WO2011118640A1 - スチレン系樹脂組成物、二軸延伸スチレン系樹脂シート、及びそれらの成形品 - Google Patents
スチレン系樹脂組成物、二軸延伸スチレン系樹脂シート、及びそれらの成形品 Download PDFInfo
- Publication number
- WO2011118640A1 WO2011118640A1 PCT/JP2011/056997 JP2011056997W WO2011118640A1 WO 2011118640 A1 WO2011118640 A1 WO 2011118640A1 JP 2011056997 W JP2011056997 W JP 2011056997W WO 2011118640 A1 WO2011118640 A1 WO 2011118640A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molecular weight
- resin composition
- styrene
- average molecular
- styrene resin
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
- B29C51/002—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/062—Polyethers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2791/00—Shaping characteristics in general
- B29C2791/004—Shaping under special conditions
- B29C2791/006—Using vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
- B29C51/10—Forming by pressure difference, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
- C08J2325/08—Copolymers of styrene
- C08J2325/12—Copolymers of styrene with unsaturated nitriles
Definitions
- the present invention relates to a copolymer of a multi-branched macromonomer having a polymerizable double bond at a branch end, a styrene monomer and an acrylate ester. More specifically, the present invention relates to a styrenic resin composition that is excellent in molding processability during molding and has good productivity, a styrene resin sheet obtained by biaxially stretching the composition, and a secondary molded product thereof.
- Styrene- (meth) acrylic resins have high rigidity, excellent dimensional stability, transparency, etc., and are widely used as molding materials.
- styrene- (meth) acrylic resins satisfy the requirements of various applications and are still insufficient as molding materials with excellent balance, and various performance improvements are required.
- styrene resin sheets obtained by biaxial stretching of styrene resins have been widely used because they are molded into containers where the contents can be seen due to their high transparency.
- the sheet is molded by using a contact heating type pressure forming method in which a sheet is clamped with a hot plate.
- a biaxially stretched styrene resin sheet that can be molded by a radiant heating type pressure air vacuum forming method
- a styrene resin in which a styrene butadiene copolymer rubber is dispersed in a styrene resin is approximately biaxially heated and contracted by stress.
- a sheet stretched and oriented at 2 to 4 kg / cm 2 (0.196 to 0.392 MPa) has been proposed (see, for example, Patent Document 2).
- a styrene resin not containing a rubber component, a styrene monomer, and an unsaturated carboxylic acid ester It consists of a copolymer consisting of a monomer, mineral oil, and inorganic or organic particles, and the heat shrinkage stress is MD (longitudinal direction) 0.20 MPa or more, TD (transverse direction) 2.00 MPa or less, and TD and MD
- MD-MD longitudinally stretched styrene resin sheet having a difference (TD-MD) of 0.22 MPa or more has been proposed (see, for example, Patent Document 3).
- the biaxially stretched styrenic resin sheets provided in Patent Documents 2 to 3 improve the thickness uniformity of the molded product in the radiant heating type compressed air vacuum forming method by adjusting the heat shrinkage stress.
- the range of the heating time for obtaining a good molded product is very narrow. That is, in the radiant heating type pressure air vacuum forming method, generally, when the heating time is short, the mold reproducibility is insufficient, and when the heating time is lengthened in order to obtain sufficient mold reproducibility, the molding is performed. There is a problem that uneven thickness tends to occur in the product.
- the range of the optimum heating time for preventing the occurrence of these problems and obtaining a good molded product is less than 1 second when the compositions of Patent Documents 2 and 3 are used. This is very difficult in terms of process control, and from the viewpoint of productivity, it was difficult to apply these biaxially stretched styrene resin sheets to the radiant heating type pressure-air vacuum forming method. Industrial production of molding a resin-based resin sheet by the molding method has not been performed.
- the present invention has been made in view of the above problems, and an object of the present invention is to perform various moldings while maintaining the practical strength of a molded product obtained using a styrene-acrylic resin composition. It is to provide a styrene resin composition capable of improving the molding processability in the method, and further, a styrene resin sheet using the styrene resin composition, which has excellent optical characteristics and is used in a radiant heating type pressure vacuum forming method. Biaxial stretching with excellent mold reproducibility and punching performance of molded products, yielding good molded products without uneven thickness, heating time range of 1 second or more, and excellent productivity during secondary processing The object is to provide a styrene resin sheet.
- the present inventors copolymerized a multi-branched macromonomer originally developed by the present inventors, a styrene monomer and an acrylate ester at a specific ratio.
- the present inventors have found that the obtained styrene resin composition having a specific weight average molecular weight and molecular weight distribution can solve the above problems, and have completed the present invention.
- the present invention has a weight average molecular weight of 1,000 having a styrene monomer (a1), an acrylate ester (a2), a plurality of branches, and a polymerizable double bond at the tip.
- the weight average molecular weight (Mw) determined by the method is 300,000 to 600,000, and the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 2.7 to 4.0.
- styrene monomer (a1) and the acrylate ester (a2) are used in a ratio (a1) / (a2) of 87/13 to 96/4 (mass ratio).
- Resin composition and molding obtained using the same It is intended to provide a biaxially oriented sheet and the secondary molded article.
- the styrenic resin composition obtained in the present invention has a wider molecular weight distribution range than the conventional linear styrenic resin composition. From this, even if it contains an ultrahigh molecular weight component, it is molded. Excellent in properties. In addition, when applying various molding methods using molds, the mold release properties are good, so there is no need to release them by using additives, etc., and there is no surface contamination. ⁇ Productivity is good over time, and the degree of defective products can be reduced. Further, the obtained molded product has a mechanical strength equal to or higher than the conventional one. In addition, a sheet obtained by biaxial stretching of this can provide a good molded product having sufficient mold reproducibility and no uneven thickness in the radiation heating type pressure air vacuum forming method.
- the styrene resin composition of the present invention comprises a styrene monomer (a1), an acrylate ester (a2), a plurality of branches, and a weight average molecular weight having a polymerizable double bond at the tip thereof.
- the weight average molecular weight (Mw) determined by the GPC-MALS method is 300,000 to 600,000, and the use ratio (a1) / (a2) of the styrene monomer (a1) and the acrylate ester (a2) ) Is 87/13 to 96/4 (mass ratio), and the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is in the range of 2.7 to 4.0. Is.
- the GPC-MALS method is a molecular weight measurement method using a multi-angle light scattering detector, and is useful for measuring the molecular weight of highly branched polymers.
- GPC-MALS measurement of a styrene-based resin composition is performed using Shodex HPLC, detector Wyatt Technology DAWN EOS, Shodex RI-101, column Shodex KF-806L ⁇ 2, solvent THF (tetrahydrofuran), flow rate 1.0 ml. Per minute.
- GPC-MALS measurement is performed by analysis software ASTRA manufactured by Wyatt, and the weight average molecular weight / number average molecular weight of the styrene resin composition is calculated, and the styrene resin composition is defined by this value. Is.
- the weight average molecular weight (Mw) of the styrenic resin composition of the present invention determined by the above method is 300,000 to 600,000. If the molecular weight is less than 300,000, the strength of the resulting molded product may be insufficient, and the releasability at the time of molding may be lowered. Furthermore, the optimal heating time when the biaxially stretched sheet is secondarily formed by a radiant heating type pressure air vacuum forming method may be shortened. On the other hand, when the molecular weight distribution exceeds 600,000, moldability is insufficient even if the molecular weight distribution is wide, and uneven thickness tends to occur.
- the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) determined by the GPC-MALS method of the styrene resin composition is in the range of 2.7 to 4.0.
- Mw / Mn smaller than 2.7 is equivalent to the styrene-based resin composition having a multi-branched structure that has been provided by the present inventors, and has a moldability when various molding methods are applied. Is not suitable for improving productivity. In addition, it is difficult to obtain a product having Mw / Mn exceeding 4.0 by a production method described later.
- melt mass flow rate (hereinafter sometimes referred to as “MFR”) of the styrene resin composition of the present invention is preferably 2.0 g / 10 min or more.
- the measurement conditions for melt mass flow rate are JIS K7210, Condition H (200 ° C., 5 kg).
- styrenic monomer (a1) examples include styrene and derivatives thereof; for example, styrene, methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, diethylstyrene, triethylstyrene, propylstyrene, Alkyl styrene such as butyl styrene, hexyl styrene, heptyl styrene, octyl styrene, halogenated styrene such as fluoro styrene, chloro styrene, bromo styrene, dibromo styrene, iodo styrene, nitro styrene, acetyl styrene, methoxy
- the acrylic acid ester (a2) that can be used in the present invention is not particularly limited, and for example, an acrylic acid alkyl ester having an alkyl group having 1 to 6 carbon atoms or a substituted alkyl group is preferable.
- the substituted alkyl group refers to an alkyl group in which part or all of the hydrogen atoms of the alkyl group are substituted with a halogen atom, a hydroxyl group or the like, and examples of the halogen atom include fluorine, chlorine, bromine and iodine.
- acrylic can be used because the branched structure can be suitably arranged in the obtained multibranched copolymer (A), and the molding processability of the styrene resin composition containing this can be improved.
- Butyl acid is preferred.
- monomers having a polymerizable double bond may be used in combination.
- the monomer include various (meth) acrylic compounds, vinyl ethers, vinyl esters, and the like.
- the other monomer when used, it is preferably used in an amount of 5% by mass or less based on the total mass of the styrene monomer (a1) and the acrylate ester (a2).
- the multi-branched macromonomer (a3) used in the present invention is a macromonomer having a plurality of branches and having a polymerizable double bond at the tip thereof and a weight average molecular weight of 1,000 to 15,000. Any structure may be used, and the structure is not particularly limited. From the viewpoint of industrial availability, for example, it is preferable to use a multi-branched macromonomer already disclosed by the present inventors in JP-A-2003-292707.
