合物(E)としては、モノマー成分としてトリス(アクリロキシエチル)イソシアヌレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等が挙げられ、オリゴマー成分としては成分(A)、成分(B)以外の3官能以上のエポキシ(メタ)アクリレート、3官能以上のウレタン(メタ)アクリレート等を挙げることができる。
 また、硬化物のガラス転移温度(Tg)を考慮すると(メタ)アクリレート化合物(E)としてはトリス(アクリロキシエチル)イソシアヌレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヘキサアクリレート、トリメチロールプロパントリ(メタ)アクリレート等の3官能以上の(メタ)アクリレートモノマーが好ましい。
 更に、本発明の光学レンズシート用活性エネルギー線硬化型樹脂組成物の粘度、密着性、ガラス転移温度(Tg)、硬化物の硬度等を考慮して、成分(A)、成分(B)、成分(C)、成分(E)以外の(メタ)アクリレート化合物(F)を単独又は二種類以上を混合して使用してもよい。
 該(メタ)アクリレート化合物(F)としては、(メタ)アクリレートモノマーや(メタ)アクリレートオリゴマーが挙げられる。
 (メタ)アクリレートモノマーとしては、単官能(メタ)アクリレートモノマー、2官能(メタ)アクリレートモノマー等を挙げることができる。
 単官能(メタ)アクリレートモノマーとしては、例えば、アクリロイルモルホリン、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキサン-1,4-ジメタノールモノ(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等を挙げることができる。
 2官能(メタ)アクリレートモノマーとしては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ビスフェノールAポリエトキシジ(メタ)アクリレート、ビスフェノールAポリプロポキシジ(メタ)アクリレート、ビスフェノールFポリエトキシジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレートヒドロキシビバリン酸ネオペンチルグリコールのε-カプロラクトン付加物のジ(メタ)アクリレート(例えば、日本化薬(株)製、KAYARAD HX-220、HX-620等)等を挙げることができる。
 (メタ)アクリレートオリゴマーとしては、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート等を挙げることができる。
 ウレタン(メタ)アクリレートとしては、例えば、ジオール化合物(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、シクロヘキサン-1,4-ジメタノール、ポリエチレングリコール、ポリプロピレングリコール、ビスフェノールAポリエトキシジオール、ビスフェノールAポリプロポキシジオール等)又はこれらジオール化合物と二塩基酸又はその無水物(例えば、コハク酸、アジピン酸、アゼライン酸、ダイマー酸、イソフタル酸、テレフタル酸、フタル酸若しくはこれらの無水物)との反応物であるポリエステルジオールと、有機ポリイソシアネート(例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の鎖状飽和炭化水素ジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、水添ジフェニルメタンジイソシアネート、水添キシレンジイソシアネート、水添トルエンジイソシアネート等の環状飽和炭化水素ジイソシアネート、2,4-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、p-フェニレンジイソシアネート、3,3’-ジメチル-4,4’-ジイソシアネート、6-イソプロピル-1,3-フェニルジイソシアネート、1,5-ナフタレンジイソシアネート等の芳香族ジイソシアネート)とを反応させ、次いで水酸基含有(メタ)アクリレートを付加した反応物が挙げられる。また、前記有機ジイソシアネートと水酸基含有(メタ)アクリレートを反応させた化合物等も挙げられる。
 エポキシ(メタ)アクリレートとしては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAのプロピレンオキサイド付加物の末端グリシジルエーテル、フルオレンエポキシ樹脂等のエポキシ樹脂類と、(メタ)アクリル酸との反応物等を挙げることができる。
 ポリエステル(メタ)アクリレートとしては、例えば、前記のジオール化合物と前記の二塩基酸又はその無水物との反応物である前記ポリエステルジオールと、(メタ)アクリル酸との反応物等が挙げられる。
 なかでも、本発明の樹脂組成物に使用することのできる(メタ)アクリレート化合物(F)としては、屈折率を考慮するとビスフェノールA骨格を含む構造の化合物が好ましく、例えばビスフェノールAポリエトキシジ(メタ)アクリレート、ビスフェノールAポリプロポキシジ(メタ)アクリレートなどの(メタ)アクリレートモノマー、ビスフェノールAの骨格を持つウレタン(メタ)アクリレートオリゴマー(ビスフェノールAポリエトキシジオール、ビスフェノールAポリプロポキシジオール等のジオール化合物、又はこれらジオール化合物と二塩基酸もしくはその無水物との反応物であるポリエステルジオールと、有機ポリイソシアネートと、水酸基含有(メタ)アクリレートとを反応した化合物)、ビスフェノールAの骨格を持つエポキシ(メタ)アクリレートオリゴマー(ビスフェノールA型エポキシ樹脂、ビスフェノールAのプロピレンオキサイド付加物の末端グリシジルエーテル等のエポキシ樹脂類と(メタ)アクリル酸との反応物など)が適している。また、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドから得られるホスフィンオキサイド化合物、ビナフトール骨格を有する(メタ)アクリレート、フルオレン骨格を有する(メタ)アクリレート、カルバゾール骨格を有する(メタ)アクリレート、又はフェニルフェノールエポキシアクリレートと芳香族有機ポリイソシアネートを反応させたウレタンアクリレートなども好ましい。
