WO2011120396A1 - 工程机械及其稳定性控制系统与控制方法 - Google Patents

工程机械及其稳定性控制系统与控制方法 Download PDF

Info

Publication number
WO2011120396A1
WO2011120396A1 PCT/CN2011/072087 CN2011072087W WO2011120396A1 WO 2011120396 A1 WO2011120396 A1 WO 2011120396A1 CN 2011072087 W CN2011072087 W CN 2011072087W WO 2011120396 A1 WO2011120396 A1 WO 2011120396A1
Authority
WO
WIPO (PCT)
Prior art keywords
center
gravity
construction machine
control system
stability control
Prior art date
Application number
PCT/CN2011/072087
Other languages
English (en)
French (fr)
Inventor
魏志魁
沈明星
王敏娜
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Priority to US14/002,107 priority Critical patent/US9082288B2/en
Priority to EP11761970A priority patent/EP2555067A1/en
Priority to BR112012025018A priority patent/BR112012025018A2/pt
Priority to KR1020127015333A priority patent/KR20120116409A/ko
Priority to JP2013501606A priority patent/JP2013523558A/ja
Publication of WO2011120396A1 publication Critical patent/WO2011120396A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment
    • B66C23/905Devices for indicating or limiting lifting moment electrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00

Definitions

  • the present invention claims the priority of the patent application No. 201010139806.0, entitled “Engineering Machinery and Stability Control System” submitted to the State Intellectual Property Office of China on March 30, 2010, all of which The content is incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of construction machinery, and in particular to a stability control system and control method for a construction machine.
  • the invention also relates to a construction machine comprising the stability control system described above. BACKGROUND OF THE INVENTION
  • the stability in the working process of a construction machine determines the working performance of the construction machine and relates to the personal safety of the operator at the construction site. Therefore, it is particularly important to ensure the stability and stability of the engineering machine.
  • FIG. 1 is a schematic structural view of a typical engineering machinery stability control system in the prior art.
  • the stability control system in the prior art comprises a pressure sensor 22 and an alarm 23, the pressure sensor 22 is mounted on the upper chamber of each vertical oil rainbow 21, and the pressure sensor 22 is connected to the battery through a power switch, One end is connected to the alarm 23, and the other end of the alarm 23 is grounded.
  • the power switch is closed while the leg of the construction machine is being operated.
  • the pressure sensor 22 of the leg A voltage signal is generated, and the voltage signal is transmitted to the alarm 23, and the alarm 23 sends an alarm signal, thereby reminding the operator to stop the current operation and changing the operation, preventing the tilting of the construction machine and improving the work of the construction machine. Process stability.
  • An object of the present invention is to provide a stability control system and a control method for a construction machine, which have high stability control precision. Another object of the present invention is to provide a construction machine including the above stability control system.
  • the present invention provides a stability control system for a construction machine, including a detection device, a control device, and an alarm device.
  • the detecting device detects a current position of a center of gravity of each component of the construction machine, obtains a center of gravity position signal of each component, and transmits the gravity center position signal to the control device;
  • the control device receives the detecting device a gravity center position signal, calculating a gravity center position of the construction machine according to a center of gravity calculation strategy, and comparing with a preset balance range; when the center of gravity position of the construction machine falls outside the balance range, the control device Controlling the alarm device alarm.
  • the detecting device further detects a position of a support point of the leg of the construction machine;
  • the balance range is a projection point of the support leg of the construction machine in a projection point of a horizontal plane, and two adjacent projection points
  • the area formed by the connection between the first safety operation and the safety area after the first safety calculation is performed, and the center of gravity of the engineering machine is the safety of the center of gravity of the engineering machine after the second safety calculation at the center of gravity of the horizontal plane.
  • a position of the point the control device controls the alarm device to alarm when the safety point is outside the safety zone.
  • the safe area is obtained by multiplying the area by a first safety margin.
  • the security point is obtained by multiplying the center of gravity projection point by a second safety margin.
  • the radiation point is perpendicular to the longitudinal direction of the construction machine with the safety point as the end point, and when the number of intersections of the radiation and the connection line is even or zero, the safety point is considered to be outside the safety area.
  • the alarm device comprises a first alarm device and a second alarm device that are different from each other.
  • the balance range includes a first balance range and a second balance range corresponding to the alarm device; when the center of gravity position is outside the first balance range, the first alarm device alarms When the center of gravity position is outside the second balance range, the second alarm device alarms.
  • the center of gravity of each component of the work machine is calculated by finite element.
  • the detecting device comprises a turret inclination sensor, a turret angle sensor, a boom angle sensor, a leg angle sensor and a leg displacement sensor.
  • the leg displacement sensor is mounted to an end of each leg of the construction machine.
  • the present invention also provides a construction machine comprising the stability control system according to any of the above.
  • a stability control method for a construction machine including a detection device, a control device and an alarm device, the method comprising the following steps: the detection device detects the construction machinery The current position of the center of gravity of each component, the center of gravity position signal of each component is obtained, and the center of gravity position signal is transmitted to the control device; the control device receives the position signal of the center of gravity of the detecting device, and calculates the position of the center of gravity of the construction machine according to the center of gravity calculation strategy, and Compared with a preset balance range; when the center of gravity of the construction machine falls outside the balance range, the control device controls the alarm device to alarm.
  • the stability control system for engineering machinery comprises a detecting device, a control device and a 4-way alarm device.
  • the detecting device detects the current position of the center of gravity of each component of the engineering machine, and obtains a position signal of the center of gravity of each component, and Transmitting the center of gravity position signal to the control device;
  • the control device receives the position signal of the center of gravity of the detecting device, and the center of gravity calculation strategy calculates the position of the center of gravity of the engineering machine, and compares it with a preset balance range; when the center of gravity of the construction machine falls When outside the balance range, the control device controls the alarm device to alarm.
  • the center of gravity of each component is pre-calculated, and when the construction machine is in a certain working state, the position of the center of gravity of each component is uncertain. Therefore, during the working process, the detecting device detects the components of the engineering machine when the working machine is in the working position. The position of the center of gravity, and the detection signal is transmitted to the control device, and the control device calculates the position of the center of gravity of the vehicle according to the calculation method, and then compares with the balance range of the position of the center of gravity, when the center of gravity of the construction machine falls outside the balance range, the control device Control alarm device alarm.
  • the invention is provided for engineering machines
  • the mechanical stability control system controls the stability of the engineering machinery working process through a new method, and the control precision is high, which provides a basis for the adjustment of the working position of the engineering machinery components.
  • the detecting device for the stability control system of the construction machine provided by the invention also detects the position of the supporting point of the supporting leg of the engineering machine, and the balance range is the support point of the engineering machinery. In the projection point of the horizontal plane, the area formed by the connection between the adjacent two projection points passes through the safety area after the first safety operation, and the center of gravity of the engineering machine is the center of gravity of the engineering machine.
  • the control device controls the alarm device to alarm.
  • the above-mentioned balance range and the determination of the position of the center of gravity of the construction machine not only ensure the control accuracy, but also the implementation in the specific use process is convenient, and the operation difficulty of the stability control system for the construction machine provided by the present invention is reduced.
  • the stability control system for the construction machine provided by the present invention has a specific strategy for judging whether the center of gravity projection point is outside the region: the safety point is used as the end point perpendicular to the construction machine The ray in the longitudinal direction is considered to be outside the safe area when the number of intersections of the ray and the line is even or zero.
  • FIG. 1 is a schematic structural view of a typical construction machinery stability control system in the prior art
  • FIG. 2 is a schematic structural view of a stability control system for a construction machine according to an embodiment of the present invention
  • 3 is a schematic structural view of a stability control system for a construction machine according to a second embodiment of the present invention