- hyperbranched macromonomer examples include those obtained by any of the following methods (1) to (5).
- Hyperbranched macromonomer (2) A compound having one or more hydroxyl groups, a monocarboxylic acid in which the carbon atom adjacent to the carboxyl group is a saturated carbon atom, and all the hydrogen atoms on the carbon atom are substituted, and the monocarboxylic acid has two or more hydroxyl groups.
- a hyperbranched macromonomer obtained by reacting a group-containing acrylic compound, 4-chloromethylstyrene, etc., and introducing a polymerizable double bond;
- a multibranched polymer is obtained by reacting a compound having one or more hydroxyl groups with a compound containing two or more hydroxyl groups and a halogen atom, —SO 2 OCH 3 , —OSO 2 CH 3 or the like.
- Acrylic acid, methacrylic acid, an isocyanate group-containing acrylic compound, 4-chloromethylstyrene, or the like is reacted with a PAMAM dendrimer in which the amide bond has a repeating structure via a nitrogen atom to form a polymerizable double bond.
- Examples of the AB type 2 monomer having an active methylene group and a bromine, chlorine, methylsulfonyloxy group, or tosyloxy group in one molecule in the above (1) include, for example, halogenated alkoxy-phenylacetonitriles or tosyloxy groups And phenylacetonitriles having
- Examples of the monocarboxylic acid in (2) in which the carbon atom adjacent to the carboxyl group is a saturated carbon atom, all the hydrogen atoms on the carbon atom are substituted, and having two or more hydroxyl groups include, for example, dimethylol.
- Examples of the cyclic ether compound having one or more hydroxyl groups in (3) above include 3-ethyl-3- (hydroxymethyl) oxetane, 2,3-epoxy-1-propanol, 2,3-epoxy-1- Examples include butanol or 3,4-epoxy-1-butanol.
- Examples of the compound containing two or more hydroxyl groups in (4) above, a halogen atom, —SO 2 OCH 3 , —OSO 2 CH 3 and the like include, for example, 5- (bromomethyl) -1,3-dihydroxybenzene, 2-ethyl-2- (bromomethyl) -1,3-propanediol, 2-methyl-2- (bromomethyl) -1,3-propanediol, 2- (bromomethyl) -2- (hydroxymethyl) -1,3 -Propanediol and the like.
- the PAMAM dendrimer in the above (5) can be produced, for example, by the technique shown in Japanese Patent Publication No. 6-070132 and Japanese Patent Publication No. 7-043522.
- the weight average molecular weight of the hyperbranched macromonomer (a3) is 1,000 to 15,000.
- the molecular weight is determined by GPC-MALS measurement method (Shodex HPLC, detector Wyatt Technology DAWN EOS, Shodex RI-101, column Shodex KF-806L ⁇ 2, solvent THF (tetrahydrofuran), flow rate 1.0 ml / min). I did it.
- the analysis of GPC-MALS measurement was performed with analysis software ASTRA manufactured by Wyatt to determine the weight average molecular weight.
- the molecular weight is less than 1,000, the introduction amount of the branched structure is insufficient, and the physical properties are close to those of the conventional linear styrene-acrylic copolymer, and a styrene resin composition having a wide molecular weight distribution range defined in the present application is obtained. In some cases, the molded product obtained is difficult to be obtained and the practical strength is insufficient. On the other hand, when the molecular weight exceeds 15,000, it is difficult to handle the hyperbranched macromonomer, and it may be difficult to uniformly copolymerize the styrene monomer (a1) and the acrylate ester (a2). . A more preferred molecular weight is 2,500 to 7,000.
- the multi-branched macromonomer (a3) preferably contains 0.1 to 5.5 mmol of polymerizable double bond per gram. Within this range, the introduction amount of the branched structure in the resulting multibranched copolymer (A) can be controlled, and the desired high molecular weight component is appropriately contained while preventing gelation during production, and is wide. It becomes easy to obtain a styrene resin composition having a molecular weight distribution. A more preferable content is in the range of 1.0 to 3.5 mmol.
- This content is determined, for example, in the case of a double bond based on methacrylic acid or a derivative thereof as containing 1 mol of double bond in the formula amount of methyl methacrylate, and styrene or the like. In the case of a double bond based on a compound, this is the value determined as containing 1 mole of double bond in the formula weight of styrene.
- the styrene resin composition of the present invention comprises a multi-branched copolymer obtained by copolymerizing the styrene monomer (a1), the acrylate ester (a2) and the multi-branched macromonomer (a3).
- the polymer (A) is essential, when this copolymer is synthesized, a linear copolymer of the styrene monomer (a1) and the acrylate ester (a2) Thus, it is obtained as a mixture containing a low-branched copolymer that does not sufficiently contain the multi-branched macromonomer (a3) -derived structure.
- the multi-branched copolymer (A) since the multi-branched copolymer (A) may be essential, it is not necessary to remove such a linear copolymer or a low-branched copolymer.
- Mw and Mw / Mn ratio can be used as they are as the styrenic resin composition of the present invention.
- a resin obtained by copolymerizing a styrene monomer (a1) and an acrylate ester (a2) is mixed. And can be adjusted.
- the styrene resin composition of the present invention has a ratio (a1) / (a2) of 87/13 to 96/4 (mass ratio) of the styrene monomer (a1) and the acrylate ester (a2). Is essential. As described above, even when a resin obtained by separately copolymerizing the styrene monomer (a1) and the acrylate ester (a2) is mixed and adjusted, the styrene monomer in the styrene resin composition is also prepared. It is essential that the mass ratio between the content of the body-derived component and the content of the acrylic ester (a2) -derived component is within the range.
- the ratio of the acrylic ester used is lower than 4, the molding processability when various molding methods are applied is insufficient, and the effect of imparting the molding processability intended by the present invention can be expressed. It becomes difficult. Furthermore, from the viewpoint of low-temperature formability and image clarity of the sheet, it is preferable that the use ratio of the acrylic ester is 4 or more. Moreover, when the usage-amount of acrylic ester exceeds 13.0, Vicat softening temperature falls and the heat resistance of a molded article is less than a practical range.
- butyl acrylate is used as the acrylate ester (a2), and the ratio of use with the styrene monomer (a1) is (a1) / butyl acrylate is 92 / More preferably, it is 8 to 96/4 (mass ratio).
- the hyperbranched macromonomer (a3) at 100 to 1,000 ppm on a mass basis with respect to the total of the styrene monomer (a1) and the acrylate ester (a2).
- the styrene monomer (a1), the acrylate ester (a2) and the multibranched macromonomer (a3) are copolymerized.
- the styrenic resin composition containing the multi-branched copolymer (A) is not particularly limited as long as it has the molecular weight / molecular weight distribution range specified in the present application. From the viewpoint that the target styrene-based resin composition can be efficiently produced by a one-step reaction, it is preferable to employ a production method already provided by the present inventors in JP-A-2005-053939.
- the mixture containing the raw materials (a1) to (a3) is preferably reacted by a solution polymerization method or a melt polymerization method (bulk polymerization method).
- the reaction can be carried out without adding an organic solvent, but it is preferable to use a small amount of an organic solvent in combination because the viscosity of the reaction product is lowered and the molecular weight of the polymer is easily controlled.
- organic solvent those having a chain transfer constant of 0.1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 4 are preferable, and those having a chain transfer constant of 0.2 ⁇ 10 ⁇ 5 to 0.8 ⁇ 10 ⁇ 5 are preferable. More preferred.
- toluene, ethylbenzene, xylene, acetonitrile, benzene, chlorobenzene, dichlorobenzene, anisole, cyanobenzene, dimethylformamide, N, N-dimethylacetamide, methyl ethyl ketone and the like are preferable.
- the amount of use is preferably 5 to 50 parts by mass, more preferably 6 to 20 parts by mass with respect to 100 parts by mass of the raw material monomers in total.
- the amount of use is preferably 5 to 50 parts by mass, more preferably 6 to 20 parts by mass with respect to 100 parts by mass of the raw material monomers in total.
- it when it superposes
- a radical polymerization initiator is used.
- Such an initiator preferably has a temperature at which the half-life is 10 hours is from 75 to 140 ° C., more preferably from 85 to 135 ° C.
- Hydroperoxides such as peroxyketals, cumene hydroperoxide, t-butyl hydroperoxide, dialkyl peroxides such as di-t-butyl peroxide, dicumyl peroxide, di-t-hexyl peroxide, Diacyl peroxides such as benzoyl peroxide and disinamoyl peroxide, peroxyesters such as t-butyl peroxybenzoate, di-t-butyl peroxyisophthalate, and t-butyl peroxy isopropyl monocarbonate, N , N'-Azobisisobutylnitrate N, N′-azobis (cyclohexane-1-carbonitrile), N, N′-azobis (2-methylbutyronitrile), N, N′-azobis (2,4-dimethylvaleronitrile), N, N′-azobis [2- (hydroxymethyl) propionitrile] and the like can be mentioned, and these can be used alone or
- the amount of these used is preferably 50 ppm to 1,000 ppm, more preferably 100 to 500 ppm, based on the mass of the raw material monomer.
- a chain transfer agent may be added so that the molecular weight of the styrenic resin composition containing the multibranched copolymer (A) does not become excessively large.
- a chain transfer agent a monofunctional chain transfer agent having one chain transfer group or a polyfunctional chain transfer agent having a plurality of chain transfer agents can be used.
- the monofunctional chain transfer agent include alkyl mercaptans and thioglycolic acid esters.
- Polyfunctional chain transfer agents such as ethylene glycol, neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, etc. are esterified with thioglycolic acid or 3-mercaptopropionic acid. The thing which was done is mentioned.
- the present invention provides a styrenic resin composition excellent in these performance balances in order to meet such demands.
- the styrene resin composition used in the present invention is a styrene resin composition containing the multi-branched copolymer (A) as described above, and is a weight average determined by the GPC-MALS method of the composition.