 特に、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドから得られるホスフィンオキサイド化合物、ビナフトール骨格を有する(メタ)アクリレート、フルオレン骨格を有する(メタ)アクリレート、カルバゾール骨格を有する(メタ)アクリレート、又はフェニルフェノールエポキシアクリレートと芳香族有機ポリイソシアネートとを反応させたウレタンアクリレートなどが好ましい。
 また、硬化物の密着性や粘度などを考慮すると、(メタ)アクリレート化合物(F)としては単官能或いは2官能(メタ)アクリレートモノマーが適しており、中でも、アクリロイルモルホリン、テトラヒドロフルフリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等が好ましい。
 本発明の光学レンズシート用活性エネルギー線硬化型樹脂組成物の各成分の含有割合は、所望の屈折率やガラス転移温度や粘度や密着性等を考慮して決められるが、樹脂組成物の全体を100質量%とした場合に、成分(A)及び/又は成分(B)は樹脂組成物中に通常1~50質量%であり、好ましくは5~40質量%である。成分(C)を含有する場合、その含有率は樹脂組成物中に通常5~80質量%、好ましくは10~75質量%である。成分(E)を含有する場合、その含有率は樹脂組成物中に通常1~30質量%であり、好ましくは1~20質量%である。成分(F)の含有率は樹脂組成物中に通常0~50質量%であり、好ましくは0~40質量%である。成分(D)は樹脂組成物中に通常0.1~10質量%であり、好ましくは0.3~7質量%である。
 本発明のエネルギー線硬化型樹脂組成物は、前記成分以外に取り扱い時の利便性等を改善するために、離型剤、消泡剤、レベリング剤、光安定剤、酸化防止剤、重合禁止剤、帯電防止剤、紫外線吸収剤、色素等を状況に応じて併用して含有することができる。更に、必要に応じて、アクリルポリマー、ポリエステルエラストマー、ウレタンポリマー及びニトリルゴム等のポリマー類、無機あるいは有機の光拡散フィラー等も添加することができる。溶剤を加えることもできるが、溶剤を添加しないものが好ましい。
 本発明の樹脂組成物は、各成分を常法に従い混合溶解することにより調製することができる。例えば、撹拌装置、温度計のついた丸底フラスコに各成分を仕込み、40~80℃にて0.5~6時間撹拌することにより得ることができる。
 本発明の樹脂組成物の粘度は、光学レンズシート類を製造するに適した粘度として、E型粘度計(TV-200:東機産業社製)を用いて測定した粘度が25℃で200mPa・s以上、4000mPa・s以下であることが好ましい。
 常法に従い、本発明の光学レンズシート用活性エネルギー線硬化型樹脂組成物に紫外線等の活性エネルギー線を照射することにより硬化して得られる硬化物も本発明に含まれる。該硬化物は本発明の樹脂組成物を、例えば、フレネルレンズ、レンチキュラーレンズ、プリズムレンズ等の形状を有するスタンパー上に塗布して該樹脂組成物の層を設け、その層の上に硬質透明基板であるバックシート(例えば、ポリメタクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリエステル樹脂、又はこれらポリマーのブレンド品等からなる基板あるいはフィルム)を接着させ、次いで該硬質透明基板側から高圧水銀灯等により紫外線を照射して該樹脂組成物を硬化させた後、該スタンパーから硬化物を剥離して得ることができる。これらの応用として連続式で製造することもできる。
 この様にして離型性、型再現性、密着性に優れたフレネルレンズ、レンチキュラーレンズ、プリズムレンズ、マイクロレンズ等の光学レンズ部分を形成した光学レンズシートを得ることができ、これら光学レンズシートも本発明に含まれる。なお、本発明の硬化物の屈折率はアッベ屈折率計(DR-M2:(株)アタゴ製)等で測定することができ、本発明の光学レンズシート用活性エネルギー線硬化型樹脂組成物の硬化物としては1.58~1.61程度が好ましい。
 前記硬化物は光学レンズシートとして有用であるが、それ以外の用途としては、各種コーティング剤、接着剤等が挙げられる。また、(ポリ)カルボン酸化合物(B)を含有する樹脂組成物の場合、上記の用途に加えて、カルボキシル基によって基材への密着性が高まるため、プラスチック基材若しくは金属基材を被覆するための用途として用いる事もできる。
 次に、実施例により本発明を更に詳細に説明する。なお、本発明は以下の実施例によって何ら限定されるものではない。また、実施例中に特に断りが無い限り、部は質量部を示す。なお、合成例中のエポキシ当量は、JIS K7236:2001に記載の方法で測定した。
 合成例1-1:エポキシカルボキシレート化合物(A)の合成
 エポキシ樹脂(a)としてフェノールビフェニルメチル型エポキシ樹脂である日本化薬製NC-3000H(エポキシ価288g/eq、式(1)でm=0、n=2.1)144g、エチレン性不飽和基含有モノカルボン酸(b)としてアクリル酸(略称AA、分子量72)を36g、触媒としてトリフェニルホスフィン1.5g、溶剤としてプロピレングリコールモノメチルエーテルモノアセテート100gを加え、100℃で24時間反応させ、エポキシカルボキシレート化合物(A)を得た。