  • FIG. 1 is a schematic structural view of a typical construction machinery stability control system in the prior art
  • FIG. 2 is a schematic structural view of a stability control system for a construction machine according to an embodiment of the present invention
  • 3 is a schematic structural view of a stability control system for a construction machine according to a second embodiment of the present invention
  • FIG. 1 is a schematic structural view of a typical construction machinery stability control system in the prior art
  • FIG. 2 is a schematic structural view of a stability control system for a construction machine according to an embodiment of the present invention
  • 3 is a schematic structural view of a stability control system for a construction machine according to a second embodiment of the present invention
  • FIG. 4 is a schematic diagram of a safety region for a stability control system for a construction machine according to the present invention
  • FIG. 5 is a schematic diagram of a center of gravity projection coordinate of the stability control method of the construction machine provided by the present invention.
  • the core of the present invention is to provide a stability control system and control method for a construction machine, which has high stability control precision.
  • Another core of the present invention is to provide a construction machine including the above stability control system.
  • FIG. 2 is a schematic structural diagram of a stability control system for a construction machine according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a stability control system for a construction machine according to an embodiment of the present invention
  • the detecting device 1 detects the current position of the center of gravity of each component of the engineering machine, and obtains The center of gravity position signal of each component transmits the center of gravity position signal to the control device 2;
  • the control device 2 receives the position of the center of gravity of the detecting device 1, calculates the position of the center of gravity of the construction machine according to the center of gravity calculation strategy, and sets the balance range with the preset The comparison is made; when the center of gravity of the construction machine falls outside the balance range, the control device 2 controls the alarm device 3 to alarm.
  • the center of gravity of each component of the above-mentioned construction machine is pre-calculated, and the position of the center of gravity on each component is constant, and the components are formed on the engineering machine with respect to the entire engineering machine.
  • the change in position, the center of gravity of each component is constantly changing with respect to the position of the entire construction machine, and the detecting device 1 detects the position of the center of gravity of each component when the engineering machine is in the current working position.
  • the center of gravity of the various components of the engineering machine can be calculated by finite element calculation. Since the center of gravity of each component is constantly changing with respect to the current position of the entire engineering machine, the predetermined balance range may also be calculated by a predetermined calculation method of the detection point, that is, the preset balance range described above.
  • the above-mentioned components can determine the accuracy of the division according to the needs.
  • the concrete pump truck can specifically include the legs, the booms, the turret, the vehicle body and the cylinders. It is also possible to further divide the above components, and the accuracy of the specific division of each component is not limited herein.
  • the detection of the position of the center of gravity described above can be realized by means of a sensor detecting the relative positional relationship of the components of the construction machine.
  • the detecting device may include a turret inclination sensor 11, a turret angle sensor 12, a boom angle sensor 13, a leg angle sensor 14, and a leg. Displacement sensor 15.
  • the turret inclination sensor 11 detects the angle between the turret and the horizontal plane
  • the turret rotation angle sensor 12 detects the rotation angle of the turret at any working position
  • the boom angle sensor 13 detects the inclination of the boom
  • the leg angle sensor 14 detects each branch The angle between the leg in the support position and the front-rear direction of the concrete pump truck
  • the leg displacement sensor 15 detects the elongation length of each leg when each leg is in the support position.
  • the number of the boom angle sensors 13 may be the same as the number of the booms, and the boom angle sensors 13 respectively detect the angle between the first boom of the concrete pump truck and the turret, and the adjacent two arms
  • the angle between the frames; the escape displacement sensor 15 can be mounted at the ends of the construction machinery.
  • the leg displacement sensor 15 is installed at the end of each leg of the construction machine, and can detect the position of the support points of each leg, thereby facilitating the determination of the balance range to a certain extent.
  • the leg displacement sensor 15 can also be mounted at other positions of the construction machine, as long as the position of the center of gravity of the leg can be detected. Through the detection results of the above sensors, the center of gravity of each component can be obtained when the concrete pump truck is in a certain working state.
  • the detecting device 1 detects the position of the center of gravity of each component of the construction machine at a time, and transmits the detection signal to the control device 2.
  • the control device 2 calculates the position of the center of gravity of the vehicle according to a predetermined calculation method. Further, in comparison with the balance range of the center of gravity position, when the center of gravity of the construction machine falls outside the balance range, the control device 2 controls the alarm device 3 to give an alarm.
  • the alarm device 3 may specifically be an audible alarm device or a visual alarm device, or may have both of the above alarm devices.
  • FIG. 4 is a schematic diagram of a safety area for a stability control system for a construction machine according to the present invention.
  • the detecting device for the stability control system of the construction machine also detects the position of the support point of the leg of the construction machine, and the balance model described above
  • the circumference can be the projection point of the support leg of the construction machine in the projection point of the horizontal plane, and the area A formed by the connection between the adjacent two projection points passes through the safety area B after the first safety operation;
  • the position of the center of gravity may be the position of the safety point C after the second safety calculation of the center of gravity D of the construction machine at the center of gravity of the horizontal plane; when the safety point C is outside the safety area B, the control device 2 controls the alarm device 3 to alarm.
  • one of the first security operation and the second security operation may be 1 .
  • the security area may be an area obtained by multiplying the area formed by the connection between two adjacent projection points by the first safety margin. To ensure the stability, the specific value of the first safety margin shall ensure the safety area.
  • the range is smaller than the range of the area formed by the line between the adjacent two projection points.
  • the above security area can also be obtained by other operations for the area formed by the connection between two adjacent projection points.
  • the above safety point can also be obtained by multiplying the center of gravity projection point by the second safety margin. To ensure the stability improvement, the specific value of the second safety margin should ensure that the probability that the center of gravity projection point falls in the safe area increases.
  • the above security points can also be obtained by other means, as long as the security improvement can be ensured. As shown in FIG.
  • the stability control system for the construction machine provided by the present invention may determine whether the center of gravity projection point is outside the area, and the specific strategy may be: In the longitudinal direction of the machine, when the number of intersections of 1 and the line is even or zero, the safety point C is considered to be outside the safety area B. When the method is used, if the ray coincides with the line, the intersection of the ray and the line is considered to be one.
  • the above control strategy provides a basis for setting the control program of the control device, and ensures the realization of the stability control system for the construction machine provided by the present invention.
  • the alarm device for the stability control system of the construction machine provided by the present invention may further include a first alarm device and a second alarm device that are different from each other, and balanced.
  • the range may further include a first balance range and a second balance range corresponding to the 4-way alarm device; when the center-of-gravity position is outside the first balance range, the first alarm device 4 is alerted, and the center of gravity position is located at the second position When the balance is outside, the second alarm device alarms.
  • the second balance range may be included within the first balance range, and when the center of gravity position is outside the second balance range, the second alarm device alarms, thereby alerting the operator to the caution in the next operation, when the center of gravity position When located outside the first balance range, the first alarm device alerts the operator to further caution.
  • the first alarm device and the second alarm device may be alarm devices having different sounds, or optical signals having different colors; of course, one is an optical signal, and the other is a sound. Signals are also possible.
  • the present invention also provides a construction machine, including the stability control system as described above, and other structures of the construction machine are the same as the prior art, and are not mentioned herein.
  • the invention also provides a stability control method for engineering machinery.
  • the plane obtains the new support point coordinates ( ⁇ 11, ⁇ 11), ( ⁇ 21, ⁇ 21), ( ⁇ 31, ⁇ 31), ( ⁇ 41, ⁇ 41); the position of the center of gravity of the component calculated according to the finite element, the installation position of the component in the whole vehicle, and the above