- the molecular weight (Mw) may be 300,000 to 600,000, and the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) may be 2.7 to 4.0. It may be composed only of the copolymer (A), or may be composed of the multi-branched copolymer (A) and other components.
- the use of the other components is not particularly limited as long as the weight average molecular weight and the number average molecular weight of the styrenic resin composition are not deviated from the above ranges and the effects of the present application are not hindered.
- various additives and polymer compounds such as the above-mentioned linear copolymers can be used depending on the application.
- additives examples include various stabilizers, antiblocking agents, antistatic agents, lubricants, antifogging agents, antibacterial agents, antioxidants, dyes, and ultraviolet absorbers.
- the styrenic resin composition used in the present invention is excellent in these performances without using mineral oil or the like that has been conventionally used for imparting releasability and moldability, the use of additives
- the molded product of the present invention is not limited in any way other than using the styrenic resin composition of the present invention.
- an injection molded product is applied by applying a molding method such as injection, extrusion, blow, compression, etc. Molded into plates, sheets, films, etc.
- a molding method such as injection, extrusion, blow, compression, etc. Molded into plates, sheets, films, etc.
- it can be suitably used for applications that are mass-produced, for example, transparent large-sized injection-molded articles, etc., because the styrenic resin composition of the present invention is excellent in productivity such as excellent moldability and releasability. .
- the styrene resin composition of the present invention can be suitably used for a biaxially stretched styrene resin sheet.
- the stretching method is not particularly limited, but from the viewpoint of excellent secondary workability in the radiant heating type compressed air vacuum forming method, neither the heat shrinkage stress in the machine direction nor the transverse direction of the obtained sheet is 0. It is preferably in the range of 20 MPa to 0.45 MPa.
- the heat shrinkage stress is a physical property value usually used in this technical field as described in Patent Documents 2 and 3, specifically, a value measured in accordance with ASTM D-1504. is there.
- both the longitudinal direction (MD) of the biaxially stretched sheet and the transverse direction (TD) perpendicular thereto are set to a heat shrinkage stress of 0.20 MPa to 0.45 MPa, which is a relatively low value range.
- TD transverse direction
- the present invention has the transparency inherent in styrene resins.
- a styrene resin composition having a multi-branched structure and having a specific molecular weight / molecular weight distribution width. Is.
- Heat shrinkage stress can be adjusted by stretching temperature, stretching ratio, etc., but it also varies depending on the sheet extrusion speed and sheet width at the time of extrusion (before stretching), so specify specific production conditions. It is difficult.
- the stretching temperature is preferably the Vicat softening point of the above-mentioned styrenic resin composition + (0 to 40) ° C., and the stretching ratio is 1.5 to 5.0 in one direction. It is preferable that it is double. If these values are within this range, a sheet having a heat shrinkage stress in a preferable range capable of radiation heating type vacuum forming can be easily produced.
- the thickness of the sheet obtained by biaxial stretching is not particularly limited, but is preferably in the range of 0.1 to 1 mm from the viewpoint that it can be applied to a general-purpose radiant heating type pneumatic vacuum forming machine. It is.
- the method for producing the biaxially stretched styrene resin sheet of the present invention is not particularly limited, and may be performed by a method used in the production of a conventional stretched sheet.
- a styrenic resin composition is supplied to an extruder, melted and kneaded, and then continuously extruded with a T die or a circular die. This is a method of axial stretching.
- the biaxially stretched styrene resin sheet of the present invention can be coated with an antifogging agent or a release agent on at least one side or both sides.
- the antifogging agent include nonionic surfactants such as sorbitan fatty acid ester, sucrose fatty acid ester, polyglycerin fatty acid ester, and polyoxyethylene derivative, and these can be used alone or in a mixture.
- the release agent include silicone oil and emulsion thereof.
- Various nonionic surfactants, cationic surfactants, anionic surfactants, and the like may be applied as an antistatic agent. Examples of these coating methods include spray coaters, roll coaters, gravure roll coaters, knife coaters, air knife coaters, rotor dampening coaters, and applicator systems.
- the biaxially stretched styrenic resin sheet of the present invention provides design, functionality, etc. within a range that does not impair the effects of the present invention, so printing on the surface of the sheet, barrier properties, antibacterial properties, heat
- a resin having functionality such as a sealing property may be laminated on the surface of the sheet.
- the biaxially stretched styrene resin sheet of the present invention can contain various fine particles in order to impart an antiblocking effect.
- the fine particles include resin crosslinked particles such as styrene resin crosslinked particles, (meth) acrylic ester resin crosslinked particles, polyurethane resin crosslinked particles; silica, hydrophobized silica, spherical silica, light calcium carbonate, oxidized Examples thereof include inorganic fine particles such as titanium and talc, and rubber fine particles such as styrene grafted diene rubber.
- styrene-grafted diene rubber is particularly preferred because it improves the strength, anti-blocking property and peelability of the biaxially stretched styrene resin sheet and a molded article using the same.
- styrene graft diene rubber a biaxially stretched styrene resin sheet and a molded article using the same can be obtained with an excellent balance between strength and appearance, so that the average particle size is 0.1-5.
- What is contained in the biaxially oriented styrene resin sheet so that the diene component is in the range of 0.05 to 3.0% by mass at 0 ⁇ m is preferable. In order to obtain higher transparency, it is preferable to contain 0.05 to 0.5% by mass.
- the biaxially stretched styrene resin sheet of the present invention improves the stretchability at the time of forming the biaxially stretched styrene resin sheet, the deep drawability at the time of secondary molding to be molded into a container, and the low temperature moldability.
- Mineral oil may be contained. However, the volatile matter of mineral oil generated at the time of melt extrusion is aggregated and adhered to the sheet manufacturing apparatus, and this is transferred to the sheet to prevent the appearance failure of the biaxially oriented styrene resin sheet. It is preferable to do.
- the above-mentioned various particles and mineral oil can be added to the styrenic resin composition before biaxial stretching obtained by the method described above and contained in the biaxially stretched styrene resin sheet.
- the forming method for secondary processing of the above-mentioned biaxially stretched styrene resin sheet is preferably radiant heating type pressure air vacuum forming.
- the shape and use of the molded product are not particularly limited, and examples thereof include food container lids, trays, food packs, blister packs, other various packs, and cases.
- the molded product obtained by radiant heating type pressure-air vacuum forming using the biaxially stretched styrene resin sheet of the present invention is non-contact with the hot plate, so the fineness applied to the hot plate for pressure adjustment Since no hot holes are transferred or hot plate stains derived from the antifogging agent or the like coated on the surface of the sheet are not transferred, the transparency is excellent.
- the evaluation method is as follows. [GPC-MALS measurement conditions] GPC-MALS measurement of the styrene resin composition was performed under the conditions of Shodex HPLC, detector Wyatt Technology DAWN EOS, Shodex RI-101, column Shodex KF-806L ⁇ 2, solvent THF, flow rate 1.0 ml / min. . The analysis of GPC-MALS measurement was performed using analysis software ASTRA manufactured by Wyatt, and the weight average molecular weight, number average molecular weight, etc. of the styrene resin composition were determined.
- a pudding type container was molded by a 150-ton injection molding machine manufactured by Nippon Steel Works, and evaluated based on the following evaluation criteria. Easy to mold containers and no uneven thickness: ⁇ Container molding is relatively easy and there is no uneven thickness: ⁇ Container molding is relatively easy, but there is uneven thickness: ⁇ Container formation is difficult and there is uneven thickness: ⁇
- the sagging amount is less than 20 mm, 20 is 20 to less than 40 mm, and x is 40 mm or more.
- the heating time is 30 seconds, the sagging amount is less than 30 mm, ⁇ is less than 30 to 60 mm, and x is more than 60 mm.
- the evaluation with respect to one of the heating times was x and the other one was ⁇ or ⁇ , the evaluation was ⁇ .
- a box shape of 20 cm ⁇ 15 cm ⁇ 4 cm was formed by a 150-ton injection molding machine manufactured by Nippon Steel Works, and evaluated based on the following evaluation criteria.
- ⁇ Easy to release after 50 consecutive shots
- ⁇ Easy to release after 30 consecutive shots
- ⁇ Difficult to release after 10 consecutive shots
- ⁇ Difficult to release from 1 to 2 continuous shots
- reaction mixture was further stirred at 120 ° C. for 3 hours and then cooled to room temperature.
- the resulting multi-branched polyether polyol had a weight average molecular weight of 3,000 and a hydroxyl value of 530.
- the amount of heating was adjusted so that the amount of distillate in the decanter was 30 g per hour, and heating was continued until the amount of dehydration reached 2.9 g.
- the mixture was cooled once, 36 g of acetic anhydride and 5.7 g of sulfamic acid were added, and the mixture was stirred at 60 ° C. for 10 hours. Thereafter, in order to remove the remaining acetic acid and hydroquinone, it was washed with 50 g of 5% aqueous sodium hydroxide solution four times, and further washed once with 50 g of 1% aqueous sulfuric acid solution and twice with 50 g of water.
- the obtained organic layer 0.02 g of methoquinone was added, the solvent was distilled off under reduced pressure while introducing 7% oxygen-containing nitrogen (v / v), and a multibranched macromonomer having an isopropenyl group and an acetyl group ( a3-1) 60 g was obtained.
- the obtained multibranched macromonomer (a3-1) has a weight average molecular weight of 3,900, and the introduction ratio of isopropenyl group and acetyl group into the multibranched polyether polyol is 30 mol% and 62 mol%, respectively. there were. Therefore, the introduction amount of the polymerizable double bond is 1.50 mmol / g.
- the solvent was distilled off from the obtained organic layer under reduced pressure to obtain 70 g of a hyperbranched macromonomer (a3-2) having a styryl group and an acetyl group.