 合成例1-2:エポキシカルボキシレート化合物(A)の合成
 エポキシ樹脂(a)としてフェノールビフェニルメチル型エポキシ樹脂である日本化薬製NC-3100(エポキシ価254g/eq、式(1)でm=0、n=1.4)127gエチレン性不飽和基含有モノカルボン酸(b)としてアクリル酸(略称AA、分子量72)を36g、触媒としてトリフェニルホスフィン1.5g、溶剤としてプロピレングリコールモノメチルエーテルモノアセテート165gを加え、100℃で24時間反応させ、エポキシカルボキシレート化合物(A)を得た。
 合成例2-1、2-2:(ポリ)カルボン酸化合物(B)の合成
 合成例1-1において得られたエポキシカルボキシレート化合物(A)に多塩基酸無水物(c)としてテトラヒドロ無水フタル酸を表1中に記載の量を加え、固形分が70重量%となるように溶剤としてのプロピレングリコールモノメチルエーテルモノアセテートを添加し、100℃にて10時間加熱して付加反応させ、(ポリ)カルボン酸化合物(B)を得た。
Figure JPOXMLDOC01-appb-T000003
 合成例3:多官能ウレタン(メタ)アクリレート(E)の合成
 乾燥容器中にペンタエリスリトールトリアクリレート1020部、ジラウリン酸ジ-n-ブチルスズ0.6部、メトキノン0.6部を入れ、80℃まで過熱撹拌した。これにイソホロンジイソシアネート(略称:IPDI)177.8部を1時間かけて滴下し、1~2時間撹拌後のイソシアネート値は0.3以下となり反応がほぼ定量的に終了した事を示し、多官能ウレタン(メタ)アクリレート(E)を得た。
 合成例4:(メタ)アクリレート化合物(F)((RS)-1,1’-ビ-2-ナフトールジエトキシジアクリレート)の合成
 撹拌装置、還流管、温度計をつけたフラスコの中に、(RS)-1,1’-ビ-2-ナフトールを286.3g(1.0mol)、炭酸エチレンを264.2g(3.0mol)、炭酸カリウムを41.5g(0.3mol)、トルエン2000mlを仕込み、110℃で12時間反応させた。
 反応後、得られた反応液を水洗、1%NaOH水溶液で洗浄し、次いで洗浄水が中性になるまで水洗を行った。水洗後の溶液をロータリーエバポレーターを用いて減圧下に溶媒を留去し、(RS)-1,1’-ビ-2-ナフトールのエチレンオキサイド2mol反応物300.0gを得た。
 続いて、撹拌装置、還流管、温度計及び水分離機をつけたフラスコ中に、(RS)-1,1’-ビ-2-ナフトールのエチレンオキサイド2mol反応物187.2g(0.5mol)、アクリル酸86.5g(2.4mol)、パラトルエンスルホン酸0.95g、ハイドロキノン0.87g、トルエン917.4g、シクロヘキサン393.2g仕込み、反応温度95~105℃で生成水を溶媒と共沸留去しながら反応させた。反応後、25%NaOH水溶液で中和した後、15質量%食塩水200gで3回洗浄した。溶媒を減圧留去して淡黄色固体の下記構造式の生成物337.8gを得た。
Figure JPOXMLDOC01-appb-C000004
 合成例4の化合物の物性を以下に示す。
液屈折率(D線、25℃)1.62
H-NMR(CDCl、300MHz)、ppm:
4.00-4.30ppm=8H、5.60-5.90ppm=4H、6.05-6.15ppm=2H、7.05-7.50ppm=8H、7.80-8.00ppm=4H
 合成例5:(メタ)アクリレート化合物(F)(N-(2-アクリロイルオキシエチル)カルバゾール)の合成
 オートクレーブ中に、カルバゾールを167.2g(1.0mol)、トルエンを114.5g、水酸化カリウムを0.5g仕込み、窒素置換を行なった後、エチレンオキサイド48.5g(1.1mol)を120℃~140℃、反応圧0.2MPa以下の範囲で滴下し、6時間反応させた。反応後、減圧下で未反応のエチレンオキサイド、トルエンを留去し、得られたN-(2-ヒドロキシエチル)カルバゾール105.6g(0.5mol)、アクリル酸54.1g(0.7mol)、パラトルエンスルホン酸1.44g、ハイドロキノン0.54g、トルエン517.6g、シクロヘキサン221.8gを仕込み、反応温度95~105℃で生成水を溶媒と共沸留去しながら反応させた。反応後、25%NaOH水溶液で中和した後、15質量%食塩水200gで3回洗浄した。溶媒を減圧留去して淡黄色固体の下記構造式(3)の生成物130.0gを得た。
Figure JPOXMLDOC01-appb-C000005
 合成例5の化合物の物性を以下に示す。
液屈折率(D線、25℃)1.61
H-NMR(CDCl、300MHz)、ppm:
4.48-4.60ppm=4H、5.70-5.80ppm=1H、5.90-6.05ppm=1H、6.20-6.30ppm=1H、7.10-7.55ppm=6H、8.05-8.15ppm=2H
 以下の実施例に示すような組成(数値は質量部を示す)にて本発明の樹脂組成物を得て、次いで活性エネルギー線を照射し硬化物を得た。また、樹脂組成物及び硬化膜についての評価方法及び評価基準は以下の通り行った。
(1)粘度:E型粘度計(TV-200:東機産業(株)製)を用い、25℃にて測定した。
(2)離型性:硬化した樹脂を金型より離型させるときの難易度を測定した。難易度は下記のように分類した。
○・・・・金型からの離型が良好である。
△・・・・離型がやや困難あるいは離型時に剥離音がある。
×・・・・離型が困難あるいは型残りがある。
(3)型再現性:硬化した紫外線硬化性樹脂層の表面形状と金型の表面形状を観察した。
○・・・・再現性良好である。
×・・・・再現性が不良である。