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Automation & Control Theory (AREA)
  • Jib Cranes (AREA)
  • Testing Of Balance (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Description

工程才 其稳定性控制系统与控制方法 本申请要求 2010年 3月 30日向中国国家知识产权局提交的名称为"工程 机械及其稳定性控制系统"的第 201010139806.0号专利申请的优先权, 其全 部内容结合于此供参考。 技术领域 本发明涉及工程机械领域, 特别是涉及一种用于工程机械的稳定性控制 系统与控制方法。 本发明还涉及一种包括上述稳定性控制系统的工程机械。 背景技术 工程机械工作过程中的稳定性, 决定着工程机械工作性能, 关系到施工 作业现场的操作人员的人身安全, 因此, 保证工程机戈工作过程中的稳 -定性 显得尤为重要。 为了保证工程机械施工过程的稳定性, 一般设置有可移出的外伸支腿, 扩大工程机械的支撑范围, 以减少侧翻的危险。 然而, 当操作人员对于工程 机械的状态估计不准或者操作不当时, 依然有可能造成工程机械的侧翻。 现有技术中, 为了提高对工程机械稳定性的控制, 提供了一种稳定性控 制系统。 请参考图 1 , 图 1为现有技术中一种典型的工程机械稳定性控制系统的 结构示意图。 现有技术中的稳定性控制系统包括压力感应器 22和报警器 23 , 压力感 应器 22安装于各支^ %的垂直油虹 21 的上腔, 压力感应器 22通过电源开关 与蓄电池连接, 另一端与报警器 23连接, 报警器 23的另一端接地。 工作过程中, 进行工程机械的支腿操作的同时将电源开关闭合, 当工程 机械的某一支腿的垂直油缸 21 的上腔压力小于某一设定值时, 该支腿的压 力感应器 22就会产生一个电压信号, 并将该电压信号传输至报警器 23 , 报 警器 23 发出报警信号, 从而提醒操作人员停止当前操作, 并改变操作, 防 止了工程机械的倾翻, 提高了工程机械工作过程的稳定性。 然而, 上述稳定性控制系统的控制精度较低, 如果当支腿的垂直油缸的 上腔压力较大时就报警, 会限制工程机械的工作范围; 而当支腿的垂直油缸 21的上腔压力较小时再报警, 又会提高工程机械倾翻的危险性。 因此, 如何提高对工程机械的稳定性控制的控制精度就成为本领域技术 人员目前需要解决的技术问题。 发明内容 本发明的目的是提供一种用于工程机械的稳定性控制系统与控制方法, 该控制系统与控制方法具有较高的稳定性控制精度。 本发明的另一目的是提 供一种包括上述稳定性控制系统的工程机械。 为解决上述技术问题, 本发明提供了一种用于工程机械的稳定性控制系 统, 包括检测装置、 控制装置和报警装置。 所述检测装置检测所述工程机械的各部件的重心的当前位置, 得到各部 件的重心位置信号, 并将所述重心位置信号传输至所述控制装置; 所述控制装置接收所述检测装置的重心位置信号, 根据重心计算策略计 算出所述工程机械的重心位置, 并与预先设定的平衡范围进行比较; 当所述 工程机械的重心位置落在所述平衡范围以外时, 所述控制装置控制所述报警 装置报警。 优选地, 所述检测装置还检测所述工程机械的支腿的支撑点的位置; 所 述平衡范围为所述工程机械的支腿的支撑点在水平面的投影点中, 相邻的两 投影点之间的连线所形成的区域经过第一安全运算后的安全区域, 所述工程 机才成的重心位置为所述工程机戈的重心在水平面的重心投影点经第二安全运 算后的安全点的位置; 当所述安全点位于所述安全区域以外时, 所述控制装 置控制所述报警装置报警。 优选地, 所述安全区域由所述区域乘以第一安全裕度得到。 优选地, 所述安全点由所述重心投影点乘以第二安全裕度得到。 优选地, 以所述安全点为端点故垂直于工程机械的长度方向的射线, 当 射线与所述连线的交点的个数为偶数或零时, 则认为所述安全点位于安全区 域以外。 优选地, 所述报警装置包括相互区别的第一报警装置和第二报警装 置, 所述平衡范围包括与所述报警装置相对应的第一平衡范围和第二平衡范 围; 当所述重心位置位于所述第一平衡范围以外时,所述第一报警装置报警, 当所述重心位置位于所述第二平衡范围以外时, 所述第二报警装置报警。 优选地, 所述工程机械的各部件的重心通过有限元计算得出。 优选地, 所述检测装置包括转塔倾角传感器、 转塔转角传感器、 臂架角 度传感器、 支腿角度传感器和支腿位移传感器。 优选地, 所述支腿位移传感器安装于所述工程机械的各支腿的端部。 为解决上述技术问题, 本发明还提供了一种工程机械, 包括如上述任一 项所述的稳定性控制系统。 根据本发明的另一个方面,提供了一种用于工程机械的稳定性控制方法, 所述工程机械中包括有检测装置、 控制装置和报警装置, 所述方法包括以下 步骤: 检测装置检测工程机械的各部件的重心的当前位置, 得到各部件的重心 位置信号, 并将重心位置信号传输至控制装置; 控制装置接收检测装置的重心位置信号, 根据重心计算策略计算出工程 机械的重心位置, 并与预先设定的平衡范围进行比较; 当工程机械的重心位置落在平衡范围以外时, 控制装置控制报警装置报 警。 本发明所提供的用于工程机械的稳定性控制系统, 包括检测装置、 控制 装置和 4艮警装置, 检测装置检测工程机械的各部件的重心的当前位置, 得到 各部件的重心位置信号, 并将重心位置信号传输至控制装置; 控制装置接收 检测装置的重心位置信号, 居重心计算策略计算出工程机戈的重心位置, 并与预先设定的平衡范围进行比较; 当工程机械的重心位置落在平衡范围以 外时, 控制装置控制报警装置报警。 