- the obtained multibranched macromonomer (a3-2) had a weight average molecular weight of 4,800, and the introduction ratios of styryl groups and acetyl groups into the multibranched polyether polyol were 38 mol% and 57 mol%, respectively. It was. Therefore, the introduction amount of the polymerizable double bond is 1.31 mmol / g.
- methyl methacrylate was distilled off under reduced pressure, and 10 g of acetic anhydride and 2 g of sulfamic acid were added to cap the remaining hydroxy groups, followed by stirring at room temperature for 10 hours.
- the residue was dissolved in 70 g of ethyl acetate and washed 4 times with 20 g of 5% aqueous sodium hydroxide to remove hydroquinone. Further, it was washed twice with 20 g of a 7% aqueous sulfuric acid solution and twice with 20 g of water.
- the resulting multi-branched macromonomer (a3-3) had a weight average molecular weight of 3,000, a number average molecular weight of 2,100, and isopropenyl group and acetyl group introduction rates of 55 mol% and 36 mol%, respectively. It was. Therefore, the introduction amount of the polymerizable double bond is 2.00 mmol / g.
- Example 1 In this example, an apparatus arranged as shown in FIG. 1 was used. A mixed solution containing styrene, butyl acrylate, a solvent, and the like was supplied to a stirring reactor (2) by a plunger pump (1). Then, it supplied to the circulation polymerization line (I) with the gear pump (3).
- the circulation polymerization line (I) is used to circulate the 2.5 inch inner diameter tubular reactor (SMX static mixer manufactured by Gebrüu Sulzer, Switzerland) (4), (5), (6) and the mixed solution in order from the inlet. Gear pump (7).
- the reaction volume of (4) to (6) is about 20 L. Between the tubular reactor (6) and the gear pump (7), there is an outlet that leads to the non-circulating polymerization line (II).
- Tubular reactors (8), (9), (10) and a gear pump (11) similar to the above are connected in series from the inlet to the non-circulating polymerization line (II).
- the reaction volume of (8) to (10) is about 16
- the mixed solution obtained by polymerization was heated with a heat exchanger at 260 ° C., volatile components were removed under reduced pressure of 5 kPa, and pelletized to obtain a styrene resin composition.
- the polymerization average molecular weight Mw was 380,000, and MFR was 4.0 g / 10 min.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 2 A styrenic resin composition was obtained in the same manner as in Example 1 except that the multibranched macromonomer (a3-2) was used instead of the multibranched macromonomer (a3-1) in Example 1.
- the polymerization average molecular weight Mw was 350,000, and the MFR was 3.9 g / 10 min.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 3 A styrene resin composition was obtained in the same manner as in Example 1, except that the multibranched macromonomer (a3-3) was used instead of the multibranched macromonomer (a3-1) in Example 1.
- the polymerization average molecular weight Mw was 390,000, and MFR was 4.0 g / 10 min.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 4 A styrenic resin composition was obtained in the same manner as in Example 1 except that the multibranched macromonomer (a3-4) was used instead of the multibranched macromonomer (a3-1) in Example 1.
- the polymerization average molecular weight Mw was 360,000, and MFR was 4.0 g / 10 minutes.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 5 A styrenic resin composition was obtained in the same manner as in Example 1 except that the hyperbranched macromonomer (a3-5) was used instead of the hyperbranched macromonomer (a3-1) in Example 1.
- the polymerization average molecular weight Mw was 320,000, and MFR was 3.9 g / 10 minutes.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9.
- Example 6 A styrene resin composition was obtained in the same manner as in Example 1 except that the amount of the hyperbranched macromonomer (a3-1) added in Example 1 was changed to 100 ppm.
- the polymerization average molecular weight Mw was 340,000, and MFR was 4.3 g / 10 minutes.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 7 A styrene resin composition was obtained in the same manner as in Example 1 except that the amount of the hyperbranched macromonomer (a3-1) added in Example 1 was changed to 500 ppm.
- the polymerization average molecular weight Mw was 460,000, and the MFR was 3.6 g / 10 minutes.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9.
- Example 8 A styrene resin composition was obtained in the same manner as in Example 2 except that the amount of the hyperbranched macromonomer (a3-2) added in Example 2 was changed to 100 ppm.
- the polymerization average molecular weight Mw was 310,000, and MFR was 4.4 g / 10 minutes. Moreover, ratio Mw / Mn of the weight average molecular weight and the number average molecular weight was 2.7.
- Example 9 A styrene resin composition was obtained in the same manner as in Example 2, except that the amount of the hyperbranched macromonomer (a3-2) added in Example 2 was changed to 500 ppm.
- the polymerization average molecular weight Mw was 430,000, and the MFR was 3.5 g / 10 min.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9.
- Example 10 A styrene resin composition was obtained in the same manner as in Example 3 except that the amount of the hyperbranched macromonomer (a3-3) added in Example 3 was changed to 100 ppm.
- the polymerization average molecular weight Mw was 360,000, and MFR was 4.6 g / 10 min.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 11 A styrene resin composition was obtained in the same manner as in Example 3, except that the amount of the hyperbranched macromonomer (a3-3) added in Example 3 was changed to 500 ppm.
- the polymerization average molecular weight Mw was 510,000, and MFR was 3.3 g / 10 min. Moreover, ratio Mw / Mn of the weight average molecular weight and the number average molecular weight was 3.0.
- Example 12 A styrene resin composition was obtained in the same manner as in Example 4 except that the amount of the hyperbranched macromonomer (a3-4) added in Example 4 was changed to 100 ppm.
- the polymerization average molecular weight Mw was 330,000, and MFR was 4.3 g / 10 min.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 13 A styrene resin composition was obtained in the same manner as in Example 4 except that the amount of the hyperbranched macromonomer (a3-4) added in Example 4 was changed to 500 ppm.
- the polymerization average molecular weight Mw was 440,000, and the MFR was 3.2 g / 10 minutes.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9.
- Example 14 A styrene resin composition was obtained in the same manner as in Example 5 except that the amount of the hyperbranched macromonomer (a3-5) added in Example 5 was changed to 100 ppm.
- the polymerization average molecular weight Mw was 310,000, and MFR was 4.4 g / 10 minutes.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 15 A styrene resin composition was obtained in the same manner as in Example 5 except that the amount of the hyperbranched macromonomer (a3-5) added in Example 5 was changed to 500 ppm.
- the average molecular weight Mw was 400,000, and the MFR was 3.4 g / 10 minutes.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 3.3.
- Example 16 A styrene resin composition was obtained in the same manner as in Example 1 except that the amount of butyl acrylate added in Example 1 was 4.5 parts.
- the polymerization average molecular weight Mw was 330,000, and MFR was 4.2 g / 10 min.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9.
- Example 17 A styrene resin composition was obtained in the same manner as in Example 1 except that the amount of butyl acrylate added in Example 1 was 12.5 parts.
- the polymerization average molecular weight Mw was 440,000, and MFR was 4.0 / 10 minutes.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 18 A tylene-based resin composition was obtained in the same manner as in Example 2, except that the amount of butyl acrylate added in Example 2 was 4.5 parts.
- the polymerization average molecular weight Mw was 320,000, and MFR was 4.0 g / 10 min.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.7.
- Example 19 A styrene resin composition was obtained in the same manner as in Example 2 except that the amount of butyl acrylate added in Example 2 was 12.5 parts.
- the average molecular weight Mw was 430,000, and the MFR was 4.2 g / 10 min.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 20 A styrene resin composition was obtained in the same manner as in Example 3 except that the amount of butyl acrylate added in Example 3 was 4.5 parts. Polymerization average molecular weight Mw was 360,000, and MFR was 4.0 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 21 A styrene resin composition was obtained in the same manner as in Example 3 except that the amount of butyl acrylate added in Example 3 was 12.5 parts. Polymerization average molecular weight Mw was 470,000, and MFR was 4.2 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9.
- Example 22 A styrene resin composition was obtained in the same manner as in Example 4 except that the amount of butyl acrylate added in Example 4 was 4.5 parts.
- the polymerization average molecular weight Mw was 330,000, and MFR was 3.9 g / 10 min.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.7.
- Example 23 A styrene resin composition was obtained in the same manner as in Example 4 except that the amount of butyl acrylate added in Example 4 was 12.5 parts.
- the polymerization average molecular weight Mw was 440,000, and the MFR was 4.1 g / 10 minutes.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 24 A styrene resin composition was obtained in the same manner as in Example 5 except that the amount of butyl acrylate added in Example 5 was 4.5 parts.
- the polymerization average molecular weight Mw was 310,000, and MFR was 3.7 g / 10 min.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9.
- Example 25 A styrene resin composition was obtained in the same manner as in Example 5 except that the amount of butyl acrylate added in Example 5 was 12.5 parts.
- the polymerization average molecular weight Mw was 460,000, and the MFR was 4.6 g / 10 minutes.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 3.6.
- Example 26 A styrene resin composition was obtained in the same manner as in Example 6 except that the amount of butyl acrylate added in Example 6 was 4.5 parts.
- the polymerization average molecular weight Mw was 310,000, and MFR was 3.8 g / 10 minutes.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.7.
- Example 27 A styrene resin composition was obtained in the same manner as in Example 6 except that the amount of butyl acrylate added in Example 6 was 12.5 parts.
- the average molecular weight Mw was 400,000, and the MFR was 4.4 g / 10 minutes.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 28 A styrene resin composition was obtained in the same manner as in Example 7 except that the amount of butyl acrylate added in Example 7 was 4.5 parts.
- the average molecular weight Mw was 400,000, and the MFR was 3.5 g / 10 min.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Example 29 A styrene resin composition was obtained in the same manner as in Example 7 except that the amount of butyl acrylate added in Example 7 was 12.5 parts.
- the polymerization average molecular weight Mw was 580,000, and MFR was 4.1 g / 10 min. Moreover, ratio Mw / Mn of the weight average molecular weight and the number average molecular weight was 3.0.