(4)密着性:基材上に樹脂組成物を膜厚約50μm程度に塗布し、次いで高圧水銀灯(80W/cm、オゾンレス)で1000mJ/cmの照射を行い硬化させたテストピースを作製し、JIS K5600-5-6に準じて密着性評価を行った。
評価結果は0~2を○(良)とし、3~5を×(不良)とした。
(5)屈折率(25℃):硬化した紫外線硬化性樹脂層の屈折率(25℃)をアッベ屈折率計(DR-M2:(株)アタゴ製)で測定した。
(6)ガラス転移温度(Tg):硬化した紫外線硬化性樹脂層のTg点を粘弾性測定システム(DMS-6000:セイコー電子工業(株)製)において、引っ張りモード、周波数1Hzにて測定した。
(7)耐擦傷性:プリズムシートの上にガラス棒を当て、プリズム形状に対して横方向に引きずった時の、傷のつき方を観察し、評価した。
◎・・・・傷がつかず、プリズムシートとして使用できる状態
○・・・・わずかに傷がつくが、性能に問題がない状態
×・・・・傷がつき、プリズムシートとして使用できない状態
 実施例1
 成分(A)として、合成例1-1で得た化合物22.5部、成分(C)としてo-フェニルフェノールモノエトキシアクリレート67.5部、成分(D)として1-ヒドロキシ-シクロヘキシルフェニルケトン3部及びジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド0.1部、成分(E)としてトリス(アクリロキシエチル)イソシアヌレート8部、成分(F)として1,4-ブタンジオールジアクリレート2部を60℃に混合・加温し、本発明の樹脂組成物を得た。この樹脂組成物の粘度は1756mPa・sであった。また、この樹脂組成物を高圧水銀灯(80W/cm、オゾンレス)にて600mJ/cmの照射を行って硬化した、膜厚200μmの紫外線硬化型樹脂層の屈折率(25℃)は1.606であり、ガラス転移温度(Tg)は57℃だった。
 さらに、得られたこの樹脂組成物をプリズムレンズ金型の上に膜厚が50μmになるように塗布し、その上に基材として易接着PETフィルム(東洋紡コスモシャインA4300、100μm厚)を接着させ、更にその上から高圧水銀ランプで600mJ/cmの照射量の紫外線を照射して硬化させた後、剥離して本発明のプリズムレンズシートを得た。
評価結果は、離型性:○、型再現性:○、密着性:○、耐擦傷性:○であった。
 実施例2
 成分(B)として、合成例2-1で得た化合物25部、成分(C)としてo-フェニルフェノールモノエトキシアクリレート25部、フェノキシエチルアクリレート20部、成分(D)として1-ヒドロキシ-シクロヘキシルフェニルケトン3部及びジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド0.1部、成分(E)としてトリス(アクリロキシエチル)イソシアヌレート10部、成分(F)としてビスフェノールAテトラエトキシジアクリレート20部を60℃に混合・加温し、本発明の樹脂組成物を得た。この樹脂組成物の粘度は1675mPa・sであった。また、この樹脂組成物を高圧水銀灯(80W/cm、オゾンレス)にて600mJ/cmの照射を行って硬化した、膜厚200μmの紫外線硬化型樹脂層の屈折率(25℃)は1.589であり、ガラス転移温度(Tg)は59℃だった。
 さらに、得られたこの樹脂組成物をプリズムレンズ金型の上に膜厚が50μmになるように塗布し、その上に基材として易接着PETフィルム(東洋紡コスモシャインA4300、100μm厚)を接着させ、更にその上から高圧水銀ランプで600mJ/cmの照射量の紫外線を照射して硬化させた後、剥離して本発明のプリズムレンズシートを得た。
評価結果は、離型性:○、型再現性:○、密着性:○、耐擦傷性:○であった。
 実施例3
 成分(B)として、合成例2-2で得た化合物10部、成分(C)としてo-フェニルフェノールモノエトキシアクリレート62部及びフェノキシエチルアクリレート10部、成分(D)として1-ヒドロキシ-シクロヘキシルフェニルケトン3部及びジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド0.1部、成分(E)としてペンタエリスリトールトリアクリレート3部、成分(F)としてビスフェノールAテトラエトキシジアクリレート15部を60℃に混合・加温し、本発明の樹脂組成物を得た。この樹脂組成物の粘度は511mPa・sであった。また、この樹脂組成物を高圧水銀灯(80W/cm、オゾンレス)にて600mJ/cmの照射を行って硬化した、膜厚200μmの紫外線硬化型樹脂層の屈折率(25℃)は1.595であり、ガラス転移温度(Tg)は44℃だった。
 さらに、得られたこの樹脂組成物をプリズムレンズ金型の上に膜厚が50μmになるように塗布し、その上に基材として易接着PETフィルム(東洋紡コスモシャインA4300、100μm厚)を接着させ、更にその上から高圧水銀ランプで600mJ/cmの照射量の紫外線を照射して硬化させた後、剥離して本発明のプリズムレンズシートを得た。
評価結果は、離型性:○、型再現性:○、密着性:○、耐擦傷性:○であった。
 実施例4
 成分(A)として、合成例1-1で得た化合物9部、成分(B)として、合成例2-2で得た化合物10部、成分(C)としてo-フェニルフェノールモノエトキシアクリレート51部及びフェノキシエチルアクリレート15部、成分(D)として1-ヒドロキシ-シクロヘキシルフェニルケトン3部、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド0.1部、成分(E)として合成例3で得た多官能ウレタン(メタ)アクリレート3部、成分(F)としてビスフェノールAテトラエトキシジアクリレート17部を60℃に混合・加温し、本発明の樹脂組成物を得た。この樹脂組成物の粘度は1123mPa・sであった。また、この樹脂組成物を高圧水銀灯(80W/cm、オゾンレス)にて600mJ/cmの照射を行って硬化した、膜厚200μmの紫外線硬化型樹脂層の屈折率(25℃)は1.594であり、ガラス転移温度(Tg)は48℃だった。