各部件的重心是预先计算得到的, 而当 工程机械处于某一工作状态时, 各部件的重心位置是不确定的, 因此, 工作 过程中, 检测装置检测工程机戈处于工作位置时各部件的重心位置, 并将检 测信号传输至控制装置, 控制装置根据计算方法计算出整车的重心位置, 进 而与重心位置的平衡范围进行比较, 当工程机械的重心位置落在平衡范围以 外时, 控制装置控制报警装置报警。 可以看出, 本发明所提供的用于工程机 械的稳定性控制系统通过一种全新的方法控制了工程机械工作过程的稳定 性, 控制精度较高, 从而为工程机械各部件所处的工作位置的调整提供了依 据。 在一种优选实施方式中, 本发明所提供的用于工程机械的稳定性控制系 统的检测装置还检测工程机械的支腿的支撑点的位置, 平衡范围为工程机械 的支逸的支撑点在水平面的投影点中, 相邻的两投影点之间的连线所形成的 区域经过第一安全运算后的安全区域, 工程机戈的重心位置为工程机戈的重 心在水平面的重心投影点经第二安全运算后的安全点的位置; 当安全点位于 安全区域以外时, 控制装置控制报警装置报警。 上述平衡范围和工程机械的 重心位置的确定方式, 不仅能够保证控制精度, 而且具体使用过程中的实现 方便, 降低了本发明所提供的用于工程机械的稳定性控制系统的操作难度。 在另一种优选实施方式中, 本发明所提供的用于工程机械的稳定性控制 系统, 在判断重心投影点是否位于区域以外时的具体策略为: 以安全点为端 点做垂直于工程机械的长度方向的射线, 当射线与连线的交点的个数为偶数 或零时, 则认为所述安全点位于安全区域以外。 上述控制策略为控制装置的 控制程序的设定提供了依据,保证了本发明所提供的稳定性控制系统的实现。 本发明所提供的工程机械及用于工程机械的稳定性控制方法的有益效果 都与稳定性控制系统的有益效果类似, 在此不再赘述。 附图说明 图 1为现有技术中一种典型的工程机械稳定性控制系统的结构示意图; 图 2为本发明一种具体实施方式所提供的用于工程机械的稳定性控制系 统的结构示意图; 图 3为本发明第二种具体实施方式所提供的用于工程机械的稳定性控制 系统的结构示意图; 图 4为本发明所提供的用于工程机械的稳定性控制系统的安全区域的示 意图; 以及 图 5为本发明所提供的工程机械的稳定性控制方法的重心投影座标示意 图。 具体实施方式 本发明的核心是提供一种用于工程机械的稳定性控制系统与控制方法, 该控制系统与控制方法具有较高的稳定性控制精度。 本发明的另一核心是提 供一种包括上述稳定性控制系统的工程机械。 为了使本技术领域的人员更好地理解本发明方案, 下面结合附图和具体 实施方式对本发明作进一步的详细说明。 请参考图 2和图 3 , 图 2为本发明一种具体实施方式所提供的用于工程 机械的稳定性控制系统的结构示意图; 图 3为本发明第二种具体实施方式所 提供的用于工程机械的稳定性控制系统的结构示意图。 如图 2所示, 本发明所提供的用于工程机械的稳定性控制系统, 包括检 测装置 1、 控制装置 2和报警装置 3 , 检测装置 1检测工程机械的各部件的 重心的当前位置, 得到各部件的重心位置信号, 并将重心位置信号传输至控 制装置 2; 控制装置 2接收检测装置 1的重心位置信号, 根据重心计算策略 计算出工程机械的重心位置, 并与预先设定的平衡范围进行比较; 当工程机 械的重心位置落在平衡范围以外时, 控制装置 2控制报警装置 3报警。 以上所述的工程机械的各部件的重心是预先计算得到的, 其重心在各部 件上的位置是不变的, 而相对于整个工程机戈而言, 随着各部件在工程机才成 上的位置的改变, 各部件的重心相对于整个工程机械的位置不断变化, 检测 装置 1检测工程机戈处于当前工作位置时各部件的重心位置。 在一种具体实 施方式中, 工程机戈的各部件的重心可以通过有限元计算得到。 由于各部件 的重心相对于整个工程机戈的当前位置是不断改变的, 因此, 预定的平衡范 围也可以是检测点 居预定的计算方法计算得到的, 即以上所述的预先设定 的平衡范围是可以随着工程机械的各部件的不同位置而改变的。 具体地, 上述的各部件可以根据需要决定其划分的精确度, 以混凝土泵 车为例, 各部件具体可以包括各支腿, 各节臂架、 转塔、 车辆车体和各油缸, 当然, 还可以将上述部件进行进一步地划分, 各部件的具体划分的精确度, 本文不做限制。 当然, 上述重心位置的检测, 可以通过传感器检测工程机械的各部件的 相对位置关系的方式实现。 比如: 当将本发明所提供的稳定性控制系统应用于混凝土泵车时, 检测 装置可以包括转塔倾角传感器 11、 转塔转角传感器 12、 臂架角度传感器 13、 支腿角度传感器 14和支腿位移传感器 15。 转塔倾角传感器 11检测转塔与水平面之间的夹角, 转塔转角传感器 12 检测任一工作位置转塔的转角, 臂架角度传感器 13 检测臂架的倾角, 支腿 角度传感器 14 检测各支腿处于支撑位置时与混凝土泵车的前后方向之间的 夹角, 支腿位移传感器 15检测各支腿处于支撑位置时, 各支腿的伸长长度。 其中, 臂架角度传感器 13 的数目可以与臂架的节数相同, 各臂架角度传感 器 13 分别检测混凝土泵车的第一节臂架与转塔之间的夹角, 以及相邻两节 臂架之间的夹角; 支逸位移传感器 15可以安装于工程机械的各支逸的端部。 支腿位移传感器 15 安装于工程机械的各支腿的端部, 可以检测各支腿 的支撑点的位置, 从而在一定程度上方便了平衡范围的确定。 当然, 支腿位 移传感器 15 也可以安装于工程机械的各支^ %的其他位置, 只要能够实现对 支腿重心位置的检测都是可以的。 通过以上各传感器的检测结果, 就可以得到各部件的重心在混凝土泵车 处于某一工作状态时的重心位置。 工作过程中, 检测装置 1时刻检测工程机械的各部件的重心位置, 并将 检测信号传输至控制装置 2, 控制装置 2接收到检测信号后, 根据预定的计 算方法计算出整车的重心位置, 进而与重心位置的平衡范围进行比较, 当工 程机械的重心位置落在平衡范围以外时, 控制装置 2控制报警装置 3报警。 报警装置 3具体可以为声音报警装置, 也可以为视觉报警装置, 还可以 为同时具有以上两种报警装置。 