- Example 30 A styrene resin composition was obtained in the same manner as in Example 1, except that the amount of the hyperbranched macromonomer (a3-1) added in Example 1 was changed to 600 ppm.
- the polymerization average molecular weight Mw was 520,000, and the MFR was 1.8 g / 10 min.
- the ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9.
- Comparative Example 1 Using the same reaction apparatus as in Example 1, 98 parts of styrene, 2 parts of butyl acrylate, 6 parts of ethylbenzene, and the hyperbranched macromonomer (a3-1) of Reference Example 1 were added to 100 parts in total of styrene and butyl acrylate. 100 ppm of the polymerization initiator [2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane] was prepared by adjusting a mixed solution of 150 ppm with respect to 100 parts of styrene and butyl acrylate in total. Polymerization was carried out under the same conditions as in Example 1.
- the mixed solution obtained by polymerization was heated with a heat exchanger at 250 ° C., volatile components were removed under reduced pressure of 5 kPa, and pelletized to obtain a styrene resin composition.
- the obtained styrene-based resin composition had a weight average molecular weight Mw of 370,000, an MFR of 1.5 g / 10 minutes, and a ratio Mw / Mn of the weight average molecular weight to the number average molecular weight of 3.2.
- Comparative Example 2 Using the same reaction apparatus as in Example 1, 98 parts of styrene, 2 parts of butyl acrylate, 7 parts of ethylbenzene, and 100 parts of the hyperbranched macromonomer (a3-1) of Reference Example 1 in total of styrene and butyl acrylate In contrast, 100 ppm of a polymerization initiator, t-butyl peroxybenzoate, was prepared by mixing a mixture of 300 ppm with respect to a total of 100 parts of styrene and butyl acrylate, and continuously polymerizing using the apparatus shown in FIG. It was.
- a polymerization initiator t-butyl peroxybenzoate
- Feed rate of mixed solution 9.0 liter / hour Reaction temperature in stirred reactor: 130 ° C Reaction temperature in circulating polymerization line (I): 130 ° C Reaction temperature in non-circulation polymerization line (II): 135 to 145 ° C
- the mixed solution obtained by polymerization was heated with a heat exchanger at 260 ° C., and after removing volatile components under a reduced pressure of 5 kPa, pelletized to obtain a styrene resin composition.
- the obtained styrene-based resin composition had a weight average molecular weight Mw of 270,000, an MFR of 3.5 g / 10 minutes, and a ratio Mw / Mn of the weight average molecular weight to the number average molecular weight of 2.2.
- Comparative Example 3 100 parts of styrene, 7 parts of ethylbenzene, 300 ppm of the hyperbranched macromonomer (a3-1) of Reference Example 1 with respect to 100 parts of styrene, a polymerization initiator (2,2-bis (4,4-di-tert-butylperoxide)
- a polymerization initiator (2,2-bis (4,4-di-tert-butylperoxide)
- a mixture of 150 ppm of oxycyclohexyl) propane with respect to 100 parts of styrene was prepared and the reaction temperature in the non-circular polymerization line (II) was in the range of 145 to 155 ° C. And polymerized.
- the mixed solution obtained by polymerization was heated with a heat exchanger at 260 ° C., and after removing volatile components under a reduced pressure of 5 kPa, pelletized to obtain a styrene resin composition.
- the obtained styrene-based resin composition had a weight average molecular weight Mw of 280,000, an MFR of 2.7 g / 10 minutes, and a ratio Mw / Mn of the weight average molecular weight to the number average molecular weight of 2.4.
- Comparative Example 4 87.5 parts of styrene, 12.5 parts of butyl acrylate, 7 parts of ethylbenzene, 300 ppm of the hyperbranched macromonomer (a3-1) of Reference Example 1 with respect to a total of 100 parts of styrene and butyl acrylate, A mixture of 150 ppm of 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane) was prepared with respect to 100 parts of styrene, and the reaction temperature in the non-circulation polymerization line (II) was 145 to Polymerization was carried out under the same conditions as in Example 1 except that the temperature range was 155 ° C.
- the mixed solution obtained by polymerization was heated with a heat exchanger at 260 ° C., and after removing volatile components under a reduced pressure of 5 kPa, pelletized to obtain a styrene resin composition.
- the obtained styrene-based resin composition had a weight average molecular weight of 610,000, an MFR of 3.8 g / 10 min, and a ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.
- Comparative Example 5 85 parts of styrene, 15 parts of butyl acrylate, 7 parts of ethylbenzene, 300 ppm of the hyperbranched macromonomer (a3-1) of Reference Example 1 with respect to a total of 100 parts of styrene and butyl acrylate, a polymerization initiator (2,2- A mixture of 150 ppm of bis (4,4-di-t-butylperoxycyclohexyl) propane) was prepared with respect to 100 parts of styrene, and the reaction temperature in the non-circular polymerization line (II) was in the range of 145 to 155 ° C. Polymerization was carried out under the same conditions as in Example 1 except that.
- the mixed solution obtained by polymerization was heated with a heat exchanger at 260 ° C., and after removing volatile components under a reduced pressure of 5 kPa, pelletized to obtain a styrene resin composition.
- the obtained styrene-based resin composition had a weight average molecular weight Mw of 590,000, an MFR of 3.2 g / 10 minutes, and a ratio Mw / Mn of the weight average molecular weight to the number average molecular weight of 2.9.
- the styrenic resin composition obtained in the present invention has a wider molecular weight distribution range than the conventional linear styrenic resin composition. From this, even if it contains an ultrahigh molecular weight component, it is molded. Excellent in properties. In addition, when applying various molding methods using molds, the mold release properties are good, so there is no need to release them by using additives, etc., and there is no surface contamination. ⁇ Productivity is good over time, and the degree of defective products can be reduced. Further, the obtained molded product has a mechanical strength equal to or higher than the conventional one. In addition, a sheet obtained by biaxial stretching of this can provide a good molded product having sufficient mold reproducibility and no uneven thickness in the radiation heating type pressure air vacuum forming method.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明のスチレン系樹脂組成物は、スチレン系単量体(a1)と、アクリル酸エステル(a2)と、複数の分岐を有し、且つその先端部に重合性二重結合を有する重量平均分子量が1,000~15,000の多分岐状マクロモノマー(a3)と、を共重合させて得られる多分岐状共重合体(A)を含有するスチレン系樹脂組成物であって、該組成物のGPC-MALS法により求められる重量平均分子量(Mw)が30万~60万であり、前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との使用割合(a1)/(a2)が87/13~96/4(質量比)であり、且つ重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.7~4.0の範囲にあるものである。