 さらに、得られたこの樹脂組成物をプリズムレンズ金型の上に膜厚が50μmになるように塗布し、その上に基材として易接着PETフィルム(東洋紡コスモシャインA4300、100μm厚)を接着させ、更にその上から高圧水銀ランプで600mJ/cmの照射量の紫外線を照射して硬化させた後、剥離して本発明のプリズムレンズシートを得た。
評価結果は、離型性:○、型再現性:○、密着性:○、耐擦傷性:○であった。
 実施例5
 成分(A)として、合成例1-2で得た化合物20部、成分(C)としてo-フェニルフェノールモノエトキシアクリレート31部、成分(D)として1-ヒドロキシ-シクロヘキシルフェニルケトン3部、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド0.01部、成分(E)としてトリス(アクリロキシエチル)イソシアヌレート18部、成分(F)としてビスフェノールAテトラエトキシジアクリレート20部、アクリロイルモルフォリン7部及びKAYARAD EF-053(日本化薬(株)製、ビスフェノールA型エポキシ樹脂(エポキシ当量:180~194)のエポキシアクリレート)4部を60℃に混合・加温し、本発明の樹脂組成物を得た。この樹脂組成物の粘度は2354mPa・sであった。また、この樹脂組成物を高圧水銀灯(80W/cm、オゾンレス)にて600mJ/cmの照射を行って硬化した、膜厚200μmの紫外線硬化型樹脂層の屈折率(25℃)は1.582であり、ガラス転移温度(Tg)は73℃だった。
 さらに、得られたこの樹脂組成物をプリズムレンズ金型の上に膜厚が50μmになるように塗布し、その上に基材として易接着PETフィルム(東洋紡コスモシャインA4300、100μm厚)を接着させ、更にその上から高圧水銀ランプで600mJ/cmの照射量の紫外線を照射して硬化させた後、剥離して本発明のプリズムレンズシートを得た。
評価結果は、離型性:○、型再現性:○、密着性:○、耐擦傷性:○であった。
 実施例6
 成分(B)として、合成例2-1で得た化合物12.5部、成分(C)としてo-フェニルフェノールモノエトキシアクリレート12.5部、o-フェニルフェノールポリエトキシアクリレート(n=1.5)51部、フェノキシジエチレングリコールアクリレート4部、成分(D)として1-ヒドロキシ-シクロヘキシルフェニルケトン5部及びジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド0.1部、成分(F)としてBPE-10(第一工業製薬製:ビスフェノールAポリエトキシジアクリレート)20部を60℃に混合・加温し、本発明の樹脂組成物を得た。この樹脂組成物の粘度は568mPa・sであった。また、この樹脂組成物を高圧水銀灯(80W/cm、オゾンレス)にて600mJ/cmの照射を行って硬化した、膜厚200μmの紫外線硬化型樹脂層の屈折率(25℃)は1.587であり、ガラス転移温度(Tg)は25℃だった。
 さらに、得られたこの樹脂組成物をプリズムレンズ金型の上に膜厚が50μmになるように塗布し、その上に基材として易接着PETフィルム(東洋紡コスモシャインA4300、100μm厚)を接着させ、更にその上から高圧水銀ランプで600mJ/cmの照射量の紫外線を照射して硬化させた後、剥離して本発明のプリズムレンズシートを得た。
評価結果は、離型性:○、型再現性:○、密着性:○、耐擦傷性:◎であった。
 実施例7
 成分(B)として、合成例2-1で得た化合物5部、成分(C)としてo-フェニルフェノールモノエトキシアクリレート5部、o-フェニルフェノールポリエトキシアクリレート(n=1.5)53部、フェノキシジエチレングリコールアクリレート2部、成分(D)として1-ヒドロキシ-シクロヘキシルフェニルケトン5部及びビス(2,4,6-トリメチルベンゾイル)-フェニルスルフォスフィンオキサイド1部、成分(E)としてトリス(アクリロキシエチル)イソシアヌレート3部、成分(F)としてBPE-10(第一工業製薬製:ビスフェノールAポリエトキシジアクリレート)30部及び4-ヒドロキシブチルアクリレート2部を60℃に混合・加温し、本発明の樹脂組成物を得た。この樹脂組成物の粘度は314mPa・sであった。また、この樹脂組成物を高圧水銀灯(80W/cm、オゾンレス)にて600mJ/cmの照射を行って硬化した、膜厚200μmの紫外線硬化型樹脂層の屈折率(25℃)は1.576であり、ガラス転移温度(Tg)は20℃だった。
 さらに、得られたこの樹脂組成物をプリズムレンズ金型の上に膜厚が50μmになるように塗布し、その上に基材として易接着PETフィルム(東洋紡コスモシャインA4300、100μm厚)を接着させ、更にその上から高圧水銀ランプで600mJ/cmの照射量の紫外線を照射して硬化させた後、剥離して本発明のプリズムレンズシートを得た。
評価結果は、離型性:○、型再現性:○、密着性:○、耐擦傷性:◎であった。
 実施例8