可以看出, 本发明所提供的用于工程机械的稳定性控制系统通过一种全 新的方法控制了工程机械工作过程的稳定性, 控制精度较高, 而且为工程机 械各部件所处的工作位置的调整提供了依据。 请参考图 4, 图 4为本发明所提供的用于工程机械的稳定性控制系统的 安全区域的示意图。 在另一种具体实施方式中, 本发明所提供的用于工程机械的稳定性控制 系统的检测装置还检测工程机械的支腿的支撑点的位置, 以上所述的平衡范 围可以为工程机械的支腿的支撑点在水平面的投影点中, 相邻的两投影点之 间的连线所形成的区域 A经过第一安全运算后的安全区域 B; 工程机 ^戈的重 心位置可以为工程机械的重心 D在水平面的重心投影点经第二安全运算后的 安全点 C的位置; 当安全点 C位于安全区域 B以外时, 控制装置 2控制 4艮 警装置 3报警。 当然, 上述第一安全运算和第二安全运算中的一者可以为 1 , 此时, 就 相当于没有经过安全运算, 只靠另一者的安全运算保证其可靠性, 经过安全 运算以后能够使安全点落于安全区域以外的概率增大, 从而提高了控制的可 靠性。 上述平衡范围和工程机械的重心位置的确定方式, 不仅能够保证控制精 度, 而且具体使用过程中的实现方便, 降低了本发明所提供的用于工程机械 的稳定性控制系统的操作难度。 上述安全区域可以为相邻的两投影点之间的连线所形成的区域乘以第一 安全裕度得到的区域, 为了保证稳定性的提高, 第一安全裕度的具体值应当 保证安全区域的范围小于相邻的两投影点之间的连线所形成的区域的范围。 当然, 上述安全区域还可以为相邻的两投影点之间的连线所形成的区域经过 其他运算得到。 上述安全点也可以通过重心投影点乘以第二安全裕度得到, 为了保证稳 定性的提高, 第二安全裕度的具体值应当保证重心投影点落在安全区域的概 率增大。 当然, 上述安全点也可以通过其他方式得到, 只要能够保证安全性 的提高都是可以的。 如图 4所示,具体地,本发明所提供的用于工程机械的稳定性控制系统, 在判断重心投影点是否位于区域以外时的具体策略可以为: 以安全点 C为端 点做垂直于工程机械的长度方向的射线 1, 当 1与连线的交点的个数为偶数或 零时, 则认为安全点 C位于安全区域 B以外。 在使用该方法时, 如果该射线 与连线重合, 则认为射线与该连线的交点为一个。 上述控制策略为控制装置的控制程序的设定提供了依据, 保证了本发明 所提供的用于工程机械的稳定性控制系统的实现。 在另一种具体实施方式中, 本发明所提供的用于工程机械的稳定性控制 系统的报警装置还可以包括相互区别的第一报警装置和第二报警装置, 平衡 范围还可以包括与 4艮警装置相对应的第一平衡范围和第二平衡范围; 当重心 位置位于第一平衡范围以外时, 第一 ·ί艮警装置 4艮警, 当重心位置位于第二平 衡范围以外时, 第二报警装置报警。 从而, 进一步保证了控制的可靠性。 具 体地, 可以使第二平衡范围包含于第一平衡范围以内, 当重心位置位于第二 平衡范围以外时, 第二报警装置报警, 从而可以提醒操作人员在接下来的操 作中小心, 当重心位置位于第一平衡范围以外时, 第一报警装置报警, 提醒 操作人员进一步小心。 为了方便操作人员区分报警信号, 上述第一报警装置和第二报警装置可 以分别为具有不同声音的报警装置, 或者为具有不同颜色的光信号; 当然, 一者为光信号, 另一者为声音信号也是可以的。 另外, 为解决上述技术问题, 本发明还提供了一种工程机械, 包括如上 述的稳定性控制系统, 工程机械的其他结构与现有技术相同,本文不再赞述。 本发明同时也提供了一种用于工程机械的稳定性控制方法, 下面以混凝 土泵车为例, 说明该控制方法的具体步骤: 通过有限元计算出混疑土泵车各个部件的重心坐标; 通过在泵车转塔安装水平倾角仪、 支腿安装位移传感器、 臂架安装倾角 传感器等釆集泵车水平角度、 支腿位置、 臂架旋转角度, 实时检测泵车几何 姿势或载荷的瞬时数据、 操作数据; 根据支腿上安装的位移传感器的数据计算可以得到四个支腿相对泵车转 台的 X 由和 Υ 由坐标; 如图 5 所示, 将四个支撑点投影到 Ζ=0 的平面分别得到新支撑点坐标 (Χ11,Υ11),(Χ21,Υ21),(Χ31,Υ31),(Χ41,Υ41); 按照有限元计算出的部件重心位置、 部件在整车的安装位置和上述传感 器的反馈信号, 根据公式 X7 = ~ k- , Y7 = ~ , Z7 = ~ k- i- ,
1 G z G z G 其中 G为整车重量, Gk为某一部件的重量, Xk. Yk. Zk为某一部件的三 轴坐标, 计算出混疑土泵车整车的重心位置, 将重心点坐标三轴分量 Χζ,Υζ,Ζζ 分别乘以安全裕度 Κ , 然后再投影到 Ζ=0 平面得到新的重心点坐标
Figure imgf000011_0001
通过以下公式得到四才艮边界直线: Υ=Β1; Χ=Β2; Υ=Β3; Χ=Β4 计算公式:
(Bl-Yll )/(Xz 1-Xl l )=(Y21-Yll )/(X21-Xl l) (Yzl-Y21)/(B2-X21)=(Y31-Y21)/(X31-X21) (B3-Y3 l)/(Xzl-X31)=(Y41-Y31)/(X41-X31) (Yzl -Y41 )/(B4-X41 )=(Y 11 -Y41 )/(X 11-X41) 重心点位于四个支撑点围成的四边形内的充分条件就是: (B3 < Yzl < B1) 和 (B4 < Xzl < B2) 把计算结果和目前状态下的泵车倾翻极限位置进行比较, 重心超出平衡 范围则报警, 限制混凝土泵车动作。 以上对本发明所提供的工程机械及其稳定性控制系统与控制方法进行了 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明原理的前提下, 还可 以对本发明进行若千改进和 4爹饰, 这些改进和 4爹饰也落入本发明权利要求的 保护范围内。