(1)1分子中に活性メチレン基と、臭素、塩素、メチルスルホニルオキシ基またはトシルオキシ基等とを有するAB2型モノマーを求核置換反応させて得られる多分岐状の自己縮合型重縮合体を前駆体として、該重縮合体中に残存する未反応の活性メチレン基またはメチン基を、クロロメチルスチレン、ブロモメチルスチレン等と求核置換反応させることによって重合性二重結合を導入して得られる多分岐状マクロモノマー、
(2)水酸基を1個以上有する化合物に、カルボキシル基に隣接する炭素原子が飽和炭素原子であり、且つ該炭素原子上の水素原子がすべて置換され、且つ水酸基を2個以上有するモノカルボン酸を反応することにより多分岐状ポリマーとし、これにアクリル酸、メタクリル酸、イソシアネート基含有アクリル系化合物、4-クロロメチルスチレン等を反応させ、重合性二重結合を導入して得られる多分岐状マクロモノマー、
(3)水酸基を1個以上有する化合物に、水酸基を1個以上有する環状エーテル化合物を反応させることにより多分岐状ポリマーとし、次いで該ポリマーの末端基である水酸基に、アクリル酸、メタクリル酸、イソシアネート基含有アクリル系化合物、4-クロロメチルスチレン等を反応させ、重合性二重結合を導入して得られる多分岐状マクロモノマー、
(4)水酸基を1個以上有する化合物と、2個以上の水酸基と、ハロゲン原子、-SO2OCH3、-OSO2CH3等を含有する化合物と、を反応させることにより多分岐状ポリマーとし、次いで該ポリマーの末端基である水酸基にアクリル酸、メタクリル酸、イソシアネート基含有アクリル系化合物、4-クロロメチルスチレン等を反応させ、重合性二重結合を導入して得られる多分岐状マクロモノマー、
(5)アミド結合が窒素原子を介して繰り返し構造となっているPAMAMデンドリマーに、アクリル酸、メタクリル酸、イソシアネート基含有アクリル系化合物、4-クロロメチルスチレン等を反応させ、重合性二重結合を導入して得られる多分岐状マクロモノマー。
〔GPC-MALS測定条件〕
スチレン系樹脂組成物のGPC-MALS測定を、Shodex HPLC、検出器Wyatt Technology DAWN EOS、Shodex RI-101、カラムShodex KF-806L×2、溶媒THF、流量1.0ml/分の条件にて行った。また、GPC-MALSの測定の解析は、Wyatt社の解析ソフトASTRAにより行い、スチレン系樹脂組成物についての重量平均分子量、数平均分子量等を求めた。
JIS K7210に準拠して測定した。なお測定条件は、温度200℃、荷重49Nである。
〔シャルピー衝撃強度〕:JIS K7111に準拠して測定した。
〔ビカット軟化温度〕:JIS K7206:99に準拠して測定した。
日本製鋼所製150トン射出成形機によりプリン型容器を成形し、下記評価基準に基づき評価した。
容器成形が容易で偏肉がない:◎
容器成形は比較的容易であり、偏肉がない:○
容器成形は比較的容易であるが、偏肉がある:△
容器成形が困難で偏肉がある:×
シート押出機(スクリュ径30mm)を用い、樹脂ペレットを溶融樹脂温度210℃~230℃、押出速度0.8~1m/分で押出し、厚み0.4mmのシートサンプルを作製した。次にこのシートサンプルを真空成形機を用いて加熱温度290℃~300℃、加熱時間10秒~30秒で加熱した直後の、シート加熱前のシート面を基準としたシート中央部の垂れの長さを測定し、加熱時間に対してのシートの垂れの長さから、下記評価基準に基づき、成形加工性を評価した。
加熱時間20秒の時、垂れ量20mm未満が◎、20~40mm未満が○、40mm以上が×。
加熱時間30秒の時、垂れ量30mm未満が◎、30~60mm未満が○、60mm以上が×。
但し、どちらか一方の加熱時間に対しての評価が×で、他の一方が○か◎の場合、評価は△とした。
日本製鋼所製150トン射出成形機により20cm×15cm×4cmの箱形を成形して、下記評価基準に基づき評価した。
◎:連続50ショット以上で離型は容易
○:連続30ショット以上で離型は容易
△:連続10ショット以上で離型困難が発生
×:連続1~2ショットで離型が困難
日本製鋼所製150トン射出成形機により20cm×15cm×4cmの箱形を成形した、その成形品を雰囲気温度70℃で、1時間放置した時、成形品に変形がない場合を◎、ほとんど変形がみられないときを○、明らかに変形し、その度合いが大きいときを×とした。
スチレン系樹脂組成物にハイインパクトポリスチレン ディックスチレンGH-8300-5を2%添加し、φ30mm径のスクリューを有する二軸押出機(株式会社日本製鋼所製 TEX30α-31.5BW-5V)に供給、溶融混練、T-ダイより押出、ロールで冷却、再加熱後、ロール群の速度差により、シート流れ方向(MDとする)に延伸した後、テンターでシート流れ方向に対して直交方向(TDとする)に延伸を行い、厚みが0.25mmのシートを作製した。また、延伸倍率は、表中に記載した。延伸温度は、表中の加熱収縮応力となる様に調整した。シートについては、像鮮明度、耐折強度、輻射熱式圧空真空成形法における最適加熱時間を下記によって評価した。
JIS K7374 クシ間隔0.5mmにて評価し、50%以上を合格(○)とした。また、70%以上を◎とした。
JIS P8115 縦方向と横方向の平均が6回以上を合格(○)とした。また、10回以上を◎とした。
ASTM D-1504に準拠して測定した。
株式会社浅野研究所製FK-0431-10を用い、ヒーター温度370℃で加熱時間を変えて間口10cm×10cm、絞り比0.3の金型にてシートを成形し、同一加熱時間で得られる成形品の重量差が±10%以上となった時間を成形上限界とした。また、5mmφの穴の金型にて成形し、突起の高さが1.5mm以上となった時間を成形下限界とした。この成形範囲が1秒以上のものを合格(○)とした。
<多分岐ポリエーテルポリオールの合成>
攪拌機、温度計、滴下ロート及びコンデンサーを備えた2リットルフラスコに、室温下、エトキシ化ペンタエリスリトール(5モル-エチレンオキシド付加ペンタエリスリトール)50.5g、BF3ジエチルエーテル溶液(50%)1gを加え、110℃に加熱した。これに3-エチル-3-(ヒドロキシメチル)オキセタン450gを、反応による発熱を制御しつつ、25分間でゆっくり加えた。発熱が収まったところで、反応混合物をさらに120℃で3時間撹拌し、その後、室温に冷却した。得られた多分岐ポリエーテルポリオールの重量平均分子量は3,000、水酸基価は530であった。
攪拌機、温度計、コンデンサーを備えたディーンスタークデカンター及び気体導入管を備えた反応器に、上述の<多分岐ポリエーテルポリオール1の合成>で得られた多分岐ポリエーテルポリオール50g、メタアクリル酸13.8g、トルエン150g、ヒドロキノン0.06g、パラトルエンスルホン酸1gを加え、混合溶液中に3ミリリットル/分の速度で7%酸素含有窒素(v/v)を吹き込みながら、常圧下で撹拌し、加熱した。デカンターへの留出液量が1時間あたり30gになるように加熱量を調節し、脱水量が2.9gに到達するまで加熱を続けた。反応終了後、一度冷却し、無水酢酸36g、スルファミン酸5.7gを加え、60℃で10時間撹拌した。その後、残っている酢酸及びヒドロキノンを除去する為に5%水酸化ナトリウム水溶液50gで4回洗浄し、さらに1%硫酸水溶液50gで1回、水50gで2回洗浄した。得られた有機層にメトキノン0.02gを加え、減圧下、7%酸素含有窒素(v/v)を導入しながら溶媒を留去し、イソプロペニル基およびアセチル基を有する多分岐状マクロモノマー(a3-1)60gを得た。得られた多分岐状マクロモノマー(a3-1)の重量平均分子量は3,900であり、多分岐ポリエーテルポリオールへのイソプロペニル基およびアセチル基導入率は、それぞれ30モル%および62モル%であった。従って、重合性二重結合の導入量は1.50ミリモル/gである。
<スチリル基及びアセチル基を有する多分岐状マクロモノマーの合成>
攪拌機、乾燥管を備えたコンデンサー、滴下ロート及び温度計を備えた反応器に、上述の<多分岐ポリエーテルポリオール1の合成>で得られた多分岐ポリエーテルポリオール50g、テトラヒドロフラン100g及び水素化ナトリウム4.3gを加え、室温下、撹拌した。これに4-クロロメチルスチレン26.7gを1時間かけて滴下し、得られた反応混合物を50℃でさらに4時間撹拌した。反応終了後、一度冷却し、無水酢酸34g、スルファミン酸5.4gを加え、60℃で10時間撹拌した。その後、減圧下でテトラヒドロフランを留去し、得られた混合物をトルエン150gで溶解させ、残っている酢酸を除去する為に5%水酸化ナトリウム水溶液50gで4回洗浄し、さらに1%硫酸水溶液50gで1回、水50gで2回洗浄した。得られた有機層から減圧下で溶媒を留去し、スチリル基およびアセチル基を有する多分岐状マクロモノマー(a3-2)70gを得た。得られた多分岐状マクロモノマー(a3-2)の重量平均分子量は4,800であり、多分岐ポリエーテルポリオールへのスチリル基およびアセチル基導入率は、それぞれ38モル%および57モル%であった。従って、重合性二重結合の導入量は1.31ミリモル/gである。
<メタクリロイル基及びアセチル基を有する多分岐状マクロモノマーの合成>
4口フラスコにスターラー、圧力計、冷却器及び受け皿を取り付け、これに308.9gのエトキシル化ペンタエリスリトールと0.46gの硫酸を加えた。その後、140℃まで加温し、460.5gの2,2-ジ(ヒドロキシメチル)プロピオン酸を10分間で加えた。2,2-ジ(ヒドロキシメチル)プロピオン酸が完全に溶解して、透明溶液になってから、30~40mmHgに減圧し、攪拌しながら、酸価が7.0mgKOH/gになるまで4時間反応させた。その後、この反応液に921gの2,2-ジ(ヒドロキシメチル)プロピオン酸と0.92gの硫酸を15分かけて加え、透明溶液になってから、30~40mmHgに減圧し、攪拌しながら3時間反応させて、ポリエステルポリオールを得た。7%酸素導入管、温度計、コンデンサーを備えたディーンスタークデカンター、および攪拌機を備えた反応容器に、上記で生成したポリエステルポリオールを10g、ジブチル錫オキシド1.25g、イソプロペニル基を有するメチルメタクリレート100g、およびヒドロキノン0.05gを加え、混合溶液中に3ml/分の速度で7%酸素を吹き込みながら、撹拌下に加熱した。デカンターへの留出液量が1時間あたり15~20gになるように加熱量を調節し、1時間ごとにデカンター内の留出液を取り出し、これに相当する量のメチルメタクリレートを加えながら4時間反応させた。反応終了後、メチルメタクリレートを減圧下で留去し、残っているヒドロキシ基をキャッピングするために無水酢酸10g、スルファミン酸2gを加えて室温下、10時間撹拌した。濾過でスルファミン酸を除去し、減圧下で無水酢酸および酢酸を留去した後に、残留物を酢酸エチル70gに溶解し、ヒドロキノンを除去する為に5%水酸化ナトリウム水溶液20gで4回洗浄した。さらに7%硫酸水溶液20gで2回、水20gで2回洗浄した。得られた有機層にメトキノン0.0045gを加え、減圧下、7%酸素を導入しながら溶媒を留去し、イソプロペニル基およびアセチル基を有する多分岐状マクロモノマー11gを得た。得られた多分岐状マクロモノマー(a3-3)の重量平均分子量は3,000、数平均分子量は2,100、イソプロペニル基およびアセチル基導入率は、それぞれ55モル%および36モル%であった。従って重合性二重結合の導入量は2.00ミリモル/gである。
<スチリル基を有するPAMAMデンドリマーの合成>
攪拌機、乾燥管を備えたコンデンサー、滴下ロート及び温度計を備えた反応器にPAMAMデンドリマー(ゼネレーション2.0:Dentritech社製)のメタノール溶液(20%)50gを加え、減圧下、撹拌しながらメタノールを留去した。続いて、テトラヒドロフラン50g及び微粉化した水酸化カリウム3.0gを加え、室温下、撹拌した。これに4-クロロメチルスチレン7.0gを10分間かけて滴下し、得られた反応混合物を50℃でさらに3時間撹拌した。反応終了後、冷却し、固体を濾過した後に、テトラヒドロフランを減圧下、留去し、スチリル基を有するPAMAMデンドリマー13gを得た。得られたデンドリマーのスチリル基含有率(重合性二重結合の導入量)は2.7ミリモル/グラムであった。得られた多分岐状マクロモノマー(a3-4)の重量平均分子量は4,050であった。
<スチリル基及びアセチル基を有する多分岐ポリエーテルポリオール>
攪拌機、コンデンサー、遮光性滴下ロート及び温度計を備え、窒素シールが可能な遮光性反応容器に、窒素気流下、無水1,3,5-トリヒドロキシベンゼン0.5g、炭酸カリウム29g、18-クラウン-6 2.7g及びアセトン180gを加え、撹拌しながら、5-(ブロモメチル)-1,3-ジヒドロキシベンゼン21.7gとアセトン180gからなる溶液を2時間かけて滴下、加えた。その後、5-(ブロモメチル)-1,3-ジヒドロキシベンゼンが消失するまで、撹拌下、加熱、還流させた。その後、4-クロロメチルスチレン9.0gを加え、これが消失するまで、さらに撹拌下、加熱、還流させた。その後、反応混合物に無水酢酸4g、スルファミン酸0.6gを加え、室温下、一晩撹拌した。冷却後、反応混合物中の固体を濾過で除き、溶媒を減圧下で留去した。得られた混合物をジクロロメタンに溶解し、水で3回洗浄した後、ジクロロメタン溶液をヘキサンに滴下し、生成物を沈殿させた。これを濾過し、乾燥させて、スチリル基及びアセチル基を有する多分岐状マクロモノマー(a3-5)12gを得た。重量平均分子量は3,200で、スチリル基の含有率は3.5ミリモル/グラムであった。
本実施例では、図1に示すように配列された装置を用いた。スチレン、アクリル酸ブチル及び溶媒などを含む混合溶液をプランジャーポンプ(1)により、撹拌式反応器(2)に供給した。その後、ギヤポンプ(3)により循環重合ライン(I)に供給した。循環重合ライン(I)は、入口から順に内径2.5インチ管状反応器(スイス国、ゲブリュー・ズルツァー社製SMXスタティックミキサー)(4)、(5)、(6)及び混合溶液を循環させるためのギヤポンプ(7)から構成されている。(4)~(6)の反応容積は約20Lである。管状反応器(6)とギヤポンプ(7)の間には非循環重合ライン(II)に続く出口が設けられている。非循環重合ライン(II)には、入口から順に上記と同様の管状反応器(8)、(9)、(10)とギヤポンプ(11)が直列に連結されている。(8)~(10)の反応容積は約16Lである。