 成分(B)として、合成例2-1で得た化合物15部、成分(C)としてo-フェニルフェノールポリエトキシアクリレート(n=1.5)40部及びフェノキシジエチレングリコールアクリレート5部、成分(D)として1-ヒドロキシ-シクロヘキシルフェニルケトン5部、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド0.1部、成分(F)としてBPE-10(第一工業製薬製:ビスフェノールAポリエトキシジアクリレート)10部、合成例4で得た化合物((RS)-1,1’-ビ-2-ナフトールジエトキシジアクリレート)30部を60℃に混合・加温し、本発明の樹脂組成物を得た。この樹脂組成物の粘度は2834mPa・sであった。また、この樹脂組成物を高圧水銀灯(80W/cm、オゾンレス)にて600mJ/cmの照射を行って硬化した、膜厚200μmの紫外線硬化型樹脂層の屈折率(25℃)は1.604であり、ガラス転移温度(Tg)は44℃だった。
 さらに、得られたこの樹脂組成物をプリズムレンズ金型の上に膜厚が50μmになるように塗布し、その上に基材として易接着PETフィルム(東洋紡コスモシャインA4300、100μm厚)を接着させ、更にその上から高圧水銀ランプで600mJ/cmの照射量の紫外線を照射して硬化させた後、剥離して本発明のプリズムレンズシートを得た。
評価結果は、離型性:○、型再現性:○、密着性:○、耐擦傷性:◎であった。
 実施例9
 成分(B)として、合成例2-1で得た化合物15部、成分(C)としてo-フェニルフェノールエトキシアクリレート55部及びフェノキシジエチレングリコールアクリレート4部、成分(D)として1-ヒドロキシ-シクロヘキシルフェニルケトン3部及びジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド0.1部、成分(E)としてKAYARAD DPHA(日本化薬製:ジペンタエリスリトールヘキサアクリレート)2部、成分(F)としてBPE-10(第一工業製薬製:ビスフェノールAポリエトキシジアクリレート)4部及び合成例5で得た化合物(N-(2-アクリロイルオキシエチル)カルバゾール)20部を60℃に混合・加温し、本発明の樹脂組成物を得た。この樹脂組成物の粘度は1231mPa・sであった。また、この樹脂組成物を高圧水銀灯(80W/cm、オゾンレス)にて600mJ/cmの照射を行って硬化した、膜厚200μmの紫外線硬化型樹脂層の屈折率(25℃)は1.612であり、ガラス転移温度(Tg)は52℃だった。
 さらに、この樹脂組成物をプリズムレンズ金型の上に膜厚が50μmになるように塗布し、その上に基材として易接着PETフィルム(東洋紡コスモシャインA4300、100μm厚)を接着させ、更にその上から高圧水銀ランプで600mJ/cmの照射量の紫外線を照射して硬化させた後、剥離して本発明のプリズムレンズシートを得た。
評価結果は、離型性:○、型再現性:○、密着性:○、耐擦傷性:○であった。
 実施例10
 成分(B)として、合成例2-1で得た化合物15部、成分(C)としてo-フェニルフェノールエトキシアクリレート63部、成分(D)として1-ヒドロキシ-シクロヘキシルフェニルケトン3部及びジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド0.1部、成分(E)としてKAYARAD TMPTA(日本化薬製:トリメチロールプロパントリアクリレート)2部、成分(F)としてBPE-10(第一工業製薬製:ビスフェノールAポリエトキシジアクリレート)4部、A-BPEF(新中村化学工業製:ビスフェノキシエタノールフルオレンジアクリレート)12部及びテトラヒドロフルフリルアクリレート4部を60℃に混合・加温し、本発明の樹脂組成物を得た。この樹脂組成物の粘度は1236mPa・sであった。また、この樹脂組成物を高圧水銀灯(80W/cm、オゾンレス)にて600mJ/cmの照射を行って硬化した、膜厚200μmの紫外線硬化型樹脂層の屈折率(25℃)は1.602であり、ガラス転移温度(Tg)は54℃だった。
 さらに、得られたこの樹脂組成物をプリズムレンズ金型の上に膜厚が50μmになるように塗布し、その上に基材として易接着PETフィルム(東洋紡コスモシャインA4300、100μm厚)を接着させ、更にその上から高圧水銀ランプで600mJ/cmの照射量の紫外線を照射して硬化させた後、剥離して本発明のプリズムレンズシートを得た。
評価結果は、離型性:○、型再現性:○、密着性:○、耐擦傷性:○であった。
 比較例1
 実施例2において、成分(B)の変わりに、KAYARAD EF-075(日本化薬(株)製、ビスフェノールA型エポキシ樹脂(エポキシ当量:900~1000)のエポキシアクリレート)25部を用いる以外は実施例2と同様に比較用の樹脂組成物を得た。この樹脂組成物の粘度は8420mPa・sであった。また、この樹脂組成物を高圧水銀灯(80W/cm、オゾンレス)にて600mJ/cmの照射を行って硬化して得られた膜厚200μmの紫外線硬化型樹脂層の屈折率(25℃)は1.585であり、ガラス転移温度(Tg)は58℃だった。
評価結果は、離型性:×、型再現性:×、密着性:○、耐擦傷性:×であった。
 この結果から比較例1の組成物は本発明の組成物と同程度の屈折率を有するが、粘度が高く加工適性に劣り、離型性、型再現性に劣る。
 実施例1~10、比較例1の評価結果から明らかなように、本発明の樹脂組成物は低粘度で、本発明の硬化物は離型性、型再現性、基材への密着性に優れ、高屈折率でガラス転移温度(Tg)が高かった。さらに、耐擦傷性にも優れていた。そのため微細構造を有する光学レンズシート、例えば、フレネルレンズ、レンチキュラーレンズ、プリズムレンズ、マイクロレンズ等に適している。特に微細な加工が必要な用途や連続加工が必要な工程を含む製造に適している。実施例1~10、比較例1について、表2に示した。
Figure JPOXMLDOC01-appb-T000006
 本発明の紫外線硬化性樹脂組成物及びその硬化物は、主に、フレネルレンズ、レンチキュラーレンズ、プリズムレンズ、マイクロレンズ等の光学レンズシート用に特に適するものである。