Claims

权 利 要 求 书
1. 一种用于工程机械的稳定性控制系统,其特征在于,包括检测装置( 1 )、 控制装置 (2 ) 和报警装置 (3 ),
所述检测装置( 1 )检测所述工程机械的各部件的重心的当前位置, 得到各部件的重心位置信号, 并将所述重心位置信号传输至所述控制 装置 (2 );
所述控制装置 (2 )接收所述检测装置 ( 1 ) 的重心位置信号, 根 据重心计算策略计算出所述工程机械的重心位置, 并与预先设定的平 衡范围进行比较; 当所述工程机械的重心位置落在所述平衡范围以外 时, 所述控制装置 (2 ) 控制所述报警装置 (3 )报警。
2. 根据权利要求 1所述的用于工程机械的稳定性控制系统,其特征在于, 所述检测装置( 1 )还检测所述工程机械的支腿的支撑点的位置; 所述 平衡范围为所述工程机械的支腿的支撑点在水平面的投影点中, 相邻 的两投影点之间的连线所形成的区域经过第一安全运算后的安全区 域, 所述工程机械的重心位置为所述工程机械的重心在水平面的重心 投影点经第二安全运算后的安全点的位置; 当所述安全点位于所述安 全区域以外时, 所述控制装置 (2 )控制所述报警装置 (3 )报警。
3. 根据权利要求 2所述的用于工程机械的稳定性控制系统,其特征在于, 所述安全区域由所述区域乘以第一安全裕度得到。
4. 根据权利要求 2所述的用于工程机械的稳定性控制系统,其特征在于, 所述安全点由所述重心投影点乘以第二安全裕度得到。
5. 根据权利要求 2所述的用于工程机械的稳定性控制系统,其特征在于, 以所述安全点为端点做垂直于所述工程机械的长度方向的射线, 当射 线与所述连线的交点的个数为偶数或零时, 则所述安全点位于安全区 i或以外。
6. 根据权利要求 1至 5中任一项所述的用于工程机械的稳定性控制系统, 其特征在于, 所述报警装置包括相互区别的第一报警装置和第二报警 装置, 所述平衡范围包括与所述报警装置相对应的第一平衡范围和第 二平衡范围; 当所述重心位置位于所述第一平衡范围以外时, 所述第 一报警装置报警, 当所述重心位置位于所述第二平衡范围以外时, 所 述第二报警装置报警。
7. 根据权利要求 1至 5中任一项所述的用于工程机械的稳定性控制系统, 其特征在于, 所述工程机械的各部件的重心通过有限元计算得出。
8. 根据权利要求 1至 5中任一项所述的用于工程机械的稳定性控制系统, 其特征在于, 所述检测装置包括转塔倾角传感器、 转塔转角传感器、 臂架角度传感器、 支腿角度传感器和支腿位移传感器。
9. 根据权利要求 8所述的用于工程机械的稳定性控制系统,其特征在于, 所述支腿位移传感器安装于所述工程机械的各支腿的端部。
10. —种工程机械, 其特征在于, 包括如权利要求 1至 9中任一项所述的 稳定性控制系统。
11. 一种用于工程机械的稳定性控制方法, 其特征在于, 所述工程机械中 包括有检测装置、 控制装置和 ·ί艮警装置, 所述方法包括以下步骤: 所述检测装置检测工程机械的各部件的重心的当前位置, 得到各 部件的重心位置信号, 并将重心位置信号传输至控制装置;
所述控制装置接收所述检测装置的重心位置信号, 根据重心计算 策略计算出工程机械的重心位置,并与预先设定的平衡范围进行比较; 当所述工程机械的重心位置落在所述平衡范围以外时, 所述控制 装置控制所述报警装置报警。 根据权利要求 11 所述的用于工程机械的稳定性控制方法, 其特征在 于, 通过有限元计算所述工程机械各个部件的重心。
PCT/CN2011/072087 2010-03-30 2011-03-23 工程机械及其稳定性控制系统与控制方法 WO2011120396A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/002,107 US9082288B2 (en) 2010-03-30 2011-03-23 Engineering machine and stability control system and control method thereof
EP11761970A EP2555067A1 (en) 2010-03-30 2011-03-23 Engineering machine and stability control system and control method thereof
BR112012025018A BR112012025018A2 (pt) 2010-03-30 2011-03-23 máquinas de construção e o sistema de controle da sua estabilidade, e o método de controle.
KR1020127015333A KR20120116409A (ko) 2010-03-30 2011-03-23 공정기계 및 그의 안정성 제어시스템과 제어방법
JP2013501606A JP2013523558A (ja) 2010-03-30 2011-03-23 建設機械、安定性制御システム、及び制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101398060A CN101833287B (zh) 2010-03-30 2010-03-30 工程机械及其稳定性控制系统
CN201010139806.0 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011120396A1 true WO2011120396A1 (zh) 2011-10-06