混合溶液の供給量:9.0リットル/時間
撹拌式反応器での反応温度:116℃
循環重合ライン(I)での反応温度:120℃
非循環重合ライン(II)での反応温度:155~170℃
実施例1における多分岐状マクロモノマー(a3-1)の代わりに、多分岐状マクロモノマー(a3-2)を用いた以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは35万、MFRは、3.9g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
実施例1における多分岐状マクロモノマー(a3-1)の代わりに、多分岐状マクロモノマー(a3-3)を用いた以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは39万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
実施例1における多分岐状マクロモノマー(a3-1)の代わりに、多分岐状マクロモノマー(a3-4)を用いた以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは36万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
実施例1における多分岐状マクロモノマー(a3-1)の代わりに、多分岐状マクロモノマー(a3-5)を用いた以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは32万、MFRは、3.9g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
実施例1における多分岐状マクロモノマー(a3-1)の添加量を100ppmにした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは34万、MFRは、4.3g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
実施例1における多分岐状マクロモノマー(a3-1)の添加量を500ppmにした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは46万、MFRは、3.6g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
実施例2における多分岐状マクロモノマー(a3-2)の添加量を100ppmにした以外は、実施例2と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは31万、MFRは、4.4g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.7であった。
実施例2における多分岐状マクロモノマー(a3-2)の添加量を500ppmにした以外は、実施例2と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは43万、MFRは、3.5g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
実施例3における多分岐状マクロモノマー(a3-3)の添加量を100ppmにした以外は、実施例3と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは36万、MFRは、4.6g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
実施例3における多分岐状マクロモノマー(a3-3)の添加量を500ppmにした以外は、実施例3と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは51万、MFRは、3.3g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは3.0であった。
実施例4における多分岐状マクロモノマー(a3-4)の添加量を100ppmにした以外は、実施例4と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは33万、MFRは、4.3g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
実施例4における多分岐状マクロモノマー(a3-4)の添加量を500ppmにした以外は、実施例4と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは44万、MFRは、3.2g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
実施例5における多分岐状マクロモノマー(a3-5)の添加量を100ppmにした以外は、実施例5と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは31万、MFRは、4.4g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
実施例5における多分岐状マクロモノマー(a3-5)の添加量を500ppmにした以外は、実施例5と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは40万、MFRは、3.4g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは3.3であった。
実施例1におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは33万、MFRは、4.2g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
実施例1におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは44万、MFRは、4.0/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
実施例2におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例2と同様にしてチレン系樹脂組成物を得た。重合平均分子量Mwは32万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.7であった。
実施例2におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例2と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは43万、MFRは、4.2g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
実施例3におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例3と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは36万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
実施例3におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例3と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは47万、MFRは、4.2g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
実施例4におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例4と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは33万、MFRは、3.9g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.7であった。
実施例4におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例4と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは44万、MFRは、4.1g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
実施例5におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例5と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは31万、MFRは、3.7g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
実施例5におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例5と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは46万、MFRは、4.6g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは3.6であった。
実施例6におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例6と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは31万、MFRは、3.8g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.7であった。
実施例6におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例6と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは40万、MFRは、4.4g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
実施例7におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例7と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは40万、MFRは、3.5g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
実施例7におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例7と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは58万、MFRは、4.1g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは3.0であった。
実施例1における多分岐状マクロモノマー(a3-1)の添加量を600ppmにした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは52万、MFRは、1.8g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
実施例1と同様の反応装置を用い、スチレン98部、アクリル酸ブチル2部、エチルベンゼン6部、参考例1の多分岐状マクロモノマー(a3-1)をスチレンとアクリル酸ブチルの合計100部に対し100ppm、重合開始剤〔2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン〕をスチレンとアクリル酸ブチルの合計100部に対し150ppmからなる混合液を調整し、実施例1と同条件にて重合した。
実施例1と同様の反応装置を用い、スチレン98部、アクリル酸ブチル2部、エチルベンゼン7部、参考例1の多分岐状マクロモノマー(a3-1)をスチレンとアクリル酸ブチルの合計100部に対し100ppm、重合開始剤t-ブチルパーオキシベンゾエートをスチレンとアクリル酸ブチルの合計100部に対し300ppmからなる混合液を調整し、図1に示す装置を用いて下記条件で、連続的に重合させた。
撹拌式反応器での反応温度:130℃
循環重合ライン(I)での反応温度:130℃
非循環重合ライン(II)での反応温度:135~145℃
重合して得られた混合溶液を260℃の熱交換器で加熱し、5kPaの減圧下で揮発性成分を除去後、ペレット化してスチレン系樹脂組成物を得た。得られたスチレン系樹脂組成物は、重量平均分子量Mwは27万、MFRは3.5g/10分、重量平均分子量と数平均分子量の比Mw/Mnは2.2であった。
スチレン100部、エチルベンゼン7部、参考例1の多分岐状マクロモノマー(a3-1)をスチレン100部に対し300ppm、重合開始剤(2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン)をスチレン100部に対し150ppmからなる混合液を調整し、非循環重合ライン(II)での反応温度を145~155℃の範囲にした以外は、実施例1と同条件にて重合した。重合して得られた混合溶液を260℃の熱交換器で加熱し、5kPaの減圧下で揮発性成分を除去後、ペレット化してスチレン系樹脂組成物を得た。得られたスチレン系樹脂組成物は、重量平均分子量Mwは28万、MFRは2.7g/10分、重量平均分子量と数平均分子量の比Mw/Mnは2.4であった。
スチレン87.5部、アクリル酸ブチル12.5部、エチルベンゼン7部、参考例1の多分岐状マクロモノマー(a3-1)をスチレンとアクリル酸ブチルの合計100部に対し300ppm、重合開始剤(2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン)をスチレン100部に対し150ppmからなる混合液を調整し、非循環重合ライン(II)での反応温度を145~155℃の範囲にした以外は、実施例1と同条件にて重合した。重合して得られた混合溶液を260℃の熱交換器で加熱し、5kPaの減圧下で揮発性成分を除去後、ペレット化してスチレン系樹脂組成物を得た。得られたスチレン系樹脂組成物は、重量平均分子量は61万、MFRは3.8g/10分、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