Claims (9)

  1.  一般式(1)で表わされるエポキシ樹脂(a)にエチレン性不飽和基含有モノカルボン酸(b)を反応させて得られるエポキシカルボキシレート化合物(A)及び/又はエポキシカルボキシレート化合物(A)の水酸基に多塩基酸無水物(c)を反応させて得られる(ポリ)カルボン酸化合物(B)、並びに光重合開始剤(D)を含む光学レンズシート用活性エネルギー線硬化型樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は同一でも異なっていてもよく、水素原子、ハロゲン原子又は炭素数1~4のアルキル基を表し、mは0~4の整数を、nは平均値で1~6の正数をそれぞれ表す。)
  2.  フェニルエーテル基を有するモノアクリレートモノマー(C)を更に含む請求項1に記載の活性エネルギー線硬化型樹脂組成物。
  3.  フェニルエーテル基を有するモノアクリレートモノマー(C)がo-フェニルフェノール(ポリ)エトキシ(メタ)アクリレート、p-フェニルフェノール(ポリ)エトキシ(メタ)アクリレート、o-フェニルフェノールエポキシ(メタ)アクリレート及びp-フェニルフェノールエポキシ(メタ)アクリレートからなる群から選択される1種以上の化合物である請求項2に記載の活性エネルギー線硬化型樹脂組成物。
  4.  一般式(1)のmが0である請求項1乃至請求項3のいずれか一項に記載の活性エネルギー線硬化型樹脂組成物。
  5.  分子内に3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート化合物(E)を更に含む請求項1乃至請求項4のいずれか一項に記載の活性エネルギー線硬化型樹脂組成物。
  6.  成分(A)、成分(B)、成分(C)及び成分(E)以外の(メタ)アクリレート化合物(F)を更に含む請求項1乃至請求項5のいずれか一項に記載の活性エネルギー線硬化型樹脂組成物。
  7.  (メタ)アクリレート化合物(F)が、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドから得られるホスフィンオキサイド化合物、ビナフトール骨格を有する(メタ)アクリレート、フルオレン骨格を有する(メタ)アクリレート、カルバゾール骨格を有する(メタ)アクリレート、及びフェニルフェノールエポキシアクリレートと芳香族有機ポリイソシアネートとを反応させたウレタンアクリレートからなる群から選ばれる1つ以上の化合物を含む請求項6に記載の活性エネルギー線硬化型樹脂組成物。
  8.  請求項1乃至請求項7のいずれか一項に記載の活性エネルギー線硬化型樹脂組成物を硬化して得られる硬化物。
  9.  請求項8に記載の硬化物を用いる光学レンズシート。
PCT/JP2011/058762 2010-04-09 2011-04-07 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物 WO2011126066A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127025944A KR20130054241A (ko) 2010-04-09 2011-04-07 광학 렌즈 시트용 에너지선 경화형 수지 조성물 및 그 경화물
JP2012509694A JP5744847B2 (ja) 2010-04-09 2011-04-07 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
CN2011800181707A CN102858823A (zh) 2010-04-09 2011-04-07 光学透镜片用能量射线固化型树脂组合物及其固化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010090412 2010-04-09
JP2010-090412 2010-04-09