Family

ID=42717387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072087 WO2011120396A1 (zh) 2010-03-30 2011-03-23 工程机械及其稳定性控制系统与控制方法

Country Status (7)

Country Link
US (1) US9082288B2 (zh)
EP (1) EP2555067A1 (zh)
JP (1) JP2013523558A (zh)
KR (1) KR20120116409A (zh)
CN (1) CN101833287B (zh)
BR (1) BR112012025018A2 (zh)
WO (1) WO2011120396A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813643A4 (en) * 2012-02-06 2015-08-26 Hunan Sany Intelligent Control SYSTEM FOR CONTROLLING THE STABILITY OF A PUMP CARRIAGE, CONTROL PROCESS AND PUMP CARRIAGE
CN114428483A (zh) * 2022-01-26 2022-05-03 上海三一重机股份有限公司 作业机械遥控端力反馈控制方法、装置及系统

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833287B (zh) * 2010-03-30 2012-02-22 三一重工股份有限公司 工程机械及其稳定性控制系统
CN102322253B (zh) * 2011-05-06 2015-08-12 三一重工股份有限公司 一种工程机械及其工况控制方法、装置
CN102248933A (zh) * 2011-05-23 2011-11-23 三一重工股份有限公司 泵车及其臂架安全旋转范围反馈系统、方法
CN102330498B (zh) * 2011-07-14 2012-10-17 中联重科股份有限公司 泵车及其控制方法和装置
CN102607860A (zh) * 2012-02-23 2012-07-25 中联重科股份有限公司 工程机械车辆的故障检测方法、设备和系统
CN103308253B (zh) * 2012-03-12 2015-12-02 宏碁股份有限公司 防止倾倒的方法及其控制模组
CN103317090A (zh) * 2012-03-18 2013-09-25 昆山华盟电子精密模具有限公司 一种多功能模具用定模
CN102841566B (zh) * 2012-09-18 2014-07-09 中联重科股份有限公司 混凝土泵车监控方法、混凝土泵车监控系统及混凝土泵车
US9237384B2 (en) * 2013-02-14 2016-01-12 Sonos, Inc. Automatic configuration of household playback devices
CN103309352B (zh) * 2013-07-03 2016-03-23 中联重科股份有限公司 一种臂架智能控制装置、系统、方法和工程机械
CN103321428B (zh) * 2013-07-03 2015-12-23 中联重科股份有限公司 一种臂架智能控制装置、系统、方法和工程机械
CN103345819B (zh) * 2013-07-16 2015-07-15 中联重科股份有限公司 车辆倾翻预警系统、预警方法及包含该系统的工程机械
CN103362173B (zh) * 2013-07-31 2015-05-20 王均义 装载机铲斗触地感测装置
CN103676965B (zh) * 2013-12-12 2016-03-30 中联重科股份有限公司 一种工程机械的臂架控制方法、装置、系统及工程机械
US9776846B2 (en) 2014-03-13 2017-10-03 Oshkosh Corporation Systems and methods for dynamic machine stability
CN103941611B (zh) * 2014-05-15 2017-06-13 广西柳工机械股份有限公司 工程机械工作装置安全操作报警控制方法
CN105628412B (zh) * 2014-10-28 2018-03-23 中联重科股份有限公司 用于工程机械的测试机构及其测试方法
KR101653773B1 (ko) * 2015-06-11 2016-09-06 하베코리아 주식회사 콘크리트 펌프 트럭의 전복 방지를 위한 붐 제어 장치 및 그 제어 방법
US9617708B2 (en) * 2015-08-06 2017-04-11 Honeywell International, Inc. Methods and apparatus for correcting a position of an excavation vehicle using tilt compensation
US10048158B2 (en) 2015-09-30 2018-08-14 Deere & Company Stability warning and control intervention system for a forestry vehicle
SG11201803124YA (en) 2015-10-16 2018-05-30 Palfinger Ag Arrangement of a controller and a mobile control module
US10467542B2 (en) 2016-11-22 2019-11-05 International Business Machines Corporation Embedded dynamic stability measurement, optimization and alarm system
WO2018145079A1 (en) 2017-02-06 2018-08-09 Mietzner Jr Leroy W Boom safe, anti-tip system
CN108086280A (zh) * 2017-10-23 2018-05-29 武汉船用机械有限责任公司 一种连续插销升降系统的控制方法及插销升降平台
DE102018204079A1 (de) 2018-03-16 2019-09-19 Putzmeister Engineering Gmbh Autobetonpumpe und Verfahren zur stabilitätsrelevanten Steuerung einer Autobetonpumpe
JP7052763B2 (ja) * 2019-03-15 2022-04-12 トヨタ自動車株式会社 バランス訓練装置およびバランス訓練装置の制御プログラム
CN110356987A (zh) * 2019-05-31 2019-10-22 中国海洋石油集团有限公司 一种海上平台起重机钢丝绳偏离垂直角度报警装置
DE102020206523A1 (de) * 2020-05-26 2021-12-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer mobilen Arbeitsmaschine
CN111717173A (zh) * 2020-06-24 2020-09-29 三一汽车制造有限公司 作业车辆的控制方法、作业车辆和可读存储介质
CN113776732B (zh) * 2021-11-12 2022-02-22 山东天河科技股份有限公司 一种用于四臂掘锚护一体机的重心测试系统
GB2614737A (en) * 2022-01-17 2023-07-19 Bamford Excavators Ltd A Working Machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040158380A1 (en) * 2003-02-07 2004-08-12 Farber Bruce W. Hydraulic stabilizer system and process for monitoring load conditions
CN101457589A (zh) * 2008-12-26 2009-06-17 三一重工股份有限公司 一种施工机械
CN201366921Y (zh) * 2009-03-05 2009-12-23 徐州徐工随车起重机有限公司 支撑式桥梁检测作业车车桥稳定装置
CN101659386A (zh) * 2008-08-29 2010-03-03 机械科学研究院工程机械军用改装车试验场 一种平衡重式叉车稳定性实时监测方法及装置
CN101833287A (zh) * 2010-03-30 2010-09-15 三一重工股份有限公司 工程机械及其稳定性控制系统
CN201619959U (zh) * 2010-03-30 2010-11-03 三一重工股份有限公司 工程机械及其稳定性控制系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152060A (en) * 1976-06-10 1977-12-17 Tokyo Keiki Co Ltd Prevneting method and device for falling donn of crane
JPS60137798A (ja) * 1983-12-24 1985-07-22 石川島播磨重工業株式会社 建設機械の重心位置表示方法
JPS60258085A (ja) * 1984-05-31 1985-12-19 伊藤 廣 クレ−ンの作動状態表示装置
JPS61287696A (ja) * 1985-06-12 1986-12-18 株式会社日立製作所 クロ−ラクレ−ン転倒防止警告装置
JP2871105B2 (ja) * 1990-12-03 1999-03-17 油谷重工株式会社 解体作業機の安全装置
JPH0674661U (ja) * 1993-03-31 1994-10-21 住友建機株式会社 建設機械の旋回転倒防止装置
JP3276027B2 (ja) * 1993-12-15 2002-04-22 株式会社小松製作所 二軸旋回式クレーン車の安全装置
JPH1179675A (ja) * 1997-09-02 1999-03-23 Komatsu Ltd アウトリガ付き車両の安全装置
US6437701B1 (en) * 2000-12-18 2002-08-20 Caterpillar Inc. Apparatus and method for a machine stability system for an articulated work machine
DE10110176A1 (de) * 2001-03-02 2002-09-05 Putzmeister Ag Mobiles Arbeitsgerät mit Standsicherheitsüberwachung
US20040232632A1 (en) * 2003-02-21 2004-11-25 Beck Michael S. System and method for dynamically controlling the stability of an articulated vehicle
JP4068042B2 (ja) * 2003-10-27 2008-03-26 株式会社アイチコーポレーション 作業車の制御装置
US7671547B2 (en) * 2005-10-05 2010-03-02 Oshkosh Corporation System and method for measuring winch line pull
JP2008006940A (ja) * 2006-06-28 2008-01-17 Kyokuto Kaihatsu Kogyo Co Ltd コンクリートポンプの架装構造及びコンクリートポンプ車
JP4434186B2 (ja) * 2006-09-04 2010-03-17 トヨタ自動車株式会社 移動体及び移動体の制御方法
JP4670800B2 (ja) * 2006-11-30 2011-04-13 トヨタ自動車株式会社 車両のロール剛性制御装置
JP5374037B2 (ja) * 2007-12-10 2013-12-25 株式会社タダノ 作業車の総合重心位置表示装置
DE102008058937A1 (de) * 2008-05-21 2009-11-26 Putzmeister Concrete Pumps Gmbh Mobiles Arbeitsgerät mit Standsicherheitsüberwachung
CN101414190A (zh) * 2008-10-28 2009-04-22 北京理工大学 基于有效稳定区域仿人机器人稳定行走的控制方法和系统
US20110042164A1 (en) * 2009-08-18 2011-02-24 Genie Industries, Inc. Apparatuses and methods for determining and controlling vehicle stability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040158380A1 (en) * 2003-02-07 2004-08-12 Farber Bruce W. Hydraulic stabilizer system and process for monitoring load conditions
CN101659386A (zh) * 2008-08-29 2010-03-03 机械科学研究院工程机械军用改装车试验场 一种平衡重式叉车稳定性实时监测方法及装置
CN101457589A (zh) * 2008-12-26 2009-06-17 三一重工股份有限公司 一种施工机械
CN201366921Y (zh) * 2009-03-05 2009-12-23 徐州徐工随车起重机有限公司 支撑式桥梁检测作业车车桥稳定装置
CN101833287A (zh) * 2010-03-30 2010-09-15 三一重工股份有限公司 工程机械及其稳定性控制系统
CN201619959U (zh) * 2010-03-30 2010-11-03 三一重工股份有限公司 工程机械及其稳定性控制系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813643A4 (en) * 2012-02-06 2015-08-26 Hunan Sany Intelligent Control SYSTEM FOR CONTROLLING THE STABILITY OF A PUMP CARRIAGE, CONTROL PROCESS AND PUMP CARRIAGE
CN114428483A (zh) * 2022-01-26 2022-05-03 上海三一重机股份有限公司 作业机械遥控端力反馈控制方法、装置及系统
CN114428483B (zh) * 2022-01-26 2023-07-21 上海三一重机股份有限公司 作业机械遥控端力反馈控制方法、装置及系统