スチレン85部、アクリル酸ブチル15部、エチルベンゼン7部、参考例1の多分岐状マクロモノマー(a3-1)をスチレンとアクリル酸ブチルの合計100部に対し300ppm、重合開始剤(2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン)をスチレン100部に対し150ppmからなる混合液を調整し、非循環重合ライン(II)での反応温度を145~155℃の範囲にした以外は、実施例1と同条件にて重合した。重合して得られた混合溶液を260℃の熱交換器で加熱し、5kPaの減圧下で揮発性成分を除去後、ペレット化してスチレン系樹脂組成物を得た。得られたスチレン系樹脂組成物は、重量平均分子量Mwは59万、MFRは3.2g/10分、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
(2):撹拌式反応器
(3):ギヤポンプ
(4):静的ミキシングエレメントを有する管状反応器
(5):静的ミキシングエレメントを有する管状反応器
(6):静的ミキシングエレメントを有する管状反応器
(7):ギヤポンプ
(8):静的ミキシングエレメントを有する管状反応器
(9):静的ミキシングエレメントを有する管状反応器
(10):静的ミキシングエレメントを有する管状反応器
(I):循環重合ライン
(II):非循環重合ライン
Claims (8)
- スチレン系単量体(a1)と、アクリル酸エステル(a2)と、複数の分岐を有し、且つその先端部に重合性二重結合を有する重量平均分子量が1,000~15,000の多分岐状マクロモノマー(a3)と、を共重合させて得られる多分岐状共重合体(A)を含有するスチレン系樹脂組成物であって、
該組成物のGPC-MALS法により求められる重量平均分子量(Mw)が30万~60万であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.7~4.0であり、且つ前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との使用割合(a1)/(a2)が87/13~96/4(質量比)であることを特徴とするスチレン系樹脂組成物。 - 前記多分岐状マクロモノマー(a3)の使用割合が、前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との合計に対して質量基準で100~1,000ppmである請求項1記載のスチレン系樹脂組成物。
- 前記アクリル酸エステル(a2)がアクリル酸ブチルである請求項1又は2記載のスチレン系樹脂組成物。
- 前記スチレン系樹脂組成物のメルトマスフローレイトが2.0g/10分以上である請求項1~3の何れか1項記載のスチレン系樹脂組成物。
- 請求項1~4の何れか1項記載のスチレン系樹脂組成物を用いて得られることを特徴とする成形品。
- 請求項1~4の何れか1項記載のスチレン系樹脂組成物を、二軸延伸して得られることを特徴とする二軸延伸スチレン系樹脂シート。
- 縦方向及び横方向のいずれの加熱収縮応力も0.20MPa~0.45MPaの範囲である請求項6記載の二軸延伸スチレン系樹脂シート。
- 請求項6又は7記載の二軸延伸スチレン系樹脂シートを輻射加熱式圧空真空成形して得られることを特徴とする成形品。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800257778A CN102906138A (zh) | 2010-03-26 | 2011-03-23 | 苯乙烯系树脂组合物、双轴拉伸苯乙烯系树脂片及其成形品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010071747A JP4990995B2 (ja) | 2010-03-26 | 2010-03-26 | 二軸延伸スチレン系樹脂シート及びこれを用いた成形品 |
JP2010-071747 | 2010-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011118640A1 true WO2011118640A1 (ja) | 2011-09-29 |
Family
ID=44673190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/056997 WO2011118640A1 (ja) | 2010-03-26 | 2011-03-23 | スチレン系樹脂組成物、二軸延伸スチレン系樹脂シート、及びそれらの成形品 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP4990995B2 (ja) |
CN (1) | CN102906138A (ja) |
MY (1) | MY158688A (ja) |
TW (1) | TW201139470A (ja) |
WO (1) | WO2011118640A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170591A1 (ja) * | 2016-03-28 | 2017-10-05 | Psジャパン株式会社 | スチレン系共重合体およびその製造方法、押出発泡シートおよびその成形品 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5930668B2 (ja) * | 2011-11-09 | 2016-06-08 | 新日鉄住金化学株式会社 | インジェクションブロー成形品の製造方法 |
JP5913919B2 (ja) * | 2011-11-09 | 2016-04-27 | 新日鉄住金化学株式会社 | 高分岐型ゴム変性スチレン系樹脂組成物及びシート |
JP6242602B2 (ja) * | 2013-06-21 | 2017-12-06 | 旭化成株式会社 | スチレン系樹脂組成物、スチレン系樹脂フィルム、スチレン系積層シート及び成形体 |
TWI697507B (zh) * | 2016-01-13 | 2020-07-01 | 日商電化股份有限公司 | 雙軸延伸薄片及其成形品 |
TWI697508B (zh) * | 2016-01-15 | 2020-07-01 | 日商電化股份有限公司 | 雙軸延伸薄片及其成形品 |
JP6854819B2 (ja) * | 2016-07-12 | 2021-04-07 | デンカ株式会社 | 二軸延伸シートおよびその成形品 |
TW201823343A (zh) * | 2016-12-23 | 2018-07-01 | 奇美實業股份有限公司 | 熱可塑性樹脂組成物及其所形成的成型品 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005179389A (ja) * | 2003-12-16 | 2005-07-07 | Dainippon Ink & Chem Inc | 二軸延伸用スチレン系樹脂組成物、二軸延伸シート及びその製造方法 |
JP2005281405A (ja) * | 2004-03-29 | 2005-10-13 | Dainippon Ink & Chem Inc | スチレン系樹脂組成物、その発泡シート及び発泡容器 |
JP2006124498A (ja) * | 2004-10-28 | 2006-05-18 | Dainippon Ink & Chem Inc | スチレン−(メタ)アクリル系樹脂組成物およびその製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04220437A (ja) * | 1990-12-21 | 1992-08-11 | Asahi Chem Ind Co Ltd | 二軸延伸スチレン系樹脂シート |
JPH08157615A (ja) * | 1994-12-02 | 1996-06-18 | Idemitsu Petrochem Co Ltd | ポリスチレン系延伸フィルム及びポリスチレン系延伸フィルムの製造方法 |
JP4847667B2 (ja) * | 2002-12-27 | 2011-12-28 | 日本ポリプロ株式会社 | シート成形用プロピレン系樹脂組成物及びそれを用いて構成されるシート |
JP2005330299A (ja) * | 2004-05-18 | 2005-12-02 | San Dic Kk | スチレン系樹脂二軸延伸シート及び熱成形品 |
-
2010
- 2010-03-26 JP JP2010071747A patent/JP4990995B2/ja active Active
-
2011
- 2011-03-23 MY MYPI2012700649A patent/MY158688A/en unknown
- 2011-03-23 WO PCT/JP2011/056997 patent/WO2011118640A1/ja active Application Filing
- 2011-03-23 CN CN2011800257778A patent/CN102906138A/zh active Pending
- 2011-03-24 TW TW100110094A patent/TW201139470A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005179389A (ja) * | 2003-12-16 | 2005-07-07 | Dainippon Ink & Chem Inc | 二軸延伸用スチレン系樹脂組成物、二軸延伸シート及びその製造方法 |
JP2005281405A (ja) * | 2004-03-29 | 2005-10-13 | Dainippon Ink & Chem Inc | スチレン系樹脂組成物、その発泡シート及び発泡容器 |
JP2006124498A (ja) * | 2004-10-28 | 2006-05-18 | Dainippon Ink & Chem Inc | スチレン−(メタ)アクリル系樹脂組成物およびその製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170591A1 (ja) * | 2016-03-28 | 2017-10-05 | Psジャパン株式会社 | スチレン系共重合体およびその製造方法、押出発泡シートおよびその成形品 |
KR20180124858A (ko) * | 2016-03-28 | 2018-11-21 | 피에스 저팬 가부시끼가이샤 | 스티렌계 공중합체 및 그 제조 방법, 압출 발포 시트 및 그 성형품 |
KR102116657B1 (ko) | 2016-03-28 | 2020-05-29 | 피에스 저팬 가부시끼가이샤 | 스티렌계 공중합체 및 그 제조 방법, 압출 발포 시트 및 그 성형품 |
Also Published As
Publication number | Publication date |
---|---|
CN102906138A (zh) | 2013-01-30 |
MY158688A (en) | 2016-10-31 |
JP2011202064A (ja) | 2011-10-13 |
TW201139470A (en) | 2011-11-16 |
JP4990995B2 (ja) | 2012-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011118640A1 (ja) | スチレン系樹脂組成物、二軸延伸スチレン系樹脂シート、及びそれらの成形品 | |
JP2003292707A (ja) | スチレン樹脂組成物およびその製造方法 | |
JP6481848B2 (ja) | スチレン系樹脂組成物、二軸延伸スチレン系樹脂シート及び成形体 | |
JP6083494B1 (ja) | スチレン系発泡シート及びこれを用いる成形体 | |
JP2005179389A (ja) | 二軸延伸用スチレン系樹脂組成物、二軸延伸シート及びその製造方法 | |
JP5403777B2 (ja) | 光学材料用成形体 | |
JP4992271B2 (ja) | ゴム変性スチレン系樹脂組成物、それを用いたスチレン系樹脂シート及び成形体 | |
JP6930422B2 (ja) | スチレン系樹脂組成物、二軸延伸スチレン系樹脂シート及び成形体 | |
JP5333808B2 (ja) | ニ軸延伸スチレン系樹脂シート用樹脂組成物、及びそれを用いたシート、成形品 | |
JP2007284591A (ja) | スチレン−(メタ)アクリル系樹脂及びその成形品 | |
JP5029722B2 (ja) | スチレン系樹脂組成物及びその成形品 | |
JP6273923B2 (ja) | 耐熱性スチレン系樹脂組成物、その製造方法、及びこれを用いる成形体 | |
JP4815784B2 (ja) | スチレン−(メタ)アクリル系樹脂組成物およびその製造方法 | |
JP2012116875A (ja) | 熱収縮性フィルム用樹脂組成物及び熱収縮性フィルム | |
WO2003064524A1 (fr) | Composition de resine styrenique et son procede de production | |
JP2007291366A (ja) | ニ軸延伸スチレン系樹脂シート用樹脂組成物、及びそれを用いたシート、成形品 | |
JP6507622B2 (ja) | スチレン系発泡シート及びこれを用いた成形体 | |
JP6481847B2 (ja) | スチレン系樹脂シート及びこれを用いた成形体 | |
JP2007031660A (ja) | スチレン系樹脂組成物、それを用いたスチレン系樹脂シート及び成形体 | |
WO2017022498A1 (ja) | スチレン系樹脂組成物、発泡シート及びこれを用いた成形体 | |
JP6290530B2 (ja) | 真空圧空成形用の二軸延伸シート及び容器と、これらの製造方法 | |
JP2011219735A (ja) | 樹脂組成物及び樹脂組成物の製造法 | |
JP6634812B2 (ja) | スチレン系樹脂組成物、シート、成形体及びその製造方法 | |
JPWO2017179564A1 (ja) | スチレン系樹脂組成物及びこれを用いる成形体 | |
JP6926466B2 (ja) | 樹脂組成物および成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180025777.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11759445 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201004978 Country of ref document: TH |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11759445 Country of ref document: EP Kind code of ref document: A1 |