Publications (1)

Publication Number Publication Date
WO2011126066A1 true WO2011126066A1 (ja) 2011-10-13

Family

ID=44763001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058762 WO2011126066A1 (ja) 2010-04-09 2011-04-07 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物

Country Status (4)

Country Link
JP (1) JP5744847B2 (ja)
KR (1) KR20130054241A (ja)
CN (1) CN102858823A (ja)
WO (1) WO2011126066A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226040A (ja) * 2011-04-18 2012-11-15 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP2013227391A (ja) * 2012-04-25 2013-11-07 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物(2)
JP2013231136A (ja) * 2012-04-28 2013-11-14 Mitsubishi Plastics Inc 積層ポリエステルフィルム
CN104020514A (zh) * 2014-05-24 2014-09-03 江苏康耐特光学有限公司 一种染色树脂镜片及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109293882A (zh) * 2018-10-16 2019-02-01 江门市恒之光环保新材料有限公司 一种水性uv环氧丙烯酸树脂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03244615A (ja) * 1990-02-23 1991-10-31 Nippon Kayaku Co Ltd 樹脂組成物及びその硬化物
JP2005298665A (ja) * 2004-04-12 2005-10-27 Toyo Ink Mfg Co Ltd 高屈折率材料
WO2008001722A1 (fr) * 2006-06-27 2008-01-03 Nippon Kayaku Kabushiki Kaisha Composition durcissable par rayons énergétiques actifs à des fins optiques, et résine à indice de réfraction élevé
WO2008136262A1 (ja) * 2007-04-27 2008-11-13 Nippon Kayaku Kabushiki Kaisha (メタ)アクリレート化合物、それを含有する樹脂組成物及びその硬化物並びに光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP2009256622A (ja) * 2008-03-18 2009-11-05 Nippon Kayaku Co Ltd 難燃性を有する反応性化合物を用いた活性エネルギー線硬化型樹脂組成物並びにその硬化物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013884B2 (ja) * 2003-10-24 2007-11-28 東洋インキ製造株式会社 感光性材料
JP2007277467A (ja) * 2006-04-10 2007-10-25 Sony Chemical & Information Device Corp 硬化性樹脂組成物
JP2009051972A (ja) * 2007-08-28 2009-03-12 Nippon Shokubai Co Ltd 硬化性樹脂組成物および硬化物
JP5202146B2 (ja) * 2008-07-14 2013-06-05 日本化薬株式会社 (メタ)アクリレート化合物及びそれを含有する活性エネルギー線硬化型樹脂組成物並びにその硬化物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03244615A (ja) * 1990-02-23 1991-10-31 Nippon Kayaku Co Ltd 樹脂組成物及びその硬化物
JP2005298665A (ja) * 2004-04-12 2005-10-27 Toyo Ink Mfg Co Ltd 高屈折率材料
WO2008001722A1 (fr) * 2006-06-27 2008-01-03 Nippon Kayaku Kabushiki Kaisha Composition durcissable par rayons énergétiques actifs à des fins optiques, et résine à indice de réfraction élevé
WO2008136262A1 (ja) * 2007-04-27 2008-11-13 Nippon Kayaku Kabushiki Kaisha (メタ)アクリレート化合物、それを含有する樹脂組成物及びその硬化物並びに光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP2009256622A (ja) * 2008-03-18 2009-11-05 Nippon Kayaku Co Ltd 難燃性を有する反応性化合物を用いた活性エネルギー線硬化型樹脂組成物並びにその硬化物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226040A (ja) * 2011-04-18 2012-11-15 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP2013227391A (ja) * 2012-04-25 2013-11-07 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物(2)
JP2013231136A (ja) * 2012-04-28 2013-11-14 Mitsubishi Plastics Inc 積層ポリエステルフィルム
CN104020514A (zh) * 2014-05-24 2014-09-03 江苏康耐特光学有限公司 一种染色树脂镜片及其制备方法
CN104020514B (zh) * 2014-05-24 2015-12-02 江苏康耐特光学有限公司 一种染色树脂镜片及其制备方法

Also Published As

Publication number Publication date
JPWO2011126066A1 (ja) 2013-07-11
JP5744847B2 (ja) 2015-07-08
CN102858823A (zh) 2013-01-02
KR20130054241A (ko) 2013-05-24

Similar Documents

Publication Publication Date Title
JP5241023B2 (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP5219084B2 (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP5757664B2 (ja) ウレタン(メタ)アクリレート化合物及びそれを含有する樹脂組成物
JP2010138393A (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JPWO2008136262A1 (ja) (メタ)アクリレート化合物、それを含有する樹脂組成物及びその硬化物並びに光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP5692804B2 (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP2012092307A (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP6381318B2 (ja) 光学レンズ用活性エネルギー線硬化性樹脂組成物
JP5057367B2 (ja) 活性エネルギー線硬化型樹脂組成物及びその硬化物
JP5744847B2 (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP2010106046A (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP5710356B2 (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP4678726B2 (ja) 樹脂組成物、レンズ用樹脂組成物及びその硬化物
WO2010137501A1 (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP5083830B2 (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及び光学レンズシート
JP2013028662A (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP2011033875A (ja) 光学レンズ用エネルギー線硬化型樹脂組成物及び光学レンズ
JP5328003B2 (ja) 樹脂組成物、レンズ用樹脂組成物及びその硬化物
JPWO2008013217A1 (ja) 樹脂組成物、レンズ用樹脂組成物及びその硬化物
JP5207388B2 (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JPWO2010004959A1 (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP5429832B2 (ja) ウレタン(メタ)アクリレート化合物
JP2005042034A (ja) 樹脂組成物、レンズ用樹脂組成物及びその硬化物
JP4678724B2 (ja) 樹脂組成物、レンズ用樹脂組成物及びその硬化物
JP2009031779A (ja) 光学レンズシート用エネルギー線硬化型樹脂組成物及び光学レンズシート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018170.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509694

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127025944

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765966

Country of ref document: EP

Kind code of ref document: A1