Also Published As

Publication number Publication date
EP2555067A1 (en) 2013-02-06
KR20120116409A (ko) 2012-10-22
CN101833287B (zh) 2012-02-22
US20140015685A1 (en) 2014-01-16
US9082288B2 (en) 2015-07-14
BR112012025018A2 (pt) 2019-09-24
CN101833287A (zh) 2010-09-15
JP2013523558A (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
WO2011120396A1 (zh) 工程机械及其稳定性控制系统与控制方法
WO2014043997A1 (zh) 混凝土泵车监控方法、混凝土泵车监控系统及混凝土泵车
CN201619959U (zh) 工程机械及其稳定性控制系统
US8768562B2 (en) Work machine
WO2013117046A1 (zh) 泵车稳定性控制系统、控制方法及泵车
JP5840565B2 (ja) ショベル
WO2014166331A1 (zh) 一种稳定性监测系统及挖掘机
JP2019183507A (ja) 脚立作業状況判定システム、脚立作業状況判定方法及び脚立作業状況判定プログラム
CN111721561B (zh) 判断回转操作的稳定性的方法和装置及工程机械
JP2010138657A (ja) 解体作業機
CN105253775A (zh) 一种塔机顶升配平控制系统、方法、装置及塔式起重机
JP6457460B2 (ja) 脚立監視装置
JP4015158B2 (ja) クレーン吊荷操作表示装置
JP2013189767A (ja) 電動式旋回装置
JPH08119582A (ja) 作業車両の転倒警報装置及び転倒防止方法
CN205932988U (zh) 塔吊水平预警装置
JP2007197139A (ja) 作業機械の警報装置
CN113879979A (zh) 一种液压挖掘机吊管设备作业防倾翻监测装置及方法
CN111170238B (zh) 用于高空作业平台的控制系统、控制方法及高空作业平台
JP6836118B2 (ja) 加速度センサの調整システム
JP6557103B2 (ja) 吊り具付き油圧ショベル
KR20110073637A (ko) 건설기계의 선회 감지 장치 및 방법
CN114687562B (zh) 作业机械的控制方法、装置和作业机械
JP3161816B2 (ja) 建設機械の安全装置
JP2018104103A (ja) 移動式クレーンの傾斜防止装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11761970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127015333

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013501606

Country of ref document: JP

Ref document number: 2315/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011761970

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012025018

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14002107

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112012025018

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121001